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COMBINED LEARNED AND DYNAMIC 
CONTROL SYSTEM 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

2 
hybrid controller and could, based on that output, provide 
one or more outputs to control the operation of the hybrid 
controller. Such outputs could include one or more con­
straints of the hybrid controller (e.g., a set-point used for 
feedback control of the system, a delivery latency con­
straint). Such outputs could include values for one or more 
parameters of the dynamic and/or learned system model 
components of the hybrid controller. For example, the output 
of the governing controller could be a magnitude or phase of 

This application is a continuation of and claims priority to 
U.S. patent application Ser. No. 16/771,410, filed Jun. 10, 
2020 and hereby incorporated by reference in its entirety. 

U.S. patent application Ser. No. 16/771,410 is a U.S. 
national phase oflnternational Patent Application No. PCT/ 
US2018/066854, filed Dec. 20, 2018 and hereby incorpo­
rated by reference in its entirety. 

International Patent Application No. PCT/US2018/ 
066854 claims priority to U.S. Provisional Patent Applica­
tion No. 62/609,244, filed Dec. 21, 2017 and hereby incor­
porated by reference in its entirety. 

10 a pole of a filter, a feedback gain, or some other operational 
parameter of the dynamic component of the hybrid control­
ler. In another example, the output of the governing con­
troller could be a learning rate or other parameter of the 
learned system model component of the hybrid controller. In 

BACKGROUND 

15 some examples, the output of the governing controller could 
be a determination that a process should be performed on the 
hybrid controller, e.g., that the learned system model of the 
hybrid controller could be asynchronously updated and/or 
enter a learning mode. In another example, the output of the 

A controller that controls a particular system (e.g., to 
maintain an output of the system at a desired level) can be 
configured in a variety of ways. In some examples, the 
controller may include a component that has been trained or 
otherwise specified to represent a model of the system to be 
controlled. The controller may also include a dynamic 
component ( e.g., a filter or other dynamic control structure) 
in combination with such a system-modeling component, to 
improve the dynamic response of the overall controller. 
However, such a controller, despite including a component 
specified to model the internal structure of the system under 
control, may perform sub-optimally under conditions that 
differ from those used to, e.g., generate the training data used 
to train the system-modeling component of the controller. 

20 governing controller could be a selection of a new learning 
model to be used in the learned system component; e.g., 
switching from a regularized regression model to a Bayesian 
model. In another example, the output of the governing 
controller could indicate a new actuator to be controlled by 

25 the hybrid controller, e.g., if a new resource becomes 
dynamically configurable after the original hybrid controller 
was deployed. 

Such a governing controller could be used to control 
multiple hybrid controllers. Additionally or alternatively, 

30 multiple governing controllers (e.g., multiple governing 
hybrid controllers) could control one or more hybrid con­
trollers in common. Each of the hybrid controllers controlled 
by a governing controller could control a respective sub­
system of a larger overall system. For example, a first hybrid 

SUMMARY 
35 controller could control battery charge/discharge circuitry of 

an electric vehicle and a second hybrid controller could 
control a drive motor of the electric vehicle. In such 
examples, the governing controller could be considered to To improve the control of a system of interest, a hybrid 

controller may be provided that includes both dynamic 
components ( e.g., filters or other dynamic controller ele- 40 

ments) and components that have been specified to model 
the system under control ( e.g., a learned system model 
trained based on observed past behaviors of the system 
under control). Such a hybrid controller may provide better 
outputs, with respect to controlling the output of the system 45 

or with respect to some other operational parameter of 
interest, relative to alternative controllers that only include 
dynamic elements or system-modeling elements. Hybrid 
controllers may also be implemented cost-effectively and 
with minimal compute resources ( e.g., cycles, memory, 50 

cores). Hybrid controllers are able to generate control out­
puts that may take into account learned information about 
the complex structure of the controlled system (via the 
system-modeling component) while also providing certain 
formal guarantees regarding the performance of the hybrid 55 

controller ( due to the presence of the analytically-tractable 
dynamic component). 

However, such a hybrid controller may exhibit suboptimal 
behavior under certain circumstances. For example, if the 
system under control and/or the environment of the system 60 

differ significantly from the conditions used to develop the 
hybrid controller ( e.g., to train a learned system model of the 
controller), the hybrid controller may produce sub-optimal 
outputs. In such examples, an additional controller (e.g., an 
additional hybrid controller) may be provided to monitor 65 

and govern the hybrid controller. This additional controller 
can receive the output of the system under control by the 

be effectively controlling the overall system via the subor­
dinate hybrid controllers. The governing controller could 
control the overall system by applying inputs (e.g., set-point 
values or other constraints, filter poles or other dynamic 
system parameters, learning rates or other learned system 
model parameters) to or otherwise modifying or controlling 
the operation of the subordinate hybrid controllers which, 
themselves, directly control their respective sub-systems. In 
some examples, such a governing controller could, itself, be 
a hybrid controller. 

An aspect of the present disclosure relates to a method 
implemented by one or more computers, controllers, micro­
controllers, graphics processing units, tensor processing 
units, application-specific integrated circuits, and/or some 
other variety of computational substrate, the method includ­
ing: (i) detecting, during a first period of time, one or more 
outputs of a system; (ii) determining, based on the one or 
more outputs detected during the first period of time, a first 
performance metric for the system; (iii) operating a first 
hybrid controller, based on at least the first performance 
metric, to generate a first hybrid controller output; (iv) 
controlling the system, during a second period of time, 
according to at least the generated first hybrid controller 
output; (v) detecting, during a third period of time, the one 
or more outputs of the system; (vi) determining, based on the 
one or more outputs detected during the third period of time, 
a second performance metric for the system; (vii) operating 
a second hybrid controller, based on at least the first per-
formance metric and the second performance metric, to 
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generate an updated constraint value; (viii) updating the first 
constraint according to the updated constraint value; (ix) 
operating the first hybrid controller, based on at least the 
second performance metric, to generate a second hybrid 
controller output; and (x) controlling the system, during a 
fourth period of time, according to at least the generated 
second hybrid controller output. The first hybrid controller 
includes a first constraint, a first dynamic system, and a first 
learned system model, and operating the first hybrid con­
troller to generate the first hybrid controller output includes: 10 

(1) determining a first difference between the first perfor­
mance metric and the first constraint; (2) applying the 
determined first difference to the first dynamic system to 
generate a first dynamic system output; and (3) applying the 

15 
generated first dynamic output to the first learned system 
model to generate the first hybrid controller output. 

Another aspect of the present disclosure relates to a 
method implemented by one or more computers, controllers, 
micro-controllers, graphics processing units, tensor process- 20 

ing units, application-specific integrated circuits, and/or 
some other variety of computational substrate, the method 
including: (i) detecting, during a first period of time, an 
output of a system; (ii) determining, based on the output 
detected during the first period of time, a first performance 25 

metric for the system; (iii) operating a first hybrid controller, 
based on the first performance metric, to generate a first 
hybrid controller output; (iv) controlling the system, during 
a second period of time, according to the generated first 
hybrid controller output; (v) detecting, during a third period 30 

of time, the output of the system; (vi) determining, based on 
the output detected during the third period of time, a second 
performance metric for the system; (vii) operating a second 
hybrid controller, based on the first performance metric and 
the second performance metric, to generate a first hybrid 35 

controller update, wherein the first hybrid controller update 
includes at least one of an updated first constraint value, an 
updated first dynamic parameter, or an updated first learning 
parameter; (viii) updating the first hybrid controller accord­
ing to the first hybrid controller update; (ix) operating the 40 

updated first hybrid controller, based on the second perfor­
mance metric, to generate a second hybrid controller output; 
and (x) controlling the system, during a fourth period of 
time, according to the generated second hybrid controller 
output. The first hybrid controller includes a first constraint, 45 

a first dynamic system, a first learned system model, and a 
first learned system update module. The first learned system 
update module is configured to update the first learned 
system model based on at least one output detected from the 
system and to update the first learned system model accord- 50 

ing to at least one of a timing or a rate corresponding to the 
first learning parameter. The first dynamic system has a first 
dynamic parameter that corresponds to an overall respon­
siveness of the first dynamic system. Operating the first 
hybrid controller to generate the first hybrid controller 55 

output includes: (1) determining a first difference between 
the first performance metric and the first constraint; (2) 
applying the determined first difference to the first dynamic 
system to generate a first dynamic system output; and (3) 
applying the generated first dynamic output to the first 60 

learned system model to generate the first controller output; 
These as well as other aspects, advantages, and alterna­

tives will become apparent to those of ordinary skill in the 
art by reading the following detailed description with ref­
erence where appropriate to the accompanying drawings. 65 

Further, it should be understood that the description pro­
vided in this summary section and elsewhere in this docu-

4 
ment is intended to illustrate the claimed subject matter by 
way of example and not by way of limitation. 

BRIEF DESCRIPTION OF THE FIGURES 

FIG. lA depicts a schematic of an example hybrid con­
troller. 

FIG. 1B depicts a schematic of an example hybrid con­
troller. 

FIG. 2 depicts a schematic of an example network of 
controllers. 

FIG. 3 is a flowchart of a method. 
FIG. 4 is a flowchart of a method. 

DETAILED DESCRIPTION 

Examples of methods and systems are described herein. It 
should be understood that the words "exemplary," 
"example," and "illustrative," are used herein to mean 
"serving as an example, instance, or illustration." Any 
embodiment or feature described herein as "exemplary," 
"example," or "illustrative," is not necessarily to be con­
strued as preferred or advantageous over other embodiments 
or features. Further, the exemplary embodiments described 
herein are not meant to be limiting. It will be readily 
understood that certain aspects of the disclosed systems and 
methods can be arranged and combined in a wide variety of 
different configurations. 

This application incorporates by reference the contents of 
Wang, Shu, et al. "Understanding and Auto-Adjusting Per­
formance-Sensitive Configurations." Proceedings of the 
Twenty-Third International Conference on Architectural 
Support for Programming Languages and Operating Sys­
tems. ACM, 2018; Zhang, Huazhe, and Henry Hoffmarm. 
"Performance & energy tradeoffs for dependent distributed 
applications under system-wide power caps." Proceedings 
of the 47th International Conference on Parallel Processing. 
ACM, 2018; an Santriaji, Muhammad Husni, and Henry 
Hoffmann. "Formalin: Architectural Support for Power & 
Performance Aware GPU." 2018 IEEE Conference on Con­
trol Technology and Applications (CCTA). IEEE, 2018. 

I. Overview 

This disclosure discloses systems, methods, and appara­
tuses for supervising, controlling, improving and/or opti­
mizing performance of a hierarchical or distributed or other 
complex systems comprised of one or more sub-systems, by 
combining machine learning and control theory to create one 
or more expanded machine learned control systems that 
ensure that such a complex system performs optimally in 
dynamic operational conditions, wherein each one or more 
sub-system has similar, different or common local and/or 
global goals and each one or more controlled sub-system(s) 
in such complex system being closely or loosely coupled in 
hardware and/or software for the purpose of optimization 
and/or supervision of one or more or all sub-system(s) 
collectively. 

