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The long-standing 4.2σ muon g − 2 anomaly may be the result of a new particle species which could also
couple to dark matter and mediate its annihilations in the early Universe. In models where both muons and
dark matter carry equal charges under a Uð1ÞLμ−Lτ

gauge symmetry, the corresponding Z0 can both resolve
the observed g − 2 anomaly and yield an acceptable dark matter relic abundance, relying on annihilations
which take place through the Z0 resonance. Once the value of ðg − 2Þμ and the dark matter abundance are
each fixed, there is very little remaining freedom in this model, making it highly predictive. We provide a
comprehensive analysis of this scenario, identifying a viable range of dark matter masses between
approximately 10 and 100 MeV, which falls entirely within the projected sensitivity of several accelerator-
based experiments, including NA62, NA64μ, M3, and DUNE. Furthermore, portions of this mass range
predict contributions to ΔNeff which could ameliorate the tension between early and late time
measurements of the Hubble constant, and which could be tested by stage 4 CMB experiments.
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Introduction.—Recently, the Fermilab Muon g − 2
Collaboration presented its first measurement of the muon
anomalous magnetic moment [1]. Their results are con-
sistent with those reported by the previous Brookhaven
E821 Collaboration [2], and the combined world average
for aμ ≡ 1

2
ðg − 2Þμ now differs from the standard model

(SM) prediction [3–23] by

Δaμ ¼ ð251� 59Þ × 10−11; ð1Þ

constituting a 4.2σ discrepancy [24].
It is well known that MeV-scale particles which couple

preferentially to muons can economically resolve the Δaμ
anomaly with muonic couplings of order gμ ∼ 10−4 [26–28]
(for reviews of new physics explanations for the muon
g − 2 anomaly, see Refs. [29–31]). It is also well known
that such particles can couple to dark matter (DM) and
mediate their annihilations to SM particles, potentially
leading to the production of an acceptable thermal relic
abundance in the early Universe [36–42]. However, the
cross section for t-channel annihilation,

σv ∼
g4χ
m2

χ
∼ 10−25 cm3 s−1

�
gχ

10−2

�
4
�
GeV
mχ

�
2

; ð2Þ

can only be sufficiently large for thermal production if
gχ ≫ gμ. A similar conclusion holds for s-channel annihi-
lation, for which the cross section scales as ∝ g2χg2μ, thus
requiring gχ to be even larger [40,43,44]. While scenarios
with gχ ≫ gμ are not ruled out, this freedom reduces the
predictive power of such models and imposes inelegant
requirements on the gauge groups involved, posing signifi-
cant challenges for their embedding in non-Abelian theories.
An exception to this lore was identified in Ref. [45],

which exploits resonant annihilation in the context of a
spontaneously broken Uð1ÞLμ−Lτ

gauge group under which
both the muon and the DM have comparable couplings to
the corresponding gauge boson, Z0. Motivated by the latest
measurement of muon g − 2, we comprehensively analyze
this scenario, identifying new parameter space that can both
explain Δaμ and yield an acceptable DM abundance for
mass ratios of mZ0=mχ ∼ 2–3. Once the gauge coupling is
fixed by the measured value of Δaμ and themχ=mZ0 ratio is
fixed by the measured DM abundance, we are left with a
one-parameter family of models, making this scenario
highly predictive. A combination of future laboratory
measurements and cosmological observations will conclu-
sively discover or falsify this scenario.
Model overview.—We begin by reviewing the basic

features of gauged Lμ − Lτ extensions of the SM, as
introduced in Refs. [46,47]. The Lagrangian for this
scenario includes
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Lint ¼ g0Z0
μðJμSM þ JμDMÞ; ð3Þ

where g0 is a universal gauge coupling and Z0 is the Lμ − Lτ

gauge boson. We assume that this gauge symmetry is
spontaneously broken in the infrared, but that the states
responsible for this breaking are sufficiently decoupled that
their effects are negligible at low energies. The SM current
in Eq. (3) is given by

JνSM ¼ μ̄γνμþ ν̄μγ
νPLνμ − τ̄γντ − ν̄τγ

νPLντ; ð4Þ

where PL is the left chiral projector. We take the DM, χ, to
be a Dirac fermion, with JμDM ≡ χ̄γμχ (for the case of DM in
the form of a complex scalar, see the Supplemental
Material [48,49]).
The partial width for Z0 → ff̄ decays is given by

