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Amachine-learned model for predicting
weight loss success using weight change
features early in treatment
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Stepped-care obesity treatments aim to improve efficiency by early identification of non-responders
and adjusting interventions but lack validatedmodels.We trained a random forest classifier to improve
the predictive utility of a clinical decision rule (>0.5 lb weight loss/week) that identifies non-responders
in the first 2 weeks of a stepped-care weight loss trial (SMART). From 2009 to 2021, 1058 individuals
with obesity participated in three studies: SMART, Opt-IN, and ENGAGED. The model was trained on
80% of the SMART data (224 participants), and its in-distribution generalizability was tested on the
remaining 20% (remaining 57 participants). The out-of-distribution generalizability was tested on the
ENGAGED and Opt-IN studies (472 participants). The model predicted weight loss at month 6 with an
84.5% AUROC and an 86.3% AUPRC. SHAP identified predictive features: weight loss at week 2,
ranges/means and ranges of weight loss, slope, and age. The SMART-trained model showed
generalizable performance with no substantial difference across studies.

Obesity is a growing population health concern and is among the leading
preventable causes of premature death globally1. Gold-standard treatment
for obesity involves intensive behavioral treatment that can be costly and
burdensome to administer, impeding the scalability needed to redress
obesity on a global scale2. Stepped-care treatment models may be a viable
solution. A rational resource allocation strategy, stepped-care, involves
starting with a less resource-intensive intervention, and, for those who
respond suboptimally, stepping them up by adding more vigorous,
expensive intervention components. A major challenge facing obesity
stepped-care intervention, however, is the lack of a predictive treatment
algorithm (policy) that accurately identifies non-responders early in treat-
ment. Improved early detection of non-response to weight loss treatment
will guide stepped-care decisions for treatment that can be scaled for
population-level impact. This would result in a treatment allocation algo-
rithm (policy) that gives people the treatment resources they need—not
more and not less3.

Prior stepped-care obesity treatment approaches have had two main
limitations: (a) poor accuracy of the algorithm predicting non-response, or
(b) prolonged delay (2–3 months) before augmenting treatment4, a pro-
blematic design feature because initial weight loss predicts long-termweight
loss. There is disagreement as to whether weight loss variability and other
statisticalmeasures increase thepredictive powerofweight loss.Moreover, it

is unknownhowweoperationalize initial weight loss, weight loss variability,
trends, and other statistical measures. Given the recent adoption of mobile
health tools, such as wireless weight scales, we can further identify, with
greater granularity regarding daily changes, critical predictors for stepped-
care treatment interventions. Creating adequate tools for early prediction of
weight loss treatment success prevents researchers from resorting to inac-
curate weight loss prediction algorithms or subjective judgment. SHapley
Additive exPlanations (SHAP)5 is an explainable AI tool that helps us
understand the direction and magnitude of the marginal contribution of
each feature to the weight loss outcome. Explainable AI is increasingly
enhancing clinicians' understanding of machine learning (ML) models and
augmenting their decision-making processes. By improving transparency in
model predictions, it increases clinicians’ trust in the outcomeofMLmodels
and advances their integration into clinical practice.

Although conventional statistical methods remain a powerful pre-
dictive tool, recent weight loss research has developedML-based prediction
models using longitudinal data that uncover new knowledge that can
improve the models’ predictive performance6,7. Our study had two primary
aims. First,we aimed to build a supervisedMLmodel that incorporates both
dynamic features obtained during the initial treatment period combined
with baseline features to improve the predictive utility of a clinical decision
rule that identifies non-responders in the first 2 weeks of a stepped-care
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weight loss trial. Second, we aimed to evaluate the generalizability of our
model by testing it on populations from other weight loss trials.

Results
Data from 400 participants with obesity were obtained from the SMART
study, of which 281 participants were eligible for inclusion in the model
development dataset (15 withdrew, 43 missed 6-month follow-up, and 61
did not produce sufficient weight data from the Fitbit Aria wireless weight
scale during the first 2 weeks of the study).We allocated ~60% (169/281) of
the data in the training dataset, 20% (55/281) in the validation set, and 20%
(57/281) in theholdout test set.Approximately 64%(179participants) of the
whole development dataset reached suboptimal weight loss (encoded as
zero), and36%(102participants) achieved sufficientweight loss (encodedas
one) based on the 5% weight outcome at month 6. Table 1 shows the
baseline characteristics of patients in the training, validation, and test sets.
The profiles for the SMART, Opt-IN, and ENGAGED studies are provided
(Supplementary Figs. 1–3).

