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(57) ABSTRACT 

According to one or more embodiments, a computer imple­
mented method for implementing a convolutional neural 
network (CNN) using a crosspoint array includes configur­
ing the crosspoint array corresponding to a convolution layer 
in the CNN by storing one or more convolution kernels of 
the convolution layer in one or more crosspoint devices of 
the crosspoint array. The method further includes perform­
ing computations for the CNN via the crosspoint array by 
transmitting voltage pulses corresponding to a vector of 
input data of the convolution layer to the crosspoint array. 
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Performing the CNN computations further includes output­
ting an electric current representative of performing a mul­
tiplication operation at a crosspoint device in the crosspoint 
array based on a weight value stored by the crosspoint 
device and the voltage pulses from the input data. Perform­
ing the CNN computations further includes passing the 
output electric current from the crosspoint device to a 
selected integrator. 
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1 

EFFICIENT PROCESSING OF 
CONVOLUTIONAL NEURAL NETWORK 

LAYERS USING ANALOG-MEMORY-BASED 
HARDWARE 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

2 
of a trained convolutional neural network (CNN) includes a 
crosspoint array, and an output circuit that includes one or 
more integrators. Performing the computations of the trained 
CNN comprises performing a method that includes config­
uring the crosspoint array(s) corresponding to a convolution 
layer in the CNN by storing one or more convolution kernels 
of the convolution layer in one or more crosspoint devices 
of each crosspoint array. The method further includes per-

This patent application claims priority to U.S. Provisional 
Patent Application Ser. No. 62/745, 132, filed Oct. 12, 2018, 10 

which is incorporated herein by reference in its entirety. 

forming computations for the CNN via the crosspoint array 
by transmitting voltage pulses corresponding to a vector of 
input data of the convolution layer to the crosspoint array. 

BACKGROUND 

The present invention relates in general to novel configu­
rations of resistive crosspoint devices, which are referred to 
herein as resistive processing units (RPUs). More specifi­
cally, the present invention relates to performing operations 

Performing the CNN computations further include output­
ting an electric current representative of performing a mul­
tiplication operation at a crosspoint device in the crosspoint 

15 array based on a weight value stored by the crosspoint 
device and the voltage pulses from the input data. Perform­
ing the CNN computations further include passing the 
output electric current from the one or more crosspoint 

of convolutional neural network layers using such crosspoint 
devices in crossbar arrays, such as in analog-memory-based 20 

hardware. 

devices to a selected integrator. 
According to one or more embodiments of the present 

invention, an electronic circuit includes an array of resistive 
memory elements. The array provides a vector of current 
outputs equal to an analog vector-matrix-product between (i) 
a vector of voltage inputs to the array encoding a vector of 

Technical problems such as character recognition and 
image recognition by a computer are known to be well 
handled by machine-learning techniques. "Machine learn­
ing" is used to broadly describe a primary function of 
electronic systems that learn from data. In machine learning 
and cognitive science, neural networks are a family of 
statistical learning models inspired by the biological neural 
networks of animals in particular, the brain. Neural networks 
can be used to estimate or approximate systems and func­
tions that are generally unknown and depend on a large 
number of inputs. Neural networks use a class of algorithms 
based on a concept of inter-connected "neurons." In a typical 
neural network, neurons have a given activation function 
that operates on the inputs. By determining proper connec­
tion weights (a process also referred to as "training"), a 
neural network achieves efficient recognition of a desired 
patterns, such as images and characters. Oftentimes, these 
neurons are grouped into "layers" to make connections 
between groups more obvious and to organize the compu­
tation process. With these proper connection weights, other 
patterns of interest that have never been seen by the network 
during training can also be correctly recognized, a process 
known as "Forward Inference." 

SUMMARY 

According to one or more embodiments, a computer 
implemented method for implementing a convolutional neu­
ral network (CNN) using a crosspoint array or arrays 
includes configuring the crosspoint array(s) corresponding 

25 analog input values and (ii) a matrix of analog resistive 
weights within the array. The electronic circuit further 
includes accumulation wires and circuits aggregating a 
current from a dedicated subset of the resistive memory 
elements. The electronic circuit further includes integration 

30 capacitors, each of the integration capacitors being electri­
cally switchable so as to aggregate current from one of a 
plurality of accumulation wires during a single integration 
step. The electronic circuit further includes data-output 
circuitry to allow an integrated charge from a subset of the 

35 integration capacitors, accumulated over a plurality of inte­
gration steps, to be suitably converted and transmitted either 
as an analog duration or as a digital representation using 
binary digits. 

It is to be understood that the technical solutions are not 
40 limited in application to the details of construction and to the 

arrangements of the components set forth in the following 
description or illustrated in the drawings. The technical 
solutions are capable of embodiments in addition to those 
described and of being practiced and carried out in various 

45 ways. Also, it is to be understood that the phraseology and 
terminology employed herein, as well as the abstract, are for 
the purpose of description and should not be regarded as 
limiting. As such, those skilled in the art will appreciate that 
the conception upon which this disclosure is based may 

50 readily be utilized as a basis for the designing of other 
structures, methods and systems for carrying out the several 
purposes of the presently described technical solutions. to a convolution layer in the CNN by storing one or more 

convolution kernels of the convolution layer in one or more 
crosspoint devices of each crosspoint array. The method 
further includes performing computations for the CNN via 55 

the crosspoint array by transmitting voltage pulses corre­
sponding to a vector of input data of the convolution layer 

BRIEF DESCRIPTION OF THE DRAWINGS 

The examples described throughout the present document 
will be better understood with reference to the following 
drawings and description. The components in the figures are 
not necessarily to scale. Moreover, in the figures, like­
referenced numerals designate corresponding parts through­
out the different views. 

to the crosspoint array. Performing the CNN computations 
further include outputting an electric current representative 
of performing a multiplication operation at a crosspoint 60 

device in the crosspoint array based on a weight value stored 
by the crosspoint device and the voltage pulses from the 
input data. Performing the CNN computations further 
include passing the output electric current from the one or 
more crosspoint devices to a selected integrator. 

According to one or more embodiments of the present 
invention, an electronic circuit for performing computations 

FIG. 1 depicts a simplified diagram of input and output 
connections of a mathematical neuron; 

FIG. 2 depicts a simplified model of the mathematical 
65 neuron shown in FIG. 1; 

FIG. 3 depicts a simplified model of an ANN incorporat­
ing the mathematical neuron model shown in FIG. 2; 



US 12,111,878 B2 
3 

FIG. 4 illustrates a simplified block diagram of a repre­
sentative CNN, which is interpreting a sample input map; 

FIG. 5 illustrates an example convolutional layer in a 
CNN being trained using training data that include input 
maps and convolution kernels; 

FIG. 6 depicts a system for performing a matrix-matrix 
multiplication using a crossbar array according to one or 
more embodiments of the present invention; 

4 

FIG. 7 depicts a two-dimensional (2D) crossbar system 
that performs forward matrix multiplication, backward 10 

matrix multiplication, and weight updates according to the 
present description; 

high density, low cost circuit architectures used to form a 
variety of electronic circuits and devices, including ANN 
architectures, neuromorphic microchips and ultra-high den­
sity nonvolatile memory. A basic crossbar array configura­
tion includes a set of conductive row wires and a set of 
conductive column wires formed to intersect the set of 
conductive row wires. The intersections between the two 
sets of wires are separated by so-called crosspoint devices, 
which can be formed from thin film material. 

Crosspoint devices, in effect, function as the ANN's 
weighted connections between neurons. Nanoscale two­
terminal devices, for example memristors having "ideal" 
conduction state switching characteristics, are often used as 
the crosspoint devices in order to emulate synaptic plasticity 
with high energy efficiency. The conduction state (e.g., 
resistance) of the ideal memristor material can be altered by 

FIG. 8 depicts an expanded view of the crossbar array 
according to one or more embodiments; 

FIG. 9 depicts a typical output circuitry in a crossbar 15 

system; 
FIG. 10 depicts existing operations to perform such 

operations using the crossbar array; 
FIG. 11 depicts performing CNN operations using selec­

tive integrators according to one or more embodiments; 
FIG. 12 depicts performing CNN operations using selec­

tive integrators according to one or more embodiments; and 
FIG. 13 depicts performing CNN operations using selec­

tive integrators according to one or more embodiments. 

DETAILED DESCRIPTION 

The technical solutions described herein facilitate effi­
cient implementation of deep learning techniques that use 
convolutional neural networks. Deep learning techniques are 
widely used in machine-based pattern recognition problems, 
such as image and speech recognition. Deep learning inher­
ently leverages the availability of massive training datasets 
(that are enhanced with the use of Big Data) and computing 
power (that is expected to grow according to Moore's Law). 

