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ABSTRACT

Proteins, serving as the fundamental architects of biological processes, interact with ligands to perform a myriad of functions essential for life.
Designing functional ligand-binding proteins is pivotal for advancing drug development and enhancing therapeutic efficacy. In this study, we
introduce ProteinReDiff, an diffusion framework targeting the redesign of ligand-binding proteins. Using equivariant diffusion-based genera-
tive models, ProteinReDiff enables the creation of high-affinity ligand-binding proteins without the need for detailed structural information,
leveraging instead the potential of initial protein sequences and ligand SMILES strings. Our evaluations across sequence diversity, structural
preservation, and ligand binding affinity underscore ProteinReDiff’s potential to advance computational drug discovery and protein
engineering.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/4.0000271

I. INTRODUCTION

Proteins, often referred to as the molecular architects of life, play
a critical role in virtually all biological processes. A significant portion
of these functions involves interactions between proteins and ligands,
underpinning the complex network of cellular activities. These interac-
tions are not only pivotal for basic physiological processes, such as sig-
nal transduction and enzymatic catalysis, but also have broad
implications in the development of therapeutic agents, diagnostic tools,
and various biotechnological applications.1–3 Despite the paramount
importance of protein–ligand interactions, the majority of existing
studies have primarily focused on protein-centric designs to optimize
specific protein properties, such as stability, expression levels, and spe-
cificity.4–8 This prevalent approach, despite leading to numerous
advancements, does not fully exploit the synergistic potential of opti-
mizing both proteins and ligands for redesigning ligand-binding pro-
teins. By embracing an integrated design approach, it becomes feasible
to refine control over binding affinity and specificity, leading to appli-
cations such as tailored therapeutics with reduced side effects, highly
sensitive diagnostic tools, efficient biocatalysis, targeted drug delivery

systems, and sustainable bioremediation solutions,9–11 thus illustrating
the transformative impact of redesigning ligand-binding proteins
across various fields.

Traditional methods for designing ligand-binding proteins have
relied heavily on experimental techniques, characterized by systematic
but often inefficient trial-and-error processes.12–14 These methods,
while foundational, are time-consuming, resource-intensive, and
sometimes fall short in precision and efficiency. The emergence of
computational design has marked a transformative shift, offering new
pathways to accelerate the design process and gain deeper insights into
the molecular basis of protein–ligand interactions. However, even with
the advancements in computational approaches, significant challenges
remain. Many existing models demand extensive structural informa-
tion, such as protein crystal structures and specific binding pocket
data, limiting their applicability, especially in urgent scenarios like the
emergence of novel diseases.15–17 For instance, during the outbreak of
a new disease like COVID-19, the spike proteins of the virus may not
have well-characterized binding sites, delaying the development of
effective drugs.18,19 Furthermore, the complexity of binding
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mechanisms, including allosteric effects and cryptic pockets, adds
another layer of difficulty.20,21 Specifically, many proteins do not
exhibit clear binding pockets until ligands are in close vicinity, necessi-
tating extensive simulations to reveal potential binding interfaces.21,22

While molecular dynamics simulations offer detailed atomistic insights
into binding mechanisms, they often prove inadequate for designing
high-throughput sequences due to high computational cost.9,23 This
complexity underscores the need for a drug design methodology that
is agnostic to predefined binding pockets.

Our study addresses those identified challenges by introducing
ProteinReDiff, a Protein Redesign framework based on Diffusion
models. Originating from the foundational concepts of the Equivariant
Diffusion-Based Generative Model for Protein–Ligand Complexes
(DPL),24 ProteinReDiff incorporates key improvements inspired by
the representation learning modules from the AlphaFold2 (AF2) archi-
tecture.25 Specifically, we integrate the Outer Product Update (adapted
from outer product mean of AF2), single representation attention
(SRA) [adapted from multiple sequence alignment (MSA) row atten-
tion module], and Triangle Multiplicative Update modules into our
Residual Feature Update procedure. These modules collectively
enhance the framework’s ability to capture intricate protein–ligand
interactions, improve the fidelity of binding affinity predictions, and
enable more precise redesigns of ligand-binding proteins.

The framework integrates the generation of diverse protein
sequences with blind docking capabilities. Starting with a selected pro-
tein–ligand pair, our approach stochastically masks amino acids and
equivariantly denoises the diffusion model to capture the joint distri-
bution of ligand and protein complex conformations (Fig. 1). Another
key feature of our method is blind docking, which predicts how the
redesigned protein interacts with its ligand without the need for

predefined binding site information, while relying solely on initial pro-
tein sequences and ligand SMILES strings.26 This streamlined
approach significantly reduces reliance on detailed structural data,
thus expanding the scope for sequence-based exploration of protein–
ligand interactions.

In summary, the contributions of our paper are outlined as
follows:

• We introduce ProteinReDiff, an efficient computational framework
for ligand-binding protein redesign, rooted in equivariant diffusion-
based generative models. Our innovation lies in integrating AF2’s
representational learning modules to enhance the framework’s abil-
ity to capture intricate protein–ligand interactions.

• Our framework enables the design of high-affinity ligand-binding
proteins without reliance on detailed structural information, rely-
ing solely on initial protein sequences and ligand SMILES strings.

• We comprehensively evaluate our model’s outcomes across multiple
design aspects, including sequence diversity, structure preservation,
and ligand binding affinity, ensuring a holistic assessment of its
effectiveness and applicability in various contexts.

II. RELATED WORK
A. Traditional approaches in protein design

Protein design has historically hinged on computational and
experimental strategies that paved the way for modern advancements
in the field. These foundational methodologies emphasized the balance
between understanding protein structure and engineering novel func-
tionalities, albeit with inherent limitations in scalability and precision.
Key traditional approaches include the following:

FIG. 1. Overview of the proposed framework. The process begins with utilizing a protein amino acid sequence and a ligand SMILES string as inputs. The joint sequence and
structural diffusion process include input featurization, residual feature updates, and equivariant denoiser, ultimately yielding novel protein sequences alongside their corre-
sponding Ca protein backbone (gray) and ligand (red) in 3D complexes.
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• Rational Design27–29 focused on introducing specific mutations
into proteins based on known structural and functional insights.
This method required an in-depth understanding of the target
protein structures and how changes might impact its function.

• Directed Evolution30–33 mimicked natural selection in the labo-
ratory, evolving proteins toward desired traits through iterative
rounds of mutation and selection. Despite its effectiveness in dis-
covering functional proteins, the process was often labor-
intensive and time-consuming.

These traditional methods have been instrumental in advancing
our understanding and capability in protein design. However, their
limitations in terms of efficiency, specificity, and the broad applicabil-
ity of findings highlighted the need for more versatile and scalable
approaches. As the field progressed, the integration of computational
power and biological understanding opened new avenues for innova-
tion in protein design, leading to the exploration and adoption of more
advanced methodologies.

