
PRX QUANTUM 5, 040344 (2024)

Approximate t-Designs in Generic Circuit Architectures

Daniel Belkin ,1,† James Allen,1,† Soumik Ghosh,2 Christopher Kang,2 Sophia Lin,2 James Sud ,2
Frederic T. Chong,2 Bill Fefferman ,2 and Bryan K. Clark 1,*

1
Institute for Condensed Matter Theory and IQUIST and NCSA Center for Artificial Intelligence Innovation and

Department of Physics, University of Illinois at Urbana-Champaign, Illinois 61801, USA
2
Department of Computer Science, The University of Chicago

 (Received 5 April 2024; accepted 25 October 2024; published 17 December 2024)

Unitary t-designs are distributions on the unitary group whose first t moments appear maximally ran-
dom. Previous work has established several upper bounds on the depths at which certain specific random
quantum circuit ensembles approximate t-designs. Here we show that these bounds can be extended to
any fixed architecture of Haar-random two-site gates. This is accomplished by relating the spectral gaps
of such architectures to those of one-dimensional brickwork architectures. Our bound depends on the
details of the architecture only via the typical number of layers needed for a block of the circuit to form
a connected graph over the sites. When this quantity is bounded, the circuit forms an approximate t-
design in at most linear depth. We give numerical evidence for a stronger bound that depends only on
the number of connected blocks into which the architecture can be divided. We also give an implicit
bound for nondeterministic architectures in terms of properties of the corresponding distribution over
fixed architectures.

DOI: 10.1103/PRXQuantum.5.040344

I. INTRODUCTION

Random quantum circuits are an important tool in the
study of natural and engineered quantum systems. In quan-
tum computing, random circuits have been suggested for
randomized benchmarking [1,2], security, and state prepa-
ration [3]. Recent claims of quantum supremacy have
hinged on the hardness of classical simulation of ran-
dom circuits [4–9]. Random circuits have also been pro-
posed as models for information scrambling in black holes
[10,11], and more general random tensor networks have
been used as an explicit construction of the holographic
duality in AdS/CFT [12]. In quantum information theory,
random circuits are the standard setting in which to study
measurement-induced phase transitions [13], and they are
used as an analytically tractable model of quantum ergod-
icity and chaos [14]. Random circuit models also serve
as an interesting theoretically tractable model for more
complicated realistic physical systems. Their maximally

*Contact author: bkclark@illinois.edu
†Co-first authors.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

generic dynamics are often a valuable source of intuition
as to what one should expect under typical time evolution.

The geometric structure of a quantum circuit plays
a critical role in the flow of information. While initial
work on quantum computing focused on one-dimensional
(1D) architectures, 2D layouts, such as the Sycamore
processor used in the quantum advantage experiment of
Ref. [15], have become increasingly popular. Recent work
has explored modular architectures, in which fully con-
nected nodes are sparsely connected with each other [16].
Circuit models for physical systems often require geo-
metric locality on some two- or three-dimensional lattice.
In certain cases, such as the Sachdev–Ye–Kitaev model,
the interactions are instead all to all. Meanwhile, circuit
architectures with the connectivity pattern of a tree or the
multiscale entanglement renormalization ansatz [17] are
a natural setting in which to study holography. Such cir-
cuits may also be useful for robust quantum simulations of
many-body systems [18].

In the limit of large depth, a sufficiently well-connected
random quantum circuit will eventually scramble quan-
tum information [19]. Perhaps the most basic question
about random quantum circuits is the rate of this scram-
bling. This is quantified by the approximate t-design depth
[20], which captures the depth at which an observer
with access to at most t measurements can no longer
reliably distinguish the circuit from a random global
unitary.

2691-3399/24/5(4)/040344(26) 040344-1 Published by the American Physical Society

https://orcid.org/0000-0002-3936-6419
https://orcid.org/0000-0003-1669-2913
https://orcid.org/0000-0002-9627-0210
https://orcid.org/0000-0001-6603-1203
https://ror.org/047426m28
https://ror.org/024mw5h28
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.5.040344&domain=pdf&date_stamp=2024-12-17
http://dx.doi.org/10.1103/PRXQuantum.5.040344
https://creativecommons.org/licenses/by/4.0/

DANIEL BELKIN et al. PRX QUANTUM 5, 040344 (2024)

Prior work has given bounds on the t-design depths for
a few special classes of architectures. However, it was
not previously clear how the rate of information scram-
bling depended on the spatial structure of the circuit. In
particular, one might have expected irregular or modular
architectures to give qualitatively different behavior, e.g.,
exponentially slow convergence. The main goal of this
work is to show that any reasonable architecture forms
an approximate t-design in linear depth. We bound the
rate of convergence in terms of the connectedness of the
architecture.

A. Prior work

The Haar measure on the unitary group is clearly a fixed
point of any quantum circuit distribution, since it is invari-
ant under any unitary gate. Emerson et al. [19] showed that
random circuits satisfying a universality condition con-
verge to this fixed point in the limit of large depth. But
this uniform convergence is very slow, requiring a circuit
depth that scales exponentially with system size N . On
the other hand, the expected values of specific observables
sometimes approach their Haar values much faster (e.g.,
in depth log N) [21]. But this fast convergence depends
on specific details of the observables considered and is
not necessarily universal for other quantities of interest.
The approximate t-design depth was first introduced in
Ref. [20] as an intermediate measure of convergence. It
is strong enough to guarantee convergence of any experi-
mentally observable property, but occurs much faster than
the uniform convergence of measure.

Much of the prior work on approximate t-design depths
has focused on the 1D brickwork architecture. Brandão
et al. [22] showed that the approximate t-design depth in
this case was at most O(t9.5+o(1)N). For local Hilbert space
dimension q = 2, Haferkamp [23] tightened this bound
to O(t5+o(1)N). Hunter-Jones [24] gave a mapping to a
statistical-mechanical model of interacting domain walls
and used it to establish tighter bounds when either t =
2 or q → ∞. Harrow and Mehraban [25] extended this
work to a particular family of D-dimensional brickwork
architectures. In the limit of small ε and large N , they
established that the approximate t-design depth scales as
at most O(N 1/D) (although the dependence on t remains
an open question). Schuster et al. [26] and LaRacuente
and Leditzky [27], meanwhile, constructed families of
architectures for which the approximate t-design depth is
O[poly(t) log N].

The other class of prior work focuses on what we term
nondeterministic architectures, in which the spatial struc-
ture of the architecture is also random. Typically, gate
locations are assumed to be drawn independently and iden-
tically from the uniform distribution over the edges of
some graph over the sites. In this context, Ambainis and
Emerson [20] established an approximate 2-design size

of at most O(N 2) gates for the all-to-all graph. Brandão
et al. [22] found O(t9.5N 2) for the linear graph, which Osz-
maniec et al. [28] extended to O[t9.5 log4(t)N 3] for any
graph that admits a Hamiltonian path. Mittal and Hunter-
Jones [29] developed an alternative strategy that yields a
bound of the form N O(log N)poly(t) for arbitrary graphs. In
addition, they gave a bound of the form O[|E|Npoly(t)]
for graphs with |E| edges, bounded degree, and bounded
effective spanning-tree height. For certain bounded t and
degree, the requirement of bounded spanning-tree height
can be relaxed. The results of Ref. [30], meanwhile, imply
a bound of

O[N 9t(log t)3(log N + log log t)]

gates for arbitrary graphs.

B. Summary of results

We obtain bounds on the t-design depth for all archi-
tectures, with stronger bounds if the architecture satisfies
certain properties. First, consider a periodic architecture
composed of � complete layers of two-site gates on N
qubits. For large t, our bound for the ε-approximate t-
design depth becomes

d∗ = t[5+o(1)](�−1)
(

2Nt log 2 + log
1
ε

)
. (1)

We can relax each of these assumptions to obtain looser
bounds for larger classes of circuits. The most general
result covers an architecture with local Hilbert space
dimension q that may not be periodic or consist of com-
plete layers [31]. We partition such a circuit into blocks of
layers such that the gates in each block form a connected
graph over all the sites. Let �̄ be the average number of
layers per block [32]. For these architectures, our bound is
of the form

d ≥ t[15.2+o(1)](�̄−1)
(

2Nt log q + log
1
ε

)
. (2)

We also give numerical evidence for two conjectures under
which Eq. (2) can be strengthened to

d∗ = [2Nt log q + log(1/ε)]�̄
2 log[(q2 + 1)/2q]

. (3)

For nondeterministic architectures, we obtain an implicit
bound in terms of the joint distribution of the effective
number of layers in the circuit and the number of connected
blocks.

C. Structure of the proof

We wish to prove that the distribution induced by a
random circuit architecture approaches the Haar measure.

040344-2

APPROXIMATE t-DESIGNS IN GENERIC CIRCUIT ARCHITECTURES PRX QUANTUM 5, 040344 (2024)

Following previous work on approximate t-designs [33],
we begin by expressing the frame potential as a tensor net-
work of single-gate moment operators (Sec. II). In Sec.
III, we focus on the case of periodic complete architec-
tures and show that the t-design depth is determined by the
spectral gap of the transfer matrix T. (The assumptions of
completeness and periodicity will be relaxed in Secs. VII A
and VII B, respectively.)

We then decompose the transfer matrix into a product
of � layers of gates. Each layer is an orthogonal projec-
tion operator. We wish to bound the spectral gap of the
transfer matrix in terms of the geometry of the subspaces
to which the layers project. The key insight at this stage
is to consider the way adding a new layer shrinks the
unit eigenspace of the product, reducing the norm of the
excluded vectors. In Sec. IV, we bound the spectral gap
in terms of these norm reductions. The impact of a new
layer on the unit eigenspace can be represented by a graph
of nodes and edges, which we term the cluster-merging
picture.

The next step is to simplify the cluster-merging picture
at each layer. In Sec. V, we show that you can unravel
the cluster-merging graph of each layer into a collection
of loops without increasing the spectral gap. This is useful
because each loop is the transfer matrix of a periodic 1D
brickwork architecture. At this stage we have obtained a
lower bound on our transfer matrix spectral gap in terms
of the spectral gaps of 1D brickwork architectures.

In Sec. VI, we proceed to show that the 1D brickwork
spectral gap itself may be bounded by previous results on
1D approximate t-design depths. Many of these results
were actually originally proven in terms of the spectral
gap, but our argument applies even to bounds obtained
by other methods. Together these steps allow us to turn
a bound on the 1D t-design depth into a bound for generic
architectures.

We also discuss extensions of our techniques to other
architectures. We show how our bounds can be applied
in expectation to architectures in which gate locations are
drawn randomly, giving an implicit bound in terms of
properties of the induced distribution over fixed architec-
tures. We observe that our techniques may be adapted to
give tighter bounds for architectures with special struc-
ture and give an explicit example for the case of higher-
dimensional brickwork architectures.

D. Definitions

A quantum circuit on N sites of local dimension q corre-
sponds to a unitary Uc ∈ U(qN). A random quantum circuit
architecture then induces a measure εC on U(qN). Define
the associated t-fold channel

�RQC(ρ) =
∫
εC

U⊗t
C ρ(U

†
C)

⊗tdUC. (4)

Definition 1. An ε-approximate unitary t-design [22] is
a measure εC on U(qN) such that the diamond norm dis-
tance between the corresponding t-fold channel �RQC and
that of the Haar measure is at most ε:

‖�RQC −�Haar‖	≤ε. (5)

We often shorten “ε-approximate unitary t-design” to
“(ε, t)-design.”

Definition 2. We call an L-layer random circuit architec-
ture on N sites complete if each of the L layers consists of
N/2 Haar-random two-site unitary gates. In other words,
exactly one gate acts on each site per layer.

Definition 3. An �-layer periodic random circuit archi-
tecture repeats the layout of its layers with period � as the
depth increases. Note that gates themselves are indepen-
dently random at every depth; only the spatial arrangement
of the gates is repeated.

Definition 4. A connected block of a circuit architecture
on N sites is a contiguous sequence of layers such that the
gates in the block form a connected graph over all N sites.

These definitions are illustrated in Fig. 1.
Our most general results are for complete architectures

and depend on the frequency and size of connected blocks.
However, we obtain a more explicit form for the special
case of periodic architectures. We obtain each result by
reduction to the well-studied 1D brickwork architecture.

Definition 5. The N -site 1D brickwork architecture is
a complete two-layer periodic random circuit architecture,
equipped with an ordering 1, . . . , N of the sites, such that
the first layer applies gates on sites {2j , 2j + 1 mod N },
while the second layer applies gates on sites {2j − 1
mod N , 2j }. In this paper, the spatial boundary conditions
are periodic unless otherwise specified.

E. Main theorems

Theorem 1. Suppose that the N -site 1D brickwork
architecture (with either open or periodic boundary con-
ditions) forms an ε-approximate t-design after at most

k1 = C(N , q, t) log
1
ε

+ oε

(
log

1
ε

)
(6)

periods. Then arbitrary complete �-layer periodic architec-
tures form an ε-approximate t-design after at most

k∗ = 2Nt log q + log(1/ε)
log(1/s∗)

(7)

040344-3

DANIEL BELKIN et al. PRX QUANTUM 5, 040344 (2024)

Incomplete

Complete

Incomplete

Connected Unconnected Periodic Aperiodic

(a)

(b)

(c)

� Three-layer connected block

� Two-layer connected block

� Three-layer connected block

FIG. 1. Different types of layers, blocks, and architectures. (a) The middle layer is complete, since every site is acted on by exactly
one gate. The upper and lower layers are both incomplete. (b) The left-hand block is connected, while the right-hand block is made up
of two unconnected components. (c) The left-hand architecture is three-layer periodic, containing three repetitions of the same three-
layer connected block. The right-hand architecture is aperiodic, consisting of a three-layer connected block, a two-layer connected
block, and another three-layer connected block.

periods, where

s∗ = 1 −
[

1 − exp
(

− 1
2C(q, t)

)]�−1

(8)

and C(q, t) = supN C(N , q, t). We may relax the bound to
the more legible

k∗ = [4C(q, t)]�−1
(

2Nt log q + log
1
ε

)
(9)

by defining C(q, t) ≡ max[C(q, t), 1
2].

Theorem 2. If we do not require that the layers be
complete, an �-layer periodic architecture forms an ε-
approximate t-design after at most

k∗ = 2Nt log q + log(1/ε)
log(1/s∗)

(10)

periods, where

s∗ = 1 −
[

1 − exp
(

− 1
2C(

√
q, t)

)]�−1

(11)

and C(
√

q, t) is defined either as in Theorem 1 or, when
√

q
is not an integer, via the generalization described below.