Proposed model compared to reference methods
Results for the three reference methods show imbalanced sensitivity and
specificity as indicated in Table 2. The average of the three models yields a
low sensitivity of 26.1% (95% CI, 14.1–38.1) and high specificity of 86.2%
(95% CI, 82.9–89.4) suggesting a tendency towards higher false negatives
(misidentifying actual sufficient weight loss as suboptimal) and lower false
positives (misidentifying actual inadequate weight loss as sufficient),

implying that the models predominantly predict a single outcome, sub-
optimalweight loss, akin to a negatively biaseddecisionmaker. The baseline
ML models, both discriminative and generative, which were trained solely
using static features (SupplementaryTable 2), achieved an averageweighted
F1 score of 59.0% (95% CI, 57.6–60.4), and AUROC of 62.8% (95% CI,
59.7–65.9). The generative and discriminativeMLmodels, when trained on
dynamic and static features atweek 2, achieved an averageF1weighted score
of 68.9% (95% CI, 66.2–71.6) and a AUROC 76.0% (95% CI, 72.2–79.9),
demonstrating the value of dynamic features in enhancing prediction
accuracy (Supplementary Table 3). By incorporating dynamic features in
addition to static features in themodel, we observed a 9.9% improvement in
the F1 weighted score and a 13.2% increase in the AUROC. Consequently,
we selected the best-performing ML model, the proposed random forest,
which uses the complete feature set. This model outperformed all reference
methods yielding a weighted F1 score of 75.7%, AUROC of 84.5%, AUPRC
of 86.3%, and Brier score loss of 0.173, as indicated in Table 2. To ensure an
unbiased approach tomodeling, further analysis was performed on 15 other
random train/validation/test splits, yielding similar performance and
explainability outcomes (Supplementary Note 1).

Explainability
Through SHAP, we generated a ranking of feature importance and corre-
sponding explanations using SHAP values and feature magnitudes. Our
analysis highlights the significance of certain features. For instance, SHAP
magnitudes and directionality support the expectation that a higher mag-

Table 1 | Baseline characteristics of the individuals who participated in the SMART study (development dataset), Opt-IN and
ENGAGED studies (generalizability datasets)

Development dataset [SMART] (n = 281) Generalizability datasets [Opt-IN &
ENGAGED] (n = 472)

Sample size Train (n = 169) Validation (n = 55) Test (n = 57) Opt-IN (n = 442) ENGAGED (n = 30)

Age range, years 20–60 23–60 18–60 18–60 22–57

Sex, n (%)

Female 123 (72.8) 40 (72.7) 43 (75.4) 357 (80.8) 27 (90)

Male 43 (25.5) 15 (27.3) 14 (24.6) 85 (19.2) 3 (10)

Other 3 (1.7) 0 (0) 0 (0) 0 (0) 0 (0)

Race/ethnicity, n (%)

Non-Hispanic White 103 (60.9) 34 (61.8) 35 (61.4) 335 (75.8) 14 (47.7)

Non-Hispanic Black 32 (18.9) 12 (21.8) 11 (19.3) 51 (11.5) 12 (40)

Hispanic 21 (12.5) 5 (9.2) 6 (10.5) 40 (9.1) 4 (13.3)

Non-Hispanic Other 13 (7.7) 4 (7.2) 5 (8.7) 16 (3.6) 0 (0)

Weight loss success, n (%)

No 104 (61.5) 34 (61.8) 34 (59.6) 209 (47.3) 19 (63.3)

Yes 65 (38.5) 21 (38.2) 23 (40.4) 233 (52.7) 11 (36.7)

Data are n (%) and (range) for baseline characteristics.

Table 2 | Comparison of the proposed random forest model with three reference methods

Model Sensitivity, % Specificity, % F1 weighted, % AUROC, % AUPRC, % Brier score loss Time endpoint

Historic clinical decision
rule (0.5 lb/week)

5.5 81.4 44.4 NA NA NA Two weeks

Logistic regression (weight
loss on day 14)

40.9 85.7 66.5 76.1 70.7 0.217 Two weeks

Logistic regression (Static
features)

31.8 91.4 64.8 68.4 70.0 0.239 Baseline

Proposed random forest
(full feature set)

82.2 71.1 75.7 84.5 86.3 0.173 Two weeks

The clinical decision rule, which selects responders based onweight loss exceeding 0.5 lb/week, and the logistic regressionmodel trained solely onweight loss data fromday 14 on SMART data. The third
referencemodelwas trainedon static baseline features. Logistic regressionoutperformedall otherMLmodels, both generative anddiscriminative, thatwere trainedusing static features at thebaseline. The
fourth model is the proposed random forest model trained on the full feature set by the two-week endpoint.
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nitude of weight loss on the 14th day increases the likelihood of successful
weight loss shown in Fig. 1. Furthermore, we found that features derived
from the weight trajectory over a two-week period, such as highminimum,
maximum, mean, 75th percentile, IQR, and slope, played a crucial role in
weight loss prediction based on SHAPplots. Additionally, by examining the
SASWV feature, we observed that higher SASWV was indicative of weight
gain. Our examination also revealed multiple baseline features such as age
(being older), sex (being male), height (being tall), and high self-efficacy in
exercise are predictive of weight loss.

