
Article https://doi.org/10.1038/s41467-024-54341-8

Compression theory for inhomogeneous
systems

Doruk Efe Gökmen 1,2,3,4 , Sounak Biswas5, Sebastian D. Huber 1,
Zohar Ringel6, Felix Flicker7 & Maciej Koch-Janusz 2,8,9

The physics of complex systems stands to greatly benefit from the qualitative
changes in data availability and advances in data-driven computational
methods. Many of these systems can be represented by interacting degrees of
freedom on inhomogeneous graphs. However, the lack of translational invar-
iance presents a fundamental challenge to theoretical tools, such as the
renormalization group, which were so successful in characterizing the uni-
versal physical behaviour in critical phenomena. Here we show that com-
pression theory allows the extraction of relevant degrees of freedom in
arbitrary geometries, and thedevelopment of efficient numerical tools to build
an effective theory from data. We demonstrate our method by applying it to a
strongly correlated system on an Ammann-Beenker quasicrystal, where it
discovers an exotic critical point with broken conformal symmetry. We also
apply it to an antiferromagnetic system on non-bipartite random graphs,
where any periodicity is absent.

Dramatic improvements in data availability, stemming from both
experiments and simulation, have enabled the exploration of
increasingly complex physical systems. A glut of raw data does not,
however, equate understanding, particularlywhen its processing easily
exceeds our computational resources. A key objective is to distil data
into a succinct theory in terms of appropriate collective variables that
uncover and summarise the essence of the system. Renormalization
Group (RG) approaches in statistical physics provide a systematic path
towards that goal1,2. However, both identifying the relevant degrees of
freedom (DOFs), as well as executing the mathematical procedure
deriving the effective theory3,4 are often very challenging in inhomo-
geneous systems when prior intuition is scarce.

Many complex systems are inhomogeneous, owing their proper-
ties precisely to the lack of translational invariance. Problems as dis-
parate as biological tissue mechanics5–7 and properties of metallic
glasses8,9 can be cast as statistical mechanical problems on irregular
graphs. The ultimate goal would be a generic understanding of the
emergent properties of such systems, much as RG provided an

understanding of critical phenomena in translation-invariant systems,
where the proxy of wavelength can be used to organise the modes to
target the relevant low-energy operators10. While one can still imple-
ment scale transformations to perform RG for inhomogeneous sys-
tems, the lack of a clear proxy like wavelength makes it necessary to
carefully craft the coarse graining locally, particularly since real-space
RG can be ill-defined under certain poor choices11.

Here we tackle the challenge of inhomogeneity in complex sys-
tems with vast configuration spaces. Formulating the RG of an inho-
mogeneous system as a lossy compression of information12,13 on a
graph allows us to define the procedure in a geometry-independent
manner. This key step is based on the observation that the compres-
sion theoretic RG some of us introduced for lattice systems14–16 can be
mathematically generalised to arbitrary graphs, yielding RG informed
both of the interactions and of the spatial relations, thus overcoming a
major conceptual challenge. The numerical execution of this data-
driven procedure entails the difficult task of estimating mutual infor-
mation for large-dimensional random variables on graphs. This is
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achieved by using recent advances in machine learning, formulating it
as a classification task of distinguishing jointly sampled pairs of vari-
ables from those sampled independently (see ‘Methods’), i.e. using
contrastive learning17–19, and extending the computational tools of
refs. 20,21.

Our algorithm assumes the system is defined on a graph G and
explicitly constructs new effective DOFs Hi from local configurations
of DOFs V i supported on vertices or edges of local subgraphs Vi of G.
This is achieved by a coarse graining transformation, which we para-
metrise as a linear neural network (NN) with a set of parametersΛi and
a non-linear discretisation map τ:

Hi = τ Λi � Vi
� �

: ð1Þ

This coarse-graining is optimised locally in region i to maximise the
mutual information IðHi : EiÞwith the configurations supported on the
spatial environment Ei of Vi (see Fig. 1 and ‘Methods’)14–16:

Λi := argmax IðHi : EiÞ: ð2Þ

The disjoint spatial environment subgraph E i is defined using the
graph distance (see Fig. 1 and Fig. S1), and its separation from the block
Vi has a crucial role of screening out the irrelevant short-range corre-
lations. The mutual information

IðX : YÞ=HðX Þ+HðYÞ � HðX ,YÞ, ð3Þ

quantifies the amount of information the random variable X reveals
about the otherY, bymeasuring their overlapping contributions to the
total entropy H.

