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Abstract

We obtain the multi-point positive integer Lyapunov exponents of the Stochastic Heat
Equation (SHE) and provide three expressions for them. We prove the result by
matching the upper and lower bounds for the Lyapunov exponents. The upper bound
is obtained by analyzing the contour integral formula in [4]. For the lower bound, we
apply an induction argument, relying on a tree recently appeared in [71]. The tree
is related to the optimal trajectories of the Brownian motions in the Feynman-Kac
formula.

Keywords: KPZ; SHE; Lyapunov exponents; multi-point.
MSC2020 subject classifications: 60H15; 60F10; 82B23.
Submitted to EJP on March 14, 2024, final version accepted on November 4, 2024.

1 Introduction

In this paper, we consider the Stochastic Heat Equation (SHE) in one spatial dimen-
sion,

∂tZ(t, x) =
1

2
∂xxZ(t, x) + ξ(t, x)Z(t, x), (t, x) ∈ R>0 ×R,

where ξ is the spacetime white noise.
The SHE is closely related to the Kardar-Parisi-Zhang (KPZ) equation [35]

∂th(t, x) =
1

2
∂xxh(t, x) +

1

2
(∂xh(t, x))2 + ξ(t, x)

via the Hopf-Cole transform Z(t, x) = exp(h(t, x)). The KPZ equation is a paradigm for
modeling the random interface growth [64, 13], a universal scaling limit of the weakly
asymmetric interacting particle systems and a testing ground for the study of nonlinear
stochastic PDEs.
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Multi-point Lyapunov exponents of the SHE

We focus on the SHE starting from the Dirac delta initial data Z(0, ·) = δ(·). The SHE
starting from the Dirac delta initial data has a unique mild solution that satisfies

Z(t, x) = q(t, x) +

∫ t

0

∫
R

q(t− s, x− y)Z(s, y)ξ(s, y)dsdy, (t, x) ∈ R>0 ×R,

where q(t, x) := 1√
2πt

e−
x2

2t is the standard heat kernel. The stochastic integral against
the spacetime white noise is interpreted in the Itô’s sense. In addition, Z is strictly
positive on (t, x) ∈ R>0 ×R [62, 23].

1.1 Main result

Throughout the paper, we consider the hyperbolic scaling ZT (t, x) := Z(Tt, Tx). We
compute the multi-point Lyapunov exponents of the SHE that are defined as the following
limit

lim
T→∞

1

T
logE

[ n∏
i=1

ZT (t, xi)
mi

]
.

Theorem 1.1. For fixed n ∈ Z≥1, t > 0, ~x = (x1 < . . . < xn) ∈ Rn and ~m =

(m1, . . . ,mn) ∈ Zn≥1, we have

lim
T→∞

1

T
logE

[ n∏
i=1

ZT (t, xi)
mi

]
= γ(t, ~x, ~m),

where γ := γ1 = γ2 = γ3, the expressions of the {γi}3i=1 are given in (1.1) - (1.3).

We set

m :=

n∑
i=1

mi and uk := xj if
j−1∑
i=1

mi < k ≤
j∑
i=1

mi,

see Figure 1.1 for an visualization.
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Figure 1: Take n = 3, ~x = (x1 < x2 < x3) and m1 = 3, m2 = 4 and m3 = 1, we have
(u1, . . . , u8) = (x1, x1, x1, x2, x2, x2, x2, x3).

We define

γ1(t, ~x, ~m) := inf
{ m∑
i=1

t

2
a2i +

m∑
i=1

uiai : ai − ai+1 ≥ 1, i = 1, . . . ,m− 1
}

(1.1)

γ2(t, ~x, ~m) := inf
{ n∑
i=1

mit

2
(bi +

xi
t

)2+
(m3

i −mi)t

24
− mix

2
i

2t
:

bi − bi+1 ≥
mi +mi+1

2
, i = 1, . . . , n− 1

}
. (1.2)

The ai and bi in the infimums above are real numbers. We define mbj :=
∑
i∈bj

mi and

γ3(t, ~x, ~m) :=

n∑
j=1

(
(m3

bj
−mbj

)t

24
−

∑
k,`∈bj ,k<`

mkm`

2
|xk − x`| −

(
∑
k∈bj

mkxk)2

2tmbj

)
. (1.3)
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Multi-point Lyapunov exponents of the SHE

The positive integer n and sets {bj}nj=1 (which form a partition of {1, . . . , n}) will be
defined in Section 3.1.

When n is small, we have more explicit expressions for the Lyapunov exponents.

Corollary 1.2. Take n = 1 in Theorem 1.1, we obtain the one-point Lyapunov exponents
of the SHE

lim
T→∞

1

T
logE[ZT (t, x1)m1 ] =

(m3
1 −m1)t

24
− m1x

2
1

2t
.

Take n = 2 in Theorem 1.1, we have

lim
T→∞

1

T
logE

[ 2∏
i=1

ZT (t, xi)
mi

]
=

{
((m1+m2)

3−(m1+m2))t
24 − m1m2(x2−x1)

2 − (m1x1+m2x2)
2

2(m1+m2)t
if 0 < x2−x1

t ≤ m1+m2

2 ,
(m3

1−m1)t
24 +

(m3
2−m2)t
24 − m1x

2
1

2t −
m2x

2
2

2t , if x2−x1

t > m1+m2

2 .

As a byproduct, Theorem 1.1 shows that γ1 = γ2 = γ3, which is surprising since the
expressions of them are quite different. In the following, we characterize the minimizer
of the variational expression γ1. We define a map f : {1, . . . ,m} → {1, . . . , n} such that
ui = xf(i).

Corollary 1.3. The infimum in γ1 has a unique minimizer (a∗1, . . . , a
∗
m). In addition, we

have a∗i − a∗i+1 = 1 if there exists j ∈ {1, . . . , n} such that f(i), f(i + 1) ∈ bj . We have
a∗i − a∗i+1 > 1 if there does not exist such j.

1.2 Proof idea

Let us explain the idea for proving Theorem 1.1. We respectively show the upper
bound

lim sup
T→∞

1

T
logE

[ n∏
i=1

ZT (t, xi)
mi

]
≤ γ1(t, ~x, ~m), (1.4)

and the lower bound

lim inf
T→∞

1

T
logE

[ n∏
i=1

ZT (t, xi)
mi

]
≥ γ3(t, ~x, ~m). (1.5)

After obtaining these bounds, we conclude Theorem 1.1 by showing γ1 ≤ γ2 ≤ γ3. In the
following, we focus on explaining the idea for obtaining the bounds (1.4) and (1.5).

1.2.1 Upper bound

It is known that the moments of the SHE E[
∏n
i=1 Z(t, xi)] solve a PDE called the delta

Bose gas [4, Section 6.2]. More precisely, let U(t;x1, . . . , xn) := E[
∏n
i=1 Z(t, xi)], we have

∂tU =
1

2
∆U +

1

2

∑
i 6=j

δ(xi − xj)U.

The solution to the above PDE (starting from certain initial data) admits a contour
integral expression [4, Proposition 6.2.3]. By a straightforward analysis of the contour
integral, we obtain the upper bound.
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Multi-point Lyapunov exponents of the SHE

1.2.2 Lower bound

Apply the Feynman-Kac formula to solve the delta Bose gas, we can express the moments
of the SHE as expectations of the Brownian local times, namely, E[

∏n
i=1 ZT (t, xi)

mi ] is
equal to

E
[

exp
( ∑

1≤i<j≤m

∫ Tt

0

δ(W i
s −W j

s )ds
) m∏
i=1

δ(W i
T t)
]
, (1.6)

the {W i}mi=1 are independent Brownian motions. Note that W j
0 = Tuj , namely W j

0 = Txi
if
∑i−1
k=1mk < j ≤

∑i
k=1mk. Hence, there are mi Brownian motions starting from the

location Txi. The first Dirac function in (1.6) is understood as local time. The second
Dirac function here is understood as the distributional limit of the heat kernel q(t, ·) as
t→ 0. As a consequence, one can interpret (1.6) as

E
[

exp
( ∑

1≤i<j≤m

∫ Tt

0

δ(Wi
s −Wj

s)ds
) m∏
i=1

q(Tt, Tui)
]
,

where {Wj}mj=1 are independent Brownian bridges with Wj
0 = Tuj and Wj

T t = 0.
We want to understand the optimal trajectories of the Brownian motions, i.e. the

deterministic trajectories where the Brownian motions stay around contribute most to
the expectation (1.6).

The Dirac function at the terminal time in (1.6) forces the Brownian motions to
end up at 0. From the perspective of large deviations, to compute the asymptotics of
expectations, one needs to figure out the optimal product of the value of the random
variable and the its probability to take such value.. For the expectation (1.6), in order to
contribute more to the Brownian local times on the exponential, the Brownian motions
tend to move close to one another before the terminal time to gain more local time.
Once they are close, they no longer want to be apart. On the other hand, they avoid
traveling too fast to become close since this will make the transition probabilities too
small. Consider the macroscopic picture by scaling both space and time by T , the above
discussion suggests that the optimal trajectories of the Brownian motions form a tree
as shown in Figure 2. In Section 3.1, we will characterize precisely this tree using the
attractive Brownian particles. Following [71, Section 2.3], we call this tree the optimal
clusters.

Figure 2: The optimal trajectories form a tree.