Some of the disclosed embodiments are related to super­
vising and/or optimizing such control system(s) or sub­
system(s)) by using a performance method(s) that is based 
on, but not limited to, dynamically monitoring, learning, and 
changing configurations of the control system(s) while 
executing the application and assessing data of the system's 
operational performance. The system or sub-system(s) may 
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also dynamically adjust its at least one constraint and/or one 
performance goal being controlled and/or adjust the super­
visory control system itself. 

Some of the disclosed embodiments are related to using 
the meta data derived from evaluation of the dynamic 
changes in system performance over time resulting from 
such optimization and/or supervision of the targeted con­
straint(s) and/or performance goal(s) to, e.g., establish ben­
eficial constraints and performance goals, to prevent cas­
cading, competing, local minimum/maximum, or other 10 

failures in one or more systems or sub-systems, to develop 
advanced learning methods that are more efficient for pro­
ducing outcomes, e.g., to wholly or partially replacing 
and/or otherwise improving performance of Generative 
Adversarial Networks, for evaluation and/or improvement 15 

of machine learning methods operationally (artificial intel­
ligence; neural networks, or other such methods), for tem­
poral, sequential or other simulations of potential outcomes, 
etc. 

Machine learned control systems (artificial intelligence) 20 

are being widely developed and deployed throughout indus-
try in applications ranging from financial transactions, 
autonomous vehicles, logistic systems, chips and micropro­
cessors, military systems and others. Under unsupervised, 
supervised, or the supervised component of semi-supervised 25 

learning, each of these systems requires the initial "learning" 
of large data sets that describe the environment of the 
application to be controlled, then processed through neural 
networks of varying complexity, then tested to ensure that 
once deployed, the control system "knows enough" to 30 

provide a high probability of desired outcomes. Under 
unsupervised or the unsupervised component of semi-super­
vised learning, this data is often generated. 

Typically, the more data the greater the probability of 
these desired outcomes, in the attempt to develop control 35 

solutions that can operate near optimally. In practice, how­
ever, performance can be sub-optimal, the inner workings of 
neural networks or other learned prediction and/or control 
algorithms are not easily understood, data is often expensive 
to acquire or limited in breadth, and the machine learned 40 

control system must update its learning set and operating 
logic as it operates in real time and can gather its own 
additional operational data. 

The techniques of traditional control theory, where system 
operating parameters may be derived from known differen- 45 

tial or difference models, contrast with machine learned 
systems, which produce probabilistic control outcomes and 
provide varying degrees of uncertainty regarding the "com­
pleteness" of the learning or other data set(s) and the risk of 
encountering operational conditions that are unanticipated. 50 

The methods of machine learning and control theoretic 
techniques can be combined into what we describe as 
"hybrid control systems." These hybrid control systems 
introduce the traditional ideas of dynamic optimization 
using one or more targeted constraints and/or performance 55 

goals, deeply integrated to enhance the capability of 
machine-learned systems by building predictive tables that 
are highly responsive to system operation around the tar­
geted constraints and/or performance goals that more rapidly 
drive the underlying machine learned system to its optimal 60 

overall targets when encountering unlearned conditions, 
unanticipated 'bad behaviors', or other unplanned or unex­
pected events. 

For example, these complex, machine learned systems 
may be applied to accelerate the learning process by creating 65 

various mathematical methods such as Generative Adver­
sarial Networks using Bayesian and other methods, e.g., 

6 
DCGAN, Wasserstein GANs, and DCGAN ensembles, 
whether for supervised, unsupervised, or semi-supervised 
systems, including those using reinforcement learning, 
transfer learning, or active learning. 

For example, these adversarial deep neural networks have 
proven more effective at both conditional and unconditional 
modeling of complex data distributions; conditional genera­
tion enables interactive control, but creating new controls or 
updating previous modeling often requires expensive 
retraining; regardless, the goal is to develop better modeling 
(i.e. faster, more economical, better prediction and many 
others). 

Learning can be expensive and time consuming and a 
variety of techniques may be applied to better understand the 
internal operations of neural networks to reduce the 
demands on the size and breadth of required learning sets, 
e.g., by reducing precision from 32 and 64 bit precision to 
4 and 8 bit precision computation. Most of these methods are 
being developed to better understand, e.g., computational 
efficiencies, assess risks or performance, improve the accu­
racy of unsupervised learning, reduce unintended conse­
quences, and reduce the time to market with reliable and 
understandable machine learned systems. 

Neural networks have good empirical performance, but 
their internal workings are poorly understood. Other tech­
niques may be applied to improve the empirical performance 
of learning techniques that have better understood math­
ematical properties, e.g., various kernel and spectral learning 
methods. 

In general, prior work has failed to provide systems nor 
methods for one or more of simulating, creating, observing, 
learning from, simultaneously supervising, and/or optimiz­
ing a hierarchical, distributed, or other complex control 
system made up of loosely or closely coupled individually 
optimized sub systems operating together or in one or more 
combinations making decisions with the same, related, or 
different constraint(s) and/or performance goal(s), e.g., a 
complex system comprised of one or more hybrid control 
systems; 

Nor does this prior work provide the means for correcting 
behavior if the dynamic operating environment violates 
those initial or other conditions, nor does it provide the 
means for learning how to optimize the behavior of the 
distributed hierarchical system over time if the misbehavior 
of one or more sub-systems becomes "normal" behavior 
over a time period; 

Nor does it provide for any static or dynamic systems or 
methods for establishing, operationally monitoring, or 
dynamically changing the optimal constraint(s) to improve 
the response times to the systems' global optimal perfor­
mance goal(s), nor does it provide for using the run-time 
supervisory and/or optimization performance data to, e.g., 
develop or dynamically change the at least one constraint 
and/or performance goal(s) of the supervisor itself. 

Nor does it provide the means to initially set up, then 
monitor, then control the actual performance of the system 
or method in a real-time operating environment, to develop 
better machine learning methods, to simulate various out­
comes using different constraint and or performance goal 
targets, whether temporal, sequential or otherwise. 

We describe a system, method, and apparatus for: (1) 
creating and controlling a complex control system of at least 
one distributed and/or hierarchical machine-learned control 
system(s), whether closely or loosely coupled in hardware 
and/or software, supervising, and/or optimizing an indi­
vidual complex system or sub-system or a collection of 
complex systems or sub-systems, to meet a set of at least one 
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constraint and/or performance goal, which may be identical, 
different, grouped, or otherwise set for each system or 
sub-system; 

(2) monitoring the performance of the control system in 
its static or dynamic operating environment in meeting 
its at least one constraint and/or performance goal; 

(3) determining when the monitored system or sub-system 
is behaving or failing to meet the specified constraints 
optimally; 

(4) dynamically adjusting the learner, controller, or 10 

another system (e.g., adjusting a goal or other opera­
tional parameters of such systems) to respond to this 
behavior; 

(5) using data from the operation of the complex control 
system to supervise the behavior to create optimization 15 

goals if the misbehavior of one or more sub-systems is 
the "new normal"; 

(6) enabling the creation of control system optimization 
and or supervisory parameters during the initial process 
of creating the machine learned control system and then 20 

to monitor and either statically or dynamically, either 
machine-learned or otherwise, adjust the dynamic per­
formance of the distributed system either globally or in 
any one more of its components or in the management 

8 
Second, the combination makes the resulting system 

provably robust; i.e., the tolerable error of the system can be 
easily determined and configured between the learned mod­
els and actual operational behavior that still allows the 
combination to converge to specified constraints. 

In general, a complex, optimized system using a HOF is 
observable and adjustable. Specifically, we know the speci­
fied constraints and the system has already been instru­
mented to produce feedback measuring the behavior in any 
constrained dimension. We can therefore observe the quality 
of HOF control which includes, but is not limited to: does 
the system stabilize or oscillate? If it does not oscillate, does 
the system stabilize to the desired constraint? If not, how far 
is the stable behavior from the desired behavior? When an 
unexpected event de-stabilizes the system how long does it 
take to respond? For that same event, what is the largest 
error encountered on the path back to stability? Once the 
system stabilizes at the desired behavior, how far is it from 
the estimated optimal for those constraints? The answers to 
all these questions can be quantified using the measured 
difference between the specified constraints and the behavior 
feedback. 

This insight-that an optimized system can be further 
of itself; 

(7) enabling the system or any of its sub-systems to 
dynamically adjust its at least one constraint and/or 
performance goal; 

25 evaluated and therefore provide supervision as a standalone 
supervisor or varying supervision in a hierarchical and/or 
distributed complex control system, or in combination with 
an optimization strategy and/or tactics while in the field-

(8) using the information on performance of the system or 
subsystem(s) to create a database and library or similar 30 

record of performance metrics which can be used to 
make decisions, predictions, and/or simulations for the 
underlying system or subsystem(s) and/or for other 
related and/or non-related systems used by others; 

(9) using dynamic operating information on optimization 35 

and/or supervisory actions (i.e. performance meta data) 

allows the systems and methods described in this disclosure 
to provide a variety of benefits. 

A complex control system under the supervision of a HOF 
has at least one constraint and/or performance goal from 
which the control system optimizes the system based upon 
response to real-time, dynamic in-flows of data regarding 
the operation of itself or other HOFs in the system. We also 
describe herein the system or method of setting constraints 
and performance goals that themselves may be evaluated 
and selected to further optimize the optimization of the 
system being controlled, whether one HOF or in a complex 

to reduce the demands on the requirements for super­
vised, unsupervised, or semi-supervised data sets, 
including but not limited to new methods for deep 
learning; and 40 of more than one HOF working in a hierarchical system with 

one or more HOFs. The complexity of such analysis may in 
one example itself require use of a HOF (machine-learned or 
otherwise) to use operational data for setting or consider-

(10) for simulating the effect of various different con­
straints and/or performance goals had they been 
selected or configured differently, either machine 
learned or otherwise, to evaluate the hierarchical dis­
tributed system configuration possibilities, given the 45 

actual data being acted on over time by the underlying 
control system. 

Prior work has disclosed systems and methods for 
increasing the robustness of complex, optimized machine 
learned systems in response to the real-world monitoring of 50 

dynamic events. 
Machine learning and control theoretic capabilities may 

be applied to existing complex systems. The learning system 
takes measurements of system behavior and uses that to 
construct an optimization model. The model is passed to a 55 

control system, which uses that model, plus the specified 
constraints, and the measured system behavior to adjust 
parameters and ensure that the constraints are met optimally. 

