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ABSTRACT 

Acute kidney injury ( AKI) is a common syndrome in hospitalized patients and is associated with increased morbidity 
and mortality. The focus of AKI care requires a shift away from strictly supportive management of established injury to 
the early identification and timely prevention of worsening renal injury. Identifying patients at risk for developing or 
progression of severe AKI is crucial for improving patient outcomes, reducing the length of hospitalization and 
minimizing resource utilization. Implementation of dynamic risk scores and incorporation of novel biomarkers show 

promise for early detection and minimizing progression of AKI. Like any risk assessment tools, these require further 
external validation in a variety of clinical settings prior to widespread implementation. Additionally, alerts that may 
minimize exposure to a variety of nephrotoxic medications or prompt early nephrology consultation are shown to reduce 
the incidence and progression of AKI severity and enhance renal recovery. While dynamic risk scores and alerts are 
valuable, implementation requires thoughtfulness and should be used in conjunction with the overall clinical picture in 

certain situations, particularly when considering the initiation of fluid and diuretic administration or renal replacement 
therapy. Despite the contemporary challenges encountered with alert fatigue, implementing an alert-based bundle to 
improve AKI care is associated with improved outcomes, even when implementation is incomplete. Lastly, all alert-based 
interventions should be validated at an institutional level and assessed for their ability to improve institutionally 
relevant and clinically meaningful outcomes, reduce resource utilization and provide cost-effective interventions. 
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AKI, but past data demonstrate that many patients with AKI do 
not get appropriate care [2 , 3 ]. 

Given this increased risk of adverse outcomes combined with 
clear gaps in clinical care, there have been several investiga- 
tions around early AKI detection via biomarkers, alerts and clin- 
ical decision support systems ( CDSSs) to help improve the im- 
plementation of guideline-based AKI care. This review seeks to 
delineate the existing literature around these alerts as well as 
highlight the process around implementing an alert or CDSS. 
These processes and the outcome measures are different across 

R

©
C
i

D
ow

nloaded from
 https://academ

ic.oup.com
/ckj/article/17/11/sfae325/7849779 by guest on 30 N

ovem
ber 2024
cute kidney injury ( AKI) is broadly defined as an abrupt ( over 
ours to days) decrease in kidney function, with the current 
onsensus definition, the Kidney Disease: Improving Global Out- 
omes ( KDIGO) defining AKI based on changes in either serum 

reatinine and/or urine output [1 ]. AKI is a very common clinical
yndrome that can occur in 10–20% of hospitalized patients and
p to 30–40% of critically ill patients. AKI is consistently asso-
iated with increased morbidity and mortality regardless of its 
linical source or clinical location. Most AKI-focused care is sup-
ortive rather than aimed at treating the underlying source of
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Figure 1: Passive versus active alerts. The figure demonstrates examples of passive and active alert systems implemented in electronic health systems. 
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linical settings, with alerts targeting patients at high risk for se- 
ere AKI by identifying them through novel biomarkers or the 
resence of Stage 1 AKI [4 , 5 ] being very different from those 
eeking to reduce the nephrotoxin burden on patients at risk 
or or with AKI [6 , 7 ]. Alerts may be passive, notifying the team 

f the AKI ( or AKI risk) , while others use a more active process 
inking the alert with a CDSS or a care bundle to guide interven- 
ions with the hopes of improving patient outcomes ( Fig. 1 ) . The 
nvestigations into the clinical utility of alerts and CDSSs have 
een mixed, with inconsistent results across a variety of clinical 
ettings, making their interpretation difficult, if not confusing.
e seek to review this growing field and provide some clarity on 

he strengths and weakness of alerts and CDSSs in the setting 
f increased AKI risk as well as established AKI. 

XTERNAL AND REPEATED VALIDATION OF 

CCURATE DYNAMIC AKI RISK ASSESSMENT 

OOLS IS NEEDED 

istorically, AKI risk scores have been static, assessing risk at a 
ingular moment in time [e.g. prior to cardiac surgery or at in- 
ensive care unit ( ICU) arrival] [8 –11 ]. Many of these scores, while 
xternally validated, still leave room for improved risk stratifica- 
ion. More recently, models have moved from static to dynamic,
ith more scores adding data that are amassed across an admis- 
ion rather that at a single moment in time. Several studies have 
emonstrated that using intra- and postoperative data improves 
he ability to predict the development of postoperative AKI [12 ,
3 ]. Similarly, other risk scores have demonstrated that risk as- 
essment improves by adding data from day 1 or day 2 of an ICU 

tay [14 , 15 ]. Other risk scores have used advanced learning tech- 
iques and artificial intelligence ( AI) to estimate AKI risk across 
ll hospitalized patients and demonstrated areas under the re- 
eiver operating characteristics curve > 0.90 in predicting Stage 
 and 3 AKI or the need for dialysis [16 , 17 ]. We anticipate that
here will be more and more risk scores developed over the next 
everal years, however, to date, not all of these scores have been 
xternally validated. The validation of these risk scores is im- 
ortant, as there is growing literature demonstrating that well- 
eveloped models do not perform the same way across all cen- 
res [18 ]. 

