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Paired analysis of host and pathogen
genomes identifies determinants of human
tuberculosis

Yang Luo 1,2,3,4,5,6,20, Chuan-Chin Huang7,8,20, Nicole C. Howard9,20,
Xin Wang 9,20, Qingyun Liu 9,10,20, Xinyi Li11, Junhao Zhu 9,
Tiffany Amariuta1,2,3,4,5,12,13, Samira Asgari1,2,3,4,5,14, Kazuyoshi Ishigaki1,2,3,4,5,15,
Roger Calderon 16, Sahadevan Raman 2, Alexandrea K. Ramnarine 2,
Jacob A. Mayfield 2, D. Branch Moody 2, Leonid Lecca8,17,
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Infectious disease is the result of interactions between host and pathogen and
can depend on genetic variations in both. We conduct a genome-to-genome
study of paired human and Mycobacterium tuberculosis genomes from a
cohort of 1556 tuberculosis patients in Lima, Peru. We identify an association
between a human intronic variant (rs3130660, OR = 10.06, 95%CI: 4.87 − 20.77,
P = 7.92 × 10−8) in the FLOT1 gene and a subclavaluee of Mtb Lineage 2. In a
human macrophage infection model, we observe hosts with the rs3130660-A
allele exhibited stronger interferon gene signatures. The interacting strains
have altered redox states due to a thioredoxin reductase mutation. We
investigate this association in a 2020 cohort of 699 patients recruited during
the COVID-19 pandemic. While the prevalence of the interacting strain almost
doubled between 2010 and 2020, its infection is not associated with
rs3130660 in this recent cohort. These findings suggest a complex interplay
among host, pathogen, and environmental factors in tuberculosis dynamics.

Infectious diseases account for much of the burden of all diseases
worldwide, but their host genetic architecture is less well understood
than many other types of complex traits, despite having comparable
genetic heritability1,2. Infectious diseases occur only when pathogenic
organisms infect a host, and thus they are unique in that the effect of
host risk alleles may be influenced by genetic variation within the
pathogen as well as by environmental factors. In tuberculosis (TB), the
pathogenic organismMycobacterium tuberculosis (Mtb) has co-existed
with humanity for millennia and may be co-evolved. Currently Mtb is
estimated to infect one-fourth of the population worldwide3 and in
2019 alone, ~1.4million people succumbed to it4.

Human genome-wide association studies (GWAS) performed by
us andothershave identifiedonly a fewconfirmeddisease alleles in TB.

Most TB risk alleles appear to be unique to populations within
restricted geographical locations5–10. One possibility is that human
genetic susceptibility is strain specific and host genetic risk therefore
varies with the varying prevalence of different Mtb strains in different
locales. If true, this interaction could manifest in a statistical associa-
tion between host andMtb genetic variations11,12. Previous studies in TB
have explored the possibility that human host alleles are associated
with clinical phenotypes, such as disease severity and age of onset, in a
Mtb lineage specific manner13,14. A full variant-to-variant search among
Mtb and human host genomes might reveal heterogeneity beyond
established Mtb lineages and may implicate novel human risk loci.
Scaling of sequencing and genotyping technologies now makes a
pathogen-host genome-wide examination possible. Here, we sought to
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use a genome-to-genome (g2g) approach to examine both genomes
comprehensively and find genetic determinants of host and pathogen
interactions in progression to TB pulmonary disease.

Results
We hypothesized that host genetic variation can predispose certain
individuals to a higher risk of disease from specific bacterial lineages or
clades, including those that are not yet defined. If these differences in
bacterial prevalence across human hosts are genetically driven, we
should be able to identify an association in TB patients between host
and bacterial genetic alleles.

We tested this hypothesis in a cohort composed of 1556 TB
patients in Lima, Peru, fromwhomwe collected both human genotype
and Mtb whole-genome sequences (WGS) (Fig. 1a, Supplementary
Data 1). After quality control, we obtained 676,110 genotyped human
variantswith aminor allele frequency≥1%.We focusedour g2g analysis
on 2298 out of 45,831 called Mtb variants with an allele frequency
between 5% and 95%, since statistical power for rareMtb alleles would
be limited.

We tested whether the co-occurrence of each pair of common
bacterial and genotyped human variants was higher than expected by
performing a mixed effects logistic regression. We considered the

Fig. 1 | Human-to-Mtb genome-wide association study in 1556 tuberculosis
patients. a Study design schematic. We obtained DNA from 1556 Peruvian indivi-
dualswith TBdisease and cultured pathogens to performhost genotyping andMtb
WGS. The genotype of each common Mtb variant was considered as the response
variable (Y: 0 or 1), and the genotype of each host variant was the independent
variable (X: 0, 1 or 2), resulting in one test per host SNP-Mtb SNP pair. b Grid plot
summarizing the genome-to-genome analysis. The x-axis denotes position within
the human genome with alternating colors (white and light gray) for each chro-
mosome. The y-axis denotes position within the Mtb genome. Point colors repre-
sent the association p-value (-log10(P)) from the mixed effect logistic regression.
The most significant host-Mtb pair association is indicated. Six randomly chosen

Mtb variants in tight linkage (Pearson r2 >0.8) with position 271640 are shown in
light blue, indicating that the same human variant rs3130660 is significantly
associated with multiple Mtb positions. c Manhattan plot of the GWAS analysis
when treating genotypes of Mtb position 271640 as the outcome. The x-axis indi-
cates genomic location, where as the y-axis shows the (-log10(P)) frommixed effect
logistic regressionmodel (d) Amaximum likelihoodphylogenetic tree inferred from
13,981 variants of 1,555 Peruvian Mtb isolates (excluding one Lineage 1 sample for
visualizationpurposes). Branch colors represent the inferred lineages. Filled squares
on the right indicate the presence (red) or absence (gray) of the six Mtb variants
identified in the g2g analysis and highlighted in (b) Source data for (a).-c are pro-
vided in the Source Data 1 file. Source data for (d) are provided in Source Data 2 file.
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presence or absence of each common Mtb SNP as a binary trait and
assumed an additive model correcting for human cryptic relatedness,
population structure, age and sex. To reduce the computational bur-
den, we only included 1267 (out of 2298) commonMtb SNPs that were
not in near perfect linkage (Pearson r2 <0.99) in the association tests.
Similar to performing GWAS on two correlated traits (e.g., blood
pressure and cholesterol level), we allowed correlation in our outcome
variables (Mtb SNPs) and did not correct for Mtb structure in our
model. As a result, a single host variant can be associatedwithmultiple
Mtb variants. In total, we ran >850million regression models between
every common Mtb and host variant pair (Fig. 1b). We examined
genomic inflation factors (λgc) of each of 1267 GWAS and observed no
inflation of test statistics (median λgc = 1.00, Supplementary Fig. 1),
suggesting that our model is robust to false-positive findings.

