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We demonstrate two-dimensional arrays of Bose-Einstein condensates (BECs) as a new experimental platform
with parallel quantum simulation capability. A defect-free array of up to 49 BECs is formed by loading a single
BEC with 50 000 atoms into 7 × 7 optical wells. Each BEC is prepared with independent phases, confirmed by
matterwave interference. Based on BEC arrays, we realize fast determination of the phase boundary of BECs
with attractive interactions. We also observe the stochastic collapse dynamics from the distribution of atom
numbers in the array. We show that the collapse of a BEC can occur much faster than the averaged decay of an
ensemble. The BEC arrays enable new forms of experiments to drastically increase the measurement throughput
and to quantum simulate, say, large 2D Josephson-junction arrays.
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I. INTRODUCTION

Optical tweezer arrays have emerged as a new exciting
platform to realize independent control of individual atoms,
enabling experiments on atomic qubits for applications in
quantum information and quantum metrology [1–5]. This
contrasts the optical lattice platform, which does not offer
easy control over individual atoms, but has the advantage of
keeping a large number of atoms in the quantum degenerate
regime [6].

To combine the strengths of both platforms, innovative
ideas have been investigated to employ the concept of op-
tical tweezers to manipulate multiple quantum degenerate
ensembles [7–9]. One approach is to prepare an array of Bose-
Einstein condensates (BECs) by loading a single BEC into
multiple optical or magnetic potential wells [10,11]. Based on
a few BECs in a 1D chain, quantum simulation of Josephson-
junctions has been realized [12–15]. Quantum simulation of a
2D Josephson-junction array has also been proposed based on
a 2D array of BECs [16]. In addition, each BEC in the array is
envisaged as a quantum memory unit [17–19]. Finally, since
the cycle of the BEC experiment is typically long, prepara-
tion of many BECs in an array can significantly improve the
experimental throughput and statistics.

In this paper, we demonstrate a two-dimensional (2D)
array of up to 7 × 7 BECs in a single experiment. This is
realized by adiabatically loading a single atomic BEC into
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a 2D array of optical wells, each supporting a small BEC.
By interfering the BECs in the array, we show that the BECs
after the transfer possess independent phases. We use the 2D
array to realize parallel experiments to quickly determine the
stability phase diagram of BECs with attractive interactions.
By directly comparing BECs in the array, we show that the
collapse dynamics of a BEC is stochastic in nature.

II. EXPERIMENTAL SETUP

We start the experiment by preparing a BEC of 5 × 104

cesium atoms at the scattering length a = 200a0, where a0 is
the Bohr radius. In the vertical direction, the BEC is tightly
confined to a single site of an optical lattice with trap fre-
quency ωz = 2π × 400 Hz. In the horizontal directions, the
BEC is weakly confined by a flat-bottomed square potential
well with a side length of 50 µm and barrier height h× 370 Hz,
where h = 2π h̄ is the Planck constant. The optical potential
is formed by projecting a blue-detuned light at 788 nm with a
digital micromirror device (DMD), see Fig. 1(a) and details in
Appendix A.

We divide the initial BEC into an array of M2 small BECs
by adiabatically loading the BEC into an M × M array of
potential wells formed by the DMD. The separation between
adjacent wells is d = 11.7, 8.4, 5.8 µm for M = 4, 5, and
7, respectively. The depth of the potential well is h × 20 to
h × 80 Hz, calculated from the trap frequency measurement.
The barrier between two BECs can be precisely controlled by
the laser intensity, for which we achieved stability >99.98%
based on servo control with a low-noise, high speed photode-
tector. When the barrier is much higher than the chemical
potential, tunneling between neighboring BECs is exponen-
tially suppressed and the BECs are isolated. Experiments
described in this paper proceed in this regime. Tunneling be-
comes strong and the tunneling energy is much less sensitive
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FIG. 1. Experimental preparation of two-dimensional (2D) ar-
rays of BECs. (a) A digital micromirror device (DMD) is placed at
the image plane of the atomic sample. A 788 nm beam illuminates the
DMD, which projects the desired intensity pattern on the atoms. A
pattern based on 341 × 341 micromirrors is shown, which generates
7 × 7 optical wells. Here bright pixels correspond to the micromir-
rors that reflect the light to the atoms; dark pixels correspond to the
micromirrors that do not. (b) A 1D line cut of seven optical potential
wells on the atom plane. We raise the barriers between the wells
higher than the chemical potential μ to separate individual BECs.
(c) Images of 2D array with 7 × 7, 5 × 5, and 4 × 4 BECs. Each site
contains 1000 ∼2000 atoms. The color represents the atomic density.

to the intensity instability when the barrier is low, which is a
beneficial condition to simulate Josephson junction array.