It is understood in advance that although one or more 
embodiments are described in the context of biological 
neural networks with a specific emphasis on modeling brain 
structures and functions, implementation of the teachings 
recited herein are not limited to modeling a particular 
environment. Rather, embodiments of the present invention 
are capable of modeling any type of environment, including 
for example, weather patterns, arbitrary data collected from 
the Internet, and the like, as long as the various inputs to the 
environment can be turned into a vector. 

ANNs are often embodied as so-called "neuromorphic" 
systems of interconnected processor elements that act as 
simulated "neurons" and exchange "messages" between 
each other in the form of electronic signals. Similar to the 
so-called "plasticity" of synaptic neurotransmitter connec­
tions that carry messages between biological neurons, the 
connections in ANNs that carry electronic messages 
between simulated neurons are provided with numeric 
weights that correspond to the strength or weakness of a 
given connection. The weights can be adjusted and tuned 
based on experience, making ANNs adaptive to inputs and 
capable of learning. For example, an ANN for handwriting 
recognition is defined by a set of input neurons which can be 
activated by the pixels of an input image. After being 
weighted and transformed by a function determined by the 
network's designer, the activations of these input neurons 
are then passed to other downstream neurons, which are 
often referred to as "hidden" neurons. This process is 
repeated until an output neuron is activated. The activated 
output neuron determines which character was read. 

Crossbar arrays, also known as crosspoint arrays, cross­
wire arrays, or resistive processing unit (RPU) arrays, are 

controlling the voltages applied between individual wires of 
the row and colunm wires. Digital data can be stored by 
alteration of the memristor material's conduction state at the 

20 intersection to achieve a high conduction state, a low con­
duction state, or any intermediate conductance state in 
between. The memristor material can also be programmed to 
maintain one of these distinct conduction states-high, low, 
or intermediate-by selectively setting the conduction state 

25 of the material. The conduction state of the memristor 
material can be read by applying a voltage across the 
material and measuring the current that passes through the 
target crosspoint device. 

In order to limit power consumption, the crosspoint 
30 devices of ANN chip architectures are often designed to 

utilize oflline learning techniques, wherein the approxima­
tion of the target function does not change once the initial 
training phase has been resolved. Oflline learning allows the 
crosspoint devices of crossbar-type ANN architectures to be 

35 simplified such that they draw very little power. 
Providing simple crosspoint devices that can implement 

Forward Inference of previously-trained ANN networks 
with low power consumption, high computational through­
put, and low latency would improve overall ANN perfor-

40 mance and allow a broader range of ANN applications. 
Although the present invention is directed to an electronic 

system, for ease of reference and explanation various aspects 
of the described electronic system are described using 
neurological terminology such as neurons, plasticity and 

45 synapses, for example. It will be understood that for any 
discussion or illustration herein of an electronic system, the 
use of neurological terminology or neurological shorthand 
notations are for ease of reference and are meant to cover the 
neuromorphic, ANN equivalent(s) of the described neuro-

50 logical function or neurological component. 
ANNs, also known as neuromorphic or synaptronic sys­

tems, are computational systems that can estimate or 
approximate other functions or systems, including, for 
example, biological neural systems, the human brain and 

55 brain-like functionality such as image recognition, speech 
recognition, and the like. ANNs incorporate knowledge from 
a variety of disciplines, including neurophysiology, cogni­
tive science/psychology, physics (statistical mechanics), 
control theory, computer science, artificial intelligence, sta-

60 tistics/mathematics, pattern recognition, computer vision, 
parallel processing and hardware ( e.g., digital/analog/VLSI/ 
optical). 

Instead of utilizing the traditional digital model of 
manipulating zeros and ones, ANNs create connections 

65 between processing elements that are substantially the func­
tional equivalent of the core system functionality that is 
being estimated or approximated. For example, a computer 
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chip that is the central component of an electronic neuro­
morphic machine attempts to provide similar form, function, 
and architecture to the mammalian brain. Although the 
computer chip uses the same basic transistor components as 
conventional computer chips, its transistors are configured 
to mimic the behavior of neurons and their synapse connec­
tions. The computer chip processes information using a 
network of just over one million simulated "neurons," which 
communicate with one another using electrical spikes simi­
lar to the synaptic communications between biological neu­
rons. The architecture of such a computer chip includes a 
configuration of processors (i.e., simulated "neurons") that 
read a memory (i.e., a simulated "synapse") and perform 
simple operations. The communications between these pro­
cessors (pathways), which are typically located in different 
cores, are performed by on-chip network routers. 

As background, a general description of how a typical 
ANN operates will now be provided with reference to FIGS. 
1, 2, and 3. As previously noted herein, a typical ANN is a 
mathematical model inspired by the human brain, which 
includes about one hundred billion interconnected cells 
called neurons. FIG. 1 depicts a simplified diagram of a 
mathematical neuron 102 having pathways 104, 106, 108, 
110 that connect it to upstream inputs 112, 114, downstream 
outputs 116, and downstream "other" neurons 118, config­
ured and arranged as shown. Each mathematical neuron 102 
sends and receives electrical impulses through pathways 
104, 106, 108, 110. The nature of these electrical impulses 
and how they are processed in biological neurons (not 
shown) are primarily responsible for overall brain function­
ality. Mimicking this functionality is the intent of a math­
ematical ANN constructed from mathematical neurons 102 
organized in a network. Just as the pathway connections 
between biological neurons can be strong or weak, so can 
the pathways between mathematical neurons. When a given 
neuron receives input impulses, the neuron processes the 
input according to the neuron's function and sends the result 
of the function to downstream outputs and/or downstream 
"other" neurons. 

Mathematical neuron 102 is modeled in FIG. 2 as a node 
202 having a mathematical function, f(x), depicted by the 
equation shown in FIG. 2. Node 202 takes electrical signals 
from inputs 212, 214, multiplies each input 212, 214 by the 
strength of its respective connection pathway 204, 206, takes 
a sum of the inputs, passes the sum through a function, f(x), 
and generates a result 216, which can be a final output or an 
input to another node, or both. In the present description, an 
asterisk (*) is used to represent a multiplication, which can 
be a matrix multiplication. For example, the matrix multi­
plication can be used to perform convolution operations 
between input data and one or more convolution kernels to 
generate output maps. Weak input signals are multiplied by 

6 
directed edges (e.g., ml to m20) connect the nodes. ANN 
model 300 is organized such that nodes 302, 304, 306 are 
input layer nodes, nodes 308, 310, 312, 314 are hidden layer 
nodes, and nodes 316,318 are output layer nodes. Each node 
is connected to every node in the adjacent layer by connec­
tion pathways, which are depicted in FIG. 3 as directional 
arrows having connection strengths ml to m20. Although 
only one input layer, one hidden layer, and one output layer 
are shown, in practice, multiple input layers, hidden layers, 

10 and output layers can be provided. 
In this attempt to mimic the functionality of a human 

brain, each input layer node 302, 304, 306 of ANN 300 
receives inputs xl, x2, x3 directly from a source (not shown) 
with no connection strength adjustments and no node sum-

15 mations. Accordingly, yl =f(xl), y2=f(x2) and y3=f(x3), as 
shown by the equations listed at the bottom of FIG. 3. Each 
hidden layer node 308, 310, 312, 314 receives its inputs 
from all input layer nodes 302, 304, 306, according to the 
connection strengths associated with the relevant connection 

20 pathways. Thus, in hidden layer node 308, y4=f(ml *yl + 
m5*y2+m9*y3), wherein * represents a multiplication. In 
one or more examples, the multiplication can be a matrix 
multiplication used to perform a convolution operation. A 
similar connection strength multiplication and node summa-

25 tion is performed for hidden layer nodes 310, 312, 314 and 
output layer nodes 316, 318, as shown by the equations 
defining functions y5 to y9 depicted at the bottom of FIG. 3. 

ANN model 300 processes data records one at a time, and 
it "learns" by comparing an initially arbitrary classification 

30 of the record with the known actual classification of the 
record. Using a training methodology knows as "backpropa­
gation" (i.e., "backward propagation of errors"), the errors 
from the initial classification of the first record are fed back 
into the network and used to modify the network's weighted 

35 connections the second time around, and this feedback 
process continues for many iterations. In the training phase 
of an ANN, the correct classification for each record is 
known, and the output nodes can therefore be assigned 
"correct" values, for example, a node value of"l" (or 0.9) 

40 for the node corresponding to the correct class, and a node 
value of "0" (or 0.1) for the others. It is thus possible to 
compare the network's calculated values for the output 
nodes to these "correct" values, and to calculate an error 
term for each node (i.e., the "delta" rule). These error terms 

45 are then used to adjust the weights in the hidden layers so 
that in the next iteration the output values will be closer to 
the "correct" values. 