Genome-to-genome study identifies human-Mtb genomic
associations
We identified an association between an intronic human variant,
rs3130660, located in the 6p21 region on chromosome 6 and a phy-
logenetic marker (Position 271640) of a subclade of Lineage 2 (L2)Mtb
(OR = 10.06, 95%CI: 4.87− 20.77, P = 7.92 × 10−8, Fig. 1c, Supplementary
Data 2). Individuals with each rs3130660-A allele were 10 times more
likely to be infected with Mtb strains carrying the interacting Mtb
variant marker. To increase confidence in our reporting, we next per-
formed a permutation analysis to estimate the likelihood of our
observed P-value under the null. We found that the likelihood of
obtaining results similar to the observed results is <1% (P < 5.91 × 10−7

assuming a 5% false-discovery rate, Supplementary Fig. 2).
The associated Mtb variant is in tight linkage with 78 of the 2298

common Mtb variants (Pearson r2 >0.8, Supplementary Data 3). To
better understand these 79 Mtb variants, we constructed a maximum
likelihood phylogenetic tree using WGS of 1556 collected isolates. In
this analysis, we looked at 13,981Mtb variants which included both the
2298 commonvariants alongwith 11,683 variants that passed stringent
quality control.We classified the strains intowell-definedMtb lineages,
including L2 and L4.1–8 using previously defined lineage defining
markers15. We observed that previously defined lineages fell within
distinct branches of the phylogenetic tree (Fig. 1d). We observed that
all 79 Mtb SNPs were present in the same L2 subclade of the phylo-
genetic tree.Wehenceforthdefine the cladeby thepresence of the g2g
Mtb variant (Position 271640) as the g2g-L2 clade. Among the 1556Mtb
isolates, 102 were g2g-L2 (6.56%).

To test whether this result reflected social mixing patterns within
the community or a true biological association, we repeated our ana-
lysis adjusting for year of TB diagnosis, Mtb population structure (as
reflected by the top two principal components), none of which sig-
nificantly changed the reported association (Supplementary Fig. 3).
Although the prevalence of non-L2 Mtb strains remained consistent
over the 2-year collection period, we observed an increase in the
associated Mtb clade (g2g-L2) defined by the phylogenetic marker
(Position 271640), from 5.4% to 8.9% (Supplementary Fig. 4a). How-
ever, this did not alter our association strength (Supplementary Fig. 3).
We also observed that the associated Mtb clade remained consistent
over geographical space (Supplementary Fig. 4b), reinforcing the
conclusion that the reported signals are independent from these
covariates. We next considered the possibility that the observed
association between a host allele and the Mtb g2g-L2 subclade was
driven by host ancestry (Supplementary Fig. 5) or Mtb lineage (Sup-
plementary Fig. 6). We examined host alleles for associations to the
two commonMtb lineages in Peru (L2 and L4), and found the strongest
association was between the same host allele and the L2 lineage, but
that this association was substantially weaker than with the g2g-L2
lineage (rs3130660, OR = 5.96, 95% CI: 2.97-11.97, P = 1.42 × 10−6, Sup-
plementary Fig. 7, Supplementary Data 4). A conditional analysis
including g2g-L2 obviated this association (P =0.97). In contrast,

adding L2 as a covariate to our original model did not obviate the
association with g2g-L2 (P = 4.21 × 10−15). This result suggested that the
observed association between rs3130660 and L2 was driven by the
g2g-L2 subclade rather than L2 more broadly.

Host variant associated with Mtb diversity colocalizes with
expression of multiple genes in lung and other tissue types
The host genetic variant (rs3130660) associated with g2g-L2 infection
is intronic to the FLOT1 gene. FLOT1 is a lipid raft-associated scaf-
folding protein that plays a role in membrane trafficking and phago-
some maturation16,17. We investigated whether this SNP modulates the
expression levels of nearby genes by performing an expression quan-
titative trait loci (eQTL) analysis.Using theGenotypeTissue Expression
(GTEx release v818) database in lung, we observed that rs3130660-A is
associated with increased FLOT1 expression (P = 2.22× 10−16, Supple-
mentary Fig. 8), increased PPP1R18 expression (P = 3.75 × 10−7) and
multiple other genes in the region (Supplementary Fig. 9). Since our
variant is within the MHC class-I region, to increase the resolution of
our reported associated region, we performedHLA imputation using a
multi-ancestry MHC reference panel19. After imputation, rs3130660
remained the strongest signal in the region (Supplementary Fig. 8). To
understand whether the rs3130660 allele corresponded to the signal
reported in eQTLstudies,weapplied a colocalizationanalysis using the
coloc software20. Using 109 RNA sequencing datasets included in the
eQTLcatalog release 621, we assessed colocalization signals between all
48 protein coding genes within a 700 kb window of rs3130660 (Sup-
plementary Fig. 10, Supplementary Data 5). We note that there are
differences in genetic ancestry between our study and reported eQTL
studies, which were predominantly conducted among individuals of
European ancestry, and this might have reduced our power to detect
colocalizing signals across these datasets22. Despite this limitation, we
found evidence of colocalization between the identified interacting
host SNP and multiple genes within the MHC class-I region, such as
FLOT1, IER3 and PPP1R18 eQTL association in 14 cell and tissue types
(posterior probability >0.75), including FLOT1 in T-cell (posterior
probability = 0.96), IER3 in whole blood (posterior probability = 0.90)
and PPP1R18 in thyroid (posterior probability = 0.90). These results
provided strong evidence that the strain-associated host variant reg-
ulates expression of multiple genes in the MHC class-I region.

Interacting host allele and Mtb strain show distinct global
transcriptomic effects in macrophages
To experimentally test the plausibility of the identified host and Mtb
genetic association,we assessed the responses of humanmacrophages
from Peruvian donors with different rs3130660 genotypes to infection
with g2g-L2 and nearest neighbor L2Mtb strains, here called “non-g2g-
L2”. To this end, we obtained macrophages from three randomly
selected Peruvian donors from our cohort who carried the risk allele A
(rs3130660-AT) and three donors who did not (rs313060-TT). We
infected these monocyte-derived donor macrophages (MDMs) with
three g2g-L2 strains and three non-g2g-L2 strains with similar in vitro
growth characteristics, and measured macrophage transcriptional
responses by RNA-sequencing (Supplementary Fig. 11), which we
interpret as intermediate traits relevant to human infection outcomes
consistent with other published studies23–26.

To explore the effect of g2g-L2 and non-g2g-L2 Mtb infection in
rs3130660-AT and TT donors inmacrophages, we first scored the data
for “response to infection” using a gene model that includes the 20
most highly induced genes identified in an independent study of
human MDM responses to infection with the reference Mtb strain27

(Supplementary Data 6). We integrated expression values of these 20
genes under each condition to test whether rs3130660-AT and TT
donors exhibit different transcriptional responses upon g2g-L2 versus
non-g2g-L2 infection. We saw quantitative transcriptional differences
in responses impacted by host allele and Mtb strain with AT donors

Article https://doi.org/10.1038/s41467-024-54741-w

Nature Communications |        (2024) 15:10393 3

www.nature.com/naturecommunications


manifesting larger transcriptional responses than TT donors
(Pt-test = 7.00 × 10−7). This response was blunted in g2g-L2 strain
infection as compared to non-g2g-L2 infection in both host AT
(Pt-test = 0.0068) and TT backgrounds (Pt-test = 0.0042, Fig. 2a).

To further understand how differences in host allele and Mtb
strain alter the global transcriptional macrophage response to infec-
tion, we extracted differentially expressed genes (DEGs, >0.7 log2(fold-
change), FDR-adjusted P-value < 0.01, Fig. 2b, c, Supplementary
Data 7). We performed hierarchical clustering based on 184Mtb strain-
specific response genes and 924 rs3130660 genotype-specific
response genes. We identified four major expression clusters in
response to Mtb infection (Fig. 2d) and performed pathway enrich-
ment analysis to describe the biological processes govened by these
gene expression clusters (Fig. 2e). We observed rs3130660-AT donors
had higher expression of genes implicated in both Type 1 and Type 2
interferon pro-inflammatory signaling; MHC-I antigen processing and
presentation, IL-1B signaling, cytosolic DNA sensing and zinc home-
ostasis. We found rs3130660-TT donors expressed higher levels of
genes implicated in altered metabolism and protein disulfide bond
formation including thioredoxin and glutathione related enzymes.
These responses differed quantitatively by the infecting Mtb strain
with g2g-L2 strains inducing higher levels of IL-1B signaling and altered
zinc responses in both donor alleles while non-g2g-L2 strains induced
higher expression levels of genes involved in interferon signaling and
MHC-I antigen processing and presentation (Fig. 2f). Taken together,
these data are consistent with a model in which rs3130660-AT donors
mount a stronger transcriptional response to infection, perhaps
because of more sensitive induction of innate responses but that
response is skewed towards interferon after non-g2g-L2 infection, in
contrast to IL-1B dominant responses after g2g-L2 infection.