Generalizability
The results of our generalizability analysis are indicated in Fig. 2, and Table
3. The results forOpt-IN revealed that the 5-fold cross-validation procedure
yielded an averageAUROCof 72.6% (95%CI, 70.3–74.9), AUPRCof 72.3%
(95% CI, 68.3–76.3), and a Brier score loss of 0.216 (95% CI, 0.207–0.225).
For generalizability of Opt-IN, AUROC, AUPRC, and Brier score loss were
70.9%68.7%, and0.218, respectively.Applying a similarmethodology to the
ENGAGED dataset, for 3-fold cross-validation, we achieved an AUROC of
84.4% (95%CI, 75.6–93.2), an AUPRC of 79.9% (95%CI, 70.9–88.9), and a
Brier score loss of 0.166 (95% CI, 0.126–0.206). For ENGAGED general-
izability, AUROC, AUPRC, and Brier score loss were 80.5%, 82.0%, and
0.137%, respectively.

Discussion
In this study, we developed a machine-learned model that leverages recent
advances in explainability andgeneralizability to increase validity, reliability,
and trust in our ability to detect non-responders to weight loss programs
with a 6-month endpoint and trigger adjustment in treatment. Importantly,

our algorithm outperformed the clinical decision rule that has been used in
past stepped-care trials. The algorithm was also generalizable, given that its
effectiveness was replicated in two other distinct weight loss trials. For these
reasons, our model holds promise as a valuable tool for personalized
treatment allocation and improved outcomes in stepped-care weight
management treatments.

The healthcare sector is witnessing a growing concern surrounding
the adoption of ML algorithms that suffer from low interpretability8.
Clinicians and healthcare professionals hesitate to rely on decisions
rendered by these models, given the lack of insight and explanations
driving the outcome prediction and the high stakes of clinical decision-
making. Although computer scientists and researchers often report the
most highly performantmodel, clinicians and expertswill likely not use a
tool they do not understand9. Fortunately, recent advances in inter-
preting complex models make it more feasible to incorporate explain-
ability into the decision-making process. Explainability methods are
known to enhance trust in the model by allowing clinicians to under-
stand that the model’s accurate predictions are grounded in valid rea-
soning and that any errors made by the model are based on
understandable and justifiable factors found in the data10.

The SMART-trained model exhibited stable performance with no
substantial difference compared to the models trained and tested on the
Opt-IN and ENGAGED datasets separately, as indicated in Table 3 and
Fig. 2. This finding suggests features derived from objectively measured
weights from wireless weight scales were discriminative and generalized
effectively across external data from Opt-IN and ENGAGED studies that
used self-reported weights. Furthermore, the SMART-trained model out-
performed themodel trained and tested on ENGAGED in terms ofAUPRC
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Fig. 1 | Explainability plots by SHAP for the features used in the study. a Feature importance of the variables used in the random forest model trained on the SMART
dataset. b Correlation between the feature magnitude and SHAP values, indicating the direction and impact of features on the model's predictions.
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and Brier score loss. This might be due to the smaller sample size of 30
participants in ENGAGED, which can make it challenging to train a well-
calibrated classifier capable of delivering stable predictions. Therefore, a
generalizable model trained on a larger sample size with objective mea-
surement is better equipped towithstandminor changes in studydesign and
measurement procedures.

Simple rule-based approaches, such as the clinical decision rule
(responders identifiedas losing≥1pound in2weeks) result in lowsensitivity
(5.5%) and an F1 weighted score of 44.4%. The simple model generates a
high number of false negatives, predicting non-responders when they were
actually responders. Such a model would result in an increase of treatment
components or care intensity for participants who do not need them,
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resulting in increased cost and care team burden. Given that initial weight
loss hasbeen shown topredict long-termweight loss11, wedesigned a logistic
regression model that uses weight loss at the end of the second week as the
sole predictor. Although this model improved the clinical decision rule
(F1weighted score, 66.5%) and provided greater interpretability, it comes at
the expense of low accuracy and low sensitivity (40.9%). We then opted for
building a model using the random forest classifier, which is known to
prevent overfitting compared with typical decision tree models, generalizes
well, and has shown success in various domains including finance and
healthcare12,13. Fig. 3 shows a comparative analysis between the selected
random forest model and the logistic regression model.