There are many types of neural networks, but the two 
broadest categories are feed-forward and feedback/recurrent 

50 networks. ANN model 300 is a non-recurrent feed-forward 

a very small connection strength number, so the impact of a 
weak input signal on the function is very low. Similarly, 
strong input signals are multiplied by a higher connection 55 

strength number, so the impact of a strong input signal on the 
function is larger. The function f(x) is a design choice, and 

network having inputs, outputs, and hidden layers. The 
signals used for forward-inference can only travel in one 
direction. Input data are passed onto a layer of processing 
elements that perform calculations. Each processing element 
makes its computation based upon a weighted sum of its 
inputs. The new calculated values then become the new 
input values that feed the next layer. This process continues 
until it has gone through all the layers and determined the 
output. A threshold transfer function is sometimes used to 
quantify the output of a neuron in the output layer. 

a variety of functions can be used. A typical design choice 
for f(x) is the hyperbolic tangent function, which takes the 
function of the previous sum and outputs a number between 60 

minus one and plus one. An alternative design choice off(x) 
is the ReLU or Rectified Linear Unit, a function in which the 
output matches the input for positive inputs and is zero 
otherwise. 

FIG. 3 depicts a simplified ANN model 300 organized as 65 

a weighted directional graph, wherein the artificial neurons 
are nodes (e.g., 302, 308, 316), and wherein weighted 

A feedback/recurrent network includes feedback paths, 
which mean that the signals used for forward-inference can 
travel in both directions using loops. All possible connec­
tions between nodes are allowed. Because loops are present 
in this type of network, under certain operations, it can 
become a non-linear dynamical system that changes con­
tinuously until it reaches a state of equilibrium. Feedback 
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networks are often used in associative memories and opti­
mization problems, wherein the network looks for the best 
arrangement of interconnected factors, and in the learning of 
sequences of characters and/or words. 

The speed and efficiency of machine learning in feed­
forward and recurrent ANN architectures depend on how 
effectively the crosspoint devices of the ANN crossbar array 
perform the core operations of typical machine learning 
algorithms. Although a precise definition of machine learn­
ing is difficult to formulate, a learning process in the ANN 10 

context can be viewed as the problem of updating the 
crosspoint device connection weights so that a network can 
efficiently perform a specific task. The crosspoint devices 
typically learn the necessary connection weights from avail­
able training patterns. Performance is improved over time by 15 

iteratively updating the weights in the network. Instead of 
following a set of rules specified by human experts, ANN s 
"learn" underlying rules (like input-output relationships) 
from the given collection of representative examples. 
Accordingly, a learning algorithm can be generally defined 20 

as the procedure by which learning rules are used to update 
and/or adjust the relevant weights. 

The three main learning algorithm paradigms are super­
vised, unsupervised, and hybrid. In supervised learning, or 
learning with a "teacher," the network is provided with a 25 

correct answer (output) for every input pattern. Weights are 
determined to allow the network to produce answers as close 

8 
NVM devices. Such NVM devices are also referred to as 
RPU devices and crosspoint devices. The computation of 
multiply-accumulate operations can be mathematically 
described as vector-matrix multiplication between a vector 
of neuron excitations and a dense matrix of weights. The 
DNN computations for a Fully-Connected (FC) layer 
include such multiply-accumulate operations and, accord­
ingly, using crossbar arrays to implement the FC layers of a 
DNN is computationally efficient. 

In one or more examples, DNN s used for feature detection 
in input data include convolutional layers. Such DNNs are 
commonly referred to as convolutional neural networks 
(CNN). In a CNN, kernels convolute overlapping regions, 
such as those in a visual field, and accordingly emphasize 
the importance of spatial locality in feature detection. Com­
puting the convolutional layers of the CNN typically encom-
passes more than 90% of computation time in neural net­
work training and inference. Accelerating the forward­
inference of CNN networks and reducing the amount of 
electrical power used, by performing the mathematical 
operations of the convolutional layers efficiently and with a 
minimum of extraneous data movement or computation, as 
described by the examples of the technical solutions herein, 
is a desirable improvement. As such the technical solutions 
are rooted in and/or tied to computer technology in order to 
overcome a problem specifically arising in the realm of 
computers, specifically neural networks, and more particu­
larly convolutional neural networks. 

However, in a convolutional layer as is used in many 
image-processing applications, multiple smaller vectors of 
neuron excitations (image patches) each are multiplied by 
smaller kernel matrices (filters). While this is advantageous 
for digital accelerators since there are fewer weights to 
retrieve from off-chip memory, the analog memory-based 
approach that increases efficiency for fully-connected layers 
is now at a disadvantage. If there is only one copy of the 
kernel matrices, then each vector of neuron excitations must 
be computed in serial fashion, leading to computational 
performance that is not very interesting. Alternatively, mul­
tiple copies of the kernel matrices can be stored and operated 
simultaneously. However, the output excitations resulting 
from each copy of the kernel matrix must be organized, 
stored, duplicated, shuffled, and prepared to fill the neuron 
excitation vectors for the next convolutional layer. These 

as possible to the known correct answers. Reinforcement 
learning is a variant of supervised learning in which the 
network is provided with only a critique on the correctness 30 

of network outputs, not the correct answers themselves. In 
contrast, unsupervised learning, or learning without a 
teacher, does not require a correct answer associated with 
each input pattern in the training data set. It explores the 
underlying structure in the data, or correlations between 35 

patterns in the data, and organizes patterns into categories 
from these correlations. Hybrid learning combines super­
vised and unsupervised learning. Parts of the weights are 
usually determined through supervised learning, while the 
others are obtained through unsupervised learning. Addi- 40 

tional details of ANNs and learning rules are described in 
Artificial Neural Networks: A Tutorial, by Anil K. Jain, 
Jianchang Mao and K. M. Mohiuddin, IEEE, March 1996, 
the entire description of which is incorporated by reference 
herein. 45 operations significantly limit performance efficiency of the 

neural network by requiring digitization of the neuron 
excitation values and a significant amount of local digital 
storage and local digital processing, in order to convert raw 

Beyond the application of training ANNs, the Forward 
Inference of already trained networks includes applications 
ranging from implementations of cloud-based services built 
on ANNs to smartphone, Internet-Of-Things (IOT), and 
other battery-constrained applications which require 50 

extremely low power operation. In general, while training is 
an application that calls for high throughput (in order to 
learn from many training examples), Forward Inference is an 
application that calls for fast latency (so that any given new 
test example can be classified, recognized, or otherwise 55 

processed as rapidly as possible). 
Described here are technical solutions for performing 

convolutional neural network computations using analog­
memory-based hardware, such as crossbar arrays that 
include crosspoint devices. Deep Neural Network (DNN) 60 

accelerators based on crossbar arrays of non-volatile memo­
ries (NVMs)-such as Phase-Change Memory (PCM) or 
Resistive Memory (RRAM)----can implement multiply-ac­
cumulate operations that are extensively used in DNN 
acceleration in a parallelized manner. In such systems, 65 

computation occurs in the analog domain at the location of 
weight data encoded into the conductance (resistance) of the 

output vectors into the next set of neuron excitation vectors. 
The technical solutions described herein address such 

technical problems by facilitating the organization of the 
analog memory computations in such a way as to greatly 
simplify the processing and bookkeeping of the resulting 
computational outputs. In one or more examples, the analog 
memory computations are organized so that the neural 
network processes each set of inputs to a convolutional layer 
(an image with rows and colunms, organized into multiple 
input "planes") one row (or colunm) at a time. 