The benefits of this approach are two-fold. First, the 
combination of learning and control handles both complex- 60 

ity and dynamics, and out-performs approaches that rely on 
only one or the other (for descriptive purposes only, we will 
identify these control systems that have a machine learned 
component and a control theoretic component as "Hoffmann 
Optimization Frameworks", "HOF s," "Frameworks," 65 

"abstracted controllers," "abstracted control systems," 
"hybrid controllers," or "hybrid control systems"). 

ation of options for setting optimal static or dynamic con­
straints and performance guarantees consistent with the 
system's performance goals. 

A HOF's behavior can be represented as the difference 
between the achieved behavior and the constraints over a 
series of time steps. A well-behaved controller will keep the 
performance near the requirement, optimally correcting 
deviations. 

The major insight in applying these mechanisms is the 
insight that the time series difference between the desired 
and achieved behavior in any constrained dimension can be 
used to detect-and drive adjustment of-both the learning 
and control behavior. More formally, the error e between any 
constraint c and the measured behavior b at time t can be 
calculated as e(t)=c(t)-b(t). 

For example, once we have computed the error at time t, 
it can be used to detect a combined learning and control 
system that is misbehaving. If the HOF is misbehaving, then 
it may exhibit one or more of a variety of behaviors, 
including: 

Oscillation: The system never stabilizes, but alternates 
between under- and over-performing the constraint(s) and/or 
performance goal(s). The patterns of oscillation can be quite 
complicated, passing through many intermediate states on 
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the way to extremal values. Such oscillation can be exhibited 
by errors that go from positive to negative values and back. 

Slow Response to Dynamic Changes: When the error 
suddenly becomes a large positive or negative number, but 
then takes many time steps to return to a magnitude close to 
zero. 

Consistently Under-performing: The system stabilizes at 
performance below the goal, resulting in a large positive 
error. 

Consistently Over-performing: The system stabilizes at 10 

performance above the goal, resulting in a large negative 
error. 

10 
detectable and/or expected at design time. For example, if 
the deployed environment is much noisier than expected­
e.g., variations are higher than designed for-the proposed 
system may override the specified constraint and set a new 
constraint that is in a different operating range. For example, 
if a system has a 95 th percentile quality-of-service con­
straint, but runtime variations are larger than expected, then 
a virtual goal may be set that provides even higher quality-
of-service. In another example, it is possible that the system 
that has been deployed may no longer be able to meet a 
user-specified goal or goals. The unreachability of goals can 
be tested using standard control methodology (which may be 
typically applied at design time, and here modified for 

Favoring One Side of the Constraint: Rather than an even 
distribution of measurements slightly above and below the 
behavioral constraint, the controller disproportionately 
favors one side of the constraint. 

Given the detection of these or other misbehaviors, we 
can modify the learner, the controller, the goals themselves, 
or some other parameter of the control system: 

15 
runtime or other assessment(s)). This controllability test 
may allow the system to formally conclude that it can no 
longer meet the specified goals. In this case, the system may 
set a virtual or other goal that is different than the desired 

Modifying the learner: Prior work assumed that the learn- 20 

ing system eliminated local optima, allowing the controller 

goal and then may report the condition. 
Machine learned systems cannot easily handle challenges 

unique to many performance configurations, such as hard 
constraints---e.g., not going out of memory-and indirect 
relationships between performance configurations and per­
formance. This is made even more complex and challenging 

to solve convex optimization problems. Expected or unex­
pected behaviors might introduce new local optima, how­
ever, causing the controller to exhibit behaviors including 
but not limited to "oscillation" or "favoring one side of the 
constraint" as described above. Thus, if oscillating behavior 

25 when the system is architected to include, e.g., a hierarchical 
or distributed architecture of individual or relational com-

or favoring one side of the constraint is detected, then the 
learner's parameters can be adjusted to incorporate the new 
data-point. In one of the simplest cases, the selected con­
figuration of the complex system and the resulting behavior 30 

can be recorded and added to the learner's training data. In 
that case, for example, the learner can output a new model 
that removes the local optima and achieves the expected, 
stable performance. If the learner is already built to do 
online updates (for example, a reinforcement learner of 35 

some kind) then the system may adjust the learning rate to 
increase the speed with which the new information about the 
local optima is incorporated to the model used by the control 
system. 

Modifying the controller: Control systems of all varieties 40 

expose parameters that trade sensitivity to errors for speed of 
convergence given a disturbance. For example, in PID 
controllers these variables include one or more poles. Given 
an oscillating system or a system that heavily favors one side 
of the constraint, these control parameters can be adjusted to 45 

increase convergence speed in exchange for higher error 
tolerance. This adjustment will prevent the system from 
violating constraints, but the unconstrained behavior may 
still be sub-optimal. Adjusting these control parameters can 
also be useful in the case where the system is observed to 50 

re-converge too slowly after a dynamic event. For example, 
it is possible that the original system was too pessimistic and 
designed for error conditions that are not encountered in a 
real deployment so adjusting the control parameters allows 
the system to accommodate this better than expected behav- 55 

ior. In either case, it can be useful to combine an adjustment 
of control parameters with adjustment of learning param­
eters. For example, in the face of an unexpected error 
causing oscillations, the control parameters can be adjusted 
to slowdown the controller and eliminate oscillations imme- 60 

diately, while learning parameters can be adjusted slowly to 
produce a new model that incorporates the new operating 
conditions. 

Modifying the goals: In addition, the learning and control 
parameters themselves may be modified. Additionally or 65 

alternatively, a new, virtual goal may be created. A virtual 
goal can be used to correct behaviors that were not otherwise 

ponents or sub-components. 
There are many challenges in setting and adjusting per­

formance configurations in such a distributed architecture, 
e.g.: (1) performance configurations that threaten hard per­
formance constraints like out-of-memory or out-of-disk 
problems; (2) performance configurations that affect perfor­
mance indirectly through setting thresholds for other system 
variables; (3) performance configurations that are associated 
with specific system events and hence only take effect 
conditionally; (4) often different configurations affect the 
same performance goal simultaneously, requiring coordina­
tion; (5) in hierarchical systems controlling sub-systems 
with local goals and a master, overriding system with global 
goals, conflicts may arise requiring immediate response and 
coordination; (6) real-time events may cause a long lasting 
change in the conditions of "normal" to a "new normal" and 
may render one or more constraints temporarily or perma­
nently, partially or wholly inappropriate or even dangerous; 
and (7) resolution of potential conflicts or coordination 
requirements that arise between optimization and supervi­
sion roles of the control system. 

Unlike traditional configuration frameworks-where 
users set performance configurations at system launch-in 
certain embodiments the Hoffmann Optimization Frame­
work automatically sets and dynamically, during operation, 
adjusts performance configurations across a distributed 
architecture which can include one or more HOFs in a 
loosely or closely coupled hardware and/or software control 
system. The Hoffmann Optimization Framework decom­
poses the performance configuration setting problem. 

The HOF, whether supervising and/or optimizing other 
performance metrics, allows performance constraints, goals 
and/or formal guarantees to be specified without worrying 
about how to set and adjust configurations to meet those 
constraints and/or goals. The HOF can do so, for example, 
on distributed complex systems, in the presence of other 
complex systems with or without one or more HOFs. While 
it provides these optimization capabilities to set performance 
configurations to constraints and/or goals either dynamically 
(on the fly), statically, or by other means, it additionally 
provides the capability to also act as a supervisor of a group 
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of complex systems or a group of one or more HOFs, to 
monitor, administer, or otherwise optimize performance to 
goals and constraints. 

12 
ing system from the image processor were in the acceptable 
range for that sensor, and then use the best solution to infer 
action based upon established constraints and performance 
goals. Information can then be available to the learner for 
later optimization decisions. 

In some examples, a HOF can be used in the role of 
optimization and/or supervision either singularly or in com­
bination, as it controls and/or optimizes a single or multiple 
architecture comprised of at least one or more HOFs in a 

As noted above, one of the major advantages of these 
control systems is making complex, optimized systems 
robust to, e.g., misbehaviors, errors and or other suboptimal 
situations or configurations that may occur while the system 
runs. Such situations, whether singularly or in combination 
can arise from a number of causes, e.g., the system encoun­
tering an environment for which it was not originally 
designed, and the exact causes do not need to be understood 
or detected. 

10 
simple or complex distributed control system. 

Another limitation of a singular deployment of a Hoff­
mann Framework is that the maximum tolerable error has to 
be known or estimated when the system is designed. If the 
system is deployed and an unexpectedly large error occurs 
( e.g., due to unpredicted cascading system failures), then the 

One limitation of the prior work is that it may ignore the 
real-world conditions that often arise when, e.g., multiple 
separate components (subsystems) contribute to overall sys­
tem performance and each of these subsystems are opti­
mized for their own specific requirements locally as well as 
the system globally. 

15 guarantees that the system will meet user-specified operating 
constraints are lost. 

To compensate for this limitation, the present disclosure 
provides systems and methods to overcome the above limi­
tation, allowing the complex, optimized system to continue 

20 to run even when it encounters, e.g. cascading runtime errors 
or when the misbehavior becomes "the new normal." 

For example, in a 3-tiered webserver, overall latency and 
power is determined by latency and power of the (1) 
load-balancer, (2) request manager, and (3) backend data­
base. In large systems these individual components can 
operate semi-autonomously and can be physically separate. 
Other examples include complex fleets of drones and other 
delivery vehicles operating co-operatively with other physi- 25 

cal assets in a complex logistics system, or an autonomous 
vehicle with both internal and external performance goals, 
etc. 

In some examples, one or more HOFs can be used to 
control and/or optimize one or more HOFs or other control 
methodologies to create operational boundaries; e.g., by 
removing actuators from control of the original or other 
systems. 

In some examples, the behavior of the hierarchical and or 
distributed control system is supervised as it responds to 
static or dynamic operational data and to adjust constraints 
and/or performance guarantees to further optimize the 
means to meet global or local goals. 

In some examples, operational "meta-data" derived from 
the operation of the complex control system and the perfor­
mance of the underlying complex system being controlled is 
collected as operational data and used to inform the control 

Managing multiple HOF implementations can be further 
complicated when in operation, the local or other goals 30 

(performance guarantees and/or constraints) of individual 
HOF implementations for unique subsystems may at times 
either expand or reduce the array of global solutions and the 
timing of their implementation to meet global performance 
goals. 

A supervisory HOF method is needed for optimizing these 
distributed complex control systems. We disclose herein a 
system and method wherein a high-level HOF controller ( or 
multiple such high-level HOF controllers) has at least one 
constraint and/or a performance goal for the system perfor- 40 

mance in its entirety, and tracks and manages progress 
towards the global goals being managed by subordinate 
local HOFs and or other means as they work to meet their 
individual local goals. 

35 system(s) collectively or individually or in combination and 
the responses are observed and recorded. Temporal and 
event sequencing information ( among others) are used 
dynamically to set operational performance changes respon-
sive to run-time operating conditions and targets for both 
supervisory and/or optimization HOF(s), as well as for later 
analysis and system performance improvements of the 

In some examples, a HOF can be used to control a 45 

distributed hierarchy comprised of at least one HOF imple­
mentation. 

learner and/or the controller, so as to analyze alternatives to 
create idealized optimization strategy(s) and/or static or 
dynamic tactic( s) for the underlying system or for other uses 
with other data from other systems. 