We then set out to build amodel using data only collected at baseline to
test prediction before treatment initiation. The results were promising and
uncovered some important features; however, the model had low accuracy,
comparable sensitivity (40.9%), and a slightly lower F1 weighted score
(59.0%). Our findings suggest that the statistical features extracted from the
2-week weight loss trajectory possess discriminative power, leading to a
notable 16.7% increase in the F1 weighted score when compared with a
random forest model trained solely on demographic and psychological
features. Notably, certain demographic attributes such as age, gender, and
height exhibit considerable discriminatory potential, implying that older
and taller individuals, as well as males, are more likely to succeed in losing
weight. These observations are in line with findings from prior work
describing the reasons females and younger adults have greater difficulty
losingweight14,15. Increased bodyweight variability is a result of fluctuations
in weight loss and gain and is influenced by a diverse range of factors,
encompassing variations in dietary, physical activity, and other behavioral
patterns (e.g., time of daily weighing)16. The consequential impact of weight
variability extends to numerous health outcomes, including conditions like
depression17, non-alcoholic fatty liver18, and cardiovascular disease19.

Measuring weight variability is challenging due to outliers in weight
data, inconsistent recording of weights by individuals, and non-linear
trends in weight over time. These factors make accurate quantification of
weight variability complex. Researchers vary in how theyoperationalize or
measure weight variability, adopting distinct definitions tailored to their
specific research objectives. However, the rationale driving the selection of
these definitions often remains unexplained, contributing to lack of
consensus about the optimal characterization of weight variability to
inform the investigation of weight loss prediction. Researchers have

shown that short-term elevated weight variability is predictive of poor
long-term outcome20. Additionally, variation between weekdays and
weekends, such that high compensatory weight loss during weekdays
counteracts the upward trajectory of weight gain during weekends, pre-
dicts long-term weight loss and maintenance over time21. This may be
attributed to the operationalization of weekly weight variability, which
focuses on comparing non-consecutive days of the week rather than
emphasizing variations in consecutive day-to-day changes. Although
weekly weight variability is an interesting area of inquiry, our desire to
predict weight loss as early in the intervention as possible renders it
unfeasible to estimateweekday/weekendweight variability. The prevailing
approach for long-term weight loss prediction has typically relied on the
use of RMSE through linear regressionmethods. However, thismethod is
not without limitations, primarily due to its inability to capture non-
linearities inweight trajectoryfluctuations.Adifferent approachproposed
employs LOESS regression, yet like other least squares methods, this
technique is sensitive to outliers22. The estimation of body weight varia-
bility, regardless of the chosen definition, frequently encounters chal-
lenges stemming from the presence of missing data23. As the frequency of
missing weight records increases, weight variability can decrease
depending on the imputation method employed. Whether using self-
report or technology-based smart devices to more objectively oper-
ationalize the measure of weight, there is a need to address missing data.
We therefore scale our definition of a successive weight variability feature
by the count ofmissing weight records spanning the 2-week interval. This
underscores that higher successive weight variability and/or suboptimal
utilization of technology-based tools (higher missing rate) are associated
with reduced success in weight loss.

Our findings suggest another important aspect to consider: an elevated
level of missing data likely indicates a decrease in adherence to the study
protocol, perhaps reflecting faltering motivation that would be expected to
result in failing to achieve weight loss in 6 months. However, isolated total
missingness failed to demonstrate predictive capacity. This becomes more
predictive when coupled with successive weight variability and suggests that
the predictive factor for long-term weight gain may not solely stem from
elevated weight variability but rather arises from the interplay between
heightened weight variability and diminished adherence to prescribed study
protocols.