ΓZ0→ff̄ ¼ kfg02mZ0

12π

�
1þ 2m2

f

m2
Z0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
f

m2
Z0

s
; ð5Þ

where kf ¼ 1 for f ¼ μ, τ, χ and kf ¼ 1=2 for f ¼ νμ; ντ.
Note that the interactions in Eq. (4) also lead to an
irreducible contribution to the kinetic mixing of the Z0
with the photon through μ and τ loops, of order ε ∼ g0=70
[50]. In Fig. 1, we show the viable parameter space for
this Z0.
The leading contribution to aμ in this model arises at one

loop where

Δaμ ¼
g02

4π2

Z
1

0

dx
m2

μxð1 − xÞ2
m2

μð1 − xÞ2 þm2
Z0x

; ð6Þ

which yields Δaμ ≈ 251 × 10−11 × ðg0=4.5 × 10−4Þ2 in the
mZ0 ≪ mμ limit [26]. As we will discuss below, for
couplings that resolve Δaμ, this scenario is viable for
mZ0 ∼ 10–200 MeV. For the remainder of this Letter, we
will restrict our attention to this range of masses.
Cosmology.—To resolve the Δaμ anomaly, the combi-

nation of Eqs. (1) and (6) implies g0 ≳ 10−4 for all viable
values ofmZ0 , as shown in Fig. 1. For couplings of this size,
Z0 and χ are both easily maintained in chemical equilibrium
with the SM in the early Universe, so achieving the
measured DM density requires an annihilation cross section
of order σv ∼ 5 × 10−26 cm3 s−1 (for mχ < GeV) [54].
From Eq. (2), it is clear that this cross section cannot be

achieved with t-channel χχ̄ → Z0Z0 annihilation when the
natural coupling relation is enforced, g0 ¼ gμ ¼ gχ , and the
DMmass is large enough to be consistentwith constraints from
Big Bang nucleosynthesis [55,56]. For appropriate values of
mχ=mZ0 , however, it is possible to achieve an acceptable relic
abundance through s-channel resonant annihilation.
In the very early Universe, the total number density of

DM particles, n≡ nχ þ nχ̄ , is governed by the Boltzmann
equation:

dn
dt

þ 3Hn ¼ −
1

2
hσviðn2 − n2eqÞ; ð7Þ

where H is the Hubble rate and neq is the equilibrium
number density. The thermally averaged annihilation cross
section is [57]

hσvi ¼ 1

8m4
χTK2

2ðmχ

T Þ
Z

∞

4m2
χ

dsσ
ffiffiffi
s

p ðs − 4m2
χÞK1

� ffiffiffi
s

p
T

�
; ð8Þ

where Kn is a modified Bessel function of the second kind.
For mZ0 > mχ, DM annihilation proceeds mainly [58]
through s-channel processes, χχ̄ → f̄f, with a cross section
that is given by

σðsÞ ¼
X
f

kfg04

12πs

βf
βχ

�ðsþ 2m2
χÞðsþ 2m2

fÞ
ðs −m2

Z0 Þ2 þm2
Z0Γ2

Z0

�
; ð9Þ

where s is the Mandelstam variable, βi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

i =s
p

,
and ΓZ0 ¼ ΓZ0→χχ̄ þ

P
f ΓZ0→ff̄ with the sums over

f ¼ μ; τ; νμ;τ.

FIG. 1. The purple band represents the regions of parameter
space in which an Lμ − Lτ gauge boson can resolve the muon
g − 2 anomaly (within �2σ). Inside the nearly vertical orange
band, this model can also relax the H0 tension by contributing
ΔNeff ∼ 0.2–0.5 [50]; the mild slope arises from delayed neutrino
decoupling via loop induced Z0 − γ kinetic mixing. The gray
shaded regions represent laboratory constraints from CCFR
[51,52], BABAR [53], and the constraint of ΔNeff > 0.5 from
measurements of the CMB and the primordial light element
abundances [50]. Note that here we only show the contribution to
ΔNeff from from the Z0, without any additional contribution from
dark matter annihilation. Also shown are projected sensitivity of
the NA62 experiment [40], and phase 1 of the M3 muon missing
momentum experiment [43].
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In the left panel of Fig. 2, we determine the DM relic
abundance Ωχ by numerically [61] solving Eq. (7) as a
function of mZ0=mχ and fixing the coupling to obtain the
measured value of ðg − 2Þμ for a given value of mZ0 . In
the right panel we show the mZ0=mχ ratios that yield the
observed density as a function of mχ , with couplings
chosen to resolve Δaμ to within �2σ. In Fig. 3, we show
the regions in the mχ −mZ0 plane that lead to an acceptable
relic abundance, again fixing the coupling according to
ðg − 2Þμ. From these figures, we see that the measured
density of DM can be obtained for eithermZ0=mχ ≈ 1.9–2.0
ormZ0=mχ ≈ 2.6–3.0, which are shown in blue and green in
Fig. 3, respectively. While the first band may be considered
fine-tuned, we regard the other band as a prediction. Note
that our results differ from the mass ratio indicated in Fig. 1
of Ref. [45].
In the mass range of interest, DM annihilations and Z0

decays can each heat the SM radiation bath after the
neutrinos have decoupled, thereby increasing the effective
number of neutrino species,