Figure 2 demonstrates the steps prior to the implementation 
f a clinical risk score/AKI alert. Prior to the clinical implemen- 
ation of any risk score it is important to understand what is
eeded to set up, validate and maintain any risk scores, as well
s understanding their potential weaknesses. For example, not 
ll scores include information from prior to the index hospital- 
zation, and while risk scores in the setting of elective cardiac 
urgery routinely account for baseline kidney function, this is 
ot always available in the setting of critical illness or emergent 
ospitalization, thus understanding the impact and potential 
onfounding of known or unknown pre-admission kidney func- 
ion is important when evaluating an AKI risk score. Separately,
nsuring that these complex dynamic scores are providing re- 
iable, accurate risk assessment is no small task. Quality assur- 
nce and vigilance around persistent score performance is cru- 
ial, as upgrades to the electronic medical record, errors in data 
ntry and changes in the way care is delivered over time may all
mpact the accuracy of a given score/threshold. However, before 
ny dynamic risk score is ready for widespread implementation 
t must first demonstrate the ability to improve AKI patient out- 
omes. 

LERTS TO PREDICT AKI RISK ARE ENHANCED 

Y BIOMARKERS OF EARLY RENAL INJURY 

any alert systems utilize risk scores that involve a combina- 
ion of comorbidities, vital signs and laboratory data to predict 
he risk of AKI [12 , 14 ]. While risk scores incorporate many risk
actors for AKI, the renal-specific components of risk scores are 
ften limited to serum creatinine ( SCr) , but significant injury to 
he kidney can occur before any increase in creatinine, limiting 
he ability to predict AKI early [19 , 20 ]. Novel urinary biomark- 
rs have been developed with the goal of predicting AKI earlier 
han SCr or urine output, with some urinary biomarkers capa- 
le of distinguishing specific types of AKI, such as acute tubular 
ecrosis, hepatorenal syndrome and acute interstitial nephritis 
21 –24 ]. 

Another goal of identifying novel biomarkers to predict 
KI earlier than SCr increase is to prevent AKI. Tissue in- 
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Figure 2: Step prior to implementation of a risk score or alert. Figure provides several steps throughout the process of designing and implementing an alert. Start with 

engaging all stakeholders to ensure that the goals of the alert are clear to all ( clinical and non-clinical) . Once the goals are aligned, the alert needs to be designed, 
tested and all stakeholders need to be educated around the alert. 

Table 1: Novel biomarkers used to predict AKI risk. 

Biomarker Outcome Cut-off Clinical application 

Urinary TIMP-2*IGFBP7 [73 ] Predict stage 2 or 3 AKI in 
critically ill patients 

> 0.3 ( ng/ml) 2 /1000 ( high 
sensitivity) 
> 2 ( ng/ml) 2 /1000 ( high 
specificity) 

PrevAKI RCT [26 ]: Elevated 
TIMP-2*IGFBP7 linked to care bundle 
in post-cardiac surgery patients 
reduced the incidence of AKI 
PrevAKI-multicenter RCT [74 ]: 
Elevated TIMP-2*IGFBP7 linked to care 
bundle in post-cardiac surgery 
patients improved care bundle 
adherence and reduced the incidence 
of stage 2/3 AKI 
BigpAK RCT [27 ]: Elevated 
TIMP-2*IGFBP7 linked to care bundle 
in post-non-cardiac surgery patients 
reduced the incidence of stage 2/3 AKI 