Misclassification in behavioral weight loss trials can have significant
implications, particularly concerning the risks associated with both under-
andover-treatment. Incorrectly classifying an individual as a respondermay
result in the failure toprovidenecessary interventions, leading to suboptimal
weight loss outcomes and potentially exacerbating obesity-related health
conditions24. Conversely, the consequences of misclassifying an individual
as a non-responder, leading tomore intensive treatment than necessary, are
not as well understood and have not been extensively studied. Although
previous studies have found that the risks associated with intensive beha-
vioral interventions, includingweight lossmaintenance programs for adults
with obesity, are minimal2, over-treatment may introduce risks at multiple
levels, at both the individual and population levels. At the population level, a
prominent adverse consequence of over-treatment is the inefficient allo-
cation of resources to superfluous care, which can result in the depletion of
critical resources25, subsequently limiting their availability for those who

Fig. 2 | Generalizability assessment of a random forest model for weight loss
prediction using external datasets (Opt-IN and ENGAGED). a, b ROC curves for
both models, with the blue curve (and a shaded 95% CI) representing the model
trained/tested on Opt-In and ENGAGED. The red curve represents the ROC curve
for the generalizability. The generalizability curve consistently fell within the 95%CI,
achieving an AUROC of 0.709 and 0.805, which closely aligns with the AUROC of
the model trained/tested on Opt-IN and ENGAGED, respectively (mean: Opt-IN,
0.726; ENGAGED, 0.844). c, d Correspondingly, the Precision-Recall curves for the
Opt-IN and ENGAGED, based on models trained and tested on these cohorts
individually, were compared with those from the SMART-trained model’s

generalizability performance. The generalizability curves consistently fell within the
95% confidence intervals, achieving AUPRC values of 0.687 and 0.820, respectively.
These values are in close alignmentwith theAUPRCof themodels trained and tested
on Opt-IN and ENGAGED (mean: 0.723 and 0.799, respectively). e, f In a similar
analysis for Brier score loss, the total losses recorded were 0.218 and 0.137 for the
generalizability assessment, closely corresponding to the results frommodels trained
and tested on Opt-IN and ENGAGED, with mean values of 0.216 and 0.166,
respectively. Therefore, the SMART model generalized effectively to the external
datasets without substantial loss in performance on Opt-IN and ENGAGED.

Table 3 | This table presents the results of generalizability for
the model trained using the SMART dataset when applied to
the external cohorts, Opt-IN, and ENGAGED

SMART-trained model generalizability results Opt-IN ENGAGED

Sensitivity (%) 77.7 90.9

Specificity (%) 60.3 78.9

F1 weighted (%) 69.2 83.6

AUROC (%) 70.9 80.5

AUPRC (%) 68.7 82.0

Brier score loss 0.218 0.137
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really need it. On an individual level, providing support that exceeds what is
necessary can compromise autonomy. Individuals who perceive their
weight loss as being reliant on external assistance may fail to cultivate the
self-confidence and self-efficacy that could be gleaned by losing weight of
their own accord, without external support. Achieving the right balance
betweenproviding support and encouraging autonomy is essential inweight
loss interventions26.

Weight loss is a multifaceted process influenced by diverse phy-
siological, psychological, and environmental factors. Our analysis is
limited in that our feature set does not encompass elements capturing
dietary patterns or variations in physical activity, which could

significantly enhance the study’s comprehensiveness. However, our
choice of static/dynamic features aligns with those commonly found in
most standard clinical settings. Furthermore, it is essential to acknowl-
edge that ML models are inherently opaque. Although SHAP aids in
mitigating this opacity, it does not address potential algorithmic biases
embedded in the model, often due to underlying assumptions in the
algorithm’s design. It is important to acknowledge that excessive reliance
on SHAP interpretations may lead to overinterpretation, potentially
resulting in the emergence of narrative fallacies27.

Our primary outcome variable is measured at 6 months, which
presents a limitation in predicting the long-term sustainability of weight
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loss. Future research should aim to predict weight loss maintenance by
extending the analysis to 12-month outcomes and beyond. Given the
complexity and uncertainty of human behavior, predicting weight loss is
an inherently challenging problem. Although initial weight loss is
known as a strong predictor of weight lossmaintenance, we shed light on
the utility of low weight loss variability in predicting weight loss success
through the predictive lens of machine-learned models. Our findings
show that we can reliably predict weight loss as early as 2 weeks into a
weight loss attempt, laying the foundation for future dynamic stepped-
care weight loss models. However, the model is based on a limited
universally measured set of features in common in clinical settings and a
limited sample size from 3 studies; as such, it is meant as a proof-of-
concept analysis. Before this kind of model can be used as a decision-
support tool, the effectiveness of early-prediction models needs to be
confirmed in a prospective study encompassing a diverse array of
populations, a broad spectrum of treatment methodologies, and a range
of different temporal intervals.