In some examples, the tools from such an analysis are 
used to create constraints and/or performance goals for one 
or more HOFs that are dynamic over time and change in 
response to the operating data being evaluated over that 

In some examples, constraints and/or performance goals 
can be used to control a HOF which itself is being used with 
similar or different constraints as it controls a single or 
multiple HOF architecture in a simple or complex distrib­
uted system. 

In some examples, constraints and/or performance goals 
can be used to control a HOF which is controlling itself 
and/or manages its own resource utilization in a single or 
multiple HOF architecture in a simple or complex distrib­
uted system. 

In some examples, a HOF or a network comprised of one 
or more HOFs can be applied to the role of supervision 
and/or optimization of the control system by monitoring 
operational data, collecting and reporting data on the per­
formance of the control system and then responding. 

50 same time period, such that, for example, optimization, 
and/or supervision goals at any time may be the same or 
different depending on operational performance. 

These tools may be deployed initially as simulations 
using, e.g., test data or learning sets or other simulations 

55 responsive to incoming data. These tools may also be 
deployed on a running system, on a simulation, or a com­
bination of simulation(s) and running system(s). 

For example, these tools may employ, e.g., machine­
learned tools and may be deployed electronically, with or 

60 without human involvement and/or in systems that combine 
both methods or novel methods such as natural language 
generation derived reports. 

An example includes monitoring the number of pixels 
being used from an image processor to make autonomous 
vehicle decisions. If the images do not meet the system 65 

requirements, the supervisory role would evaluate if the 
number of pixels available and other elements of the imag-

II. Example Hybrid Controllers 

The term "hybrid controller," as used herein, refers to a 
controller that includes multiple different sub-components 
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alternatively, the input 110a could include a filter, a transfer 
function, or some other algorithm or other relationship to 
generate a useful input value ( e.g., a performance metric 
describing an overall performance of the system) based on 
the one or more detected outputs of the controlled system 
101a. For example, the output of the system 101a could be 
a number of operations-per-second performed by each of a 
number of cores of a processor, and the input 110a could be 
a performance metric corresponding to the sum of all of the 

that, together, generate one or more control outputs ( e.g., 
outputs applied to a system under control) based on one or 
more control inputs ( e.g., inputs detected or otherwise 
received from the system under control). The different 
components of such a hybrid controller receive respective 
inputs and generate respective outputs, and the output of a 
component may be provided as inputs to another compo­
nent, according to the particular configuration of the hybrid 
controller. In a particular example, a hybrid controller may 
include a dynamic system component and a learned system 
model component. The dynamic system component could 
include one or more filters, integrators, differentiators, gains, 

10 cores' operations-per-second. In another example, the output 
of the system could be a measure of the overall performance 
of the system 101a (e.g., a total number of operations per 
second performed by a server) and the input 110a could be 
a value corresponding to an increase or "speedup" of the 

or other elements to allow the controller to exhibit temporal 
dynamics ( e.g., temporal dynamics characterized by one or 
more poles and/or zeros) and to provide certain formal 
guarantees regarding overall controller/system performance. 
The learned system model component could include lookup 
tables, polynomial functions, multivariate functions, arbi­
trarily complex behavior encoded in a neural network or 
other model, or some other elements based on information 
(e.g., training data) about the behavior and/or structure of the 
system to be controlled to allow the hybrid controller to 
provide controls adapted to observed optimal (and sub­
optimal) past behavior of the system under control, to 
exhibit complex nonlinear and/or multidimensional behav- 25 

iors, and to provide many outputs based on few inputs. The 
hybrid controller could include multiple such learned system 
models, which the hybrid controller could switch between 

15 server output, over time, relative to a baseline performance 
level. In another example, the outputs of the system could 
include one or more derived measures of overall system 
performance and the overall power consumption for the 
processor and the inputs to the system could include two 

20 values corresponding to relative changes in performance and 
power consumption. In this example the inputs and outputs 
are vectors where each vector component is a metric or 
signal. 

( e.g., based on a degree of confidence in the accuracy of each 
the learned system models with respect to data received 30 

about the operation of the system under control). 
The hybrid controller could also include a learned system 

update module configured to train or otherwise update the 
learned system model(s) based on newly-received data about 
the operation of the system under control. Such a learned 35 

system update module could operate to update the learned 
system model(s) according to an update schedule (e.g., to 
update the learned system module once every number of 
elapsed absolute seconds, a number of controller time steps 
computed, or some other schedule) and/or according to a 40 

timing determined from some other information or condi­
tions ( e.g., to update the learned system model when the 
observed behavior of a system under control deviates from 
the behavior predicted by the learned system model by more 
than a specified threshold amount). Such a learned system 45 

update module could operate to update the learned system 
model by a specified amount, e.g., by a step size or length 
related to a gradient descent training method. 

FIG. lA shows an example hybrid controller 100a that is 
configured to control a system 1 Ola of interest. The system 50 

could be any system of interest, e.g., one or more processors 
of a server or some other computing substrate, a distribution 
hub or other facility of a logistics network, a joint motor or 
other subcomponent of a robotic system, or some other 
system which it is advantageous to control. The hybrid 55 

controller 100a includes a constraint 120a, a dynamic sys­
tem 130a, a learned system model 140a, and a learned 
system update module 150a. The hybrid controller 1 OOa also 
receives an input 110a from the controlled system 101a. 

The constraint could be, for example, a specified set-point 60 

value for the output of the system 101a; the controller 100a 
may generate outputs to control the system 101a in order to 
mirror such a constraint 120a value in the output of the 
system 101a. An output of the system 101a is detected and 
then compared to the constraint via an input 110a. In some 65 

examples, the input 110a could simply be a pass-through for 
the detected output of the system 101a. Additionally or 

A difference is then determined between the constraint 
120a and the input 110a, and the difference is applied to the 
dynamic system 130a to generate a dynamic system output. 
The dynamic system could include one or more differentia­
tors, integrators, gains, summations, multi-pole filters, 
sample-and-holds, leaky integrators, feedback loops, set­
point values, nonlinear functions, nonlinear filters, polyno­
mial functions, finite impulse response filters, infinite 
impulse response filters, internal state variables, or other 
dynamic elements configured to provide a dynamic, tempo­
rally-dependent output based on the difference input. The 
behavior of the dynamic system component 130a could be 
characterized by one or more parameters ( e.g., one or more 
parameters of one of the filters, or of one or more poles 
and/or zeros thereof, or other elements of the dynamic 
system 130a). For example, the dynamic system could 
include a filter characterized by the amplitude and phase of 
one or more poles. 

The output of the dynamic system component 130a is 
applied to the learned system model component 140a to 
generate one or more controller 100a outputs that can then 
be applied to the system 101a. The learned system model 
component 140a could generate one or more outputs that 
can then be applied to the controlled system 101a. The 
outputs of the learned system model could include one or 
more operational parameters for each one of a set of actua­
tors or other elements of the controlled system 101a. For 
example, the controlled system 101a could be a computa-
tional substrate ( e.g., a server, a GPU, a network of servers, 
a cloud computing system) that includes an array of com­
puting units ( e.g., discrete processors, processor cores, 
memory units, arithmetic logic units, server blades, texture 
processing units). In such an example, the output of the 
controller 100a could include one or more operational 
parameters for each of the computing units. Such opera­
tional parameters could include a clock speed, a memory bus 
or other bus speed, a bit width, whether a particular com­
puting unit should be active or inactive, a number or identity 
of computing unit sub-components (e.g., ALUs, memory 
cells) that should be active, or some other operational 
parameters of one or more computing units of the controlled 
system 101a. 

The learned system model component 140a could include 
one or more artificial neural networks, polynomial functions, 
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nonlinear functions, multivariable functions, piecewise-de­
fined functions, lookup tables, or other elements for trans­
lating the output of the dynamic system component 130a 
into one or more outputs that can be applied to control the 
controlled system 101a. In some examples, the learned 
system model component 140a could include multiple dif­
ferent learned system models (e.g., models having different 
underlying structure, models that were initialized to different 
starting conditions prior to training/learning, models that 
were exposed to different sets of training data, models that 
differed with respect to a training method used to train the 
models based on available training data, and/or models that 
differ with respect to some other consideration). In such 
examples, the learned system model component 140a could 
be configured to select one of the set of learned system 
models thereof and to apply the output of the dynamic 
system component 130a to the selected learned system 
model in order to generate the one or more outputs that can 
be applied to control the controlled system 101a. Such a 
selection could be performed, e.g., based on an estimate of 
the accuracy of each of the learned system models with 
respect to predicting the behavior of the controlled system 
101a or based on some other determined degree of confi­
dence in the sub-elements of the learned system model 
component 140a. Such estimates could be determined based 
on detected outputs from the controlled system 101a, e.g., 
determined based on such outputs by the learned system 
update module 150a. 

For example, FIG. 1B shows an example hybrid controller 
1 OOb that is configured to control a system 1 Olb of interest 
and that includes a constraint 120b, a dynamic system 130b, 
and a learned system model 140b and receives an input 110b 
from the controlled system 101b. The controlled system 
101b includes four sub-systems 105a, 105b, 105c, 105d that 
could be, for example, computing units of the controlled 
system 101b. The learned system model 140b includes a 
lookup table 145b. The lookup table 145b includes a plu­
rality of entries, each including at least one output that can 
be applied to control the system 101b. As shown by way of 
example, each entry of the lookup table 145b in FIG. 1B 
includes values for the clock speed of each of the computing 
units 105a, 105b, 105c, 105d of the controlled system 101b 
("ClkA, ClkB, ClkC, ClkD"). Each entry of the lookup table 
145b additionally includes an indication of how many cores 
of the first two computing units 105a, 105b should be active 
("CoresA, CoresB") and the bit width of operations per­
formed by the latter two computing units 105c, 105d 
("WidthC, WidthD"). The value of the dynamic system 
component 130a output is used to select a particular entry, 
from the plurality of entries of the lookup table 145b, to 
output from the learned system model 140b to control the 
system 101b. For example, each entry of the lookup table 
145b could correspond to a range of values of the dynamic 
system component 130a output. 

The learned system model component of a hybrid con­
troller as described herein ( e.g., 140a, 140b) could be 
generated in a variety of ways. If a complete model of the 
system to be controlled is known, the complete model could 
be used to generate the learned system model (e.g., to 
generate the entries and corresponding dynamic system 
output value ranges of a lookup table). Additionally or 
alternatively, information about past and/or ongoing 
observed behavior of the system under control, or about the 
behavior of similar systems ( e.g., other examples of a 
particular model of server or other system to be controlled), 
could be used to generate, update, and/or train a learned 
system model of a hybrid controller. For example, the 

16 
learned system update module 150a could update and/or 
train the learned system model component 140a based on 
outputs detected from the controlled system 101a. 