To ensure adiabaticity, the blue-detuned light is slowly
turned on in 200 ms and the scattering length is simultane-
ously ramped to a small final value of a f < 20 a0 using a
Feshbach resonance [20]. This procedure reduces the chem-
ical potential and isolates each BEC in a single well, see
Fig. 1(b). After loading, we perform in situ or time-of-flight
(TOF) imaging on the atoms to confirm the preparation
process, see examples in Fig. 1(c).

III. INTERFERENCE OF THE BEC ARRAY

To verify that the initial BEC is converted into M2 separate
BECs, we interfere them from different wells in a TOF

FIG. 2. Interference of a two-dimensional array of BECs. (a) Im-
ages of 49 BECs during the time-of-flight expansion. Here atomic
scattering length is af = 3 a0. (b) Fourier transform of the atomic
density profile (upper). Numerical simulation under the same con-
dition (lower). (c) The wave vector k f of the main side peaks in the
Fourier spectrum. Red circles are data taken at af = 3 a0; Blue circles
are data taken at af = 75 a0. The dashed line indicates the initial
BEC separation of 5.8 µm. The solid line indicates the predicted
interference wave vector k f = md/h̄t f . (d) The period of density
modulation extracted from the Fourier transform. The dashed line is
the separation between optical wells. The solid line is the predicted
spacing λ = ht f /md . Error bars show one standard deviation.

experiment. Interference of two BECs [21–23] and 1D BEC
array [24–26] were studied previously. The fringe period due
to two interfering BECs is λ = ht f /md where t f is the TOF
time and m is the atomic mass.The same fringe spacing is
observed for 1D BEC arrays with random phases [24].

We implement the interference experiment with a BEC
loaded into 7 × 7 optical wells. We quickly remove all hor-
izontal confinement, which allows the atoms from different
wells to freely expand, see Fig. 2. Clear density waves appear
when the expanding BECs overlap, see Fig. 2(a). To deter-
mine the periodicity of the waves, we Fourier transform the
atomic density distribution and extract the dominant nonzero
wavenumber k f in the momentum space (see Appendix B).
The result and the associated period λ = 2π/k f are shown in
Figs. 2(b)–2(d).

For short expansion times t f � 5 ms, there is insufficient
overlap of BECs from different wells. Thus, the period of
the density variation is simply given by the separation of
optical wells d = 5.8 µm. For t f > 6 ms, the interference
pattern emerges with a spatial period λ which increases with
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time, consistent with the theoretical prediction. Repeating the
experiment with the atomic scattering length tuned to a f = 3
and 75 a0 right before the TOF, we observe a slightly longer
period for 75 a0.

The appearance of matter interference confirms the prepa-
ration of a 2D BEC array. We further investigate the phase
coherence of the BECs in different wells by comparing our
experimental results to numerical simulation of the Gross-
Pitaevskii equation (GPE). In the simulation we find that if the
phases of the BECs are identical, the potential well spacing d
persists as the dominant length scale over hundreds of ms;
in contrast, if the phases of the BECs are random, the initial
periodicity d is rapidly replaced by the interference fringe
spacing (see Appendix B). In our experiment, the initial pe-
riodicity d only persists in the first 5 ms, and the interference
fringes spacing become dominant afterwards. Our result is
fully consistent with independent BECs prepared with random
matterwave phases.

In fact, we are working in the regime by splitting micro-
BECs with negligible tunneling. The uncertainty principle
�N�φ � 1 suggests that in the absence of particle exchange
(�N < 1), the relative phase becomes undefined �φ � π .
This resembles the loss of matterwave coherence when the
BEC enters a Mott insulator phase in deep optical lattices,
where phase coherence between neighboring sites is lost. Our
demonstration of parallel experiments were performed in this
regime. If we want to maintain the coherence, we may apply
a weaker DMD potential such that neighboring BECs remain
connected to allow particle exchange corresponding to �N �
1. This is equivalent to the superfluidity phase in an optical
lattice. Such control is feasible by reducing the intensity of
the laser that forms the DMD potential.