Methods
Overview
Our data analysis pipeline aimed to demonstrate whether dynamic features
(weight loss information obtained early in the intervention) improve the
early prediction of weight loss in an interventional weight management
program, select the best-performing predictive model, and test its explain-
ability and generalizability. Participants’weights in the SMART study were
objectively measured using the Fitbit Aria wireless smart scale. They were
instructed toweigh themselves everymorning immediately after waking up,
post-urination, and without any clothing. The weight loss outcome, oper-
ationalized as a dichotomous variable, is assessed at month 6, with success
defined as participants achieving a clinicallymeaningfulweight loss of 5%or
more from their baseline weight by the 6-month endpoint. We compared
our machine-learned model with several reference methods. The first was
the clinical decision rule in which non-responders were defined as partici-
pantswho lost <0.5 pounds/week (0.227 kg/week). The clinical decision rule
is operationalized by evaluating participants at the end of week 2 and
flagging them as non-responders if they did not lose at least 1 pound from
their baseline weight at the end of the 2-week period. Because most prior
work suggests the best predictor of weight loss success is the degree of initial
(early) weight loss, our second reference method included a logistic
regression basedonweight loss atweek 2. This allowedus tomove towards a
more tailored personalized approach to assess whether collecting a feature
such as weight loss from baseline at week 2 (expressed as a
percentage)–temporally closer to the 6-month endpoint–increased the
predictive utility of ourmodel. Our third referencemethodwas the baseline
machine-learned model, which tests the predictive power of static features
obtained from participants (e.g., demographics, psychological measures,
etc.) at baseline using a supervised machine-learned model. This was
essential to assess whether data prior to beginning the intervention was
sufficient for the prediction of weight loss. Our final proposed weight loss
machine-learned model combined baseline static variables with dynamic

statistical variables obtained early (first 2 weeks) during the weight loss
treatment period to highlight the predictive power of data-driven statistical
features. To evaluate the in-distribution generalizability of the final model,
we utilized the randomly selected holdout test set from the SMART study.
With the goal of building a trustworthy machine-learned model that could
reliably augment clinical practice, we used explainability methods to
uncover not only the most predictive variables but also the magnitude and
direction of a variable’s effect on weight loss. A clinician needs to know the
direction and impact by which a model’s features predict weight loss to
understand how the model “works,” and thereby to decide whether it is
credible and trustworthy. To evaluate the out-of-distribution general-
izability of the final model (SMART-trained), we assessed its performance
on the Opt-IN and ENGAGED datasets and compared it to models trained
separately on these datasets, allowing us to gain insights into its ability to
generalize despite differences in study design andmeasurement procedures.
Moreover, given our interest in understanding behavior change and the
existing uncertainty regarding weight variability and its association with
long-term weight loss, we propose a new definition for body weight varia-
bility incorporating the factor missing rate and gauge its discriminative
power and relationship with weight loss at the 6-month mark.

SMART study design
The SMART study28 was a sequential multiple assignment randomized
trial that aimed to optimize an mHealth-intensive lifestyle obesity
stepped-care treatment package by identifying the optimal starting
condition and the optimal augmentation (“step-up”) strategies for
treatment non-responders. The study included a 3-month weight loss
treatment program with a weight loss outcome measure at 6 months.
The sample included 400 adults who were overweight or obese at
baseline ([BMI], 27–45 kg/m2). Participant recruitment spanned
2016–2021 in the Chicagoland area.

Opt-IN study design
The Opt-IN study29 was a clinical trial that used a full factorial design to
identify the combination of remotely delivered, technology-supported
weight loss treatment components that maximized weight loss over a
6-month period. The study included 562 adult participants with over-
weight or obesity. All participants received a base treatment intervention
including a custom-built smartphone app that facilitated self-
management of diet and activity behaviors, online lessons, and a
coach. In addition to the base package, participants were randomly
assigned to 32 experimental conditions, covering all possible permuta-
tions of five treatment components: moderate vs intense (12 vs 24)
number of coaching call sessions, text messaging, buddy (social support)
training, primary care provider engagement, and meal replacement.
This allowed researchers to identify the optimal combination of these
treatment components in terms of the primary outcome, weight loss
achieved at 6 months. Participant recruitment spanned 2013–2017 in
the Chicagoland area, with the study’s protocol and design previously
documented.