Updates to the learned system model, based on acquired 
additional data about the behavior and/or structure of the 
system under control, could be performed locally, by the 
same computational substrate (e.g., a processor, a server) 
that is used to implement the hybrid controller. Additionally 
or alternatively, such updates could be performed by a 

10 remote system (e.g., a cloud computing system) and infor­
mation about the updated learned system model ( e.g., values 
for one or more updated neural network weights or other 
parameters, an updated lookup table) could then be trans-

15 mitted from the remote system to the system that is imple­
menting the hybrid controller. Such a remote system could 
act as a service providing such learning-based updates for a 
plurality of different hybrid controllers. Such a remote 
system could generate such learning updates based on 

20 information about a system under control (e.g., applied 
control outputs, detected system outputs and/or performance 
metrics) that has been transmitted to the remote system from 
the system that is implementing the hybrid controller. 

Such updating of the learned system model of a hybrid 
25 controller and/or learning about the behavior and/or struc­

ture of a system under control could be performed on an 
ongoing basis, e.g., at a specified rate or according to a 
specified schedule. Additionally or alternatively, an update 
to the learned system model could be performed responsive 

30 to detecting some event, e.g., detecting that the performance 
of the hybrid controller has fallen below a threshold perfor­
mance level, detecting a sudden change in the performance 
of the system under control, detecting that the system under 
control has entered a specified undesired operational state, or 

35 some other event. The rate or timing at which the learned 
system model is updated and/or the magnitude or degree of 
such updates ( e.g., a step size of a gradient descent or other 
iterative update process) could be determined based on an 
estimate of the accuracy of the learned system model or 

40 based on some other determined degree of confidence in the 
learned system model. For example, the learned system 
model could be updated more often and/or to a greater 
degree when the estimated accuracy of the model is low. 
Such estimates could be determined, e.g., based on an 

45 amount of error between the predicted system outputs gen­
erated by the learned system model and observed outputs of 
the system. 

Such a determined degree of confidence could also be 
used to update or control other aspects of the operation of a 

50 hybrid controller. For example, a pole and/or zero of a 
dynamical system component could be adjusted, e.g., to 
reduce the responsiveness of the dynamical system compo­
nent when the confidence in the learned system model is 
low. This could be done, e.g., to reduce the likelihood that 

55 the hybrid controller generates a control output that results 
in a goal ( e.g., a maximum memory, a maximum power use) 
being exceeded when the learned system model is unable to 
accurately predict the behavior of the system under control. 

In some examples, the system (e.g., 101a, 101b) con-
60 trolled by the hybrid controller (e.g., 100a, 100b) includes a 

computational substrate ( e.g., a server, computer, graphics 
processor, or other system that includes one or more con­
trollers, processors, or other computing elements). In such 
examples, the hybrid controller could be implemented using 

65 a portion of the computational resources provided by the 
computational substrate of the system. Additionally or alter­
natively, the hybrid controller could be implemented on 
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another controller, processor, or other computing element(s) 
(e.g., a purpose-built application-specific integrated circuit). 

III. Example Multi-Hybrid-Controller Architectures 

As described above, a hybrid controller may be applied to 
control a system of interest. Such a hybrid controller pro­
vides many benefits, including the ability to incorporate 
observed information about the complex behavior and/or 
structure of the system under control and to provide tem­
porally dynamic controller outputs that can be formally 
shown to exhibit certain guarantees regarding overall system 
performance, e.g., by modifying the poles or other temporal 
dynamics of the dynamic controller based on a determined 
degree of confidence in the accuracy of the learned system 
model such that the overall controller behaves more "con­
servatively" when confidence in the model is low. However, 
the performance of such a hybrid controller may be reduced 
under certain circumstances. For example, when a system 
under control and/or the environment of such a system 
deviates significantly from the state of the system and/or 
environment used to generate the hybrid controller (e.g., to 
train the learned system model element of the hybrid con­
troller), the hybrid controller may produce sub-optimal 
outputs. 

For example, the system under control could be a network 

18 
hybrid controller, or some other outputs related to the 
operation and/or configuration of the hybrid controller. 

This is illustrated by way of example in FIG. 2. A first 
hybrid controller 200a is configured to provide control 
outputs to, and to detect one or more inputs from, a first 
system 201a. The first hybrid controller 200a includes an 
input 210a, a constraint 220a ( e.g., an operational set-point), 
a dynamic system 230a, and a learned system model 240a. 
The output of the system 201a is also provided as input to 

10 a governing controller 250. The governing controller 250 is 
configured to, based on the detected output from the first 
system 201a, generate values and/or updates for one or more 
of the constraint 220a, the dynamic system 230a ( e.g., a 
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value for a pole of a filter or some other dynamic parameter), 
and/or the learned system model 240a (e.g., an updated 
learning rate or other parameter, an indication that the 
learned system model should be updated). 

The governing controller 250 could be configured in a 
20 variety of ways. In some examples, the governing controller 

250 could include one or more control elements, e.g., filters, 
feedback loops, integrators, gains, differentiators, summers, 
polynomial functions. In some examples, the governing 
controller 250 could, itself, be a hybrid controller. In some 

25 examples, the governing controller 250 could be configured 
to detect one or more patterns or conditions in the output of 
the first system 201a and responsively adjust the operation 
and/or configuration of the hybrid controller 200a. This 
could include the governing controller 250 explicitly detect-

of servers, and a hybrid controller used to govern the 
network of servers could perform sub-optimally if one of the 
servers experiences a critical failure. In another example, the 
system under control could be an industrial robot, and a 
hybrid controller used to govern the robot could perform 
sub-optimally if a joint servo of the robot becomes inoper­
able or exhibits a significant decrease in performance. In yet 
another example, the system under control could be a 
logistics network for delivery of packages, and a hybrid 35 

controller used to govern the network could perform sub­
optimally if an airport used by the network is closed due to 
severe weather. 

30 ing the presence of such patterns or conditions (e.g., com­
paring the system output to a threshold, using a template 
matching algorithm to detect a pattern) and/or elements of 
the controller (e.g., filters, lookup tables, feedback control-
lers) being configured to effect such detection. 

Such detected events could include detecting the presence 
of one or more patterns or conditions in the system 201a 
output, in a filtered version of the system 201a output (e.g., 
in an integrated, bandpassed, differentiated, or otherwise 
filtered version of the system output 201a ), in a version of In such situations, the hybrid controller could under­

perform. However, the performance of the hybrid controller 
could be improved in these situations by altering the hybrid 
controller ( e.g., by changing one or more constraints or other 
parameters of the hybrid controller, by updating a learned 
system model of the controller). This could include changing 
a constraint ( e.g., 120a, 120b) of the controller ( e.g., to 
specify an easier-to-achieve performance goal). In another 
example, the temporal dynamics of the controller could be 
modified by adjusting a filter pole or other parameter of the 
dynamic system element of the hybrid controller (e.g., to 
make the hybrid controller more or less responsive to 
changes in the output of the system under control). In yet 
another example, the learned system model of the hybrid 
controller could be modified. This could include updating 
the learned system model based on recent information about 
the system under control (e.g., performing an asynchronous 
update on the learned system model) or adjusting an update 
rate of an ongoing learning process applied to the learned 
system model (e.g., an update rate, a step size of a back­
propagation or other learning algorithm). 

In order to determine that such adjustments to the opera­
tion and/or configuration of the hybrid controller are indi­
cated and/or to generate such adjustments, one or more 
supervisory controller(s) could be provided. Such a super­
visor controller could receive, as inputs, the output(s) of a 
system under control and generate, as outputs, values for 
parameters or constraints of a hybrid controller, a timing of 
updates for elements (e.g., learned system models) of the 

40 the system 201a output offset by a set-point value (e.g., 
offset by the value of the constraint 220a ), or a version of the 
output of the system 201a that has been otherwise processed. 
Detecting patterns, conditions, or events based on the system 
201a output could include (i) detecting that the output of the 

45 system 201a is oscillating; (ii) detecting that the output of 
the system 201a responds too slowly (e.g., slower than a 
threshold rate) or too quickly ( e.g., faster than a threshold 
rate) in response to changes in the input and/ or environment 
of the system 201a; (iii) detecting that the output of the 

50 system 201a overshoots a set-point (e.g., by more than a 
threshold amount) in response to changes in the input and/or 
environment of the system 201a; and/or (iv) detecting that 
the output of the system 201a exhibits, relative to a set-point 
(e.g., the constraint 220a), a consistent bias (e.g., by more 

55 than a threshold amount). 
Such a governing controller could be applied to provide 

such control/supervision to multiple different hybrid con­
trollers. This is illustrated in FIG. 2, which also includes a 
second hybrid controller 200b that is configured to provide 

60 control outputs to, and to detect one or more inputs from, a 
second system 201b. The second hybrid controller 200b 
includes an input 210b, a constraint 220b, a dynamic system 
230b, and a learned system model 240b. The output of the 
second system 201b is also provided as input to the gov-

65 erning controller 250. The governing controller 250 is 
additionally configured to, based on the detected output 
from the second system 201b, generate values and/or 
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updates for one or more of the constraint 220b, the dynamic 
system 230b, and/or the learned system model 240b of the 
second controller 200b. 

In such an example, the different systems 200a, 200b 
could be subsystems of a single, larger system. Thus, the 
governing controller 250 could be considered to be effec­
tively controlling the overall system via the subordinate 
controllers 200a, 200b. For example, the systems 201a, 
201b could be respective different servers of a datacenter. In 
another example, the systems 201a, 201b could be an engine 
and a hydraulic transducer of an airliner, systems which have 
traditionally employed classical control and whose perfor­
mance could be improved by application of the methods 
described herein. In yet another example, the systems 201a, 
201b could be a battery management unit and a motor of an 
autonomous vehicle. 

Additionally or alternatively, multiple governing control­
lers could be applied to provide such control/supervision to 
one, or more than one, hybrid controller under supervision. 
This is illustrated in FIG. 2, which also includes a second 
governing controller 260. The second governing controller 
260 receives input from one or both of the hybrid controllers 
200a, 200b under supervision and can output updates and/or 
modifications to the constraint(s), dynamic system param­
eter(s), and/or parameter(s) of the learned system model(s) 
and/or of the process used to train and/or update the learned 
system model(s). 

In such an example, the different governing controllers 
250, 260 could represent different performance goals or 
constrains of a single system ( e.g., the system 201a under 
control by the first hybrid controller 200a) and/or of a 
complex system that includes one than one sub-system ( e.g., 
a complex system that includes the first 200a and second 
200b systems). 

IV. Example Applications and Experimental Results 

20 
"from the wall", for the entire computer system), relative to 
alternative state-of-the-art optimization methods, including 
AI. 