For integer q, C(q, t) can be equivalently defined in
terms of the spectrum of the transfer matrix tensor network
corresponding to the 1D brickwork architecture (see Figs.
2 and 3 below). In this picture q corresponds to a “cou-
pling constant” in the tensor network. When q is an integer
but

√
q is not, we define C(

√
q, t) analogously by chang-

ing the coupling constant to
√

q in the tensor network. For
a formal description, see Appendix C.

In addition, we give an alternative result on incom-
plete layers in Sec. VII B that depends on C(q, t) instead
of C(

√
q, t), but at the cost of multiplying � by a factor

O(log log N). We also show that the architecture need not
actually be periodic.

Theorem 3. The results of Theorems 1 and 2 hold even
if the architecture is not periodic, with � replaced by an
“average connection depth” defined formally in Theorem
12 below.

We begin with a proof of the periodic, complete case.
This proof is simpler and illustrates the essential elements
of our strategy. The argument will then be extended to the
incomplete and aperiodic cases.

Ui Ui

U†
i U†

i

Ui UiU*i U*i U⊗2,2
i

⟩
Ui

U⊗t,t
3⟨U⊗t,t

1 U⊗t,t
2

⟨U⊗t,t
3 ⟩

⟨U⊗t,t
1 ⟩ ⟨U⊗t,t

2 ⟩ G
G

G

(a)

(b)

FIG. 2. (a) Folding all t copies of specific gates Ui and U†
i in

channel�RQC into a single operator U⊗t,t
i , where t = 2. The gray

dotted region indicates a density matrix on which the channel
acts. This is vectorized in the middle panel, forming a matri-
cization of the 2t copies of Ui. (b) The reduction of the tth

moment operator �̂RQC to a network of identical projection ten-
sors G. Each unitary U⊗t,t

i can be averaged separately into an
independent copy of G.

040344-4

APPROXIMATE t-DESIGNS IN GENERIC CIRCUIT ARCHITECTURES PRX QUANTUM 5, 040344 (2024)

T
T
T

FIG. 3. Breaking up �̂RQC for a random quantum circuit (in
this case a 1D brickwork architecture) into k = 3 copies of the
transfer matrix T.

Finally, we show that, conditional on two conjectures,
we can omit the dependence on � entirely to obtain a much
simpler result.

Theorem 4. Suppose that Conjectures 1 and 2 below
hold. Then any architecture that can be divided into

k∗ = 2Nt log q + log(1/ε)
2 log[(q2 + 1)/2q]

(12)

connected blocks forms an ε-approximate t-design.

F. Known values of C(q, t)

Previous works imply the following bounds on
C(q, t).

(a) For general parameters, the best known bound is that
of Brandão et al. [22]. For the case of 1D brickwork
circuits [34] where q ≥ 2, the authors gave

C(q, t) = 261 500
logq(4t)�2q2t5+3.1/log(q). (13)

For integer q2 ≥ 2, the more general form is

C(q, t) = 234(q2 + 1)e{2.5 log(4)[1+log(q2+1)]}/log(q)+1

×
logq(4t)�2t5+5[1+log(1+q−2)]/2 log(q).
(14)

When q ≥ 2, we can replace the t exponent
with 9.5 ≥ 5 + {log[e(1 + q2)]/log(q)}. Similarly,
for q2 ≥ 2, we have an exponent of at most 15.2.

(b) For q = 2, Eq. (22) of Ref. [23] gives the tighter
bound

k1 = α log5(t)t4+3/
√

log2 t
(

2Nt + log2
1
ε

)
, (15)

where α = 1013. This gives

C(2, t) = α

2 log 2
log5(t)t4+3/

√
log2 t. (16)

(c) For t = 2 and any q > 1, Eq. (27) of Ref. [24] gives

C(q, 2) =
(

2 log
q2 + 1

2q

)−1

for 1D brickwork circuits with open boundary con-
ditions [35]. We show in Appendix B that periodic
boundary conditions improve the bound to

C(q, 2) =
(

4 log
q2 + 1

2q

)−1

. (17)

(d) In the limit q → ∞, Eq. (36) of Ref. [24] shows that
the leading-order term is C(q, t) = (2 log q/2)−1

with open boundary conditions. Periodic boundary
conditions again tighten [36] this to

C(q, t) =
(

4 log
q
2

)−1

+ oq(log−1 q). (18)

(e) Following the conjecture of Ref. [24], we suspect
that the sharp bound is

C(q, t) =
(

4 log
q2 + 1

2q

)−1

. (19)

This is analogous to the conjecture of Ref. [24]
for the open-boundary case. Numerical evidence is
given in Appendix E 1.

II. APPROXIMATE t-DESIGNS AND TENSOR
NETWORK PICTURE

The first phase of our proof follows the standard reduc-
tion from approximate t-designs to a tensor network of
averaged gates [21]. For the sake of completeness and
notational clarity, Secs. II and III outline the key steps.

For a random quantum circuit channel �RQC formed
from a circuit ensemble UC ∈ εC, the diamond norm dif-
ference from the Haar distribution is bounded in terms of
the frame potential [24]:

‖�RQC −�Haar‖2
	 ≤ q2Nt(F (t)

εC
− F (t)

Haar), (20)

F (t)
εC

=
∫
ε⊗2

C

|tr(U†
CVC)|2tdUCdVC. (21)

Both the random quantum circuit channel and the frame
potential can be written in terms of the tth moment operator

�̂RQC =
∫
εC

U⊗t,t
C dUC,

040344-5

DANIEL BELKIN et al. PRX QUANTUM 5, 040344 (2024)

where U⊗t,t
C ≡ U⊗t

C ⊗ (U∗
C)

⊗t. This is a matricization of the
quantum channel �RQC, i.e.,

�̂RQC · vec(ρ) = vec[�RQC(ρ)]. (22)

We also have

F (t)
ε =

∫
ε⊗2

C

tr(U†⊗t,t
C V⊗t,t

C)dUCdVC

= tr(�̂†
RQC�̂RQC). (23)

We assume that UC consists of two-site unitary gates
Ui drawn independently from the Haar distribution over
U(q2). Since distinct gates are independent, we can aver-
age over each gate separately (Fig. 2). The averaging joins
the 2t copies of each gate that appear in U⊗t,t

C into a single
operator G. The action of G depends only on t and the num-
ber of sites on which Ui acts. Operator �̂RQC becomes the
contraction of a tensor network in the shape of the original
circuit UC, but with each U⊗t,t

i replaced with its average G.
The individual G’s can be written in terms of single-site

permutation states. Given a permutation σ ∈ St, we define
a particular maximally entangled state on t pairs of sites

|σ 〉 = q−t/2
∑
�i∈Z

t
q

|�i〉|σ(�i)〉. (24)

We call a tensor power of a permutation state on m sites
|σ 〉⊗m = |σ 〉|σ 〉 · · · |σ 〉 a uniform permutation state.

Theorem 5. Let U be an m-site Haar-random unitary.
Let G be the expected value of the corresponding moment
operator U⊗t,t

i . Then G is a projector onto the space
spanned by the uniform permutation states |σ 〉⊗m.

A proof may be found in Ref. [33]. In particular, we see
that the tth moment operator for the Haar distribution over
all N sites is just the orthogonal projector on to the globally
uniform permutation states on all N sites. Furthermore,
these states also span the unit eigenspace of the moment
operator of any architecture.

Lemma 1. If the circuit architecture is connected, the
unit eigenspace of �̂RQC is spanned by the globally uni-
form permutation states |σ 〉⊗N .

Proof. The support of the distribution over the unitaries
induced by a random architecture is a universal gate set if
and only if the architecture is connected [37,38]. Suppose
that we apply k repetitions of the circuit architecture. As
k → ∞, Emerson et al. [19] showed that the induced mea-
sure on U(qN) converges to the Haar measure. It follows
that the corresponding moment operator �̂k

RQC converges
to that of the Haar measure, which is the projector onto the

span of the uniform permutation states. But, since �̂RQC is
norm nonincreasing, limk→∞ �̂k

RQC is a projector on to the
unit eigenspace of �̂RQC, so the unit eigenspace of �̂RQC
must be the same as that of �̂Haar. Theorem 5 completes
the argument. �

III. TRANSFER MATRIX AND THE SPECTRAL
GAP

We now specialize to the case of �-layer periodic archi-
tectures, again following the standard techniques found in
Ref. [21]. In this case we can define a transfer matrix T by
contracting together the projectors Gi, i ∈ {1, . . . , �N/2},
of the moment operator �̂RQC corresponding to a single
period of the architecture, as shown in Fig. 3. We show that
the approximate t-design time is controlled by the singular
value spectrum of T.

If there are k periods of the architecture, the moment
operator corresponds to the kth power of the transfer
matrix, so by Eq. (23), the frame potential is

Fε = tr(T†kTk) = ‖Tk‖2
F . (25)

Theorem 6. Consider a connected periodic architecture
on N sites. After k periods, the frame potential is at most

Fε ≤ FHaar + q2Nts2k
∗ , (26)

where s∗ is the largest nonunit singular value of the transfer
matrix T.

Proof. Starting from

Fε = ‖Tk‖2
F ,

we can use Theorem 17, proven in Appendix A, to see that

‖Tk‖2
F ≤ m1 + (d2 − m1 − m0)s2k

∗ , (27)

where d2 is the dimension of T, m1 is the dimension of
its unit eigenspace, and m0 is the dimension of its zero
eigenspace. As long as the circuit is connected, by Lemma
1, it shares the same unit eigenstates as the Haar distri-
bution, so m1 = F (qN)

Haar . The first layer consists of two-site

gates, each of which has only F (q2)
Haar nonzero eigenvalues.

A lower bound on m0 is thus d2 − (F (q2)
Haar)

N . The total
dimension for T is d2 = q2Nt, so we find that

Fε ≤ F (qN)
Haar + [(F (q2)

Haar)
N − F (qN)

Haar]s2k
∗ . (28)

Of course, FHaar is just the dimension of the unit
eigenspace, which is at most t! (since it is spanned by the
uniform permutation states) and also at most q2Nt (since
that is the total dimension of T). In addition, it is known to

040344-6

APPROXIMATE t-DESIGNS IN GENERIC CIRCUIT ARCHITECTURES PRX QUANTUM 5, 040344 (2024)

be equal [24] to t! for t ≤ d. From Eq. (21), it is clear that
the frame potential is a monotonically increasing function
of t. Together these imply that

min(t!, d!) ≤ F (d)
Haar ≤ min(t!, d2t), (29)

so that

(F (q2)
Haar)

N − F (qN)
Haar ≤ min(t!, q2t)N − min[t!, (qN)!].

The remaining algebra will be easier if we further relax this
to

(F (q2)
Haar)

N − F (qN)
Haar ≤ q2Nt. (30)

Without this relaxation, all of our bounds change by

2Nt log q → log[(F (q2)
Haar)

N − F (qN)
Haar].

This latter bound is tighter for small t, but the former bound
is more convenient to interpret, so we prefer the simplified
form. Equation (28) then becomes

Fε ≤ FHaar + q2Nts2k
∗ . (31)

This completes the proof. �

Applying Theorem 6 to Eq. (20) gives a bound on the
rate at which a random circuit architecture approaches a t-
design in terms of the subleading singular value (SSV) of
the transfer matrix:

‖�RQC −�Haar‖	≤q2Ntsk
∗. (32)

It follows that the number of periods required to push the
diamond norm error below ε can be upper bounded in
terms of s∗ by

k∗ = 2Nt log q + log(1/ε)
log(1/s∗)

, (33)

which is already part of Theorem 1. It remains only to
bound s∗, i.e., the spectral gap of T.

IV. BOUNDING THE SPECTRAL GAP

In order to apply Theorem 6, we must bound the largest
nonunit singular value T. We first show that this s∗ is
related to the geometry of the unit eigenspaces of each
layer. Later, we study the relationship between this geom-
etry and the architecture of the circuit to derive our final
bound.

We can interpret T as a product of orthogonal projection
operators. Because each projector is norm nonincreasing,
any subspace whose norm is decreased by some large

amount by the first few projectors cannot contain a large
singular value. If Pi · · · P1 does not have a large singu-
lar value then any large singular value of Pi+1 · · · P1 must
arise from vectors that were nearly unit eigenvectors of
Pi · · · P1, while still being orthogonal to the unit eigenvec-
tors of Pi+1 · · · P1. This allows us to construct an inductive
bound based on the relative geometry of the subspaces to
which the Pi project.

Theorem 7. Consider some set of subspaces Xi, i ∈
{1, . . . , n}, of a Hilbert space. Let Pi be the orthogonal
projector on to Xi and Qi the orthogonal projector on to⋂i

j =1 Xj . Define T = Pn · · · P2P1, and let s∗ be the largest
nonunit singular value of Tn. Then we have the bound

s2
∗ ≤ 1 −

n∏
i=2

(1 − 𝓈2
i), (34)

where 𝓈i is the largest nonunit singular value of PiQi−1.

The proof of this theorem is given in Appendix A. In our
case, the Pi will be the layers of the transfer matrix. We call
the 𝓈i the layer-restricted singular values. Our first goal is
to characterize the Qi, which we term the intermediate unit
eigenspace projectors.

A. Cluster-merging picture

To bound the layer-restricted singular values, we must
first understand the intermediate unit eigenspace to which
Qi projects. From Theorem 5, we know that the unit eigen-
states of a single gate are the uniform permutation states
|σ 〉⊗m. Moreover, each gate is norm nonincreasing, so a
state whose norm is reduced by any individual gate must
not be a unit eigenstate. This leads to the following result.

Lemma 2. Let Gi, i ∈ {1, . . . , m}, be some gates within
the transfer matrix that form a connected network on some
n sites. The unit eigenspace of the contracted network
M = ∏m

i=1 Gi is spanned by the uniform permutation states
{|σ 〉⊗n, σ ∈ St}.

Proof. We may interpret M as the transfer matrix of a
(possibly incomplete) random quantum circuit architecture
with the same layout as the Gi. Since the Gi are connected,
the corresponding quantum circuits are also connected. We
may then apply Lemma 1. �

This leads to the cluster-merging picture (Fig. 4). Take
some sequence of complete layers P1 · · · Pl.

These layers may connect all the sites, or they may con-
nect only certain subsets of the sites. Call each subset of
sites that is connected by P1 · · · Pl a cluster. Recall that the
intermediate unit eigenspace projector Ql is defined to be
the orthogonal projector on to the unit eigenspace of the
product Pl · · · P1.

