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Abstract

This paper investigates the efficacy of the Dynamic Nelson-Siegel (DNS)
model in forecasting Chinese government bond yields. Our sample com-
prises daily zero-coupon yields from March 2006 to April 2024. To tailor
the DNS model to the Chinese market condition, we optimize the DNS
decay parameter λ to 0.42625. The DNS model achieves a parsimonious
representation through exponential-form factor loadings, and its AR(1)
specification effectively captures factor evolution, demonstrating robust
predictive capability (R2 = 0.9780). Given the recent advances in compu-
tational methods, we explore whether machine learning approaches can
enhance yield curve forecasting. Recognizing that yield curves exhibit
complex cross-sectional and non-linear patterns, we introduce eXtreme
Gradient Boosting (XGBoost) to model these aspects. XGBoost’s en-
semble of decision trees allows it to effectively capture non-linear rela-
tionships and potential regime shifts in the term structure by recursively
partitioning the feature space. We also employ Long Short-Term Mem-
ory (LSTM) networks to capture temporal dependencies inherent in the
data, which can leverage their memory cells and gating mechanisms for
adaptive information processing. We optimize the network architecture
by tuning hyperparameters such as the number of layers, neurons, and
the look-back window length. The empirical results show that, while
both machine learning approaches demonstrate marginally superior pre-
dictive power (R2: 0.9861 and 0.9801 respectively) compared to DNS (R2:
0.9780), their modest improvements suggest that the traditional frame-
work’s parsimony and economic interpretability remain valuable in yield
curve modeling.

Keywords: Dynamic Nelson-Siegel model, Yield curve forecasting, Term
structure, Chinese Government Bond Yields, LSTM, XGBoost

1 Introduction

The modeling and forecasting of term structure of interest rates play a piv-
otal role in financial markets, monetary policy implementation, and economic
analysis. Among various methodologies, the Dynamic Nelson-Siegel (DNS)
model stands out for its parsimonious yet flexible specification in capturing
yield curve dynamics. We examine the efficacy of the DNS model in forecast-
ing Chinese government bond yields while exploring potential enhancements
through machine learning techniques.

First, we conduct a detailed examination of Chinese government bond yield
through the DNS model. Second, we enhance the traditional DNS methodology
by optimizing the decay parameter λ specifically for Chinese market conditions,
improving both the model’s fit and forecasting accuracy. Third, we perform out-
of-sample testing to evaluate the model’s predictive performance, comparing
it against both simpler benchmark models (Random Walk and VAR model)
and more sophisticated machine learning approaches (XGBoost and LSTM ).
This comparative analysis helps assess whether the relative parsimonious DNS
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framework remains competitive with newer methodologies in capturing yield
curve dynamics.

By analyzing sample data from March 2006 to April 2024, we find that
the DNS-AR(1) framework demonstrates robust predictive capability (R2 =
0.9780). The level factor exhibits non-stationary characteristics and the strongest
persistence (autocorrelation of 0.9277 at lag 30), while the slope and curvature
factors show stationarity. Correlation analysis among factors reveals a signifi-
cant positive correlation (0.4365) between the level and slope factors, suggesting
that yield spreads between short and long-term rates tend to widen during pe-
riods of rising interest rate levels. Through our calibration of the optimal decay
parameter λ (0.42625), the model achieves strong predictive performance (av-
erage MSE of 0.0028) while maintaining structural parsimony, outperforming
traditional VAR(1) and random walk models.

Furthermore, we compare the DNS framework with machine learning meth-
ods. Empirical results show that while LSTM (MSE: 0.0019, R2: 0.9861) and
XGBoost (MSE: 0.0027, R2: 0.9801) slightly outperform the DNS-AR(1) model
in predictive accuracy, the improvements are relatively modest. Notably, model
performance differences are insignificant in the medium-term segment (1-10
years). Machine learning methods demonstrate their advantages primarily in
forecasting short-term (0.25-0.5 years) and long-term (20-30 years) yields, likely
due to their ability to capture more complex non-linear relationships at these
maturities. This finding suggests that while machine learning methods offer cer-
tain predictive improvements, the traditional DNS framework remains a highly
practical choice when considering model complexity, interpretability, and im-
plementation costs. Under normal market conditions, the DNS approach may
sufficiently meet most application requirements, while machine learning meth-
ods may serve as valuable complements during special market environments
(such as high volatility periods).

2 Data Processing

2.1 Data Sources and Processing

Our study utilizes zero-coupon government bond yield data provided by
China Central Depository & Clearing Co., Ltd. (CCDC), of which the data
is highly authoritative as the custodian for Chinese government bonds. The
dataset encompasses daily zero-coupon yields for 21 different maturities (ranging
from overnight to 30 years) over the period from March 2006 to April 2024,
covering a total of 4,528 trading days.

2.2 Hermite Interpolation Model

CCDC employs Hermite interpolation model to construct the yield curve.
Hermite interpolation is a method of interpolating between given data points
that takes into account not only the values at these points but also their deriva-
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tive values. This approach ensures the continuity and smoothness of the yield
curve while maintaining a high degree of accuracy in fitting.