In yet another application, the control methods described 
herein were applied to improve the performance of a com­
plex software distributed storage and processing service 
running MapReduce, Cassandra, and Hadoop Database/ 
Hadoop Distributed File System. In this application, the 
present methods achieved a 34% speedup and exhibited 60% 

10 fewer crashes relative to alternative state-of-the-art optimi­
zation methods. This was especially impressive, as the 
controller was not provided with any a priori information 
about the underlying structure or capabilities of the storage 
and processing service. Instead, the controller operated over 

15 time to learn this information about the controlled system. 
In an additional application, the control methods 

described herein were applied to improve the performance 
of an image processing system of an autonomous vehicle. In 
this application, the present methods enabled the image 

20 processing system to continue to perform and react despite 
the failure of 75% of the system's hardware capability. In 
another example, the control methods described herein were 
applied to improve the performance of a Cray CX40 system 
performing molecular dynamics simulations using the 

25 LAMMPS framework. The control methods were applied to 
increase the number of molecular dynamics analyses com­
pleted while staying within a specified power budget. In this 
application (which indicates the applicability of the methods 
herein to current and future exascale supercomputers and/or 

30 supercomputing environments as well as others), the appli­
cations of the hierarchical and distributed control methods 
described herein resulted in an increase, with respect to 
number of analyses completed within the power budget, of 
approximately 30% compared to state-of-the-art and other 

35 alternative power and/or performance management meth­
ods. 

V. Example Methods 

FIG. 3 is a flowchart of a method 300 for controlling a 
system as described herein. The method 300 includes detect­
ing, during a first period of time, an output of a system (302). 
The method 300 additionally includes determining, based on 
the output detected during the first period of time, a first 

The methods and systems described herein have been 
applied to a variety of applications and have provided 40 

improved operation of systems according to those applica­
tions. The control methods described herein have a broad 
applicability to any system whose efficient operation is 
desired in light of multiple competing goals. These control 
methods may be applied to the operation of mobile devices, 
datacenter servers and other equipment, distributed software 
systems, video delivery networks, autonomous vehicles, 
graphics processing units, mobile radios, satellite global 
positioning receivers, or other complex systems. 

45 performance metric for the system (304). The method 300 
additionally includes operating a first hybrid controller, 
based on the first performance metric, to generate a first 
hybrid controller output (306). The first hybrid controller 
includes a first constraint, a first dynamic system, and a first 

In one application, the control methods described herein 
were applied to improve the performance of the Samsung 
Exynos 5422 processor which shipped in the Samsung 
Galaxy S5 handset. In this application, the present methods 
achieved a 14% reduction in energy use on complex bench­
marks, at the same or better levels of performance, com­
pared to alternative state-of-the-art optimization methods 
(including AI). The present methods also achieved a greater 
than 40% reduction in energy use compared to the stock 
Samsung/ Android optimization software. 

In another application, the control methods described 
herein were applied to improve the performance of an Intel 
Xeon E5 2600 series dual processor with 64 GB ram in 
executing eight different applications including web search, 
digital signal processing, clustering, image search, video 
encoding, and image tracking (the applications sometimes 
ran concurrently). In this application, the present methods 
achieved an overall 8% reduction in energy use ( as measured 

50 learned system model. Operating the first hybrid controller 
to generate the first hybrid controller output includes: (i) 
determining a first difference between the first performance 
metric and the first constraint; (ii) applying the determined 
first difference to the first dynamic system to generate a first 

55 dynamic system output; and (iii) applying the generated first 
dynamic output to the first learned system model to generate 
the first hybrid controller output. The method 300 addition­
ally includes controlling the system, during a second period 
of time, according to the generated first hybrid controller 

60 output (308) and detecting, during a third period of time, the 
output of the system (310). The method 300 additionally 
includes determining, based on the output detected during 
the third period of time, a second performance metric for the 
system (312) and operating a second hybrid controller, based 

65 on the first performance metric and the second performance 
metric, to generate an updated constraint value (314). The 
method 300 additionally includes updating the first con-
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straint according to the updated constraint value (316), 
operating the updated first hybrid controller, based on the 
second performance metric, to generate a second hybrid 
controller output (318), and controlling the system, during a 
fourth period of time, according to the generated second 
hybrid controller output (320). 

22 
and controlling the system, during a fourth period of time, 
according to the generated second hybrid controller output 
(420). 

The method 400 could include additional elements or 
features. In some embodiments, the second hybrid controller 
could additionally receive inputs from an additional system, 
and provide outputs related to the operation and/or configu­
ration of an additional controller (e.g., a hybrid controller) 
that is configured to control the additional system. Addi-

The method 300 could include additional elements or 
features. In some embodiments, the second hybrid controller 
could provide additional or alternative outputs to modify the 
operations and/or configuration of the first hybrid controller 
( e.g., modifying a dynamic parameter of the dynamic system 
of the first controller, altering a parameter and/or initiating 
an update of the learned system model of the first controller). 

10 tionally or alternatively, the first hybrid controller could 
receive updated parameter values from an additional super­
visory controller ( e.g., an additional supervisory hybrid 
controller). 

In some embodiments, the second hybrid controller could 
15 

additionally receive inputs from an additional system, and 
provide outputs related to the operation and/or configuration 
of an additional controller (e.g., a hybrid controller) that is 
configured to control the additional system. Additionally or 
alternatively, the first hybrid controller could receive 20 

updated parameter values from an additional supervisory 
controller ( e.g., an additional supervisory hybrid controller). 

FIG. 4 is a flowchart of a method 400 for controlling a 
system as described herein. The method 400 includes detect­
ing, during a first period of time, an output of a system (402). 25 

The method 400 additionally includes determining, based on 
the output detected during the first period of time, a first 
performance metric for the system (404). The method 400 
additionally includes operating a first hybrid controller, 
based on the first performance metric, to generate a first 30 

hybrid controller output ( 406). 

VI. Example Applications 

Hybrid controllers/HOFs, whether applied in direct con-
trol, supervision, simulation, development, or on existing/ 
legacy systems or other control methods can fundamentally 
change and improve the performance and behavior of the 
systems they are deployed on-while a HOF is generaliz-
able, HOFs deployed into a system or systems can change 
the system performance and characteristics. There is also a 
foundational change in operation-the system is now allo­
cating the available resources towards a goal or goals, and 
the system is now responsive to unknown or unpredicted 
events as well as events contained and contemplated in 
whatever previous model and method was used to "control" 
the system. 

One example embodiment of distributed or hierarchical 
HOFs includes a top-level HOF that is implemented to 
control a cloud computing environment distributed across 
several datacenters to set performance of the overall system, 
which includes a distributed data warehouse and webserver, 
and several edge and other IoT devices that are asynchro­
nously (and in some cases unpredictably/erratically) con-
nected to the parent HOF(s). Some of these devices may be 
legacy systems which do not have a HOF controlling them 
but are part of the constraints and feedback the various HOF 
based systems. 

Another example embodiment includes a system with 
distributed and/or hierarchical HOFs that includes complex 
systems that are a part of one or more datacenters or other 
distributed complex systems, which communicate with and 
may be parts (whether as a whole, parent, child, or simply 
contributor) of other complex systems that may or may not 
themselves be run by HOFs. These other complex systems 
may include "edge", IoT, or on-premise devices such as car, 
drone, phone, satellite, "connected" sensors, servers, cam-

The first hybrid controller includes a first constraint, a first 
dynamic system, a first learned system model, and a first 
learned system update module. The first learned system 

35 
update module is configured to update the first learned 
system model based on at least one output detected from the 
system and to update the first learned system model accord­
ing to at least one of a timing or a rate corresponding to a 
first learning parameter. The first dynamic system has a first 40 

dynamic parameter that corresponds to an overall respon­
siveness of the first dynamic system. Operating the first 
hybrid controller to generate the first hybrid controller 
output includes: (i) determining a first difference between 
the first performance metric and the first constraint; (ii) 45 

applying the determined first difference to the first dynamic 
system to generate a first dynamic system output; and (iii) 
applying the generated first dynamic output to the first 
learned system model to generate the first hybrid controller 
output. 

The method 400 additionally includes controlling the 
system, during a second period of time, according to the 
generated first hybrid controller output ( 408) and detecting, 
during a third period of time, the output of the system (410). 
The method 400 additionally includes determining, based on 55 

the output detected during the third period of time, a second 
performance metric for the system (412) and operating a 
second hybrid controller, based on the first performance 
metric and the second performance metric, to generate a first 
hybrid controller update (414). The first hybrid controller 60 

update includes at least one of an updated first constraint 
value, an updated first dynamic parameter, or an updated 
first learning parameter. The method 400 additionally 
includes updating the first hybrid controller according to the 
first hybrid controller update (416), operating the updated 65 

first hybrid controller, based on the second performance 
metric, to generate a second hybrid controller output (418), 

50 eras and others. These systems may communicate with (and 
in doing so, may or may not be part of, and may join or 
leave) the larger or other systems synchronously and/or 
asynchronously, in a predictable and/or erratic fashion. 

In another example embodiment, rather than changing a 
constraint or knob (a tunable parameter) to meet goals one 
can dynamically change the underlying model in addition to 
or instead of the already exposed knob(s). This may be done 
for a variety of reasons, including to adapt to a "new normal" 
due to a system or external change. 

Yet another example embodiment is a distributed (cloud) 
data framework such as Hadoop where physically available 
memory is a critical constraint and often the cause of 
crashes/errors. In this HOF embodiment, available memory 
is set as a "hard" goal, as the upper bound may not be 
violated by the system. As many different operations and 
variables affect memory usage in ways that are not well 
represented by the model utilized by a single or multiple 
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HOFs, and regardless of whether other aberrant behavior is 
detected (such as a "new normal" or cascading failure), 
instead of dynamically changing goals or constraints or 
models, the pole value of the dynamic system of the HOF(s) 
is changed and may be dynamic as the hard goal is 
approached or drifted from. This may be done on, e.g., a 
single HOF (regardless of underlying system, distributed or 
not), hierarchical, supervisory, or simulated HOF or HOFs. 

The techniques in the two above embodiments may be 
extended so that a variety of"hard" and "soft" goals may be 10 

intermingled with multiple underlying models to change 
system or systems' performance. 

The above techniques may also be variously or concur­
rently employed in the event of various other types of 
external or internal failures, such as cascading failure caused 15 

by malicious actors or network effect demand. 
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them, and some that do not. As weather, road, and other 
conditions change, an administrator or administrators 
(whether automated, semiautomated, human, or some other 
form of control) including a HOF or HOPS may update 
overall or complex system goals ( e.g., two days to four days) 
and all of the rest of the HOF enabled systems can then 
optimize the resources to the new goal(s). 