Fig. 3 | Comparative analysis of weight loss predictions: random forest vs. logistic
regression models across initial two-week trajectory. The plots a and c delineate
the trajectory of weight change over a 14-day period from the baseline for two
participants, one achieving suboptimal weight loss and the other achieving sufficient
weight loss at the 6-month mark. Accompanying the weight change data are SHAP
force plots (b and d), illustrating the features contributing to the predictive models’
outcomes for these individuals. Additionally, daily weight loss percentages are
depicted using blue dots, while a red line signifies the trend in weight loss trajectories
through orthogonal distance regression (ODR), for both participants. A compara-
tive analysis is conducted between the predictive capabilities of the proposed ran-
dom forest model (trained on the full set of features), and a logistic regressionmodel
(trained exclusively on the data pertaining to weight loss on day 14). a The logistic
regression model functions as a tailored decision rule, categorizing participants who
exhibit a weight loss of ~2.44% by the end of the second week as likely to achieve

weight loss success at the 6-month mark. The weight loss trajectory over the initial
two-week period indicates a potential for weight loss, as suggested by the trend’s
slope. The random forest model considers a broader set of variables, including the
trajectory of weight loss as determined by the slope, the participant’s age (b), and the
weight loss observed on the 14th day. However, the logistic regressionmodel, relying
solely on the singular metric of weight loss on day 14—approximately 2%—predicts
suboptimal weight loss by the six-month marker. The accuracy of this prediction
may be attributed to random chance rather than serving as a reliable indicator of
future outcomes. c In contrast, for this participant, the random forest model
leverages a broader array of variables (d), including maximum, minimum, mean
weights, and gender, enhancing the precision of its prediction. Conversely, the
logistic regression model’s reliance on a single variable—weight loss on day 14,
estimated at 2%—renders it susceptible to misclassification of this participant’s
outcome.
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ENGAGED study design
The ENGAGED study30, conducted between 2009 and 2013, was a rando-
mized controlled trial involving 96 adults with obesity, comparing three
different 6-month weight loss treatments: Self-Guided (SELF), Standard
(STND), and Technology-Supported (TECH). The STND and TECH
groups attended eight in-person group sessions, while the SELF and STND
groups used paper diaries for self-monitoring. In contrast, the TECH group
utilized a smartphone app with social networking features and a wireless
accelerometer for self-monitoring. The primary goal of the study was to
evaluate the effectiveness of each treatment, measured by the amount of
weight loss achieved after 6 months.

All studies were conducted in compliance with ethical standards
and received approval and oversight from the Northwestern Institu-
tional Review Board under the following study identification numbers:
SMART (STU00202075), Opt-IN (STU00066546), and ENGAGED
(STU00017350).

Development and external cohorts
Weselected the SMART study as the development cohort due to its accurate
and objective weight measurement, facilitated by the Fitbit Aria wireless
smart scale, compared to the self-reported weight measurements in the
other studies. Additionally, the SMART study was the most recent among
the weight loss studies, ensuring more up-to-date methodologies and
technologies. Since part of the SMARTstudywas runduring theCOVID-19
pandemic, a post hoc sensitivity analysis was conducted, showing no sig-
nificant difference inweight loss between groups assessed before and during
the lockdown31. Opt-IN and ENGAGEDwere chosen as external cohorts to
deploy the SMART-trained model and test its generalizability.

Outlier detection architecture
We removed duplicate records and eliminated erroneous observations with
invalid formats in each study separately. In the first step, we leveraged a
traditional statistical approach to remove explicit outliers (i.e., unreasonably
high/low weight records) by applying a within-person threshold (lower
bound =Q1 ‒ 1.5 * interquartile range [IQR]; upper bound =Q3+ 1.5 *
IQR, where Q1 = 25th percentile and Q3 = 75th percentile). We supple-
mented this approach with another validated method, time-windowed
geometric path analysis to identify within-person errors in weight mea-
surements in time series data32. We measured the time interval and weight
difference between three consecutive weight measurements for each parti-
cipant. Subsequently, for every three contiguous weight measurements, we
computed the path ratio. We created a personalized distribution of path
ratios for each individual and excluded weight values that had a path ratio
that exceeded five z-scores, empirically set, and verified through visual
confirmation by two authors (FS andNA) to ensure accuracy and reliability
in the analysis. This method was applied uniformly to all datasets (SMART,
Opt-IN, and ENGAGED). Consequently, all baseline models and ML
methods utilized the same cleaned dataset, ensuring consistency and
comparability in the analysis.

Measures and features
Weextracted data-driven features to assist theMLmodels in discriminating
between individuals who achieved weight loss success and those with sub-
optimal weight loss results. Features were added to create generalizable and
robust machine-learnedmodels that identify early non-response in the first
2 weeks of a weight loss intervention. Two baseline psychological features
(self-efficacy for diet and for exercise) and four baseline demographic
variables (height, age, gender, race/ethnicity) were included in the model.
The data-driven features included dailyweight deviation ratio frombaseline
weight for days 7 and 14, weight variability, ranges andmeans of weight loss
during the first 2 weeks, and slope/intercept (obtained from linear regres-
sion), zero crossing, kurtosis, and skewness,which revealweightdistribution
characteristics over the 14-day course. Formal definitions of the features are
provided (Supplementary Table 4). To handle missing data, we used linear
regressionas a curve-fittingmethod33 to estimate and imputemissingweight

data from the known records over 2 weeks. For instance, if a weight on day
14wasmissing or removeddue to the outlier detection architecture, we used
the imputed value.