Given a set of maturities x1 < · · · < xn and their corresponding yields
y1 < · · · < yn, the slope of the yield curve at the corresponding maturities is
denoted as d1 · · · dn.

For i = 1, 2, · · · , n − 1, assume that the yield curve of [xi, xi+1] can be
represented as a cubic polynomial function of x, and f(x) satisfies the following
conditions:

f(xi) = yi, f(xi+1) = yi+1 (2-2-1)

f ′(xi) = di, f
′(xi+1) = di+1 (2-2-2)

The specific form of Hermite interpolation model can be derived as follows:

f(x) = yiH1(x) + yi+1H2(x) + diH3(x) + di+1H4(x) (2-2-3)

In which:

H1(x) = 3

(
xi+1 − x

xi+1 − xi

)2

− 2

(
xi+1 − x

xi+1 − xi

)3

H2(x) = 3

(
x− xi

xi+1 − xi

)2

− 2

(
x− xi

xi+1 − xi

)3

H3(x) =
(xi+1 − x)2

xi+1 − xi
− (xi+1 − x)3

(xi+1 − xi)2

H4(x) =
(x− xi)

3

(xi+1 − xi)2
− (x− xi)

2

xi+1 − xi
(2-2-4)

Hermite interpolation model ensures the continuity and smoothness of the
yield curve, avoiding unnatural jumps or inflection points at the interpolation
nodes.

2.3 Descriptive Statistical Analysis

In order to comprehensively understand the statistical characteristics of
Treasury bond yields, we conducted a descriptive statistical analysis of the
zero-coupon yield data from March 2006 to April 2024. Table 2-3-1 presents
the statistical indicators for government bond yields across some key maturi-
ties, including the number of observations, mean, standard deviation, minimum
value, 25th percentile, median, 75th percentile, maximum value, variance, and
skewness.
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Table 2-3-1: Descriptive Statistics of Treasury Bond Yields for Key Maturities

Maturity 2M 3M 1Y 2Y 5Y 10Y

Count 4528 4528 4527 4528 4527 4527
Mean 2.3116 2.3608 2.5608 2.7717 3.1362 3.4496
Std 0.7469 0.7313 0.6932 0.6580 0.5536 0.5341
Min 0.7623 0.7989 0.8911 1.0744 1.7591 2.2848
25% 1.8056 1.8698 2.0917 2.2897 2.6845 3.0295
50% 2.1990 2.2673 2.4857 2.7120 3.0600 3.4070
75% 2.8665 2.9058 3.0803 3.2245 3.5368 3.7567
Max 5.6411 5.1132 4.2503 4.4744 4.5901 4.8048
Variance 0.5579 0.5348 0.4806 0.4330 0.3065 0.2853
Skewness 0.4106 0.2639 0.0306 0.1000 0.4366 0.4282

Figure 2-3-1: Time Series of Treasury Spot Rates

The yields show a clear upward trend as maturity extends, increasing from
2.3116% for 2-month bonds to 3.4496% for 10-year bonds. This pattern re-
flects a typical positive term structure, indicating liquidity and risk premiums
for longer-dated bonds. We can also find that interest rate volatility tends to
decrease with longer maturities. Short-term rates exhibit significantly higher
standard deviations compared to long-term rates. For instance, the standard
deviations for 2-month and 3-month rates are 0.7469 and 0.7313 respectively,
while the 10-year rate’s standard deviation is only 0.5341. This phenomenon
suggests that short-term rates are more sensitive to changes in market liquidity
and monetary policy adjustments, whereas long-term rates are more influenced
by economic fundamentals and long-term expectations.
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2.4 Term Structure Factors

In the study of interest rate term structures, traditionally we use three key
statistics to summarize the main features of the yield curve: Level (L), Slope
(S), and Curvature (C). These factors effectively capture the overall shape and
dynamic changes of the interest rate term structure, providing important clues
for understanding market expectations and economic conditions.

• Level Factor (L): L is defined as the 30-year interest rate. This factor
reflects the long-term interest rate level, providing an indication of the
overall yield environment. Changes in the level factor are typically closely
related to long-term inflation expectations and economic growth prospects.

• Slope Factor (S): S is defined as the difference between the 30-year rate and
the 3-month rate. The slope factor measures the difference between long-
term and short-term interest rates, offering insights into market expec-
tations of interest rates and economic outlook. A positive slope typically
indicates that long-term rates are higher than short-term rates, which may
suggest market expectations of economic growth and potential inflationary
pressures.

• Curvature Factor (C): C is defined as twice the 2-year rate minus the sum
of the 3-month rate and the 30-year rate. The curvature factor reflects the
degree of bending in the yield curve and is particularly helpful in capturing
changes in medium-term rates that might not be easily discerned when
considering only level and slope.