FIG. 4 illustrates a simplified block diagram of a CNN. In 
the depicted example, the CNN is being used for interpreting 
a sample input map 400, and in this particular example uses 
a handwritten letter "w" as an input map. However, it is 
understood that other types of input maps are possible and 
also that the technical solutions described herein are appli-
cable to a CNN performing other operations, such as other 
types of feature detections. In the illustrated example, the 
input map 100 is used to create a set of values for the input 
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layer 410, or "layer-1." For example, layer-1 can be gener­
ated by direct mapping of a pixel of the sample input map 
400 to a particular neuron in layer-1, such that the neuron 
shows a 1 or a O depending on whether the pixel exhibits a 
particular attribute. Another example method of assigning 
values to neurons is discussed below with reference to 
convolutional neural networks. Depending on the vagaries 
of the neural network and the problem it is created to solve, 
each layer of the network can have differing numbers of 
neurons, and these may or may not be related to particular 10 

qualities of the input data. 
Referring to FIG. 4, neurons in layer-1 410 are connected 

to neurons in a next layer, layer-2 420, as described earlier 
(see FIG. 3). The neurons in FIG. 4 are as described with 

15 
reference to FIG. 1. A neuron in layer-2 420, consequently, 
receives an input value from each of the neurons in layer-1 
410. The input values are then summed and this sum 
compared to a bias. If the value exceeds the bias for a 
particular neuron, that neuron then holds a value, which can 20 

be used as input to neurons in the next layer of neurons. This 
computation continues through the various layers 430-450 
of the CNN, which include at least one FC layer 450, until 
it reaches a final layer 460, referred to as "output" in FIG. 
4. In some CNN networks, "residual" results from earlier 25 

layers may be combined with the results of later layers, 
skipping over the layers in between. In an example of a CNN 
used for character recognition, each value in the layer is 
assigned to a particular character. When designed for clas­
sification tasks, the network is configured to end with the 30 

output layer having only one large positive value in one 
neuron, which then demonstrates which character the net­
work has computed to be the most likely handwritten input 
character. In other scenarios, the network may have been 
designed such that output neuron values may be used to 35 

estimate probability (likelihood), confidence or other met­
rics of interest. 

The data values for each layer in the CNN are typically 
represented using matrices ( or tensors in some examples), 
and computations are performed as matrix computations. 40 

The indexes (and/or sizes) of the matrices vary from layer to 
layer and network to network, as illustrated in FIG. 4. 
Different implementations orient the matrices or map the 
matrices to computer memory differently. Referring to FIG. 
4, in the example CNN illustrated, each level is a tensor of 45 

neuron values, as is illustrated by matrix dimensions for 
each layer of the neural network. At the input of the CNN, 
an example might be multiple input "planes," each a two­
dimensional image. For instance, there might be a red plane, 
a green plane, and a blue plane, stemming from a full-color 50 

image. Deeper into the CNN, layers may take intermediate 
data in the form of many "planes" and produce for the next 
layer a large number of output planes. The values in an input 
tensor at a layer are multiplied by connection strengths, 
which are in a transformation tensor known as a filter. This 55 

matrix multiplication scales each value in the previous layer 
according to the connection strengths, with the aggregate 
total of these contributions then summed. This fundamental 
operation is known as a multiply-accumulate operation. A 
bias matrix may then be added to the resulting product 60 

matrix to account for the threshold of each neuron in the next 

10 
a series of matrices. Training the CNN includes finding 
proper values for these matrices. 

While fully-connected neural networks are able, when 
properly trained, to recognize input patterns, such as hand­
writing or photos of household pets, they do not exhibit 
shift-invariance. In order for the network to recognize the 
whiskers of a cat, it must be supplied with cat images with 
the whiskers located at numerous different 2-D locations 
within the image. Each different image location will lead to 
neuron values that interact with different weights in such a 
fully-connected network. In contrast, in a CNN, the connec-
tion strengths are convolution kernels. The convolution 
operation introduces shift-invariance. Thus, as multiple 
images are presented with cats with whiskers, as long as the 
scale, color, and rotation of the whiskers is unchanged from 
image to image, the 2-D position within the image no longer 
matters. Thus, during training, all examples of similar fea­
tures work together to help learn this feature, independent of 
the feature location within the 2-D image. After training, a 
single or much smaller set of filters is sufficient to recognize 
such image features, allowing a bank of many filters (which 
is what a CNN layer is) to then recognize many different 
features that are useful for discriminating images ( dogs from 
cats, or even subtleties that are representative of different 
breeds of cats). 

FIG. 5 illustrates an example convolutional layer 500 in 
a CNN being trained using training data that include input 
maps 510 and convolution kernels 520. For simplicity, FIG. 
5 does not illustrate bias matrices 525. The input maps 510 
(also referred to as input planes) can include multiple input 
patterns, for example, D input maps. Each input map is a 
matrix, such as a matrix of size NxM. Accordingly, a total 
number of input neurons in this case is NxMxD. The input 
maps are convolved with F convolution kernels 520 of size 
kxk as illustrated to produce corresponding output maps 530 
(shown to include separate output maps 532, 534, 536, and 
538). Each output map can have a dimension N'xM'. In case 
the input maps are square matrices of size n, the output maps 
are of size n-k+lxn-k+l. Each convolution is a 3D convo-
lution involving the D input maps. A CNN can include 
multiple such layers, where the output maps 530 from a 
previous layer are used as input maps 510 for a subsequent 
layer. The backpropagation algorithm can be used to learn 
the kxkxDxF weight values of the filters. 

For example, the input maps 510 are convolved with each 
filter bank to generate a corresponding output map. For 
example, in case the CNN is being trained to identify 
handwriting, the input maps 510 are combined with a filter 
bank that includes convolution kernels representing a ver­
tical line. The resulting output map identifies vertical lines 
that are present in the input maps 510. Further, another filter 
bank can include convolution kernels representing a diago­
nal line, such as going up and to the right. An output map 
resulting from a convolution of the input maps 510 with the 
second filter bank identifies samples of the training data that 
contain diagonal lines. The two output maps show different 
information for the character, while preserving pixel adja­
cency. This can result in more efficient character recognition. 

FIG. 6 depicts a system 600 in which the crossbar array 
700 is controlled using a controller 610 for performing the 
matrix-matrix multiplication among other operations 
according to one or more embodiments of the present 
invention. For example, the controller 610 sends the input 
data 510 to be multiplied by the crossbar array 700. In one 

level. Further, an activation function is applied to each 
resultant value, and the resulting values are placed in the 
output tensor to be applied to the next layer. In an example, 
the activation function can be rectified linear units, sigmoid, 
or tanh( ). Thus, as FIG. 4 shows, the connections between 
each layer, and thus an entire network, can be represented as 

65 or more examples, the controller 610 stores the weight 
values, such as from convolution kernels 520, in the crossbar 
array 700 and sends the input vectors. In one or more 
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examples, the controller 610 and the crossbar array 700 are 
coupled in a wired or a wireless manner, or a combination 
thereof. The controller 610 further sends and instruction/ 
command to the crossbar array 700 to initiate the operations 
for one or more layers in the CNN. The controller 610 
further can read the output data 530 from the crossbar array 
700 after receiving a notification that the computations have 
been performed. The controller 610 can be a processing unit, 
or a computing system, such as a server, a desktop computer, 
a tablet computer, a phone, and the like. The controller 610 
can include a memory device that has computer executable 
instructions stored therein, the instructions when executed 
by the controller cause the matrix-matrix computation. 

12 
voltage across the crosspoint device and measuring the 
current that passes through the crosspoint device. 

Input voltages V 1 , V2 , V3 (column voltage 832) are 
applied to row wires 802, 804, 806, respectively. Each 
column wire 808, 810, 812, 814 sums the currents Ii, 12 , 13 , 

14 generated by each crosspoint device along the particular 
column wire using an integrator, such as a capacitor. For 
example, as shown in FIG. 8, the current 14 generated by 
column wire 814 is given by the equation I4 =V 1 0 41 + V 2 0 42+ 

10 V3 o43 . Thus, array 700 computes the forward matrix mul­
tiplication by multiplying the values stored in the crosspoint 
devices by the row wire inputs, which are defined by 
voltages V 1 , V2 , V3 . 

Turning now to an overview of the present description, 
15 

one or more embodiments are directed to a two-terminal 
Referring to FIG. 7, the input circuitry 710 includes, in 

one or more examples, at least a support circuitry 712, a 
shared circuitry 714, and a row circuitry 716. The row 
circuitry includes hardware components associated with 
each row wire 802, 804, and 806. The input circuitry 710 

programmable resistive crosspoint component referred to 
herein as a resistive processing unit (RPU), which provides 
local data storage functionality and local data processing 
functionality. In other words, when performing data pro­
cessing, the weighted contribution represented by each cros­
spoint device is contributed into a massively-parallel mul­
tiply-accumulate operation that is performed at the stored 
location of data. This eliminates the need to move relevant 
data in and out of a processor and a separate storage element. 
Accordingly, implementing a machine learning CNN archi­
tecture having the described crosspoint device enables the 
implementation of online machine learning capabilities that 
optimize the speed, efficiency, and power consumption when 
performing Forward-Inference of previously trained CNN 
models. The described crosspoint device and resulting CNN 
architecture improve overall CNN performance and enable 
a broader range of practical CNN applications. 

