
c12) United States Patent
Burr et al.

(54) EFFICIENT PROCESSING OF
CONVOLUTIONAL NEURAL NETWORK
LAYERS USING ANALOG-MEMORY-BASED
HARDWARE

(71) Applicants:INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US); THE
UNIVERSITY OF CHICAGO,
Chicago, IL (US)

(72) Inventors: Geoffrey Burr, Cupertino, CA (US);
Benjamin Killeen, St. Louis, MO (US)

(73) Assignees: International Business Machines
Corporation, Armonk, NY (US); The
University of Chicago, Chicago, IL
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1045 days.

This patent is subject to a terminal dis­
claimer.

(21) Appl. No.: 16/363,463

(22) Filed:

(65)

Mar. 25, 2019

Prior Publication Data

(60)

(51)

(52)

US 2020/0117986 Al Apr. 16, 2020

Related U.S. Application Data

Provisional application No. 62/745,132, filed on Oct.
12, 2018.

Int. Cl.
G06F 17116
G06F 71544

U.S. Cl.

(2006.01)
(2006.01)

(Continued)

CPC G06F 17116 (2013.01); G06F 715443
(2013.01); G06F 17115 (2013.01); G06G 7116

(2013.01); G06N 3/065 (2023.01)

Time-step 3

520

:.,,.:",,,,,~",/pl,,,•,:'I.J<,.o_,.

I 1111111111111111 111111111111111 11111 11111 11111 11111 11111 111111111111111111
USO 12111878B2

(IO) Patent No.: US 12,111,878 B2
(45) Date of Patent: *Oct. 8, 2024

(58) Field of Classification Search
CPC G06F 17/16; G06F 17/15; G06F 17/153;

G06F 7/5443; G06N 3/065; G06N
3/0635; G06G 7/16-164

See application file for complete search history.

(56) References Cited

CN
CN

U.S. PATENT DOCUMENTS

9,646,243 Bl * 5/2017 Gokmen G06N 3/08
10,216,703 B2 * 2/2019 Gupta G06F 17/16

(Continued)

FOREIGN PATENT DOCUMENTS

107424647 A
108182471 A

12/2017
6/2018

(Continued)

OTHER PUBLICATIONS

C. Yakopcic, M. Z. Alom and T. M. Taha, "Menuistor crossbar deep
network implementation based on a Convolutional neural network,"
2016 International Joint Conference on Neural Networks (IJCNN),
2016, pp. 963-970, doi: 10.1109/IJCNN.2016.7727302. (Year: 2016).*

(Continued)

Primary Examiner - Andrew Caldwell
Assistant Examiner - Carlo Waje
(74) Attorney, Agent, or Firm - CANTOR COLBURN
LLP; Daniel Yeates

(57) ABSTRACT

According to one or more embodiments, a computer imple­
mented method for implementing a convolutional neural
network (CNN) using a crosspoint array includes configur­
ing the crosspoint array corresponding to a convolution layer
in the CNN by storing one or more convolution kernels of
the convolution layer in one or more crosspoint devices of
the crosspoint array. The method further includes perform­
ing computations for the CNN via the crosspoint array by
transmitting voltage pulses corresponding to a vector of
input data of the convolution layer to the crosspoint array.

(Continued)

US 12,111,878 B2
Page 2

Performing the CNN computations further includes output­
ting an electric current representative of performing a mul­
tiplication operation at a crosspoint device in the crosspoint
array based on a weight value stored by the crosspoint
device and the voltage pulses from the input data. Perform­
ing the CNN computations further includes passing the
output electric current from the crosspoint device to a
selected integrator.

19 Claims, 12 Drawing Sheets

(51) Int. Cl.
G06F 17115 (2006.01)
G06G 7116 (2006.01)
G06N 3/065 (2023.01)

(56) References Cited

U.S. PATENT DOCUMENTS

10,332,004 Bl 6/2019 Kataeva et al.
10,825,509 Bl* 11/2020 Sumbul. GllC 7/1006

2017/0011290 Al 1/2017 Taha et al.
2017/0169327 Al 6/2017 Nestler et al.
2017 /0200078 Al 7/2017 Bichler
2018/0046916 Al 2/2018 Dally et al.
2018/0096226 Al 4/2018 Aliabadi et al.
2018/0253643 Al * 9/2018 Buchanan H03M 1/1245
2018/027 5909 Al 9/2018 Agrawal et al.
2019/0012296 Al 1/2019 Hsieh et al.
2019/0080231 Al 3/2019 Nestler et al.
2019/0102359 Al* 4/2019 Knag G06G7/16
2019/0205741 Al 7/2019 Gupta et al.
2019/0340508 Al* 11/2019 Liu G06N3/08
2020/0020393 Al* 1/2020 Al-Shanuna . GllC 16/10
2020/007 5677 Al* 3/2020 Wada GllC 13/0028
2020/0082252 Al* 3/2020 Ge G06N 3/0635
2020/0342301 Al* 10/2020 Miao. G06N 3/0454
2021/0374514 Al 12/2021 Tsai et al.

FOREIGN PATENT DOCUMENTS

CN 109524039 A 3/2019
EP 1345161 Al 9/2003

OTHER PUBLICATIONS

M. Nourazar, et al. "Code Acceleration Using Mernristor-Based
Approximate Matrix Multiplier: Application to Convolutional Neu­
ral Networks," in IEEE Transactions on Very Large Scale Integra­
tion (VLSI) Systems, vol. 26, No. 12, pp. 2684-2695, Jun. 6, 2018,
doi: 10.1109/TVLSI.20 (Year: 2018).*
L. Gao, P. Chen and S. Yu, "Demonstration of Convolution Kernel
Operation on Resistive Cross-Point Array," in IEEE Electron Device
Letters, vol. 37, No. 7, pp. 870-873, Jul. 2016, doi: 10.1109/LED.
2016.2573140. (Year: 2016).*
Cho, Hwasuk, et al., "An On-Chip Learning NeuromorphicAutoencoder
With Current-Mode Transposable Memory Read and Virtual Lookup
Table," IEEE Transactions on Biomedical Circuits and Systems,
vol. 12, No. 1, 2018, pp. 161-170.
Lee, Edward H., et al., "Analysis and Design of a Passive Switched­
Capacitor Matrix Multiplier for Approximate Computing," IEEE
Journal of Solid-State Circuits 52, No. 1, 2017, pp. 261-271.
Shafiee, Ali, et al., "ISAAC: A Convolutional Neural Network
Accelerator with In-Situ Analog Arithmetic in Crossbars," ACM
SIGARCH Computer Architecture News 44, No. 3, 2016, pp. 14-26.
International Search Report and Written Opinion Issued in Interna­
tional Application No. PCT/IB2021/054105 mailed Aug. 24, 2021;
9 Pages.
Tsai et al.; "Efficient Tile Mapping for Row-by-Row Convolutional
Neural Network Mapping for Analog Artificial Intelligence Metwork
Inference"; U.S. Appl. No. 18/061,074, filed Dec. 2, 2022.
Valavi et al.; "A Mixed-Signal Binarized Convolutional-Neural­
Network Accelerator Integrating Dense Weight Storage and Multi­
plication for Reduced Data Movement"; 2018 IEEE Symposium on
VLSI Circuits; 2018; pp. 141-142.
List of IBM Patents or Patent Applications Treated as Related; Date
Filed: Jan. 31, 2023, 2 pages.
He, et al, "Deep Residual Learning for Image Recognition", arXiv
preprint, 2015, 12 pages.
Johnson, Justin, "Cnn-Benchmarks: Benchmarks for Popular CNN
Models" https:// github.corn/jcjohnson/cnn-benchmarks, (Retrieved:
May 1, 2024), 9 pages.
Krizhevsky, et al, "IrnageNet Classification with Deep Convolu­
tional Neural Networks", http://papers.nips.cc/paper/4824-imagenet­
classification-with-deep[1]convolutional-neural-networks. p, (Retrieved:
May 1, 2024), pp. 1-9.
Simonyan, et al, "Very Deep Convolutional Networks for Large­
Scale Image Recognition" arXiv preprint, 2015, 14 pages.

* cited by examiner

U.S. Patent Oct. 8, 2024 Sheet 1 of 12 US 12,111,878 B2

RESULT
216

F!G. 2

U.S. Patent

Y2~F!X2}
Y:3= F(X3}

Oct. 8, 2024

Y 4 ~ f{Tu1i <1{1 ~ t.1:S<Y2 ~ ·M\9~Y3)
YS ~ F{t~~y-; 3/ tf:W-Y2-+ t1:1€YY3}
Y€ :: f/MJ'Y1 + M7'Y2-+ MWY3)
Y7:: f1MfY1 + MZ'Y2-+ M12'Y3)

Sheet 2 of 12 US 12,111,878 B2

Y6::: f ,\iH'Y4 • M15'Y5 • MWY6 ➔ Ml9'Y1J
yg ::c F(MH •14 + MWY:S + M13'Y6 + M1WY7)

FIG. 3

1V'

LO (Input)

512~512
400

/,.,,
./

I
-.......,
~

Convolution Fully connected

,~I~,~ •,'-... / L __ }/1 k\\11'-i
I\ \.J 'f\ ~ ;''0f

L._

• •
•

\ 1'.. □·•·1~ t,, \/ +. \ J , I " ~v ~ \/ ___, y' w ~t~~
!\7' \rit ~ .. ¼ft~
f V \I\ ' /!,j ,

~------ I • • ' /\ ' '}, ' f L___.!:::: ... : .. ::::.::::::i:•···:::.
/, /\ • A/ v H,'~x (
(I \ • I I\ l\ I',} V ' \ I• ' ■ r:'' , \ l ! 't \ • 11!-. \~

l , (l \ t f,! 1 ~ \\ I ~ □1/ !\ \ • 1;11/l,\
I \ ~'!/ \',•

1

! \~□ti\\\
~-----~ ;_:.r i , ,

Ll
256x256

J10

L2
128~128

420

FIG.4

L3 L4

64x~4 32x~2
430 440

ES F6

Jso (Out~ut)
460

e .
00 .
~
~
~
~ = ~

0
(') ...

s~>
N
0
N
.i;...

rJ'1
=­('D
('D
(,H

0
N

d
r.,;_

"'""' ...,N

"'""'
"'""'
"'""' 00
-....l
00

= N

500~

Input Maps 510 * Convolution Kernels 520 + Bias 525 => Output Maps 530

D input maps

ff;.{{-:J}'@:l
-',;$;:;JJ;.{;?";:1

~ . NxMxD
Input neurons

The input is a set of D maps,
Each map is a matrix of size (N x
M) pixels divided into pieces of
size (k x k).