Based on these definitions, we can represent these three factors as follows:

L(t) = y(t, 30)

S(t) = y(t, 30)− y(t, 0.25)

C(t) = 2 · y(t, 2)− y(t, 0.25)− y(t, 30) (2-4-1)

The descriptive statistics for term structure factors are as follows:
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Table 2-4-1: Descriptive Statistics of Term Structure Factors

Parameter L S C

Count 4528 4528 4528
Mean 4.1269 1.7661 -0.9443
Std 0.5439 0.5933 0.4984
Min 2.4594 -0.7644 -2.7610
25% 3.7780 1.3012 -1.1812
50% 4.1759 1.6964 -0.8942
75% 4.4481 1.9939 -0.6017
Max 5.4815 3.5263 0.1606
Autocorr(1) 0.9988 0.9959 0.9923
Autocorr(12) 0.9792 0.9295 0.9192
Autocorr(30) 0.9351 0.8178 0.8288

All three traditional factors showed high autocorrelation.

3 Introduction of Dynamic Nelson-Siegel Model

3.1 Theoretical Background

While traditional factors can help us describe the term structure, they have
certain limitations. Firstly, these factors are directly calculated from interest
rates at specific maturities, they may potentially fail to fully capture informa-
tion across the entire yield curve. Secondly, the static nature of traditional
factors makes it challenging to describe the dynamic evolution process of the
term structure. To solve these limitations, Nelson and Siegel (1987) proposed
the famous Nelson-Siegel model which uses a small number of parameters to
flexibly fit various shapes of yield curves, which provides a powerful yet concise
framework for modeling the interest rate term structure.

3.2 Nelson-Siegel Model Construction

The core of the NS model lies in the construction of the forward interest
rate function:

f(t, τ) = β0t + β1te
−λτ + β2tλτe

−λτ (3-2-1)

By integrating Eq. (3-2-1) to obtain the immediate yield function under
continuous compounding at any point in time:

R(t, τ) =
1

τ

∫ τ

0

f(t, s)ds = β0t + β1t

[
1− e−λτ

λτ

]
+ β2t

[
1− e−λτ

λτ
− e−λτ

]
(3-2-2)

Where R(t, τ) denotes the spot rate with a maturity of τ , β0, β1 and β2

are the parameters to be evaluated. As the four parameters change, the interest
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rate term structure takes on different shapes. λ determines how fast the index
function decays and when the loadings of β1 and β2 are maximized. β0, β1, and
β2 have different effects on the interest rates of different maturities, and the
specific effects can be reflected by the changes in the loadings of the factors.

The limit of the loading of the slope factor β1 is:

lim
τ→0

1− e−λτ

λτ
= 1 (3-2-3)

lim
τ→∞

1− e−λτ

λτ
= 0 (3-2-4)

The limit of the loading of the slope factor β2 is:

lim
τ→0

(
1− e−λτ

λτ
− e−λτ

)
= 0 (3-2-5)

lim
τ→∞

(
1− e−λτ

λτ
− e−λτ

)
= 0 (3-2-6)

β0 affects the rate of return to the same extent at any tenor, which is
referred to as the level factor. The load on β1 decreases rapidly with increasing
maturity and decreases less and less, so it has a larger effect on the short-term
interest rate and we call it the slope factor. The loading of β2 increases and
then decreases with maturity, so it has a greater impact on the medium-term
interest rate and we call it the curvature factor. Changes in β0, β1, and β2 affect
changes in the overall term structure of interest rates, so changes in β0, β1, and
β2 can be used to measure changes in the term structure of interest rates.

The traditional approach to estimating the Nelson-Siegel model is to min-
imize the weighted sum of squares of the difference between the actual and
theoretical prices of all bonds, i.e.:

min

n∑
i=1

wi(Pi − PVi)
2 (3-2-7)

where Pi denotes the actual price of bond i; PVi denotes the theoretical
price of bond i estimated using the Nelson-Siegel model, and wi denotes the
weighted weights of bond i. By solving the nonlinear optimization problem, we
can estimate the parameters of the Nelson-Siegel model. However, accurately
solving this complex nonlinear optimization problem not only requires the se-
lection of a reasonable algorithm, but also relies on the choice of initial values
of the parameters.
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3.3 Dynamic Nelson-Siegel Model Construction

3.3.1 Introduction to DNS Model

Diebold and Li (2006) pointed out that this type of estimation leads to
distortion of the parameter estimation results. They enhance the Nelson-Siegel
model by introducing a dynamic factor analysis approach, making it more effec-
tive for forecasting yield curves. In the Diebold-Li method, the solution of the
nonlinear optimization problem formulation is transformed into a linear least
squares regression problem by determining the value of the parameter λ. They
reset the original model to the following form:

yt(τ) = Lt + St

(
1− e−λτ

λτ

)
+ Ct

(
1− e−λτ

λτ
− e−λτ

)
(3-3-1)

Where, yt(τ) denotes the spot interest rate with maturity period τ at time
t, Lt, St, Ct are the level factor, slope factor and curvature factor respectively,
which have the same meaning as β0, β1, β2 in the above equation, and their
coefficients are called factor loadings.