The described crosspoint device can be implemented as a 
two-terminal resistive crosspoint device. For example, the 
described crosspoint device can be implemented with resis­
tive random access memory (RRAM), phase change 
memory (PCM), progranrmable metallization cell (PMC) 
memory, non-linear memristive systems, or any other two­
terminal device that offers a wide range to analog-tunable 
non-volatile resistive memory states that are sufficiently 
stable over time. 

FIG. 7 depicts a two-dimensional (2D) crossbar system 
700 that performs forward inference according to the present 
description. While such a crossbar system can be used to 
implement simple matrix multiplication, backward matrix­
multiplication, and even in-situ weight-update according to 
the backpropagation algorithm, the present invention con­
cerns the efficient implementation of convolutional layers 
for previously-trained networks. The crossbar system 700 
includes a crossbar array 705, an input circuitry 710, and an 
output circuitry 720, among other components. The crossbar 
system 700 can be a computer chip in one or more examples. 

FIG. 8 depicts an expanded view of the crossbar array 705 
according to one or more embodiments. The crossbar array 
705 is formed from a set of conductive row wires 802, 804, 
806 and a set of conductive column wires 808, 810, 812, 814 
that intersect the set of conductive row wires 802, 804, 806. 
The intersections between the set of row wires and the set of 
colunm wires are separated by crosspoint devices, which are 
shown in FIG. 8 as resistive elements each having its own 
adjustable/updateable resistive weight, depicted as 0 11 , 0 21 , 

0 31 , 0 4 i, 0 12, 0 22 , 0 32 , 0 42, 0 13 , 0 23 , 0 33 and 0 43 , respec­
tively. For ease of illustration, only one crosspoint device 
820 is labeled with a reference number in FIG. 8. In forward 
matrix multiplication, the conduction state (i.e., the stored 
weights) of the crosspoint device can be read by applying a 

20 facilitates providing the input voltages to the crossbar array 
705. The output circuitry 720 includes, a support circuitry 
722, a shared circuitry 724, and a colunm circuitry 726. 

FIG. 9 depicts a typical output circuitry 720. The output 
circuitry includes integrators 908, 910, 912, and 914 corre-

25 sponding to the column wires 808, 810, 812, and 814, 
respectively. The integrators 908, 910, 912, and 914, in one 
or more examples, are capacitors. The output currents along 
each colunm wire are accumulated in the integrators and 
passed on to a next layer of the CNN. As described earlier, 

30 such an arrangement of the integrators makes the computa­
tions of the FC layers very efficient; however, for the 
convolution operations, to use such an arrangement of the 
integrators incurs significant additional overhead in terms of 
data transport, storage, organization and subsequent data 

35 transport. Such operations require additional resources such 
as time, power, and additional circuit-area, thus making the 
overall system inefficient. 

FIG. 10 depicts existing operations to perform such 
operations using the crossbar array. It should be noted that 

40 the dimensions of the matrices shown in the figures herein 
are just examples, and in one or more examples different 
dimensions can be used. 

As depicted in FIG. 10, one image-row (512, 514, and 
516) of all input planes 510 is presented concurrently as a 

45 column of inputs to the array-rows (802,804, and 806) of the 
crossbar array 705 of the crossbar system 700. The cros­
spoint devices 820 at each crosspoint contains weight­
elements from the filters 520, each leading to a multiplica­
tion between the array-row excitation, x,, and the stored 

50 weight, wiJ by Ohm's law (voltage times conductance equals 
current). The integration of all such read current contribu­
tions is summed along each array-colunm and stored in the 
corresponding integrators (908, 910, 912, and 914) of the 
array-colunms (808, 810, 812, and 814). The computation 

55 can be expressed as: the current 11 on colunm #1 (808) is 
stored on capacitor C1 (908), 12 is stored on capacitor C2 , 13 

on C3 , and so on. In the existing technical solutions that use 
such crossbar arrays 705, the integrated charge on the 
capacitors (908, 910, 912, and 914) is treated as the output 

60 of the multiply-accumulate operation and is either converted 
to a digital number or to pulse-duration for shipment to a 
next array 705. 

In this manner, at each time-step (i.e., each computation 
performed by the array 705), values across all input planes 

65 510 are integrated producing an output for all output planes 
530. However, this results only in one output pixel per 
time-step. 
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Further, every output from convolutional layer i has to be 
combined with outputs from other convolutional layers as 
part of pooling. The other convolutional layers from which 
the outputs that are to be pooled depend on the number of 
elements in the filter kernels 520. Alternatively, or in addi­
tion, every output from layer i has to be positioned at 
different spots in the input planes 510 for the convolutional 
layer i+l. Such organization of the output values for the 
purpose of pooling can also require additional computing 
resources, such as read-write access, power and the like. 

The technical solutions described herein address technical 
challenges of existing technical solutions by facilitating, 
after the multiply-accumulate operations are performed, the 
steering of the aggregate current to a selected integrator, 
from any of the integrators in the output circuitry 720. For 
instance, current 11 might now be steered to capacitor C2 , 12 

to capacitor C3 , and 13 to capacitor C1 , instead of retaining 
the charges in the same colunms, with the next image-row of 
the input planes to this convolutional layer being similarly 
presented to the same array 705. The purpose of this is to 
allow each capacitor to integrate the total current contribu­
tions for different colunms of the k-by-k weight kernel 
substantially simultaneously ( each driven into the array by 
various array-row excitations) and for different rows of the 
weight kernel in time (added to any given capacitor over k 
different time-steps by steering the aggregate current from 
the array-colunm corresponding to the appropriate weight 
kernel coefficients). 

14 
the output of the multiply-accumulate operations from each 
colunm in the array 705 to a particular integrator in the 
output circuitry 720. In one or more examples, the output 
controller 1110 receives a mode signal that provides a 
selection of the integrators for each colunm at each time­
step. Alternatively, the output controller 1110 is provided a 
mode signal that indicates the selection of the integrator for 
each colunm until all convolutional layers are executed. The 
mode signal, in one or more examples, can be a bit pattern 

10 that is indicative of the selected integrators for each colunm. 
In the example of FIG. 11, the outputs from the colunms 

808 and 814 are stored in the integrators 908 and 912, 
respectively, at time-step #1. FIG. 12 depicts the operations 
performed in time-step #2. Here, second rows 512-B, 514-B, 

15 and 516-B from the input planes 510 are used as input to the 
crosspoint array 705. The crosspoint devices 820 are still 
loaded with the kernel filters 520 as in time-step #1 (FIG. 
11). In the time-step #2, the output controller 1110 selects the 
same integrators 908 and 912 for the outputs of the colunms 

20 810 and 816 (different from time-step #1). Accordingly, the 
integrators 908 and 912, in this case, receive outputs from 
different colunms in different time-steps. 

FIG. 13 depicts the operations performed in time-step #3. 
In a manner similar to the first two time-steps, in time-step 

25 #3, a third row 512-C, 514-C, and 516-C from the input 
planes 510 is used as input to the crosspoint array 705. In the 
time-step #3, the output controller 1110 selects the same 
integrators 908 and 912 for the outputs of the colunms 812 
and 818 (different from time-step #1). Accordingly, the "Pooling" as used in neural network operations can 

include determining results such as the maximum, sum, or 
average of the output excitations. The technical solutions 
described herein facilitate such pooled results being com­
puted locally and then transmitted, only after all relevant 
weight kernels are fully integrated. In an alternative embodi­
ment, the unpooled results are computed locally, and are 35 

only pooled after transmission. 

30 integrators 908 and 912, in this case, receive outputs from 
different colunms in different time-steps. In this manner, in 
general, after k time-steps, an entire row in the output planes 
530 is computed ( compared to a single output pixel in the 
existing solution). 

It should be noted that, while the only the computations 
of the first two entries (A and B) from the first output row 
in the output plane 530 is described above, in a similar 
manner, the other portions of the output planes 530 are 
computed in parallel by other portions of the crosspoint 

FIGS. 11-14 depict the operations performed by the array 
705 with the modified output circuit 720, according to one 
or more embodiments. At each time-step, each of the inte­
grators (908, 910, 912, and 914) receives contributions from 
k*D multiply-accumulate terms, where D is the number of 
input planes 510. After k time-steps, the total charge on an 
integrator contains all k*k*D terms and is ready to be output 
to the next convolutional layer. Except for during the first k 
or last k time-steps, after each integration step, every kth 
integrator from the output circuit 720 reaches this status, and 
accordingly, is ready to generate all the output pixels of one 
image-row (512-A, 514-A, and 516-A) of the convolutional­
layer output. All other jth integrators have a different phase 
in their respective integration phase, depending the value of 
j. 