IV. PARALLEL EXPERIMENTS BASED
ON THE BEC ARRAY

An intriguing application of BEC arrays is to perform par-
allel experiments. One experimental cycle on a M × M BEC
array yields M2 measurements and thus increases the data
throughput. In addition, BECs can be prepared in different
conditions, which allow us to directly compare many systems
under an otherwise identical environment. Such parallel ex-
periments are less sensitive to systematics than the standard
repetitive experiments.

We demonstrate the power of parallel experiments with
BEC arrays by investigating the stability phase boundary
of BECs with negative scattering length a < 0. Collapse of
a BEC occurs when the atomic attraction or the atomic den-
sity exceeds a critical value. BEC collapse has been studied
in former experiments [27–34]. The stability condition is
theoretically calculated to be −a/� < 0.574/N [35], where
� = √

h̄/mω̄ is the harmonic length of the trap and ω̄ is the
geometric mean of the trap frequencies.

To determine the phase boundary, an array of 4 × 4 BECs
with initial scattering length 4 a0 is employed. We increase the
BEC separation to 8.4 µm and the potential barrier between
them to 4 nK to ensure the independent evolution of each
BEC. The scattering length is then quickly quenched to dif-
ferent negative values a f < 0. After a hold time th, we image
the BECs and see if they have collapsed.

FIG. 3. Collapse of BECs in a 2D array with attractive inter-
actions. (a) Images of BEC arrays after a hold time of th = 50
ms. The atomic population quickly drops when BEC collapses. The
trap frequencies approximately (ωx, ωy, ωz ) = 2π×(15,15,400) Hz.
(b) Histograms of remaining atom number N normalized to the atom
number N0 at af = −4.6 a0. (c) Stability phase diagram of BEC with
attractions constructed based on 2D arrays of BECs with different
initial atom numbers N and scattering lengths af . Blue filled circles
are stable BECs and red open circles are collapsed BECs. Dashed
line shows the predicted critical scattering length ac = −0.574�/N .
Solid line is a fit to the data which yields ac = −0.51(7)�/N . See
details in Appendix C.

In situ imaging clearly distinguishes collapsed and stable
BECs after a hold time th = 50 ms, see Fig. 3(a). In stable
BECs, the atom number remains essentially unchanged, while
the atom number drops sharply to 20 ∼ 40% in the collapsed
BECs. The dichotomy of stable and collapsed BEC manifests
in the histogram of the remaining atom number, see Fig. 3(b).
Similar histograms have also been observed in [34]. The his-
togram shows two distinct peaks at 100% and 35% of the
initial number. In very few cases do we see BECs with an
atom number falling between 60 ∼ 80%. Thus, we introduce
the threshold fraction of 70%, below (above) which the BEC
is considered collapsed (stable).

The 16 BECs in the array allow us to efficiently determine
the phase boundary between stable and collapsed BECs for
various initial particle numbers and scattering lengths. We
start the experiment with an array of 4 × 4 BECs, where each
BEC is prepared with a different atom number between 1000
and 2000 by slight tuning of the trap depth of each well. We
verify that the initial population is reproducible to better than
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FIG. 4. Stochastic collapse of BECs with attractive interactions. (a) An array of 16 BECs with scattering length quenched to af = −9 a0.
We build statistics based on samples with similar initial atom numbers (within 10%), enclosed by the white dashed line. (b) Histograms of
normalized atom numbers n ≡ N/N0 based on four repeated experiments. Gaussian fit to the histogram at th = 2 ms gives the mean n̄ = 1.0
and standard deviation σ = 0.09 for stable BECs, and the fit to histogram at th = 20 ms gives n̄ = 0.4 and σ = 0.09 for the collapsed BECs.
(c) Averaged BEC survival fraction, taking 70% as threshold, remains unity for tD = 3.5(4) ms after the quench (see Appendix D). Then decay
occurs with a time constant of τ1 = 3.4(5) ms. Blue line shows an empirical fit. (d) Illustration of our statistical model, where each BEC is
stable for a stochastic time ts, followed by the collapse that occurs within a 1/e time of τ2 (black lines). (e) Histogram of atom number of all
810 samples with 0 to 20 ms hold time. Black lines are fits based on the stable and collapsed BEC distributions from panel (b). The red parts of
the histogram are excess events of BECs with intermediate atom number 0.6 � n̄ < 0.8. (f) Histogram from the theory model based on 8100
samples. By comparing data and the model, we determine the collapse process of a single BEC takes τ2 = 1.3(2) ms.