The DNS model assumes that the potential factors obey a first-order vector
autoregressive form, and the model is written in the form of a state-space model
as follows:

The equation of state of the model is:Lt

St

Ct

 =

µL

µS

µC

+

a11 0 0
0 a22 0
0 0 a33

Lt−1

St−1

Ct−1

+

ηt(L)
ηt(S)
ηt(C)

 (3-3-2)

The corresponding measurement equation is:
yt(τ1)
yt(τ2)

...
yt(τN )

 =


1 1−e−λτ1

λτ1
1−e−λτ1

λτ1
− e−λτ1

1 1−e−λτ2

λτ2
1−e−λτ2

λτ2
− e−λτ2

...
...

...

1 1−e−λτN

λτN
1−e−λτN

λτN
− e−λτN


Lt

St

Ct

+


εt(τ1)
εt(τ2)

...
εt(τN )

 (3-3-3)

In their empirical analysis, Diebold and Li used end-of-month price quotes
(bid-ask averages) for U.S. Treasury bonds from January 1985 to December
2000. The dataset was sourced from the CRSP government bond files. In our
paper, we use the zero-coupon government bond yield data provided by CCDC
and the curve is constructed by Hermite Interpolation since we do not have full
access to the bond prices. To ensure data quality and accuracy, CRSP applied
rigorous filtering criteria. First, they excluded bonds with option features, such
as callable bonds, which could distort the yield calculations due to embedded
options. Additionally, bonds with special liquidity issues, such as those near-
ing maturity (less than one year) or with irregular liquidity patterns, were also
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removed to prevent anomalies in the yield curve fitting process. After the filter-
ing, the dataset consists of U.S. Treasury bonds with maturities ranging from 3
months to 120 months.

Then they used the unsmoothed Fama-Bliss forward rate method to convert
bond prices into zero-coupon yields. They calculated forward rates for different
maturities and constructs zero-coupon yields by averaging the forward rates.

3.3.2 Empirical Attempt

First, we loaded the historical spot yield data and sorted the data by date.
We defined the Nelson-Siegel yield curve function and established a maturity
mapping dictionary to convert all tenors into annual units. We utilized Eq.
(3-3-3) to estimate the factors (L, S, and C) and computed the corresponding
factor loadings. Based on the characteristics of Chinese government bonds, we
experimented with multiple decay factors to minimize prediction error. Specifi-
cally, for each maturity, we computed the factor loadings using various lambda
values and estimated the factors for each date by regressing yields on these
factor loadings at each time point.

We used data prior to January 1, 2021, as the training set and subsequent
data as the test set. For each λ value (ranging from 0.05 to 0.5 with an increment
of 0.00001), we first conducted cross-sectional estimation at each time point t
using measurement equation (3-3-3) through OLS regression to obtain the time
series of factors (Lt, St, Ct). Then we estimated AR(1) coefficients using these
factor series according to state equation (3-3-2). With these estimations, we
conducted out-of-sample predictions on the test set by forecasting the factors
using Eq.(3-3-2) and reconstructing the yields using Eq.(3-3-3). We measure
the prediction error by MSE calculated from the differences between actual and
predicted yields across all maturities in the test set. The optimization process
yielded an optimal λ value of 0.42625.

Then we conducted statistical analysis of descriptive statistics for both
yields and estimated factors, along with autocorrelations at lags 1, 12, and 30.
Furthermore, we employed ADF tests to examine the stationarity properties
of the factors. We examine the model result by calculating MSE and MAE
between estimated factors and traditional factors.

Moreover, we conducted model’s residual analysis including descriptive
statistics and autocorrelation patterns, facilitating the assessment of model fit
and potential systematic patterns.

Finally, we fitted AR(1) models to the estimated factors to examine their
dynamic properties. Specifically, we evaluate 40-day-ahead factor predictions.
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Table 3-3-1: Descriptive Statistics of DNS Parameters

Parameter L(t) S(t) C(t)

Count 4528 4528 4528
Mean 4.4502 2.1349 -0.5805
Std 0.7846 0.8330 1.1097
Min 2.4926 -4.6027 -10.9421
25% 4.0419 1.7060 -0.8176
50% 4.5047 1.9793 0.0000
75% 4.8755 2.4231 0.0000
Max 18.8300 15.1435 0.0263
Autocorr(1) 0.9974 0.9966 0.9746
Autocorr(12) 0.9711 0.9459 0.7862
Autocorr(30) 0.9277 0.8599 0.6112

Our analysis aligns with Diebold-Li’s findings. While all three factors ex-
hibit significant persistence, their degrees vary notably. The level factor demon-
strates the highest persistence, maintaining an autocorrelation of 0.9277 even at
the 30th lag, reflecting the stability of the overall interest rate level. The slope
factor shows the second-highest persistence, while the curvature factor exhibits
relatively weaker autocorrelation, particularly at longer lags, consistent with
Diebold-Li’s observations. Overall level changes occur gradually, while curve
shape exhibits greater flexibility.