ΔNeff ≡ 8

7

�
11

4

�
4=3 δρν

ργ

����
T¼Tdec

: ð10Þ

The extra energy density, δρν, receives contributions from
both χχ̄ → ν̄ν and Z0 → ν̄ν, which take place after neutrino
decoupling [69] at Tdec ≈ 2 MeV, leading to

δρν ≈
Z

d3p⃗χ

ð2πÞ3
4Eχ

eEχ=Tdec þ 1
þ
Z

d3p⃗Z0

ð2πÞ3
3EZ0

eEZ0=Tdec − 1
: ð11Þ

Taken at face value, measurements of the CMB and baryon
acoustic oscillations constrain ΔNeff ≲ 0.3 [67]. That being
said, it has been shown that a positive value of ΔNeff could
help to reduce the long-standing tension between local and

FIG. 2. Left: The dark matter relic abundance as a function of mZ0=mχ , for mχ ¼ 50 MeV, and for values of g0 selected to resolve the
muon g − 2 anomaly (the thickness of the band reflects the�2σ uncertainty in the measurement of aμ). For each choice of mχ , there are
two values of mZ0 that can achieve the observed DM abundance indicated by the horizontal red line. Right: mZ0=mχ ratios that yield the
observed DM density for the couplings that resolve Δaμ anomaly to within �2σ at each value of mZ0 ; the two bands represent the two
solutions for each mχ as shown in the left panel.

FIG. 3. In the green and blue regions, the thermal relic
abundance is equal to measured density of dark matter, Ωχh2 ≃
0.12 [67], for values of g0 that can resolve the muon g − 2
anomaly to within�2σ. The gray shaded regions are excluded by
BABAR [53] and by ΔNeff > 0.5 [50]. The orange shaded region
can ameliorate theH0 tension by contributing 0.2 < ΔNeff < 0.5,
and the parameter space under and to the left of the dotted orange
curve predicts ΔNeff > 0.02, which is projected to be testable
with stage 4 CMB experiments [68].
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cosmological determinations of the Hubble constant, H0

[70]. When local measurements of H0 are included in the
fit, the data prefer ΔNeff ∼ 0.1–0.4 [67]. With this in mind,
we require that ΔNeff ≲ 0.5, and consider any parameter
space in which ΔNeff ¼ 0.2–0.5 to be potentially capable
of reducing the Hubble tension. In Fig. 3, we show
isocontours of ΔNeff whose shapes are computed using
the approximate expression in Eq. (11) and scaled to match
the more precise results given in Ref. [50,71].
Well after freeze out, the annihilation of DM particles

could potentially alter the CMB’s temperature anisotropies
by injecting visible energy into the radiation bath during
and after the era of recombination. For Dirac fermion DM,
the Planck collaboration places the following constraint on
such annihilations [67]:

pann ≡ 1

2
feff

hσvi
mχ

< 3.5 × 10−28
cm3

GeV s
; ð12Þ

where hσvi is the thermally averaged annihilation cross
section at recombination, and the quantity feff parametrizes
the efficiency of energy transfer to SM particles.
In our model, the only channels with non-negligible

values of feff are those of χχ̄ → μþμ− (for which feff ∼ 0.2)
and χχ̄ → eþe− (feff ∼ 1) [72]. As we will discuss below,
the parameter space of this model in which mχ > mμ is
almost entirely ruled out by laboratory constraints [73].
Because the Z0 does not couple directly to electrons,
χχ̄ → eþe− occurs only through kinetic mixing, with a
low-velocity cross section given by

hσviχχ̄→eþe− ≃
ðεeg0Þ2ðm2

e þ 2m2
χÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

e=m2
χ

q
2π½ðm2

Z0 − 4m2
χÞ2 þm2

Z0Γ2
Z0 � : ð13Þ

In Fig. 4, we show the predicted value of pann for ε ¼ g0=70
and values of mZ0=mχ that yield the measured density of
DM. We note that while Planck’s sensitivity to pann is
approaching the limit of cosmic variance, future CMB
experiments are expected to modestly improve upon these
constraints [75].
Laboratory tests.—The Z0 in this model can mediate