B. Deep generative models in protein design

Since their inception, deep generative models have significantly
advanced fields like computer vision (CV)34 and natural language
processing (NLP),35 sparking interest in their application to protein
design. This enthusiasm has led to numerous studies that harness these
models for innovating within the protein design area. Among these,
certain types of deep generative models have distinguished themselves
through their effectiveness and the promising results they have
achieved, including:

• Variational Autoencoders (VAEs) are utilized to explore diverse
chemical spaces by learning rich latent representations of protein
sequences, enabling the generation of novel sequences through
latent space manipulation.36–38

• Autoregressive models predict the probability of each amino
acid in a sequential manner, facilitating the generation of coher-
ent and functionally plausible protein sequences.39,40

• Generative adversarial networks (GANs) employ two networks
that work in tandem to produce protein sequences indistinguish-
able from real ones, enhancing the realism and diversity of gener-
ated designs.41,42

• Diffusion models represent a step forward by gradually trans-
forming noise into structured data, simulating the complex pro-
cess of folding sequences into functional proteins.43–46

However, the majority of these studies have focused on protein-
centric designs, with a noticeable gap in research that integrates both
proteins and ligands for the purpose of redesigning ligand-binding
proteins. Such integration is crucial for a holistic understanding of the
intricate dynamics between protein structures and their ligands, a
domain that remains underexplored.

C. Current approaches in ligand-binding protein
redesign

1. Heavy reliance on detailed structural information

Contemporary computational methodologies for designing pro-
teins that target specific surfaces predominantly rely on structural
insights from native complexes, underscoring the critical role of

fine-tuning side chain interactions and optimizing backbone configu-
rations for optimal binding affinity.15–17,44,47,48 These strategies often
initiate with the generation of protein backbones, employing inverse
folding techniques to identify sequences capable of folding into these
pre-designed structures.6,7,48,49 This approach signifies a paradigm
shift by prioritizing structural prediction ahead of sequence identifica-
tion, aiming to produce proteins that not only fit the desired confor-
mations for potential ligand interactions but also navigate around the
challenge of undefined binding sites. Despite the advantages, including
the potential of computational docking to create binders via manipula-
tion of antibody scaffolds and varied loop geometries,36,50,51 a notable
challenge persists in validating these binding modes with high-
resolution structural evidence. Additionally, the traditional focus on a
limited array of hotspot residues for guiding protein scaffold place-
ment often restricts the exploration of possible interaction modes, par-
ticularly in cases where target proteins lack clear pockets or clefts for
ligand accommodation.22,52

2. Limited training data and lack of diversity

Existing approaches often rely on a limited set of training data,
which can restrict the diversity and generalizability of the resulting
models. For instance, datasets like PDBBind provide detailed ligand
information, but their scope is limited.53 This limitation is further
compounded when protein datasets lack corresponding ligand data,
reducing the effectiveness of the training process. Traditional method-
ologies also tend to focus on a narrow range of protein–ligand interac-
tions, potentially overlooking the broader spectrum of possible
interactions.

3. Single-domain denoising focus

Previous methodologies typically concentrate on denoising either
in sequence space or structural space, but not both. Approaches like
ProteinMPNN,6 LigandMPNN,17 and MIF48 primarily operate in
sequence space, while others like DPL function in structural space.24

This single-domain focus can limit the ability to capture the full com-
plexity of protein–ligand interactions, which inherently involve both
sequence and structural dimensions. Consequently, these methodolo-
gies may fall short of accurately predicting the functional capabilities
of redesigned proteins.

4. Challenges in generating diverse sequences with
structural integrity

While some approaches prioritize sequence similarity to generate
functional proteins, they often do so at the expense of structural integ-
rity. For example, ProteinMPNN and CARP focus heavily on sequence
similarity, which can result in a lack of diversity and flexibility in the
generated sequences.6,7 This limitation can hinder the ability to explore
a wider range of functional conformations, reducing the effectiveness
of the protein design process.

5. Key improvements of ProteinReDiff

We address the weaknesses of available methodologies by inte-
grating diverse datasets, employing a dual-domain denoising strategy,
and ensuring the generation of diverse sequences while maintaining
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structural integrity. Our approach utilizes only protein sequences and
ligand SMILES strings, eliminating the need for detailed structural
information. By combining PDBBind53 and CATH54 datasets, we
effectively double our training data, enhancing protein representations.
Our equivariant and KL-divergence loss functions enable denoising
across both sequence and structural dimensions, capturing the full
complexity of protein–ligand interactions. This approach maintains
structural fidelity and promotes sequence diversity, overcoming the
limitations of methodologies prioritizing sequence similarity at the
expense of diversity.

III. BACKGROUND
A. Protein language models (PLMs)

Protein language models (PLMs) harness the power of natural
language processing (NLP) to unravel the intricate latency embedded
within protein sequences. By analogizing amino acid sequences to
human language sentences, PLMs unlock profound insights into pro-
tein functions, interactions, and evolutionary trajectories.55 These
models leverage advanced text processing techniques to predict struc-
tural, functional, and interactional properties of proteins based solely
on their amino acid sequences.56–59 Their adoption in protein design
has catalyzed significant progress, with studies leveraging PLMs to
translate protein sequence data47,60–62 into actionable insights, thus
guiding the precise engineering of proteins with targeted functional
attributes.

Mathematically, a PLM can be represented as a function F that
maps a sequence of amino acids S ¼ ½s1; s2;…; sn�, where si denotes
the i-th amino acid in the sequence, to a high-dimensional feature
space that encapsulates the protein’s structural and functional
properties

X ¼ FðSÞ; X 2 Rd; (1)

where X represents the continuous representation or embedding
derived from the sequence S and d represents the dimensionality of the
embedding space, determined by the PLM’s architecture. This embed-
ding captures the complex dependencies and patterns underlying the
protein’s structural information and biological functionality. Through
training on known sequences and structures, PLMs discern the “gram-
mar” governing protein folding and function, facilitating accurate
predictions.

We employ the ESM-2 model,59 a state-of-the-art protein lan-
guage model with 650 � 106 parameters, pre-trained on nearly
65� 106 unique protein sequences from the UniRef63 database, to fea-
ture initial masked protein sequences. ESM-2 enriches the latent repre-
sentation of protein sequences, bypassing the need for conventional
multiple sequence alignment (MSA) methods. By incorporating struc-
tural and evolutionary information from input sequences, ESM-2 ena-
bles us to unravel interaction patterns across protein families for
effective ligand targeting. This understanding is crucial for designing
and optimizing ligand-binding proteins.

B. Equivariant diffusion-based generative models

We utilize a generative model driven by equivariant diffusion
principles, drawing from the foundations laid by variational diffusion
models64 and E(3) equivariant diffusion models.65

1. The diffusion procedure

First, we employ a diffusion procedure that is equivariant with
respect to the coordinates of atoms x, alongside a series of progressively
more perturbed versions of x, known as latent variables zt, with t vary-
ing from 0 to 1. To maintain translational invariance within the distri-
butions, we opt for distributions on a linear subspace that anchors the
centroid of the molecular structure at the origin, and designate Nx as a
Gaussian distribution within this specific subspace. The conditional
distribution of the latent variable zt given x, for any given t in the inter-
val [0, 1], is defined as

qðztjxÞ ¼ Nxðatx; r2t IÞ; (2)

where at and r2t represent strictly positive scalar functions of t, dictat-
ing the extent of signal preservation vs noise introduction, respectively.
We implement a variance-conserving mechanism where at ¼ 1� r2t
and posit that at smoothly and monotonically decreases with t, ensur-
ing a0 � 1 and a1 � 0. Given the Markov property of this diffusion
process, it can be described via transition distributions as

qðzt jzsÞ ¼ Nxðatjszs; r2tjsIÞ; (3)

for any t> s, where atjs ¼ at=as and r2tjs ¼ r2t � a2t r
2
s . The Gaussian

posterior of these transitions, conditional on x, can be derived using
Bayes’ theorem

qðzsjzt; xÞ ¼ Nxðlt!sðzt ; xÞ; r2t!sIÞ; (4)

with

lt!s ¼
asr2tjs
atjsr2s

zt þ r2sr
2
t

r2tjs
x; r2t!s ¼

r2t r
2
s

r2tjs
: (5)