We proceed to explain how to obtain the lower bound (1.5). The idea is to apply an
induction argument over n, which is the number of different locations that the Brownian
motions start from. Let s0 be the first time that the number of different points in the
optimal clusters is smaller than n, i.e. the first time that two branches in the tree
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merge. We break the integral in (1.6) into integrals over the time interval [0, s0] and
[s0, t] (remember the time and space have been scaled by T ) and restrict on the event
that the Brownian motions at time s0 stay around the optimal clusters. Since the number
of different points in the optimal clusters at time s0 is less than n, we can lower bound
the contribution of the Brownian motions in time [s0, t] using the induction hypothesis.
In addition, we can lower bound the contribution in time [0, s0] by dropping the Brownian
local times if the two Brownian motions start from different xi, this is fine since the
optimal trajectories of the Brownian motions with different starting locations do not
overlap before time s0. Put together the lower bounds for the integrals over [0, s0] and
[s0, t], we obtain the desired lower bound (1.5).

We remark that the actual proof in Section 3.2 is slightly different from what has
been explained above, although the idea behind is quite similar. Instead of using (1.6),
we rely on the semigroup identity of the SHE to carry out the proof.

1.3 Discussion

Let us discuss three related work. In [14], the authors obtained the one-point
Lyapunov exponents of the SHE under Dirac delta initial data by applying a residue
expansion to the contour integral (2.1). Since there are many poles in the contour
integral, book-keeping the residues when deforming the contour is not easy. The
advantage in the one-point situation is that since u1 = . . . = um, the exponential function
in (2.1) is symmetric in z1, . . . , zm, and we have a simple residue expansion thanks to [4,
Proposition 6.2.7]. For the multi-point (n > 1) situation, the residue expansion seems
much harder to be analyzed due to the lack of symmetry. Instead of relying on the
contour integral formula to derive the full asymptotic of the Lyapunov exponents, we
only use it to obtain an (optimal) upper bound.

[24] obtained the sharp bounds for the two-point upper tail probability of the KPZ
equation in finite large time using the Gibbsian line ensembles [17, 18]. The method
therein should work for obtaining the multi-point upper tail bounds and could be applied
to obtain the multi-point (even for non-integer valued) Lyapunov exponents of the SHE.
This approach, however, seems a bit indirect and we are not sure whether it will lead to
a simple expression of the Lyapunov exponents.

The work [71] studied the Lyapunov exponents of the SHE

1

N3T
logE

[ n∏
i=1

ZT (t,Nxi)
Nmi

]
under the high-moment regime N2T → ∞ and N → ∞ and obtained the multi-point
Lyapunov exponents by studying the large deviations of the attractive Brownian particles.
In this paper, we consider the hyperbolic scaling N = 1 and T →∞, which is different
from the high-moment regime. Our method relies on the exact formula and an induction
argument, which is new. We have not seen the multi-point Lyapunov exponents of the
SHE being studied in the context of hyperbolic scaling before.

1.4 Literature review

The one-point Lyapunov exponents of the SHE with different initial conditions have
been studied in [3, 10, 14, 21, 30]. The moments and Lyapunov exponents are useful for
studying the property of intermittency [25, 26, 36, 10], the density function and large
deviations of the SHE (and its variant), see [12, 29, 5, 8, 31, 33, 37, 14, 9, 21, 55, 22, 27,
32, 30].

The Lyapunov exponents of the SHE are closely related to the upper tail bounds
and Large Deviation Principle (LDP) of the KPZ equation. The one-point tail bounds
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and LDP of the KPZ equation with different boundary and initial conditions have been
intensively studied recently in the physics work [53, 54, 44, 65, 16, 45, 46, 51, 42, 47, 52]
and mathematics work [15, 14, 7, 21, 38, 55, 6, 69, 20, 30]. The two (and potentially
multi)-point upper tail bounds and the terminal-time limit shapes of the KPZ equation
have been studied in [24]. The Freidlin-Wentzell LDP/weak noise theory has been used to
study the one-point LDP and most probable shapes of the KPZ equation, see the physics
work [39, 40, 41, 59, 34, 60, 61, 66, 67, 2, 68] and mathematics work [56, 56, 57, 28].
The connection between the Freidlin-Wentzell LDP/weak noise theory and the integrable
PDE has been studied in the physics work [43, 48, 49, 50] and mathematics work [70].
The LDP and spacetime limit shapes of the KPZ equation in the deep upper tails have
been studied recently in [71, 58].

Outline

In Section 2, we prove the upper bound (1.4). In Section 3, we prove the lower bound
(1.5). In Section 4, we establish a continuity result, which is a technical input for proving
the lower bound. In Section 5, we prove Theorem 1.1 and its corollaries.

2 The upper bound

In this section, we will prove the upper bound (1.4), which is stated as the following
proposition. The major input is a contour integral expression for the moments of the
SHE.

Proposition 2.1. Under the same setting as Theorem 1.1, we have

lim sup
T→∞

1

T
logE

[ n∏
i=1

ZT (t, xi)
mi

]
≤ γ1(t, ~x, ~m).

Proof. Recall that uk := xj if
∑j−1
i=1 mi < k ≤

∑j
i=1mi. It is straightforward that

E
[ n∏
i=1

ZT (t, xi)
mi

]
= E

[ m∏
i=1

ZT (t, ui)
]
.

By [4, Proposition 6.2.3], we know that

E
[ m∏
i=1

ZT (t, ui)
]

=
1

(2πi)m

∫
. . .

∫ ∏
1≤A<B≤m

zA − zB
zA − zB − 1

exp

( m∑
j=1

Ttz2j /2 +

m∑
j=1

Tujzj

) m∏
j=1

dzj , x (2.1)

the zj-contour is given by aj + iR and {ak}mk=1 can be any real numbers satisfying
ak − ak+1 > 1, k = 1, . . . ,m − 1. We remark that the proof for the identity above in [4,
Proposition 6.2.3.] is not fully rigorous. However, one can combine [4, Proposition 5.4.8]
together with [63, Corollary 1.7] to obtain a rigorous proof.

Apply a change of variable zj = aj + iyj for j = 1, . . . ,m, the triangle inequality
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∫
. . . ≤

∫
| . . . |, and | zA−zBzA−zB−1 | ≤

aA−aB
aA−aB−1 for A < B (noting that aA − aB > 1), we have

E
[ m∏
i=1

ZT (t, ui)
]

≤ 1

(2π)m

∏
1≤A<B≤m

∣∣∣ aA − aB
aA − aB − 1

∣∣∣ exp

( m∑
j=1

Tta2j/2 +

m∑
j=1

Tujaj

)∫
Rm

m∏
j=1

e−Tty
2
j/2dyj

= (2πTt)−m/2
∏

1≤A<B≤m

∣∣∣ aA − aB
aA − aB − 1

∣∣∣ exp

( m∑
j=1

Tta2j/2 +

m∑
j=1

Tujaj

)
.

Take the logarithm of both sides above, divide by T and let T →∞, we know that

lim sup
T→∞

1

T
logE

[ m∏
i=1

ZT (t, ui)
]
≤

m∑
j=1

ta2j
2

+

m∑
j=1

ujaj .

The inequality above holds for a1, . . . , am satisfying ak − ak+1 > 1, k = 1, . . . ,m − 1. By
the continuity of the right hand side above in a1, . . . , am, the inequality also holds for any
a1, . . . , am satisfying ak − ak+1 ≥ 1, k = 1, . . . ,m− 1. Take the infimum of the right hand
side over a1, . . . , am under this constraint, we conclude the proposition.

3 The lower bound

In this section, we will prove the lower bound (1.5), which is stated as the following
proposition.

Proposition 3.1. Under the same setting as Theorem 1.1, we have

lim inf
T→∞

1

T
logE

[ n∏
i=1

ZT (t, xi)
mi

]
≥ γ3(t, ~x, ~m).

3.1 The inertia clusters and optimal clusters

We recall the inertia clusters ζ = {ζi}ni=1 and optimal clusters ξ = {ξi}ni=1 from [71,
Section 2.3], see Figure 3 for a visualization. Let us first define the inertia clusters, then
we use them to define the optimal clusters.

The inertia clusters are the trajectories of the point masses which run backward in
time (compared with the time unit used in ZT ) from s = 0 to s = t. We say the inertia
clusters start from (~x, ~m) if at time s = 0, they start from the point masses with weight
mi and location xi, i = 1, . . . , n. As time evolves, the point mass with weight mi will
travel with a constant speed φi := 1

2 (mi+1 + . . .+mn)− 1
2 (m1 + . . .+mi−1). When the

point masses with weights mi and mi+1 and speeds φi and φi+1 collide, they merge into a
single point mass with weight mi+mi+1 and travel with speed miφi+mi+1φi+1

mi+mi+1
, this follows

the conservation of momentum. Let ζi : [0, t]→ R, i = 1, . . . , n denote the trajectories of
the inertia clusters. Examine the point masses which have merged between time [0, t],
we obtain a partition of {1, . . . , n}. Denote the partition to be B = {bi}ni=1, where

n := the number of different clusters at time t.