90%. The nonuniform preparation of the BECs tests the de-
pendence of the BEC stability on the atom number. Repeating
the experiment for different scattering lengths a f , we see a
clear boundary between stable and unstable BECs. Our result
shows that the critical scattering length ac reduces for BECs
with more atoms, consistent with the theoretical prediction
ac/� = −κ/N , where κ = 0.574 [35]. An independent fit to
our data yields κ = 0.51(7), see Fig. 3. Our result is consistent
with the former measurement of κ = 0.46(6) [33] and the
theoretical prediction within our measurement uncertainty.

Near the boundary between stable and collapsed BECs, we
observe unusually large fluctuations in the remaining atom
number. This, together with the double-peak structure in the
histogram, suggests that the collapse is likely a highly stochas-
tic process. This scenario has been discussed in Ref. [28]. To
better understand the collapse process, we prepare a 4 × 4
BEC array with almost identical initial atom numbers at scat-
tering length −1 a0. We then quickly quench the scattering
length near the phase boundary at a f = −9 a0 = −0.5 �/N
and monitor their evolution. We build statistics of the atom
number based on ten of the 16 sites whose initial atom num-
bers are stable and close to each other, see Figs. 4(a) and 4(b).
The variation in particle number is mainly due to the finite
size of the laser beam generating the optical potential. A laser
beam with a finite size imposes a weaker optical potential
away from the beam center and thus reduces the atom number
and, to a lesser extent, the particle number stability of micro-
BECs far from the center. This issue is solvable with a stronger
laser beam with a larger beam size or a laser beam engineered
to have a uniform intensity profile. After th = 4 ms, BECs start
collapsing and we again observe two peaks in the histogram,
indicating some BECs remain stable while some have fully

collapsed. After 20 ms, almost all BECs have collapsed. Based
on 810 samples, an ensemble average of the survival fractions
shows that BECs remain stable for a delay time of tD = 3.5(4)
ms and then collapse occurs with an averaged 1/e lifetime of
τ1 = 3.4(5) ms, see Fig. 4(c).

During the collapse process, the two-peak structure in the
histogram persists. The rarity of events between the two peaks
suggests that the collapse dynamics proceeds very quickly.
Thus, almost all BECs are found to be either stable or fully
collapsed. In other words, few BECs are recorded in the mid-
dle of the collapse process. This is analogous to the radiative
decay of heavy elements, where the half-life can be much
longer than the time scale of the nuclear reaction.

We construct a stochastic model to describe the decay of
metastable BECs with attractive interactions. After quenching
the magnetic field, we assume each BEC takes a duration of
tD to reach the atomic density that is high enough to initiate
the collapse process. This observation is consistent with pre-
vious works [34,36,37] and is explained by the development
of modulation instability [37,38]. The collapse then occurs
stochastically with a time constant of τ1.

We introduce a microscopic time scale τ2 in the model to
characterize the duration of the collapse process of a single
BEC. To extract τ2, we numerically calculate the histogram
for different τ2 and compare with the measurement (see
Appendix D). We focus on the events falling between the
two peaks in the histogram for the atom number between
60 ∼ 80% and show that among 810 BEC samples in the
2D arrays, less than 5% of the events are between the two
peaks that cannot be accounted for by the initial and collapsed
BEC atom number distributions. The events falling in this
range indicate the BECs that are in the middle of the collapse
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process. These events are marked red in Figs. 4(e) and 4(f).
The scarcity of these events indicates that collapse in a BEC
occurs so fast that one can hardly capture the BECs in the
decay process. By comparing with the numerical model (see
Appendix D), we determine the microscope collapse time
scale to be τ2 = 1.3(2) ms.

The stable time tD = 3.5(4) ms and the decay time of
τ1 = 3.4(5) ms suggest that the BECs can remain stable for
approximately 7 ms. Once the collapse occurs, however, the
BEC decays rapidly within 1.3(2) ms. This picture is illus-
trated in Fig. 4(d).