Table 3-3-2: ADF Test of DNS Parameters

Level Slope Curvature

ADF Statistic -1.6302 -3.4494 -4.8119
p-value 0.4674 0.0094 0.0001
Critical Values -2.8622 -2.8622 -2.8622
Stationary FALSE TRUE TRUE

The ADF test results reveal that the Level factor is non-stationary, consis-
tent with Diebold-Li’s characterization that it is near-unit-root processes. Our
analysis indicates that the Slope factor is stationary, which is slightly different
from Diebold-Li’s findings. However, Curvature factor demonstrates significant
stationarity, aligning with Diebold-Li’s observation of faster mean reversion.
While these subtle differences might reflect variations in sample periods or mar-
ket environments, the overall pattern supports the fundamental assumptions of
the Nelson-Siegel model. The non-stationarity of the Level factor suggests that
long-term interest rates are susceptible to persistent macroeconomic shocks,
whereas the stationarity of Slope and Curvature factors indicates that yield
curve shape changes are predominantly driven by short-term market dynamics.

Diebold-Li recognized that the Level and Slope factors may be near-unit-
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root processes, but they chose to model and predict directly on the level data
using AR(1) model rather than conducting differencing process. They argue that
distinguishing between a true unit root process and a highly persistent near-unit
root process in a finite sample is both difficult and possibly unnecessary.

Table 3-3-3: Factor Correlation Analysis

Level Slope Curvature

Level 1.0000 0.4365 -0.2427
Slope 0.4365 1.0000 -0.2864
Curvature -0.2427 -0.2864 1.0000

The factor correlation analysis reveals that the positive correlation (0.4365)
between Level and Slope factors indicates a tendency for the spread between
short-term and long-term rates to widen during periods of rising interest rate
levels. This pattern may reflect market adjustments to expectations of future
economic growth and inflation. Simultaneously, the negative correlations of the
Curvature factor with Level and Slope factors (-0.2427 and -0.2864, respectively)
suggest that the prominence of medium-term rates relative to short and long-
term rates tends to diminish when interest rate levels rise or the yield curve
steepens. This dynamic likely stems from variations in market participants’
risk preferences across different maturities.

Table 3-3-4: Error Analysis between NS and Traditional Factors

Level Slope Curvature

MSE 0.0447 0.0517 0.6047
MAE 0.1492 0.0127 0.5897

As shown in Figure 3-3-1 to 3-3-3, we plot the time series of the traditional
values and NS values of the three factors to visually demonstrate the dynamic
evolution of the term structure.

Figure 3-3-1: L(t) Over time
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Figure 3-3-2: S(t) Over time

Figure 3-3-3: C(t) Over time

Next, we fit the AR(1) model. The results show that, after controlling for
the other variables, the current values of Slope and Curvature are significantly
influenced mainly by their first- and second-order lagged values, which have
obvious dynamic characteristics, while the effect of the Level variable is not
significant.

Table 3-3-5: AR(1) Model Statistical Significance

Const Level.L1 Const Slope.L1 Const Curvature.L1

coef 0.0067 0.9983 -0.0062 0.9967 -0.0157 0.9745
std err 0.005 0.001 0.003 0.001 0.004 0.003
z 1.481 935.563 -2.379 818.253 -3.954 292.812
P> |z| 0.139 0.000 0.017 0.000 0.000 0.000
[0.025 -0.002 0.996 -0.011 0.994 -0.023 0.968
0.975] 0.016 1.000 -0.001 0.999 -0.008 0.981

Then we conduct the residual analysis.
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Table 3-3-6: AR(1) Model Residual Analysis

Residual Autocorr Level AR(1) Slope AR(1) Curvature

1 0.0865 0.1614 0.0369
12 -0.0143 -0.0363 -0.0139
30 -0.0148 -0.0224 -0.0186

The analysis reveals relatively low autocorrelations suggest that the AR(1)
model effectively captures the dynamic characteristics of the factors. At longer
lags (2-60 periods), the residual autocorrelations for all three factors fluctuate
primarily within a ±0.05 band without exhibiting significant systematic pat-
terns, further supporting the adequacy of the AR(1) specification. Notably,
the Slope factor displays weak but persistent positive autocorrelation (approx-
imately 0.05) at lags 20-24, potentially indicating subtle monthly cyclical pat-
terns in yield curve steepness.

Figure 3-3-4: Level AR(1) Residual Autocorrelation
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Figure 3-3-5: Slope AR(1) Residual Autocorrelation

Figure 3-3-6: Curvature AR(1) Residual Autocorrelation

3.4 Model Fitting Effectiveness Test

In this paper, we choose MSE, RMSE, MAE and R2 to be the benchmark
of the fitting and prediction effects. Following are the formulas:

MSE =
1

m

m∑
i=1

(yi − ŷi)
2 (3-4-1)

Where yi − ŷi is the difference between the predicted value and the actual
value.