We can order b1, . . . , bn such that for i < j, the elements of bi are smaller than those in
bj . Note that we have ζi(t) = ζj(t) if and only if i, j belong to the same bk for some k.
We define ζbk

(t) := ζi(t) = ζj(t).
We proceed to define the optimal clusters ξ. Let vj := ζbj

(t)/t for j = 1, . . . , n. We
define the trajectories of the optimal clusters {ξi}ni=1 by applying a constant drift to the
inertia clusters: ξi(s) := ζi(s)− vjs for i ∈ bj . Note that we have ξi(t) = 0 for i = 1, . . . , n.
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Let us discuss non-rigorously why the optimal clusters should be the optimal trajecto-
ries of the Brownian motions for the expectation in (1.6). Following [71, Appendix A],
we use the Tanaka’s formula to write

∫ Tt
0
δ(W i

s −W j
s )ds = − 1

2

∫ Tt
0

sgn(W i
s −W j

s )d(W i
s −

W j
s ) + 1

2 |W
i
s −W j

s |
∣∣s=Tt
s=0

with sgn(x) = 1{x>0} − 1{x<0}. The quadratic variation of the

stochastic integral on the resulting exponential is equal to (m3−m)t
12 . By applying Girsanov

theorem, (1.6) equals

exp
( (m3 −m)Tt

24
−

∑
1≤k<`≤n

Tmkm`

2
|xk−x`|

)
E
[

exp
(1

2

∑
1≤i<j≤m

|Xi
T t−X

j
T t|
) m∏
i=1

δ(Xi
T t)
]
,

(3.1)
where dXi

s = 1
2

∑n
j=1 sgn(Xj

s −Xi
s)+dW i

s with Xi
0 = Tui. Note that the time is of order T

and the diffusion has an order of
√
T , which is negligible compared with the drift as T →

∞. Drop the diffusion and solve the deterministic equations dXi
s = 1

2

∑n
j=1 sgn(Xj

s −Xi
s).

We refer to the resulting {Xi}mi=1 as the attractive Brownian particles. The i-th Brownian
particle has the drift 1

2

∑n
j=1 sgn(Xj

s −Xi
s). In addition, when two Brownian particles

meet, they stay together afterward to contribute to the local time. Hence, the weight
of the point masses in the inertia clusters can be viewed as the number of Brownian
particles staying together. Scale the space and time by T , the trajectories of {Xi}mi=1 are
given by the inertia clusters ζ. The Dirac delta function in (3.1) forces the clusters to
end at 0. The most economic way to fulfill this (in terms of transition probability) is to
apply a constant drift to each group in the inertia clusters. This leads to the optimal
clusters ξ.

For our proof in the paper, we only need the definition of ξ. The discussion in the
previous paragraph is only to explain how ξ appears and will not be used.

Figure 3: An illustration of the inertia clusters ζ (gray) and the optimal clusters ξ (black)
when n = 5. In the figure, we have n = 2. The partition of {1, 2, 3, 4, 5} is given by
B = {b1, b2} where b1 = {1, 2, 3} and b2 = {4, 5}.

3.2 Proof of Proposition 3.1

We use the Feynman-Kac formula to introduce a four parameter version of ZT . For
r < t, we set

ZT (r, y; t, x) := E
[

exp
(∫ T (t−r)

0

ξ(Tt− s,Ws)ds
)
δ(WT (t−r) − Ty)

]
. (3.2)

In particular, we have ZT (t, x) = ZT (0, 0; t, x).
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The exponential above is the Wick exponential and W is a standard Brownian motion
starting from W0 = Tx. One correct way to interpret the Wick exponential is to Taylor
expand it, time-order the multiple Itô integrals, and then switch the order of integration
with E (see (see [13, Section 4.1.1])). Doing this results in a series of multiple stochastic
integrals

ZT (r, y; t, x) = q(T (t− r), T (x− y))

∞∑
n=0

∫
0≤t1≤···≤tn≤T (t−r)

∫
Rn

pBB(t1, . . . tn;x1, . . . xn)×

ξ(t1, x1) . . . ξ(tn, xn)dt1dx1 . . . dtndxn.

where (t1, ..., tn;x1..., xn) represents the n-step transition probability of a Brownian
bridge started at Ty at time 0 and ended at Tx and time T (t− r) to go through positions
xi at times ti for i = 1, . . . , n. The multiple stochastic integrals are those of Itô.

By (3.2), we have the semigroup identity: For r < s < t,

ZT (r, y; t, x) =

∫
R

TZT (r, y; s, z)ZT (s, z; t, x)dz. (3.3)

In the following,

A & B means lim inf
T→∞

1

T
log(A/B) ≥ 0.

Under this notation, showing Proposition 3.1 is the same as showing

E
[ n∏
i=1

ZT (t, xi)
mi

]
& eTγ3(t,~x,~m). (3.4)

Proof of Proposition 3.1. We apply an induction over n for proving (3.4). When n = 1,
We apply [14, Lemma 4.1], which states that for T > π,

E
[
Z(2T, 0)ke

kT
12

]
≤ 69k!e

Tk3

12

2
√
πTk

3
2

≤ C(k)e
Tk3

12 .

We then use the fact that for any fixed t, the stochastic process {Z(t,x)
q(t,x) }x∈R is stationary

(which follows from [1, Proposition 2.3]). Recall that q represents the heat kernel. This
implies that for Tt > 2π,

E
[
ZT (t, x1)m1

]
= E

[
Z(Tt, Tx1)m1

]
= E

[
Z(Tt, 0)m1

]
q(Tt, Tx)m1 ≤ C(m1)e

Ttm3
1

24 .

When n > 1, we only need to prove (3.4) under the induction hypothesis that

E[

n′∏
i=1

ZT (t′, x′i)
m′i ] & eTγ3(t,~x

′,~m′)

holds for any t′ > 0, ~x′ = (x′1 < · · · < x′n′) ∈ Rn
′
, ~m′ = (m′1, . . . ,m

′
n′) ∈ Zn

′

≥1 with n′ < n.
Recall the number n and the partition {bj}nj=1 from Section 3.1. We divide the proof

into two cases: n > 1 and n = 1. When n > 1, we have |bj | < n for each j ∈ {1, . . . , n}. By
the induction hypothesis, we know that

E
[ ∏
k∈bj

ZT (t, xk)mk

]
& eTγ3(t,~xbj

,~mbj
), (3.5)

where ~xbj
, ~mbj

are the vectors for {xi}i∈bj
, {mi}i∈bj

. Note that the trajectories of the
inertia clusters starting from (~xbj

, ~mbj
) are still given by {ζi}i∈bj

. Hence, if we start the
Brownian particles from (~xbj

, ~mbj
), there is only one cluster at time s = t. We have

γ3(t, ~xbj , ~mbj ) =
(m3

bj
−mbj

)t

24
−

∑
k,`∈bj ,k<`

mkm`

2
|xk − x`| −

(
∑
k∈bj

mkxk)2

2tmbj

.
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Apply Lemma A.1 and then (3.5) for j = 1, . . . , n, we obtain the desired inequality

E
[ n∏
i=1

ZT (t, xi)
mi

]
≥

n∏
j=1

E
[ ∏
k∈bj

ZT (t, xk)mk

]
& exp

( n∑
j=1

Tγ3(t, ~xbj
, ~mbj

)
)

= eTγ3(t,~x,~m).

We proceed to prove Proposition 3.1 when n = 1. Define

s0 = inf{s : |{ξ1(s), . . . , ξn(s)}| < n}, (3.6)

which is the first time that a merging occurs among point masses in the optimal clus-
ters. Fix δ > 0, apply the semigroup identity (3.3), and write ZT (t, xk) =

∫
R
TZT (t −

s0, yk,`)ZT (t − s0, yk,`; t, xk)dyk,` for ` = 1, . . . ,mk. Use Fubini’s theorem to exchange
the expectation and integral, then apply the independence between ZT (t − s0, ·) and
ZT (t−s0, ·; t, ·), and finally restrict the domain of integral for yk,` to [ξk(s0)−δ, ξk(s0)+δ].
By the semigroup property, we know that E[

∏n
k=1 ZT (t, xk)mk ] is lower bounded by∫

Rm

TmE
[ n∏
k=1

mk∏
`=1

ZT (t− s0, yk,`)
]
E
[ n∏
k=1

mk∏
`=1

ZT (t− s0, yk,`; t, xk)
]
·

n∏
k=1

mk∏
`=1

1{|yk,`−ξk(s0)|≤δ} dyk,`. (3.7)

We lower bound the first and second expectation in the integral of (3.7), assuming that
|yk,`−xk| ≤ δ. For the second expectation, apply Lemma A.1, we get E[

∏n
k=1

∏mk

`=1 ZT (t−
s0, yk,`; t, xk)] ≥

∏n
k=1E[

∏mk

`=1 ZT (t − s0, yk,`; t, xk)]. By applying Proposition 4.2 to the
preceding right hand side (noting that |yk,` − ξk(s0)| ≤ δ) together with [14, Lemma 4.1],
we get

E
[ n∏
k=1

mk∏
`=1

ZT (t−s0, yk,`; t, xk)
]
& exp

(
T
( n∑
k=1

(m3
k −mk)s0

24
−mk(xk − ξk(s0))2

2s0
+f1(δ)

))
,

(3.8)
where limδ→0 f1(δ) = 0.

We examine the point masses that have merged at time s = s0 and let ~x′ = (x′1, . . . , x
′
n′)

and ~m′ = (m′1, . . . ,m
′
n′) denote the locations and weights of them. Since a merging

happens at time s = s0, we know that n′ < n. For the first expectation in (3.7), use
Proposition 4.2, we get E[

∏n
k=1

∏mk

`=1 ZT (t−s0, yk,`)] ≥ E[
∏n
k=1 ZT (t−s0, ξk(s0))mk ]eTf2(δ).