2. The generative denoising process

The construction of the generative model inversely mirrors the
diffusion process, generating a reverse temporal sequence of latent var-
iables zt from t¼ 1 back to t¼ 0. By dividing time into T equal inter-
vals, the generative framework can be described as

phðxÞ ¼
ð
z
pðz1Þpðxjz0Þ

YT
i¼1

phðzti jzti�1Þ; (6)

with sðiÞ ¼ ði� 1Þ=T and tðiÞ ¼ i=T . Leveraging the variance-
conserving nature and the premise that a1 � 0, we posit
qðz1Þ ¼ Nxð0; IÞ, hence treating the initial distribution of z1 as a stan-
dard Gaussian

pðz1Þ ¼ Nxð0; IÞ: (7)

Furthermore, under the variance-preserving framework and assuming
a0 � 1, the distribution qðz0jxÞ is modeled as highly peaked.64,66 This
allows us to approximate pdataðxÞ as nearly constant within this narrow
peak region. This yields

qðxjz0Þ ¼ qðz0jxÞpdataðxÞð
~x
qðz0j~xÞpdatað~xÞ

� qðz0jxÞð
~x
qðz0j~xÞ

¼ N xðxjz0=a0; r20=a20IÞ:

(8)
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Accordingly, we approximate qðxjz0Þ through
pðxjz0Þ ¼ N xðxjz0=a0; r20=a20IÞ: (9)

The generative model’s conditional distributions are then formulated
as

phðzsjztÞ ¼ qðzsjzt ; x ¼ x̂hðzt ; tÞÞ; (10)

which mirrors qðzsjFszt ; xÞ but substitutes the actual coordinates x
with the estimates from a temporal denoising model x̂hðzt; tÞ, which
employs a neural network parameterized by h to predict x from its
noisier version zt. This denoising model’s framework, predicated on
noise prediction êhðzt ; tÞ, is articulated as

x̂hðzt ; tÞ ¼ ðzt � rt êhðzt ; tÞÞ
at

: (11)

Consequently, the transition mean lt!sðzt ; x̂hðzt ; tÞÞ is deter-
mined by

lt!sðzt; x̂hðzt; tÞÞ ¼
asr2tjs
atjsr2s

zt þ asr2t
r2tjs

x ¼ 1
atjs

zt �
r2tjs
atjsrt

êhðzt; tÞ:

(12)

IV. METHOD

In this section, we detail the methodology employed in our noise
prediction model, which is depicted in Fig. 1 and consists of three
main procedures: (1) input featurization, (2) residual feature update,
and (3) equivariant denoising. Through these steps, we transform raw
protein and ligand data into structured representations, iteratively
refine their features, and leverage denoising techniques inherent in the
diffusion model to improve sampling quality.

A. Input featurization

We develop both single and pair representations from protein
sequences and ligand SMILES string (Fig. 2). For proteins, we initially
applied stochastic masking to segments of the amino acid sequences.
The protein representation is attained through the normalization and
linear mapping of the output from the final layer of the ESM-2 model,
which is subsequently combined with the amino acid and masked
token embeddings. Additionally, for pair representations of proteins,
we leveraged pairwise relative positional encoding techniques, drawing
from established methodologies.25 For ligand representations, we
employed a comprehensive feature embedding approach, capturing
atomic and bond properties such as atomic number, chirality, connec-
tivity, formal charge, hydrogen attachment count, radical electron
count, hybridization status, aromaticity, and ring presence for atoms
and bond type, stereochemistry, and conjugation status for bonds.
These representations are subsequently merged, incorporating radial
basis function (RBF) embeddings of atomic distances and sinusoidal
embeddings of diffusion times. Together, these steps culminate in the
formation of preliminary complex representations, laying the founda-
tion for our computational analyses.

B. Residual feature update procedure

Our Residual Feature Update Procedure, as illustrated in Fig. 3,
deviates significantly from the approach employed in the original DPL

model.24 While the DPL model relied on Alphafold2’s Triangular
Multiplicative Update for updating single and pair representations,
where these representations mutually influence each other, our objec-
tive is to optimize this procedure for greater efficiency. Specifically, we
incorporate enhancements such as the Outer Product Update and sin-
gle representation attention to formulate sequence representational
hypotheses of protein structures and to model suitable motifs for bind-
ing target ligands specifically. These modules, integral to Evoformer,
the sequence-based module of AF2, play a crucial role in extracting
essential connections among internal motifs that serve structural func-
tions (i.e., ligand binding) when structural information is not explicitly

FIG. 2. Overview of the input featurization procedure of the model. Adapted from
Ref. 24 to illustrate the specific adaptations made in our model.

FIG. 3. Overview of the residual feature update procedure of the model. Adapted
from Ref. 24 to illustrate the specific adaptations made in our model.
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provided during training. Importantly, we adapt and tailor these mod-
ules to fit within our model architecture, ensuring their effectiveness in
capturing the intricate interplay between proteins and ligands.

1. Single representation attention module

The single representation attention (SRA) module, derived from
the Alphafold2 model’s MSA row attention with pair bias, accounts for
long-range interactions among residues and ligand atoms within a sin-
gle protein–ligand embedding vector. In essence, the attention mecha-
nism assigns importance to those involved in complex-based folding
to denoise the equivariant loss (Sec. IVC) in a self-supervised manner.
While the original Alphafold2 MSA row attention mechanism pro-
cesses input for a single sequence, the SRA module is designed to
incorporate representations from multiple protein–ligand complexes
concurrently. Specifically, the pair bias component of the SRA atten-
tion module captures dependencies between proteins and ligands,
which was shown to fit the attention score better than the regular self-
attention model without bias terms.67 By considering both the single
representation vector (which encodes the protein/ligand sequential
representation) and the pairwise representation vector (which encodes
protein-protein and protein–ligand interactions), this cross-attention
mechanism exchanges information between pairwise and single repre-
sentation to effectively preserves internal motifs, as evidenced by con-
tact overlap metrics.55,68 As transformer architecture is widely used for
predicting protein functions,69 we observed similar efficacy to our
binding affinity prediction in Results VB5 and Appendix B and C.
For a detailed description of the computational steps implemented in
this module, refer to Algorithm 1.