INPUT

F filters

~fk
+--+

k

Trainable Parameters

FIG. 5

Output Maps

.. _;.:::;:-.-::,.-:._..,:.,....:,.,·._,

...................,,, . ._,,,. .. _.,.-.. _._ _ _.,.-.. _._,__._.,.,,,,. . ..,
-.......·v·v·✓••./'•·-,.,..,-·•......_ •. ·• • .,r• •• A •••_ ••_•v·v·v ·-.....-Vv-.v-....,-.,_,. • .,_ • .-....,..,,..._ .. -.. _ . .-....,......,__.-.....,..-..,;,-. . .,, .. __.,. . ._......_._,..-.._ ,·v•.-• -.__,. • ..,_.,.,._r•v·....---.....-.v·
.•• _.,.-•• _..-.._ •• -.._.•'-,.•V"V•-..,1

~--:;:;..,~::;:..:::;:.::;:..--:::;.--::;
...._..v·v·✓·•/·•-A •• •-......• ,.,_,,..._,.·-._ • .-....,..-..._..-Vv-.v
........ Vv .. ,/'./"• ... ·-._ . .-....,. _,,. •. _.,.,.✓---.....-.._, .
··✓•._.---._..-.._,..,_ ,,. •. _._,_..,,, . ._,,,. .. _.,.-.. _._ _ ... -.. _.,.:,_.--;._.--:,_ . ._........,..::,...,-:-../..··

N'xM'xF
Output neurons

The output is a set of
corresponding maps.

OUTPUT

e .
00 .
~
~
~
~ = ~

0
(') ...

s~>
N
0
N
.i;...

rJJ
=­('D
('D
.i;...

0
N

d
r.,;_

"'""' "'N

"'""'
"'""'
"'""' 00
-....l
00

= N

U.S. Patent

0
0
I..O

N

Oct. 8, 2024 Sheet 5 of 12 US 12,111,878 B2

co
(9

LL

;::::~;.:~; · ;:; ,i::: i::. :i-::· ::;:')

700 ~

{::::1i

712

714

I
I
I
I
I
I
I
I
I

716

Crossbar
.... lMIII,.....,.,..._..,,.,

•••e1r·rc.1y
I:: •••

•• 705 I,, ··········•·····'·····•···········
I • • • •
I ··········•·····•·····•···········•
i

:Ullllllllllllll
, 1 C?IUf!lO

s.uppprt-·-r ~\c1rcu1try 726
c1rcu1try '" - - - - - ~- - - - - - _____ 1 ·

722 Output Circuitry 720 724

FIG. 7

e .
00 .
~
~
~
~ = ~

0
(') ...

s~>
N
0
N
.i;...

rJJ
=­('D
('D
O'I

0
N

d
rJl.

"'""' "'N

"'""'
"'""'
"'""' 00
-....l
00

= N

U.S. Patent Oct. 8, 2024 Sheet 7 of 12

Lf)

0 ,......

t~-.s
«.-.-.·~ ,:,;;.)_., ,.. ,,+ .. ,

::.,-;~
~-"·-·

N

>~-/
~~

!-,,
i,s..,;

j0 l
·~".'°;:: !
<':'.:.'.> ,,,,,

,··· !

3

~
'··~···1

! !

+

/
n1 l ·ic•/

f r l

.,
. !

«W•H~

US 12,111,878 B2

a:)

<.9
LL

U.S. Patent Oct. 8, 2024 Sheet 8 of 12 US 12,111,878 B2

0
N

I

__ £,
-3· I

<::I" <::I"~
rl rl I 00 0"1 0)

I
(9 M I

N N f----i- LL
rl rl 00 0"1 I

N
I

0
~

rl o I
00 rl

0"1

r< I I

I ~ 00
0 I

00
0 00 0"1

I - - - - ...

510

D input Pfane,

520

k x }: we;ght',/;)!&n~/ti!ter

•

•·.! ... ··' ... •·.·'.··.···.···: ... •.·.•.''.•.··.·••=.0· .. •.)·•··.·i} r < •.·.··½6 r ;&IA[aJ s22

4Wlf~

l'q!;M.fdjb ... }
,&.%S.;!is.ll tfA=AfA! 524

0 , ··lt}bt~j =

fllli} ;~~11 526

~JtrMi '•·•·:::: , 4} rar,a 528
1-,rnj1,t~~l

530
516~ ,

F output Planes

514

512

FIG.10

524 526 528

II I I I i ,
":I(': ,

·- i
~m.'"'.t. IAL~~~

®ct&~
908 910 912 914

100 I

I

e .
00 .
~
~
~
~ = ~

0
(') ...

s~>
N
0
N
.i;...

rJJ
=­('D
('D
1,0

0
N

d
rJl.

"'""' "'N

"'""'
"'""'
"'""' 00
-....l
00

= N

Time-step 1

510

0 input Planes
51,-

520

w,,ights/p!an;,/filte<'

l't£JfilL }
;\•.'·?·,·'•'·;•,$·.'.".• .. • '.·'.."K .• ,.. 522 C Y,~}4.~
!1tf~. l A.w. ,. · .. ,,

.. ;;; .• }
W •. •.•·.•.·•.• .. '..·:•.·.··.·•.· .. ··•: .. · .. ·.·~ ... ;• .. :.•.·.·•: ... •: .. ·· .. ·.•: •.··•.·: .. ··.· ... •:.·• .. ··J 524 c .. ;A,&Al

0 :t~'.t#I =

lf·J

11,·•··.•}., .. •·.• .. ;·.·.•j.· .• ··•••·.L••·.,} Ji;Sl~l 526
C A.A .J

B .1rf'f{ . : A·"-'•,. ,,

I
I ,J
<<.< ; }
:pjQQ
AJA ; s2s

C .:#f# .. ·•· A'··-.,

530

f otstpvt Planes

-- . ·1 · ·•··•· •-· ···• ·•·· > .•. 700 '

W'1~- 5268

-lf:I~;;J~t-=:J
FIG. 11 -,--r--....,..... ..,...

908 910 912 914

e .
00 .
~
~
~
~ = ~

0
(') ...

s~>
N
0
N
.i;...

rJJ
=­('D
('D
0

0
N

d
rJl.

"'""' "'N

"'""'
"'""'
"'""' 00
-....l
00

= N

Time-step 2

510

D input Pl.me,

512

520

k , k: w,;,ighb/p!;ir,e/!i!tf,r

r••i.L;;}r1•=.::=,.}
.~ ... •• .. i.0·:·•·:J .. •·, •.. ·,.•·,.•·, •. •.•; .•.. :•·.•·.1· .. •· ... ! .. o, ... , •· ... • s22 ;..:-•A/4

C ~hj!ii , ,
i,.T%L ··

c~\i\, } 524

0 rr>k '!:: :

iL.l···t.·.;·~·.•'.·.~.•·.•: J.::.:;;+:= } 526
C'"-"i••"'+·­
BA·# :
i : > :
u .•..• : ... 1·.· .. ·.QJ:•·.·.•·.·.0.

0
·.•1j· .. ◊.··.•)·:·.: .• •.} d.tJffjl .,., .,., 528

sz~ ftm,

530

F output Planes

FIG.12

516-B

700

I
wt"WIII '. <}· :· .-::::.·· i"·>·: i

512-B

D i,

,,,_,..,.,,,.,,L:;:J>, •.... ·•·· . ,J
/\ ~-,-..,..... -,-

908 910 912 914

e .
00 .
~
~
~
~ = ~

0
(') ...

s~>
N
0
N
.i;...

rJJ
=­('D
('D
0
N

d
rJl.

"'""' "'N

"'""'
"'""'
"'""' 00
--..l
00

= N

Time-step 3

510

D input Pl.me,

520

k , k: w,;,ighb/p!;ir,e/!i!tf,r

r••i.L;;}i•=.::=,.}
.~ ... •• .. i.0·:·•·:J .. •·, •.. ·,.•·,.•·, •. •.•; .•.. :•·.•·.1· .. •· ... ! .. o, ... , •· ... • s22 ;..:-•A/4

C ~hj!ii , ,
i,.T%L ··

c~\i\, } 524

0 rr>k '!:: :

iL.l···t.·.;·~·.•'.·.~.•·.•: J.::.:;;+:= } 526
C'"-"i••"'+·­
BA·# :
i : > :
u .•..• : ... 1·.· .. ·.QJ:•·.·.•·.·.0.

0
·.•1j· .. ◊.··.•)·:·.: .• •.} d.tJffjl-,., .,., 528

sz~ ftm,

530

F output Planes

FIG.13
r·-·"".--- _ /l! 8,

.,... ""T'" .,...
908 910 912 914

e .
00 .
~
~
~
~ = ~

0
(') ...

s~>
N
0
N
.i;...

rJJ
=­('D
('D
N
0
N

d
rJl.