Urinary NGAL [75 ] Predict stage 2 or 3 AKI in 
critically ill patients 

> 78.0 ng/ml TAKING FOCUS 2 [27 ]: Protocol 
utilizing AKI risk score, urinary NGAL 
and furosemide stress test to guide 
fluid management improved survival 
to paediatric ICU discharge 
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ibitor of metalloproteinase-2 ( TIMP-2) and insulin-like growth 
actor binding protein 7 ( IGFBP7) are both proteins that are 
nvolved in G1 cell cycle arrest and are released by renal
ubular cells in response to cellular stress, and the com-
ination of these two proteins in the urine has been vali-
ated for predicting the impending development of stage 2 
r 3 AKI in critically ill patients [25 ]. Thus elevated urinary
IMP-2*IGFBP7 is associated with an increased risk of AKI,
ith a high-sensitivity cut-off of 0.3 ( ng/ml) 2 /1000 and a high-
pecificity cut-off of 2.0 ( ng/ml) 2 /1000. Table 1 summarizes 
ata regarding biomarkers to predict AKI and their role in
KI care. 
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Subsequent to validating the biomarker to predict AKI,
everal studies have shown benefits of implementing 
idney-focused care bundles in response to elevated urinary 
IMP-2*IGFBP7. One such study was the PrevAKI trial, which 
andomized cardiac surgery patients with a postoperative 
IMP-2*IGFBP7 level ≥0.3 ( ng/ml) 2 /1000 to receive standard 
are or a strict care bundle involving invasive haemodynamic 
onitoring with a prespecified algorithm for pressure and 
olume management, discontinuation of nephrotoxins and 
voidance of hyperglycaemia [26 ]. The PrevAKI trial found that 
he intervention group had reduced rates of AKI ( 55% versus 
2%; P = .004) , although it was not powered to assess differences 
n renal replacement therapy ( RRT) or mortality ( P = NS for 
oth) [26 ]. Similarly, the BigpAK study randomized non-cardiac 
urgery patients with an elevated postoperative TIMP-2*IGFBP7 
o standard care or a CDSS care bundle [27 ]. This study found 
hat both the incidence of stage 2 or 3 AKI ( 7% versus 20%; 
 = .04) and length of hospital stay ( 16 days versus 21 days; 
 = .04) were reduced in the intervention group [27 ]. While the 
igpAK study is currently undergoing large-scale validation [28 ],
ollectively these studies demonstrate how biomarker values 
an prompt the use of kidney-focused care bundles for patients 
t risk for AKI. 

While the PrevAKI and BigpAK trials demonstrate the poten- 
ial clinical utility of TIMP-2*IGFBP7, there are inherent factors in 
hese trials that limit their generalizability. Both trials included 
pecific surgical populations, and randomization to the inter- 
ention group meant strict adherence to a prespecified care pro- 
ocol. Beyond these specific patient populations and outside of 
 trial setting, adherence to care bundles may be less successful,
uch as in medically complex critically ill patients where treat- 
ent must be individualized rather than protocolized. For ex- 
mple, it may be unreasonable to discontinue broad-spectrum 

ephrotoxic antibiotics despite the presence of AKI in a patient 
ith refractory septic shock. A quality improvement study link- 

ng a care bundle to elevated TIMP-2*IGFBP7 suggested improve- 
ent in outcomes in a mixed critical care population when cer- 

ain aspects of the care bundle were utilized, specifically early 
ephrology consultation [29 ]. 
Novel biomarkers may enhance AKI risk scores and predic- 

ion models, but this needs further investigation. Unlike SCr,
iomarkers are not yet routinely utilized in all clinical settings,
nd clinicians must be trained on the proper clinical scenar- 
os in which biomarker testing may be useful. For instance,
IMP2*IGFBP7 is less accurate in the setting of nephrotic-range 
roteinuria or advanced liver disease with significant hyper- 
ilirubinuria [30 ]. Perhaps an alert system can first identify pa- 
ients who may benefit from biomarker measurement, then sub- 
equent risk scores utilizing the biomarker can alert clinicians 
o elevated AKI risk. Finally, risk scores should be paired with a 
linically appropriate care bundle. After further validation stud- 
es, there may be a role for using novel biomarkers in alerts and 
isk scores to trigger specific interventions for AKI prevention. 

DSS S AROUND NEPHROTOXINS CAN REDUCE 

HE INCIDENCE OF AKI 

he development of AKI and subsequent progression to severe 
KI may be preventable using early alert-based identification 
nd mitigation strategies [31 ]. Approximately one of every four 
n-hospital kidney injuries is the result of nephrotoxic med- 
cation exposure [32 ]. Medications can affect kidney function 
hrough a variety of mechanisms, including but not limited to 
hanges in glomerular haemodynamics, inflammation, tubular 
oxicity and crystal nephropathy. 

A single-centre quality improvement initiative conducted in 
on-critically ill paediatric patients demonstrated nephrotoxic 
edication exposure was reduced by 38% and AKI rates were re- 
uced by 64% when practitioners received a medication-based 
DSS alert in patients receiving medications associated with 
ncreased AKI risk [33 ]. In this quality improvement project,
linicians received an alert with advice to measure SCr daily 
nd consider using an alternative medication when multiple 
ephrotoxic medications were prescribed. The findings of this 
tudy were subsequently validated across nine paediatric cen- 
res with a sustained 23% reduction in AKI [7 ]. An attempt 
o model a similar medication-based CDSS in all hospitalized 
dults was effective at reducing medication exposure, however,
t did not demonstrate a significant effect on progression of AKI,
ialysis or death. This difference may reflect the inclusion of 
 more vulnerable, comorbid adult population where SCr is of- 
en measured daily, the types of medications included in alerts,
hich may have variable rates of AKI across the age spectrum,
r the inclusion of critically ill adult patients who are at higher
isk of adverse outcomes compared with ward-based paediatric 
atients. While some exposure to nephrotoxic medications is 
navoidable, increased vigilance through daily creatinine mon- 
toring, switching to a less toxic alternative medication or stop- 
ing nephrotoxic medications when possible were all effectively 
chieved using medication alert–based interventions. 