For example, as shown in FIG. 11, the first rows of each 
input plane 512-A, 514-A, 516-A are input to the convolu­
tional layer. The crosspoint devices 820 of the crossbar array 
705 are loaded with the filters 520 as shown. Particularly, 
filter kernels 522-A and 522-B are loaded in the crosspoint 
devices 820 to perform a convolution with the first rows of 
the first input plane 516-A. Similarly, filter kernels 524-A 
and 524-B from a second bank of filter kernels 520 are 
convolved with the first row of a second input plane 514-A, 
and so on with other filter kernels 526-A, 526B, 528-A, and 
528-B. The results of the respective convolutions are for­
warded to one or more of the integrators (908,910,912,914) 
from the output circuitry 720 by output controller 1110. 

The output controller 1110 can be part of the output 
circuitry 720 or an external controller that is coupled with 
the output circuitry 720. The output controller 1110 steers 

40 array 705. Further yet, the crosspoint array 705 can be 
accumulating computation outputs for other output rows (C 
and D) at each time-step using the other integrators (910 and 
914) as shown in FIG. 13. 

Accordingly, as a result of the output controller 1110 
45 steering the output of the crosspoint array 705, all input is in 

the form of a complete and contiguous image-row over all 
input planes. Further, after the first k time-steps before any 
output is available, (that is, from the k+ 1th time-step), a 
complete and contiguous image-row over all the output 

50 planes is produced at each time-step. Accordingly, the output 
maps 530 produced by such operations can be pipelined to 
a subsequent convolutional layer without any intermediate 
storage of the neuron excitations. Because pooling opera­
tions such as sum, average, and maximum can be performed 

55 incrementally on data as they arrive, any pooling operation 
only requires temporary storage sufficient for the output 
image-row. These intermediate results are stored and 
updated as each set of neuron excitations arrive until the 
R-by-R pooling operation is complete, at which point the 

60 buffer of intermediate results is effectively the output of the 
pooling layer. 

It should be noted that although in the examples used in 
the above description to explain the technical solutions, a 
single image-row is used for calculations, in one or more 

65 examples, more than a single image-row can be used. For 
example, in an alternative embodiment, two image-rows of 
the output planes 530 are output simultaneously, and so on. 
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The output rows are further supplied as the data for pooling 
operations, for example, a 2x2 pooling operation can be 
performed simultaneously using the two output rows. In 
such examples with additional output rows, the need to 
organize, store, or even transmit the output data elsewhere is 
eliminated by steering the output to the integrators in the 
output circuitry 720 of the crossbar system 700 itself. 

The examples herein use k=3 in most cases, however, it 
is understood that k can be any other value in other 
examples. 

The technical solutions described herein accordingly 
facilitate improving performance efficiency in terms of 
speed, computing resources, and power used when imple­
menting a CNN. Empirical data for the inventors suggest the 
improvements are at least an order of magnitude in some 
cases. The technical solutions described herein are rooted in 
computer technology, particularly implementing CNN using 
a neural network computing chip that is typically configured 
to increase efficiency of fully connected layers in the CNN 
by performing multiply-accumulate operations along a col­
unm of the crossbar array. The technical solutions described 
herein allow the computer chip to maintain those efficien­
cies, and in addition, to be configured during convolutional 
layer computations to steer output of the colunms to par­
ticular integrators in the crossbar array, and to maintain the 
output in the integrators and directly provide that output to 
subsequent convolutional layers. Such operations reduce, if 
not eliminate, read-write operations and digitization opera­
tions of outputs of each convolutional layer. 

It should also be noted that although the examples 
described herein use rows of the input planes 510 to perform 
the computations of the CNN, in one or more examples, the 
colunms can be used with corresponding adjustments to the 
matrices in the operations, as will be obvious to a person 
skilled in the art. 

The technical solutions described herein accordingly pro­
vide a circuit that includes an array of resistive memory 
elements, the array providing a vector of current outputs 
equal to the analog vector-matrix-product between (i) a 
vector of voltage inputs to the array encoding a vector of 
analog input values and (ii) a matrix of analog resistive 
weights within the array. The circuit further includes accu­
mulation wires and circuits aggregating the current from a 
dedicated subset of the resistive elements. Further, the 
circuit includes integration capacitors, each of the integra­
tion capacitors being electrically switchable (selectable) so 
as to aggregate current from at least one of the accumulation 
wires during a single integration step. The circuit also 
includes data-output circuitry to allow the integrated charge 
from a subset of the integration capacitors, accumulated over 
multiple integration steps, to be converted and transmitted 
either as an analog duration or as a digital representation 
using binary digits. 

The subset of resistive elements can include one or more 
colunm of the array. Alternatively, the subset of resistive 
elements can include one or more rows of the array. In one 
or more examples, the resistive elements are non-volatile 
memory devices. In one or more examples, the resistive 
elements store synaptic weights of a neural network. 

In one or more examples, the resistive memory elements 
are arranged so as to implement the colunms of the weight 
kernels of a given layer of a convolutional neural network. 
The accumulation over the integration steps implements the 
multiply-accumulate operations across multiple rows of said 
weight kernels, as the input neuron excitations to the said 
layer of the convolutional neural network are presented one 
row at a time. Further, the integrated charge representing an 

16 
output excitation is suitably converted and transmitted only 
after all rows of said weight kernel are fully integrated. 

Further, in one or more examples, the integrated charge 
stored by multiple capacitors representing respective output 
excitations are suitably converted and a suitable pooled 
result such as the maximum, sum, or average of the said 
plurality of output excitations is computed locally and then 
transmitted, only after all relevant weight kernels are fully 
integrated. 

10 In one or more examples, the resistive memory elements 
are arranged so as to implement the rows of the weight 
kernels of a given layer of a convolutional neural network. 
The accumulation over the integration steps implements the 
multiply-accumulate operations across multiple columns of 

15 said weight kernels, as the input neuron excitations to the 
said layer of the convolutional neural network are presented 
one colunm at a time. Further, the integrated charge repre­
senting an output excitation is suitably converted and trans­
mitted only after all colunms of said weight kernel are fully 

20 integrated. Further, in one or more examples, the integrated 
charge stored by multiple capacitors representing respective 
output excitations are suitably converted and a suitable 
pooled result such as the maximum, sum, or average of the 
said plurality of output excitations are computed locally and 

25 then transmitted, only after all relevant weight kernels are 
fully integrated. 

The present technical solutions may be a system, a 
method, and/or a computer program product at any possible 
technical detail level of integration. The computer program 

30 product may include a computer readable storage medium 
(or media) having computer readable program instructions 
thereon for causing a processor to carry out aspects of the 
present technical solutions. 

The computer readable storage medium can be a tangible 
35 device that can retain and store instructions for use by an 

instruction execution device. The computer readable storage 
medium may be, for example, but is not limited to, an 
electronic storage device, a magnetic storage device, an 
optical storage device, an electromagnetic storage device, a 

40 semiconductor storage device, or any suitable combination 
of the foregoing. A non-exhaustive list of more specific 
examples of the computer readable storage medium includes 
the following: a portable computer diskette, a hard disk, a 
random access memory (RAM), a read-only memory 

45 (ROM), an erasable programmable read-only memory 
(EPROM or Flash memory), a static random access memory 
(SRAM), a portable compact disc read-only memory (CD­
ROM), a digital versatile disk (DVD), a memory stick, a 
floppy disk, a mechanically encoded device such as punch-

50 cards or raised structures in a groove having instructions 
recorded thereon, and any suitable combination of the fore­
going. A computer readable storage medium, as used herein, 
is not to be construed as being transitory signals per se, such 
as radio waves or other freely propagating electromagnetic 

55 waves, electromagnetic waves propagating through a wave­
guide or other transmission media ( e.g., light pulses passing 
through a fiber-optic cable), or electrical signals transmitted 
through a wire. 

Computer readable program instructions described herein 
60 can be downloaded to respective computing/processing 

devices from a computer readable storage medium or to an 
external computer or external storage device via a network, 
for example, the Internet, a local area network, a wide area 
network and/or a wireless network. The network may com-

65 prise copper transmission cables, optical transmission fibers, 
wireless transmission, routers, firewalls, switches, gateway 
computers and/or edge servers. A network adapter card or 
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network interface in each computing/processing device 
receives computer readable program instructions from the 
network and forwards the computer readable program 
instructions for storage in a computer readable storage 
medium within the respective computing/processing device. 