In the mean field picture, the metastability of BECs with
small attraction comes from the quantum pressure that bal-
ances the attraction [39]. When the attraction approaches the
critical value a f → ac, however, stochastic collapse of the
BECs can occur due to the suppressed kinetic energy barrier,
which can be overcome by thermal or quantum fluctuations
of the BECs. Our picture also explains the observation in
the 85Rb BEC experiment [36], where the averaged collapse
dynamics is found to be much slower than the theory expecta-
tion [40]. This is because the averaged lifetime of metastable
BECs can be much longer than the microscopic time scale to
collapse a single BEC.

V. CONCLUSION

In summary, we demonstrate three forms of experiments
with 2D BEC arrays. First, matterwave interference of 49
BECs shows that the each BEC acquires an independent
phase. Second, when each BEC is prepared differently, we
realize fast mapping of the phase diagram. Finally, parallel
experiments on arrays of BECs with attractive interactions
reveal the stochastic nature of the collapse. Collapse of a
single BEC can occur much faster than the ensemble-averaged
decay.

The new forms of parallel experiments to quickly extract
phase diagrams and to reveal the stochastic decay of attractive
BECs highlight the unique strength and potential of the BEC
array as a new quantum simulation platform. Each micro-BEC
in the array may also serve as a memory unit for scalable
quantum information processing. Additionally, each BEC can
serves as an atom interferometer for detection of acceleration
and rotation [41]. Compared to using lattices, a DMD device

FIG. 5. Optical potentials for trapping initial single BEC (a) and
an array of M2 BECs (b). (a) Initially, a single BEC with high
chemical potential is confined by four walls generated by the DMD.
(b) After reducing the scattering length, the BEC is converted into an
array of smaller BECs, each confined by the optical wells.

FIG. 6. Determination of the density profile periodicity. (a) Sim-
ulated 2D density in real space of a BEC sample after 20 ms TOF.
(b) Fourier transform of the simulated 2D density from (a). (c) In-
tegrated Fourier transform in the kx direction (blue dots). Fitting
the central peak and two side peaks (red line) yields the density
periodicity.

offers greater flexibility: the spacing between two sites is
more adjustable, site resolution can be easily achieved with
a standard objective, and the potential of individual wells can
be tuned independently. With sufficient atoms in a BEC, our
scheme can be easily generalized to prepare 100 to 1000 BECs
in a single experiment. Such quantum gas array platform will
invite more innovations in research on quantum simulation
and quantum information processing.
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APPENDIX A: PREPARATION OF A TWO-DIMENSIONAL
(2D) ARRAY OF BOSE-EINSTEIN CONDENSATES (BECS)

Our experiment begins by preparing approximately 5 ×
104 atoms in a three-dimensional BEC at the scattering length
a = 200 a0, where a0 is the Bohr radius. Then, we gradually
turn on a DMD potential with shallow 2D wells and a repul-
sive square boundary in 200 ms [Fig. 5(a)]. Next, we turn on
a vertical lattice to transfer the BEC into a single lattice site
in 600 ms. At the same time, we ramp down the scattering
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FIG. 7. Gross-Pitaevskii equation(GPE) simulation of interference in a BEC array with random and constant relative phases. (a) Time
evolution of a 2D array of BECs in free space, where the phases of the BECs in different sites are random. (b) Time evolution of a 2D array
of BECs in free space, where the phases of the BECs are constant. (c) The wave vector k f corresponds to the main side peaks in the Fourier
spectrum (as described in the main text). Red circles correspond to BECs with random phases, following k f = md/h̄t f , as indicated by the
solid line. (d) Blue circles correspond to BECs with constant phases, following the initial BEC separation, as indicated by the dashed line.

length to a = 20 a0 in 300 ms. As scattering length decreases,
the chemical potential drops, causing the atoms to settle into
the shallow wells. Next, we switch the DMD pattern to turn
off the repulsive square boundary [Fig. 5(b)], allowing the hot
atoms to escape. Finally, we tune the scattering length a to an
even lower value (4 a0 for experiments in Fig. 3 and −1 a0 for
experiments in Fig. 4) before proceeding to the experiments
described in main text.