040344-7

DANIEL BELKIN et al. PRX QUANTUM 5, 040344 (2024)

26 2
Q2P3

6

Q3

4

Q2

P3

2 26

(a)

(b)

FIG. 4. The cluster-merging picture for calculating the third
layer-restricted subleading singular value 𝓈3, i.e., the subleading
singular value of P3Q2. (a) The first two layers are collected into
clusters (blue) of sites that are connected by the first two layers
of gates. The intermediate unit eigenspace projector Q2 is then
a tensor product of projectors on each cluster. (b) (Left) Graph-
ical representation of P3Q2 in the cluster-merging picture. Each
cluster in Q2 becomes a node labeled by the number of sites it
contains. Gates in P3 that join distinct clusters become edges.
Gates in P3 that join two sites within the same cluster are ignored.
(Right) Each connected component of this graph is merged into a
single cluster of the next intermediate unit eigenspace projector
Q3.

By Lemma 2, the space to which Ql projects is the tensor
product of the spans of the uniform permutation states on
each cluster. As we include more layers by increasing l, the
clusters merge and the unit eigenspace to which Ql projects
shrinks. Eventually, the whole circuit has been connected
into a single cluster, at which time the unit eigenspace is
the span of the globally uniform permutation states |σ 〉⊗N .

Our goal is to compute 𝓈l, which is the largest nonunit
singular value of PlQl−1. This can be accomplished by con-
structing the cluster-merging graph that uniquely deter-
mines 𝓈l. To build the graph, let each cluster of sites
connected by Pl−1 · · · P1 be a node, with weight equal to
the number of sites in the cluster. Each gate of Pl that joins
two distinct clusters is mapped to an edge joining the cor-
responding nodes. Gates of Pl that join two sites within the
same cluster do not influence 𝓈l and can be ignored. The
layer-restricted singular values 𝓈l depend only on the graph
topology and the node weights, not on any other details of
the architecture.

V. REDUCTION OF EACH LAYER TO 1D
BRICKWORK LOOPS

Our next goal is to obtain an architecture-independent
upper bound on the 𝓈i. We begin by identifying a set
of rules for rearranging a cluster-merging graph into a
standardized form without decreasing 𝓈i.

1. Structure of the graph

Lemma 3. For a complete �-layer periodic architecture,
the cluster-merging graph for each layer above the first has
nodes of even weight and even degree.

Proof. We first show that the clusters are of even size.
The first layer creates clusters of size 2. Subsequent layers
create clusters by merging these size-2 clusters together, so
later cluster sizes are also even.

We next show that each cluster has an even number of
external connections. Suppose that a cluster of size m has ni
internal gates and ne external gates. Since each site is acted
on by exactly one two-site gate, we have 2ni + ne = m, and
so ne is even. The nodes are thus of even degree. �

2. Cluster-merging bound

Our goal is to bound 𝓈i for generic cluster-merging
graphs in terms of cluster-merging graphs of some stan-
dard form. First consider the unit eigenspace.

Lemma 4. The unit eigenspace of a connected cluster-
merging graph is spanned by the globally uniform permu-
tation states.

This is just a special case of Lemma 2. We can now show
a lower bound.

Lemma 5. Let A,B be two nodes of a connected cluster-
merging graph. If we merge A and B into a single node
AB, the subleading singular value of the graph does not
increase.

Proof. Let 𝓈, 𝓈′ be the subleading singular values of the
old and new graphs, respectively. Let X , X ′ be the sub-
spaces projected to by the nodes of the old and new graphs.
Let P be the projector corresponding to the edges, which
are the same for both graphs.

By Lemma 4, the unit eigenspaces of PQ and PQ′ are
the same. Call this subspace Z. We may write

𝓈 = max
{v∈X |v⊥Z}

‖Pv‖
‖v‖ (35)

and

𝓈′ = max
{v∈X ′|v⊥Z}

‖Pv‖
‖v‖ . (36)

Subspace X is spanned by the cluster-uniform states over
the old nodes, while X ′ is spanned by the cluster-uniform
states over the new nodes. A cluster-uniform permutation
state on the new node AB is of the form |σ 〉⊗(|A|+|B|), which
is also cluster uniform on A and B individually. In other
words, X ′ ⊆ X . Since 𝓈′ is the maximum of the same
function over a smaller space, we obtain 𝓈′ ≤ 𝓈. �

If we run our lower bound in reverse, we are led to the
following two rewriting rules that give upper bounds on
subleading singular values of cluster-merging graphs.

040344-8

APPROXIMATE t-DESIGNS IN GENERIC CIRCUIT ARCHITECTURES PRX QUANTUM 5, 040344 (2024)

2

2
4

2

2

6

6

4

2
4

2
2

2
4

2

2
4

2 2
2

2
2

2
2

2
2 2

2
2

2
22

2

FIG. 5. Algorithm for bounding a cluster-merging graph by a
1D brickwork structure. We first use Lemma 6 to split clusters
(without joining the halves with an edge) along a Eulerian circuit
in our graph. We then use Lemma 7 to break up larger clusters
(joining the halves with an edge) until all clusters in the loop have
size 2. Each step in this process does not decrease the subleading
singular value of the graph.

Lemma 6. If we split a node and the two sides remain
part of the same connected graph, the subleading singular
value does not decrease.

Lemma 7. If we split a node and add a new link to keep
the graph connected, the subleading singular value does
not decrease.

Proofs of Lemmas 6 and 7. These both correspond to
applying Lemma 5 backwards. �

Note that the number of links connected to a cluster can-
not exceed the number of sites it contains, so we can only
apply the latter lemma to clusters with at least two unoc-
cupied sites. We are now ready to prove the main result of
this section.

Theorem 8. Consider any cluster-merging graph on n
sites with SSV 𝓈. Let s1D(m) be the SSV for a 1D
brickwork loop on m sites. We have

𝓈 ≤ max
m≤n

s1D(m). (37)

Proof. Our goal is to apply the graph rewriting rules
repeatedly to upper bound a cluster in a standard form.
First suppose that the graph is connected. Since nodes are
of even degree, there exists a Eulerian circuit through the
cluster-merging graph. We can split nodes along this Eule-
rian circuit using Lemma 6 until our graph structure is a
single loop, again with nodes of even degree (Fig. 5, first
process). We can then apply Lemma 7 repeatedly within
each node to split each node into many nodes, each of size
2 (Fig. 5, second process). When we are done, we have
exactly a 1D brickwork loop on m sites. These transforma-
tions cannot decrease the SSV, so the brickwork SSV is an
upper bound on the original SSV.

Now consider any disconnected graph. We can apply the
argument above to bound each connected component by a

loop graph. The corresponding operator is a tensor product
of loop operators, and the largest singular value of each
loop operator is 1. The subleading singular value of the
whole operator is then just the largest subleading singular
value of any of the connected components. Each connected
component is a brickwork loop of size at most m ≤ n. �

VI. SPECTRAL GAP OF 1D BRICKWORK LOOPS

In order to extract a useful result from Theorem 8, we
need a bound on the spectral gap of the 1D brickwork
architecture. In Sec. V we showed that the t-design depth
is controlled by the spectral gap of the transfer matrix. We
now reverse that argument in order to obtain a bound on
the spectral gap in terms of the t-design depth. This will
allow us to convert any result on 1D brickwork t-design
depths into bounds on the spectral gap.

Theorem 9. Suppose that the 1D brickwork architec-
ture on N sites (with either open or periodic boundary
conditions) forms an ε-approximate t-design after

k1 = C(N , q, t) log
1
ε

+ oε

(
log

1
ε

)
(38)

periods (corresponding to depth 2k1) for some function
C(N , q, t). Then the largest nonunit singular value s1D of
the corresponding transfer matrix Tt is bounded by

s1D ≤ e−1/2C(q,t), (39)

where C(q, t) = supN C(N , q, t).

Proof. Define

	(k, t) = �RQC,k,t −�Haar.

From the definition of the diamond norm,

‖	‖	≥‖	‖1→1 ≥ ‖	(ρ)‖1

‖ρ‖1
(40)

for any operators ρ. Let λ be the largest eigenvalue of the
	 and choose ρ to be the corresponding eigenvector, so
that 	(ρ) = λρ. Then we obtain

‖	‖	≥|λ|. (41)

Note that the leading eigenvalue of 	 is exactly the sub-
leading eigenvalue of �RQC, since the unit eigenspace of
�RQC is exactly canceled by �Haar. Furthermore, �̂RQC =

040344-9

DANIEL BELKIN et al. PRX QUANTUM 5, 040344 (2024)

Tk
t , so we have

λ = λk
∗, (42)

where λ∗ is the subleading eigenvalue of T. If we choose
k = k1 so that

‖	(k1, t)‖	<ε,

we obtain

|λ∗| < ε1/k1 . (43)

Inverting Eq. (38) gives

log
1
ε

= k1

C(N , q, t)
+ ok∗(k∗) (44)

or

ε = e−k1/C(N ,q,t)+ok1 (k1). (45)

We can now take the limit of small ε or equivalently large
k1 to obtain

ε = (e−1/C(N ,q,t))k1 , (46)

which implies that |λ∗| ≤ e−1/C(q,t). Theorem 14 in
Appendix A tells us that s1D = √

λ∗, so we find that s1D ≤
e−[1/2C(q,t)]. �

Theorem 10. Let s1D,open(N) be the subleading sin-
gular value of the N -site 1D brickwork architecture
with open boundary conditions, and let s1D,periodic(N) be
the same for the periodic-boundary-condition case. Then
s1D,periodic(N) ≤ s1D,open(N).

This result allows us to also use bounds derived for open
brickwork architectures in Theorem 8. It follows directly
from the following more general rewriting rule for cluster-
merging graphs.

Lemma 8. Consider a connected cluster-merging graph.
If we add a new edge to the graph, the subleading singular
value 𝓈 does not increase.

Proof. Let P and Q be the edges and nodes of the orig-
inal graph, and let R be the new link. Let X be the unit
eigenspace of Q and Z be the unit eigenspace of PQ.
Since the graph was already connected without R, the unit
eigenspace of R includes Z, so Z is also the unit eigenspace

of the new graph RPQ. The original singular value is

𝓈 = max
{v∈X |v⊥Z}

‖Pv‖
‖v‖ , (47)

while the new singular value is

𝓈′ = max
{v∈X |v⊥Z}

‖RPv‖
‖v‖ . (48)

Since R is an orthogonal projector, ‖RPv‖ ≤ ‖Pv‖,
so 𝓈′ ≤ 𝓈. �

Given an open-boundary-condition transfer matrix, we
can add a link to obtain the transfer matrix of a periodic-
boundary-condition brickwork on the same number of
sites. Adding a link can only decrease 𝓈, which completes
the proof of Theorem 10.

VII. APPROXIMATE t-DESIGN DEPTHS

We are now ready to prove Theorem 1, which addresses
the case of complete periodic architectures. We then pro-
ceed to extend our results to incomplete and aperiodic
architectures. Figure 1 illustrates the relevant categories.

A. Complete periodic architectures

Suppose that the N -site 1D brickwork architecture forms
an ε-approximate t-design in depth at most

2C(N , q, t) log
1
ε

+ oε

(
log

1
ε

)
. (49)

Define C(q, t) = supN C(N , q, t). By Theorem 9, the sub-
leading singular value of Tt for a brickwork loop is upper
bounded by

s1D ≤ e−1/2C(q,t). (50)

From Theorem 8, it follows that the SSV for any cluster-
merging graph is bounded by the same value. Substituting
into Theorem 7, we see that the subleading singular value
for a complete �-layer block is bounded by

s∗ ≤ 1 − (1 − e−1/2C(q,t))�−1. (51)

We can substitute into Eq. (33) to see that the critical period
count is then bounded by

k∗ = 2Nt log 2q + log(1/ε)
log{[1 − (1 − e−1/2C(q,t))�−1]−1} . (52)

This completes the proof of Theorem 1.

040344-10

APPROXIMATE t-DESIGNS IN GENERIC CIRCUIT ARCHITECTURES PRX QUANTUM 5, 040344 (2024)

q

q

q

q

q

q

FIG. 6. A two-site gate being split under the Xq → X ⊗2√
q iso-

morphism. Each site on Xq becomes a pair of twinned sites (pink
dotted lines) on X√

q. Note that the dimensionality of each site
does not necessarily decrease—only the metric between the basis
vectors changes. If we assume that the two-site gate spans two
different clusters (blue dotted circles) then the layer-restricted
SSV of a hyperedge connecting all four split sites is equal to two
pairs of edges connecting nontwinned sites.

B. Incomplete layers

For complete architectures, we have

s2
∗ ≤ 1 − [1 − s1D(q)]�−1 (53)

by reducing each cluster-merging graph to a Eulerian
cycle. If the circuit is incomplete, the Eulerian cycle is
not guaranteed to exist. Instead, an incomplete circuit with
local dimension q has subleading singular value bounded
by that of a complete circuit with local dimension

√
q.

We may, without loss of generality, insert single-site
gates so that each site is acted upon by exactly one gate per
layer. These single-site gates can be absorbed into a two-
site gate either above or below without changing the Haar
measure over that two-site gate. This takes an incomplete
circuit to a “complete” circuit with a mixture of one-site
and two-site gates.

Now suppose that
√

q is an integer. We can then split
each site of dimension q into a pair of sites of dimension√

q. This gives us a complete circuit containing a mix-
ture of two- and four-site gates. Suppose that we split each
four-site gate lengthwise into a pair of two-site gates. It
seems intuitive that this operation should decrease the rate
of scrambling, not increase it. And the resulting circuit is
a complete circuit of two-site gates with local dimension√

q, so its cluster-merging graphs have Eulerian cycles. In
Appendix C, we formalize this intuition and show that the
same idea can be applied even in the case where

√
q is not

an integer. The site-splitting process is illustrated in Fig. 6
in Appendix C.

This allows us to reduce a bound on incomplete layers
to a 1D brickwork bound on

√
q; specifically,

s2
∗ ≤ 1 − [1 − s1D(

√
q)]�−1 (54)

for incomplete architectures.

We may use any proof of C(q, t) if
√

q is an integer.
For noninteger

√
q, however, the definition of s1D is trick-

ier. It is not necessarily true that generic bounds on C(q, t)
that have been derived for integer q ≥ 2 can be analyt-
ically continued to C(

√
q, t). Many of the proofs in the

literature can easily be extended to noninteger q > 1 (see
Sec. I F). However, not all of these proofs can be easily
extended, e.g., the proof of Ref. [23] applies only to q = 2.
The bound of Ref. [22] can be extended, but the scaling
goes from about t10 to about t16. And there may be future
improved strategies for bounding 1D brickwork that work
only for integer q. We thus also give the following bound,
which gives us a reduction in terms of C(q, t) instead of
C(

√
q, t).

Theorem 11. For an architecture with blocks of � layers,

k∗ = [4C(q, t)]x(N)�−1
(

2Nt log q + log
1
ε

)
, (55)

where the expansion coefficient

x(N) = 8
log2�log2(N + 1)�� + 2. (56)

The proof is given in Appendix D.