Computer readable program instructions for carrying out 
operations of the present technical solutions may be assem­
bler instructions, instruction-set-architecture (ISA) instruc­
tions, machine instructions, machine dependent instructions, 
microcode, firmware instructions, state-setting data, con­
figuration data for integrated circuitry, or either source code 
or object code written in any combination of one or more 
programming languages, including an object oriented pro­
gramming language such as Smalltalk, C++, or the like, and 
procedural programming languages, such as the "C" pro­
gramming language or similar programming languages. The 
computer readable program instructions may execute 
entirely on the user's computer, partly on the user's com­
puter, as a stand-alone software package, partly on the user's 
computer and partly on a remote computer or entirely on the 
remote computer or server. In the latter scenario, the remote 
computer may be connected to the user's computer through 
any type of network, including a local area network (LAN) 
or a wide area network (WAN), or the connection may be 
made to an external computer (for example, through the 
Internet using an Internet Service Provider). In some 
embodiments, electronic circuitry including, for example, 
programmable logic circuitry, field-programmable gate 
arrays (FPGA), or programmable logic arrays (PLA) may 
execute the computer readable program instructions by 
utilizing state information of the computer readable program 
instructions to personalize the electronic circuitry, in order to 
perform aspects of the present technical solutions. 

Aspects of the present technical solutions are described 
herein with reference to flowchart illustrations and/or block 
diagrams of methods, apparatus (systems), and computer 
program products according to embodiments of the technical 
solutions. It will be understood that each block of the 

18 
device implement the functions/acts specified in the flow­
chart and/or block diagram block or blocks. 

The flowchart and block diagrams in the Figures illustrate 
the architecture, functionality, and operation of possible 
implementations of systems, methods, and computer pro­
gram products according to various embodiments of the 
present technical solutions. In this regard, each block in the 
flowchart or block diagrams may represent a module, seg­
ment, or portion of instructions, which comprises one or 

10 more executable instructions for implementing the specified 
logical function(s). In some alternative implementations, the 
functions noted in the blocks may occur out of the order 
noted in the Figures. For example, two blocks shown in 
succession may, in fact, be executed substantially concur-

15 rently, or the blocks may sometimes be executed in the 
reverse order, depending upon the functionality involved. It 
will also be noted that each block of the block diagrams 
and/or flowchart illustration, and combinations of blocks in 
the block diagrams and/or flowchart illustration, can be 

20 implemented by special purpose hardware-based systems 
that perform the specified functions or acts or carry out 
combinations of special purpose hardware and computer 
instructions. 

A second action may be said to be "in response to" a first 
25 action independent of whether the second action results 

directly or indirectly from the first action. The second action 
may occur at a substantially later time than the first action 
and still be in response to the first action. Similarly, the 
second action may be said to be in response to the first action 

30 even if intervening actions take place between the first 
action and the second action, and even if one or more of the 
intervening actions directly cause the second action to be 
performed. For example, a second action may be in response 
to a first action if the first action sets a flag and a third action 

35 later initiates the second action whenever the flag is set. 

flowchart illustrations and/or block diagrams, and combina- 40 

tions of blocks in the flowchart illustrations and/or block 

To clarify the use of and to hereby provide notice to the 
public, the phrases "at least one of <A>, <B>, ... and <N>" 
or "at least one of <A>, <B>, ... <N>, or combinations 
thereof' or "<A>, <B>, ... and/or <N>" are to be construed 
in the broadest sense, superseding any other implied defi­
nitions hereinbefore or hereinafter unless expressly asserted 

diagrams, can be implemented by computer readable pro­
gram instructions. 

to the contrary, to mean one or more elements selected from 
the group comprising A, B, ... and N. In other words, the 
phrases mean any combination of one or more of the 

45 elements A, B, ... or N including any one element alone or 
the one element in combination with one or more of the 

These computer readable program instructions may be 
provided to a processor of a general purpose computer, 
special purpose computer, or other programmable data pro­
cessing apparatus to produce a machine, such that the 
instructions, which execute via the processor of the com­
puter or other programmable data processing apparatus, 
create means for implementing the functions/acts specified 50 

in the flowchart and/or block diagram block or blocks. These 
computer readable program instructions may also be stored 
in a computer readable storage medium that can direct a 
computer, a programmable data processing apparatus, and/ 

other elements which may also include, in combination, 
additional elements not listed. 

It will also be appreciated that any module, unit, compo­
nent, server, computer, terminal or device exemplified herein 
that executes instructions may include or otherwise have 
access to computer readable media such as storage media, 
computer storage media, or data storage devices (removable 
and/or non-removable) such as, for example, magnetic 
disks, optical disks, or tape. Computer storage media may 
include volatile and non-volatile, removable and non-re-
movable media implemented in any method or technology 
for storage of information, such as computer readable 
instructions, data structures, program modules, or other data. 

or other devices to function in a particular manner, such that 55 

the computer readable storage medium having instructions 
stored therein comprises an article of manufacture including 
instructions which implement aspects of the function/act 
specified in the flowchart and/or block diagram block or 
blocks. 

The computer readable program instructions may also be 
loaded onto a computer, other programmable data process­
ing apparatus, or other device to cause a series of operational 
steps to be performed on the computer, other programmable 
apparatus or other device to produce a computer imple- 65 

mented process, such that the instructions which execute on 
the computer, other progranmiable apparatus, or other 

60 Such computer storage media may be part of the device or 
accessible or connectable thereto. Any application or mod­
ule herein described may be implemented using computer 
readable/executable instructions that may be stored or oth-
erwise held by such computer readable media. 

The descriptions of the various embodiments of the 
technical features herein have been presented for purposes 
of illustration but are not intended to be exhaustive or 
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limited to the embodiments disclosed. Many modifications 
and variations will be apparent to those of ordinary skill in 
the art without departing from the scope and spirit of the 
described embodiments. The terminology used herein was 
chosen to best explain the principles of the embodiments, the 
practical application or technical improvement over tech­
nologies found in the marketplace, or to enable others of 
ordinary skill in the art to understand the embodiments 
disclosed herein. 

20 
value stored by the second crosspoint device and the 
voltage pulses from the input data, the second cros­
spoint device being at an intersection of a second row 
wire of the crosspoint array and a second colunm wire 
of the crosspoint array; and 

What is claimed is: 10 

passing the second output electric current from the second 
crosspoint device to a second corresponding integrator 
of the corresponding integrators, where the second 
corresponding integrator is physically more proximate 
to said first colunm wire than to the second colunm wire 
of the crosspoint array, and is electrically coupled to 1. A computer implemented method for implementing a 

convolutional neural network (CNN) using a crosspoint 
array, the method comprising: 

configuring the crosspoint array, the crosspoint array 
corresponding to a convolution layer in the CNN, by 
storing one or more convolution kernels of the convo­
lution layer in a plurality crosspoint devices of the 
crosspoint array; and 

performing computations for the CNN via the crosspoint 
array by: 
transmitting voltage pulses corresponding to a vector of 

input data of the convolution layer to the crosspoint 
array; 

said second colunm wire of the crosspoint array in 
order to receive said second electric current. 

4. The computer implemented method of claim 1, wherein 
15 the corresponding integrators are selected by the output 

controller, based on a mode signal that maps the output 
electric current from the crosspoint devices to the selected 
integrators. 

5. The computer implemented method of claim 1, wherein 
20 the crosspoint devices are arranged to implement one or 

more colunms of the convolution kernels of a given layer of 
the CNN, and wherein the vector of input data represents 
neuron excitations to the given layer of the CNN presented 

outputting an electric current representative of per­
forming a multiplication operation at each crosspoint 25 

device in the crosspoint array, the electric current 
based on a weight value stored by each crosspoint 
device and the voltage pulses from the input data; 
and 

from the input data, one row at a time. 
6. The computer implemented method of claim 5, wherein 

a charge held by the each corresponding integrator repre­
sents an output excitation of the colunm to which the 
corresponding integrator corresponds according to the given 
layer of the CNN, the output excitation being converted and 

passing the output electric current from crosspoint 
devices from at least three colunms of the crosspoint 
array to corresponding integrators selected from a set 
of integrators where each integrator in the set of 
integrators corresponds to multiple colunms of the at 
least three colunms and is electrically switchable 
between the multiple colunms of the at least three 
colunms so as to aggregate current from one of the 
multiple colunms of the at least three columns during 
a single time step, wherein the corresponding inte­
grators are selected by an output controller that maps 
the output electric current from the at least three 
colunms to selected integrators and that switches 
which colunm of the multiple colunms of the at least 
three columns each integrator in the set of integrators 

30 transmitted only after all rows of said convolution kernels 
are integrated. 