To assess if the rs3130660-A mutation alters transcriptional
responses on chromosome 6 in addition to FLOT1, we next performed a
directed analysis of the 30 genes on chromosome 6 previously impli-
cated in the eQTL analyses. Among the 30 protein-coding genes that
pass quality control flanking the rs3130660 region, we observed no
statistical differences in gene expression between donors with AT and
TT genotype in the absence of infection (no Pt-test < 0.05, Supplementary
Fig. 12). However, after infection, we observed 15 genes with significant
differences between the two host genotype groups (Pt-test < 0.05, Sup-
plementary Fig. 13), including IER3, VARS2 and ZNRD1 involved in
immune response, ER stress and zinc homeostasis (Fig. 2f–h). Among
the 15 genes, 8 gene expression levels were further modified by theMtb
strains, including FLOT1, HLA-E and PPP1R18 (Pt-test < 0.05, Fig. 2i–k).
Taken together, these data reveal host-pathogen transcriptional inter-
actions with highly consistent but directionally distinct quantitative
effects of both the host allele and bacterial strain.

To test for differential FLOT1 expression in the absence of host
genotype variation, we evaluated FLOT1 expression in MDMs from
three healthy non-Peruviandonors afterMtb infection (Supplementary
Fig. 14). Using an expandedMtb strains set, we found FLOT1 expression
was significantly lower in the setting of g2g-L2 compared to non-g2g-
L2 infection (two-way ANOVA, P-values = 0.0650, 0.0089, 0.0022
across three donors, Fig. 3a).We then profiled the immune response in
these three donors using a panel of Nanostring probes for genes
involved in metabolism and myeloid immune responses to infection.
Using bacterial-specific DEGs identified in the Peruvian donor MDMs
(Fig. 2b), we found a significant correlation between differential gene
expression in the Peruvian and local donors when comparing g2g-L2
and non-g2g-L2 infection (P-value = 0.0045, Fig. 3b). Additionally,
scoring the data for the response to infection using the same 20 highly
induced genes (Fig. 2c), we again observed quantitative transcriptional
differences in response to g2g-L2 and non-g2g-L2 strains in multiple
donors (two-way ANOVA, P-value = 0.0021, 0.0185, 0.4037, Fig. 3d,
Supplementary Data 6). We found that there was significantly higher
induction of genes involved in Type I IFN signaling by non-g2g-L2

strains and dampening of this response by g2g strain infection in two
of three donors (two-way ANOVA, P-value = 0.0021, 0.3119, 0.0126,
Fig. 3e, Supplementary Data 8).

The Mtb g2g-L2 subclade displays altered redox metabolism
Next, we sought to identify biochemical features distinguishing the
g2g-L2 from non-g2g-L2 strains. Strains. However, the Mtb envelope
contains 109 subclasses of lipids28 which include many known deter-
minants of differentialMtb virulence29–31. Therefore, we performed an
unbiased whole cell lipidomics analysis from three g2g-L2 and eight
non-g2g-L2 strains, which detected 28,209 distinct molecules. No dif-
ferentially abundant lipid (P-value < 0.05 after adjustment by the
Benjamini-Hochbergmethod) was found with respect to g2g-L2 status
(Supplementary Data 9), which ismost consistent with equivalent lipid
compositions among the set of L2 isolates.

We next developed a high throughput imaging-based phenotyp-
ing platform to agnostically identify intrinsic features that distinguish
Mtb strains, which we interpret as intermediate traits for more com-
plex biological processes32 (Fig. 4a, Supplementary Fig. 15). We asses-
sed seven functional phenotypes including cell morphology (length,
width and area), total cellular lipid content, chromosomal DNA con-
tent with DAPI staining and growth dynamics inferred by pulsing with
fluorescently tagged D-amino acids (NADA) which are incorporated
into nascent peptidoglycan. Redox state is inferred from auto-
fluorescence at 420 nm; signal is generated by the oxidized form of
F420, a flavin derived cofactor derived cofactor named because of its
420 nm absorption peak at its oxidized state33,34. We phenotyped 23
g2g-L2 and 11 non-g2g-L2 strains and found a significantly higher
autofluorescence signal in g2g-L2 compared to non-g2g-L2 strains
(PWilcox-test = 2.0 × 10-4, Fig. 4a, b), indicative of a shift in the redox state
of F420 towards a more oxidized state35. Consistent with this inter-
pretation, the g2g-L2 strains were less sensitive to growth inhibition
caused by pretomanid, an antibiotic pro-drug that requires the
reduced form of F420 to be activated36 (PWilcox-test = 0.032, Supple-
mentary Fig. 16). The F420 cofactor pools are linked to the redox state
of the other major redox cofactor pools, and the NAD+ /NADH ratio
was also significantly higher in g2g-L2 strains, indicating a broader
change in cellular redox balance (Pt-test = 0.0106, Fig. 4c). Further, g2g-
L2 strains were more significantly resistant than control L2 strains to
redox stress induced by menadione, which causes redox cycling and
has been shown to lead to decreased NAD+ /NADH ratio inMtb37 (two-
way ANOVA, P-value = 0.0165, Fig. 4d) but do not differ in suscept-
ibility to an exogenous oxidant (H2O2) (two-way ANOVA, P-value =
0.433, Fig. 4e).

We sought to identify putativeMtb genetic variants that might be
driving this functional phenotype. There are 49 nonsynonymous
changes among 79Mtb SNPs defining g2g-L2 (Supplementary Data 3).
Many of these occur in genes that belong to redox-related pathways
(Supplementary Fig. 17). Among these genes, the most biologically
likely candidate mediator of altered redox state was trxB2, encoding
thioredoxin reductase, which isomerizes protein disulfide bonds using
NADP+ as a cofactor. In g2g-L2 strains, trxB2 has a Thr2Asn mutation
strongly predicted to alter protein function (SIFT score = 0.01). We
used a published fluorescent substrate-based reporter probe38,39 to
assess thioredoxin reductase activity in a panel of four g2g-L2 and four
non-g2g-L2 strains and found that the g2g-L2 strains have significantly
higher activity (PWilcox-test = 0.0024, Fig. 4f). We sought to investigate
whether the Thr2Asn variant in trxB2 was sufficient to generate this
increase in activity. Ideally, we would seek to validate the effect of the
Thr2Asn inMtb, but the construction of an isogenic allelic variant in an
essential gene in a clinical strain of Mtb has not yet been successfully
accomplished. As an alternative, we expressed the trxB2 operon con-
taining the Thr2Asn or wildtype alleles of trxB2 in the model myco-
bacterium, M. smegmatis, a model organism used to dissect the
essential cell biology of mycobacteria including Mtb. Consistent with
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the Mtb data, expression of the trxB2 Thr2Asn operon resulted in
significantly more TrxB2 activity than the wildtype operon
(PWilcox-test = 0.0097, Fig. 4g). The strain expressing the trxB2 Thr2Asn
operon also had a significant shift in theNAD+ /NADH ratio toward the
oxidized state as compared to thewildtype operon, consistentwith the
Mtb g2g-L2 phenotypes and the model that the trxB2 Thr2Asn variant
is a gain of function mutation (Pt-test = 0.0139, Fig. 4h).