inelastic neutrino-nucleus scattering, leading to dimuon
production, νμN → νμNμþμ−. The CCFR experiment has
measured trident production for muon neutrinos and places
a limit ofmZ0 ≲ 300 MeV for couplings that can resolve the
muon g − 2 anomaly [51,52].
The properties of the Z0 can also be constrained by B

factories, through the eþe− → 4μ channel. For couplings
that resolve the muon g − 2 anomaly, the BABAR experi-
ment excludes 212 MeV < mZ0 < 10 GeV [53]. Although
our scenario includes an additional Z0 → χχ̄ decay channel
throughout our mass range of interest, the phase space
suppression in the parameter space of interest here renders

this width negligible, allowing us to safely apply the
BABAR limit.
Since the DM does not couple directly to quarks or

electrons in this model, direct detection experiments can be
expected to only weakly constrain this class of scenarios.
The largest contribution to the elastic scattering of DMwith
nuclei occurs in this model through the kinetic mixing of
the Z0 with the photon. For ε ¼ g0=70, the cross section for
DM scattering with protons is

σe¼
ðεeg0Þ2m2

χ

πm4
Z0

≈10−48 cm2

�
g0

10−4

�
4
�

mχ

100MeV

�
2

; ð14Þ

where we have used mχ ¼ 2mZ0 . The cross section with
electrons is further suppressed by a factor of
ðme=mχÞ2 ≪ 1. Existing direct detection experiments are
thus not sensitive to the scenario considered here.
Summary.—In this Letter, we have identified a simple

and highly predictive model that can simultaneously
resolve the muon g − 2 anomaly and yield an acceptable
dark matter relic abundance. This model introduces a
leptophilic Lμ − Lτ gauge boson whose coupling to DM
and SM particles is fixed by the measured value of aμ.
Furthermore, to obtain an acceptable DM relic abundance
through resonant annihilations in the early Universe, we
must fix either mZ0=mχ ≈ 1.9–2.0 or mZ0=mχ ≈ 2.6–3.0.
The viable range of parameter space features DM with
masses in the range ofmχ ≈ 13–100 MeV. There is no need
for ad hoc hierarchical charge assignments in this model,
and it is naturally safe from CMB constraints.

FIG. 4. Energy injection from Dirac dark matter annihilating to
eþe− (through loop-induced kinetic mixing) and/or μþμ−, during
and after recombination. Following Fig. 3, the blue and green
regions correspond to values of mZ0=mχ , which produce the
measured density of dark matter for values of g0 that can resolve
the muon g − 2 anomaly to within �2σ.
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A number of accelerator-based experiments are poised to
decisively cover the relevant parameter space in this
scenario. In particular, the NA62 experiment is sensitive
to invisibly decaying muon-philic bosons (through
K → μνZ0), and may be able to cover the entire parameter
space favored by the measured value of Δaμ if systematic
errors can be adequately controlled [40]. Dedicated muon
beam efforts, including the CERN NA64μ [76] and
Fermilab M3 [43] experiments, are projected to cover all
of the remaining parameter space for any light, invisibly
decaying particles that could potentially be responsible for
Δaμ. Finally, the upcoming DUNE experiment [77,78] will
improve upon existing bounds on muon trident production,
covering the remaining Lμ − Lτ parameter space that can
address the muon g − 2 anomaly. Our scenario predicts that
all of these experiments will see a signal; a null result at any
one of them would decisively falsify this model.
Measurements at future fixed-target experiments could
also potentially measure mZ0 [44], allowing us (through
the relic abundance) to infer the required mass of the DM
candidate.
However, while laboratory searches can probe the

existence of Z0 and measure g0 to verify this solution to
Δaμ, they cannot directly establish its possible connection
to the DM of our Universe. To test this aspect of our model,
it will be necessary to precisely measure both ΔNeff and
pann with future CMB experiments. From Fig. 3, along the
viable diagonal bands there is a one-to-one correspondence
between ΔNeff and mχ , so combined with a laboratory
measurement of mZ0 , an observation of ΔNeff fixes the
mZ0=mχ ratio. Since the value of g0 required to resolve Δaμ
is also fixed by mZ0, there is no additional freedom to vary
the annihilation cross sections in this model. Thus, the
predicted relic density from thermal freeze-out can be
verified to agree with the measured value of ΩDM and,
once the mass ratio is determined, there is a unique
prediction for pann, as shown in Fig. 4.

Data available for Fig. 2 and for the green and blue
regions in Fig. 3 are available at Ref. [79].
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