Rewrite
∏n
k=1 ZT (t − s0, ξk(s0))mk as

∏n′

k=1 ZT (t − s0, x
′
k)m

′
k and apply the induction

hypothesis, we get a lower bound

E
[ n∏
k=1

mk∏
`=1

ZT (t− s0, yk,`)
]
≥ E

[ n′∏
k=1

ZT (t− s0, x′k)m
′
k

]
eTf2(δ)

& exp
(
Tγ3(t− s0, ~x′, ~m′) + Tf2(δ)

)
, (3.9)

where limδ→0 f2(δ) = 0. By applying the lower bounds (3.8)-(3.9) to the right hand side
of (3.7) and then letting δ → 0, we conclude that

E
[ n∏
i=1

ZT (t, xi)
mi

]
& exp

(
T
( n∑
k=1

(m3
k −mk)s0

24
− mk(xk − ξk(s0))2

2s0
+ γ3(t− s0, ~x′, ~m′)

))
= eTγ3(t,~x,~m).

The last equality is due to Lemma B.1.
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4 A continuity result for the moments

The main result in this section is Proposition 4.2, which proves a continuity result for
the moments of the SHE. We prove the following lemma as a preparation.

Lemma 4.1. Recall that q(t, x) := 1√
2πt

e−
x2

2t . For wi, vi ∈ R, i = 1, . . . , n and T (t−r) ≥ 2π,
we have

E
[ n∏
i=1

ZT (r, vi; t, wi)
]
≤ 69n! exp

(n3T (t− r)
24

) n∏
i=1

q(T (t− r), T (wi − vi)). (4.1)

E
[ n∏
i=1

ZT (r, vi; t, wi)
]
≥

n∏
i=1

q(T (t− r), T (wi − vi)). (4.2)

Proof. To prove (4.1), we apply Hölder’s inequality and get

E
[ n∏
i=1

ZT (r, vi; t, wi)
]
≤

n∏
i=1

(
E[ZT (r, vi; t, wi)

n]
)1/n

≤ 69n! exp
(n3T (t− r)

24

) n∏
i=1

q(T (t− r), T (wi − vi)),

where the last equality follows from [14, Lemma 4.1].
To prove (4.2), by Lemma A.1 and E[ZT (r, vi; t, wi)] = q(T (t− r), T (wi − vi)), we have

E
[ n∏
i=1

ZT (r, vi; t, wi)
]
≥

n∏
i=1

E[ZT (r, vi; t, wi)] =

n∏
i=1

q(T (t− r), T (wi − vi)).

This concludes the lemma.

Let ~w = (w1, . . . , wn). Define ‖~w‖∞ = maxi=1,...,n |wi| and do it similarly for ~w′, ~v,~v′.
The following proposition is the main result of this section.

Proposition 4.2. For fixed R, ε > 0, r < t and n ∈ Z≥1, there exists δ > 0 such that

−ε ≤ lim inf
T→∞

T−1 log
E[
∏n
i=1 ZT (r, vi; t, wi)]

E[
∏n
i=1 ZT (r, v′i; t, w

′
i)]
≤ lim sup

T→∞
T−1 log

E[
∏n
i=1 ZT (r, vi; t, wi)]

E[
∏n
i=1 ZT (r, v′i; t, w

′
i)]
≤ ε

The inequality holds uniformly for lim sup and lim inf in ~w, ~w′, ~v,~v′ satisfying ‖~w −
~w′‖∞, ‖~v − ~v′‖∞ ≤ δ and ‖~w‖∞, ‖~w′‖∞, ‖~v‖∞, ‖~v′‖∞ ≤ R.

Proof. By the Feynman-Kac formula (3.2), the stochastic process {ZT (r, v; t, w)}(w,v)∈R
has the same probability distribution as {ZT (r, w; t, v)}(w,v)∈R. Hence, for the upper
bounds, we can assume ~w′ = ~w in the proposition. It suffices to prove that

lim sup
T→∞

T−1 log
E[
∏n
i=1 ZT (r, vi; t, wi)]

E[
∏n
i=1 ZT (r, v′i; t, wi)]

≤ ε

holds uniformly for ~w,~v and ~v′. The proof of the lower bound for lim inf can be obtained
by swapping ~v,~v′.

Write the constant C = C(n,R, r, t) to simplify the notation. It is enough to prove that

E
[ n∏
i=1

ZT (r, vi; t, wi)
]
≤ Ce 1

2TεE
[ n∏
i=1

ZT (r, v′i; t, wi)
]

+
1

2
E
[ n∏
i=1

ZT (r, vi; t, wi)
]
. (4.3)

We fix t0 ∈ (r, t) which will be specified later. Apply the semigroup identity (3.3) and
then Fubini’s theorem, we have

E
[ n∏
i=1

ZT (r, vi; t, wi)
]

=

∫
Rn

TnE
[ n∏
i=1

ZT (r, vi; t0, yi)
]
E
[ n∏
i=1

ZT (t0, yi; t, wi)
] n∏
i=1

dyi. (4.4)
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Fix a constant K that will be specified later. Let A := {~y = (y1, . . . , yn) ∈ Rn : ‖~y‖∞ ≤ K}.
Write the above integral

∫
Rn . . . as E1 + E2 where E1 =

∫
A
. . . and E2 =

∫
Ac . . .. To prove

(4.3), we need to show that

E1 ≤ Ce
1
2TεE

[ n∏
i=1

ZT (r, v′i; t, wi)
]
, E2 ≤

1

2
E
[ n∏
i=1

ZT (r, vi; t, wi)
]
. (4.5)

We first prove the upper bound for E2. Apply (4.1) to upper bound the first and second
expectations in the integrand of E2, we get

E2 ≤ 69n!e
n3T (t−r)

24

∫
Ac

Tn
n∏
i=1

q(T (t0 − r), T (yi − vi))q(T (t− t0), T (wi − yi))dyi. (4.6)

Take a large enough K = (1 + t− r)(10R+ 69n!), it is straightforward to see that for all
‖~w‖∞, ‖~v‖∞ ≤ R and t0 ∈ (t, r), we have,

69n!e
n3T (t−r)

24

∫
Ac

Tn
∏n
i=1 q(T (t0 − r), T (yi − vi))q(T (t− t0), T (wi − yi))dyi∏n

i=1 q(T (t− r), T (vi − wi))
≤ 1

2
. (4.7)

The inequality (4.7) can be proved by interpreting the fraction above as the probability
density function of n independent Brownian bridges starting from T~v at time 0 and
ending at T ~w at time T (t− r). The integral is the probability of the event that at least
one of the Brownian bridges go beyond [−TK, TK] at time T (t0 − r).

Continue our proof and multiply both sides of (4.7) by
∏n
i=1 q(T (t − r), T (vi − wi)),

apply the resulting inequality to upper bound the right hand side of (4.6) and finally
apply (4.2), we get E2 ≤ 1

2E[
∏n
i=1 ZT (r, vi; t, wi)].

We proceed to upper bound E1. Recall that E1 =
∫
A
. . . where . . . is given by the

integrand on the right hand side of (4.4). By applying (4.1) to upper bound the first
expectation in the integrand, we have

E1 ≤ Ce
1
24n

3T (t0−r)
∫
A

TnE
[ n∏
i=1

ZT (t0, yi; t, wi)
] n∏
i=1

q(T (t0 − r), T (yi − vi))dyi. (4.8)

Define p(t, x) := −x
2

2t . It is straightforward to check that for ‖~y‖∞ ≤ K and ‖~v‖∞,
‖~v′‖∞ ≤ R, we have

∣∣∣ n∑
i=1

(p(T (t0 − r), T (yi − vi))−
n∑
i=1

p(T (t0 − r), T (yi − v′i))
∣∣∣ ≤ CT‖~v − ~v′‖∞

t0 − r
.

Take the exponential, the above inequality implies that

n∏
i=1

q(T (t0 − r), T (yi − vi)) ≤ exp
(CT‖~v − ~v′‖∞

t0 − r

) n∏
i=1

q(T (t0 − r), T (yi − v′i)). (4.9)

Apply (4.9) to upper bound the right hand side of (4.8), and then release the domain of
integral to Rn, we have

E1 ≤ Ce
1
24n

3T (t0−r) exp
(CT‖~v − ~v′‖∞

t0 − r

)
·∫

Rn

TnE
[ n∏
i=1

ZT (t0, yi; t, wi)
] n∏
i=1

q(T (t0 − r), T (yi − v′i))dyi.
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Apply (4.2) to upper bound
∏n
i=1 q(T (t0 − r), T (yi − v′i)) by E[

∏n
i=1 ZT (r, v′i; t0, yi)] and

then use the Fubini’s theorem together with the semigroup identity (3.3), we get

E1 ≤ Ce
1
24n

3T (t0−r) exp
(CT‖~v − ~v′‖∞

t0 − r

)
E
[ n∏
i=1

ZT (r, v′i; t, wi)
]
.

Take δ = min( ε2

16C2 ,
36ε2

n6 ), t0 = r + δ
1
2 . Using ‖~v − ~v′‖∞ ≤ δ, we obtain the upper bound

(4.5) and thus (4.3).

5 Proof of Theorem 1.1 and its corollaries

In this section, we will prove the following lemma and conclude the proof of Theorem
1.1.

Lemma 5.1. We have γ1 ≤ γ2 ≤ γ3.

Proof. We first prove γ1 ≤ γ2 by finding a1, . . . , am which satisfy ai − ai+1 ≥ 1 for
i = 1, . . . ,m − 1 and

∑m
i=1

t
2a

2
i + uiai = γ2(t, ~x, ~m). Let (b1, . . . , bn) be a minimizer of γ2.