2. Outer product update

Since the SRA encodings have a shape (s, r, cm) and the pair rep-
resentation has a shape (s, r, r, cz), the outer product (OPU) layer
merges insights by reshaping SRA encodings into pair representations.
This module leverages evolutionary cues from ESM to generate plausi-
ble structural hypotheses for pair representations.70 It first calculates

the outer product of the SRA embeddings of protein–ligand pairs, then
aggregates the outer products to yield a measure of co-evolution
between every residue pair.55 Analogous to tensor product representa-
tions (TPR) in NLP, the outer product is akin to the filler-and-role
binding relationship, where each entity (i.e., amino acid residue) on a
sequence is attached to a rich functional embedding based on its rela-
tionship to one another.71–73

This process integrates correlated information of residues i and j
of a sequence s, resulting in the intermediate Kronecker product ten-
sors (.i.e., role embeddings in NLP).67,74,75 Subsequently, an affine
transformation projects those representations to hypotheses concern-
ing the relative positions of residues i and j under biophysical con-
straints. Our implementation adapts the outer product without
computing the mean to maintain the pair representations of multiple
protein–ligand complexes. For a detailed description of the computa-
tional steps implemented in this module, refer to Algorithm 2.

3. Triangle multiplicative updates

After refining the pair representation, our model interprets the
primary protein–ligand structure using principles from graph theory,
treating each residue as a distinct entity interconnected through the
pairwise matrix. These connections are then refined through triangular
multiplicative updates to account for physical and geometric con-
straints, such as triangular inequality. While the SRA weights the
importance of residues, the triangular multiplicative update acts as
another stack of transformer-based layers where any two edges affect
the third one to enforce triangle equivariance.55,76 The starting and
ending nodes propagate information in and out of neighbors in similar
fashion as the message-passing framework.67 These mechanisms
enable the model to generate more accurate representations of pro-
tein–ligand complexes, leading to improved predictive performance in
predicting binding affinities and structural characteristics.

C. Equivariant denoising

During the equivariant denoising process, the final pair represen-
tation undergoes symmetrization and is then transformed using a
multi-layer perceptron (MLP) into a weight matrix W. This matrix is
utilized to compute the weighted sum of all relative differences in
three-dimensional (3D) space for each atom, as shown in the
equation24

ALGORITHM 1. Single Representation Attention pseudocode.

Input: Single representation vector msi, pair representation vector
zsij of the i-th sequence in the set of sequences s, C¼ 65, Nhead¼ 4.
Output: Updated single representation vector ~msi with the
dimension of Cm.

1: msi  LayerNormðmsiÞ
2: qhsi; k

h
si; v

h
si  LinearNoBiasðmsiÞ qhsi; k

h
si; v

h
si 2 RC; h 2

f1;…;Nheadg
3: bhsij  LinearNoBiasðLayerNormðzsijÞÞ
4: ghsi  sigmoidðLinearðmsiÞÞ ghsi 2 RC

5: ahsij  softmaxj
1ffiffiffiffi
C
p qhsik

h
sj
T þ bhsij

� �
6: ohsi  ghsi �

P
j a

h
sijv

h
sj

7: ~msi  LinearðconcathðohsiÞÞ ~msi 2 RCm

8: returnf~msig

ALGORITHM 2. Outer product update pseudocode.

Input: Single representation vector msi of the i-th sequence in the
set of sequences s, C¼ 32.
Output: Pair representation vector zsij with the dimension of s� Cz .

1: msi  LayerNormðmsiÞ
2: asi; bsi  LinearðmsiÞ asi; bsi 2 RC

3: osij  flattenðasi � bsiÞ osij 2 RC�C

4: zsij  LinearðosijÞ zsij 2 Rs�Cz

5: returnfzsijg
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êiðzÞ ¼
X
j

WijðzÞ �
ðzi � zjÞ
jjzi � zjjj : (13)

Afterward, the centroid is subtracted from this computation, resulting
in the output of our noise prediction model ê. Additionally, it is impor-
tant to note that the described model maintains SE(3) equivariance,
meaning that

ê iðRz þ tÞ ¼
X
j

WijðRz þ tÞ
jjðRzi þ tÞ � ðRzj þ tÞjj � ððRzi þ tÞ � ðRzj þ tÞÞ;

(14)

¼ R
X
j

WijðRz þ tÞ
jjzi � zjjj � ðzi � zjÞ; (15)

¼ R
X
j

WijðzÞ
jjzi � zjjj � ðzi � zjÞ; (16)

¼ Rê iðzÞ; (17)

for any rotation R and translation t. This property is derived from the
fact that the final representation, and hence the weight matrix W,
depends solely on atom distances that are invariant to rotation and
translation.

V. EXPERIMENTS
A. Training process

1. Data curation

We curated a broad range of protein structures, including both
ligand-bound (holo) and ligand-free (apo) forms, sourced from two
key repositories: PDBBind v202053 and CATH 4.2.54 PDBBind v2020
offers a diverse collection of protein–ligand complexes, while CATH
4.2 provides a substantial repository of protein structures. This strate-
gic selection of datasets ensures our model is exposed to a wide and
varied spectrum of protein–ligand interactions and structural configu-
rations, enabling comprehensive evaluation against diverse inverse
folding benchmarks. By training on both holo and apo structures, our
approach imbues the model with a robust understanding of protein–
ligand dynamics to navigate the complexities of unseen protein–ligand
interactions.

To ensure robust model training and evaluation, we partitioned
the datasets by MMseqs2.77 The protein sets were clustered for train-
ing, validation, and testing to maintain sequence similarities between
40% and 50% and ensure unbiased training and predictions. Similar
protocols were implemented in other protein models.25,48 For ligands,
we cluster based on the Tanimoto similarity of Morgan fingerprints78

on ligand structures. Incorporating CATH 4.2 data into PDBBind not
only preserves the objectivity of the train/test/validation partitions but
also substantially decreases the similarities within ligand sets, as shown
in Table I.

Table II provides an overview of the partitioning details, facilitat-
ing a clear understanding of the distribution of samples across different
subsets of the dataset.

• PDBBind v2020: For consistency and comparability with previ-
ous studies, we first adhered to the test/training/validation split
settings outlined in the established literature,79 specifically follow-
ing the configurations defined in the respective sources for the

PDBBind v2020 datasets.80 Then, we filtered out those highly
similar sequences (above 95%) to keep the average similarities
between 40% and 50%.

• CATH 4.2: In our approach, we deliberately focused on proteins
with fewer than 400 amino acids and less similar (below 90%)
sequences from the CATH 4.2 database. This selective criterion
was chosen to prioritize smaller proteins, which often represent
more druggable targets of interest in drug discovery and develop-
ment endeavors. During both the training and validation phases,
SMILES strings of CATH 4.2 proteins were represented as aster-
isks (masked tokens) to denote unspecified ligands. Notably,
CATH 4.2 was excluded from the test set due to the absence of
corresponding ligands required for evaluating protein–ligand
interactions.

2. Loss functions

Previous models typically denoise in only one domain, such as
ProteinMPNN,6 LigandMPNN,17 and MIF48 in sequence space, and
DPL24 in structural space. These limitations restrict their ability to fully
capture the intricate interactions between proteins and ligands. To
address this, we have introduced significant modifications to the loss
function to better suit the task of ligand-binding protein redesign. By
tailoring the loss function to both sequence and structural spaces, our
approach addresses the unique challenges of protein–ligand interac-
tions. Specifically, the optimization of our model for ligand-binding
protein redesign is governed by a composite loss function L, formu-
lated as follows:

L ¼ LWS þ LKL þ LCE: (18)

a. Weighted sum of relative differences (LWS). This component
ensures the model’s sensitivity to the directional influence between
atoms, supporting the accurate prediction of the denoised structure
while maintaining physical symmetries. It is crucial for the equivariant

TABLE I. Similarity between train/validation/test sets of proteins and ligands. The val-
ues represent similarity percentages for the original PDBBind dataset vs combined
PDBBind with CATH datasets in parentheses.