APPENDIX B: DETERMINATION OF FRINGE PERIOD
AND GROSS-PITAEVSKII EQUATION(GPE) SIMULATION

First, we perform a Fourier transform on the density profile
to obtain the atomic distribution in reciprocal space [Figs. 6(a)
and 6(b)]. Since the system is symmetrical in the kx and ky

directions, we sum over the ky direction to obtain the inte-
grated 1D density profile [Fig. 6(c)] and extract the period in
the kx direction. We determine the density periodicity from
the positions of the dominant side peaks in the momentum
space. To obtain the positions of the side peaks at kx = ±k f ,
we simultaneously fit the central peak and the two side peaks
using a sum of three Gaussians [Fig. 6(c)].

We utilize GPELab [42,43], which is based on the Gross-
Pitaevskii equation (GPE), to simulate the experiment. To
speed up the calculation, we assume the system is a 2D gas
confined in the x-y plane, rather than conducting a 3D simula-
tion. In the z direction, the system is in the ground state of a
harmonic trap with a trap frequency of 2π × 400 Hz. We use
the simulation scheme Relaxation as described in Ref. [43]
to evolve the system from ts = 0 to 30 ms. The time step for
the simulation is set to 0.005 ms. At ts = 0 ms, the sample is
released into free space. The spatial range in both the x and y
directions spans from −160 to 160 µm, and the space grid is
defined with a size of 513 × 513. The initial wave function
consists of a 15 × 15 BEC array with each site containing
800 atoms. The distance between neighboring sites is d =
5.8 µm. In Fig. 7(a), the phases of different sites are set to
random value, whereas in Fig. 7(b) they are set to be uniform.
As the number of sites in the array increases, the interference
pattern for a random phase case becomes more obvious, which
is consistent with the result in 1D arrays [24].

The time-evolution results are presented in Fig. 7. When
the initial relative phases are random, an interference pattern
emerges after a few ms of evolution, as shown in Fig. 7(a).
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FIG. 8. Determination of the fitting constant κ . (a) If a data point
lies on the incorrect side of the boundary, as defined by Eq. (C1), for
example, red circles to the left of the solid line and blue circles to
the right of the solid line, we calculate the distance D from such
a point to the boundary. The loss function is then calculated by
summing distances for all such data points. (b) The variation of the
loss function with κ is shown, where the loss function reaches its
minimum at κ = 0.51(7), as indicated by the dashed line.

The periodicity of the interference pattern is more clear in
reciprocal space, as evidenced by the bottom row of Fig. 7(a).
Thus, we determine the periodicity in Fourier space. The
simulated k f for the case of random phases approximately
follows the solid line in Fig. 7(c), given by λ = h̄t f /md ,
with λ = 2π/k f . This simulation result is consistent with our
experiment observations.

On the other hand, if the initial phases of BECs are
uniform, the periodicity remains constant throughout an evo-
lution time of 30 ms, as depicted in Fig. 7(b). This result
indicates that the period of the density is preserved by the
initial period over an extended duration. The simulated k f for
the case of uniform phases does not match our experimental

FIG. 9. Determination of τ2 through simulation. (a) Events that
initiate the collapse process from 100%. (b) The histogram depicts
the atom numbers obtained from simulations. Black lines are fits
based on the distributions of stable and collapsed BECs. The red
parts of the histogram represent the excess of events of BECs with
intermediate atom numbers in the range 0.6 < n̄ < 0.8. (c) The
fraction of excess events. The blue line represents the change in
the residual fraction as a function of τ2. The black line marks the
position of the residual fraction from our experiment data, and the
red dashed line corresponds to τ2 = 1.3(2) ms determined from
the simulation.
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observations. Therefore, we conclude that the BEC samples in
our experiment have random phases.

APPENDIX C: DETERMINATION OF THE BOUNDARY
BETWEEN STABLE AND COLLAPSED BEC

On the boundary of noncollapsed and collapsed samples,
the reciprocal of the atom number 1/N is expected to be
proportional to the negative scattering length ac. Our task is
to determine the proportionality constant κ , such that

ac/� = −κ/N, (C1)

where ac denotes the critical scattering length at which the
BEC collapses with atom number N , � = √

h̄/mω̄ represents
the harmonic oscillator length of the trap, and ω̄ denotes the
geometric mean of the trap frequencies.