Weight variability
Previous research has used different methods to define/measure weight
variability; however, their impact on weight/health outcomes remains
unknown. Some researchers have derived weight variability as the coeffi-
cient of variation known as the relative standard deviation34. Others have
defined weight variability as the mean successive weight change35. Another
weight variability metric is derived from non-linear mean deviation esti-
mated from locally weighted scatterplot smoother (LOESS) regression36.
However, weight variability is also widely used as root mean square error
(RMSE) calculated from the estimated weight records’ distance from the
best-fitted linear regression line37,38. All derivations are provided (Supple-
mentary Table 1).

We propose a sparsity-adjusted successive weight loss variability esti-
mated by Equation (1), where we measure the within-person successive
(day-to-day) weight loss variability and adjust by the count of missingness
over 2 weeks, mathematically formalized as follows:

σ2i ¼
PM�1

j¼1 ðyi;j � yi;jþ1 � μiÞ2
M

; μi ¼
PM�1

j¼1 ðyi;j � yi;jþ1Þ
M

; SASWVi ¼ σ2i �Mi

ð1Þ

where M ¼ 14 is the number of observations, j 2 1; 2; . . . ;Mf g, and N is
the number of participants, i 2 f1; 2; . . . ;Ng, μi is the within-person mean
of the successive weight loss differences, σ2i is the variability of the within-
person successive weight loss difference andMi is the count of missingness
(i.e., the number of imputed observations) over 2 weeks (Supplementary
Fig. 4).

Model preparation
We tested supervised ML algorithms to identify early non-response and
predict suboptimal weight loss at month 6 in the SMART study at baseline
and by week 2. To identify the optimal model, we ran discriminative (e.g.,
XGBoost, random forest, support-vector machines, logistic regression, and
k-nearest neighbors) and generative (e.g., naive Bayes) supervised ML
classifiers. Figure 4 displays the analytic pipeline, with each component
described in detail in the following sections.

Model generalizability and explainability
To test the in-distribution generalizability of the machine-learned models,
we created a train/validation/test split (60%/20%/20%), ensuring that the
data was randomly partitioned without cross-contamination between sets.
In the model training and refinement phase, we used Bayesian
optimization39 to select the optimal set of parameters for each algorithm on
the validation set in an efficient and informed manner. To address sample
diversity and class imbalance, we used sample stratification (based on
gender, race/ethnicity, and outcome variable) to eliminate bias and model
overfitting. Finally,we evaluated in-distribution generalizability by assessing
the performance of the fine-tuned model (trained on the combined train
and validation sets) on the holdout test set. Based on these evaluations, we
selected the best-performing machine-learned model and proceeded to the
model deployment phase. To assess the generalizability of this final model
(the SMART-trained model), we evaluated its performance on external
datasets, specifically ENGAGED and Opt-IN. Additionally, we indepen-
dently trained models on each of these external datasets using k-fold cross-
validation. We then compared the cross-validation metrics from these
independently trained models to the generalizability metrics obtained from
applying the SMART-trainedmodel to the samedatasets.Weused SHAP to
improve the explainability of our model by uncovering the magnitude,
directionality (positive or negative), and predictive order of the features.
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Evaluation
We evaluated our model using various metrics, including sensitivity, spe-
cificity, F1 scores for weight loss success, F1 scores for suboptimal weight
loss, weighted F1 scores, the area under the receiver operating curve
(AUROC), the area under the precision-recall curve (AUPRC), and Brier
score loss. F1 score is a precise measure of performance used in ML to
capture the precision of the algorithm and recall of both weight loss success
and suboptimal weight loss or as a combined weighted F1 score that assigns
weights based on each class’s support.

Data availability
The data underpinning the results of this article will be accessible for aca-
demic use through a reasonable written request to the corresponding
author. Requests will be considered on a case-by-case basis and evaluated in
compliance with ethical and regulatory guidelines governing clinical
research.

Code availability
The specifics of the implementation of the machine learning models are
available on the GitHub page: https://github.com/HAbitsLab/Weightloss
PredictionModel.
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