Protein Validation Test

Train 36.0% (36.2%) 38.0% (42.2%)
Validation � � � 39.08% (43.5%)

Ligand Validation Test

Train 72.2% (36.1%) 9.41% (3.11%)
Validation � � � 9.37% (3.17%)

TABLE II. Data partitioning overview (unit: number of samples).

Dataset Train Validation Test

PDBBind v2020 9430 552 207
CATH 4.2 15261 939 � � �

Structural Dynamics ARTICLE pubs.aip.org/aip/sdy

Struct. Dyn. 11, 064102 (2024); doi: 10.1063/4.0000271 11, 064102-7

VC Author(s) 2024

 09 D
ecem

ber 2024 17:07:51

pubs.aip.org/aip/sdy


denoising step, enabling accurate noise prediction for atoms in the
protein–ligand complex. The loss is defined as

LWS ¼
XT
t¼1
jje� êhðz; tÞjj; (19)

where T is the total number of time steps in the diffusion process, e is
the Gaussian noise vector N ð0; IÞ, and êhðz; tÞ is the loss prediction
at time step t parameterized by a weight MLP in Sec. IVC.

b. Kullback–Leibler divergence (LKL). This component quantifies
the divergence between the model’s predictions and actual
sequence data at time step t � 1. Defined as KLðxpred t�1; seqt�1Þ, it
contrasts the predicted distribution, xpred t�1, against the true
sequence distribution, seqt�1, leveraging the diffusion process’s b
parameter for temporal adjustment. This loss is also applied in the
Protein Generator5 model to ensure the model’s predictions pro-
gressively align with actual data distributions, enhancing the accu-
racy of sequence and structure generation by minimizing the
expected divergence.81

c. Cross-entropy loss (LCE). This loss function is crucial for the
accurate prediction of protein sequences, aligning them with the
ground truth through effective classification. It denoises each amino
acid from masked latent embedding to a specific class, leveraging cate-
gorical cross-entropy to rigorously penalize discrepancies between the
model’s predicted probability distributions and the actual distributions
for each amino acid type.

3. Training performance

Throughout the training phase, we observed the model’s perfor-
mance between training and validation losses, as demonstrated in
Fig. 4. While the training loss consistently diminished, indicating effec-
tive learning, the validation loss exhibited more variability. Despite
these fluctuations, the validation loss showed an overall downward
trend, suggesting that the model is improving its generalization capa-
bilities over time. The general alignment between the downward trends
of training and validation losses indicates that the model is learning
effectively without significant overfitting.

B. Evaluation process

1. Ligand binding affinity (LBA)

Ligand binding affinity is a fundamental measure that quantifies
the strength of the interaction between a protein and a ligand. This met-
ric is crucial as it directly influences the effectiveness and specificity of
potential therapeutic agents; higher affinity often translates to increased
drug efficacy and lower chances of side effects.82 Within this context,
ProteinReDiff is evaluated on its ability to generate protein sequences
for significantly improved binding affinity with specific ligands. We uti-
lize a docking score-based approach for this assessment, where the dock-
ing score serves as a quantitative indicator of affinity. Expressed in kcal/
mol, these scores inversely relate to binding strength—lower scores
denote stronger, more desirable binding interactions.

2. Sequence diversity

Sequence diversity is crucial for exploring protein’s functional
space.83 It reflects the capacity of our model, ProteinReDiff, to traverse
the vast landscape of protein sequences and generate a wide array of
variations. To quantitatively assess this diversity, we utilize the average
edit distance (Levenshtein distance)84 between all pairs of sequences
generated by the model. This metric offers a nuanced measure of vari-
ability, surpassing traditional metrics that may overlook subtle yet sig-
nificant differences. The diversity score is calculated using the formula

Diversity Score ¼ 1

n
2

� �Xn�1
i¼1

Xn
j¼iþ1

dðSi; SjÞ; (20)

where dðSi; SjÞ represents the edit distance between any two sequences
Si and Sj. This calculation provides an empirical gauge of
ProteinReDiff’s ability to enrich the protein sequence space with novel
and diverse sequences, underlining the practical variance introduced
by our model.

3. Structure preservation

Structural preservation is paramount in the redesign of proteins,
ensuring that essential functional and structural characteristics are
maintained post-modification. To effectively measure structural pres-
ervation between the original and redesigned proteins, three key met-
rics are the template modeling score (TM Score),85 the root mean
square deviation (RMSD),86 and the contact overlap (CO).87 These
three metrics collectively provide a comprehensive assessment of struc-
tural integrity and similarity.

a. The root mean square deviation (RMSD). The root mean square
deviation (RMSD) is a measure used to quantify the distance between
two sets of points. In the context of protein structures, these points are
the positions of the atoms in the protein. The RMSD is given by the
formula

RMSDðp; p0Þ ¼ min
ðR;tÞ2SOð3Þ�R3

1
N

XN
i¼1
jjpi � ðRp0i þ tÞjj22

" #1=2

; (21)

where p ¼ ðxi; yi; ziÞNi¼1 and p0 ¼ ðx0i; y0i; z0iÞNi¼1 denote two sequences
of N 3D coordinates representing the atomic positions in the original

FIG. 4. Training history chart of ProteinReDiff, showcasing the evolution of training
and validation losses over epochs.
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and redesigned proteins, respectively. This formula calculates the mini-
mum RMSD between corresponding atoms after optimal alignment,
using the best-fit rotation R and translation t. A lower RMSD indicates
higher structural similarity, reflecting successful preservation of the
protein’s core structure.

b. TM score. TM score provides a normalized measure of struc-
tural similarity between protein configurations, which is less sensitive
to local variations and more reflective of the overall topology. The TM
score is defined as follows:

TMScoreðp; p0Þ ¼ max
ðR;tÞ2SOð3Þ�R3

1

1þ 1
N

XN

i¼1
jjpi � ðRp0i þ tÞjj22

d20

2
64

3
75;

(22)

where d0 is a scale parameter typically chosen based on the size of the
proteins. The closer the TM Score is to 1, the more similar the struc-
tures are, indicating global structural alignment.

c. Contact overlap (CO). Contact overlap (CO) provides a com-
plementary perspective to RMSD and TM score by focusing on the
preservation of local structural motifs rather than overall geometric
similarity. Several studies show that having high CO indicates protein’s
residue pairs having co-evolutionary signals87,88 and performing
related functions.89 CO quantifies the conservation of inter-atomic
contacts between original and redesigned protein structures, essential
for structural integrity and function. The metric is defined as

COðp; p0Þ ¼ jC \ C0j
jC [ C0j ; (23)

where C ¼ fði; jÞ : jjpi � pjjj < rc; i 6¼ jg and C0 ¼ fði; jÞ : jjp0i � p0jjj
< rc; i 6¼ jg represent the sets of contacts in the original and rede-
signed proteins, respectively. Here, pi and p0i are the positions of atoms
in the original and redesigned proteins, and rc is a predefined cutoff
distance that determines when two atoms are considered to be in con-
tact. A high CO score indicates strong preservation of the original con-
tacts in the redesigned structure.