RMSE =

√√√√ 1

m

m∑
i=1

(yi − ŷi)2 (3-4-2)
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MAE =
1

m

m∑
i=1

|yi − ŷi| (3-4-3)

R2 = 1−
∑m

i=1(yi − ŷi)
2∑m

i=1(yi − ȳ)2
(3-4-4)

Where ȳ is the average of all actual values, for each date, m is the 11 key
maturities, for the whole prediction, m is 11× all the prediction period.

For the prediction, we employ AR(1) models to generate 40-day-ahead pre-
dictions for each factor using daily frequency data. The predictions start from
4/7/2024 to 5/31/2024.

We reconstruct forecast yield curves across eleven key maturities ranging
from 3 months to 30 years with the optimal λ 0.42625. The forecasting accuracy
is then evaluated by comparing the reconstructed yield curves with actual yields.

Table 3-4-1: DNS Predicting Performance

Date MSE RMSE MAE

2024/4/7 0.0012 0.0343 0.0284
2024/4/8 0.0008 0.0286 0.0244
2024/4/9 0.0009 0.0292 0.0251
...

...
...

...
2024/5/28 0.0014 0.0373 0.0304
2024/5/29 0.0012 0.0343 0.0290
2024/5/30 0.0012 0.0343 0.0288
2024/5/31 0.0016 0.0401 0.0327

The DNS model exhibits stability and accuracy throughout the entire fore-
casting period, with Avg-MSE of 0.0028, Avg-RMSE of 0.0490, and Avg-MAE
of 0.0422. Notably, the model’s R2 reached 0.9780, indicating a high degree of
goodness-of-fit and suggesting that the DNS model can explain the vast ma-
jority of variations in the yield curve movements. In terms of specific values,
the MSE fluctuated between 0.0008 and 0.0016, demonstrating that the model
not only performs well overall but also maintains a high level of stability across
individual forecasting dates.

In addition to using the DNS model, we employed the VAR(1) process and
the Random Walk process to model and forecast the yield curve. The general
form of VAR(1) is:

Yt = c+ΦYt−1 + ϵt (3-4-5)

In our study, the forecasting performance of VAR(1) is relatively poor, with
average MSE of 0.0682, RMSE of 0.2200, MAE of 0.2111, and R2 of 0.4971,
which suggests Its weak ability to explain yield movements. The general form
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of Random Walk is:
yt+1 = yt + ϵt (3-4-6)

Random Walk outperforms VAR(1) with average MSE of 0.0392, RMSE of
0.1711, MAE of 0.1531, and R2 of 0.7119, but it still underperforms our DNS
model.

Table 3-4-2: Predicting Performance Comparison

Metric DNS VAR(1) Random Walk

MSE 0.0028 0.0682 0.0392
RMSE 0.049 0.22 0.1711
MAE 0.0422 0.2111 0.1531
R2 0.9780 0.4971 0.7119

Overall, the DNS model significantly outperforms, especially in explaining
the shifts in the yield curve. This suggests that the Dynamic Nelson-Siegel
model combined with the AR(1) process is able to better capture the charac-
teristics of the yield curve and the time-series dynamics, but there is still room
for improvement in terms of stability.

4 Compare DNS with Machine Learning Meth-
ods

In the prediction scenario of yield curve, we hope to explore the most
superior method of prediction performance by comparing the prediction effect
with other models under the same data source and the same scenario. Therefore,
we choose two popular machine learning models for comparison.

4.1 XGBoost Method

Among various machine learning methods, XGBoost demonstrates unique
advantages in predicting government bond yield curves. From the theoretical
foundation of term structure of interest rates, whether based on Expectations
Theory and Market Segmentation Theory, interest rate formation involves com-
plex interactions between multiple market participants and economic factors.
XGBoost can automatically capture these nonlinear relationships through its
tree structure, with its objective function:

L =

n∑
i=1

l(yi, ŷi) +

K∑
k=1

Ω(fk) (4-1-1)

where L represents the objective function, l(yi, ŷi) is the training loss be-
tween the predicted value ŷi and the true value yi, Ω(fk) is the regularization
term for the k-th tree, and K is the total number of trees.
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By integrating multiple decision trees, it can approximate arbitrarily com-
plex nonlinear functions. There are numerous feature interactions in the interest
rate formation process, such as the interactive effects between inflation and eco-
nomic growth, and the joint impact of monetary policy and market liquidity.
XGBoost’s tree structure is naturally suited to capture these high-order feature
interactions, with each split point effectively processing the conditional proba-
bility distribution of features. Its split gain calculation formula is:

Gain =
1

2

[
(
∑

i∈LL
gi)

2∑
i∈IL

hi + λ
+

(
∑

i∈IR
gi)

2∑
i∈IR

hi + λ
−

(
∑

i∈I gi)
2∑

i∈I hi + λ

]
− γ (4-1-2)

where gi and hi are the first and second order gradients of the loss function
respectively, IL and IR represent the instance sets of left and right nodes after
splitting, λ is the L2 regularization term, and γ is the minimum gain needed for
a split.