C. Aperiodic architectures

So far, we have restricted ourselves to periodic archi-
tectures to simplify the exposition. However, our results
generalize quite directly to aperiodic architectures.

Theorem 12. Define C(q, t) as in Theorem 1. For a not-
necessarily-periodic L-layer circuit UC, choose a decom-
position

UC = Vk+1UkVkUk−1Vk−1 · · · U1V1, (57)

where each Ui is an �i-layer connected block and each Vi is
some contiguous block of layers that may not connect all
the sites. The architecture is an ε-approximate t-design if

k ≥ 2Nt log q + log(1/ε)
log(1/s∗)

, (58)

where we have defined the effective averaged singular
value

s∗ = 1 − (1 − e−1/2C(
√

q,t))�̄−1

in terms of the mean block size

�̄ = 1
k

k∑
i=1

�i.

If we also require that the layers be complete, we can
replace

√
q with q. Note that k counts the total number

040344-11

DANIEL BELKIN et al. PRX QUANTUM 5, 040344 (2024)

of times the circuit is connected, while �̄ is the size of
the typical connected block. We see that the (ε, t)-design
depth is controlled by the frequency and size of the con-
nected blocks. However, for an aperiodic architecture, �̄
might depend on depth, so this does not give us any explicit
expression for the critical depth.

Proof of Theorem 12. A decomposition of the circuit
into blocks of layers induces a decomposition of the
associated t-fold channel as

�̂RQC = RkTkRk−1Tk−1 · · · R1T1,

where the Ri are some set of norm-nonincreasing transfer
matrices. Let s(i)∗ be the subleading singular value of each
Ti. Equation (51) still applies for each s(i)∗ , with � replaced
by �i [39]. Theorem 16 in Appendix A shows that the Ri
are essentially irrelevant. Equation (32) now becomes

‖�RQC −�Haar‖	≤q2Nt
k∏

i=1

s(i)∗ . (59)

The condition to obtain an ε-approximate t-design is then

ε ≤ q2Nt
k∏

i=1

[1 − (1 − s1D)
�i−1]. (60)

We may rearrange this as

2Nt log q + log
1
ε

≥ −
k∑

i=1

log[1 − (1 − s1D)
�i−1]. (61)

Furthermore, − log(1 − cx) is convex, so, by Jensen’s
inequality,

2Nt log q + log
1
ε

≥ −k log[1 − (1 − s1D)
�̄−1]. (62)

This completes the proof. �

This formula implies Theorem 2 as a special case.
Furthermore, it is also simple for regularly connected
architectures for which all of the �i are equal.

There is still a question of the choice of decomposition
in Eq. (57). This decomposition is not unique; different
choices of decomposition will give different bounds. Note
in particular that Vi may be empty, which corresponds to
the identity.

Furthermore, the optimal decomposition may depend on
q and t. For example, consider an architecture consisting of
alternating two-layer and four-layer connected blocks. If
we count all the blocks then �̄ = 3 and the depth is d = 3k.
But if we count only the two-layer blocks and lump the
four-layer blocks into the Vi, we obtain �̄ = 2 and d = 6k.
The former is better for small C and the latter for large C,
with a crossover point C(

√
q, t) ≈ 1.157.

VIII. FURTHER EXTENSIONS

A. �-independent bound

It is interesting to note that our Theorem 1 gives a
bound that loosens as the period � increases. It seems likely
that the approximate t-design depth actually decreases
[40] with � for certain well-connected structures, such as
higher-dimensional brickwork architectures. But the scal-
ing of our bound, which is determined by worst-case archi-
tectures, suggests that there may exist strange “tenuously
connected” architectures at larger �.

It seems intuitively clear that the open-boundary-
condition brickwork architecture is in some sense the most
“spread out” arrangement of gates possible. Any other
connected architecture must involve more total gates, and
graph distances between sites must be shorter. Indeed, opti-
mization of the subleading singular value of small circuits
using simulated annealing (see Appendix E 2) have failed
to find any of these “tenuously connected” architectures:
all subleading singular values are bounded by that of the
open-boundary-condition brickwork. This motivates the
following conjecture.

Conjecture 1. Every connected architecture on N sites
has subleading singular value s∗ ≤ s1D,open(N , q, t).

The immediate consequence of this conjecture is that
there is a universal t-design connection count that does not
depend on the circuit architecture even via �. In particular,
any circuit architecture that can be divided into

k∗ = 2Nt log q + log(1/ε)
log(1/s1D,open)

(63)

connected blocks forms an (ε, t)-design.
To obtain Theorem 4, we also follow Ref. [24] in

making the following guess.

Conjecture 2. The subleading singular value of the
open-boundary-condition 1D brickwork architecture is

s1D,open(q, t) = 2q
q2 + 1

. (64)

Numerical evidence for this formula is given in
Appendix E 1.

B. Nondeterministic architectures

Our theorems focus on deterministic architectures, in
which the contents of the gates are random, but their
arrangement is fixed. Another interesting class of ensem-
bles is nondeterministic architectures, in which the loca-
tions of the gates are also random [22]. In this case, the
t-design property is obtained by averaging over both the
spatial arrangement of the gates and their content. Bounds

040344-12

APPROXIMATE t-DESIGNS IN GENERIC CIRCUIT ARCHITECTURES PRX QUANTUM 5, 040344 (2024)

on nondeterministic and deterministic architectures can
often be related to each other by the union bound or
detectability lemma [23,41].

We can also show more directly that bounds for par-
ticular spatial structures imply bounds for averages over
ensembles of structures. We use the triangle inequality
on ‖�RQC −�Haar‖	, where �RQC is drawn from some
distribution ρ�. Then

‖〈�RQC〉ρ� −�Haar‖	≤〈‖�RQC −�Haar‖	〉ρ� . (65)

In particular, we can apply Eq. (60) with the right-hand
side replaced with its average over the architecture. We can
use Jensen’s inequality again to see that

log〈‖�RQC −�Haar‖	〉ρ� ≤ 〈log ‖�RQC −�Haar‖	〉ρ� ,
(66)

so we can also apply Eq. (62) with the right-hand side
replaced by its average.

The connection count k and mean block size �̄ will both
differ between realizations, and it is not clear that there
is any general strategy for calculating their distribution.
Presumably, they are not independent, so we cannot solve
Eq. (62) for 〈k〉. An interesting open question is whether
there exists any simple relationship between the averaged
bound and the distribution from which the circuit structure
is drawn.

A commonly studied example is that of gates that are
drawn sequentially from some uniform distribution over
some set of pairs of sites [22,23,28]. In the worst case,
such circuits may require N − 1 nontrivial layers to con-
nect all the sites [42]. However, typical instances probably
require far fewer distinct layers, perhaps as few as O(1).
Further work may wish to explore the relationship between
bounds obtained by this strategy and known bounds for
such architectures [28].

If we assume that Conjecture 1 holds, the nondetermin-
istic case becomes more tractable. We find that it forms an
approximate t-design when

〈k〉 ≥ 2Nt log q + log(1/ε)
log(1/s1D,open)

. (67)

Suppose that we have ng gates sampled independently
and identically from the uniform distribution over the
edges of some large connected graph. There is quite a
bit more we can say about the relationship between ng
and 〈k〉. The fully connected graph, for example, under-
goes a percolation phase transition and becomes connected
after O(N log N) gates, so ng = O(N log N)〈k〉 [43]. This
corresponds to an approximate t-design threshold size of
ng = O(N 2 log N). For t = 2, this is worse than the known
bound by a factor of log N [20]. From the coupon collector
problem, we see that the linear graph also becomes con-
nected after O(N log N) gates, so its threshold is the same

[44]. Again, a bound that is better by a factor of log N (and
that does not rely on Conjecture 1) is already known [22].

For a graph with E edges, we can again use the coupon
collector problem to see that it must be connected after
O(E log E) gates. Since E ≤ O(N 2), this suggests that
every graph gives an approximate t-design threshold size
of at most ng = O(N 3 log N). For graphs that admit Hamil-
tonian paths, this result is also weaker by log N than what
was already known, but for graphs without Hamiltonian
paths, it would be a new result [28].

C. Highly connected architectures

Previous work on random circuits [22–24,40] has
focused largely on brickwork architectures. Brickwork
architectures are in some sense exceptionally well con-
nected, so they should be expected to converge to the
Haar distribution relatively quickly. Indeed, Harrow and
Mehraban [25] showed that certain higher-dimensional
brickwork circuits approach the Haar measure at a rate that
increases with geometric dimension, which corresponds to
increasing the period � of the architecture. Here we suggest
an extension of our techniques to obtain tighter bounds for
such special architectures.

The first observation is that highly connected cluster-
merging graphs give small 𝓈i. Second, certain families of
N -site architectures form clusters of sizes that scale with
N after only a few layers. If we join two m-site clusters
with m gates, in Appendix F we show that the subleading
value is q−�(m) as m → ∞. In other words, any layers that
only join clusters with an extensive number of edges do
not contribute to our bound.

For the specific case of higher-dimensional brickwork
circuits and t = 2, we can give a more explicit calcula-
tion. Consider a D-dimensional lattice of N = LD points
at positions �x ∈ {1, . . . , L}D, with êi being the unit vector
in direction i, and connect the lattice with the following
sequence of layers.

(a) At layers 1 ≤ i ≤ D, we apply gates on pairs (�x, �x +
êi) for each �x such that xi is even (all addition of
components is performed modulo L, to make this
architecture periodic).

(b) At layers D + 1 ≤ i ≤ 2D, we apply gates on pairs
(�x, �x + êi−D) for each �x such that xi−D is odd.

This is a higher-dimensional generalization of the brick-
work architecture that emphasizes accessing all dimen-
sions as quickly as possible, instead of repeating the
one-dimensional brickwork across multiple directions.

The first D (“even”) layers of the D-dimensional brick-
work form hypercube clusters of size 2D. The (D + 1)th

layer, which is the first “odd” layer, then connects these
hypercubes into rows of 2DN 1/D sites. The remaining odd
layers are then highly connected, so in the limit of large
N their contribution can be ignored. This argument, given

040344-13

DANIEL BELKIN et al. PRX QUANTUM 5, 040344 (2024)

in detail in Appendix F, shows that the (ε, t = 2)-design
depth of the D-dimensional brickwork is at most

d∗ = 2D
4N log q + log(1/ε)

log[(1 − {1 − exp[−1/2C(q, 2)]}2)−1]
. (68)

It seems likely that this argument could be improved
to give a bound that actually decreases with D, since
the dominant (D + 1)th-layer cluster-merging graph has
a relatively simple structure. It may also be possible to
extend such techniques to larger t and for other extensively
connected architectures.

IX. RELATIONSHIP TO ARCHITECTURES THAT
SCRAMBLE IN O(log N)

This work establishes an O(N) bound on the approx-
imate t-design depth for any sequence of architectures
with �̄ independent of N . This is essentially a statement
about worst-case architectures, since it is an upper bound
over all possible architectures with any given �̄. Other
recent works have focused on engineering best-case archi-
tectures that converge especially quickly [26,27]. In this
context, the fastest-known sequences of architectures have
approximate t-design depths of at most O(log N).

The architectures constructed by Schuster et al. [26]
have a few interesting properties. The main construction
is of an architecture that is almost the 1D brickwork,
but with certain gates removed so that �̄ = O(log N).
Although their proof does not apply to the actual 1D brick-
work, the extreme similarity of the two circuits suggests
that the approximate t-design depth of the 1D brickwork
architecture might also be O(log N). In addition, Schuster
et al. [26] constructed architectures on arbitrary connec-
tivity graphs with the same behavior. However, these
architectures are qualitatively different from the generic
architectures we study. They cannot be built with only
Haar-random unitaries; they instead use SWAP gates to
build an essentially 1D architecture on an arbitrary graph.

This raises an interesting question: do all reasonable
sequences of architectures reach an approximate t-design
at a rate bounded by O(log N), or is our O(N) bound
tight? In Sec. VIII A, we gave a heuristic argument that
we should expect every connected architecture to scram-
ble at least as quickly as the 1D brickwork architecture, in
which case there would exist an O(log N) general architec-
ture bound. This would be a significant advance if it could
be proven. Another possibility is that there are multiple
families of architectures, some of which scramble in depth
O(N) and some of which scramble in depth O(log N). In
this case an understanding of the dividing line between
these two qualitatively different classes of circuits would
have important implications.

X. CONCLUSION

We show that bounds on approximate t-designs for 1D
brickwork architectures imply bounds for general archi-
tectures. This process not only gives us an immediate
bound linear in N for the tth moments of all sufficiently
well-connected architectures, but allows us to convert any
improved 1D bounds into bounds on generic structures. We
also show that our bounds can be extended by an aver-
aging procedure to an implicit bound for nondeterministic
architectures.

Any architecture consisting of �-layer connected blocks
of O(1) depth can be bounded this way. So our result
implies that any sufficiently regularly connected circuit
ensemble approximates global information scrambling in
at most linear depth, albeit with exponential dependence
on the connection frequency.

We conjecture that this bound can be tightened to
one that depends on the circuit architecture only via the
connection count. This suggests that rapid scrambling is
inescapable for any sufficiently well-connected architec-
ture.

ACKNOWLEDGMENTS

We acknowledge useful conversations with Nicholas
Hunter-Jones. D.B. thanks Felix Leditzky for suggest-
ing relevant literature. This material is based upon work
supported by the U.S. Department of Energy, Office of
Science, National Quantum Information Science Research
Centers (B.K.C., J.A., D.B., B.F., S.G.) and work par-
tially supported by the National Science Foundation under
Grant No. CCF-1005 2044923 (CAREER). B.F. and S.G.
acknowledge support 1006 from AFOSR (FA9550-21-
1-0008) and DOE QuantISED Grant DE-SC0020360.
We also acknowledge funding by the US Department
of Energy Office of Advanced Scientific Computing
Research, Accelerated Research for Quantum Computing
Program (C.K., F.T.C.); ARO W911NF-23-1-0077, NSF-
OMA-2016136, and NSF Phy-1818914 (S.L.); and an NSF
GRF (J.S.).

APPENDIX A: PROPERTIES OF PROJECTOR
PRODUCTS

In this appendix we prove some general results about
products of orthogonal projection operators. Consider
some set of subspaces Xi, i ∈ {1, . . . , n}, of a Hilbert space.
Define Pi to be the orthogonal projector on to Xi and

T = Pn · · · P2P1.

In general, we are interested in understanding the singular
value spectrum of T.

1. Structure of the unit eigenspace

Lemma 9. The left unit eigenspace, right unit eigenspace,
and unit singular value space of T are all

⋂n
i=1 Xi.