"'""' "'N

"'""'
"'""'
"'""' 00
--..l
00

= N

US 12,111,878 B2
1

EFFICIENT PROCESSING OF
CONVOLUTIONAL NEURAL NETWORK

LAYERS USING ANALOG-MEMORY-BASED
HARDWARE

CROSS-REFERENCE TO RELATED
APPLICATIONS

2
of a trained convolutional neural network (CNN) includes a
crosspoint array, and an output circuit that includes one or
more integrators. Performing the computations of the trained
CNN comprises performing a method that includes config­
uring the crosspoint array(s) corresponding to a convolution
layer in the CNN by storing one or more convolution kernels
of the convolution layer in one or more crosspoint devices
of each crosspoint array. The method further includes per-

This patent application claims priority to U.S. Provisional
Patent Application Ser. No. 62/745, 132, filed Oct. 12, 2018, 10

which is incorporated herein by reference in its entirety.

forming computations for the CNN via the crosspoint array
by transmitting voltage pulses corresponding to a vector of
input data of the convolution layer to the crosspoint array.

BACKGROUND

The present invention relates in general to novel configu­
rations of resistive crosspoint devices, which are referred to
herein as resistive processing units (RPUs). More specifi­
cally, the present invention relates to performing operations

Performing the CNN computations further include output­
ting an electric current representative of performing a mul­
tiplication operation at a crosspoint device in the crosspoint

15 array based on a weight value stored by the crosspoint
device and the voltage pulses from the input data. Perform­
ing the CNN computations further include passing the
output electric current from the one or more crosspoint

of convolutional neural network layers using such crosspoint
devices in crossbar arrays, such as in analog-memory-based 20

hardware.

devices to a selected integrator.
According to one or more embodiments of the present

invention, an electronic circuit includes an array of resistive
memory elements. The array provides a vector of current
outputs equal to an analog vector-matrix-product between (i)
a vector of voltage inputs to the array encoding a vector of

Technical problems such as character recognition and
image recognition by a computer are known to be well
handled by machine-learning techniques. "Machine learn­
ing" is used to broadly describe a primary function of
electronic systems that learn from data. In machine learning
and cognitive science, neural networks are a family of
statistical learning models inspired by the biological neural
networks of animals in particular, the brain. Neural networks
can be used to estimate or approximate systems and func­
tions that are generally unknown and depend on a large
number of inputs. Neural networks use a class of algorithms
based on a concept of inter-connected "neurons." In a typical
neural network, neurons have a given activation function
that operates on the inputs. By determining proper connec­
tion weights (a process also referred to as "training"), a
neural network achieves efficient recognition of a desired
patterns, such as images and characters. Oftentimes, these
neurons are grouped into "layers" to make connections
between groups more obvious and to organize the compu­
tation process. With these proper connection weights, other
patterns of interest that have never been seen by the network
during training can also be correctly recognized, a process
known as "Forward Inference."

SUMMARY

According to one or more embodiments, a computer
implemented method for implementing a convolutional neu­
ral network (CNN) using a crosspoint array or arrays
includes configuring the crosspoint array(s) corresponding

25 analog input values and (ii) a matrix of analog resistive
weights within the array. The electronic circuit further
includes accumulation wires and circuits aggregating a
current from a dedicated subset of the resistive memory
elements. The electronic circuit further includes integration

30 capacitors, each of the integration capacitors being electri­
cally switchable so as to aggregate current from one of a
plurality of accumulation wires during a single integration
step. The electronic circuit further includes data-output
circuitry to allow an integrated charge from a subset of the

35 integration capacitors, accumulated over a plurality of inte­
gration steps, to be suitably converted and transmitted either
as an analog duration or as a digital representation using
binary digits.

It is to be understood that the technical solutions are not
40 limited in application to the details of construction and to the

arrangements of the components set forth in the following
description or illustrated in the drawings. The technical
solutions are capable of embodiments in addition to those
described and of being practiced and carried out in various

45 ways. Also, it is to be understood that the phraseology and
terminology employed herein, as well as the abstract, are for
the purpose of description and should not be regarded as
limiting. As such, those skilled in the art will appreciate that
the conception upon which this disclosure is based may

50 readily be utilized as a basis for the designing of other
structures, methods and systems for carrying out the several
purposes of the presently described technical solutions. to a convolution layer in the CNN by storing one or more

convolution kernels of the convolution layer in one or more
crosspoint devices of each crosspoint array. The method
further includes performing computations for the CNN via 55

the crosspoint array by transmitting voltage pulses corre­
sponding to a vector of input data of the convolution layer

BRIEF DESCRIPTION OF THE DRAWINGS

The examples described throughout the present document
will be better understood with reference to the following
drawings and description. The components in the figures are
not necessarily to scale. Moreover, in the figures, like­
referenced numerals designate corresponding parts through­
out the different views.

to the crosspoint array. Performing the CNN computations
further include outputting an electric current representative
of performing a multiplication operation at a crosspoint 60

device in the crosspoint array based on a weight value stored
by the crosspoint device and the voltage pulses from the
input data. Performing the CNN computations further
include passing the output electric current from the one or
more crosspoint devices to a selected integrator.

According to one or more embodiments of the present
invention, an electronic circuit for performing computations

FIG. 1 depicts a simplified diagram of input and output
connections of a mathematical neuron;

FIG. 2 depicts a simplified model of the mathematical
65 neuron shown in FIG. 1;

FIG. 3 depicts a simplified model of an ANN incorporat­
ing the mathematical neuron model shown in FIG. 2;

US 12,111,878 B2
3

FIG. 4 illustrates a simplified block diagram of a repre­
sentative CNN, which is interpreting a sample input map;

FIG. 5 illustrates an example convolutional layer in a
CNN being trained using training data that include input
maps and convolution kernels;

FIG. 6 depicts a system for performing a matrix-matrix
multiplication using a crossbar array according to one or
more embodiments of the present invention;

4

FIG. 7 depicts a two-dimensional (2D) crossbar system
that performs forward matrix multiplication, backward 10

matrix multiplication, and weight updates according to the
present description;

high density, low cost circuit architectures used to form a
variety of electronic circuits and devices, including ANN
architectures, neuromorphic microchips and ultra-high den­
sity nonvolatile memory. A basic crossbar array configura­
tion includes a set of conductive row wires and a set of
conductive column wires formed to intersect the set of
conductive row wires. The intersections between the two
sets of wires are separated by so-called crosspoint devices,
which can be formed from thin film material.

Crosspoint devices, in effect, function as the ANN's
weighted connections between neurons. Nanoscale two­
terminal devices, for example memristors having "ideal"
conduction state switching characteristics, are often used as
the crosspoint devices in order to emulate synaptic plasticity
with high energy efficiency. The conduction state (e.g.,
resistance) of the ideal memristor material can be altered by

FIG. 8 depicts an expanded view of the crossbar array
according to one or more embodiments;

FIG. 9 depicts a typical output circuitry in a crossbar 15

system;
FIG. 10 depicts existing operations to perform such

operations using the crossbar array;
FIG. 11 depicts performing CNN operations using selec­

tive integrators according to one or more embodiments;
FIG. 12 depicts performing CNN operations using selec­

tive integrators according to one or more embodiments; and
FIG. 13 depicts performing CNN operations using selec­

tive integrators according to one or more embodiments.

DETAILED DESCRIPTION

The technical solutions described herein facilitate effi­
cient implementation of deep learning techniques that use
convolutional neural networks. Deep learning techniques are
widely used in machine-based pattern recognition problems,
such as image and speech recognition. Deep learning inher­
ently leverages the availability of massive training datasets
(that are enhanced with the use of Big Data) and computing
power (that is expected to grow according to Moore's Law).

It is understood in advance that although one or more
embodiments are described in the context of biological
neural networks with a specific emphasis on modeling brain
structures and functions, implementation of the teachings
recited herein are not limited to modeling a particular
environment. Rather, embodiments of the present invention
are capable of modeling any type of environment, including
for example, weather patterns, arbitrary data collected from
the Internet, and the like, as long as the various inputs to the
environment can be turned into a vector.

ANNs are often embodied as so-called "neuromorphic"
systems of interconnected processor elements that act as
simulated "neurons" and exchange "messages" between
each other in the form of electronic signals. Similar to the
so-called "plasticity" of synaptic neurotransmitter connec­
tions that carry messages between biological neurons, the
connections in ANNs that carry electronic messages
between simulated neurons are provided with numeric
weights that correspond to the strength or weakness of a
given connection. The weights can be adjusted and tuned
based on experience, making ANNs adaptive to inputs and
capable of learning. For example, an ANN for handwriting
recognition is defined by a set of input neurons which can be
activated by the pixels of an input image. After being
weighted and transformed by a function determined by the
network's designer, the activations of these input neurons
are then passed to other downstream neurons, which are
often referred to as "hidden" neurons. This process is
repeated until an output neuron is activated. The activated
output neuron determines which character was read.

Crossbar arrays, also known as crosspoint arrays, cross­
wire arrays, or resistive processing unit (RPU) arrays, are

controlling the voltages applied between individual wires of
the row and colunm wires. Digital data can be stored by
alteration of the memristor material's conduction state at the

20 intersection to achieve a high conduction state, a low con­
duction state, or any intermediate conductance state in
between. The memristor material can also be programmed to
maintain one of these distinct conduction states-high, low,
or intermediate-by selectively setting the conduction state

25 of the material. The conduction state of the memristor
material can be read by applying a voltage across the
material and measuring the current that passes through the
target crosspoint device.

In order to limit power consumption, the crosspoint
30 devices of ANN chip architectures are often designed to

utilize oflline learning techniques, wherein the approxima­
tion of the target function does not change once the initial
training phase has been resolved. Oflline learning allows the
crosspoint devices of crossbar-type ANN architectures to be

35 simplified such that they draw very little power.
Providing simple crosspoint devices that can implement

Forward Inference of previously-trained ANN networks
with low power consumption, high computational through­
put, and low latency would improve overall ANN perfor-

40 mance and allow a broader range of ANN applications.
Although the present invention is directed to an electronic

system, for ease of reference and explanation various aspects
of the described electronic system are described using
neurological terminology such as neurons, plasticity and

45 synapses, for example. It will be understood that for any
discussion or illustration herein of an electronic system, the
use of neurological terminology or neurological shorthand
notations are for ease of reference and are meant to cover the
neuromorphic, ANN equivalent(s) of the described neuro-

50 logical function or neurological component.
ANNs, also known as neuromorphic or synaptronic sys­

tems, are computational systems that can estimate or
approximate other functions or systems, including, for
example, biological neural systems, the human brain and

55 brain-like functionality such as image recognition, speech
recognition, and the like. ANNs incorporate knowledge from
a variety of disciplines, including neurophysiology, cogni­
tive science/psychology, physics (statistical mechanics),
control theory, computer science, artificial intelligence, sta-

60 tistics/mathematics, pattern recognition, computer vision,
parallel processing and hardware (e.g., digital/analog/VLSI/
optical).