Mtb g2g-L2 subclade is recently expanded in Peru and transmits
differently than other L2 strains
Our data suggest that the g2g-L2 subclade evolved distinct biologic
features that interact with host cells. To further understand the effects
of these strain differences in the broader context of Peruvian
L2 strains. To this end, we used 178 L2 isolates from this study and 77
previously collected L2 strains from the same population to
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reconstruct a maximum likelihood phylogenetic tree40,41. We found
threemajor clades: cladeA consisting of the g2g-L2 isolates, and clades
B and C (Fig. 5a). Wemerged the whole genome sequences of these L2
clade isolates with 1000 global L2 isolates (Supplementary Data 10);
the L2 strains from Peru formed subclades that were largely separated
from other global L2 isolates (Supplementary Fig. 18). This pattern of
restriction suggests that Mtb L2 strains were introduced to Peru and
then diversified locally.

We next performed a Bayesian coalescent analysis to estimate the
emerging times of these three L2 subclades42. These results suggest
that the g2g-L2 (clade A) was introduced to Peru more recently than
the other two L2 subclades B and C (62.1 versus 138.7 and 112.3 years
ago, Fig. 5a). We expect that locally diversifiedMtb strains which were
introduced into a human population earlier would have achieved lar-
ger population sizes43,44. Instead, we found that g2g-L2 strains have a
larger than expected population size. Among 255 participants infected
with L2 in our cohort, 150 of 255 (58.8%) of themwere infected by g2g-
L2 strains (clade A), which is much higher than the number of infec-
tions caused by clade B or C (18.0% and 6.7%). Thus, the g2g-L2 strains
may have undergone a recent, rapid expansion, consistent with
increased transmissibility. To further assess transmissibility, we per-
formed transmission cluster analysis. TwoTB caseswere considered to

belong to the same transmission cluster if they were separated by <6
SNPs or the less stringent 12-SNP cut-off. By both criteria, the g2g-L2
cluster rate is much higher than that of other L2 strains collected from
the same region (Fig. 5c). These data suggest that the g2g-L2 clade is
associated with a higher rate of recent transmission in the Peruvian
population.

Temporal trajectory of host and pathogen interactions
Finally, we sought to evaluate the population behavior of g2g-L2 and
the interaction between g2g-L2 and rs3130660 in an independent
patient cohort. We initiated a second cohort in 2020, coincident with
the COVID-19 surge in Peru. Among the 699 TB cases, 88 (12.6%) were
caused by g2g-L2, which represents nearly double the prevalence from
10 years, which was 6.6% (Fig. 5d, Supplementary Fig. 19). Most of g2g-
L2 success cameat the expenseof other L2 strains–by 2020g2g-L2 had
nearly completely replaced non-g2g-L2 strains in Lima (Fig. 5e). These
findings are consistent with the population expansion and increased
transmissibility of g2g-L2 suggested byour analysis of the 2010 cohort.

Given the initial effect size of OR = 10.06 for the association
between rs3130660 and g2g-L2 strain, we estimated that in this cohort
we would have had 76% power to reproduce this association with one-
tailed p < 0.05. After genotyping these samples, we no longer

Fig. 2 | Human monocyte-derived macrophage (hMDM) transcriptional
response to g2g-L2 and non-g2g-L2 infection. a From n = 12 samples, the infec-
tion score is calculated based on gene expression levels of the top 20 infection-
induced genes from an independent study. P-values are calculated by two-tailed
pairwise student’s t-test. b, c show volcano plots of differentially expressed (DE)
genes specific to bacterial strain or donor rs3130660 genotype, respectively. Sig-
nificance was called by FDR-adjusted P-value < 0.01 and log2(fold-change) >0.7.
dHierarchical clustering of gene expression based on the union DE gene sets from

(b–e) Pathwayanalysis of genes in each cluster from (e). f,k the expressionof genes
at the cis-region of rs3130660, specifically IER3 (f), VARS2 (g), ZNRD1 (h), FLOT1 (i),
HLA-E (j) and PPP1R18 (k). Each dot represents the average gene log2(TPM+ 1) of
g2g-L2 (red) or non-g2g-L2 (blue) infection within individual AT or TT donors from
n = 12 samples. The P-values are calculated by two-tailed pairwise Student’s t-test
either between AT and TTdonors or between g2g-L2 and non-g2g-L2within donors
with the same genotype. Source data are provided in the Source Data 1 file.

Fig. 3 | Boston donor human monocyte-derived macrophage (MDM) tran-
scriptional response to g2g-L2 and non-g2g-L2 infection. a FLOT1 expression of
MDM from three local anonymous donors after g2g-L2 or non-g2g-L2 infection (5
representative strains,n = 5perdonor). Data is presented asmean +/- SD. A two-way
ANOVA (two-sided, Sidak’s multiple comparison test) was performed to determine
statistical significance for each donor. b Pearson correlation (two-sided) between
bacterial-specific DEGs (Fig. 2b) of the Peruvian donor MDMs (n = 12 samples) and
their expression in healthy donor MDMs (n = 3 samples). Genes are colored
according to their upregulation in the g2g-L2 (red) or non-g2g-L2 (blue) infected

Peruvian MDMs. c Heatmap of the top 20 infection-induced genes in g2g-L2 and
non-g2g-L2 infected Boston donor MDMs (n = 3). d Canonical Mtb infection gene
module score and (e). interferon α/β signaling gene module score after infection
with representative g2g-L2 or non-g2g-L2 strains in the local donor MDMs (5
representative strains, n = 5 per donor except donor 1 non-g2g-L2 n = 4). Data are
presented as mean+/- SD. A two-way ANOVA (two-sided, Sidak’s multiple com-
parison test) was performed to determine statistical significance for each donor.
Source data are provided in the Source Data 1 file.
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identified an increased association between individuals carrying the
rs3130660-A allele and TB disease caused by g2g-L2 strains (P-value =
0.49, OR =0.57, 95% CI: 0.12 - 2.80, Supplementary Data 11). We con-
sidered several reasons for this null association. It is possible that the
initially reported statistical association was a false-positive. The

relatively small sample size in our studymay have introduced bias into
the estimates, affecting the accuracy of the logistic model. This bias
could have arisen from unrepresentative data or chance variability.
Alternatively, it is possible that the host association is not temporally
stable for example because of interaction with an environmental