Based on the experiment data shown in Fig. 3, we use the
least squares method to determine the optimal value of κ . The
first step is to define a loss function. For a given parameter κ ,
we could draw a line lκ . We assume that the samples to the
left of this line correspond to noncollapsed samples [depicted
as blue dots in Fig. 8(a)] and those to the right to collapsed
samples [depicted as red circles in Fig. 8(a)]. If a data point is
misclassified, such as a red circle falling on the left side, it is
considered an error point. We measure the horizontal distance
D [as depicted in Fig. 8(a)] from the error points to the line lκ ,
and the sum of squares of these D is computed as the loss. We
plot the loss as a function of κ [Fig. 8(b)], and determine the
optimal κ value that minimizes the loss function. Our result of
κ = 0.51(7) is reported in the main text.

APPENDIX D: STOCHASTIC MODEL OF BEC COLLAPSE
AND SIMULATIONS TO DETERMINE tD AND τ2

As detailed in the main text, our stochastic model is com-
posed of two steps. In the first step, as the instability of BEC
grows, the atom number remains constant for a duration ts,
which we treat as a random variable. In the second step, the
BEC begins to collapse, resulting in an exponential decrease
in the atom number, characterized by a time constant τ2.

From the experiment, we know that the probability distri-
bution function (PDF) of the random variable tD = 3.5(4)ms
is composed of two parts. Initially, as the modulation instabil-
ity requires time tD = 3.5(4) ms to develop [37], for ts < tD,
the probability of collapse is zero. Subsequently, after tD, the
probability of collapse would decrease with a time constant of
τ1 = 3.4(5) ms. Utilizing this PDF, we could generate 10 000
samples of ts [Fig. 9(a)].

For the simplicity in the simulation, we use normalized
atom numbers. The initial atom number N0 is set to 1. Af-
ter one BEC fully collapsed, approximately 40% of atoms
remain. For a given sample, after a time evolution th, if th � ts,
the atom number Nt remains unchanged. If th > ts, Nt will
decay to e−(th−ts )/τ2 × (1 − 0.4) + 0.4.

Additionally, beyond this idealized process, there is fluc-
tuation in the atom number due to imperfections in loading.
We model this fluctuation as a Gaussian distribution with a
standard deviation σ = 0.09. This statistical variation is then
added to the atom number to obtain the final atom number Nt .
We set th to range from 0 ms to 20 ms with a spacing of 1 ms.

FIG. 10. Dependence of τ2 on the shortest trapping period. Stars
indicate simulated results based on the GPE, and the dashed line rep-
resents the condition where τ2 equal to half of the shortest trapping
period. We find that simulated results do not always align with the
dashed line.

Subsequently, we obtain the histogram of all events at all time
th [Fig. 9(b)].

From the experiment, we observe that the atom numbers of
noncollapsed and collapsed samples follow two Gaussian dis-
tributions, each with a relative standard deviation σ = 0.09,

and mean values centered at 1 and 0.4, respectively, as de-
picted by black solid lines in Fig. 4(b). Therefore, we fit the
histogram with Gaussian distributions to represent the distri-
butions of noncollapsed and collapsed samples. There would
be excess parts, particularly between 60% to 80% [Fig. 9(b),
and Figs. 4(e) and 4(f)]. We treat the residual part as samples
that are in the middle of the process of losing particles, and
calculate the fraction of such residual samples as a function
of τ2 [Fig. 9(c)]. In the experiment, this fraction is measured

FIG. 11. Dependence of τ2 on the trapping period in the loose (x
and x) directions. Stars indicate simulated results. When the trapping
periods in the loose (x and y) directions become shorter, τ2 is also
smaller.
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to be 4.9%. Based on this measurement, we determine the
optimal value of τ2 that matches this fraction to be 1.3(2) ms.
We also apply different threshold values of 62.5% ∼ 77.5%
and 65% ∼ 75% and obtain τ2 = 1.1 ms and 1.2 ms, respec-
tively. These values are consistent with the result of 1.3(2)
ms in the main text, and confirm that the estimation of τ2

is insensitive to the range of our choice. Based on the time
scale given in Ref. [37], we find that the 10% fluctuation in
the initial number of atom N would lead to an approximately
4% uncertainty in tD and τ1, which is within the uncertainty
from our fitting.