040344-14

APPROXIMATE t-DESIGNS IN GENERIC CIRCUIT ARCHITECTURES PRX QUANTUM 5, 040344 (2024)

Proof. Let Y be the unit eigenspace of T. A projector
is norm nonincreasing (i.e., ‖Pi‖∞ = 1). Furthermore, it
acts as the identity on any vector whose norm it does not
decrease. It follows that a unit eigenvector of T must be a
unit eigenvector of each of the Pi. It is easy to see that the
converse also holds, so Y = ⋂n

i=1 Xi. This argument works
the same from the left and the right, so the left and right
unit eigenspaces are the same.

Now consider the singular value spaces of T. These
are the square roots of the eigenvalues of T†T. Since the
left and right eigenspaces are the same, they are in the
unit eigenspace of T†T. Since both T† and T are norm
nonincreasing, they must be the whole unit eigenspace.
So the unit singular value space of T is exactly the unit
eigenspace. �

Lemma 10. The unit eigenspace of T is orthogonal to
all other eigenstates of T and all other eigenstates of T†kTk,
and remains orthogonal no matter how many factors of T
or T† are applied to the other eigenstate.

Proof. From Lemma 9 we know that the left and right
unit eigenspaces of T are the same. Let u be a unit eigen-
vector and v a right eigenvector with eigenvalue λ < 1. We
can compute

u†v = u†Tv = λu†v, (A1)

which can hold only if u†v = 0. So Y is orthogonal to every
nonunit eigenspace of T.

Since T†kTk is Hermitian, its eigenstates of different
eigenvalues are automatically orthogonal, so u†v = 0 for
any subunit eigenstates v of T†kTk.

These proofs still hold if we apply extra factors of T or
T† to v, because we can freely absorb these extra factors
into u. �

2. Bound from layer-restricted subleading singular
values

Theorem 13. Let Qi to be the orthogonal projector on
to

⋂i
j =1 Xj . Let 𝓈i be the largest nonunit singular value of

PiQi−1. Let s∗ be the largest nonunit singular value of T.
Then we have the bound

s2
∗ ≤ 1 −

n∏
i=2

(1 − 𝓈2
i). (A2)

Proof. This is Theorem 7 of the main text. We prove
Eq. (A2) by induction. Let Ti = Pi · · · P1 so that T = Tn.
Suppose that Ti−1 satisfies Eq. (A2). We prove that Ti =
PiTi−1 also satisfies Eq. (A2).

Let Yi be the unit eigenspace of Ti. Let v be a unit
vector such that ‖Tiv‖ = s∗(Ti). We may take an orthogo-
nal decomposition v = v1 + v2, where v1 ∈ Yi−1 and v2 ⊥

Yi−1. We wish to compute

s∗(Ti) = ‖PiTi−1v‖ = ‖Pi(v1 + Ti−1v2)‖.

Let θ ,φ be the angles between Tiv and v1, Ti−1v2, respec-
tively. Note that ‖Ti−1v2‖ ≤ s(Ti−1)‖v2‖. Then

‖Pi(v1 + Ti−1v2)‖ ≤ ‖v1‖ cos θ + s∗(Ti−1)‖v2‖ cosφ.
(A3)

We next wish to optimize this bound over ‖v1‖, ‖v2‖, θ ,φ
to obtain an unconditional bound. Our first constraint is
‖v1‖2 + ‖v2‖2 = 1, so after optimizing over the norms we
find that

‖Pi(v1 + Ti−1v2)‖
≤

√
cos2 θ + s∗(Ti−1)2 cos2 φ ≡ f (θ ,φ). (A4)

Now we optimize over the angles. By their definitions we
must have 0 ≤ θ ≤ π/2 and likewise for φ. Note that f is
a monotonically decreasing function of both θ and φ in this
region, so the maximum will be attained somewhere on the
boundary of the feasible set.

We also have some additional constraints. Since v1 ⊥
Ti−1v2, we must have θ + φ ≥ π/2. And we know that the
angle between v1 and Pi must be at least cos−1 𝓈i by the
definition of 𝓈i.

The Pareto frontier where both θ and φ are as small as
possible lies along θ + φ = π/2, so the optimum must be
somewhere on this line. On this line we have cos2 φ = 1 −
cos2 θ , so

f (θ) =
√

[1 − s∗(Ti−1)2] cos2 θ + s∗(Ti−1)2. (A5)

Since s∗(Ti−1) < 1, this is again a decreasing function of
θ , so it attains its maximum when θ is minimized, i.e., θ =
cos−1 𝓈i. We thus find that

s∗(Ti) ≤
√

[1 − s∗(Ti−1)2]𝓈2
i + s∗(Ti−1)2. (A6)

By assumption, s∗(Ti−1)
2 ≤ 1 − ∏i−1

j =2(1 − 𝓈2
j) and so

s∗(Ti)
2 ≤ 𝓈2

i + (1 − 𝓈i)
2
(

1 −
i−1∏
j =2

(1 − 𝓈2
j)

)

≤ 1 −
i∏

j =2

(1 − 𝓈2
j), (A7)

completing the induction. Finally, for the base case, T1 is a
single projector, so s∗(T1) = 0. �

Previous works on approximate t-designs have often
used the detectability lemma to relate the transfer matrix

040344-15

DANIEL BELKIN et al. PRX QUANTUM 5, 040344 (2024)

to a frustration-free Hamiltonian [22,23]. The role of
Theorem 7 in our proof is analogous to that of the
detectability lemma in these works. The detectability
lemma is based on counting the number of projectors
that do not commute, whereas here the 𝓈i in some sense
quantify the amount of noncommutativeness.

3. Other bounds on subleading singular values

Lemma 11. Let s∗ be the largest nonunit singular value
of T. Let λ∗ be the nonunit eigenvalue of T with the largest
magnitude. Then

|λ∗| ≤ s∗. (A8)

Proof. We may write

s∗ = max
{v|v⊥Z}

‖Tv‖
‖v‖ . (A9)

Let v be an eigenvector of T with eigenvalue λ �= 1. From
before, v ⊥ Z, and, clearly, ‖Tv‖/‖v‖ = λ, so we have
s∗ ≥ λ. The lemma follows immediately. �

Theorem 14. Consider two projectors P1, P2. Let λ∗ be
the largest nonunit eigenvalue of P2P1, and let s∗ be the
largest nonunit singular value. Then

s∗ =
√
λ∗. (A10)

Proof. Any eigenvector v∗ corresponding to λ∗ must lie
in the unit eigenspace of P2. Otherwise, the output P2P1v∗
will not be parallel to v∗. Also, if we take the vector w∗ ≡
P1v∗, by Lemma 10, this vector is orthogonal to the unit
eigenspace of P2P1, and

‖P2P1w∗‖2

‖w∗‖2 = vT
∗ P1P2

2P1v∗
vT∗ P1v∗

= λ2
∗

vT∗ (P2P1v∗)

= λ∗. (A11)

So the subleading singular value of P2P1 is at least
√
λ∗.

Now, take w∗ to be the subleading eigenvector of
(P2P1)

†(P2P1) = P1P2P1. By definition, the correspond-
ing eigenvalue is s2

∗. Take v∗ = P2P1w∗ (still orthogonal to
the unit eigenspace of P2P1 by Lemma 10). Then

P2P1v∗ = P2P2
1P2P1w∗

= s2
∗P2P1w∗

= s2
∗v∗. (A12)

We see that the subleading eigenvalue of P2P1 is at least s2
∗.

Combining these two inequalities establishes Theorem 14.
�

Lemma 12. Let Ti, i ∈ {1, . . . , k}, be a sequence of pro-
jector products that all share the same unit eigenspace. Let
s(i)∗ be the largest nonunit singular value of Ti. Then the
largest nonunit singular value of

∏k
i=1 Ti is at most

∏
i s(i)∗ .

Proof. Let [M]1 denote the unit singular value space
of M , and let Mj = ∏k

i=j Ti. We can write the subleading
singular value of Mk as

s(Mj) = max
v⊥[Mj]1

‖Mj v‖
‖v‖ . (A13)

Since the Ti all share a unit eigenspace, the unit eigenspace
of Mj is the same as that of each Ti. But, by Lemma 9, the
unit eigenspaces and unit singular value spaces of both Ti
and Mj are the same, so

[Mj]1 = [T1]. (A14)

We thus have

s(Mj) = max
v⊥[T]1

‖Mj v‖
‖v‖ . (A15)

Furthermore,

‖Mj v‖ = ‖Mj +1Tj v)‖ ≤ Sj ‖Mj +1v‖, (A16)

and so

s(Mj) ≤ s(j)∗ s(Mj +1). (A17)

Induction then gives the desired bound. �

4. Bounds on Frobenius norms

Lemma 13. Let T be a projector product with largest
nonunit singular value s∗. Let d be the dimension of the
space on which T acts, let m1 be the dimension of the unit
eigenspace of T, and let m0 be the dimension of the zero
eigenspace. Then

‖Tk‖2
F ≤ m1 + (d − m1 − m0)s2

∗. (A18)

Proof. Let σi be all the singular values of T. We
have σi = 1 for i ∈ {1, . . . , m1}, σj ≤ s∗ for i ∈ {m1 +
1, . . . , d − m0}, and σk = 0 for i{∈ d − m0 + 1, . . . , d}. We
compute

‖T‖2
F =

∑
i

σ 2
i ≤

m∑
i=1

1 +
d−m0∑

i=m+1

s2
∗, (A19)

from which the result follows immediately. We can fur-
ther tighten the bound by replacing d with the number of
nonzero singular values. �

040344-16

APPROXIMATE t-DESIGNS IN GENERIC CIRCUIT ARCHITECTURES PRX QUANTUM 5, 040344 (2024)

Theorem 15. Let Ti, i ∈ {1, . . . , k}, be a sequence of
projector products that all have the same unit eigenspace.
Let d be the dimension of the space on which Ti acts, let m1
be the dimension of the unit eigenspace of Ti, and let m0
be the dimension of the zero eigenspace of any particular
Ti. Let s(i)∗ be the largest nonunit singular value of Ti. Then

∥∥∥∥
∏

i

Ti

∥∥∥∥
2

F
≤ m1 + (d − m1 − m0)

k∏
i=1

(s(i)∗)
2. (A20)

Proof. This follows directly from the results of Lemmas
12 and 13. �

Theorem 16. Let Ti, s(i)∗ , d, m1, m0 be as in Theorem 15.
Let R1, . . . , Rn be a sequence of projector products such
that the unit eigenspace of T1 is contained within the unit
eigenspace of each Ri. Let M be the product of all of the Ti
and all of the Ri in any ordering. Then

‖M‖2
F ≤ m1 + (d − m1 − m0)

k∏
i=1

(s(i)∗)
2. (A21)

Proof. The Ri also preserve the unit eigenspace of Ti
and are also norm nonincreasing, so the proof of Lemma
12 still goes through. We can then again use Lemma 13 to
obtain the final formula. �

Theorem 17. Let T be a projector product with largest
nonunit singular value s∗. Let d, m1, m0 be as before. Then

‖Tk‖2
F ≤ m1 + (d − m1 − m0)s2k

∗ . (A22)

Proof. This is an immediate consequence of Theorem
15 in the case where the Ti are all the same. �

APPENDIX B: PROOF OF THE 1D BRICKWORK
SPECTRAL GAP FOR t = 2

For a string of N sites that we act a 1D brickwork
architecture on, we can consider the nonorthogonal basis

| �X 〉 =
⊗

i

|Xi〉i, (B1)

where Xi refers to one of the two k = 2 permutation states
|I〉 (identity) or |S〉 (swap). This basis is complete on the
image of any layer of the brickwork. We start with the
following result.

Lemma 14. Take P1 to be the projector into the unit
eigenspace of T. Then there exists a depth-independent
constant cX ′X such that

〈 �X ′|Tk| �X 〉 ≤ 〈 �X ′|P1| �X 〉 + cX ′X λ
k
1 (B2)

for every k > log(N)/[− log(λ1)] + 1, where λ1 =
[2q/(q2 + 1)]4.

Proof. We use a domain-wall trajectory approach [21].
Each gate sends |II〉 → |II〉, |SS〉 → |SS〉, and the nonuni-
form |IS〉, |SI〉 → q/(q2 + 1)(|II〉 + |SS〉). The point is
that the transfer matrix sends each configuration into a sum
of other configurations, depending on the positions of the
I , S domain walls in the system. If a gate in the trans-
fer matrix crosses a domain wall (and all domain walls
will be crossed by a gate each layer after the first layer),
it either moves left with weight q/(q2 + 1) or right with
weight q/(q2 + 1). So we can represent the transfer matrix
of k layers as a series of domain-wall trajectories with
their accompanying weights. A domain-wall trajectory is a
sequence of �X j ’s such that �X 0 = �X and �X d = �X ′. Specif-
ically, we are looking out for the domain walls in each
layer �X j , because the total number of domain walls never
increases—each domain wall either moves around or anni-
hilates with a neighbor, possibly eventually reaching the
steady states |I〉N , |S〉N with no domain walls. We have, for
domain-wall trajectories γ with final state Fγ and weight
w(γ),

〈 �X ′|Tk| �X 〉 =
∑
γ

w(γ)〈 �X ′|Fγ 〉. (B3)

We can categorize each domain-wall trajectory accord-
ing to which domain walls annihilate before the end of
the circuit and which remain to the end. We can sepa-
rate the total domain-wall trajectory into the annihilating
(“closed”) domain walls γc from the “open” domain-wall
trajectories γo that stay to the end. The weight of the
whole domain-wall trajectory is just a product of the two
components:

w(γ) = w(γo)w(γc). (B4)

This completes the proof. �

Moreover, we have the following result.

Lemma 15. The final state Fγ is determined solely by
the open component of the trajectory.

Proof. If we look at one of the surviving domain walls,
the I/S values to the immediate left or right of the domain
wall must remain the same through the whole trajectory
(otherwise, the domain wall would be annihilated). Then
the rest of the final configuration can be determined by just
flipping the sign when crossing every other domain wall.
Because the signs to the immediate left and right of the
domain wall were fixed by the original configuration �X ,
there is no global symmetry ambiguity either. �

With this we can separate sum (B3) into a sum over the
partitions p that specify which domain walls are closed and
which remain open. The partition in turn specifies the set

040344-17

DANIEL BELKIN et al. PRX QUANTUM 5, 040344 (2024)

of possible open and closed domain-wall trajectories, O(p)
and C(p):

〈 �X ′|Tk| �X 〉 =
∑

p

∑
γo∈O(p)

∑
γc∈C(p)

w(γo)w(γc)〈 �X ′|Fγ 〉

=
∑

p

∑
γo∈O(p)

w(γo)〈 �X ′|Fγ 〉
(∑
γc∈C(p)

w(γc)

)
.