Fig. 4 | Functional characterization of g2g-L2Mtb strains. a Violin plots for
each phenotype measured by high-throughput microscopy, showing the distribu-
tion of each feature between the g2g-L2 and non-g2g-L2 strains. Samples were
assayed at minimum in duplicate. The line inside each plot indicate indicates the
median. P-values obtained by a Wilcoxon test. The red dotted line indicates the
Bonferroni corrected significance threshold after multiple testing (-log10(0.05/7)).
b Representative images of autofluorescence signals in two representative g2g-L2
strains and two non-g2g-L2 strains. Scale bar: 5 µm. Images are representative of
two independent experiments and the remainder of the g2g-L2 and non-g2g-L2
strains. c Total NADwas extracted from five g2g-L2 and five non-g2g-L2Mtb strains
and the NAD+ /NADH ratio was determined. Each point represents the average of
two independent replicates per strain (n = 5). Data are presented as mean+/- SD. A
two-tailed unpaired t-test was used to determine statistical significance between
the groups.Mtbmid-log phase cultures were treated with (d) 50uMmenadione for
24h or (e) 25mM H2O2 for 4 h, and surviving CFUs were determined by plating. A

total of 10Mtb strains were used (five g2g-L2 and five non-g2g-L2), with two inde-
pendent replicates per strain. Data are presented asmean+/- SD. A two-way ANOVA
(two-sided, Sidak’s multiple comparison test) was used to determine statistical
significance between the groups. TRFS-green was incubated with (f) four g2g-L2
and four non-g2g-L2 Mtb strains (n = 5 per strain) or with (g) M.smegmatis strains
constitutively expressing either the g2g or non-g2g-L2 variant Rv3913-3914 operon
(n = 5per strain). Fluorescence intensitywasmeasured over time, themeanAUC for
each strain was quantified and a two-tailed unpaired t-test was used to determine
statistical significance. Data are presented as mean +/- SD. h Total NAD was
extracted from a wildtype M.smegmatis strain, or M.smegmatis constructs con-
stitutively expressing either the g2g or non-g2g-L2 variant Rv3913-3914operon, and
the NAD+ /NADH ratio was determined (n = 3). Data are presented as mean +/- SD.
A one-way ANOVA (two-sided, Tukey’s multiple comparison test) was used to
determine statistical significance between groups. Source data are provided in the
Source Data 1 file.
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factor. Given the strong interactive effects of g2g-L2 and rs3130660 on
Type 1 interferon signaling, we specifically considered the possibility
that COVID infectionmightmodify TB risk in anMtb strain and/or host
dependent fashion. We did not have sufficient representation of AT
individuals in the current cohort to assess COVID outcomes as a
function of host genotype but wewere able to assess COVIDoutcomes
associated with Mtb strains. We observed a trend for patients with a
self-reported history of COVID to be less likely to have g2g-L2 infection
(8.6%) than patients with no self-reported COVID history (13.1%, P-
value = 0.121, Fisher’s exact test).

These data suggest that g2g-L2 is a highly transmissible strain
distinguished most notably in its host interactions by altered inter-
feron signaling. However, our data further suggest that dynamic host
genetic and environmental factors impact the TB disease manifesta-
tions of this strain.

Discussion
Previous work has shown that Mtb lineages are often restricted to
particular geographical regions while other lineages are globally dis-
tributed, suggesting that Mtb can adapt to diverse natural environ-
ments and host populations12,45. In this work, we examined the
hypothesis that genomic interactions between host and pathogen
alleles can modify the risk of TB disease by performing a paired gen-
ome analysis using host and bacterial samples from a large cohort of
TB patients in Lima, Peru and a smaller, independent cohort of TB
patients from the same region 10 years later.

Our analysis of the 2010 cohort indicated that a host variant in
the FLOT1 gene was preferentially associated with infection with a
highly transmissible and functionally distinct subclade of L2 Mtb,
g2g-L2 that emerged in Peru in the 1950’s. Multiple lines of evi-
dence supported both the biologic features conferred by the
associated host allele and the g2g-L2 strains as well as the biologic
association between the host FLOT1 variant and response to g2g-L2
Mtb strains.

FLOT1 is a lipid-raft associated membrane protein that has been
previously implicated in host-pathogen immunity including control of
Mycobacterium marinum46,47. FLOT1-dependent microdomains are
present on the phagolysosome where they act as platforms for the
assembly of NADPH oxidase complexes and vATPase17. This function
contributes to antifungal immunity, and FLOT1 alleles are associated
with invasive aspergillosis47. FLOT1 may play a similar role in Mtb-
macrophage interactions. This protein also contributes to other sig-
naling and cell migration pathways48–51, raising the possibility that
altered FLOT1 expression could have additional effects on the host
immune response to Mtb. Finally, FLOT1 may not be the only effector
of the g2g-L2 associated human risk allele. The associated intronic
variant is in linkage with and predicted to alter the expression of other
immune related genes and several of these, including PPP1R18, an
adapter protein of RAPK signaling, and HLA-E, which can present Mtb
peptides52, are also differentially expressed after Mtb infection.

Consistent with this hypothesis, macrophages from donors with
different genetic backgrounds, referred to by rs3130660-AT and TT,
differed in their responses toMtb infection and these differences were
modified by the infecting strain genotype. Donors with the AT geno-
type exhibited a robust response skewed towards Type 1 IFN related
genes. Interestingly, g2g-L2 strain infection dampened the IFN
response in all donors, instead promoting an IL-1B-dominated
response. This shift in transcriptional response might be attributed
to the knownnegative regulatory relationship betweenType 1 IFNs and
IL-1B53,54. Further, TT donor macrophages were distinguished by their
genes implicated in redox balance. This was striking to us because,
using unbiased phenotypic profiling, we identified altered redox bal-
ance, and resistance to reductive stress as defining characteristics of
g2g-L2 strains in vitrodue to a gain of functionmutation in thioredoxin
reductase, trxB2. These data suggest that g2g-L2 strains may be both
inducing a distinct immunometabolic response and adapting to the
immunometabolic environment that they induce. There could be
other g2g-L2 mutations contributing to the altered macrophage

Fig. 5 | Phylogenetic structure of the g2g-L2 clade associated with the human
alleles. a A phylogenetic tree of L2 constructed with 255 L2 Peruvian isolates. The
g2g-L2 clade identified via the g2g analysis is highlighted in red (Clade-A), twoother
Peruvian subclades of L2 are highlighted in blue (Clade-B) and green (Clade-C)
respectively. *ybp years before present. Estimated emerging time (median value,
with 95% highest posterior distribution in bracket) for the ancestor strains and
cluster rate when using 6-SNP distance of each marked L2 clade (Clade-A, B and C)
are listed. bHistogram of pairwise minimum SNP distance to the closest neighbors

within the marked clades. c Comparison of transmission cluster rate between the
threemarked clades when using 6-SNP and 12-SNP distance as the threshold.d The
percentage of g2g-L2 strains among all co-circulating strains from the 2010 cohort
and the 2020 cohort. e The percentage of g2g-L2 strains among L2 strains from the
2010 cohort and the 2020 cohort. P-values shown in (c) and (d) were obtained by
two-sided Fisher’s exact test. Source data for (a). are provided in the Source Data 3
file. Source data for (b). -d are provided in the Source Data 1 file.
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responses. For example, eccCb1, a core component of the
ESX1 secretion system which is required for Mtb to induce the Type 1
IFN response in infected macrophages, carries a S74F mutation
(SIFT = 0.01) which could abrogate ESX1 function. This would be con-
sistent with the reduced expression of the Type 1 IFN gene signature in
macrophages after g2g-L2 function although loss of ESX1 function
otherwise would be counter-dogmatic as it is thought to be required
for virulence in humans.

Given the experimental data supporting the distinct biologic
features of the rs310660 host variant and g2g-L2 Mtb, as well as the
association between the two, certain outcomes from the 2020 cohort
were unexpected.Whereas the proportion of rs310660-AT donors was
unchanged while the prevalence of g2g-L2 had nearly doubled,
essentially replacing the other L2 strains. The apparent expansion of
g2g-L2 between 2010 and 2020 was consistent with our phylogenetic
analysis of the 2010 cohort. However, we had not anticipated a nearly
complete L2 strain replacement or an L2/L4 difference in fitness. Strain
replacement is commonly observed in the context of pathogens like
Streptococcus pneumoniae or SARS-CoV2 that promote strain specific
immunity.Mtb infection has been shown to provide protection against
subsequentMtb infection, andMtb strain-specific differences in innate
and adaptive immunity have been described but strain-specific
immune exclusion has not been previously characterized.