For j = 1, . . . , n, set Sj :=
∑j
i=1mi and

ak := bj +
mj + 1

2
− k +

j−1∑
i=1

mi, if Sj−1 < k ≤ Sj . (5.1)

Note that we have ak − ak+1 = 1 unless k = Sj for some j ∈ {1, . . . , n − 1}. Since
bj−bj+1 ≥ mj+mj+1

2 for j = 1, . . . , n−1, we know that ak−ak+1 ≥ 1 for k ∈ {S1, . . . , Sn−1}.
This implies that ak−ak+1 ≥ 1 for all k = 1, . . . ,m−1. Recall that uk = xj if Sj−1 < k ≤ Sj ,
one can directly check that

m∑
j=1

t

2
a2j +

m∑
j=1

ujaj =

n∑
i=1

Si∑
k=Si−1+1

t

2
a2k + xiak. (5.2)

In addition, we have for each i ∈ {1, . . . , n},

Si∑
k=Si−1+1

t

2
a2k + xiak

=

Si∑
k=Si−1+1

t

2

(
bi +

mi + 1

2
− k +

i−1∑
j=1

mi

)2
+ xi

(
bi +

mi + 1

2
− k +

i−1∑
j=1

mi

)
=
mit

2
(bi +

xi
t

)2 +
(m3

i −mi)t

24
− mix

2
i

2t
(5.3)

In the second equality, the term m3
i−mi

24 comes from the sum
∑Si

k=Si−1+1(mi+1
2 − k +∑i−1

j=1mi)
2. By (5.2) and (5.3), we have

m∑
j=1

t

2
a2j +

m∑
j=1

ujaj =

n∑
i=1

mit

2
(bi +

xi
t

)2 +
(m3

i −mi)t

24
− mix

2
i

2t
= γ2(t, ~x, ~m). (5.4)

This implies that γ1 ≤ γ2.

We proceed to show γ2 ≤ γ3 by finding b1, . . . , bn which satisfy bi − bi+1 ≥ mi+mi+1

2 for

i = 1, . . . , n−1 and
∑n
i=1

mit
2 (bi+

xi

t )2 +
(m3

i−mi)t
24 − mix

2
i

2t = γ3(t, ~x, ~m). Recall the notation
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for the inertia clusters from Section 3.1. Let ni := |bi| for i = 1, . . . , n and Nk :=
∑k
i=1 ni.

Then, we have bk = {Nk−1 + 1, . . . , Nk}. Let

ck(s) :=

∑Nk

i=Nk−1+1miζi(s)

mbk

.

Note that ck(s) is the location of the center of mass for {ζi(s)}i∈bk
. An important

observation is that ck travels with a constant speed ϕk := 1
2 (
∑n
i=Nk+1mi −

∑Nk−1

i=1 mi).

Since ζi(0) = xi, we have ck(0) =

∑Nk
i=Nk−1+1mixi

mbk

. Moreover, we have ck(t) = ζbk
(t),

which implies that ck(t) < ck+1(t) for all k = 1, . . . , n − 1. Using this together with
cj(t) = ϕjt+ cj(0), we have ck+1(0)− ck(0) > −(ϕk+1 − ϕk)t, which is equivalent to∑Nk+1

i=Nk+1mixi

mbk+1

−
∑Nk

i=Nk−1+1mixi

mbk

>
(
∑Nk+1

i=Nk−1+1mi)t

2
. (5.5)

We set

bi := −
∑Nk

j=Nk−1+1mjxj

mbk
t

+

∑Nk

j=i+1mj −
∑i−1
j=Nk−1+1mj

2
, for Nk−1 < i ≤ Nk. (5.6)

By (5.5), one can verify that bi − bi+1 ≥ mi+mi+1

2 for i = 1, . . . , n− 1. Recall that

γ3(t, ~xbj
, ~mbj

) =
(m3

bj
−mbj

)t

24
−

∑
k,`∈bj ,k<`

mkm`

2
|xk − x`| −

(
∑
k∈bj

mkxk)2

2tmbj

.

A straightforward (although tedious) computation implies that

Nj∑
i=Nj−1+1

mit

2
(bi +

xi
t

)2 +
(m3

i −mi)t

24
− mix

2
i

2t
= γ3(t, ~xbj

, ~mbj
). (5.7)

See Appendix C for detail. Summing both sides above over j = 1, . . . , n, we have

n∑
i=1

mit

2
(bi +

xi
t

)2 +
(m3

i −mi)t

24
− mix

2
i

2t
= γ3(t, ~x, ~m). (5.8)

This shows that γ2 ≤ γ3.

Proof of Theorem 1.1. Apply Propositions 2.1 and 3.1, we know that γ1 ≥ γ3. Using this
together Lemma 5.1, we have γ1 = γ2 = γ3. Using this together with Propositions 2.1
and 3.1, we conclude Theorem 1.1.

Proof of Corollary 1.2. Use the expression of γ2, the result is straightforward for n = 1.
When n = 2, we have

γ2(t, ~x, ~m) := inf
{ 2∑
i=1

mit

2
(bi +

xi
t

)2 +
(m3

i −mi)t

24
− mix

2
i

2t
: b1 − b2 ≥

m1 +m2

2

}
.

When x2−x1

t ≥ m1+m2

2 , the target function is minimized at b1 = −x1

t and b2 = −x2

t . When
0 < x2−x1

t ≤ m1+m2

2 , the target function in the infimum is minimized at the boundary
b1 − b2 = m1+m2

2 with b1 = −m1x1+m2x2

(m1+m2)t
+ m2

2 . Insert the minimizers into the target
function, we obtain the desired result.
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Proof of Corollary 1.3. Since the target function that we want to minimize in γ1 is contin-
uous and goes to infinity when we send

∑m
i=1 |ai| to infinity, we know that the infimum in

γ1 has a minimizer. Moreover, the domain {(a1, . . . , am) : ai−ai+1 ≥ 1,∀ i ∈ {1, . . . ,m−1}}
is convex and the target function is strictly convex, thus the infimum in γ1 has a unique
minimizer (a∗1, . . . , a

∗
m). By a similar argument, we know that γ2 has a unique minimizer

(b∗1, . . . , b
∗
n). Using (5.1) - (5.4) and γ1 = γ2, we have

a∗k = b∗j +
mj + 1

2
− k +

j−1∑
i=1

mi, if Sj−1 < k ≤ Sj . (5.9)

Moreover, use (5.6) - (5.7) and γ2 = γ3, we know that

b∗i := −
∑Nk

j=Nk−1+1mjxj

mbk
t

+

∑Nk

j=i+1mj −
∑i−1
j=Nk−1+1mj

2
, for Nk−1 < i ≤ Nk.

By (5.5), we have b∗i − b∗i+1 = mi+mi+1

2 if i, i + 1 belong to the same bj and b∗i − b∗i+1 >
mi+mi+1

2 if not. Use this together with (5.9), we conclude that a∗i − a∗i+1 = 1 if and only if
f(i) and f(i+ 1) belong to the same bj .

A A correlation inequality

In this section, we prove the following inequality.

Lemma A.1. For any T > 0 and t > r, integers 1 ≤ k ≤ n, and real numbers w1, . . . , wn,
v1, . . . , vn, we have

E
[ n∏
i=1

ZT (r, vi; t, wi)
]
≥ E

[ k∏
i=1

ZT (r, vi; t, wi)
]
E
[ n∏
i=k+1

ZT (r, vi; t, wi)
]
.

Proof. Without loss of generality, we can take T = 1 and write Z1 as Z. We claim that
for any positive real numbers s1, . . . , sn, we have

P
( n⋂
i=1

{Z(r, vi; t, wi) ≥ si}
)

≥ P
( k⋂
i=1

{Z(r, vi; t, wi) ≥ si}
)
P
( n⋂
i=k+1

{Z(r, vi; t, wi) ≥ si}
)
. (A.1)

The proof of the claim follows the idea of [19, Proposition 1] and uses the FKG-Harris
inequality (see [11, Proposition A.1]) at the level of the discrete polymer model. By [1,
Theorem 2.7], we can approximate the four-parameter process Z(r, y; t, x) in terms of
the partition function of discrete polymer models, which is denoted as Zε(r, y; t, x). More
precisely, at the process level, Zε(r, y; t, x) converges in distribution to Z(r, y; t, x) as
ε→ 0. It is straightforward that Zε(r, y; t, x) is an increasing function of the i.i.d. random
variables that we put on the lattice Z2 in the discrete polymer models. Hence, the events
A1,ε = ∩ki=1{Zε(r, vi; t, wi) ≥ si} and A2,ε = ∩ni=k+1{Zε(r, vi; t, wi) ≥ si} are increasing
events. Note that although the lattice Z2 is infinite, however, only a finite number of
random variables on the lattice affects the value of Zε(r, vi; t, wi) for i = 1, . . . , n. Note
that these random variables are all independent due to the definition of the discrete
polymer. By the FKG-Harris inequality, P(A1,ε ∩A2,ε) ≥ P(A1,ε)P(A2,ε). Send ε→ 0, we
conclude (A.1).