The above embodiment (complex global logistics system) 
includes one or more HOPS generating updates to goals, 
constraints, models, pole values, hard and soft goals, "vir­
tual" goals and constraints, and others in response to an 
unanticipated event or events. For instance, a natural or 
man-made disaster may occur that may make delivery to 
some addresses impossible for a time, and severely delayed 
for others. Extra available resources may then be allocated 
towards these disaster deliveries, or towards the normal 
deliveries, allowing the goals, constraints, and models to be 
variously updated to the new normal and various failure 
modes of previously functioning local and/or global com­
plex systems. 

Another example embodiment includes applying a HOF 
or HOPS to a system or systems for testing or informative 
(rather than control) purposes ( during development, deploy-

Yet another example embodiment is an otherwise ad-hoc 
system that forms, for example, between autonomous cars 
and/or drones that share a particular characteristic (for 
instance, temporal space, ride share network, communica- 20 

tions provider, destination, etc.) some of which are them­
selves controlled by HOFs. New (purpose driven) HOF­
based systems for supervision, goal setting, as well as 
control of and learning from the hierarchical and distributed 
existing HOFs is all part of this ad-hoc embodiment. 

Yet another example embodiment is a warehouse distri­
bution system. The warehouse system itself is part of several 
larger complex systems (for instance, trucking, manufactur­
ers, and others) who themselves are often parts of larger 
interdependent complex systems. Inside the warehouse, 30 

there may be many systems with competing and shared 
constraints and goals, such as package throughput (amount 

25 ment, or otherwise), and information is collected about 
various performance and configuration parameters utilizing 
the various capabilities of a HOF or HOPS. The resulting 
information may be used to inform both the configuration 

of packages arriving and departing over a period of time), 
location in the warehouse (where and on what shelf) and 
density (how closely/"tightly") packages are able to be 35 

located given shape and weight. This all must be taken into 
consideration as other systems also affect the warehouse 
logistics system, such as robots, worker availability, holi­
days, weather, etc. in continuous, dynamic, and not always 
predictable ways. In this embodiment, the HOF(s) control- 40 

ling the warehouse is able to automatically optimize 
tradeoffs, for instance prioritizing density over high through­
put when a truck or air shipment becomes delayed. 

Another example embodiment is within the described 
warehouse environment, where a robot becomes unavailable 45 

or behaves erratically ( e.g., because a human worker was 
fired and damaged the robot in response). Though these 
events are unanticipated, this becomes a new normal (i.e., 
the complete or partial loss of functionality of the damaged 
robot) for some time period. In this embodiment, a super- 50 

visory HOF may change the goal(s), constraint(s), and other 
resources of the available human workers and robots to meet 

management and goal setting of the same, similar, or dif­
ferent systems. 

A HOF or HOPS may have one or more performance 
goals such that one or more models are dynamically selected 
( dynamically swapped or changed) based upon operational 
conditions, regardless of the configuration of the system's 
parameters or constraints at the time of selection. In other 
words, the underlying model of the system is itself available 
to be a tunable optimization parameter in service of the 
performance goal or goals. 

A HOF or HOPS may control ( either at the O/S or at some 
other level) a "real time" system with various hard con­
straints (that themselves may or may not change dynami­
cally or over time depending on needs of the user( s) and the 
outside environment and performance ability of such a 
system). 

A HOF or HOPS may be used to test and evaluate the 
performance envelopes of various configuration settings on 
an existing complex system without the underlying complex 
system having its own HOF or HOPS. 

A HOF or HOFs may be used to test and evaluate the 
performance envelopes of various performance goals on an 
existing complex system to establish the operational and 
out-of-bounds envelope of various configuration settings. 

a short term goal (such as moving a person and robot over 
to the "unloading" local HOF to continue meet the local goal 
of unloading a container) and then changing other local 
systems and/or global goal(s) (such as daily package 
throughput, density, or location) to meet this "new normal" 
for however long it may last (until the next shift, or until new 
robots are delivered). 

A HOF or HOFs may be used to test and evaluate the 
performance envelopes of various performance goals on an 

55 existing complex system to establish the operational enve­
lope of various underlying performance models. 

A HOF or HOFs may be used to test and evaluate the 
performance envelopes of various performance goals that 
may change over time on an existing complex system to 

60 establish the operational envelope of various underlying 
performance models. 

Another example embodiment is in the same logistics 
complex system, but this time as a global scale merchant that 
provides guaranteed delivery dates (for example, in two 
days) to some portion of customers, and has a network of 
warehouses, transportation modalities ( e.g., plane, train, 
truck, drone, various 3rd parties). Each system operates with 65 

its own goals and constraints and is also part of the larger 
complex system, some of which have HOPS controlling 

A HOF or HOFs may be deployed to utilize information 
gained and collected into a library from the above tech­
niques and applied to existing systems. 

A HOF or HOFs may be deployed to utilize information 
gained and collected into a library from the above tech­
niques and applied to systems under development. 
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The information gained and collected from testing various 
complex systems with a HOF may be used to design and 
develop new systems, including performance envelopes and 
constraints of such systems. 

Information gained and collected from using a supervi­
sory HOF on a complex system or systems may be applied 
to design and develop new systems and models that may or 
may not include the original complex system or systems 
under supervision. 

26 
separated, and designed in a wide variety of different con­
figurations, all of which are explicitly contemplated herein. 

With respect to any or all of the message flow diagrams, 
scenarios, and flowcharts in the figures and as discussed 
herein, each step, block and/or communication may repre­
sent a processing of information and/or a transmission of 
information in accordance with example embodiments. 
Alternative embodiments are included within the scope of 

Simulation may be used to develop a new HOF or HOFs 10 

based on the information gained and collected from testing 
with a HOF or HOFs, running complex systems that include 

these example embodiments. In these alternative embodi­
ments, for example, functions described as steps, blocks, 
transmissions, communications, requests, responses, and/or 
messages may be executed out of order from that shown or 
discussed, including in substantially concurrent or in reverse 
order, depending on the functionality involved. Further, 

a HOF or HOFs, supervising with a HOF or HOFs, or a 
combination of some or all those. 

Simulation may be used to develop new systems based on 
the information gained and collected from testing with a 
HOF or HOFs, running complex systems that include a HOF 
or HOFs, supervising with a HOF or HOFs, or a combina­
tion of some or all those. 

15 more or fewer steps, blocks and/or functions may be used 
with any of the message flow diagrams, scenarios, and flow 
charts discussed herein, and these message flow diagrams, 
scenarios, and flow charts may be combined with one 
another, in part or in whole. 

Simulation may be combined with a supervisory HOF to 20 

improve performance of a complex system or system. 
A step or block that represents a processing of information 

may correspond to circuitry that can be configured to 
perform the specific logical functions of a herein-described 
method or technique. Alternatively or additionally, a step or 
block that represents a processing of information may cor-

Simulation may be applied to improve performance of a 
system or system either managed by a HOF or HOFs or 
running a HOF or HOFs. 

A complex system may include multiple HOFs, one or 
more of which are themselves taught to set performance 
goals and/or configuration parameters for any time or any 
conditions using artificial intelligence and/or neural net­
works or other advanced learning methods. 

A HOF or HOFs may be applied to an evaluation/ 
discriminative network and/or the generative network in a 
generative adversarial network (GAN) to constrain or oth­
erwise improve performance (for example speed or accu­
racy). 

Information (such as performance meta-data) generated 
by an operating HOF or HOFs may be applied to improve 
underlying or new machine learning or AI models. 

A HOF may be used to control a complex system only 
when that complex system is detected as being out of 
bounds, utilizing the information generated from that use to 
improve future and current performance of machine learning 
or AI models. 

Multiple HOFs may be deployed on a smart phone or 
other device as a distributed control system where one HOF 
establishes the main performance goal or goals and dynami­
cally configures other HOFs that are uniquely related to the 
operating parameters of the application or applications then 
currently active. 

Any of the disclosed methods may be applied to replace 

25 respond to a module, a segment, or a portion of program 
code (including related data). The program code may 
include one or more instructions executable by a processor 
for implementing specific logical functions or actions in the 
method or technique. The program code and/or related data 

30 may be stored on any type of computer-readable medium, 
such as a storage device, including a disk drive, a hard drive, 
or other storage media. 

The computer-readable medium may also include non­
transitory computer-readable media such as computer-read-

35 able media that stores data for short periods of time like 
register memory, processor cache, and/or random access 
memory (RAM). The computer-readable media may also 
include non-transitory computer-readable media that stores 
program code and/or data for longer periods of time, such as 

40 secondary or persistent long term storage, like read only 
memory (ROM), optical or magnetic disks, and/or compact­
disc read only memory (CD-ROM), for example. The com­
puter-readable media may also be any other volatile or 
non-volatile storage systems. A computer-readable medium 

45 may be considered a computer-readable storage medium, for 
example, or a tangible storage device. 

a traditional control based solution (such as a PID) with a 50 

HOF whenever the traditional control solution becomes 

Moreover, a step or block that represents one or more 
information transmissions may correspond to information 
transmissions between software and/or hardware modules in 
the same physical device. However, other information trans­
missions may be between software modules and/or hardware 
modules in different physical devices. obsolete or otherwise provides inferior performance. 

VII. Conclusion 
While various aspects and embodiments have been dis­

closed herein, other aspects and embodiments will be appar-
55 ent to those skilled in the art. The various aspects and 

embodiments disclosed herein are for purposes of illustra­
tion and are not intended to be limiting, with the true scope 
being indicated by the following claims. 

The above detailed description describes various features 
and functions of the disclosed systems, devices, and meth­
ods with reference to the accompanying figures. In the 
figures, similar symbols typically identify similar compo­
nents, unless context indicates otherwise. The illustrative 60 

embodiments described in the detailed description, figures, 
and claims are not meant to be limiting. Other embodiments 
can be utilized, and other changes can be made, without 
departing from the scope of the subject matter presented 
herein. It will be readily understood that the aspects of the 65 

present disclosure, as generally described herein, and illus­
trated in the figures, can be arranged, substituted, combined, 

The invention claimed is: 
1. A method implemented as one or more operations 

performed by one or more devices, the method comprising: 
determining, based on an output of a system detected 

during a first period of time, a first performance metric 
for the system; 

operating a first hybrid controller, based on the first 
performance metric, to generate a first hybrid controller 
output, wherein the first hybrid controller operates in 
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accordance with a first constraint and operates with a 
first dynamic system, and a first learned system model, 
wherein operating the first hybrid controller to generate 
the first hybrid controller output comprises: 
generating a first dynamic system output as a function 

of a difference between the first performance metric 
and the first constraint; and 

28 
7. The method of claim 4, wherein updating the learned 

system model based on the output of the system detected 
during the first period of time comprises selecting a learned 
system model from a set of different learned system models. 

providing the generated first dynamic system output to 
the first learned system model to generate the first 
hybrid controller output; 

controlling the system, during a second period of time, 
according to the generated first hybrid controller out­
put; 

8. The method of claim 1, wherein the system comprises 
a computing substrate having two or more computing units, 
each having a respective operational state, wherein the first 
hybrid controller output includes an indication of an opera­
tional state for each of the two or more computing units of 

10 the computing substrate. 

determining, based on an output of the system detected 
during a third period of time, a second performance 15 

metric for the system; 
operating a second hybrid controller, based on the first 

performance metric and the second performance met­
ric, to generate an updated constraint value; 

9. The method of claim 8, wherein the operational state of 
at least one of the computing units of the computing sub­
strate includes a clock speed. 