In this context, we did not find an association between g2g-L2 and
rs3130660 in the 2020 cohort. We consider it possible that the initial
association was a false-positive. Alternatively, there may be temporal
variables which we do not have the capacity to resolve; for example,
the g2g-L2 and rs3130660 association might alter the rate of pro-
gression to disease rather than total disease susceptibility, such that
for a given period transmission rs3130660 variant hosts might man-
ifest early while wildtype hosts might manifest years later. Finally, we
highlight that both host and pathogen variants impact Type 1 IFN
responses, and our data suggests a trend towards interaction with
symptomatic COVID, an association that we will be able to test with
greater power when the full cohort is analyzed. Both of these models
suggest that genetic associations between variants in Mtb and human
hosts contribute to the transmission dynamics of tuberculosis but that
we should expect these interactions to be modified by contextual
variables. Further analysis is required to fully understand how the host
genes and g2g-L2 strain are mechanistically linked, and to establish
their clinical relevance. Our results open the possibility that otherMtb
strain-specific host alleles are present and may explain genetic differ-
ences driving TB susceptibility across the globe.

Methods
Ethics statement
We recruited 1632 subjects from a large catchment area of Lima, Peru
that included 20 urban districts and ~3.3million residents to donate a
blood sample for use in our study. We obtained written informed
consent from all the participants. The study protocol was approved by
the Institutional Review Board of Harvard School of Public Health and
by the Research Ethics Committee of the National Institute of Health
of Peru.

Participant enrollment and follow-up
The study design andmethods were previously described in detail40,55.
Briefly, over the 4-year period from 2009-2012, we identified patients
≥15 years of age who had received a diagnosis of pulmonary TB at any
of 106 participating health centers. We confirmed the microbiological
status of their disease with either a positive sputum smear or myco-
bacterial culture. We also recorded the index patients’ baseline smear
status, HIV status, and drug-resistance profiles. Index cases with HIV
infection or infected withmultipleMtb strains were excluded from the
analyses. The sex of each participant was assigned based on geno-
typing and cross-checked with self-report data.

Host genotyping, quality control and imputation
DNA samples were genotyped using a customized genotyping array
(LIMAArray) based on whole-exome sequencing data from 116 active
TB cases to optimize the capture of genome-wide genetic variation in
Peruvian individuals10 in the 2010 cohort. DNA samples were geno-
typed using the Illumina Global Screening Assay with customized
contents in the 2020 cohort. In both cohorts, we excluded samples
that were missing >5% of the genotype data, had an excess of hetero-
zygous genotypes, and/or duplicated with identity-by-state >0.9. We
also excluded variants with a call rate <95%, with duplicated position
markers, minor allele frequency <1%, and marked deviation from
Hardy-Weinberg equilibrium (excluded if P < 10-5).

We imputed eight classical HLA genes HLA-A, -B, -C, -DQA1, -DQB1,
-DRB1, -DPA1, and -DPB1, amino acids and intergenic variants using
HLA-TAPAS using amulti-ancestry reference panel which contains data
from 21,546 unrelated individuals56 in the 2010 cohort of 1556
individuals.

Mycobacterium tuberculosis variant calling and phylogeny
construction
Mtb DNA was extracted from cryopreserved cultures of sputum
samples. Each sample was thawed and subcultured on LJ agar and a
big loop of colonies were lysed with lysozyme and proteinase K to
obtain DNA using cetyltrimethylammonium bromide (CTAB)/
Chloroform extraction and ethanol precipitation. Samples were
sequenced on an Illumina HiSeq 2500 or 4000 sequencer yielding
paired-end reads of length 125 bp which were aligned to the refer-
ence assembly, H37Rv NC_000962.3 (GenBank accession
CP003248). We called variants using Pilon (v1.22)57. Genome cov-
erage was assessed using Samtools (v1.10). We excluded isolates
with evidence of mixed infection using the barcode method15. We
assigned a variant call as missing if the valid depth of coverage at a
specific variant was <12 reads, if the mean read mapping quality at
the site did not reach 10, or if none of the alternative alleles account
for at least 85% of the valid coverage.

The phylogenetic tree was constructed based on the WGS Mtb
alignment. Variants occurring in geneswith repetitive elements such as
transposases, proline-glutamate (PE) or proline-proline-glutamate
(PPE)58 were excluded to avoid any inaccuracies in the alignment.
After applying these filters, 13,981Mtb variants were used to conduct a
genetic distance matrix. We built a maximum likelihood phylogenetic
tree of 1602 Mtb isolates that was inferred using IQ-TREE v259 with
bootstrap support from 1000 replications. The best-fit nucleotide
substitution model was GTR+ F as determined by the ModelFinder
function.

To characterize the Peruvian L2 Mtb strains in the context of
global strains, we randomly selected 1000 whole-genome
sequenced L2 strains from published studies in 112 bioprojects to
represent the major phylogenetic structures of L2. We used these
global strains together with 255 L2 Peruvian strains to reconstruct
the global L2 phylogenetic tree. We estimated divergence times via
BEAST v1.8.042, using an uncorrelated lognormal relaxed clock that
allows for tree branches to evolve at different rates. The XML input
file was modified to specify the number of invariant sites in theMtb
genomes. For the Mtb substitution rate, we used a normal dis-
tribution with a mean of 4.6 × 10-8 substitution per genome per site
per year (3.0 × 10-8 to 6.2 × 10-8, 95% highest polar density interval),
which was calibrated by ancient DNA samples60,61. An uncorrelated
log-normal distribution was used for the substitution rate and a
constant population size for the tree priors. We ran three chains of
5 × 10-7 generations and sampled every 10,000 generations to
ensure independent convergence of the chains; we discarded the
first 10% as a burn-in. Convergence was assessed using Tracer
(v1.7.0)62, ensuring all relevant parameters reached an effective
sample size >100.
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Transmission cluster analysis
To define transmission clusters of the collected L2 Mtb isolates, we
applied two SNP thresholds (6 and 12) to separate a patient isolate
from that of at least one other patient in the cluster. The 6-SNP
threshold was chosen based on the range of SNP distances between
paired isolates of the same strain obtained at different times from
relapsed TB patients63. The 12-SNP threshold was a previously defined
upper limit of genomic relatedness noted within human hosts and
between epidemiologically related human hosts64.

Genome-to-genome association analysis
To systematically test for associations between human and Mtb
genomic variants at the genome-wide level, we performed logistic
mixed regression modeling implemented in SAIGE65 version 1.1.6. This
modelwas specifically designed to account for the binarynatureof our
outcome variable (absent/present ofMtb variant) and the unbalanced
case-control ratio in our sample. We assumed an additive genetic
model for each host and bacterial variant. For each bacterial variant j
(j = 1,…, 1267) and host variant i (i = 1,…, 676,110), we test

yj = xiβji +GRM +ωjcj, ð1Þ

where yj is an N-vector of binary labels indicating the absence or
presenceof a bacterial variant in the host samples i (n = 1556); xi is anN-
vector of host genotypes; βji is the additive effect of the host variant i
on the bacterial variant j; cj is the jth column of an N×C matrix of
covariates (age and sex) including a column of 1 s; and ωj is a c-vector
of the corresponding coefficients including the intercept. We used
genetic relatedness matrix (GRM) as a random effect to correct for
cryptic relatedness and population stratification between collected
host samples. The GRM was obtained from an LD-pruned (r2 <0.2)
genotype with minor allele frequency >1%.

Permutation strategy
To determine an appropriate empirical genome-wide significance
threshold for the g2g analysis accounting for population structure
both in the Mtb and human genome, we conducted 200 simulations
for each g2g analysis using a permutation procedure. To preserve the
phenotype structure defined by theMtb variants, for each association
analysis, we randomly permuted the presence/absence status for each
of the 1267 Mtb variants within the 1556 individuals included in the
study. In total, we ran 1267 × 200 = 253,400 association tests to obtain
an empirical genome-wide significance threshold.