UTOMATED ALERTS IDENTIFY THOSE WHO 

ILL BENEFIT FROM NEPHROLOGY 

ONSULTATION 

n many locations, nephrology consultation is both a scarce 
esource and a key component in the care of patients with 
KI, providing individualized prevention and treatment regi- 
ens across a variety of clinical settings. Patients for which 
ephrology is consulted tend to have more comorbidities, higher 
everity of acute illness and more advanced AKI than patients 
ithout a nephrology consult [29 , 34 , 35 ]. While several retro- 
pective investigations have shown that early nephrology con- 
ultation within 48 hours of AKI is associated with reduced mor- 
ality and other improved outcomes [35 –37 ], the interventions 
ecommended and then subsequently implemented during con- 
ultation are highly varied and delayed consults and implemen- 
ation allow for the accumulation of more tubular injury and ad- 
erse outcomes. 

In one before-and-after study utilizing an active electronic 
ealth record ( EHR) alert to notify clinicians of patients at risk 
or AKI or with stage 1 AKI in which one group ( n = 7881) was
andomized to have their team receive a care bundle link, the in-
idence of hospital-acquired AKI was slightly reduced after im- 
lementation of the alert {odds ratio [OR] 0.99 [95% confidence 
nterval ( CI) 0.98–1.00], P = .049}, and perhaps more importantly,
ortality among patients who developed AKI was reduced ( 27% 

ersus 22%; P = .021) [38 ]. The care bundle used in this study in-
luded considering discussion with nephrology if AKI does not 
mprove at 24 hours. While analysis of process measures did not 
nclude differences in nephrology consultation, the authors did 
nd that there was more discontinuation of potential nephro- 
oxins ( P < .001) and more documentation of AKI ( P = .033) in 
he care bundle arm [38 ]. 

In a study by Park et al. [39 ], an EHR alert notified clinicians
hen a patient’s SCr met the definition of AKI and asked the 
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linician whether a nephrology consult was requested. In this 
efore-and-after study, not only did the alert lead to a reduction
n overlooked AKI ( 6% versus 18%; P < .001) , but early consulta-
ion rates also increased ( 28% versus 6.5%; P < .001) . This alert led
o lower rates of severe AKI ( 27% versus 32%; P = .007) and higher
ates of renal recovery ( 80% versus 56%; P < .001) [39 ]. As a before-
nd-after study, the improvement in AKI-related outcomes may 
e confounded by overall improvement in AKI care over time
nrelated to nephrology consults; however, subgroup analysis 
emonstrated that patients with early nephrology consultation 
ere more likely to recover renal function than those without
onsultation ( 81.9% versus 63.3%; P < .001) , and perhaps the no-
ification of AKI is key to reminding providers to enact appropri-
te AKI care. Another confounder in this before-and-after study 
s the Hawthorne effect, where providers may change their prac-
ice knowing that the EHR is able to track whether the CDSS rec-
mmendation was followed, especially if they chose not to con-
ult nephrology. A limitation of this alert system was that AKI
creening occurred only at midnight for next-morning alerts,
hich assisted information-processing efficiency and prevented 
lert fatigue throughout the day, but this likely caused a delay
n nephrology consultation relative to AKI development and, as 
he authors pointed out, affected the mortality analysis ( which 
as not significant) because most deaths occurred on the day 
f AKI. 

While not all alert studies have shown a beneficial effect 
n AKI, it may be that passive alerts, those not linked to a
undle or a pre-specified action, are less likely to improve
utcomes [4 ]. Both of these studies were performed in an aca-
emic medical centre, and different results may occur at non-
eaching hospitals where there are fewer members of medical 
eams to recognize AKI and consultation practices may differ.
ince early nephrology consults are associated with improved 
atient outcomes, alerts can provide timely assistance in iden- 
ifying patients who may benefit from a nephrology consult.
urther studies assessing the impact of AKI alerts triggering 
tructured nephrology consults could be optimized using clus- 
er randomized study designs in order to minimize temporal ef-
ects on care and should investigate effects in various hospital
ettings. 

It is important to acknowledge that given the high prevalence 
f hospital-acquired AKI, it would be impossible for a nephrolo-
ist to provide care for every patient with AKI, let alone at risk
or AKI. Risk scores and alerts can provide guidance in triaging
hich patients would benefit most from the limited resource 
f nephrology consultation. Perhaps in the future the process 
an be more automated. As additional novel AKI biomarkers be-
ome validated and incorporated into risk scores, biomarkers 
ay provide prognostic insight into which patients are likely to
rogress to or sustain severe AKI and identify those who would
enefit from kidney-focused care. Future studies should investi- 
ate whether nephrology consults improve outcomes of patients 
ith elevated levels of various biomarkers. 