Instead of utilizing the traditional digital model of
manipulating zeros and ones, ANNs create connections

65 between processing elements that are substantially the func­
tional equivalent of the core system functionality that is
being estimated or approximated. For example, a computer

US 12,111,878 B2
5

chip that is the central component of an electronic neuro­
morphic machine attempts to provide similar form, function,
and architecture to the mammalian brain. Although the
computer chip uses the same basic transistor components as
conventional computer chips, its transistors are configured
to mimic the behavior of neurons and their synapse connec­
tions. The computer chip processes information using a
network of just over one million simulated "neurons," which
communicate with one another using electrical spikes simi­
lar to the synaptic communications between biological neu­
rons. The architecture of such a computer chip includes a
configuration of processors (i.e., simulated "neurons") that
read a memory (i.e., a simulated "synapse") and perform
simple operations. The communications between these pro­
cessors (pathways), which are typically located in different
cores, are performed by on-chip network routers.

As background, a general description of how a typical
ANN operates will now be provided with reference to FIGS.
1, 2, and 3. As previously noted herein, a typical ANN is a
mathematical model inspired by the human brain, which
includes about one hundred billion interconnected cells
called neurons. FIG. 1 depicts a simplified diagram of a
mathematical neuron 102 having pathways 104, 106, 108,
110 that connect it to upstream inputs 112, 114, downstream
outputs 116, and downstream "other" neurons 118, config­
ured and arranged as shown. Each mathematical neuron 102
sends and receives electrical impulses through pathways
104, 106, 108, 110. The nature of these electrical impulses
and how they are processed in biological neurons (not
shown) are primarily responsible for overall brain function­
ality. Mimicking this functionality is the intent of a math­
ematical ANN constructed from mathematical neurons 102
organized in a network. Just as the pathway connections
between biological neurons can be strong or weak, so can
the pathways between mathematical neurons. When a given
neuron receives input impulses, the neuron processes the
input according to the neuron's function and sends the result
of the function to downstream outputs and/or downstream
"other" neurons.

Mathematical neuron 102 is modeled in FIG. 2 as a node
202 having a mathematical function, f(x), depicted by the
equation shown in FIG. 2. Node 202 takes electrical signals
from inputs 212, 214, multiplies each input 212, 214 by the
strength of its respective connection pathway 204, 206, takes
a sum of the inputs, passes the sum through a function, f(x),
and generates a result 216, which can be a final output or an
input to another node, or both. In the present description, an
asterisk (*) is used to represent a multiplication, which can
be a matrix multiplication. For example, the matrix multi­
plication can be used to perform convolution operations
between input data and one or more convolution kernels to
generate output maps. Weak input signals are multiplied by

6
directed edges (e.g., ml to m20) connect the nodes. ANN
model 300 is organized such that nodes 302, 304, 306 are
input layer nodes, nodes 308, 310, 312, 314 are hidden layer
nodes, and nodes 316,318 are output layer nodes. Each node
is connected to every node in the adjacent layer by connec­
tion pathways, which are depicted in FIG. 3 as directional
arrows having connection strengths ml to m20. Although
only one input layer, one hidden layer, and one output layer
are shown, in practice, multiple input layers, hidden layers,

10 and output layers can be provided.
In this attempt to mimic the functionality of a human

brain, each input layer node 302, 304, 306 of ANN 300
receives inputs xl, x2, x3 directly from a source (not shown)
with no connection strength adjustments and no node sum-

15 mations. Accordingly, yl =f(xl), y2=f(x2) and y3=f(x3), as
shown by the equations listed at the bottom of FIG. 3. Each
hidden layer node 308, 310, 312, 314 receives its inputs
from all input layer nodes 302, 304, 306, according to the
connection strengths associated with the relevant connection

20 pathways. Thus, in hidden layer node 308, y4=f(ml *yl +
m5*y2+m9*y3), wherein * represents a multiplication. In
one or more examples, the multiplication can be a matrix
multiplication used to perform a convolution operation. A
similar connection strength multiplication and node summa-

25 tion is performed for hidden layer nodes 310, 312, 314 and
output layer nodes 316, 318, as shown by the equations
defining functions y5 to y9 depicted at the bottom of FIG. 3.

ANN model 300 processes data records one at a time, and
it "learns" by comparing an initially arbitrary classification

30 of the record with the known actual classification of the
record. Using a training methodology knows as "backpropa­
gation" (i.e., "backward propagation of errors"), the errors
from the initial classification of the first record are fed back
into the network and used to modify the network's weighted

35 connections the second time around, and this feedback
process continues for many iterations. In the training phase
of an ANN, the correct classification for each record is
known, and the output nodes can therefore be assigned
"correct" values, for example, a node value of"l" (or 0.9)

40 for the node corresponding to the correct class, and a node
value of "0" (or 0.1) for the others. It is thus possible to
compare the network's calculated values for the output
nodes to these "correct" values, and to calculate an error
term for each node (i.e., the "delta" rule). These error terms

45 are then used to adjust the weights in the hidden layers so
that in the next iteration the output values will be closer to
the "correct" values.

There are many types of neural networks, but the two
broadest categories are feed-forward and feedback/recurrent

50 networks. ANN model 300 is a non-recurrent feed-forward

a very small connection strength number, so the impact of a
weak input signal on the function is very low. Similarly,
strong input signals are multiplied by a higher connection 55

strength number, so the impact of a strong input signal on the
function is larger. The function f(x) is a design choice, and

network having inputs, outputs, and hidden layers. The
signals used for forward-inference can only travel in one
direction. Input data are passed onto a layer of processing
elements that perform calculations. Each processing element
makes its computation based upon a weighted sum of its
inputs. The new calculated values then become the new
input values that feed the next layer. This process continues
until it has gone through all the layers and determined the
output. A threshold transfer function is sometimes used to
quantify the output of a neuron in the output layer.

a variety of functions can be used. A typical design choice
for f(x) is the hyperbolic tangent function, which takes the
function of the previous sum and outputs a number between 60

minus one and plus one. An alternative design choice off(x)
is the ReLU or Rectified Linear Unit, a function in which the
output matches the input for positive inputs and is zero
otherwise.

FIG. 3 depicts a simplified ANN model 300 organized as 65

a weighted directional graph, wherein the artificial neurons
are nodes (e.g., 302, 308, 316), and wherein weighted

A feedback/recurrent network includes feedback paths,
which mean that the signals used for forward-inference can
travel in both directions using loops. All possible connec­
tions between nodes are allowed. Because loops are present
in this type of network, under certain operations, it can
become a non-linear dynamical system that changes con­
tinuously until it reaches a state of equilibrium. Feedback

US 12,111,878 B2
7

networks are often used in associative memories and opti­
mization problems, wherein the network looks for the best
arrangement of interconnected factors, and in the learning of
sequences of characters and/or words.

The speed and efficiency of machine learning in feed­
forward and recurrent ANN architectures depend on how
effectively the crosspoint devices of the ANN crossbar array
perform the core operations of typical machine learning
algorithms. Although a precise definition of machine learn­
ing is difficult to formulate, a learning process in the ANN 10

context can be viewed as the problem of updating the
crosspoint device connection weights so that a network can
efficiently perform a specific task. The crosspoint devices
typically learn the necessary connection weights from avail­
able training patterns. Performance is improved over time by 15

iteratively updating the weights in the network. Instead of
following a set of rules specified by human experts, ANN s
"learn" underlying rules (like input-output relationships)
from the given collection of representative examples.
Accordingly, a learning algorithm can be generally defined 20

as the procedure by which learning rules are used to update
and/or adjust the relevant weights.

The three main learning algorithm paradigms are super­
vised, unsupervised, and hybrid. In supervised learning, or
learning with a "teacher," the network is provided with a 25

correct answer (output) for every input pattern. Weights are
determined to allow the network to produce answers as close

8
NVM devices. Such NVM devices are also referred to as
RPU devices and crosspoint devices. The computation of
multiply-accumulate operations can be mathematically
described as vector-matrix multiplication between a vector
of neuron excitations and a dense matrix of weights. The
DNN computations for a Fully-Connected (FC) layer
include such multiply-accumulate operations and, accord­
ingly, using crossbar arrays to implement the FC layers of a
DNN is computationally efficient.

In one or more examples, DNN s used for feature detection
in input data include convolutional layers. Such DNNs are
commonly referred to as convolutional neural networks
(CNN). In a CNN, kernels convolute overlapping regions,
such as those in a visual field, and accordingly emphasize
the importance of spatial locality in feature detection. Com­
puting the convolutional layers of the CNN typically encom-
passes more than 90% of computation time in neural net­
work training and inference. Accelerating the forward­
inference of CNN networks and reducing the amount of
electrical power used, by performing the mathematical
operations of the convolutional layers efficiently and with a
minimum of extraneous data movement or computation, as
described by the examples of the technical solutions herein,
is a desirable improvement. As such the technical solutions
are rooted in and/or tied to computer technology in order to
overcome a problem specifically arising in the realm of
computers, specifically neural networks, and more particu­
larly convolutional neural networks.