We proceed to conclude Lemma A.1. By applying Fubini’s theorem, we have

E
[ n∏
i=1

Z(r, vi; t, wi)
]

=

∫
Rn

>0

P
( n⋂
i=1

{Z(r, vi; t, wi) ≥ si}
)
ds1 . . . dsn.
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Apply (A.1) to the right hand side and then use Fubini’s theorem, we have

E
[ n∏
i=1

Z(r, vi; t, wi)
]

≥
∫
Rk

>0

P
( k⋂
i=1

{Z(r, vi; t, wi) ≥ si}
)∫

R
n−k
>0

P
( n⋂
i=k+1

{Z(r, vi; t, wi) ≥ si}
) n∏
i=1

dsi

= E
[ k∏
i=1

Z(r, vi; t, wi)
]
E
[ n∏
i=k+1

Z(r, vi; t, wi)
]
.

B An identity

In this section, we will prove the last equality in the proof of Proposition 3.1. Recall
that for the optimal clusters starting from (~x, ~m), we have assumed n = 1 and set
s0 = inf{s : |{ξ1(s), . . . , ξn(s)}| < n}. We let (~x′, ~m′) be the (different) locations and
weights of the point masses at time s = s0. Note that (~x′, ~m′) is obtained from (~ξ(s0), ~m)

by examining the point masses that have merged.

Lemma B.1. We have

n∑
k=1

(m3
k −mk)s0

24
− mk(xk − ξk(s0))2

2s0
+ γ3(t− s0, ~x′, ~m′) = γ3(t, ~x, ~m). (B.1)

Proof. Recall from (3.6) that s0 is the first time that a merging occurs among point
masses in the optimal clusters. Set k ∈ {1, . . . , n− 1} to be a fixed number such that

xk+1 − xk
(mk +mk+1)/2

= min
j∈{1,...,n−1}

xj+1 − xj
(mj +mj+1)/2

. (B.2)

By (B.2), we know that the point masses starting from xk and xk+1 will merge first.
Moreover, the speed of particle xk and xk+1 are, respectively, 1

2 (
∑n
i=k+1mi −

∑k−1
i=1 mi)

and 1
2 (
∑n
i=k+2mi−

∑k
i=1mi). This implies the time for the k-th and k+ 1-th point masses

to merge is s0 = xk+1−xk

(mk+mk+1)/2
.

It is not hard to check that ξk(s0) = xk + (φk − v)s0 with

φk =

∑n
j=k+1mj −

∑k−1
j=1 mj

2
and v =

∑n
j=1mjxj

mt
. (B.3)

Since n = 1, we have

γ3(t, ~x, ~m) =
(m3 −m)t

24
−

∑
1≤j<k≤n

mjmk(xk − xj)
2

−
(
∑n
j=1mjxj)

2

2mt
,

γ3(t− s0, ~x′, ~m′) =
(m3 −m)(t− s0)

24
−

∑
1≤j<k≤n

mjmk(ξk(s0)− ξj(s0))

2
−

(
∑n
j=1mjξj(s0))2

2m(t− s0)
.

This implies that

γ3(t, ~x, ~m)− γ3(t− s0, ~x′, ~m′)

=
(m3 −m)s0

24
−

∑
1≤j<k≤n

mjmk(xk − xj)
2

−
(
∑n
j=1mjxj)

2

2mt

+
∑

1≤j<k≤n

mjmk(ξk(s0)− ξj(s0))

2
+

(
∑n
j=1mjξj(s0))2

2m(t− s0)
. (B.4)
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By the definition of ξ and (B.3), we have

mjmk(ξk(s0)− ξj(s0))

2
=
mjmk(xk − xj)

2
+
mjmk(φk − φj)

2
.

Inserting this into (B.4), we get

γ3(t, ~x, ~m)− γ3(t− s0, ~x′, ~m′)

=
(m3 −m)s0

24
−

(
∑n
j=1mjxj)

2

2mt
+

∑
1≤j<k≤n

mjmk(φk − φj)s0
2

+
(
∑n
j=1mjξj(s0))2

2m(t− s0)
. (B.5)

Next, we observe that

(
∑n
j=1mjxj)

2

2mt
=

mv2s0
2

,
(
∑n
j=1mjξj(s0))2

2m(t− s0)
=

mv2(t− s0)

2
.

Inserting these into (B.5), we get

γ3(t, ~x, ~m)− γ3(t− s0, ~x′, ~m′) =
(m3 −m)s0

24
+

∑
1≤j<k≤n

mjmk(φk − φj)s0
2

− mv2s0
2

. (B.6)

On the other hand, we have

n∑
k=1

(m3
k −mk)s0

24
− mk(xk − ξk(s0))2

2s0

=

n∑
k=1

(m3
k −mk)s0

24
− mk(φk + v)2s0

2

=

n∑
k=1

( (m3
k −mk)s0

24
− mkφ

2
ks0

2

)
−

n∑
k=1

mkφkvs0 −
mv2s0

2
.

One can verify that
∑n
k=1mkφk = 0. As a result,

n∑
k=1

(m3
k −mk)s0

24
− mk(xk − ξk(s0))2

2s0
=

n∑
k=1

( (m3
k −mk)s0

24
− mkφ

2
ks0

2

)
− mv2s0

2
. (B.7)

One can check that

(m3 −m)s0
24

+
∑

1≤j<k≤n

mjmk(φk − φj)s0
2

=

n∑
k=1

( (m3
k −mk)s0

24
− mkφ

2
ks0

2

)
.

Using this together with (B.6) and (B.7), we have

(m3 −m)s0
24

+
∑

1≤j<k≤n

mjmk(φk − φj)s0
2

= γ3(t, ~x, ~m)− γ3(t− s0, ~x′, ~m′).

This concludes the lemma.

C Detailed computation for (5.7)

We present detailed computation for (5.7). It is clear that (5.7) is equivalent to

Nj∑
i=Nj−1+1

mit

2
(bi +

xi
t

)2 − mix
2
i

2t
= γ3(t, ~xbj

, ~mbj
)−

Nj∑
i=Nj−1+1

(m3
i −mi)t

24
. (C.1)
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We first look at the left hand side of (C.1):

Nj∑
i=Nj−1+1

mit

2
(bi +

xi
t

)2 − mix
2
i

2t
=

Nj∑
i=Nj−1+1

mib
2
i t

2
+mixibi. (C.2)

Let dj :=

∑Nj
k=Nj−1+1mkxk

mbj
t . Recall from (5.6) that for Nj−1 < i ≤ Nj , we have

bi = −
∑Nj

k=Nj−1+1mkxk

mbj t
+

∑Nj

k=i+1mk −
∑i−1
k=Nj−1+1mk

2

= −dj +

∑Nj

k=i+1mk −
∑i−1
k=Nj−1+1mk

2
.

Plugging this into (C.2), we have

Nj∑
i=Nj−1+1

mitb
2
i

2
+mixibi =

Nj∑
i=Nj−1+1

mit

2

(
− dj +

∑Nj

k=i+1mk −
∑i−1
k=Nj−1+1mk

2

)2

+mixi

(
− dj +

∑Nj

k=i+1mk −
∑i−1
k=Nj−1+1mk

2

)
= A1 +A2 +A3 +A4 (C.3)

where

A1 :=
mit

2
d2j

( Nj∑
k=Nj−1+1

mk

)
−
( Nj∑
k=Nj−1+1

mkxk

)
dj ,

A2 :=

Nj∑
i=Nj−1+1

mixi

∑Nj

k=i+1mk −
∑i−1
k=Nj−1+1mk

2
,

A3 := −
Nj∑

i=Nj−1+1

mit

2
dj

∑Nj

k=i+1mk −
∑i−1
k=Nj−1+1mk

2
,

A4 :=

Nj∑
i=Nj−1+1

1

8
tmi

( Nj∑
k=i+1

mk −
i−1∑

k=Nj−1+1

mk

)2
.

It is straightforward to verify that

A1 = −
(
∑
k∈bj

mkxk)2

2tmbj

,

A2 = −
∑

Nj−1+1≤k<`≤Nj

mkm`

2
(x` − xk),

A3 = 0,

A4 =
(m3

bi
−mbi

)t

24
−

Nj∑
i=Nj−1+1

(m3
i −mi)t

24
.

Plugging these into (C.3), we conclude with (C.1), thus establishing (5.7).

References

[1] Tom Alberts, Konstantin Khanin, and Jeremy Quastel. The intermediate disorder regime for
directed polymers in dimension 1 + 1. Ann. Probab., 42(3):1212–1256, 2014. MR3189070

EJP 29 (2024), paper 188.
Page 18/22

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=3189070
https://doi.org/10.1214/24-EJP1240
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Multi-point Lyapunov exponents of the SHE

[2] Tomer Asida, Eli Livne, and Baruch Meerson. Large fluctuations of a Kardar-Parisi-Zhang in-
terface on a half line: The height statistics at a shifted point. Physical Review E , 99(4):042132,
2019.