ARIABLE OUTCOMES ASSOCIATED WITH 

SING ALERTS FOR FLUID MANAGEMENT 

ne of the hallmarks of AKI care is fluid balance assessment and
orrection ( including resuscitation, de-escalation and the avoid- 
nce and treatment of volume overload) . Many studies and ap-
lications of EHR alerts for fluid administration focus on patients
ith sepsis/septic shock, where fluid balance has been shown 
o impact mortality [40 , 41 ]. In one study investigating the ef-
ects of a text alert for patients identified by a computer pre-
iction tool as having sepsis, the proportion of patients who re-
eived intravenous fluids within 12 hours was increased in the
ntervention group compared with the control group ( 38% ver-
us 24%; P = .013) [42 ]. Additionally, in a before-and-after study
rom Hayden et al. [43 ] utilizing an EHR alert for at-risk sepsis
atients, time to fluid bolus was reduced post-implementation
y 31 minutes ( 51 minutes versus 82 minutes; P < .01) . While
atients with chronic kidney disease ( CKD) and end-stage renal 
isease ( ESRD) are more likely to receive conservative fluid re-
uscitation rather than the standard 30 ml/kg bolus, it has been
hown that patients, even those with ESRD, who do not receive
 30 ml/kg fluid bolus within 3 hours of the onset of sepsis have
 higher mortality rate [44 , 45 ]. Alerts can provide reminders for
arly fluid resuscitation in patients with sepsis, including for pa-
ients with CKD or ESRD. 

In terms of AKI, one active alert system ( linked to fluid or-
er sets) identifying patients with SCr-based AKI resulted in in-
reased fluid administration ( 23% versus 5%; P < .01) and di-
retic use ( 4% versus 3%; P < .01) post-implementation, as well
s more AKI resolution ( 66% versus 61%; P = .048) [46 ]. However,
ot all showed a benefit in AKI and fluid administration, as a
ooled analysis of multiple studies investigating the effects of
lectronic alerts on AKI management found no differences in
uid administration [47 ]. One explanation for the inconsistent
esults related to fluid administration is because AKI is a hetero-
eneous condition and the indication for fluids is often nuanced.
or example, patients with hepatorenal or cardiorenal syndrome
ould not benefit and may actually be harmed by fluid adminis-
ration and the AKI phenotype ( and volume status) is not always
eadily available on clinical presentation. Thus fluid administra-
ion may not always demonstrate positive outcomes in AKI care
n studies and the decision to give intravenous fluids should be
ndividualized. 

While fluid administration may benefit some patients with
KI, fluid overload is associated with increased mortality among
ritically ill patients, especially among patients with AKI [48 ,
9 ]. Investigation into optimal methods to identify patients who
ould benefit from deresuscitation is ongoing, and thus there
re few studies investigating the use of alerts for fluid over-
oad. Akcan-Arikan et al. [50 ] developed a real-time kidney in-
ury score that incorporated fluid overload when cumulative
uid balance was > 15% of paediatric ICU admission weight.
igher scores were associated with higher rates of mortality
nd longer lengths of stay [50 ]. In another study of critically ill
aediatric patients, a combination of a risk score, urinary neu-
rophil gelatinase-associated lipocalin ( NGAL) and furosemide 
tress test for urine output was used to guide fluid management
nd continuous renal replacement therapy ( CRRT) initiation [51 ].
GAL is a protein that is upregulated in damaged renal tubule
ells to stimulate tubule re-epithelialization, and elevated lev-
ls in the urine have been used as an early biomarker for AKI,
pecifically in the paediatric population [51 , 52 ]. Implementa-
ion of this multimodal protocol resulted in lower fluid accumu-
ation ( 4% versus 12%; P < .01) and a higher rate of survival to
CU discharge ( 65% versus 46%; P = .02) [51 ]. A confounding fac-
or in this study is that NGAL is also largely expressed by neu-
rophils and may be elevated in infections independent of AKI.
onetheless, critically ill patients with infections are at high risk
or AKI and fluid overload, and preventing excessive fluid accu-
ulation in both populations is important. This study was also

imited to paediatric ICU patients, but ongoing studies are vali-
ating the use of urinary NGAL in AKI risk prediction scores and
DSS alerts in adult ICU patients. While these studies do not
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pecifically alert clinicians to fluid overload, they suggest that 
uid balance data can be incorporated into risk scores and pro- 
ocols that could be used in future AKI alerts to improve patient 
utcomes. 
Unfortunately, the use of real-time kidney injury scores has 

ot been assessed in adult patients or across a variety of disease 
tates, including burn, trauma and surgical settings. As a result,
he thresholds for which adults experience the worst outcomes 
t is not known and the benchmarks for reducing fluid accumu- 
ation to improve outcomes are not yet part of consensus guide- 
ines. Based on the success of these interventions in paediatric 
tudies, these should be further evaluated in adults across a va- 
iety of ICU settings. 