However, in a convolutional layer as is used in many
image-processing applications, multiple smaller vectors of
neuron excitations (image patches) each are multiplied by
smaller kernel matrices (filters). While this is advantageous
for digital accelerators since there are fewer weights to
retrieve from off-chip memory, the analog memory-based
approach that increases efficiency for fully-connected layers
is now at a disadvantage. If there is only one copy of the
kernel matrices, then each vector of neuron excitations must
be computed in serial fashion, leading to computational
performance that is not very interesting. Alternatively, mul­
tiple copies of the kernel matrices can be stored and operated
simultaneously. However, the output excitations resulting
from each copy of the kernel matrix must be organized,
stored, duplicated, shuffled, and prepared to fill the neuron
excitation vectors for the next convolutional layer. These

as possible to the known correct answers. Reinforcement
learning is a variant of supervised learning in which the
network is provided with only a critique on the correctness 30

of network outputs, not the correct answers themselves. In
contrast, unsupervised learning, or learning without a
teacher, does not require a correct answer associated with
each input pattern in the training data set. It explores the
underlying structure in the data, or correlations between 35

patterns in the data, and organizes patterns into categories
from these correlations. Hybrid learning combines super­
vised and unsupervised learning. Parts of the weights are
usually determined through supervised learning, while the
others are obtained through unsupervised learning. Addi- 40

tional details of ANNs and learning rules are described in
Artificial Neural Networks: A Tutorial, by Anil K. Jain,
Jianchang Mao and K. M. Mohiuddin, IEEE, March 1996,
the entire description of which is incorporated by reference
herein. 45 operations significantly limit performance efficiency of the

neural network by requiring digitization of the neuron
excitation values and a significant amount of local digital
storage and local digital processing, in order to convert raw

Beyond the application of training ANNs, the Forward
Inference of already trained networks includes applications
ranging from implementations of cloud-based services built
on ANNs to smartphone, Internet-Of-Things (IOT), and
other battery-constrained applications which require 50

extremely low power operation. In general, while training is
an application that calls for high throughput (in order to
learn from many training examples), Forward Inference is an
application that calls for fast latency (so that any given new
test example can be classified, recognized, or otherwise 55

processed as rapidly as possible).
Described here are technical solutions for performing

convolutional neural network computations using analog­
memory-based hardware, such as crossbar arrays that
include crosspoint devices. Deep Neural Network (DNN) 60

accelerators based on crossbar arrays of non-volatile memo­
ries (NVMs)-such as Phase-Change Memory (PCM) or
Resistive Memory (RRAM)----can implement multiply-ac­
cumulate operations that are extensively used in DNN
acceleration in a parallelized manner. In such systems, 65

computation occurs in the analog domain at the location of
weight data encoded into the conductance (resistance) of the

output vectors into the next set of neuron excitation vectors.
The technical solutions described herein address such

technical problems by facilitating the organization of the
analog memory computations in such a way as to greatly
simplify the processing and bookkeeping of the resulting
computational outputs. In one or more examples, the analog
memory computations are organized so that the neural
network processes each set of inputs to a convolutional layer
(an image with rows and colunms, organized into multiple
input "planes") one row (or colunm) at a time.

FIG. 4 illustrates a simplified block diagram of a CNN. In
the depicted example, the CNN is being used for interpreting
a sample input map 400, and in this particular example uses
a handwritten letter "w" as an input map. However, it is
understood that other types of input maps are possible and
also that the technical solutions described herein are appli-
cable to a CNN performing other operations, such as other
types of feature detections. In the illustrated example, the
input map 100 is used to create a set of values for the input

US 12,111,878 B2
9

layer 410, or "layer-1." For example, layer-1 can be gener­
ated by direct mapping of a pixel of the sample input map
400 to a particular neuron in layer-1, such that the neuron
shows a 1 or a O depending on whether the pixel exhibits a
particular attribute. Another example method of assigning
values to neurons is discussed below with reference to
convolutional neural networks. Depending on the vagaries
of the neural network and the problem it is created to solve,
each layer of the network can have differing numbers of
neurons, and these may or may not be related to particular 10

qualities of the input data.
Referring to FIG. 4, neurons in layer-1 410 are connected

to neurons in a next layer, layer-2 420, as described earlier
(see FIG. 3). The neurons in FIG. 4 are as described with

15
reference to FIG. 1. A neuron in layer-2 420, consequently,
receives an input value from each of the neurons in layer-1
410. The input values are then summed and this sum
compared to a bias. If the value exceeds the bias for a
particular neuron, that neuron then holds a value, which can 20

be used as input to neurons in the next layer of neurons. This
computation continues through the various layers 430-450
of the CNN, which include at least one FC layer 450, until
it reaches a final layer 460, referred to as "output" in FIG.
4. In some CNN networks, "residual" results from earlier 25

layers may be combined with the results of later layers,
skipping over the layers in between. In an example of a CNN
used for character recognition, each value in the layer is
assigned to a particular character. When designed for clas­
sification tasks, the network is configured to end with the 30

output layer having only one large positive value in one
neuron, which then demonstrates which character the net­
work has computed to be the most likely handwritten input
character. In other scenarios, the network may have been
designed such that output neuron values may be used to 35

estimate probability (likelihood), confidence or other met­
rics of interest.

The data values for each layer in the CNN are typically
represented using matrices (or tensors in some examples),
and computations are performed as matrix computations. 40

The indexes (and/or sizes) of the matrices vary from layer to
layer and network to network, as illustrated in FIG. 4.
Different implementations orient the matrices or map the
matrices to computer memory differently. Referring to FIG.
4, in the example CNN illustrated, each level is a tensor of 45

neuron values, as is illustrated by matrix dimensions for
each layer of the neural network. At the input of the CNN,
an example might be multiple input "planes," each a two­
dimensional image. For instance, there might be a red plane,
a green plane, and a blue plane, stemming from a full-color 50

image. Deeper into the CNN, layers may take intermediate
data in the form of many "planes" and produce for the next
layer a large number of output planes. The values in an input
tensor at a layer are multiplied by connection strengths,
which are in a transformation tensor known as a filter. This 55

matrix multiplication scales each value in the previous layer
according to the connection strengths, with the aggregate
total of these contributions then summed. This fundamental
operation is known as a multiply-accumulate operation. A
bias matrix may then be added to the resulting product 60

matrix to account for the threshold of each neuron in the next

10
a series of matrices. Training the CNN includes finding
proper values for these matrices.

While fully-connected neural networks are able, when
properly trained, to recognize input patterns, such as hand­
writing or photos of household pets, they do not exhibit
shift-invariance. In order for the network to recognize the
whiskers of a cat, it must be supplied with cat images with
the whiskers located at numerous different 2-D locations
within the image. Each different image location will lead to
neuron values that interact with different weights in such a
fully-connected network. In contrast, in a CNN, the connec-
tion strengths are convolution kernels. The convolution
operation introduces shift-invariance. Thus, as multiple
images are presented with cats with whiskers, as long as the
scale, color, and rotation of the whiskers is unchanged from
image to image, the 2-D position within the image no longer
matters. Thus, during training, all examples of similar fea­
tures work together to help learn this feature, independent of
the feature location within the 2-D image. After training, a
single or much smaller set of filters is sufficient to recognize
such image features, allowing a bank of many filters (which
is what a CNN layer is) to then recognize many different
features that are useful for discriminating images (dogs from
cats, or even subtleties that are representative of different
breeds of cats).

FIG. 5 illustrates an example convolutional layer 500 in
a CNN being trained using training data that include input
maps 510 and convolution kernels 520. For simplicity, FIG.
5 does not illustrate bias matrices 525. The input maps 510
(also referred to as input planes) can include multiple input
patterns, for example, D input maps. Each input map is a
matrix, such as a matrix of size NxM. Accordingly, a total
number of input neurons in this case is NxMxD. The input
maps are convolved with F convolution kernels 520 of size
kxk as illustrated to produce corresponding output maps 530
(shown to include separate output maps 532, 534, 536, and
538). Each output map can have a dimension N'xM'. In case
the input maps are square matrices of size n, the output maps
are of size n-k+lxn-k+l. Each convolution is a 3D convo-
lution involving the D input maps. A CNN can include
multiple such layers, where the output maps 530 from a
previous layer are used as input maps 510 for a subsequent
layer. The backpropagation algorithm can be used to learn
the kxkxDxF weight values of the filters.

For example, the input maps 510 are convolved with each
filter bank to generate a corresponding output map. For
example, in case the CNN is being trained to identify
handwriting, the input maps 510 are combined with a filter
bank that includes convolution kernels representing a ver­
tical line. The resulting output map identifies vertical lines
that are present in the input maps 510. Further, another filter
bank can include convolution kernels representing a diago­
nal line, such as going up and to the right. An output map
resulting from a convolution of the input maps 510 with the
second filter bank identifies samples of the training data that
contain diagonal lines. The two output maps show different
information for the character, while preserving pixel adja­
cency. This can result in more efficient character recognition.

FIG. 6 depicts a system 600 in which the crossbar array
700 is controlled using a controller 610 for performing the
matrix-matrix multiplication among other operations
according to one or more embodiments of the present
invention. For example, the controller 610 sends the input
data 510 to be multiplied by the crossbar array 700. In one

level. Further, an activation function is applied to each
resultant value, and the resulting values are placed in the
output tensor to be applied to the next layer. In an example,
the activation function can be rectified linear units, sigmoid,
or tanh(). Thus, as FIG. 4 shows, the connections between
each layer, and thus an entire network, can be represented as

65 or more examples, the controller 610 stores the weight
values, such as from convolution kernels 520, in the crossbar
array 700 and sends the input vectors. In one or more

US 12,111,878 B2
11

examples, the controller 610 and the crossbar array 700 are
coupled in a wired or a wireless manner, or a combination
thereof. The controller 610 further sends and instruction/
command to the crossbar array 700 to initiate the operations
for one or more layers in the CNN. The controller 610
further can read the output data 530 from the crossbar array
700 after receiving a notification that the computations have
been performed. The controller 610 can be a processing unit,
or a computing system, such as a server, a desktop computer,
a tablet computer, a phone, and the like. The controller 610
can include a memory device that has computer executable
instructions stored therein, the instructions when executed
by the controller cause the matrix-matrix computation.

12
voltage across the crosspoint device and measuring the
current that passes through the crosspoint device.