[3] Lorenzo Bertini and Nicoletta Cancrini. The stochastic heat equation: Feynman-Kac formula
and intermittence. Journal of statistical Physics, 78:1377–1401, 1995. MR1316109

[4] Alexei Borodin and Ivan Corwin. Macdonald processes. Probability Theory and Related
Fields, 158(1-2):225–400, 2014. MR3152785

[5] Alexei Borodin and Ivan Corwin. Moments and Lyapunov exponents for the parabolic
Anderson model. Ann. Appl. Probab., 24(3):1172–1198, 2014. MR3199983

[6] Mattia Cafasso and Tom Claeys. A Riemann-Hilbert approach to the lower tail of the Kardar-
Parisi-Zhang equation. Comm. Pure Appl. Math., 75(3):493–540, 2022. MR4373176

[7] Mattia Cafasso, Tom Claeys, and Giulio Ruzza. Airy kernel determinant solutions to the KdV
equation and integro-differential Painlevé equations. Comm. Math. Phys., 386(2):1107–1153,
2021. MR4294287

[8] Le Chen and Robert C. Dalang. Moments and growth indices for the nonlinear stochastic heat
equation with rough initial conditions. Ann. Probab., 43(6):3006–3051, 2015. MR3433576

[9] Le Chen, Yaozhong Hu, and David Nualart. Regularity and strict positivity of densities for
the nonlinear stochastic heat equation. Mem. Amer. Math. Soc., 273(1340):v+102, 2021.
MR4334477

[10] Xia Chen. Precise intermittency for the parabolic Anderson equation with an (1 + 1)-
dimensional time–space white noise. Annales de l’I.H.P. Probabilités et statistiques,
51(4):1486–1499, 2015. MR3414455

[11] Francis Comets. Directed polymers in random environments, volume 2175 of Lecture Notes
in Mathematics. Springer, Cham, 2017. Lecture notes from the 46th Probability Summer
School held in Saint-Flour, 2016. MR3444835

[12] Daniel Conus, Mathew Joseph, and Davar Khoshnevisan. On the chaotic character of the
stochastic heat equation, before the onset of intermitttency. Ann. Probab., 41(3B):2225–2260,
2013. MR3098071

[13] Ivan Corwin. The Kardar–Parisi–Zhang equation and universality class. Random matrices:
Theory and applications, 1(01):1130001, 2012. MR2930377

[14] Ivan Corwin and Promit Ghosal. KPZ equation tails for general initial data. Electronic Journal
of Probability, 25(none):1 – 38, 2020. MR4115735

[15] Ivan Corwin and Promit Ghosal. Lower tail of the KPZ equation. Duke Math. J., 169(7):1329–
1395, 2020. MR4094738

[16] Ivan Corwin, Promit Ghosal, Alexandre Krajenbrink, Pierre Le Doussal, and Li-Cheng Tsai.
Coulomb-gas electrostatics controls large fluctuations of the Kardar-Parisi-Zhang equation.
Physical review letters, 121(6):060201, 2018.

[17] Ivan Corwin and Alan Hammond. Brownian Gibbs property for Airy line ensembles. Invent.
Math., 195(2):441–508, 2014. MR3152753

[18] Ivan Corwin and Alan Hammond. KPZ line ensemble. Probab. Theory Related Fields,
166(1-2):67–185, 2016. MR3547737

[19] Ivan Corwin and Jeremy Quastel. Crossover distributions at the edge of the rarefaction fan.
Ann. Probab., 41(3A):1243–1314, 2013. MR3098678

[20] Sayan Das and Promit Ghosal. Law of iterated logarithms and fractal properties of the KPZ
equation. Ann. Probab., 51(3):930–986, 2023. MR4583059

[21] Sayan Das and Li-Cheng Tsai. Fractional moments of the stochastic heat equation. Annales
de l’Institut Henri Poincaré, Probabilités et Statistiques, 57(2):778 – 799, 2021. MR4260483

[22] Sayan Das and Weitao Zhu. Upper-tail large deviation principle for the ASEP. Electron. J.
Probab., 27:Paper No. 11, 34, 2022. MR4366818

[23] Gregorio R. Moreno Flores. On the (strict) positivity of solutions of the stochastic heat
equation. The Annals of Probability, 42(4):1635–1643, 2014. MR3262487

[24] Shirshendu Ganguly and Milind Hegde. Sharp upper tail estimates and limit shapes for the
KPZ equation via the tangent method. arXiv preprint arXiv:2208.08922, 2022.

EJP 29 (2024), paper 188.
Page 19/22

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=1316109
https://mathscinet.ams.org/mathscinet-getitem?mr=3152785
https://mathscinet.ams.org/mathscinet-getitem?mr=3199983
https://mathscinet.ams.org/mathscinet-getitem?mr=4373176
https://mathscinet.ams.org/mathscinet-getitem?mr=4294287
https://mathscinet.ams.org/mathscinet-getitem?mr=3433576
https://mathscinet.ams.org/mathscinet-getitem?mr=4334477
https://mathscinet.ams.org/mathscinet-getitem?mr=3414455
https://mathscinet.ams.org/mathscinet-getitem?mr=3444835
https://mathscinet.ams.org/mathscinet-getitem?mr=3098071
https://mathscinet.ams.org/mathscinet-getitem?mr=2930377
https://mathscinet.ams.org/mathscinet-getitem?mr=4115735
https://mathscinet.ams.org/mathscinet-getitem?mr=4094738
https://mathscinet.ams.org/mathscinet-getitem?mr=3152753
https://mathscinet.ams.org/mathscinet-getitem?mr=3547737
https://mathscinet.ams.org/mathscinet-getitem?mr=3098678
https://mathscinet.ams.org/mathscinet-getitem?mr=4583059
https://mathscinet.ams.org/mathscinet-getitem?mr=4260483
https://mathscinet.ams.org/mathscinet-getitem?mr=4366818
https://mathscinet.ams.org/mathscinet-getitem?mr=3262487
https://arXiv.org/abs/2208.08922
https://doi.org/10.1214/24-EJP1240
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Multi-point Lyapunov exponents of the SHE

[25] J. Gärtner and S. A. Molchanov. Parabolic problems for the Anderson model. I. Intermittency
and related topics. Comm. Math. Phys., 132(3):613–655, 1990. MR1069840

[26] Jürgen Gärtner, Wolfgang König, and Stanislav Molchanov. Geometric characterization
of intermittency in the parabolic Anderson model. Ann. Probab., 35(2):439–499, 2007.
MR2308585

[27] Pierre Yves Gaudreau Lamarre, Promit Ghosal, and Yuchen Liao. Moment Intermittency
in the PAM with Asymptotically Singular Noise. arXiv preprint arXiv:2206.13622, 2022.
MR4636689

[28] Pierre Yves Gaudreau Lamarre, Yier Lin, and Li-Cheng Tsai. KPZ equation with a small noise,
deep upper tail and limit shape. Probab. Theory Related Fields, 185(3-4):885–920, 2023.
MR4556284

[29] Nicos Georgiou and Timo Seppäläinen. Large deviation rate functions for the partition
function in a log-gamma distributed random potential. Ann. Probab., 41(6):4248–4286, 2013.
MR3161474

[30] Promit Ghosal and Yier Lin. Lyapunov exponents of the SHE under general initial data.
Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 59(1):476 – 502, 2023.
MR4533737

[31] Yaozhong Hu, Jingyu Huang, David Nualart, and Samy Tindel. Stochastic heat equations
with general multiplicative Gaussian noises: Hölder continuity and intermittency. Electron. J.
Probab., 20:no. 55, 50, 2015. MR3354615

[32] Yaozhong Hu and Khoa Lê. Asymptotics of the density of parabolic Anderson random fields.
Ann. Inst. Henri Poincaré Probab. Stat., 58(1):105–133, 2022. MR4374674

[33] Chris Janjigian. Large deviations of the free energy in the O’Connell-Yor polymer. J. Stat.
Phys., 160(4):1054–1080, 2015. MR3373651

[34] Alex Kamenev, Baruch Meerson, and Pavel V Sasorov. Short-time height distribution in the
one-dimensional Kardar-Parisi-Zhang equation: Starting from a parabola. Physical Review E ,
94(3):032108, 2016. MR3731817

[35] Mehran Kardar, Giorgio Parisi, and Yi-Cheng Zhang. Dynamic scaling of growing interfaces.
Physical Review Letters, 56(9):889, 1986.

[36] Davar Khoshnevisan. Analysis of stochastic partial differential equations, volume 119 of
CBMS Regional Conference Series in Mathematics. Published for the Conference Board
of the Mathematical Sciences, Washington, DC; by the American Mathematical Society,
Providence, RI, 2014. MR3222416

[37] Davar Khoshnevisan, Kunwoo Kim, and Yimin Xiao. Intermittency and multifractality: a case
study via parabolic stochastic PDEs. Ann. Probab., 45(6A):3697–3751, 2017. MR3729613

[38] Yujin H. Kim. The lower tail of the half-space KPZ equation. Stochastic Process. Appl.,
142:365–406, 2021. MR4318370

[39] IV Kolokolov and SE Korshunov. Optimal fluctuation approach to a directed polymer in a
random medium. Physical Review B , 75(14):140201, 2007. MR2546056

[40] IV Kolokolov and SE Korshunov. Universal and nonuniversal tails of distribution functions in
the directed polymer and Kardar-Parisi-Zhang problems. Physical Review B , 78(2):024206,
2008.

[41] IV Kolokolov and SE Korshunov. Explicit solution of the optimal fluctuation problem for an
elastic string in a random medium. Physical Review E , 80(3):031107, 2009.

[42] Alexandre Krajenbrink. Beyond the typical fluctuations: a journey to the large deviations
in the Kardar-Parisi-Zhang growth model . PhD thesis, Université Paris sciences et lettres,
2019.

[43] Alexandre Krajenbrink. From painlevé to zakharov–shabat and beyond: Fredholm determi-
nants and integro-differential hierarchies. Journal of Physics A: Mathematical and Theoretical ,
54(3):035001, 2020. MR4209129

[44] Alexandre Krajenbrink and Pierre Le Doussal. Exact short-time height distribution in the
one-dimensional Kardar-Parisi-Zhang equation with Brownian initial condition. Physical
Review E , 96(2):020102, 2017.