4. Experimental setup

To evaluate ProteinReDiff, we employed Omegafold90 to predict
the three-dimensional structures of all designed protein sequences. The
choice of Omegafold over AF2 was favorable because Omegafold can
more accurately fold proteins with low similarity to existing proteomes,
making it suitable for proteins lacking available ligand-binding confor-
mations. Next, we utilized AutoDock Vina91 to conduct docking simula-
tions and evaluate the binding affinity between the redesigned proteins
and their respective ligands based on the predicted 3D structures. To
ensure fair comparisons and mitigate potential biases introduced by pre-
docked structures, we aligned our redesigned protein structures with ref-
erence structures before docking. This approach is crucial, particularly
because the use of pre-docked structures may favor certain conforma-
tions, leading to inaccurate evaluations. Additionally, to provide context
for our results, we compared the binding scores of our redesigned pro-
teins not only with those of the original proteins but also with proteins
generated by other protein design models. While these models may dif-
fer in sequence characteristics from those optimized for ligand binding,
comparing their scores provides insights into the relationship between
protein sequence, structure, and ligand interactions, deepening our
understanding of protein–ligand dynamics.

a. Benchmark model selection. In selecting benchmark models for
performance comparison, we focused on state-of-the-art approaches,
particularly those relevant to protein design tasks. Traditionally, protein
design has been primarily based on inverse folding, utilizing protein
structure information. Our choices encompass a range of methodologies:

• MIF,48 MIF-ST,48 and ProteinMPNN6 are notable for generating
sequences with high identity and experimental significance, uti-
lizing protein structure information.

• The Protein Generator,5 a representative of RosettaFold models,44

employs diffusion-based methods, making it an intriguing com-
parative candidate. The model also shares a similar loss function,
LKL, in sequence space with our model but diverges in modules
and training procedures (i.e., stochastic masking).

• ESMIF,49 belonging to the ESM model family,59 stands as another
competitive benchmark, emphasizing the generation of high-
quality sequences.

TABLE III. Comparison of protein design models based on input and output characteristics.

Input Output

Protein Protein Ligand Binding Protein Protein Ligand
Model Sequence Structure SMILES Pocket Sequence Structure Structure

CARP7 � � � � � � �
ESMIF49 � � � � � � �
MIF48 � � � � � � �
MIF-ST48 � � � � � � �
ProteinMPNN6 � � � � � � �
LigandMPNN17 � � � � � � �
Protein generator5 � � � � � � �
DPL24 � � � � � � �

ProteinReDiff (ours) � � � � � � �
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TABLE IV. Comparison of method performance across multiple metrics: ligand binding affinity (LBA), sequence diversity, and structure preservation. Ligand binding affinity
(LBA), TM score, and RMSD are reported as mean values with their respective margins of error.

Category Method LBA (kcal/mol) # Sequence diversity "
Structure preservation

TM Score " RMSD (Å) # CO "
Baseline CARP7 �5.6586 0.301 185.532 0.8506 0.023 3.7686 0.553 0.9226 0.003

MIF48 �5.5186 0.381 185.600 0.8776 0.020 2.9866 0.468 0.9386 0.002
MIF-ST48 �5.5966 0.330 185.584 0.8726 0.021 3.0266 0.451 0.9376 0.003
ESMIF49 �5.5556 0.326 187.512 0.8376 0.021 4.0006 0.501 0.9156 0.003

ProteinMPNN6 �5.4236 0.225 188.792 0.7146 0.026 6.8066 0.616 0.8596 0.004
LigandMPNN17 �5.7176 0.287 191.384 0.7826 0.024 4.5126 0.668 0.9156 0.008
Protein generator5 �5.6746 0.266 186.962 0.8066 0.022 4.4316 0.523 0.8996 0.003

DPL24 �5.5516 0.459 188.139 0.7886 0.024 5.0946 0.537 0.8966 0.009
Reference cases �5.8476 0.263 � � � � � � � � � � � �

ProteinReDiff (Ours) 5% masking �5.8056 0.252 185.935 0.8646 0.022 3.1976 0.470 0.9426 0.007
15% masking �6.8036 0.329 186.627 0.8456 0.023 3.6906 0.508 0.9356 0.007
30% masking �5.7696 0.244 187.877 0.8036 0.024 4.4676 0.544 0.9166 0.008
40% masking �5.6176 0.366 188.600 0.7566 0.026 5.6396 0.625 0.8966 0.008
60% masking �5.4676 0.318 190.425 0.3056 0.024 18.0566 0.773 0.7356 0.010
70% masking �5.4706 0.199 187.291 0.1476 0.004 23.1976 0.497 0.6896 0.007

FIG. 5. Comparative visualizations of protein structures, each annotated with its corresponding PDB ID. The figure includes a succinct table detailing contact overlap (CO) and
root mean square deviation (RMSD) metrics. Original protein structures are highlighted in green, and the redesigned versions by ProteinReDiff are depicted in pink.
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• CARP, while lacking ligand information, shares similar protein
input and output characteristics with our models, warranting
inclusion for comparison.

• DPL,24 originally geared toward protein–ligand complex genera-
tion, was adapted for our purposes by modifying loss functions
and incorporating a sequence prediction module, given its align-
ment with our model architecture.

• LigandMPNN,17 resembling the most to our task in designing
ligand-binding proteins, necessitates binding pocket information,
unlike our model, which emphasizes a simplified yet effective
approach for ligand-binding protein tasks.

Our model’s design prioritizes simplicity in input while achieving
effectiveness in output for ligand-binding protein tasks. For a compre-
hensive comparison of input–output dynamics across each model,
please consult Table III.

5. Results and discussion

We conducted comprehensive evaluation of ProteinReDiff, as
detailed in Table IV and visually represented in Fig. 6, across the met-
rics of ligand binding affinity, sequence diversity, and structure preser-
vation. These evaluations provide a clear depiction of the model’s
performance relative to established baselines and within its variations.

For ProteinReDiff, we aimed to capture the diverse conforma-
tions of ligand-binding proteins, recognizing that they can adopt mul-
tiple structural states. To assess these conformations, we employed
alignment metrics such as TM score, RMSD, and contact overlap
(CO). In Fig. 5, we presented several instances where the contact over-
lap appeared to be maintained, yet the RMSD is large and TM score is
low. This discrepancy suggests that while global alignment metrics like
TM score and RMSD may not adequately capture the domain shift
within these complex ensembles, the preservation of local motifs, as

FIG. 6. Visualization of method perfor-
mance across metrics. The metrics are
plotted with mean values and margins of
error. For LBA, the red bar (top right)
shows the docking score of reference
complexes. The horizontal dash lines indi-
cate the regions of 15% masking model
which is our standard for comparison.
Detailed descriptions of each baseline are
provided in Sec. V B 4.
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indicated by contact overlap, remains crucial in our framework. This
underscores the importance of capturing both global and local struc-
tural features for a comprehensive understanding of protein–ligand
interactions.