It can effectively identify and utilize these interaction effects. Moreover,
financial market data generally contains noise and outliers, and XGBoost signif-
icantly enhances model robustness to noise through Ω(fk) and column sampling
mechanism. This characteristic is particularly valuable when predicting interest
rates during periods of high market volatility.

4.2 LSTM Unit Structure

The advantages of LSTM in yield curve prediction stem from its grasp of
time series characteristics, which highly aligns with the temporal properties of
interest rates. Interest rates exhibit significant persistence characteristics, which
is widely recognized in classical term structure theories. LSTM can effectively
capture this persistence through its cell state update mechanism:

Ct = ft × Ct−1 + it × C̃t (4-2-1)

where Ct represents the cell state at time t, ft is the forget gate output,
Ct−1 is the previous cell state, it is the input gate output, and C̃t is the candidate
cell state.

The design of ft allows the model to adaptively determine the importance of
historical information, which highly corresponds with the autoregressive nature
of interest rate formation. Moreover, the yield curve structure simultaneously
contains short-term fluctuations and long-term trends. The gating mechanism
can handle dependencies across different time scales:

ht = ot × tanh(Ct) (4-2-2)

where the output gate ot design allows the model to flexibly adjust weights
between long-term and short-term information at different time points. From
the perspective of Dynamic Term Structure Models, interest rate dynamics can
be viewed as a state-space model. LSTM’s hidden state update mechanism
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naturally aligns with this state-space representation but is not constrained by
linear assumptions. Additionally, LSTM can simultaneously consider relation-
ships between interest rates of different maturities, with its memory state stor-
ing information about the overall shape of the term structure, helping maintain
consistency in predictions across different maturities.

4.3 Differences between XGBoost and LSTM

XGBoost and LSTM exhibit distinctive characteristics in predicting yield
curve structures. XGBoost excels at extracting cross-sectional feature relation-
ships, while LSTM specializes in capturing longitudinal time series patterns. Re-
garding modeling assumptions, XGBoost makes no explicit assumptions about
the data generation process, instead discovering patterns through a data-driven
approach; in contrast, LSTM inherently assumes sequential correlation in the
data. This fundamental methodological difference results in distinct advantages
under different market conditions.

In terms of prediction mechanisms, XGBoost constructs prediction rules
through feature space partitioning, focusing on the hierarchical importance of
various economic indicators. LSTM, however, generates predictions through
state transmission, emphasizing the temporal evolution of interest rates. These
contrasting prediction mechanisms reflect their different approaches to under-
standing yield curve dynamics. Compared to other machine learning methods
such as random forests and conventional neural networks, each model offers
unique strengths: XGBoost provides superior interpretability through its fea-
ture importance rankings and decision paths, while LSTM excels in capturing
complex temporal dependencies that are crucial for interest rate dynamics.

While choosing between these models, It often depends on the specific as-
pects of yield curve prediction being prioritized - whether the focus is on cap-
turing the impact of economic variables (where XGBoost may be more suitable)
or modeling the temporal evolution of rates (where LSTM might be preferable).

4.4 Empirical Results

4.4.1 XGBoost Model Construction

For the XGBoost model, we adopted a similar data preparation approach,
using the previous 10 days’ factor values as features and the next day’s factor
value as the label. We set the initial number of training rounds to 100, but
enable early stopping, halting training if the validation error fails to decrease
for 10 consecutive rounds, to prevent overfitting.

In terms of hyperparameter tuning, we adjusted key parameters, includ-
ing learning rate, max depth, and subsampling ratio. We also use grid search
and cross-validation on the training set to search for the optimal parameter
combination that minimized validation error.
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4.4.2 LSTM Model Construction

In implementing the LSTM model, we first applied Min-Max normalization
to scale factor data values to the range (0, 1) to prevent saturation in the
activation function. Then we set the hidden layer with 50 neurons, and set
look back to 10 based on AIC and BIC analysis and time series cross-validation,
which means the model uses the factor values from the previous 10 days to
predict the factor value for the next day.

We use MSE as the loss function and train the model with the Adam
optimizer, setting the initial learning rate to 0.001. We apply early stopping to
monitor the validation loss. The model will stop training if the validation loss
does not decrease for 5 consecutive epochs in order to prevent overfitting. We
set maximum number of training epochs to 100, with the batch size of 32 to
balance computational efficiency and model convergence speed. To improve the
model’s generalization ability, we implemented grid search and cross-validation
on the training set, we also tune key hyperparameters such as the number of
units, learning rate, and batch size.