7. The computer implemented method of claim 1, wherein 
the crosspoint devices are arranged to implement one or 
more rows of the convolution kernels of a given layer of the 

35 CNN, and wherein the vector of input data represents neuron 
excitations to the given layer of the CNN presented one 
colunm at a time. 

8. The computer implemented method of claim 7, wherein 
a charge held by the each corresponding integrator repre-

40 sents an output excitation of the colunm to which the 
corresponding integrator corresponds according to the given 
layer of the CNN, the output excitation being converted and 
transmitted only after all colunms of said convolution ker-
nels are integrated. 

is connected to between time steps, wherein the 45 

selected integrators are capacitors, and wherein the 
output electric current from crosspoint devices from 
each of the at least three colunms of the crosspoint 
array is passed to the corresponding integrators 
within a common time step. 50 

9. An electronic circuit for performing computations of a 
trained convolutional neural network (CNN), the electronic 
circuit comprising: 

a crosspoint array; and 
an output circuit comprising one or more integrators; 

wherein performing the computations of the trained 
CNN comprises: 2. The computer implemented method of claim 1, wherein 

the output electric current is generated by a crosspoint 
device, the crosspoint device being at an intersection of a 
first row wire of the crosspoint array and a first colunm wire 
of the crosspoint array, and a first corresponding integrator 55 

of the corresponding integrators is physically more proxi­
mate to a second colunm wire than to the first colunm wire 
of the crosspoint array, and is electrically coupled to said 
first colunm wire of the crosspoint array in order to receive 
said output electric current. 

3. The computer implemented method of claim 1, wherein 
the output electric current is a first output electric current 
from a first crosspoint device that is at an intersection of a 
first row wire of the crosspoint array and a first colunm wire 
of the crosspoint array, the method further comprising: 

outputting a second electric current by a second cros­
spoint device in the crosspoint array, based on a weight 

60 

65 

the crosspoint array configured to be a convolution 
layer in the CNN by storing one or more convolution 
kernels of the convolution layer in one or more 
crosspoint devices of the crosspoint array, and to 
perform computations for the CNN via the cros-
spoint array, the electronic circuit further comprises 
an input circuitry comprising at least a support 
circuitry, a shared circuitry, and a row circuitry, the 
row circuitry including hardware components asso­
ciated with each row wire and wherein the electronic 
circuit is configured to: 
transmit, by the input circuitry, to the crosspoint 

array, voltage pulses corresponding to a vector of 
input data of the convolution layer; 

output an electric current representative of perform­
ing a multiplication operation at each crosspoint 
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device in the crosspoint array, the electric current 
based on a weight value stored by each crosspoint 
device and the voltage pulses from the input data; 
and 

pass the output electric current from crosspoint 
devices from multiple colunms of the crosspoint 
array from the output circuit to corresponding 
integrators selected from a set of integrators, 
where each corresponding integrator corresponds 

10 

22 
14. The electronic circuit of claim 13, wherein a charge 

held by the selected integrators represents an output exci­
tation according to the given layer of the CNN, the output 
excitation is converted and transmitted only after all rows of 
said convolution kernels are integrated. 

15. The electronic circuit of claim 9, wherein the cros­
spoint devices are arranged to implement one or more rows 
of the convolution kernels of a given layer of the CNN, and 
wherein the vector of input data represents neuron excita-
tions to the given layer of the CNN presented from the input 
data, one colunm at a time. 

to at least three colunms of the multiple colunms 
and is electrically switchable between the at least 
three colunms of the multiple colunms so as to 
aggregate current from one of the at least three 
colunms of the at multiple colunms during a single 
time step, wherein each corresponding integrator 
is selected by an output controller that maps the 
output electric current from the at least three 
colunms to selected integrators and that switches 
which colunm of the at least three colunms of the 
multiple columns each integrator in the set of 20 

integrators is connected to between time steps, 
wherein the corresponding integrators are capaci­
tors, and wherein the output electric current from 
crosspoint devices from each of the multiple col­
umns of the crosspoint array is passed to the 25 

corresponding integrators within a common time 
step. 

16. The electronic circuit of claim 15, wherein a charge 
he!~ b~ each corresponding integrator represents an output 

15 
exc1tat10n of the colunm to which the corresponding inte­
grator corresponds according to the given layer of the CNN, 
the output excitation is converted and transmitted only after 
all columns of said convolution kernels are integrated. 

10. The electronic circuit of claim 9, wherein the output 
electric current is generated by a crosspoint device at an 
intersection of a first row wire of the crosspoint array and a 30 

first colunm wire of the crosspoint array, wherein a first 
corresponding integrator, of the corresponding integrators is 
physically more proximate to a second colunm wire than to 
the first column wire of the crosspoint array, yet is electri­
cally coupled to said first colunm wire of the crosspoint 35 

array in order to receive said output electric current. 
11 .. The electr?nic circuit of claim 9, wherein the output 

electnc current 1s a first output electric current, the cros­
spoint devices include a first crosspoint device that is at an 
intersection of a first row wire of the crosspoint array and a 40 

first colunm wire of the crosspoint array, wherein the elec­
tronic circuit is further configured to: 

output a second electric current by a second crosspoint 
device in the crosspoint array based on a weight value 
stored by the second crosspoint device and the voltage 45 

pulses from the input data, the second crosspoint device 
being at an intersection of a second row wire of the 
crosspoint array and a second colunm wire of the 
crosspoint array; and 

pass the second output electric current from the second 50 

crosspoint device to a second corresponding integrator 
of the corresponding integrators, where the second 
corresponding integrator is physically more proximate 
to said first colunm wire than to the second column wire 
of_ the crosspoint array, yet is electrically coupled to 55 

said second column wire of the crosspoint array in 
order to receive said second electric current. 

12. The electronic circuit of claim 9, wherein the corre­
sponding integrators are selected by the output controller 
based on a mode signal that maps the output electric current 60 

from the crosspoint devices to the selected integrators. 
13. The electronic circuit of claim 9, wherein the cros­

spoint devices are arranged to implement one or more 
colunms of the convolution kernels of a given layer of the 
CNN, and wherein the vector of input data represents neuron 65 

excitations to the given layer of the CNN presented from the 
input data, one row at a time. 

17. An electronic circuit comprising: 
an array of resistive memory elements, the array provid-

ing a vector of current outputs equal to an analog 
~ector-matrix-product between (i) a vector of voltage 
mputs to the array encoding a vector of analog input 
values and (ii) a matrix of analog resistive weights 
within the array; 

accumulation wires and circuits aggregating a current 
from a dedicated subset of the resistive memory ele­
ments; 

integration capacitors, each of the integration capacitors 
being electrically switchable so as to aggregate current 
from a plurality of accumulation wires with at least two 
of the integration capacitors being configured to aggre­
gate current from corresponding sets of at least three 
accumulation wires, the plurality of accumulation wires 
selected using a mode signal, and the plurality of 
accumulation wires selected being changed between 
time steps; 

data-output circuitry to allow an integrated charge from a 
subset of the integration capacitors, accumulated over 
a plurality of integration steps, to be suitably converted 
and transmitted either as an analog duration or as a 
digital representation using binary digits; 

wherein the resistive memory elements are arranged so as 
to implement columns of weight kernels of a given 
layer of a convolutional neural network-

wherein accumulation over the plurality 'of integration 
steps implements multiply-accumulate operations 
across multiple rows of said weight kernels, as input 
neuron excitations to the said layer of the convolutional 
neural network are presented one row at a time; 
wherein the integrated charge representing an output 
excitation is suitably converted and transmitted only 
after all rows of said weight kernels are fully inte­
grated; and 

wherein the integrated charge on a plurality of capacitors 
representing a plurality of output excitations is suitably 
converted and a suitable pooled result comprising at 
least one of a maximum, a sum, or an average of the 
said plurality of output excitations is computed locally 
and then transmitted, only after all relevant weight 
kernels are fully integrated. 

18. The electronic circuit of claim 17, wherein the resis­
tive memory elements are non-volatile memory devices. 

19. The electronic circuit of claim 17, wherein the resis­
tive memory elements store synaptic weights of a neural 
network. 

* * * * * 