A pivotal observation from our study is ProteinReDiff’s unparal-
leled ability to enhance ligand binding affinity, particularly at a 15%
masking ratio in Fig. 6. This configuration not only surpasses the per-
formance of inverse folding (IF) models and the original DPL frame-
work but also exceeds the binding efficiencies of the original protein
designs. By incorporating attention modules from AlphaFold2,
ProteinReDiff effectively captures the complex interplay between pro-
teins and ligands, demonstrating its superiority over the original DPL
model. While other masking ratios within ProteinReDiff show varying
degrees of effectiveness, lower ratios, though at the same par as refer-
ence, do not achieve the peak LBA performance observed at 15%. For
instance, the 5% masked model emphasizes structural consistency
with a high TM score and low RMSD, but does not exhibit the same
level of binding capability as the 15% masking. These findings are also
consistent with ablation studies shown in Appendix C. Conversely,
higher masking ratios fail to strike the necessary balance between
introducing beneficial modifications and maintaining functional preci-
sion, underscoring the importance of optimizing the masking ratio.

Our analysis of sequence diversity and structure preservation
metrics reveals a delicate balance essential in protein redesign. The
15% masking ratio, identified as optimal for enhancing ligand binding
affinity in our model, also aligns closely with benchmark methods in
both sequence diversity and structure preservation. For instance,

FIG. 7. Comparative visualizations of protein–ligand complexes, each labeled with corresponding PDB IDs and accompanied by a small table showing ligand binding affinity
(LBA) before and after the redesign. Original structures are highlighted in green, while redesigned versions by ProteinReDiff appear in pink. Ligands are depicted in various col-
ors to emphasize specific binding sites and molecular interaction enhancements post-redesign.

FIG. 8. Ablation studies on ProteinReDiff’s model architecture and featurization.
The dash line indicates the baseline’s average score obtained from ProteinReDiff
without ablations.
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LigandMPNN excels in sequence diversity but faces challenges in
obtaining binding pocket inputs for various design tasks, unlike our
approach. Moreover, our models (at 30% and 40% maskings) signifi-
cantly outperform others in contact overlap, crucial for diversifying
structures while preserving functional motifs in protein redesign tasks.
This equilibrium underscores ProteinReDiff’s ability to optimize ligand
interactions without compromising the exploration of sequence diver-
sity or the integrity of original protein structures alone.

In contrast, extreme values in either sequence diversity or struc-
ture preservation, which could be seen in other masking ratios, do not
lead to optimal ligand binding affinities. This finding highlights an
inverse relationship between pushing the limits of diversity and preser-
vation and achieving the primary goal of binding enhancement. Thus,
the 15% masking ratio not only stands out for its ability to significantly
improve ligand binding affinity but also for maintaining a balanced
approach, ensuring that enhancements in functionality do not detract
from the protein’s structural and functional viability.

In Fig. 7, we compare the ligand-binding affinity (LBA) of origi-
nal and redesigned proteins by ProteinReDiff. The redesigned proteins
maintain their original folds while significantly enhancing LBA. In
ablation studies (Sec. VB6), we can apply various masking strategies
to adjust both sequence diversity and structural integrity. This
approach has potential applications in different settings to control the
affinity of ligand binders.

6. Ablation studies

Here, we conducted thorough ablation studies on ProteinReDiff’s
model architecture, featurization, and masking ratios. For complete
ablation setup, please refer to Table VII (Appendix C).

a. Interpreting model architecture. We trained ablated versions of
ProteinReDiff without the SRA or OPU modules and compared them
to the original DPL model. Initially designed for generating ensembles
of complex structures, DPL was adapted for targeted protein redesign by
adding sequence-based loss functions to generate new target sequences.

In Fig. 8, we computed the performance score by averaging the
sum of five evaluation metrics introduced in Secs. VB1–VB3. Since
the sequence diversity is not within the [0,1] range, we applied
Min-Max normalization. For LBA and RMSD, we used inverse nor-
malization to ensure that a score closer to 1.0 indicates better model
performance. The average score is then compared with the score of
baseline ProteinReDiff, which was trained without any ablations.

We observed that our model outperformed DPL by a large mar-
gin. Incorporating just the OPU module (without the SRA module)
yields better performance than DPL, indicating OPU’s ability to
exchange insights between single and pair representations. First, the
equivariant loss function is parameterized on the structural space,
making the pairwise representations from the OPU critical to that loss.
Second, without OPU, the model performs poorly on TM score (the
bottom brown line in Fig. 11, Appendix C), which measures global
structural preservation. Additionally, introducing SRA only without
OPU hurts our model performance, suggesting the model would have
been over-parameterized as the SRA updates primarily on the
sequence representation. Therefore, combining both the OPU and
SRA modules provides an effective approach for enhancing the repre-
sentational learning of ProteinReDiff. A complete comparative assess-
ment is presented in Table IV and Appendix C.

b. Ablations on input featurization methods. We conducted abla-
tion studies to evaluate different input featurization methods, including

FIG. 9. Mask ablation studies on both validation and test sets. Each of the mask ratios (5, 10, 15, 30, 40, 50, 60, and 70%) is a hyperparameter and represented by a model.
The performances of the masked models are evaluated for all metrics. The arrows on y-axes show directions of better performance.
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manual feature engineering for ligands and the use of ESM-2 as a pre-
trained LLM (Large Language Model) for protein featurization.

We gradually reduced ligand features, starting with ligand dis-
tance and bond information (e.g., types and ring), and even omitted
the entire bond and ligand. In Fig. 8, omitting bond features and
distance caused less reduction in model performance than omitting
the entire ligand. Ligand bond information is crucial for the
model to learn the relative positions of ligand atoms and adhere
to geometric constraints within the triangular update module
(Sec. IV B 3).

We observed a significant decrease in model performance
when ESM embeddings were excluded (the red bar in Fig. 8). The
ESM features alone (the brown bar) significantly boosted perfor-
mance when training without ligand data, as these embeddings are
enriched with protein evolutionary and biophysical information
needed for both single and pair representations. Other protein fea-
tures, such as position encodings and amino acid types, provided
slight improvements, though they were minimal. However, exclud-
ing ligand information led to a reduction in model performance
compared to the baseline, as the model relies on learning the overall
structure of the complexes.

Therefore, using pre-trained featurization methods, such as ESM
and other protein BERT-like models, in combination with ligand
input, significantly enhances model training and performance.

c. Impact of masking ratios. We examined ProteinReDiff’s perfor-
mance with various percentages of masked amino acids, adjusting the
masking ratio as a hyperparameter and retraining our model. In Fig. 9,
we observed consistent top performance across the metrics with mask-
ing ratios between 5% and 15%. This range is crucial for the protein
redesign strategy, enhancing binding affinity while preserving the
structural and functional motifs of the target protein. The 15% mask-
ing ratio achieved the best ligand binding affinity, the most important
metric for capturing protein function.

Interestingly, we noticed performance spikes for 50% masking in
contact overlap and TM-score. This is because applying stochastic
masks allows the model to learn representations with varied masking
from 0 up to the set ratio. Although the 50% masking does not surpass
the 15% masking’s performance, the improvement in the high masking
regime demonstrates the robustness of our training scheme.