EDUCING ADMINISTRATION OF PROTON 

UMP INHIBITORS ( PPI) IS ASSOCIATED WITH 

MPROVED CLINICAL OUTCOMES 

PIs are associated with a wide range of adverse events, includ- 
ng increased risk of infection, osteoporosis and development 
f both AKI and CKD [53 ]. Several plausible mechanisms for the 
evelopment of kidney-related adverse outcomes exist, but the 
ost frequently described is a hypersensitivity reaction leading 

o the development of acute/chronic interstitial nephritis [54 ].
hile the cornerstone of drug-induced AKI management in- 

olves withdrawal of offending medications, there are currently 
o international guidelines that address discontinuation of PPIs 
n patients with AKI. 

Wilson et al. [6 ] conducted a multicentre study aimed at re- 
ucing nephrotoxic drug exposure in hospitalized adults with 
stablished AKI. They examined the impact of AKI alerts on 
oth the rate of medication discontinuation and the develop- 
ent of a composite outcome including progression of AKI, re- 
eipt of RRT or death within 14 days. This study evaluated alerts 
or patients with AKI receiving one of three different classes of 
edications: non-steroidal anti-inflammatory drugs ( NSAIDs) ,

enin–angiotensin–aldosterone system inhibitors ( RAASis) and 
PIs. This EHR-based alert study did not find any improvement 
n composite outcomes for those patients receiving NSAIDs or 
AASis; however, the PPI-exposed subgroup analysis showed a 
tatistically significant reduction in composite outcomes [rela- 
ive risk 0.88 ( 95% CI 0.79–0.98) , P = .02]. Unfortunately, only 22% 

f PPIs were discontinued when practitioners received an alert 
ersus 17% discontinuation in the usual care group, while there 
ere much higher rates of discontinuation in the NSAID and 
AASi groups ( 60–80%) [6 ]. In the setting of AKI, discontinuing 
PIs is associated with improved patient outcomes, and future 
HR-based alerts should focus on increasing the discontinuation 
ates. 

One of the major challenges posed by medication-based 
lerts is the opportunity for practitioner override without critical 
ppraisal of the alert itself. This study by Wilson et al. [6 ] demon- 
trated a very low rate of PPI discontinuation, which is likely ow- 
ng to practitioner’s perception of the benign nature of PPIs com- 
ared with NSAID and RAASi medications. Additionally, it does 
ot account for those in whom PPIs are imminently clinically 
ndicated, e.g. admission with gastrointestinal bleeding or treat- 
ent of Helicobacter pylori infection. To truly assess the efficacy of 

hese alert-based interventions on outcomes, these factors must 
e incorporated. Clinically relevant prescribing information as 
ell as a critical analysis of the need for intervention should be 
onsidered when creating alerts aimed at reducing medication 
se. 
YNAMIC CREATININE MONITORING MAY 

DENTIFY VANCOMYCIN-ASSOCIATED AKI 
 VA-AKI) 

ancomycin is a frequently administered antibiotic in hospital- 
zed patients that is primarily used to treat Gram-positive infec- 
ions, including methicillin-resistant Staphylococcus aureus . Re- 
ently, the presence of vancomycin-associated tubular casts in 
iopsy specimens was described as a hallmark of vancomycin- 
nduced nephrotoxicity [55 ]. The presence of tubular casts is par- 
icularly problematic because vancomycin is almost exclusively 
enally cleared. Impaired renal clearance leads to prolonged el- 
vations in vancomycin levels and further amplifies renal toxic- 
ty [56 ]. While there are no established vancomycin level cutoffs 
eading to toxicity, some studies have described an incidence 
f AKI of ≈30–40% in those achieving a vancomycin area under 
he curve/minimum inhibitory concentration ( AUC/MIC) > 500–
00 mg/h/l [57 , 58 ]. These levels correspond to the high end of
ccepted therapeutic targets [59 ]. 

An unusually steep increase in SCr has been reported in pa- 
ients with suspected VA-AKI [60 ]. An early mean increase in 
Cr of 260 μmol/l ( 2.6 mg/dl) was observed in patients with VA- 
KI compared with an increase of 88–132 μmol/l ( 1–1.5 mg/dl) 
n patients with other causes of severe oligoanuric AKI, in- 
luding those with non-vancomycin drug-induced kidney injury 
60 ]. The sharp increase in creatinine typically occurred within 
 days, compared with 5–7 days described in other drug-induced 
idney injuries [61 ]. Early daily monitoring of SCr in patients re- 
eiving vancomycin may be helpful in detecting VA-AKI and help 
ifferentiate it from other aetiologies. 
While there have been no specific dynamic creatinine-based 

HR alerts for vancomycin reported in the literature, this idea 
f alerting providers about those with large changes in SCr and 
eceiving vancomycin provides an example of an automated 
ynamic creatinine alert to discontinue prescribing, switch to 
 non-nephrotoxic alternative or reduce the dose early in the 
ourse of VA-AKI to minimize nephrotoxicity. 