(B5)

Now we start to bound things.

Lemma 16. The sum
∑

γc∈C(p) w(γc) is bounded by the
infinite depth limit, i.e., the sum of all the possible trajec-
tories in an infinite depth circuit that start at the domain
walls specified by p , but annihilate to either the uniform
|I〉 or |S〉 states.

This is because C(p) is just a subset of all the possible
closed trajectories, and increasing the depth on a trajectory
that is already closed does not change its weight. The sum
of weights in the infinite depth limit, in turn, has to be

lim
k→∞

|Tk| �XC(p)〉| = |P1| �XC(p)〉|, (B6)

where | �XC(p)〉 is the initial configuration given by only the
closed domain walls, and P1 is the unit eigenspace pro-
jector. That is, it is the component of | �XC(p)〉 in the unit
eigenspace of T, because the unit eigenspace is all that
survives in the infinite depth limit. Let us call this infinite
depth limit W(p). We also have the following result.

Lemma 17. It holds that

∑
γo∈O(p)

w(γo) ≤ [2q/(q2 + 1)]2No(k−1), (B7)

where No is the number of open domain walls.

Proof. We build up
∑

γo∈O(p) w(γo) layer by layer. At
each layer beyond the first, each open trajectory γo needs
to move each of its No domain walls. Each domain wall
has at most two possible directions to move in (and could
be less than two if other domain walls are blocking the
way). No matter the direction, the domain wall acquires a
weight q/(q2 + 1) by moving. So the total weight of all the
possible trajectories created by adding a layer onto γo is at
most w(γo)[2q/(q2 + 1)]No . A transfer matrix is composed
of two layers, so this is an extra factor of [2q/(q2 + 1)]2No

per transfer matrix applied. Extrapolating back to the first
layer gives us the equation above. �

With these two inequalities, we have

〈 �X ′|Tk| �X 〉 ≤
∑

p

W(p)
∑

γo∈O(p)
w(γo)〈 �X ′|Fγo〉

≤
∑

p

W(p)xF

∑
γo∈O(p)

w(γo)

≤
∑

p

W(p)xFλ
No(k−1)/2
1 (B8)

for xF ≡ maxγo∈O(p)〈 �X ′|Fγo〉 and λ1 = [2q/(q2 + 1)]4.
The right-hand side is now a weighted sum of terms
that are exponential in depth, with base λ

No/2
1 depen-

dent on the number of open trajectories in the partition.
The gentlest exponential is the single partition where
No = 0 and all the domain walls are closed—in that case
W(p) is the component of | �X 〉 in the unit eigenspace
and [maxγo∈O(p)〈 �X ′|Fγo〉] is the component of | �X ′〉 in
the unit eigenspace. This term is therefore bounded by
limk→∞〈 �X ′|Tk| �X 〉, which, by Lemma 2, is the same as
〈 �X ′|P1| �X 〉

In periodic boundary conditions, the rest of the partitions
all have No ≥ 2. Hence, they decay at a rate λk

1 or faster.
Specifically, we have

〈 �X ′|Tk| �X 〉 ≤ 〈 �X ′|P1| �X 〉 + cX ′X λ
k
1 (B9)

for some depth-independent constant cX ′X (note that while
maxγo∈O(p)〈 �X ′|Fγo〉 is depth dependent, it is bounded
above by 1). Now we can prove that λ1 = [2q/(q2 + 1)]4

genuinely is the subleading eigenstate of T, using the
following result.

Lemma 18. For a complete basis | �X 〉, if 〈 �X ′|Tk| �X 〉 ≤
〈 �X ′|P1| �X 〉 + cX ′X λ

k
1 and 〈 �X ′|Tk| �X 〉 ≥ 〈 �X ′|P1| �X 〉, then Tk

has no eigenstate |ψ2〉 with eigenvalue λ1 < λ2 < 1.

Proof. Suppose that there exists such an eigenstate |ψ2〉.
Then, because | �X 〉 is complete, there must exist some �X
that has a nonzero component of |ψ2〉 in its eigenstate
decomposition of T:

| �X 〉 = a1|ψ1〉 + a2|ψ2〉 + · · · , a2 �= 0. (B10)

Moreover, there must exist some �X ′ that has a nonzero
overlap with |ψ2〉, i.e., 〈 �X ′|ψ2〉 �= 0. Then we have

〈 �X ′|Tk| �X 〉 = a11k〈 �X ′|ψ1〉 + a2λ
k
2〈 �X ′|ψ2〉 + · · ·

= 1k〈 �X ′|P1| �X 〉 + a2λ
k
2〈 �X ′|ψ2〉 + · · · . (B11)

In particular, because λ2 > λ1, for any constant cX ′X , there
must be some k for which 〈 �X ′|Tk| �X 〉 > 〈 �X ′|P1| �X 〉 + c1λ

k
1.

This is a contradiction of our assumption, so no such λ2
can exist.

040344-18

APPROXIMATE t-DESIGNS IN GENERIC CIRCUIT ARCHITECTURES PRX QUANTUM 5, 040344 (2024)

One caveat is that the eigenstate overlap a2〈 �X ′|ψ2〉
could be negative instead. This is where the lower bound
comes in—provided λ2 is the largest subleading eigen-
value, there must also exist some k for which a2λ

k
2〈 �X ′|ψ2〉

overtakes every nonunit term in the sum and the lower
bound is violated instead. This lower bound is naturally
satisfied in our case because P1 is the infinite depth limit of
Tk, but T is contractive, so adding more layers to 〈 �X ′|Tk| �X 〉
always decreases its norm. Because it is a sum of positive
trajectories, it is also positive, so the value of 〈 �X ′|Tk| �X 〉
cannot increase as it goes to P1. �

Once we have λ1 = [2q/(q2 + 1)]4, by Lemma 11,
s∗ = [2q/(q2 + 1)]2. Therefore, our trace decays at a rate
C(q, 2) = 1/2 log(1/s∗) = 1/4 log[(q2 + 1)/2q].

APPENDIX C: MAPPING INCOMPLETE TO
COMPLETE LAYERS FOR NONINTEGER

√
q

If
√

q is not an integer, we cannot draw Haar random√
q × √

q unitaries. There is thus no such thing as the 1D
brickwork circuit ensemble. So how can we apply the site-
splitting trick used in the proof of Theorem 2? Instead of
defining s1D(q) to be the subleading singular value of the
transfer matrix corresponding to some underlying circuit
ensemble, we define the transfer matrix directly.

The first step is to rephrase our site-splitting strategy
from something done in the quantum circuits to something
done at the level of transfer matrices. Consider a set of
vector spaces labeled by a positive real valued r > 1, i.e.,

Xr = span{|σ 〉r | σ ∈ St}, (C1)

where each vector space is equipped with a basis |σ 〉Xr and
an inner product

〈σ |τ 〉r = r|στ−1|. (C2)

Here |σ | is the length of the cycle structure of σ . Note that
this inner product is positive semidefinite only for integer
r.

Now, consider the mapping V : Xr → X√
r
⊗2 defined on

basis elements by

V |σ 〉r = |σ 〉⊗2√
r . (C3)

We first show that V is an isometry. Compute

〈V |σ 〉 , V |τ 〉〉√r = 〈σσ |ττ 〉√r = (
√

r
|στ−1|

)2 (C4)

and

〈σ |τ 〉r = r|στ−1|, (C5)

which are the same. This implies that the restriction of the
metric on X ⊗2√

r to the image of V is positive semidefinite
(for integer r).

For each Xr, let us define the k-site gate G(Xr)
k : X ⊗k

r →
X ⊗k

r as the following projector onto the span of {|σ 〉⊗k
r | σ ∈

St}:

G(Xr)
k =

∑
σ ,τ

|τ 〉⊗kWg(rk)στ 〈σ |⊗k (C6)

with Wg(q) the Moore-Penrose pseudoinverse of the met-
ric g(q)στ = 〈σ |τ 〉r. This formula reproduces the usual
k-site gate when r is an integer. We now observe the
following.

Lemma 19. If we replace every GXr
k in the transfer

matrix with G
X√

r
2k , the singular values do not change.

Proof. Let us define a map V† by

V†=
∑
στ

|σ 〉r Wg(r)στ 〈ττ |√r , (C7)

so that
V† |ττ 〉√r = |τ 〉r .

This map is an adjoint of V on the image of V, i.e.,

〈σ |r V† |ττ 〉√r = 〈ττ |√r V |σ 〉r (C8)

for all τ , σ .
From the definition of V, we see that

GXr
k = V†⊗kG

X√
r

2k V⊗k. (C9)

We may thus rewrite the transfer matrix T by replacing
GXr

k with the above expression for each gate. Furthermore,

VV† = G
X√

r
1 . Factors of G1 may be absorbed into Gk from

either side, which means in particular that

G
X√

r
2k = (VV†)⊗kG

X√
r

2k = G
X√

r
2k (VV†)⊗k. (C10)

We may thus pair up the copies of V that appear on inter-
nal legs of the transfer matrix and absorb them into the
adjacent G

X√
r

2k . The singular values of T are the nonzero
eigenvalues of T†T, so the copies of V that appear on input
legs can be cycled to the output and canceled against the
corresponding copies of V† without changing the singular
values. �

If we return to our original transfer matrix, we see that
we can identify each site as a member of Xq, and each two-
site gate as a copy of GXq

2 . Moreover, we can freely apply
copies of GXq

1 (the averaged one-site gate) to any site wher-
ever we want, as it is just the identity on that vector space.
Now we apply isomorphism V to map each site from an

040344-19

DANIEL BELKIN et al. PRX QUANTUM 5, 040344 (2024)

element of Xq to an element of the doubled space X ⊗2√
q ,

converting each site into a pair of sites, or twinned sites,
in the process. From Lemma 19, we see that the transfer
matrix can be rewritten in this new vector space, without
changing any singular values, by replacing GXq

k with G
X√

q
2k

everywhere it appears.
In the particular case of an incomplete circuit, we obtain

a transfer matrix consisting of GXq
1 and GXq

2 . We then apply

the isomorphism described above to map GXq
1 → G

X√
q

2 and

GXq
2 → G

X√
q

4 .
The former map sends one-site gates to two-site gates;

these correspond to edges across two twinned sites. The
first layer of the original circuit involved a one- or two-site
gate acting on every site, so the split pair sites are always
joined back into the same cluster by the first layer. The
new four-site gates are harder to express in the cluster-
merging picture. However, we know that a mini circuit of
two-site gates G

X√
q

2 , applied in a way that connects all the

sites consistently, will approach G
X√

q
4 in the limit of infi-

nite layers. In particular, we can replace each four-site gate
G

X√
q

4 [a1, a2, b1, b2] acting over sites a1, . . . , b2 (where a1
and a2 are twinned, and so are b1 and b2) with an arbitrarily
large “Jenga tower” of gates

(G
X√

q
2 [a1, a2] ⊗ G

X√
q

2 [b1, b2])(G
X√

q
2 [a1, b1] ⊗ G

X√
q

2 [a2, b2])

repeated over and over again. In the cluster-merging pic-
ture, only the bottom layer of this tower is capable of
joining distinct clusters together. The other layers either
join twinned sites that were part of the same cluster to
begin with, or are copies of the bottom layer. So every
layer above the first has a completely disconnected cluster-
merging graph, which corresponds to 𝓈 = 0. These layers
do not contribute to the right-hand side of Theorem 7. So
each four-site gate can be replaced with two two-site gates
connecting nontwinned members together without increas-
ing the subleading singular value of the transfer matrix.
This process is illustrated in Fig. 6.

We see that we can replace the cluster-merging picture
with one where every site is replaced by twins on X√

q,
and every two-site gate is replaced by a pair of two-site
gates between nontwinned sites. Moreover, we can freely
apply two-site gates between any twinned members where
no gate was being originally applied. So all sites in the
new picture have two-site gates acting on them; the layer is
complete. Since all twinned sites belong to the same clus-
ter, all clusters are of even size. These were the two condi-
tions required to draw a Eulerian cycle on each connected
component of the graph. We can now use Lemma 5 to
reduce this graph to a periodic 1D brickwork architecture
composed of gates G

X√
q

2 acting on the space X ⊗2N√
q . Any

previous work that has found a bound for the
√

q brick-
work therefore imposes a bound on the layer-restricted
subleading singular values of arbitrary cluster-merging
graphs.

APPENDIX D: GRAPH-SPLITTING BOUNDS FOR
INCOMPLETE LAYERS

In this appendix we consider strategies for bounding
cluster-merging graphs that originate from incomplete lay-
ers, without resorting to 1D brickwork bounds on noninte-
ger q.

1. Analytical bound in terms of the node degree

By removing edges according to Lemma 8, we can
reduce any connected cluster-merging graph into a span-
ning tree. Let d be the maximum degree of the tree. To
bound this tree’s singular value, we use the following tool
for incomplete graphs.

Lemma 20. The edges of a cluster-merging graph can be
split into separate layers without lowering the subleading
singular values.

Proof. This follows from a simple reinterpretation of
which gates belong to the same layer. We know that the
gates corresponding to each edge in the cluster-merging
graph commute with each other. Therefore, we are allowed
to choose which gates to apply first. Splitting a layer
merely means choosing a subset of gates to apply first, then
choosing another subset to apply in the next new layer, and
so on. This does not lower the subleading singular values
because it does not change the gates at all. �

Note that splitting a layer will increase the block width �,
so our bound on the subleading singular value of the over-
all transfer matrix via Theorem 13 will get looser when a
layer is split. Nonetheless, this will be useful for separating
the degree-d tree graph into reducible parts.

Theorem 18. A cluster-merging graph of size N with a
spanning tree of maximum degree d can be decomposed
into at most

2 min(
d/2�, 6)
log2(N)�

layers, such that each layer is reducible to the 1D brick-
work.

We prove this statement starting with the following
similar result.

Lemma 21. A cluster-merging graph of size N with a
spanning tree of maximum degree d can be decomposed
into at most min(
d/2�, 6)
log2(N)� layers, such that each
layer is made up of isolated strings.

040344-20

APPROXIMATE t-DESIGNS IN GENERIC CIRCUIT ARCHITECTURES PRX QUANTUM 5, 040344 (2024)

Call L(N) the largest possible number of layers a tree
of size N needs to be decomposed into to satisfy this. We
prove by induction that L(N) ≤ min(
d/2�, 6)
log2(N)�.
We have L(2) = 1 because two connected sites automat-
ically form an isolated string. It remains to show the
following result.

Lemma 22. It holds that L(N) ≤ L(�N/2�)+
min(
d/2�, 6).