Overall, this investigation highlights the optimal level of sequence
masking needed to enhance ligand binding affinity, sequence diversity,

FIG. 10. Boxplot illustrating the distribution
of ligand binding affinities, and structure
preservation metrics (TM Score and
RMSD) across all methods evaluated,
including baseline models and variations
of ProteinReDiff. Each boxplot showcases
the median, quartiles, and outliers within
the data, providing insight into the variabil-
ity and central tendency of each metric
across the dataset’s samples. Detailed
descriptions of each baseline are provided
in Sec. V B 4.
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and structural preservation. It also reinforces training strategies for
protein redesign as shown on the Discussion Sec. VB5.

VI. CONCLUSIONS

This study introduces ProteinReDiff, a computational framework
developed to redesign ligand-binding proteins. By utilizing advanced
techniques inspired by Equivariant Diffusion-Based Generative Models
and the attention mechanism from AlphaFold2, ProteinReDiff demon-
strates its ability to enhance complex protein–ligand interactions. Our
model excels in optimizing ligand binding affinity based solely on ini-
tial protein sequences and ligand SMILES strings, bypassing the need
for detailed structural data. Experimental validations highlight
ProteinReDiff’s capability to improve ligand binding affinity while pre-
serving essential sequence diversity and structural integrity. These find-
ings open new possibilities for protein–ligand complex modeling,
indicating significant potential for ProteinReDiff in various biotechno-
logical and pharmaceutical applications.
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APPENDIX A: BENCHMARKING PROTEINREDIFF
AGAINST RELATED MODELS

These plots, shown in Fig. 10, demonstrate the comparative per-
formance of ProteinReDiff against other relevant models. The results
indicate that our model consistently ranks among the high performers.

APPENDIX B: EVALUATING PROTEIN–LIGAND
COMPLEX REPRESENTATION

In the continuation of our study’s exploration of protein–
ligand complex representations, we extended the use of the
PDBBind v2020 dataset,53 previously detailed in our training pro-
cess, to specifically evaluate the effectiveness of the Input Featurizer

from ProteinReDiff. By using embeddings generated by the Input
Featurizer as input features, we trained a Gaussian Process (GP)
model to predict ligand binding affinity. The choice of a GP model,
recognized for its probabilistic nature and adaptability to the
nuanced, uncertain dynamics of biological interactions, was pivotal
in assessing how well the embeddings capture predictive informa-
tion about protein–ligand interactions. The GP model employed a
Gaussian likelihood, suitable for regression tasks, along with a radial
basis function (RBF) kernel, chosen for its effectiveness in modeling
smooth, continuous variations characteristic of binding affinities.
The GP model’s parameters were optimized to ensure a robust fit to
the training data.

FIG. 11. Breakdown of metrics for ablation models based on different featurization
methods and architectural adjustments. The dashed line indicates the baseline
ProteinReDiff model trained without any ablations.

TABLE V. Experimental results for the ligand binding affinity prediction task on the
PDBBind v2020 dataset. Results for comparative reference models are sourced from
Ref. 80.

Approach
RMSE #

(�logKd=Ki)
MAE #

(�logKd=Ki)Pearson "Spearman "
Pafnucy92 1.435 1.144 0.635 0.587
OnionNet93 1.403 1.103 0.648 0.602
IGN94 1.404 1.116 0.662 0.638
SIGN95 1.373 1.086 0.685 0.656
SMINA96 1.466 1.161 0.665 0.663
GNINA97 1.740 1.413 0.495 0.494
dMaSIF98 1.450 1.136 0.629 0.588
TankBind99 1.345 1.060 0.718 0:689
GraphDTA100 1.564 1.223 0.612 0.570
TransCPI101 1.493 1.201 0.604 0.551
MolTrans102 1.599 1.271 0.539 0.474
DrugBAN103 1.480 1.159 0.657 0.612
DGraphDTA104 1.493 1.201 0.604 0.551
WGNN-DTA105 1.501 1.196 0.605 0.562
STAMP-DPI104 1.503 1.176 0.653 0.601
PSICHIC80 1:314 1:015 0.710 0.686

ProteinReDiff (our) 1.443 1.168 0.721 0.639
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TABLE VI. Ablation study results on mask ratios. The table shows the impact of different mask ratios on validation and test set performance metrics.

Valid Test

Mask
ratio LBA #

Sequence
diversity " TM-score " RMSD # CO " LBA #

Sequence
diversity " TM-score " RMSD # CO "

5% �4.6026 0.377 87.252 0.5556 0.023 8.2256 0.510 0.7886 0.008 �6.0586 0.182 180.800 0.7346 0.025 6.6856 0.629 0.8796 0.010
10% �4.4106 0.541 89.472 0.5986 0.022 7.8086 0.544 0.8736 0.008 �6.1016 0.194 184.564 0.7396 0.027 7.1086 0.784 0.8836 0.010
15% �4.8906 0.303 89.601 0.5816 0.022 8.2526 0.537 0.8676 0.008 �6.2026 0.167 184.925 0.7296 0.025 7.2576 0.768 0.8776 0.010
30% �4.5966 0.257 90.643 0.4536 0.022 10.7076 0.604 0.8206 0.008 �5.5536 0.188 181.978 0.2216 0.015 21.1666 0.740 0.7076 0.009
40% �4.6686 0.281 89.091 0.2976 0.016 14.3096 0.497 0.7686 0.008 �5.7946 0.286 185.136 0.3906 0.024 15.0146 0.717 0.7506 0.011
50% �4.0526 1.162 90.445 0.3906 0.020 10.8866 0.424 0.7886 0.009 �6.0346 0.177 188.163 0.5676 0.029 10.2396 0.688 0.8076 0.012
60% �4.6786 0.262 88.643 0.2266 0.011 14.1426 0.337 0.7296 0.007 �5.9816 0.258 184.356 0.2436 0.017 18.0926 0.525 0.7026 0.009
70% �4.2146 0.264 81.333 0.1656 0.004 18.2266 0.456 0.7336 0.007 �5.3606 0.175 162.841 0.1456 0.004 24.9446 0.646 0.6896 0.008

TABLE VII. Ablation setup of featurization and model architecture.

Ablation studies

No bond
distance

No bond
feats

No
bond

No
ligand

No
ligand,

only ESM
No
ESM

No
SRA

No
OPU

DPL
(No SRA/OPU)

Bond distance � � � � �

Ligand Bond feats (type, ring, etc.) � � � � �

Ligand atom feats (chirality, charge, degree, etc.) � � � � � � �

Protein ESM embeddings � � � � � � � �

Residue feats (pos. encodings, res. type) � � � � � � � �

Model architecture Single representation attention (SRA) � � � � � � �

Outer product update (OPU) � � � � � � �
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The evaluation results in Table V demonstrate the perfor-
mance of embeddings generated by the Input Featurizer on the
PDBBind v2020 dataset compared to baseline methods. Notably,
these embeddings achieved the highest Pearson correlation (0.721)
for predicting ligand binding affinity, highlighting the Input
Featurizer’s effectiveness in capturing meaningful protein–ligand
interactions. This strong performance is further supported by com-
petitive RMSE, MAE, and Spearman correlation metrics.

APPENDIX C: ABLATION STUDIES

Here, we present additional results from the mask and feature
ablation studies. Figure 11 illustrates the performance of ablated
models across five key metrics. The impact of different mask ratios
on validation and test set metrics is summarized in Table VI. For
each model, Table VII specifies the features included or excluded,
while Table VIII highlights the resulting effects of these feature abla-
tions on performance.
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