LERT-BASED SYSTEMS ARE NOT A 

UBSTITUTE FOR CLINICAL 

ECISION-MAKING AND SHOULD NOT BE 

SED TO INITIATE RRT 

iven its role in defining AKI, many EHR alerts incorporate 
oth absolute and dynamic changes in SCr levels. Unfortunately,
ince creatinine is generally a marker of glomerular filtration, in 
ritically ill patients SCr levels do not necessarily reflect the de- 
ree of kidney tubular damage. It was previously demonstrated 
hat patients with a higher SCr level at the time of RRT initiation
ad improved outcomes and overall survival [62 ]. This may re- 
ect that lower creatinine levels are associated with significant 
olume overload, poor nutritional status and low muscle mass 
t baseline or a loss of mass during critical illness in those with
oor outcomes and that high SCr concentrations may reflect in- 
reased muscle mass and indicate better overall baseline health.

The timing of RRT has been a topic of much debate in the
iterature. Studies previously found conflicting effects on over- 
ll survival and long-term dependence on RRT when compar- 
ng early versus delayed initiation of RRT [63 –65 ]. While the trig-
ers used in recent trials investigating the initiation of RRT were 
ariable, several trials randomized patients with KDIGO stage 2 
r 3 AKI to early initiation of RRT. In comparison, delayed co- 
orts required prespecified triggers to initiate CRRT, including 



Dynamic risk assessment and alerts for AKI 7

c
m
a  

t  

t
i  

i  

a
h  

w
i
a  

p  

b  

p
n  

o  

R
p
m
m
i  

p

I
C
U

E  

c  

e  

i  

s
t  

s  

i
m  

a  

(

h
t  

i
f
r  

a  

a  

T
r
n
c  

s  

t  

f
c  

u  

s
m  

i  

fi  

c
s

a  

m
 

c  

d  

t  

a  

t  

c  

a  

P  

w  

a  

d  

t  

w  

s  

a  

i  

a

A
F

A  

s  

t  

t  

l  

s  

e  

d  

a  

d  

a
t  

T  

t  

c  

p  

m  

w  

F  

w  

p
t  

c

C

R  

s  

(  

q  

s  

a  

l  

b  

m
s  

A  

s  

a  

D
ow

nloaded from
 https://academ

ic.oup.com
/ckj/article/17/11/sfae325/7849779 by guest on 30 N

ovem
ber 2024
linical evidence of volume overload, persistent or refractory 
etabolic complications ( including acidosis or hyperkalaemia) 
nd persistent severe AKI after 48–72 hours. In most of these
rials, including the largest [STARRT-AKI ( NCT02568722) ] trial,
here was no observed mortality benefit associated with early 
nitiation of RRT and there was a signal for harm, with early
nitiation being linked to a higher 90-day dependence on RRT
nd an increased incidence of adverse events ( hypotension and 
ypophosphataemia) . It should be noted that < 15% of those who
ere screened for STARRT-AKI were eventually enrolled, so clin- 

cians need to be mindful about misinterpreting these findings 
nd applying them to all comers [66 ]. As a result, when appro-
riate, the decision to initiate RRT in critically ill patients should
e dictated by the presence of volume overload, metabolic com-
lications or persistent severe AKI as clinically indicated, and 
ot on the basis of SCr ( alerts) alone. In the future, creation
f more comprehensive alerts may help refine the timing of
RT initiation. The use of AI-based algorithms that incorporate 
atient factors including comorbidities, disease processes and 
ore subtle changes in volume status, acid–base balance and 
etabolic changes in addition to novel biomarkers and changes 

n SCr should be explored to provide a more personalized ap-
roach to CRRT in critically ill patients. 

NDIVIDUALIZE ALERTS TO INSTITUTIONS BY 

ONTINUOUSLY MEASURING RESOURCE 

TILIZATION AND OUTCOMES 

HR alerts assist in patient care and improve outcomes, espe-
ially alerts that have specific goals and specific guidance. How-
ver, as several of the aforementioned studies have shown, there
s variability in their impact on outcomes. The success of an alert
ystem depends on the communication culture, patient popula- 
ions, resource accessibility and other factors that can vary by in-
titution. To ensure an alert system is functioning as intended, it
s important to regularly assess practice patterns and outcome 
easures after implementation of a new alert system, as well
s to adapt alert systems to the evolving needs of the institution
 Fig. 2 ) . 