Proof. Take an arbitrary root node C1 in our tree and
construct a path C1C2 · · · Cr starting from that root. At each
step i − 1 in the path, we choose the child Ci of parent
Ci−1 with the most nodes in its subtree. Call the other child
nodes b(1)i , b(2)i , . . . , b(g)i , where g ≤ d − 2.

For a given path node Ci−1, each nonpath child
b(1)i , b(2)i , . . . , b(g)i has at most �N/2� nodes in its subtree.
We can therefore recursively decompose each subtree in
parallel in at most L(�N/2�) layers. After these layers,
each subtree of b(j)i has been combined into b(j)i to form
one cluster, B(j)i .

We then need to combine all g child nodes B(j)i into Ci−1.
To accomplish this in an efficient way, we use a method for
efficient contraction of high-degree nodes. �

Lemma 23. We can combine a node with g of its
external neighbors using at most four layers of isolated
strings.

Proof. To accomplish this, we combine our layer split-
ting process with a cluster splitting process. The original
node has a degree of g, so it must contain at least g sites.
We first split the layer, with �g/2� of the external neigh-
bors on the bottom layer. This gives us a node with g
sites and �g/2� edges. We then use Lemma 7 to split
this node into a string of nodes such that each node con-
nects to two of the external neighbors (as shown by the
first step in Fig. 7). Each node therefore has two external
neighbors and at most two new internal edges connect-
ing it to the other nodes in the string, so can be made
with four sites. The exceptions are the end nodes that need
one less site, and if �g/2� is odd, one node will have one
less neighbor and site. In total, at most 4
 1

2�g/2�� − 2 ≤ g
sites are required, so there are enough unoccupied sites in
the original node to add the necessary new edges for this
splitting.

Once we have split the original node in this way, we
spend two layers to combine all the neighbors and nodes
together. In the first layer, each node in the string com-
bines with its two external neighbors, as together they form
a string of length 3 (Fig. 7, second step). With all the
neighbors absorbed, the string can be recombined into the
original node in the second layer (Fig. 7, third step).

We then spend two more layers to contract the remain-
ing g − �g/2� neighbors. This is either �g/2� or �g/2� + 1

13 3 4 3 5 6 5 16

Star
String of nodes After first layer

After second layer

FIG. 7. The star contraction of Lemma 23. We start with a star
with g external edges, meaning that its site count (the numerical
label of the node) is at least g. In the first pair of layers, half of
the edges are considered, then the star node is split into a string of
nodes, each with two external edges. In the first layer, each node
contracts with its two external edges in a three-site string (note
that the site count on each node is just the minimum number of
sites required to have the correct degree on the node; extra sites
can be placed in whatever node we want). In the second layer,
the resulting string is contracted back into a single node, leaving
a star with half the edges remaining. The process is then repeated
for the other half of the edges.

depending on the parity of g. Even if it is the latter, we
will have enough sites to contract all the neighbors, due
to the ≥ �g/2� extra sites the root node gained by absorb-
ing its previous neighbors. Therefore, all neighbors can be
contracted in four layers. �

Note that Lemma 23 is inefficient if the number of leaves
is 6 or less. This is because we can also contract g leaves in

g/2� layers, by selecting one or two leaves in each layer
and combining with Ci−1 into a string of length 2 or 3. So
the number of layers we have to spend is min(
g/2�, 4) ≤
min(
d/2� − 1, 4) overall.

By performing all of these operations in parallel for
each path node, we have spent at most L(�N/2�)+
min(
d/2� − 1, 5) layers to combine each path node’s
nonpath children into the path node. After these layers,
the cluster-merging picture of the next layer only con-
sists of the path nodes, which can be combined together
with a single, extra, layer. This completes the proof of
Lemma 22.

We have seen that we can decompose the size-N clus-
ter into L(N) layers such that the cluster merging graph
of each layer consists of isolated strings. Each string can
now be split into an open 1D brickwork architecture, as
long as each internal node is of even size (endpoint nodes
can be either odd or even), using Lemma 5. We call such
strings brickwork compatible. For strings containing nodes
that are not even and are not on the ends, we can use the
following result.

Lemma 24. Any layer of isolated strings can be split
into two layers of brickwork-compatible strings.

Proof. We wish to split a string into two layers such that
both layers have cluster-merging graphs consisting entirely
of brickwork-compatible strings. Let k be the number of
odd-sized nodes in the string and number only the odd
nodes 1, . . . , k.

040344-21

DANIEL BELKIN et al. PRX QUANTUM 5, 040344 (2024)

First suppose that k is even. Remove the left-hand edge,
if any, of odd nodes 1, 3, . . . , k − 1 and the right-hand edge
of odd nodes 2, 4, . . . , k. Now we have split the string into
at least k/2 and at most k/2 + 2 substrings, each of which
either has odd nodes only at both endpoints, or has no odd
nodes at all. Since the odd nodes were paired up, contract-
ing the first layer gives only even nodes for the second
layer. So both layers are brickwork compatible.

Now suppose that k is odd. Remove the left-hand edge,
if any, of odd nodes 1, 3, . . . , k − 1 and the right-hand edge
of odd nodes 2, 4, . . . , k − 1. Every substring has two odd
endpoints except the first, which may have zero, and the
last, which has exactly one. After contracting, the second
layer has all even nodes except for one. But this one odd
node is the right endpoint of the second-layer string, so the
second layer is still brickwork compatible. �

Lemma 24 shows that we can make a set of layers of iso-
lated strings brickwork compatible with a splitting scheme
that at most doubles the number of layers. Combining this
with Lemma 21 completes the proof of Theorem 18.

2. Log log bound on arbitrary graphs

Theorem 19. A cluster-merging graph of size N can be
decomposed into at most

8
log2�log2(N + 1)�� + 2

layers, such that each layer is reducible to the 1D brick-
work.

Given Lemma 24, it is sufficient to prove that we can
decompose the graph into

4
log2�log2(N + 1)�� + 1

layers of isolated strings.
We begin with a tree of at most N sites [Fig. 8(a), left].

The first layer of edges we apply will contract substrings of
the tree such that the resulting second-layer tree [Fig. 8(a),
right] has depth O(log N). Choose any root node, which
also specifies a direction in the tree from its root down to
the leaves. Then label each node by its subtree weight—the
number of nodes in the subtree starting from that node.
The root node has subtree weight N , leaves have subtree
weight 1, and so on. We add to the first layer the maxi-
mally weighted path starting from the root node, i.e., a path
from root to leaf that always selects the child node with the
highest subtree weight. For every node that neighbors this
path (excluding nodes that are part of the path), we take
its subtree, add the maximally weighted path of that sub-
tree to the first layer, and repeat the process recursively.
After the end of this process, each node is part of exactly
one maximally weighted path, so the first layer consists
of disconnected strings. We can also label each maximally

1

21

3

5

1

1

2

3

7

9

14

first path
second
path

third path

1

1

(a)

(b)

FIG. 8. Algorithm for reducing a general tree in O(log log N)
layers. (a) The first layer of the algorithm, where we contract
the maximally weighted paths. Each path chooses the child node
with the highest subtree weights (blue labels above each node),
and starts from nonpath children of nodes in higher paths. (b)
Contraction of a balanced tree into a point in O(log log N) steps.
At each step, the nodes at depths 2k and 2k + 1 are merged
together through the star contraction algorithm (each star is
indicated by a blue dotted circle).

weighted path by a subtree weight, which in this case is the
subtree weight of the node at the start of the path.

After contracting all the paths added to the first layer
this way, we are left with a tree where each node corre-
sponds to one of the maximally weighted paths. We make
the following claim.

Lemma 25. The height of the new tree is at most
�log2(N + 1)�� − 1.

Proof. Suppose that we start from a node of the new tree
and jump down to one of its children. This corresponds to
jumping from one maximally weighted path on the original
tree to one of the paths below it.

Going back to the original tree, consider a maximally
weighted path of a particular single-root subtree consisting
of n nodes. The subtree weight of the root is, by definition,
n, and so is the subtree weight of the path itself. Then any
node that is one edge away from the maximally weighted
path (i.e., it is not part of the maximally weighted path,
but its parent is) has a subtree weight bounded above by
�(n − 1)/2�. We can prove this by contradiction—it can-
not be the root node, and the sum of the subtree weights of
it and all its sibling nodes must be ≤ n − 1. So, if it had a
subtree weight greater than (n − 1)/2, it would have had a

040344-22

APPROXIMATE t-DESIGNS IN GENERIC CIRCUIT ARCHITECTURES PRX QUANTUM 5, 040344 (2024)

larger subtree than all of its siblings, and therefore would
be part of the maximally weighted path after all.

Every time we move from a maximally weighted path
to a lower one, our subtree weight roughly halves; specif-
ically, it goes from n to at most �(n − 1)/2�. If we repeat
this process, we run out of nodes after �log2(n + 1)� − 1
steps. Hence, the height of the whole second-layer tree
must be bounded by �log2(N + 1)�� − 1. �

Now we reduce the second-layer tree with the following
lemma.

Lemma 26. A tree of height h can be decomposed into
4
log2(h + 1)� layers of isolated strings.

Proof. We decomposed the tree recursively. At each
step, we take all the nodes that are at an even depth (includ-
ing the root node at depth 0). We can then use Lemma
23 on each even-depth node to absorb all their children in
parallel, in at most four layers [Fig. 8(b), left]. This way,
after four layers, we have removed all the nodes that were
at an odd depth. Hence, we are left with a tree of height

(h + 1)/2� − 1 [Fig. 8(b), right]. We repeat this process
until we are left with a tree of height 0, i.e., just the root
node. This takes
log2(h + 1)� steps, or 4
log2(h + 1)�
layers, in total. �

Hence, we can spend one layer to reduce an arbitrary
tree to a tree of height �log2(N + 1)� − 1, then spend
4
�log2(N + 1)�� layers to reduce the new tree to a single
node, which proves Theorem 19.

APPENDIX E: NUMERICAL EVIDENCE FOR
CONJECTURES

1. Evidence for t independence of s1D

Figures 9 and 10 present numerical evidence for Eqs.
(19) and (64), respectively. We calculate s1D(N , q, t) with

FIG. 9. Subleading singular values of the 1D brickwork archi-
tecture with periodic boundary conditions and q = 2, calculated
via svds.

1 × 10–5

(a)

(b)

FIG. 10. (a) Subleading singular values of the 1D brickwork
architecture with open boundary conditions and q = 2, calcu-
lated via svds. (b) DMRG results for the open 1D brickwork
subleading singular value s1D,open(N , q, t = 2) versus N (upper)
and its difference from the t = 3 SSV (lower). Note the vertical
axis scale of 10−5 in the lower panel.

both open and closed boundary conditions for q = 2 and
several values of N and t.

Calculations are done using two different approaches.
The SciPy library’s svds function, which is based on the
Lanczos algorithm, allows us to find eigenvectors with
arbitrary precision for small N . Here the absolute error
tolerance is set to 10−4.

Because of the transfer matrix’s natural representation
as a tensor network, and hence a matrix product operator,
we can also use the density matrix renormalization group
(DMRG) algorithm to approximate eigenvectors for much
larger N .

The accuracy of the DMRG algorithm depends on the
entanglement structure of the true eigenvector, quantified
by its bond dimension. Here we choose a singular value
cutoff of 10−12 and a maximum bond dimension of 800,
which is well above the t = 2 or t = 3 required bond
dimension of approximately 12.

040344-23

DANIEL BELKIN et al. PRX QUANTUM 5, 040344 (2024)

G
A

A†

(a) (b)

FIG. 11. (a) Decomposition of a single gate into two halves
using SVD. The inner index (blue) can be treated as effective
physical indices with dimension t!. (b) Decomposition of two
layers of a 1D brickwork architecture using this splitting process.
The bottom-most and top-most halves of the original brickwork
architecture are set aside for now, making this equivalent to one
brickwork layer in thickness. Through this process, the physical
space has reduced from N legs of size q2t to
N/2� legs of size t!.

Both methods are computationally intractable in the
original representation of G, which has four legs, each of
dimension q2t. However, in this representation G is very
sparse. For the brickwork circuit, we can use singular value
decompositions to compress G to a tensor with three legs,
each of dimension t!. The resulting tensor is an orthog-
onal projector from St to S2

t under the metric induced
by the Weingarten functions. This compression leaves the
nonzero singular values of the whole circuit unchanged.
The compressed circuit is illustrated in Fig. 11.

2. Evidence for Conjecture 1

To search for violations of Conjecture 1, we used a sim-
ulated annealing algorithm that attempts to maximize the
subleading singular value over the set of architectures on a
fixed number of sites. Figure 12 shows the results.

Each proposed move was a set of n edge additions or
deletions, with n drawn from a geometric distribution with
mean 1. Additions and deletions were equally likely, with
additions drawn uniformly from the all-to-all graph and
deletions drawn uniformly from the set of existing edges.

The objective function was the third-largest singular
value, with starting temperature set automatically based on
the distribution of singular values over a small sample of
connected architectures with edges drawn independent and
identically distributed from the all-to-all graph. An expo-
nential multiplicative cooling schedule was used to cool to
the final temperature over 5000 iterations.

APPENDIX F: TIGHTER BOUNDS FOR
BRICKWORK ARCHITECTURES OF

ARBITRARY DIMENSION

For specific, well-connected architectures, we can use
the cluster-merging picture to obtain a tighter bound
than that of Theorem 1. One example is the generalized
brickwork architectures on any dimension. We make the
following claim.

Lemma 27. For t = 2, the effective connection depth
� on a generalized d-dimensional brickwork architecture

(a)

(b)

FIG. 12. (a) Subleading singular values by inverse tempera-
ture during 437 runs of the simulated annealing process. Here
N = 16, q = 2, and t = 2. (b) Maximum SSVs attained by each
run.

on Ld sites is at most 2 + oL(1). That is, the subleading
singular value

s ≤ 1 − (1 − s1D)
2 + oL(1). (F1)

In other words, we have taken the 2d layers of a d-
dimensional brickwork’s periodic block, and have effec-
tively removed all but two of them from consideration in
Theorem 7.

Each of the 2d layers in a brickwork architecture’s
periodic block chooses one of the d directions (horizon-
tal, vertical, etc.) and one of two parities (odd or even).
The cluster-merging picture of these layers comes in three
stages. In the first stage, each layer has a different direction
from all the layers below it. These layers combine finite
[i.e., O(1)] size clusters into other finite size clusters. Each
cluster after m such layers is an m-dimensional hypercube
over 2m sites. Depending on the order of the layers, this
first stage can have any number of layers from 1 to d. The
second stage begins once a layer has the same direction
as a previous layer below it. In this stage, the hypercube

040344-24

APPROXIMATE t-DESIGNS IN GENERIC CIRCUIT ARCHITECTURES PRX QUANTUM 5, 040344 (2024)

clusters get strung together along this direction, L/2 at a
time, forming loops that can be reduced to periodic 1D
brickwork architectures. This stage consists of only one
layer.