Input voltages V 1 , V2 , V3 (column voltage 832) are
applied to row wires 802, 804, 806, respectively. Each
column wire 808, 810, 812, 814 sums the currents Ii, 12 , 13 ,

14 generated by each crosspoint device along the particular
column wire using an integrator, such as a capacitor. For
example, as shown in FIG. 8, the current 14 generated by
column wire 814 is given by the equation I4 =V 1 0 41 + V 2 0 42+

10 V3 o43 . Thus, array 700 computes the forward matrix mul­
tiplication by multiplying the values stored in the crosspoint
devices by the row wire inputs, which are defined by
voltages V 1 , V2 , V3 .

Turning now to an overview of the present description,
15

one or more embodiments are directed to a two-terminal
Referring to FIG. 7, the input circuitry 710 includes, in

one or more examples, at least a support circuitry 712, a
shared circuitry 714, and a row circuitry 716. The row
circuitry includes hardware components associated with
each row wire 802, 804, and 806. The input circuitry 710

programmable resistive crosspoint component referred to
herein as a resistive processing unit (RPU), which provides
local data storage functionality and local data processing
functionality. In other words, when performing data pro­
cessing, the weighted contribution represented by each cros­
spoint device is contributed into a massively-parallel mul­
tiply-accumulate operation that is performed at the stored
location of data. This eliminates the need to move relevant
data in and out of a processor and a separate storage element.
Accordingly, implementing a machine learning CNN archi­
tecture having the described crosspoint device enables the
implementation of online machine learning capabilities that
optimize the speed, efficiency, and power consumption when
performing Forward-Inference of previously trained CNN
models. The described crosspoint device and resulting CNN
architecture improve overall CNN performance and enable
a broader range of practical CNN applications.

The described crosspoint device can be implemented as a
two-terminal resistive crosspoint device. For example, the
described crosspoint device can be implemented with resis­
tive random access memory (RRAM), phase change
memory (PCM), progranrmable metallization cell (PMC)
memory, non-linear memristive systems, or any other two­
terminal device that offers a wide range to analog-tunable
non-volatile resistive memory states that are sufficiently
stable over time.

FIG. 7 depicts a two-dimensional (2D) crossbar system
700 that performs forward inference according to the present
description. While such a crossbar system can be used to
implement simple matrix multiplication, backward matrix­
multiplication, and even in-situ weight-update according to
the backpropagation algorithm, the present invention con­
cerns the efficient implementation of convolutional layers
for previously-trained networks. The crossbar system 700
includes a crossbar array 705, an input circuitry 710, and an
output circuitry 720, among other components. The crossbar
system 700 can be a computer chip in one or more examples.

FIG. 8 depicts an expanded view of the crossbar array 705
according to one or more embodiments. The crossbar array
705 is formed from a set of conductive row wires 802, 804,
806 and a set of conductive column wires 808, 810, 812, 814
that intersect the set of conductive row wires 802, 804, 806.
The intersections between the set of row wires and the set of
colunm wires are separated by crosspoint devices, which are
shown in FIG. 8 as resistive elements each having its own
adjustable/updateable resistive weight, depicted as 0 11 , 0 21 ,

0 31 , 0 4 i, 0 12, 0 22 , 0 32 , 0 42, 0 13 , 0 23 , 0 33 and 0 43 , respec­
tively. For ease of illustration, only one crosspoint device
820 is labeled with a reference number in FIG. 8. In forward
matrix multiplication, the conduction state (i.e., the stored
weights) of the crosspoint device can be read by applying a

20 facilitates providing the input voltages to the crossbar array
705. The output circuitry 720 includes, a support circuitry
722, a shared circuitry 724, and a colunm circuitry 726.

FIG. 9 depicts a typical output circuitry 720. The output
circuitry includes integrators 908, 910, 912, and 914 corre-

25 sponding to the column wires 808, 810, 812, and 814,
respectively. The integrators 908, 910, 912, and 914, in one
or more examples, are capacitors. The output currents along
each colunm wire are accumulated in the integrators and
passed on to a next layer of the CNN. As described earlier,

30 such an arrangement of the integrators makes the computa­
tions of the FC layers very efficient; however, for the
convolution operations, to use such an arrangement of the
integrators incurs significant additional overhead in terms of
data transport, storage, organization and subsequent data

35 transport. Such operations require additional resources such
as time, power, and additional circuit-area, thus making the
overall system inefficient.

FIG. 10 depicts existing operations to perform such
operations using the crossbar array. It should be noted that

40 the dimensions of the matrices shown in the figures herein
are just examples, and in one or more examples different
dimensions can be used.

As depicted in FIG. 10, one image-row (512, 514, and
516) of all input planes 510 is presented concurrently as a

45 column of inputs to the array-rows (802,804, and 806) of the
crossbar array 705 of the crossbar system 700. The cros­
spoint devices 820 at each crosspoint contains weight­
elements from the filters 520, each leading to a multiplica­
tion between the array-row excitation, x,, and the stored

50 weight, wiJ by Ohm's law (voltage times conductance equals
current). The integration of all such read current contribu­
tions is summed along each array-colunm and stored in the
corresponding integrators (908, 910, 912, and 914) of the
array-colunms (808, 810, 812, and 814). The computation

55 can be expressed as: the current 11 on colunm #1 (808) is
stored on capacitor C1 (908), 12 is stored on capacitor C2 , 13

on C3 , and so on. In the existing technical solutions that use
such crossbar arrays 705, the integrated charge on the
capacitors (908, 910, 912, and 914) is treated as the output

60 of the multiply-accumulate operation and is either converted
to a digital number or to pulse-duration for shipment to a
next array 705.

In this manner, at each time-step (i.e., each computation
performed by the array 705), values across all input planes

65 510 are integrated producing an output for all output planes
530. However, this results only in one output pixel per
time-step.

US 12,111,878 B2
13

Further, every output from convolutional layer i has to be
combined with outputs from other convolutional layers as
part of pooling. The other convolutional layers from which
the outputs that are to be pooled depend on the number of
elements in the filter kernels 520. Alternatively, or in addi­
tion, every output from layer i has to be positioned at
different spots in the input planes 510 for the convolutional
layer i+l. Such organization of the output values for the
purpose of pooling can also require additional computing
resources, such as read-write access, power and the like.

The technical solutions described herein address technical
challenges of existing technical solutions by facilitating,
after the multiply-accumulate operations are performed, the
steering of the aggregate current to a selected integrator,
from any of the integrators in the output circuitry 720. For
instance, current 11 might now be steered to capacitor C2 , 12

to capacitor C3 , and 13 to capacitor C1 , instead of retaining
the charges in the same colunms, with the next image-row of
the input planes to this convolutional layer being similarly
presented to the same array 705. The purpose of this is to
allow each capacitor to integrate the total current contribu­
tions for different colunms of the k-by-k weight kernel
substantially simultaneously (each driven into the array by
various array-row excitations) and for different rows of the
weight kernel in time (added to any given capacitor over k
different time-steps by steering the aggregate current from
the array-colunm corresponding to the appropriate weight
kernel coefficients).

14
the output of the multiply-accumulate operations from each
colunm in the array 705 to a particular integrator in the
output circuitry 720. In one or more examples, the output
controller 1110 receives a mode signal that provides a
selection of the integrators for each colunm at each time­
step. Alternatively, the output controller 1110 is provided a
mode signal that indicates the selection of the integrator for
each colunm until all convolutional layers are executed. The
mode signal, in one or more examples, can be a bit pattern

10 that is indicative of the selected integrators for each colunm.
In the example of FIG. 11, the outputs from the colunms

808 and 814 are stored in the integrators 908 and 912,
respectively, at time-step #1. FIG. 12 depicts the operations
performed in time-step #2. Here, second rows 512-B, 514-B,

15 and 516-B from the input planes 510 are used as input to the
crosspoint array 705. The crosspoint devices 820 are still
loaded with the kernel filters 520 as in time-step #1 (FIG.
11). In the time-step #2, the output controller 1110 selects the
same integrators 908 and 912 for the outputs of the colunms

20 810 and 816 (different from time-step #1). Accordingly, the
integrators 908 and 912, in this case, receive outputs from
different colunms in different time-steps.

FIG. 13 depicts the operations performed in time-step #3.
In a manner similar to the first two time-steps, in time-step

25 #3, a third row 512-C, 514-C, and 516-C from the input
planes 510 is used as input to the crosspoint array 705. In the
time-step #3, the output controller 1110 selects the same
integrators 908 and 912 for the outputs of the colunms 812
and 818 (different from time-step #1). Accordingly, the "Pooling" as used in neural network operations can

include determining results such as the maximum, sum, or
average of the output excitations. The technical solutions
described herein facilitate such pooled results being com­
puted locally and then transmitted, only after all relevant
weight kernels are fully integrated. In an alternative embodi­
ment, the unpooled results are computed locally, and are 35

only pooled after transmission.

30 integrators 908 and 912, in this case, receive outputs from
different colunms in different time-steps. In this manner, in
general, after k time-steps, an entire row in the output planes
530 is computed (compared to a single output pixel in the
existing solution).

It should be noted that, while the only the computations
of the first two entries (A and B) from the first output row
in the output plane 530 is described above, in a similar
manner, the other portions of the output planes 530 are
computed in parallel by other portions of the crosspoint

FIGS. 11-14 depict the operations performed by the array
705 with the modified output circuit 720, according to one
or more embodiments. At each time-step, each of the inte­
grators (908, 910, 912, and 914) receives contributions from
k*D multiply-accumulate terms, where D is the number of
input planes 510. After k time-steps, the total charge on an
integrator contains all k*k*D terms and is ready to be output
to the next convolutional layer. Except for during the first k
or last k time-steps, after each integration step, every kth
integrator from the output circuit 720 reaches this status, and
accordingly, is ready to generate all the output pixels of one
image-row (512-A, 514-A, and 516-A) of the convolutional­
layer output. All other jth integrators have a different phase
in their respective integration phase, depending the value of
j.