The impact of an implemented alert system should include 
ealthcare spending and resource utilization. This ensures that 
he alerts are changing practice and that the cost of the alerts
s outweighed by improved patient outcomes ( and cost savings 
rom preventing AKI itself) . A multicentre stepped wedge cluster 
andomized trial by Selby et al. [67 ] demonstrated that their AKI
lert system increased AKI recognition ( 89% versus 69%; P < .001)
nd led to a shorter duration of AKI by nearly 1 day ( P = .01) .
hese positive findings occurred with no significant increase in 
esource utilization ( including nephrology consultation and re- 
al ultrasound) , suggesting a favourable cost–benefit balance. In 
ontrast, in a separate randomized trial utilizing an AKI alert
ystem [4 ], renal consults among surgical patients increased in
he alert group ( 11.5% versus 5%; P = .006) , but there were no dif-
erences in AKI severity or mortality, suggesting a less favourable 
ost–benefit balance. It is unclear why there was higher resource
tilization without complementary improved patient outcomes,
uch as whether effects were attenuated because providers were 
ore attentive to AKI and care guidelines for patients random-

zed to usual care ( no alert) , or whether this is a false positive
nding in a subgroup analysis. Regardless, what works in one
entre may not work in another, thus individual institutions 
hould assess cost–benefit balances, and revisions may involve 
djusting the alert criteria and/or method or editing the recom-
endations provided with the alert. 
Lastly, it is essential to ensure that an alert system is not

ausing harm. In a multicentre trial, patients with AKI were ran-
omized to an EHR pop-up notifying providers of AKI with links
o an AKI management order set [68 ]. In assessing the outcomes
ssociated with implementing the alert, it was found that while
here was no difference in mortality between the alert and usual
are groups in teaching hospitals, the alert was associated with
 higher risk of death in non-teaching hospitals ( 16% versus 9%;
 = .003) , although it was unclear through secondary analyses
hy this signal for harm was specific to non-teaching hospitals,
s increased risk was linked to the use of intravenous fluids and
iuretics [68 ]. Since AKI is a heterogeneous disease, a therapy
hat may help one patient with AKI may harm a different patient
ith AKI, and these differences may not be captured in mea-
ured data. Furthermore, some important systems factors, such
s communication practices, are also difficult to measure. Thus
t is essential for individual institutions to assess and optimize
lert systems based on the real-time needs of that institution. 

KI ALERTS NEED TO BALANCE ALERT 

ATIGUE WITH ALERT COMPLETION 

lert fatigue occurs when clinicians are exposed to an exces-
ive number of alerts, leading to an increased risk of poten-
ially ignoring a clinically relevant alert. Poor alert design and
he sheer number of alerts can contribute to fatigue [69 ]. Regard-
ess of the reason for alert fatigue, it must be avoided, as several
tudies found low event rates of bundle completion while oth-
rs demonstrate that even partial response to an alert or bun-
le leads to improved outcomes [70 –72 ]. In an investigation of
n AKI-based alert paired with a care bundle, Kolhe et al. [71 ]
emonstrated that outcomes correlate with completion of the
lert bundle. Hospitalized patient mortality was lowest ( 18%) in 
hose who had completion of their alert bundle within 24 hours.
here was a stepwise increase in mortality in those who had
heir bundle completed in > 24 hours, those who had partial
ompletion and those who had no portion of the bundle com-
leted. This effect persisted when looking at 30- and 60-day
ortality. Similarly in other studies, certain bundle components
ere shown to have a greater impact on improving outcome [70 ].
uture investigators should focus future efforts on determining
hich care bundle elements are most valuable in specific AKI
henotypes, with subsequent prospective trials demonstrating 
hat completion of those key elements will optimize patient out-
omes while simultaneously limiting alert fatigue. 

ONCLUSION 

ecent years have seen several studies investigating both pas-
ive and active alerts and CDSSs in the setting of clinical AKI
 or increased AKI risk) . While active alerts/CDSSs are more fre-
uently associated with improved patient outcomes versus pas-
ive alerts, the results remain variable depending on the study
nd clinical setting. Importantly, most active AKI alerts are
inked with some form of improved outcome ( more guideline-
ased care, less severe AKI, shorter length of stay, decreased
ortality) . While nephrotoxin-based interventions have been 
lightly more successful than those focused on other areas of
KI, more studies are needed and prior studies still need large-
cale validation. If an alert is successful in the setting of sepsis-
ssociated AKI there is no guarantee it will also work in cardiac
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Figure 3: The post-implementation life cycle of an AKI alert. The figure demonstrates the process of refinement of an AKI alert following implementation ( red arrow) . 
Start with the determination of outcomes ( before and after the alert) and then identify areas for improvement and work to troubleshoot and adjust the alert as feasible 
or needed. If changes are made, stakeholders should be educated and the process of recalibration and retesting the alert should occur, then iterative process can 
happen again. 
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urgery-associated AKI, and as such it should be re-investigated.
nce alerts are clinically implemented, they still require main- 
enance to ensure they remain clinically appropriate and asso- 
iated with sustained improvements in patient care and/or out- 
ome. Figure 3 demonstrates the processes that need to occur 
fter the implementation of a risk score or alert. This requires 
he continued vigilance of nephrologists and all the other AKI 
takeholders throughout the hospital. 
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