During the experiments, we linearly ramp the scattering
length from −a0 to the phase boundary −9a0 within 1 ∼ 2
ms, which is short compared to delay time tD and τ1. Since
the modulation instability would start only when the scattering
length reaches the critical scattering length, the finite ramp
speed would only very slightly extend tD and does not affect
the estimation of τ1 and τ2.

In Refs. [40,44–48], the Gross-Pitaevskii equation (GPE)
with a three-body loss term is used to simulate the collapse
process. We also apply this method to our system. With the
current trapping period and a three-body loss coefficient of
7 × 10−28 cm6/s, the decay time is calculated to be τ2 = 1.3
ms. By maintaining the trapping periods in the x and y direc-
tions and varying the shortest trapping period (z direction),
we observed that τ2 is not always exactly half of the shortest
trapping period (Fig. 10). Furthermore, we set the shortest
trapping period to be 2.5 ms and vary the trapping period in
the loose directions (x and y) from 30 ms to 120 ms. Based on
the simulation, we found that τ2 also depends on the trapping
period in the x and y directions (Fig. 11).

In general, a smaller trapping period results in a higher
initial density. The cloud accumulates at the bottom of the
trap more rapidly and reaches a larger density. The higher
initial density and faster dynamics contribute to a more rapid
three-body loss and a smaller τ2.

[1] A. M. Kaufman and K.-K. Ni, Quantum science with optical
tweezer arrays of ultracold atoms and molecules, Nat. Phys. 17,
1324 (2021).

[2] G. Tóth and I. Apellaniz, Quantum metrology from a quantum
information science perspective, J. Phys. A: Math. Theor. 47,
424006 (2014).

[3] X. Zhang and J. Ye, Precision measurement and frequency
metrology with ultracold atoms, Natl. Sci. Rev. 3, 189 (2016).

[4] M. F. Riedel, P. Böhi, Y. Li, T. W. Hänsch, A. Sinatra, and
P. Treutlein, Atom-chip-based generation of entanglement for
quantum metrology, Nature (London) 464, 1170 (2010).

[5] L. Pezze, A. Smerzi, M. K. Oberthaler, R. Schmied, and
P. Treutlein, Quantum metrology with nonclassical states of
atomic ensembles, Rev. Mod. Phys. 90, 035005 (2018).

[6] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with
ultracold gases, Rev. Mod. Phys. 80, 885 (2008).

[7] Y. Wang, S. Shevate, T. M. Wintermantel, M. Morgado, G.
Lochead, and S. Whitlock, Preparation of hundreds of micro-
scopic atomic ensembles in optical tweezer arrays, npj Quantum
Inf. 6, 54 (2020).

[8] J. Trisnadi, M. Zhang, L. Weiss, and C. Chin, Design and
construction of a quantum matter synthesizer, Rev. Sci. Instrum.
93, 083203 (2022).

[9] A. W. Young, W. J. Eckner, N. Schine, A. M. Childs, and
A. M. Kaufman, Tweezer-programmable 2D quantum walks in
a Hubbard-regime lattice, Science 377, 885 (2022).

[10] L. Fallani, C. Fort, J. E. Lye, and M. Inguscio, Bose-Einstein
condensate in an optical lattice with tunable spacing: transport
and static properties, Opt. Express 13, 4303 (2005).

[11] S. Jose, P. Surendran, Y. Wang, I. Herrera, L. Krzemien, S.
Whitlock, R. McLean, A. Sidorov, and P. Hannaford, Periodic
array of Bose-Einstein condensates in a magnetic lattice, Phys.
Rev. A 89, 051602 (2014).

[12] F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi,
A. Trombettoni, A. Smerzi, and M. Inguscio, Josephson junc-
tion arrays with Bose-Einstein condensates, Science 293, 843
(2001).

[13] R. Gati, M. Albiez, J. Foelling, B. Hemmerling, and M. K.
Oberthaler, Realization of a single Josephson junction for
Bose–Einstein condensates, Appl. Phys. B 82, 207 (2006).

[14] R. Gati and M. K. Oberthaler, A bosonic Josephson junction,
J. Phys. B: At. Mol. Opt. Phys. 40, R61 (2007).

[15] B. P. Anderson and M. A. Kasevich, Macroscopic quantum
interference from atomic tunnel arrays, Science 282, 1686
(1998).
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