For example, as shown in FIG. 11, the first rows of each
input plane 512-A, 514-A, 516-A are input to the convolu­
tional layer. The crosspoint devices 820 of the crossbar array
705 are loaded with the filters 520 as shown. Particularly,
filter kernels 522-A and 522-B are loaded in the crosspoint
devices 820 to perform a convolution with the first rows of
the first input plane 516-A. Similarly, filter kernels 524-A
and 524-B from a second bank of filter kernels 520 are
convolved with the first row of a second input plane 514-A,
and so on with other filter kernels 526-A, 526B, 528-A, and
528-B. The results of the respective convolutions are for­
warded to one or more of the integrators (908,910,912,914)
from the output circuitry 720 by output controller 1110.

The output controller 1110 can be part of the output
circuitry 720 or an external controller that is coupled with
the output circuitry 720. The output controller 1110 steers

40 array 705. Further yet, the crosspoint array 705 can be
accumulating computation outputs for other output rows (C
and D) at each time-step using the other integrators (910 and
914) as shown in FIG. 13.

Accordingly, as a result of the output controller 1110
45 steering the output of the crosspoint array 705, all input is in

the form of a complete and contiguous image-row over all
input planes. Further, after the first k time-steps before any
output is available, (that is, from the k+ 1th time-step), a
complete and contiguous image-row over all the output

50 planes is produced at each time-step. Accordingly, the output
maps 530 produced by such operations can be pipelined to
a subsequent convolutional layer without any intermediate
storage of the neuron excitations. Because pooling opera­
tions such as sum, average, and maximum can be performed

55 incrementally on data as they arrive, any pooling operation
only requires temporary storage sufficient for the output
image-row. These intermediate results are stored and
updated as each set of neuron excitations arrive until the
R-by-R pooling operation is complete, at which point the

60 buffer of intermediate results is effectively the output of the
pooling layer.

It should be noted that although in the examples used in
the above description to explain the technical solutions, a
single image-row is used for calculations, in one or more

65 examples, more than a single image-row can be used. For
example, in an alternative embodiment, two image-rows of
the output planes 530 are output simultaneously, and so on.

US 12,111,878 B2
15

The output rows are further supplied as the data for pooling
operations, for example, a 2x2 pooling operation can be
performed simultaneously using the two output rows. In
such examples with additional output rows, the need to
organize, store, or even transmit the output data elsewhere is
eliminated by steering the output to the integrators in the
output circuitry 720 of the crossbar system 700 itself.

The examples herein use k=3 in most cases, however, it
is understood that k can be any other value in other
examples.

The technical solutions described herein accordingly
facilitate improving performance efficiency in terms of
speed, computing resources, and power used when imple­
menting a CNN. Empirical data for the inventors suggest the
improvements are at least an order of magnitude in some
cases. The technical solutions described herein are rooted in
computer technology, particularly implementing CNN using
a neural network computing chip that is typically configured
to increase efficiency of fully connected layers in the CNN
by performing multiply-accumulate operations along a col­
unm of the crossbar array. The technical solutions described
herein allow the computer chip to maintain those efficien­
cies, and in addition, to be configured during convolutional
layer computations to steer output of the colunms to par­
ticular integrators in the crossbar array, and to maintain the
output in the integrators and directly provide that output to
subsequent convolutional layers. Such operations reduce, if
not eliminate, read-write operations and digitization opera­
tions of outputs of each convolutional layer.

It should also be noted that although the examples
described herein use rows of the input planes 510 to perform
the computations of the CNN, in one or more examples, the
colunms can be used with corresponding adjustments to the
matrices in the operations, as will be obvious to a person
skilled in the art.

The technical solutions described herein accordingly pro­
vide a circuit that includes an array of resistive memory
elements, the array providing a vector of current outputs
equal to the analog vector-matrix-product between (i) a
vector of voltage inputs to the array encoding a vector of
analog input values and (ii) a matrix of analog resistive
weights within the array. The circuit further includes accu­
mulation wires and circuits aggregating the current from a
dedicated subset of the resistive elements. Further, the
circuit includes integration capacitors, each of the integra­
tion capacitors being electrically switchable (selectable) so
as to aggregate current from at least one of the accumulation
wires during a single integration step. The circuit also
includes data-output circuitry to allow the integrated charge
from a subset of the integration capacitors, accumulated over
multiple integration steps, to be converted and transmitted
either as an analog duration or as a digital representation
using binary digits.

The subset of resistive elements can include one or more
colunm of the array. Alternatively, the subset of resistive
elements can include one or more rows of the array. In one
or more examples, the resistive elements are non-volatile
memory devices. In one or more examples, the resistive
elements store synaptic weights of a neural network.

In one or more examples, the resistive memory elements
are arranged so as to implement the colunms of the weight
kernels of a given layer of a convolutional neural network.
The accumulation over the integration steps implements the
multiply-accumulate operations across multiple rows of said
weight kernels, as the input neuron excitations to the said
layer of the convolutional neural network are presented one
row at a time. Further, the integrated charge representing an

16
output excitation is suitably converted and transmitted only
after all rows of said weight kernel are fully integrated.

Further, in one or more examples, the integrated charge
stored by multiple capacitors representing respective output
excitations are suitably converted and a suitable pooled
result such as the maximum, sum, or average of the said
plurality of output excitations is computed locally and then
transmitted, only after all relevant weight kernels are fully
integrated.

10 In one or more examples, the resistive memory elements
are arranged so as to implement the rows of the weight
kernels of a given layer of a convolutional neural network.
The accumulation over the integration steps implements the
multiply-accumulate operations across multiple columns of

15 said weight kernels, as the input neuron excitations to the
said layer of the convolutional neural network are presented
one colunm at a time. Further, the integrated charge repre­
senting an output excitation is suitably converted and trans­
mitted only after all colunms of said weight kernel are fully

20 integrated. Further, in one or more examples, the integrated
charge stored by multiple capacitors representing respective
output excitations are suitably converted and a suitable
pooled result such as the maximum, sum, or average of the
said plurality of output excitations are computed locally and

25 then transmitted, only after all relevant weight kernels are
fully integrated.

The present technical solutions may be a system, a
method, and/or a computer program product at any possible
technical detail level of integration. The computer program

30 product may include a computer readable storage medium
(or media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present technical solutions.

The computer readable storage medium can be a tangible
35 device that can retain and store instructions for use by an

instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a

40 semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory

45 (ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD­
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-

50 cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore­
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic

55 waves, electromagnetic waves propagating through a wave­
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
60 can be downloaded to respective computing/processing

devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-

65 prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or

US 12,111,878 B2
17

network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present technical solutions may be assem­
bler instructions, instruction-set-architecture (ISA) instruc­
tions, machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con­
figuration data for integrated circuitry, or either source code
or object code written in any combination of one or more
programming languages, including an object oriented pro­
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the "C" pro­
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user's computer, partly on the user's com­
puter, as a stand-alone software package, partly on the user's
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user's computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present technical solutions.

Aspects of the present technical solutions are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer
program products according to embodiments of the technical
solutions. It will be understood that each block of the

18
device implement the functions/acts specified in the flow­
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro­
gram products according to various embodiments of the
present technical solutions. In this regard, each block in the
flowchart or block diagrams may represent a module, seg­
ment, or portion of instructions, which comprises one or

10 more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted in the Figures. For example, two blocks shown in
succession may, in fact, be executed substantially concur-

15 rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be

20 implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions.

A second action may be said to be "in response to" a first
25 action independent of whether the second action results

directly or indirectly from the first action. The second action
may occur at a substantially later time than the first action
and still be in response to the first action. Similarly, the
second action may be said to be in response to the first action

30 even if intervening actions take place between the first
action and the second action, and even if one or more of the
intervening actions directly cause the second action to be
performed. For example, a second action may be in response
to a first action if the first action sets a flag and a third action

35 later initiates the second action whenever the flag is set.

flowchart illustrations and/or block diagrams, and combina- 40

tions of blocks in the flowchart illustrations and/or block

To clarify the use of and to hereby provide notice to the
public, the phrases "at least one of <A>, , ... and <N>"
or "at least one of <A>, , ... <N>, or combinations
thereof' or "<A>, , ... and/or <N>" are to be construed
in the broadest sense, superseding any other implied defi­
nitions hereinbefore or hereinafter unless expressly asserted

diagrams, can be implemented by computer readable pro­
gram instructions.

to the contrary, to mean one or more elements selected from
the group comprising A, B, ... and N. In other words, the
phrases mean any combination of one or more of the

45 elements A, B, ... or N including any one element alone or
the one element in combination with one or more of the

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro­
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com­
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified 50

in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/

other elements which may also include, in combination,
additional elements not listed.

It will also be appreciated that any module, unit, compo­
nent, server, computer, terminal or device exemplified herein
that executes instructions may include or otherwise have
access to computer readable media such as storage media,
computer storage media, or data storage devices (removable
and/or non-removable) such as, for example, magnetic
disks, optical disks, or tape. Computer storage media may
include volatile and non-volatile, removable and non-re-
movable media implemented in any method or technology
for storage of information, such as computer readable
instructions, data structures, program modules, or other data.

or other devices to function in a particular manner, such that 55

the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process­
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple- 65

mented process, such that the instructions which execute on
the computer, other progranmiable apparatus, or other

60 Such computer storage media may be part of the device or
accessible or connectable thereto. Any application or mod­
ule herein described may be implemented using computer
readable/executable instructions that may be stored or oth-
erwise held by such computer readable media.