10. The method of claim 1, wherein the second hybrid 
controller comprises a second constraint, a second dynamic 
system, and a second learned system model, wherein oper­
ating the second hybrid controller, based on the first perfor­
mance metric and the second performance metric, to gen-

updating the first constraint according to the updated 
constraint value; 

20 erate an updated constraint value comprises: 

subsequent to updating the first constraint, operating the 
first hybrid controller, based on the second performance 
metric, to generate a second hybrid controller output; 
and 

controlling the system, during a fourth period of time, 
according to the generated second hybrid controller 
output. 

25 

2. The method of claim 1, wherein the first learned system 
model comprises a lookup table, and wherein applying the 30 

generated first dynamic system output to the first learned 
system model to generate the first hybrid controller output 
comprises selecting an entry in the lookup table based on a 
value of the first dynamic system output. 

3. The method of claim 1, wherein the first dynamic 35 

system is characterized by a pole, the method further com-
prising: 

determining, based on the output of the system detected 
during the first period of time, a degree of confidence 
in the first learned system model; 

determining, based on the determined degree of confi­
dence, an updated value for the pole of the first 
dynamic system; and 

40 

updating the first dynamic system such that the pole of the 
updated dynamic system has a value corresponding to 45 

the determined updated value. 
4. The method of claim 1, further comprising: updating 

the learned system model based on the output of the system 
detected during the first period of time. 

5. The method of claim 4, further comprising: 
operating the second hybrid controller, based on the first 

performance metric and the second performance met­
ric, to determine that the learned system model should 
be updated; 

50 

wherein updating the learned system model based on the 55 

output of the system detected during the first period of 
time is performed responsive to the second hybrid 
controller determining that the learned system model 
should be updated. 

applying at least one of the first performance metric or the 
second performance metric to the second dynamic 
system to generate a second dynamic system output; 
and 

applying the generated second dynamic system output to 
the second learned system model to generate the 
updated constraint value. 

11. The method of claim 10, further comprising: 
determining, based on a second output detected during the 

first period of time, a third performance metric for the 
second system; 

operating a third hybrid controller, based on the third 
performance metric, to generate a third hybrid control­
ler output, wherein the third hybrid controller operates 
in accordance with a third constraint, and operates with 
a third dynamic system, and a third learned system 
model, wherein operating the third hybrid controller to 
generate the third hybrid controller output comprises: 
generating a third dynamic system output as a function 

of a second difference between the third performance 
metric and the third constraint; and 

providing the generated third dynamic system output to 
the third learned system model to generate the third 
hybrid controller output; 

controlling the second system, during the second period 
of time, according to the generated third hybrid con­
troller output; 

determining, based on a second output detected from the 
second system during a third period of time, a fourth 
performance metric for the second system; 

operating the second hybrid controller, based on the third 
performance metric and the fourth performance metric, 
to generate an additional updated constraint value; 

updating the third constraint according to the additional 
updated constraint value; 

operating the third hybrid controller, based on the fourth 
performance metric, to generate a fourth hybrid con­
troller output; and 

controlling the second system, during the fourth period of 
time, according to the generated fourth hybrid control­
ler output. 

6. The method of claim 4, wherein updating the learned 60 

system model based on the output of the system detected 
during the first period of time comprises: 12. The method of claim 1, wherein operating the second 

hybrid controller, based on the first performance metric and 
the second performance metric, to generate the updated 

65 constraint value comprises detecting, based on the first 
performance metric and the second performance metric, that 
the output of the system is oscillating. 

transmitting, to a remote system, an indication of the 
output of the system detected during the first period of 
time; and 

receiving, from the remote system, an indication of an 
update to the learned system model. 
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13. The method of claim 1, wherein operating the second 
hybrid controller, based on the first performance metric and 
the second performance metric, to generate the updated 
constraint value comprises detecting, based on the first 
performance metric and the second performance metric, that 
the output of the system responds more slowly than a 
threshold rate. 

30 
operating the updated first hybrid controller, based on the 

second performance metric, to generate a second 
hybrid controller output; and controlling the system, 
during a fourth period of time, according to the gen­
erated second hybrid controller output. 

17. The processor of claim 16, wherein the first dynamic 
system is characterized by a pole, wherein the pole is related 
to the first dynamic parameter, and the processor is further 
programmed with instructions that when executed cause the 

14. The method of claim 1, wherein operating the second 
hybrid controller, based on the first performance metric and 
the second performance metric, to generate the updated 
constraint value comprises detecting, based on the first 
performance metric and the second performance metric, that 
the output of the system exhibits a bias relative to the first 
constraint. 

10 processor to perform operations comprising: 

15. The method of claim 1, wherein the system comprises 
a vehicle, wherein the first hybrid controller output includes 
an indication of an operational state for the vehicle. 

15 

16. A processor programmed with instructions that when 
executed cause the processor to perform operations com- 20 

prising: 
determining, based on an output of a system detected 

during a first period of time, a first performance metric 
for the system; 

determining, based on the output of the system detected 
during the first period of time, a degree of confidence 
in the first learned system model; 

determining, based on the determined degree of confi­
dence, an updated value for the pole of the first 
dynamic system; and 

updating the first dynamic parameter such that the pole of 
the updated first dynamic system has a value corre­
sponding to the determined updated value. 

18. The processor of claim 17, wherein the second hybrid 
controller comprises a second constraint, a second dynamic 
system, and a second learned system model, wherein oper­
ating the second hybrid controller, based on the first perfor­
mance metric and the second performance metric, to gen-

operating a first hybrid controller, based on the first 
performance metric, to generate a first hybrid controller 
output, 

25 erate a first hybrid controller update comprises the 
operations of: 

wherein the first hybrid controller operates in accor­
dance with a first constraint and operates with a first 
dynamic system, a first learned system model, and a 30 

first learned system update module, 

applying at least one of the first performance metric or the 
second performance metric to the second dynamic 
system to generate a second dynamic system output; 
and 

applying the generated second dynamic system output to 
the second learned system model to generate the first 
hybrid controller update. 

wherein the first learned system update module is 
configured to update the first learned system model 
based on at least one output detected from the 
system, 

19. The processor of claim 18 programmed with instruc-
35 tions that when executed cause the processor to perform 

wherein the first learned system update module is 
configured to update the first learned system model 
according to at least one of a timing or a rate 
corresponding to a first learning parameter, 

wherein the first dynamic system has a first dynamic 40 

parameter that corresponds to an overall responsive­
ness of the first dynamic system, 

wherein operating the first hybrid controller to generate 
the first hybrid controller output comprises: 
determining a first difference between the first per- 45 

formance metric and the first constraint; 
generating a first dynamic system output as a func­

tion of a first difference between the first perfor­
mance metric and the first constraint; and 

providing the generated first dynamic output to the 50 

first learned system model to generate the first 
controller output; 

controlling the system, during a second period of time, 
according to the generated first hybrid controller out­
put; 

determining, based on an output of the system detected 
during a third period of time, a second performance 
metric for the system; 

55 

operating a second hybrid controller, based on the first 
performance metric and the second performance met- 60 

ric, to generate a first hybrid controller update, wherein 
the first hybrid controller update includes at least one of 
an updated first constraint value, an updated first 
dynamic parameter, or an updated first learning param­
eter; 

updating the first hybrid controller according to the first 
hybrid controller update; 

65 

operations comprising: 
determining, based on a second output detected during the 

first period of time, a third performance metric for the 
second system; 

operating a third hybrid controller, based on the third 
performance metric, to generate a third hybrid control­
ler output, wherein the third hybrid controller operates 
in accordance with a third constraint, a third dynamic 
system, a third learned system model, and a third 
learned system update module, 

wherein the third learned system update module is con­
figured to: 
update the third learned system model based on at least 

one output detected from the second system, and 
update the third learned system model according to at 

least one of a timing or a rate corresponding to a third 
learning parameter, 

wherein the third dynamic system has a third dynamic 
parameter that corresponds to an overall responsive­
ness of the third dynamic system, wherein operating the 
third hybrid controller to generate the third hybrid 
controller output comprises: 
applying a determined second difference between the 

third performance metric and the third constraint to 
the third dynamic system to generate a third dynamic 
system output; and 

applying the generated third dynamic system output to 
the third learned system model to generate the third 
hybrid controller output; 

controlling the second system, during the second period 
of time, according to the generated third hybrid con­
troller output; 
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determining, based on a second output detected from the 
second system during the third period of time, a fourth 
performance metric for the second system; 

operating the second hybrid controller, based on the third 
performance metric and the fourth performance metric, 

32 
controller update, wherein operating the updated first 
hybrid controller, based on the second performance 
metric, to generate a second hybrid controller output 
comprises operating the first hybrid controller that has 
been updated by both the first hybrid controller update 
and the additional first hybrid controller update to 
generate the second hybrid controller output. 

to generate a third hybrid controller update, wherein the 
third hybrid controller update includes at least one of an 
updated third constraint value, an updated third 
dynamic parameter, or an updated third learning param­
eter; 

updating the third hybrid controller according to the third 
hybrid controller update; and 

21. The processor of claim 20 further progranimed with 
instructions that when executed cause the processor to 

10 perform operations comprising: 

operating the third hybrid controller, based on the fourth 
performance metric, to generate a fourth hybrid con­
troller output; and controlling the second system, dur- 15 

ing the fourth period of time, according to the generated 
fourth hybrid controller output. 

20. The processor of claim 19 further programmed with 
instructions that when executed cause the processor to 
perform operations comprising: 20 

operating a fourth hybrid controller, based on the first 
performance metric and the second performance met­
ric, to generate an additional first hybrid controller 
update, wherein the additional first hybrid controller 
update includes at least one of an updated first con- 25 

straint value, an updated first dynamic parameter, or an 
updated first learning parameter; and updating the first 
hybrid controller according to the additional first hybrid 

operating a third hybrid controller, based on the first 
performance metric and the second performance met­
ric, to generate an additional first hybrid controller 
update, wherein the additional first hybrid controller 
update includes at least one of an updated first con­
straint value, an updated first dynamic parameter, or an 
updated first learning parameter; and 

updating the first hybrid controller according to the addi­
tional first hybrid controller update, wherein operating 
the updated first hybrid controller, based on the second 
performance metric, to generate a second hybrid con­
troller output comprises operating the first hybrid con­
troller that has been updated by both the first hybrid 
controller update and the additional first hybrid con­
troller update to generate the second hybrid controller 
output. 

* * * * * 