We measured the distributions of the minimum p-values of the
variants (Pmin) for each association of the permutation. We defined an
empirical genome-wide significance threshold, -log10(Psig), as the 95th
percentile (1-ɑ) of -log10(Pmin).

Colocalization analysis using eQTLs
We integrated our GWAS results with cis-eQTL data using a Bayesian
method (coloc v3.2-1)66. We evaluated whether the GWAS and eQTL
associations best fit a model in which the associations are due to a
single shared variant that is summarized by the posterior probability,
as opposed to different regulating variants. We used gene expression
datasets from the eQTL catalog release 621. We tested pairwise colo-
calization between 109bulk RNA-sequencing expressiondatasets in 69
distinct cell and tissue types and GWAS from the most significant
genome-to-genome pair (using Mtb position 271640 as phenotype).
We used GWAS and all variant-gene cis-eQTL associations tested in
each tissue, including non-significant associations of genes within a
700 kb window around the top association host SNP (rs3130660). A
posterior probability of colocalization >0.75 was considered to be
strong evidence for shared causality.

Bacterial strains and culture conditions
All 23 g2g-L2 and 11 non-g2g-L2 Mtb strains were drug sensitive and
obtained fromHIV negative donors. Theywere grown shaking at 37 °C.
Cultures were grown in 7H9 media (Middlebrook 7H9 salts with 0.2%
glycerol, 10% OADC [oleic acid, albumin, dextrose, catalase]). Cell
density (OD600) was determined by a spectrophotometer. For lipi-
domic analysis, liquid cultures in tween-free 7H9 medium supple-
mented with albumin, dextrose and sodium chloride were transferred
to nitrocellulose filter-paper discs using vacuum filtration and grown
on solid agar media67. The bacteria from the filter disc were dislodged
into 2ml of methanol and transferred to 15ml conical glass tube. Then
1ml of chloroform was added and incubated for 30min for inactiva-
tion of the bacteria, using the extracted lipids forMS-based lipidomics.

Mammalian cell culture
Mammalian cells were cultured in RPMI 1640 with 10% fetal bovine
serum (FBS), 10mM HEPES, and 2mM L-glutamine. Primary human
monocytes were isolated from peripheral blood mononuclear cells
(PBMCs) from three rs3130660-AT and three rs3130660-TT donors
from Peru. PBMCs were also obtained by Ficoll gradient centrifugation
of randomly selected healthy donor leukaphereses (Research Blood
Components) or buffy coat blood (Massachusetts General Hospital).
Monocytes were isolated by CD14-positive selection (Stemcell Tech-
nologies) and matured in 50ng/mL human recombinant macrophage
colony-stimulating factor (M-CSF) for 6 days.

RNA extraction
To isolateRNA fromMtb-infectedhMDMs,hMDMswere lysed inBuffer
RLT (Qiagen) + 1% β-mercaptoethanol after 24 h of infection. RNA was
purified using the ZymoDirect-Zol kit according to themanufacturer’s
instructions, with off-column DNase treatment and subsequent
repurification using the Zymo Clean & Concentrator kit according to
manufacturer’s instructions.

cDNA generation and qPCR
cDNA was generated using the SuperScript IV First Strand Synthesis
System (ThermoFisher). Gene expression was quantified with iTaq
Universal SYBR green supermix (Bio-Rad) on an Applied Biosystems
ViiA 7 system. FLOT1 expression was normalized to that of GADPH. All
qPCR primers used are listed in Supplementary Data 12.

Nanostring assay and analysis
RNA extracted from local donor MDMs was used as input in a Nano-
string assay with a custom-designed probe set and analyzed with
nSolver version 4.0 (Nanostring Technologies). Target sequences are
listed in SupplementaryData 13. Data were normalized against internal
positive controls and housekeeping genes (ABCF1, COG7, GUSB,
MRPS5, POLR2A, SAP130, SDHA, TLK2) to correct for technical variation.

Bulk RNA-sequencing gene expression quantification
For RNA-sequencing, the single-end raw reads were filtered by Trim-
momatic version 0.39 to remove the adapters and low-quality bases.
We used STAR version 2.6.0c and RSEM version 1.2.29 to quantify gene
expression using human genome primary assembly (GRCh38) and its
basic gene annotation from gencode human release 43 (GRCh38.p13).
The pipeline generates expected counts and transcripts per million
(TPM) for each gene. We used log-transformed, log2(TPM+ 1), as our
main expression measure, which accounts for library size and gene
size. We considered as expressed genes those with a log2(TPM+ 1) > 1
in at least half of the samples. Expected counts were used for DESeq in
R for PCA analysis.

The specific parameters for Trimmomatic are: –Truseq3-
SE.fa:2:30:10 --LEADING:3 --TRAILING:3 --SLIDINGWINDOW:4:1 --MIN-
LEN:36.The specific parameters for STAR are: --outSAMunmapped
Within --outFilterType BySJout --outSAMattributes NH HI AS NM MD
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--outFilterMultimapNmax 20 --outFilterMismatchNmax 999 --out-
FilterMismatchNoverLmax 0.04 --alignIntronMin 20 --alignIntronMax
1000000 --alignMatesGapMax 1000000 --alignSJoverhangMin 8
--alignSJDBoverhangMin 1 --sjdbScore 1 --runThreadN 12 --genomeLoad
NoSharedMemory --outSAMtype BAM Unsorted --quantMode Tran-
scriptomeSAM --outSAMheaderHD \@HD VN:1.4 SO:unsorted.

The specific parameters for RSEM are: rsem-calculate-expression
--star --star-output-genome-bam --num-threads 12 --star-gzipped-
read-file.

Differential expression analyses
Weused linearmixedmodelsusinglme4::lmer() function in R in the
differential expression and expression association analysis. To call
significant caes, we used a likelihood ratio test between two nested
models using anova() function in R, and an FDR-adjusted P-value at
0.01 and an absolute log2 fold-change greater or equal to 0.7.

To search for genes that aredifferentially expressed upong2g and
non-g2g L2 infection, we tested the following model (2):

H0 : E � Inf ection+ 1jdonorð Þ
H1 : E � G2G+ Inf ection+ 1jdonorð Þ ð2Þ

Finally, to nominate genes that are differentially expressed with
different genetic background, we tested the following model (3):

H0 : E � G2G+ 1jstrainð Þ
H1 : E � G+ Inf ection+ 1jstrainð Þ ð3Þ

where E is the expression level for each gene, Infection indicates if the
sample is infected or uninfected, G2G represents if the sample is
infected with g2g-L2 (1) or not (0), G represents the genotype of the
infected samples (AT = 1; TT =0). We included donor as a random
effect in the infection and strain-specificmodel and strain as a random
effect when testing for donor-specific expression changes.

Microscopy imaging and analysis
Mtb cultures were grown to OD600 of ~1.0, then fixed with 2% paraf-
ormaldehyde (PFA) for 1 h. The fluorescent D-amino acid NADA (3-[(7-
Nitro-2,1,3-benzoxadiazol-4-yl)amino]-D alanine hydrochloride) was
added at a final concentration of 1mM 16 h prior to fixation. All sam-
ples were seeded onto molded 1.8% agarose in phosphate buffered
saline (PBS) with DAPI (2.5μg/mL) and Nile red (0.1μg/mL). Samples
were incubated at 37 °C for 1 h prior to imaging.