After this stage, each cluster is of size �(L). Subse-
quent layers will connect these clusters either into pairs
(if their same-direction counterpart was not applied yet) or
L/2-length loops (if it was applied). Either way, each clus-
ter will have �(L) connections with each neighbor in the
graph. This effectively creates a 1D brickwork architecture
with internal dimension q̃ = q�(L). Since the 1D brickwork
singular value is 2q̃/(q̃2 + 1) = O(q̃−1), all of these lay-
ers will have layer-restricted singular values that decay
exponentially in L, and hence will contribute a vanishing
amount oL(1) to Eq. (34).

We have a second stage with one layer that reduces to
the periodic 1D brickwork architecture, and a third stage
with vanishing contribution. Therefore, it remains to show
that the combined subleading singular value of the first
stage layers is bounded by the 1D brickwork architecture.
In other words, we want to bound the subleading singu-
lar value of an arbitrary hypercube by the 1D brickwork
architecture.

The subleading singular value of the 2D hypercube (i.e.,
a square of four sites) is s2 = 2q2/(q2 + 1)2. We can use
the cluster-merging picture to bound hypercubes of higher
dimension. At layer m, our clusters are size 2m−1, and we
are joining them together in pairs, with 2m−1 connections
per pair. Since we have only two clusters in each connected
section of our graph, finding the layer-restricted singular
value 𝓈m just amounts to an optimization over four basis
states. We have

𝓈m = 1
(1 − q−2m

)2

√
2(1 + q−2m

)

[
2

q2 + 1

]2m−1

− 8q−2m

≤
√

2
(

16
15

)(
2
q2

)2m−2

≤
√

2
(

16
15

)(
2
q2

)2(m−2)

, (F2)

where we bound the superexponential decay in m by an
exponential for all m ≥ 3. Then any (d ≥ 3)-dimensional
hypercube sd has singular values bounded by

s2
d ≤ 1 − (1 − s2

2)

d∏
m=3

(1 − 𝓈2
m)

≤ 1 − (1 − s2
2) exp

[
−

d∑
m=3

𝓈2
m

]

≤ 1 − (1 − s2
2) exp

[
−2

(
16
15

)2 d∑
m=3

(
2
q2

)4(m−2)]

≤ 1 −
(

1 − 4q4

(q4 + 1)2

)
exp

[
−2

(
16
15

)2 16
q8 − 16

]
.

(F3)

This decays more rapidly in q than the 1D brickwork archi-
tecture, and at q = 2 we get the bound sd(2) ≤ 0.478 <
s1D(2). Therefore, the hypercube singular value is below
the 1D brickwork singular value for all q ≥ 2.

A more thorough optimization over the size M of the
first stage will probably get an overall singular value bound
that is much closer to s1D. This is because the size, and
connectivity, of the clusters in the second stage is q2M

, so
it would probably produce a singular value that is close to
O(q−2M

). In other words, we are not allowed to make the
first stage that deep, without reducing the layer-restricted
singular value of the second stage.

[1] Joseph Emerson, Robert Alicki, and Karol Zyczkowski,
Scalable noise estimation with random unitary operators,
J. Opt. B: Quantum Semiclassical Opt. 7, S347 (2005).

[2] Easwar Magesan, Jay M. Gambetta, and Joseph Emerson,
Characterizing quantum gates via randomized benchmark-
ing, Phys. Rev. A 85, 042311 (2012).

[3] Patrick Hayden, Debbie Leung, Peter W. Shor, and Andreas
Winter, Randomizing quantum states: Constructions and
applications, Commun. Math. Phys. 250, 371 (2003).

[4] Sergio Boixo, Sergei V. Isakov, Vadim N. Smelyanskiy,
Ryan Babbush, Nan Ding, Zhang Jiang, Michael J. Brem-
ner, John M. Martinis, and Hartmut Neven, Characterizing
quantum supremacy in near-term devices, Nat. Phys. 14,
595 (2018).

[5] Adam Bouland, Bill Fefferman, Chinmay Nirkhe, and
Umesh Vazirani, On the complexity and verification of
quantum random circuit sampling, Nat. Phys. 15, 159
(2019).

[6] Scott Aaronson and Lijie Chen, in 32nd Computational
Complexity Conference, CCC 2017, July 6–9, 2017,
Riga, Latvia, edited by Ryan O’Donnell LIPIcs (Schloss
Dagstuhl—Leibniz-Zentrum für Informatik, 2017), Vol. 79,
p. 22:1.

[7] Adam Bouland, Bill Fefferman, Zeph Landau, and Yun-
chao Liu, in 62nd IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2021, Denver, CO, USA, pp.
1308–1317.

[8] Ramis Movassagh, The hardness of random quantum cir-
cuits, Nat. Phys. 19, 1719 (2023).

[9] Yasuhiro Kondo, Ryuhei Mori, and Ramis Movassagh,
in 62nd IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2021, Denver, CO, USA, pp.
1296–1307.

[10] Patrick Hayden and John Preskill, Black holes as mir-
rors: Quantum information in random subsystems, J. High
Energy Phys. 2007, 120 (2007).

[11] Yasuhiro Sekino and L. Susskind, Fast scramblers, Journal
of High Energy Physics 2008, 065 (2008).

040344-25

https://doi.org/10.1088/1464-4266/7/10/021
https://doi.org/10.1103/PhysRevA.85.042311
https://doi.org/10.1007/s00220-004-1087-6
https://doi.org/10.1038/s41567-018-0124-x
https://doi.org/10.1038/s41567-018-0318-2
https://doi.org/10.1038/s41567-023-02131-2
https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1088/1126-6708/2008/10/065

DANIEL BELKIN et al. PRX QUANTUM 5, 040344 (2024)

[12] Patrick Hayden, Sepehr Nezami, Xiao Liang Qi, Nathaniel
Thomas, Michael Walter, and Zhao Yang, Holographic
duality from random tensor networks, J. High Energy Phys.
2016, 9 (2016).

[13] Brian Skinner, Jonathan Ruhman, and Adam Nahum,
Measurement-induced phase transitions in the dynamics of
entanglement, Phys. Rev. X 9, 031009 (2019).

[14] Yunxiang Liao and Victor Galitski, Effective field theory of
random quantum circuits, Entropy 24, 823 (2022).

[15] Frank Arute, et al., Quantum supremacy using a pro-
grammable superconducting processor, Nature 574, 505
(2019).

[16] A. Pirker, J. Wallnöfer, and W. Dür, Modular architectures
for quantum networks, New J. Phys. 20, 53054 (2018).

[17] G. Vidal, Class of quantum many-body states that can be
efficiently simulated, Phys. Rev. Lett. 101, 110501 (2008).

[18] Isaac H. Kim and Brian Swingle, Robust entangle-
ment renormalization on a noisy quantum computer,
ArXiv:1711.07500.

[19] Joseph Emerson, Etera Livine, and Seth Lloyd, Conver-
gence conditions for random quantum circuits, Phys. Rev.
A—At., Mol. Opt. Phys. 72, 060302 (2005).

[20] Andris Ambainis and Joseph Emerson, 22nd Annual IEEE
Conference on Computational Complexity (IEEE Computer
Society, San Diego, CA, 2007), pp. 129–140.

[21] Alexander M. Dalzell, Nicholas Hunter-Jones, and Fer-
nando G. S. L. Brandão, Random quantum circuits anticon-
centrate in log depth, PRX Quantum 3, 10333 (2022).

[22] Fernando G. S. L. Brandão, Aram W. Harrow, and Michał
Horodecki, Local random quantum circuits are approxi-
mate polynomial-designs, Commun. Math. Phys. 346, 397
(2016).

[23] Jonas Haferkamp, Random quantum circuits are approxi-
mate unitary t-designs in depth O(nt5+o(1)), Quantum 6, 795
(2022).

[24] Nicholas Hunter-Jones, Unitary designs from statistical
mechanics in random quantum circuits, ArXiv:1905.12053.

[25] Aram W. Harrow and Saeed Mehraban, Approximate uni-
tary t-designs by short random quantum circuits using
nearest-neighbor and long-range gates, Commun. Math.
Phys. 401, 1531 (2023).

[26] Thomas Schuster, Jonas Haferkamp, and Hsin-Yuan
Huang, Random unitaries in extremely low depth,
ArXiv:2407.07754.

[27] Nicholas LaRacuente and Felix Leditzky, Approximate uni-
tary k-designs from shallow, low-communication circuits,
ArXiv:2407.07876.

[28] Michał Oszmaniec, Michał Horodecki, and Nicholas
Hunter-Jones, Saturation and recurrence of quantum com-
plexity in random quantum circuits, ArXiv:2205.09734.

[29] Shivan Mittal and Nicholas Hunter-Jones, Local random
quantum circuits form approximate designs on arbitrary
architectures, ArXiv:2310.19355.

[30] Chi-Fang Chen, Jeongwan Haah, Jonas Haferkamp, Yun-
chao Liu, Tony Metger, and Xinyu Tan, Incompressibil-
ity and spectral gaps of random circuits, ArXiv:2406.
07478.

[31] See Definition 2 or Fig. 1.
[32] For architectures without any regular structure, �̄ may itself

depend on depth, so this is not always an explicit for-
mula for the t-design depth. See Theorem 12 for a precise
definition of �̄.

[33] Winton G. Brown and Lorenza Viola, Convergence rates
for arbitrary statistical moments of random quantum cir-
cuits, Phys. Rev. Lett. 104, 250501 (2010).

[34] Note that our bound is based on a fixed 1D brickwork
instead of a random layer ordering. This allows us to tighten
the bound of Ref. [22] for parallel local random circuits by
a factor of 2, by skipping the factor of 1

2 relaxation of λ2 in
their Lemma 21.

[35] There is a factor-of-2 difference between our definition of
C and that of Ref. [24]. This is because we are counting
periods instead of layers.

[36] There can be no single domain wall in periodic boundary
conditions, so the leading term is now given by the two-
domain-wall sector.

[37] The connectedness is relevant because it allows the use of
SWAP gates to obtain any pairwise operation.

[38] Adriano Barenco, Charles H. Bennett, Richard Cleve,
David P. Divincenzo, Norman Margolus, Peter Shor, Tycho
Sleator, John A. Smolin, and Harald Weinfurter, Elemen-
tary gates for quantum computation, Phys. Rev. A 52, 3457
(1995).

[39] We can further tighten the bound for certain architectures
by observing that �i only needs to count layers that merge
clusters. Layers consisting of only internal edges within
already-merged clusters need not be counted.

[40] Aram W. Harrow and Richard A. Low, Random quantum
circuits are approximate 2-designs, Commun. Math. Phys.
291, 257 (2009).

[41] Dorit Aharonov, Itai Arad, Zeph Landau, and Umesh Vazi-
rani, Quantum Hamiltonian complexity and the detectabil-
ity lemma, ArXiv:1011.3445.

[42] The upper bound is N − 1 because we ignore layers with
completely disconnected cluster-merging graphs.

[43] Paul Erdős and Alfréd Rényi, On random graphs I, Publ.
Math. Debrecen 6, 18 (1959).

[44] Paul Erdős and Alfréd Rényi, On a classical problem of
probability theory, Magyar Tud. Akad. Mat. Kutató Int.
Közl. 6, 215 (1961).

040344-26

https://doi.org/10.1007/JHEP11(2016)009
https://doi.org/10.1103/PhysRevX.9.031009
https://doi.org/10.3390/e24060823
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1088/1367-2630/aac2aa
https://doi.org/10.1103/PhysRevLett.101.110501
https://arxiv.org/abs/1711.07500
https://doi.org/10.1103/PhysRevA.72.060302
https://doi.org/10.1103/PRXQuantum.3.010333
https://doi.org/10.1007/s00220-016-2706-8
https://doi.org/10.22331/q-2022-09-08-795
https://arxiv.org/abs/1905.12053
https://doi.org/10.1007/s00220-023-04675-z
https://arxiv.org/abs/2407.07754
https://arxiv.org/abs/2407.07876
https://arxiv.org/abs/2205.09734
https://arxiv.org/abs/2310.19355
https://arxiv.org/abs/2406.07478
https://doi.org/10.1103/PhysRevLett.104.250501
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1007/s00220-009-0873-6
https://arxiv.org/abs/1011.3445
https://doi.org/10.5486/PMD.1959.6.3-4.12

	I.. INTRODUCTION
	A.. Prior work
	B.. Summary of results
	C.. Structure of the proof
	D.. Definitions
	E.. Main theorems
	F.. Known values of C(q,t)

	II.. APPROXIMATE t-DESIGNS AND TENSOR NETWORK PICTURE
	III.. TRANSFER MATRIX AND THE SPECTRAL GAP
	IV.. BOUNDING THE SPECTRAL GAP
	A.. Cluster-merging picture

	V.. REDUCTION OF EACH LAYER TO 1D BRICKWORK LOOPS
	.
	1.. Structure of the graph
	2.. Cluster-merging bound

	VI.. SPECTRAL GAP OF 1D BRICKWORK LOOPS
	VII.. APPROXIMATE t-DESIGN DEPTHS
	A.. Complete periodic architectures
	B.. Incomplete layers
	C.. Aperiodic architectures

	VIII.. FURTHER EXTENSIONS
	A.. -independent bound
	B.. Nondeterministic architectures
	C.. Highly connected architectures

	IX.. RELATIONSHIP TO ARCHITECTURES THAT SCRAMBLE IN O(logN)
	X.. CONCLUSION
	. ACKNOWLEDGMENTS
	. APPENDIX A: PROPERTIES OF PROJECTOR PRODUCTS
	1.. Structure of the unit eigenspace
	2.. Bound from layer-restricted subleading singular values
	3.. Other bounds on subleading singular values
	4.. Bounds on Frobenius norms

	. APPENDIX B: PROOF OF THE 1D BRICKWORK SPECTRAL GAP FOR t=2
	. APPENDIX C: MAPPING INCOMPLETE TO COMPLETE LAYERS FOR NONINTEGER q
	. APPENDIX D: GRAPH-SPLITTING BOUNDS FOR INCOMPLETE LAYERS
	1.. Analytical bound in terms of the node degree
	2.. Log log bound on arbitrary graphs

	. APPENDIX E: NUMERICAL EVIDENCE FOR CONJECTURES
	1.. Evidence for t independence of s1D
	2.. Evidence for Conjecture 1

	. APPENDIX F: TIGHTER BOUNDS FOR BRICKWORK ARCHITECTURES OF ARBITRARY DIMENSION
	. REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