EJP 29 (2024), paper 188.
Page 20/22

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=1069840
https://mathscinet.ams.org/mathscinet-getitem?mr=2308585
https://arXiv.org/abs/2206.13622
https://mathscinet.ams.org/mathscinet-getitem?mr=4636689
https://mathscinet.ams.org/mathscinet-getitem?mr=4556284
https://mathscinet.ams.org/mathscinet-getitem?mr=3161474
https://mathscinet.ams.org/mathscinet-getitem?mr=4533737
https://mathscinet.ams.org/mathscinet-getitem?mr=3354615
https://mathscinet.ams.org/mathscinet-getitem?mr=4374674
https://mathscinet.ams.org/mathscinet-getitem?mr=3373651
https://mathscinet.ams.org/mathscinet-getitem?mr=3731817
https://mathscinet.ams.org/mathscinet-getitem?mr=3222416
https://mathscinet.ams.org/mathscinet-getitem?mr=3729613
https://mathscinet.ams.org/mathscinet-getitem?mr=4318370
https://mathscinet.ams.org/mathscinet-getitem?mr=2546056
https://mathscinet.ams.org/mathscinet-getitem?mr=4209129
https://doi.org/10.1214/24-EJP1240
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Multi-point Lyapunov exponents of the SHE

[45] Alexandre Krajenbrink and Pierre Le Doussal. Large fluctuations of the KPZ equation in a
half-space. SciPost Physics, 5(4):032, 2018.

[46] Alexandre Krajenbrink and Pierre Le Doussal. Simple derivation of the (−λH)5/2 tail for the
1D KPZ equation. Journal of Statistical Mechanics: Theory and Experiment , 2018(6):063210,
2018. MR3832292

[47] Alexandre Krajenbrink and Pierre Le Doussal. Linear statistics and pushed coulomb gas
at the edge of β-random matrices: Four paths to large deviations. Europhysics Letters,
125(2):20009, 2019.

[48] Alexandre Krajenbrink and Pierre Le Doussal. Inverse scattering of the Zakharov-Shabat
system solves the weak noise theory of the Kardar-Parisi-Zhang equation. Physical Review
Letters, 127(6):064101, 2021. MR4312166

[49] Alexandre Krajenbrink and Pierre Le Doussal. Inverse scattering solution of the weak noise
theory of the Kardar-Parisi-Zhang equation with flat and Brownian initial conditions. Physical
Review E , 105(5):054142, 2022. MR4445107

[50] Alexandre Krajenbrink and Pierre Le Doussal. Crossover from the macroscopic fluctuation
theory to the Kardar-Parisi-Zhang equation controls the large deviations beyond Einstein’s
diffusion. Physical Review E , 107(1):014137, 2023. MR4548902

[51] Alexandre Krajenbrink, Pierre Le Doussal, and Sylvain Prolhac. Systematic time expansion
for the Kardar–Parisi–Zhang equation, linear statistics of the GUE at the edge and trapped
fermions. Nuclear Physics B , 936:239–305, 2018. MR3869768

[52] Pierre Le Doussal. Large deviations for the Kardar–Parisi–Zhang equation from the
Kadomtsev–Petviashvili equation. Journal of Statistical Mechanics: Theory and Experiment ,
2020(4):043201, 2020. MR4148618

[53] Pierre Le Doussal, Satya N Majumdar, Alberto Rosso, and Grégory Schehr. Exact short-time
height distribution in the one-dimensional Kardar-Parisi-Zhang equation and edge fermions
at high temperature. Physical review letters, 117(7):070403, 2016.

[54] Pierre Le Doussal, Satya N Majumdar, and Grégory Schehr. Large deviations for the height
in 1D Kardar-Parisi-Zhang growth at late times. Europhysics Letters, 113(6):60004, 2016.

[55] Yier Lin. Lyapunov exponents of the half-line SHE. J. Stat. Phys., 183(3):Paper No. 37, 34,
2021. MR4261708

[56] Yier Lin and Li-Cheng Tsai. Short time large deviations of the KPZ equation. Comm. Math.
Phys., 386(1):359–393, 2021. MR4287189

[57] Yier Lin and Li-Cheng Tsai. A lower-tail limit in the weak noise theory. arXiv preprint
arXiv:2210.05629, 2022. MR4630784

[58] Yier Lin and Li-Cheng Tsai. Spacetime limit shapes of the KPZ equation in the upper tails.
arXiv preprint arXiv:2304.14380, 2023. MR4556284

[59] Baruch Meerson, Eytan Katzav, and Arkady Vilenkin. Large deviations of surface height in
the Kardar-Parisi-Zhang equation. Physical review letters, 116(7):070601, 2016. MR3582125

[60] Baruch Meerson and Johannes Schmidt. Height distribution tails in the Kardar–Parisi–Zhang
equation with Brownian initial conditions. Journal of Statistical Mechanics: Theory and
Experiment , 2017(10):103207, 2017. MR3722588

[61] Baruch Meerson and Arkady Vilenkin. Large fluctuations of a Kardar-Parisi-Zhang interface
on a half line. Physical Review E , 98(3):032145, 2018.

[62] Carl Mueller. On the support of solutions to the heat equation with noise. Stochastics:
An International Journal of Probability and Stochastic Processes, 37(4):225–245, 1991.
MR1149348

[63] Mihai Nica. Intermediate disorder limits for multi-layer semi-discrete directed polymers.
Electron. J. Probab., 26:Paper No. 62, 50, 2021. MR4254804

[64] Jeremy Quastel. Introduction to KPZ. Current developments in mathematics, 2011(1), 2011.
MR3098078

[65] Pavel Sasorov, Baruch Meerson, and Sylvain Prolhac. Large deviations of surface height in
the 1 + 1-dimensional Kardar–Parisi–Zhang equation: exact long-time results for λH < 0.
Journal of Statistical Mechanics: Theory and Experiment , 2017(6):063203, 2017. MR3673439

EJP 29 (2024), paper 188.
Page 21/22

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=3832292
https://mathscinet.ams.org/mathscinet-getitem?mr=4312166
https://mathscinet.ams.org/mathscinet-getitem?mr=4445107
https://mathscinet.ams.org/mathscinet-getitem?mr=4548902
https://mathscinet.ams.org/mathscinet-getitem?mr=3869768
https://mathscinet.ams.org/mathscinet-getitem?mr=4148618
https://mathscinet.ams.org/mathscinet-getitem?mr=4261708
https://mathscinet.ams.org/mathscinet-getitem?mr=4287189
https://arXiv.org/abs/2210.05629
https://mathscinet.ams.org/mathscinet-getitem?mr=4630784
https://arXiv.org/abs/2304.14380
https://mathscinet.ams.org/mathscinet-getitem?mr=4556284
https://mathscinet.ams.org/mathscinet-getitem?mr=3582125
https://mathscinet.ams.org/mathscinet-getitem?mr=3722588
https://mathscinet.ams.org/mathscinet-getitem?mr=1149348
https://mathscinet.ams.org/mathscinet-getitem?mr=4254804
https://mathscinet.ams.org/mathscinet-getitem?mr=3098078
https://mathscinet.ams.org/mathscinet-getitem?mr=3673439
https://doi.org/10.1214/24-EJP1240
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Multi-point Lyapunov exponents of the SHE

[66] Naftali R Smith and Baruch Meerson. Exact short-time height distribution for the flat
Kardar-Parisi-Zhang interface. Physical Review E , 97(5):052110, 2018.

[67] Naftali R Smith, Baruch Meerson, and Pavel Sasorov. Finite-size effects in the short-time
height distribution of the Kardar–Parisi–Zhang equation. Journal of Statistical Mechanics:
Theory and Experiment , 2018(2):023202, 2018. MR3772417

[68] Naftali R Smith, Baruch Meerson, and Arkady Vilenkin. Time-averaged height distribution of
the Kardar–Parisi–Zhang interface. Journal of Statistical Mechanics: Theory and Experiment ,
2019(5):053207, 2019. MR3998606

[69] Li-Cheng Tsai. Exact lower-tail large deviations of the KPZ equation. Duke Math. J.,
171(9):1879–1922, 2022. MR4484218

[70] Li-Cheng Tsai. Integrability in the weak noise theory. arXiv preprint arXiv:2204.00614, 2022.
MR4630784

[71] Li-Cheng Tsai. High moments of the SHE in the clustering regimes. arXiv preprint
arXiv:2304.14375, 2023. MR4799315

Acknowledgments. We thank Ivan Corwin, Greg Lawler, Russel Lyons and Li-Cheng
Tsai for the helpful discussion. We thank Guillaume Barraquand for telling us a rigorous
approach for proving the exact formula (2.1).

EJP 29 (2024), paper 188.
Page 22/22

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=3772417
https://mathscinet.ams.org/mathscinet-getitem?mr=3998606
https://mathscinet.ams.org/mathscinet-getitem?mr=4484218
https://arXiv.org/abs/2204.00614
https://mathscinet.ams.org/mathscinet-getitem?mr=4630784
https://arXiv.org/abs/2304.14375
https://mathscinet.ams.org/mathscinet-getitem?mr=4799315
https://doi.org/10.1214/24-EJP1240
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

	Introduction
	Main result
	Proof idea
	Upper bound
	Lower bound

	Discussion
	Literature review

	The upper bound
	The lower bound
	The inertia clusters and optimal clusters
	Proof of Proposition 3.1

	A continuity result for the moments
	Proof of Theorem 1.1 and its corollaries
	A correlation inequality
	An identity
	Detailed computation for (5.7)
	References