The descriptions of the various embodiments of the
technical features herein have been presented for purposes
of illustration but are not intended to be exhaustive or

US 12,111,878 B2
19

limited to the embodiments disclosed. Many modifications
and variations will be apparent to those of ordinary skill in
the art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech­
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

20
value stored by the second crosspoint device and the
voltage pulses from the input data, the second cros­
spoint device being at an intersection of a second row
wire of the crosspoint array and a second colunm wire
of the crosspoint array; and

What is claimed is: 10

passing the second output electric current from the second
crosspoint device to a second corresponding integrator
of the corresponding integrators, where the second
corresponding integrator is physically more proximate
to said first colunm wire than to the second colunm wire
of the crosspoint array, and is electrically coupled to 1. A computer implemented method for implementing a

convolutional neural network (CNN) using a crosspoint
array, the method comprising:

configuring the crosspoint array, the crosspoint array
corresponding to a convolution layer in the CNN, by
storing one or more convolution kernels of the convo­
lution layer in a plurality crosspoint devices of the
crosspoint array; and

performing computations for the CNN via the crosspoint
array by:
transmitting voltage pulses corresponding to a vector of

input data of the convolution layer to the crosspoint
array;

said second colunm wire of the crosspoint array in
order to receive said second electric current.

4. The computer implemented method of claim 1, wherein
15 the corresponding integrators are selected by the output

controller, based on a mode signal that maps the output
electric current from the crosspoint devices to the selected
integrators.

5. The computer implemented method of claim 1, wherein
20 the crosspoint devices are arranged to implement one or

more colunms of the convolution kernels of a given layer of
the CNN, and wherein the vector of input data represents
neuron excitations to the given layer of the CNN presented

outputting an electric current representative of per­
forming a multiplication operation at each crosspoint 25

device in the crosspoint array, the electric current
based on a weight value stored by each crosspoint
device and the voltage pulses from the input data;
and

from the input data, one row at a time.
6. The computer implemented method of claim 5, wherein

a charge held by the each corresponding integrator repre­
sents an output excitation of the colunm to which the
corresponding integrator corresponds according to the given
layer of the CNN, the output excitation being converted and

passing the output electric current from crosspoint
devices from at least three colunms of the crosspoint
array to corresponding integrators selected from a set
of integrators where each integrator in the set of
integrators corresponds to multiple colunms of the at
least three colunms and is electrically switchable
between the multiple colunms of the at least three
colunms so as to aggregate current from one of the
multiple colunms of the at least three columns during
a single time step, wherein the corresponding inte­
grators are selected by an output controller that maps
the output electric current from the at least three
colunms to selected integrators and that switches
which colunm of the multiple colunms of the at least
three columns each integrator in the set of integrators

30 transmitted only after all rows of said convolution kernels
are integrated.

7. The computer implemented method of claim 1, wherein
the crosspoint devices are arranged to implement one or
more rows of the convolution kernels of a given layer of the

35 CNN, and wherein the vector of input data represents neuron
excitations to the given layer of the CNN presented one
colunm at a time.

8. The computer implemented method of claim 7, wherein
a charge held by the each corresponding integrator repre-

40 sents an output excitation of the colunm to which the
corresponding integrator corresponds according to the given
layer of the CNN, the output excitation being converted and
transmitted only after all colunms of said convolution ker-
nels are integrated.

is connected to between time steps, wherein the 45

selected integrators are capacitors, and wherein the
output electric current from crosspoint devices from
each of the at least three colunms of the crosspoint
array is passed to the corresponding integrators
within a common time step. 50

9. An electronic circuit for performing computations of a
trained convolutional neural network (CNN), the electronic
circuit comprising:

a crosspoint array; and
an output circuit comprising one or more integrators;

wherein performing the computations of the trained
CNN comprises: 2. The computer implemented method of claim 1, wherein

the output electric current is generated by a crosspoint
device, the crosspoint device being at an intersection of a
first row wire of the crosspoint array and a first colunm wire
of the crosspoint array, and a first corresponding integrator 55

of the corresponding integrators is physically more proxi­
mate to a second colunm wire than to the first colunm wire
of the crosspoint array, and is electrically coupled to said
first colunm wire of the crosspoint array in order to receive
said output electric current.

3. The computer implemented method of claim 1, wherein
the output electric current is a first output electric current
from a first crosspoint device that is at an intersection of a
first row wire of the crosspoint array and a first colunm wire
of the crosspoint array, the method further comprising:

outputting a second electric current by a second cros­
spoint device in the crosspoint array, based on a weight

60

65

the crosspoint array configured to be a convolution
layer in the CNN by storing one or more convolution
kernels of the convolution layer in one or more
crosspoint devices of the crosspoint array, and to
perform computations for the CNN via the cros-
spoint array, the electronic circuit further comprises
an input circuitry comprising at least a support
circuitry, a shared circuitry, and a row circuitry, the
row circuitry including hardware components asso­
ciated with each row wire and wherein the electronic
circuit is configured to:
transmit, by the input circuitry, to the crosspoint

array, voltage pulses corresponding to a vector of
input data of the convolution layer;

output an electric current representative of perform­
ing a multiplication operation at each crosspoint

US 12,111,878 B2
21

device in the crosspoint array, the electric current
based on a weight value stored by each crosspoint
device and the voltage pulses from the input data;
and

pass the output electric current from crosspoint
devices from multiple colunms of the crosspoint
array from the output circuit to corresponding
integrators selected from a set of integrators,
where each corresponding integrator corresponds

10

22
14. The electronic circuit of claim 13, wherein a charge

held by the selected integrators represents an output exci­
tation according to the given layer of the CNN, the output
excitation is converted and transmitted only after all rows of
said convolution kernels are integrated.

15. The electronic circuit of claim 9, wherein the cros­
spoint devices are arranged to implement one or more rows
of the convolution kernels of a given layer of the CNN, and
wherein the vector of input data represents neuron excita-
tions to the given layer of the CNN presented from the input
data, one colunm at a time.

to at least three colunms of the multiple colunms
and is electrically switchable between the at least
three colunms of the multiple colunms so as to
aggregate current from one of the at least three
colunms of the at multiple colunms during a single
time step, wherein each corresponding integrator
is selected by an output controller that maps the
output electric current from the at least three
colunms to selected integrators and that switches
which colunm of the at least three colunms of the
multiple columns each integrator in the set of 20

integrators is connected to between time steps,
wherein the corresponding integrators are capaci­
tors, and wherein the output electric current from
crosspoint devices from each of the multiple col­
umns of the crosspoint array is passed to the 25

corresponding integrators within a common time
step.

16. The electronic circuit of claim 15, wherein a charge
he!~ b~ each corresponding integrator represents an output

15
exc1tat10n of the colunm to which the corresponding inte­
grator corresponds according to the given layer of the CNN,
the output excitation is converted and transmitted only after
all columns of said convolution kernels are integrated.

10. The electronic circuit of claim 9, wherein the output
electric current is generated by a crosspoint device at an
intersection of a first row wire of the crosspoint array and a 30

first colunm wire of the crosspoint array, wherein a first
corresponding integrator, of the corresponding integrators is
physically more proximate to a second colunm wire than to
the first column wire of the crosspoint array, yet is electri­
cally coupled to said first colunm wire of the crosspoint 35

array in order to receive said output electric current.
11 .. The electr?nic circuit of claim 9, wherein the output

electnc current 1s a first output electric current, the cros­
spoint devices include a first crosspoint device that is at an
intersection of a first row wire of the crosspoint array and a 40

first colunm wire of the crosspoint array, wherein the elec­
tronic circuit is further configured to:

output a second electric current by a second crosspoint
device in the crosspoint array based on a weight value
stored by the second crosspoint device and the voltage 45

pulses from the input data, the second crosspoint device
being at an intersection of a second row wire of the
crosspoint array and a second colunm wire of the
crosspoint array; and

pass the second output electric current from the second 50

crosspoint device to a second corresponding integrator
of the corresponding integrators, where the second
corresponding integrator is physically more proximate
to said first colunm wire than to the second column wire
of_ the crosspoint array, yet is electrically coupled to 55

said second column wire of the crosspoint array in
order to receive said second electric current.

12. The electronic circuit of claim 9, wherein the corre­
sponding integrators are selected by the output controller
based on a mode signal that maps the output electric current 60

from the crosspoint devices to the selected integrators.
13. The electronic circuit of claim 9, wherein the cros­

spoint devices are arranged to implement one or more
colunms of the convolution kernels of a given layer of the
CNN, and wherein the vector of input data represents neuron 65

excitations to the given layer of the CNN presented from the
input data, one row at a time.

17. An electronic circuit comprising:
an array of resistive memory elements, the array provid-

ing a vector of current outputs equal to an analog
~ector-matrix-product between (i) a vector of voltage
mputs to the array encoding a vector of analog input
values and (ii) a matrix of analog resistive weights
within the array;

accumulation wires and circuits aggregating a current
from a dedicated subset of the resistive memory ele­
ments;

integration capacitors, each of the integration capacitors
being electrically switchable so as to aggregate current
from a plurality of accumulation wires with at least two
of the integration capacitors being configured to aggre­
gate current from corresponding sets of at least three
accumulation wires, the plurality of accumulation wires
selected using a mode signal, and the plurality of
accumulation wires selected being changed between
time steps;

data-output circuitry to allow an integrated charge from a
subset of the integration capacitors, accumulated over
a plurality of integration steps, to be suitably converted
and transmitted either as an analog duration or as a
digital representation using binary digits;

wherein the resistive memory elements are arranged so as
to implement columns of weight kernels of a given
layer of a convolutional neural network-

wherein accumulation over the plurality 'of integration
steps implements multiply-accumulate operations
across multiple rows of said weight kernels, as input
neuron excitations to the said layer of the convolutional
neural network are presented one row at a time;
wherein the integrated charge representing an output
excitation is suitably converted and transmitted only
after all rows of said weight kernels are fully inte­
grated; and

wherein the integrated charge on a plurality of capacitors
representing a plurality of output excitations is suitably
converted and a suitable pooled result comprising at
least one of a maximum, a sum, or an average of the
said plurality of output excitations is computed locally
and then transmitted, only after all relevant weight
kernels are fully integrated.

18. The electronic circuit of claim 17, wherein the resis­
tive memory elements are non-volatile memory devices.

19. The electronic circuit of claim 17, wherein the resis­
tive memory elements store synaptic weights of a neural
network.

* * * * *