Samples were imaged with a Plan Apo 100× 1.45NA objective
using a Nikon Ti-E inverted, widefield microscope equipped with a
Nikon Perfect Focus system with a Piezo Z drive motor, Andor Zyla
sCMOS camera, and NIS Elements (v4.5). Semi-automated imagingwas
carried out using a customized Nikon JOBS script to locate imaging
fields of interest, 24 images were taken for each strain. Cell segmen-
tation and quantification was performed using our previously pub-
lished pipeline, MOMIA32.

Mycobacterial lipidomics
Whole cell lipid profiles were generated using chloroform-methanol
extraction of cells from strains grown in biological triplicate using a
previously published liquid chromatography and mass spectrometry
protocol28, with samples profiled using both positive and negative
mode. The order of extraction and mass spectrometry was rando-
mized, with mass and retention time values assigned using the R
package xcms68. Ion peaks with a < 10 ppmmatch to the exact mass of
a theoretical lipid were assigned a unique identifier to group peaks
across the data set. The median of triplicate samples was used for
differential abundance analysis using the R package limma69.

Antibiotic susceptibility determination
Pretomanid (PA-824), isoniazid (INH), and rifampicin (RIF) MICs were
determined using anOD-based growth assay. 96-well plates containing
1.5-fold serial dilutions of PA-824, INH or RIF were prepared as before.
All Mtb strains were grown to mid-log phase and diluted to OD600 =
0.003 into each well of the prepared plates. Plates were incubated at
37 °C with shaking in sealed plates. Growth was determined by repe-
ated OD600 measurements over a 2-week period. We assessed
cumulative bacterial growth inhibition over the course of the experi-
ment by calculating the area under the curve (AUC) of the OD values70.
Data are representative of two independent replicates per strain. Using
the final OD600 measurement of each strain for each drug con-
centration, the data was fitted to the Gompertz equation to determine
the MIC71.

NAD/NADH metabolite extraction and measurement
Mtb strains were grown in 7H9 until mid-log phase, then pelleted by
centrifugation, washed twice with PBS, and resuspended in an
extractionbuffer fromanNAD/NADHQuantitationKit (SigmaAldrich).
Bacterial suspensions were transferred to tubes containing Lysing
Matrix B (MP Biomedicals) and lysed via bead beating. The resulting
lysate was used to quantify NAD and NADH following the kit’s
instructions.

Oxidative stress resistance assay
Mtb cultures were grown in 7H9 to mid-log phase. Cultures were
treated with menadione (50uM or 100uM), or with H2O2 (25mM or
50mM), or were left untreated as a control. After 4 h (H2O2) or 24 h
(H2O2 and menadione), all Mtb cultures were serially diluted and
plated on 7H11 agar plates. Plates were incubated at 37 °C for
2–3weeks and the number of colonies were counted.

Pathway analysis
In the host pathway analysis, we first identified significant DE human
genes upon bacteria or host genetic backgrounds as shown inModel 2
and 3 in the method section describing “differential expression ana-
lysis”. To enrich pathway genes and reduce the risk of false positives,
we took the union set of these DE genes with a more stringent
threshold of FDR-adjusted p-value < 0.01 and absolute log2 fold-
change >0.7. We categorized samples in four groups according to
the bacteria and host genotype. For each of the groups, we calculated
the z-score for the average expression levels of the selected DE genes.
We used function cluster::pam() in R to partition the z-score pro-
file into 4 clusters around medoids based on Euclidean distance. For
genes within each cluster, we applied DAVID Functional Annotation
Clustering function72,73 to enrich pathways from annotated databases
of “KEGG Pathway”, “Reactome pathway” and “Wikipathways”, with
significant thresholds of FDR-adjusted p-value < 0.01.

In the Mtb pathway analysis, we first annotate the Mtb genome
using Variant Effect Predictor74 (v.105). Among 79 highly correlated
(Pearson r2 >0.8) common Mtb variants that are associated with the
human genome, 49 were annotated as nonsynonymous (missense)
variants. We defined Mtb genes that have one of these 49 missense
variants as g2g-L2 genes. We used the DAVID75 Functional Annotation
Clustering function to group g2g-L2 genes into a similar functional
network. We used PANTHER76 to test for functional overlaps with
known pathways. We calculated a Fisher’s exact p-value by construct-
ing a 2 × 2 contingency table with g2g-L2 genes (n = 48) and all other
Mtb genes with a common missense mutation in the g2g analysis
(n = 898) overlapping the flavin adenine dinucleotide binding pathway
included in the gene ontology category (GO:0050660).

TRFS-green assay
Mtb or M. smegmatis strains were grown in 7H9 until mid-log phase.
Cultures were washed twice with PBS, then resuspended in PBS
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containing 10 uM TRFS-green (MedChemExpress) and added to a 96
well plate. The fluorescent signal was read using a BioTek Synergy H1
(Mtb strains) or a TECAN Spark (M.smegmatis strains) microplate
reader, at excitation 438nm and emission 538 nm, immediately after
probe addition and at various time points thereafter. Between read-
ings, the plates were kept at 37 °C.

Generation of M. smegmatis strains expressing the Mtb
TrxB2_TrxC operon
The Mtb operon containing Rv3913 (trxB2) and Rv3914 (trxC) was
expressed in M.smegmatis mc2155 using the integrating plasmid
pCT94 under control of the constitutive promoter pUV15. The Rv3913-
3914 operonwas amplified from representative g2g-L2 and non-g2g-L2
genomic DNA using primers listed in Supplementary Data 12. A sub-
sequent round of PCR was used to add on overlapping vector handles.
All PCR was performed using Q5 High-Fidelity DNA polymerase (NEB).
Expression vectors were constructed via Gibson assembly (NEB) of the
PCR fragments ligated into NdeI/HindIII digested pCT94. The g2g and
non-g2g constructs were transformed into DH5a cells and selected on
LB plates with 50ug/ml kanamycin. CT94-g2g-trxB2trxC and CT94-
nong2g-trxB2trxC were electroporated into mc 2 155 and selected on
7H10 plates with 20 ug/ml kanamycin. Successful transformation was
confirmed by Sanger Sequencing (Azenta).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The human genotyping data generated in this study have been
deposited in the dbGAP database under accession code
phs002025.v1.p1[https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs002025.v1.p1] and phs003718.v1 [https://www.
ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=
phs003718.v1.p1]. The Mycobacterium tuberculosis whole genome
sequences in this studyhavebeendeposited in theBioProjectdatabase
under accession code PRJNA1039243. The RNA sequencing data gen-
erated in this study have been deposited in the GEO database under
accession code GSE262379. The eQTL Catalog release v6 database can
be downloaded at https://ftp.ebi.ac.uk/pub/databases/spot/eQTL/.
The Genotype Tissue Expression (GTEx release v8) database can be
downloaded at https://gtexportal.org/home/protectedDataAccess.
Thewhole-genomesequencesofMtb strainswereobtained at theNCBI
Sequence Read Archive (SRA) database (https://www.ncbi.nlm.nih.
gov/sra) with Study ID listed in the Supplementary Data 10. The Mtb
reference assembly (H37Rv NC_000962.3) can be downloaded at
https://www.ncbi.nlm.nih.gov/nuccore/CP003248. Source data are
provided with this paper.

Code availability
All code for generating the figures presented in the manuscript are
available at Luo, Y., Huang, C-C., Howard, N.C., Wang X., Liu Q.Y., et al.
Paired analysis of host and pathogen genomes identifies determinants
of human tuberculosis, https://github.com/yang-luo-lab/TB-g2g,
https://doi.org/10.5281/zenodo.13321932, 2024.
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