4.4.3 Reconstruction of the Yield Curve

During the model implementation, for each date in the test set, we first
extracted the actual factor values and yield curve data, then used the trained
LSTM and XGBoost models to predict the factor values for that date. With
the predicted factor values, we reconstructed the yield curve over through the
Nelson-Siegel function to generate the estimated yield curve. Also, we define a
calculate performance function to measure the MSE, RMSE and MAE between
the predicted and actual yields.
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Table 4-4-1: Predicting Performance Comparison

Maturity Metric LSTM XGBoost DNS

0.25Y MAE 0.0232 0.0324 0.0026
MSE 0.0009 0.0017 0.0394
R2 0.9415 0.8814 0.9485

0.5Y MAE 0.0218 0.0394 0.0022
MSE 0.0016 0.0023 0.0369
R2 0.9684 0.8963 0.9075

1.0Y MAE 0.0108 0.0104 0.0012
MSE 0.0015 0.0027 0.0269
R2 0.9776 0.9627 0.9165

2.0Y MAE 0.0126 0.0039 0.0035
MSE 0.0408 0.0423 0.0489
R2 0.9418 0.9235 0.9315

10.0Y MAE 0.0116 0.0206 0.0012
MSE 0.0028 0.0026 0.0300
R2 0.9787 0.9373 0.8772

20.0Y MAE 0.0201 0.0286 0.0018
MSE 0.0008 0.0014 0.0361
R2 0.9849 0.9012 0.9240

30.0Y MAE 0.0338 0.0411 0.0065
MSE 0.0332 0.0045 0.0681
R2 0.8945 0.8340 0.8793

While DNS demonstrates its theoretical advantages in short-term rate pre-
diction, it is constrained by its linear assumptions in overall performance. LSTM
demonstrates superior predictive performance across most maturities with bet-
ter MAE and R2 values, particularly in medium and long-term forecasts, show-
casing its capability in complex market dynamics. Although XGBoost shows
competitiveness at specific maturities, its predictive performance exhibits rela-
tively higher volatility, indicating LSTM’s more pronounced advantages in mod-
eling the dynamic characteristics of the yield curve term structure.
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Figure 4-4-1: Predicting Performance Comparison of Specific Tenors

We can see that, from the comparison of the overall prediction performance,
all three models show strong prediction ability, but there are still slight differ-
ences. the LSTM model shows the best performance in all the evaluation in-
dexes, with the lowest Avg-MSE (0.0019), Avg-RMSE (0.0399), and Avg-MAE
(0.0328) and the highest Avg-R2 (0.9861).

However, the traditional DNS model is comparable to XGBoost in terms of
its predictive ability, although its overall performance is slightly inferior to that
of machine learning model, suggesting that the classical econometric approach
is still of considerable practical value in the field of yield curve prediction.

Table 4-4-2: Predicting Performance Comparison with DNS

Metric DNS XGBoost LSTM

MSE 0.0028 0.0027 0.0019
RMSE 0.0490 0.0472 0.0399
MAE 0.0422 0.0393 0.0328
R2 0.9780 0.9801 0.9861
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5 Conclusion

Our findings demonstrate that the DNS Model effectively captures the dy-
namic evolution of yield curves, where the state equation characterizes the au-
toregressive properties of factors, while the measurement equation establishes
the mapping between yields and factors. This framework not only shows ex-
cellent statistical performance but, more importantly, provides clear economic
interpretations - the level factor reflects long-term equilibrium, the slope fac-
tor embodies monetary policy expectations, and the curvature factor captures
medium-term economic cycle fluctuations.

Theoretically, our study validates and extends traditional term structure
theories through machine learning approaches. The LSTM model, with its gat-
ing mechanism and memory cell structure, can adaptively determine the impor-
tance of historical information, which is inherently similar to the autoregres-
sive characteristics of factor dynamics in the DNS model but with enhanced
nonlinear fitting capabilities. Meanwhile, XGBoost, through its tree ensem-
ble structure and automatic discovery of feature interactions, complements our
understanding of potential nonlinear and cross-maturity relationships in yield
curves. Compared to the DNS model, while these machine learning methods
show improvements in prediction accuracy, they sacrifice model interpretabil-
ity and economic intuition. The findings that the level factor exhibits non-
stationarity and high persistence (30th-order autocorrelation of 0.9277) confirm
the structural characteristics of long-term interest rate formation, while the sig-
nificant positive correlation (0.4365) between level and slope factors reveals the
inherent mechanism of term premiums varying with interest rate levels.

From the methodological perspective, we optimize the decay parameter λ
to 0.42625 through minimizing prediction MSE. The DNS model captures yield
curve dynamics through AR(1) factor processes and exponential-form loadings

[1, 1−e−λτ

λτ , 1−e−λτ

λτ − e−λτ ], providing theoretical foundations for cross-maturity
risk premia formation. For the same factor prediction task, LSTM enhances the
modeling of long-term time series dependencies through its gating mechanism
and memory cell structure, while XGBoost captures non-linear interactions be-
tween yields through its tree ensemble structure. This theoretical comparison of
different prediction methods not only deepens our understanding of yield curve
dynamics but also suggests new directions for developing more comprehensive
term structure theories. Given the advantages demonstrated by machine learn-
ing methods in predicting short-term and long-term yields, our future research
could explore incorporating alternative factor dynamics normalizations (such
as higher-order AR processes) within the DNS framework and dynamic adjust-
ments of λ under different market conditions to enhance model performance in
extreme market environments.
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