The maximisation is performed under the constraint that the
coarse-grained variable Hi is subject to a discretisation τ (‘Methods’).

This crucial aspect of the variational principle renders the coarse-
graining a lossy compression map, i.e. IðHi : EiÞ<HðViÞ, where H is the
entropy. Thus, only the most relevant collective features of V i that
survive this information bottleneck will be stored inHi. Note that they
depend on both the topology of the graph V i and the interactions of
the DOFs V i on it, and information about both is contained in the
statistics of the samples ðVi, EiÞ.

The variational principle in Eq. (2) provides a powerful substitute
for heuristic approaches. Specifically, rather than guessing an impor-
tant local collective property for coarse graining, the collective DOFs
are instead designed by the statistics of their environments. This is
essential for moving beyond translation invariance. While the coarse
graining Λi erases microscopic fluctuations, its local optimisation
allows it to retain the distinct qualitative characteristics that emerge in
different spatial regions across an inhomogeneous system. This can
even be reflected in a non-uniform cardinality of compressed variables
Hi, as illustrated in Fig. 1. Thanks to the recently discovered links
between RG relevance and compression theory13, this procedure
eliminates proxies like wavelength (or even energy, in purely entropic
systems) and grants direct access to the operators with low-scaling
dimension14.

We illustrate the power of this approachby explicitly constructing
emergent DOFs to confirm an open conjecture regarding the presence
of discrete scale invariance (DSI)22–24 of a strongly correlated statistical
model on quasicrystals25. This problem is perfectly suited to our
method: the combination of constraints and aperiodicity provides a
serious challenge for human intuition25–27; yet efficient algorithms exist
that can generate huge data sets for training machine intuition28.

Though quasicrystals lack translational invariance, they possess
long-range order29,30. To show the generality of our method, and its
independence of the existence of any special tilings, we also applied it
to frustrated antiferromagnets on non-bipartite random graphs lack-
ing any (quasi)periodicity, where it finds the optimal bipartitioning

Fig. 1 | Schematic for constructing collective degrees of freedom in inhomo-
geneous systems. Distinct systems like tissues (left, in green) and colloidal sus-
pensions (right, in blue) can be abstracted into a set of vector degrees of freedom
V i (indicated by stacks of squares, i = 1, 2, 3) living on an irregular graph with local
structure. The final component of each vector is shown by a coloured box to
indicate potentially different types of internal degree of freedom, unique to each
sub-system. To derive a compressed representation of such systems, it is essential
to tailor the coarse graining transformationΛi for each local neighbourhood i. This

is achieved by an information theoretic variational principle, where Λi : V i 7!Hi

maximises themutual information I Hi : Ei
� �

. This allows the compressedvariables
Hi to capture the emergent long-range physics according to the statistics of the
surrounding distant environment Ei. Local optimisation can produce compressed
variables with varying cardinality across the system, here illustrated by vectorsHi

with varying numbers of components. The connectivity of the emergent super-
graph is determined through the correlations of the new variables.
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(Section IV of Supplementary Information). Our graph-based tool
leverages the computational back-end of the real-space mutual infor-
mation neural estimation (RSMI-NE) package20,21, allowing to efficiently
explore large-scale phenomena.

Results
Dimers on the Ammann-Beenker tiling
The Ammann-Beenker (AB) construction gives quasiperiodic tilings of
the plane using two distinct plaquettes: a rhombus and a square29–31.
Like their famous cousins, the Penrose tilings32, AB tilings feature dif-
fraction patterns exhibiting crystallographically ‘forbidden’ symme-
tries, here 8-fold29. Likewise, they can also be generated by a recursive
procedure in which an inflation map σ acts on a small seed patch by
composing the constituent plaquettes as shown in Fig. 2b, and sub-
sequently rescaling edge lengths by the silver ratio δ = 1 +

ffiffiffi
2

p
. A special

role is played by 8-fold coordinated vertices: under inflations all lower
coordinated vertices ultimately become (and stay) 8-vertices. Each
8-vertex is characterised by an order, i.e. the maximal number of
inversedeflations σ−1 afterwhich it still remains 8-fold coordinated. The
order of an 8-vertex intuitively specifies the maximal size of the local
8-fold symmetric patch centred on it. The quasiperiodic AB lattice
(‘quasilattice’) is thus invariant under discrete rescalings. Suchdiscrete
rescalings are easily visualised for evenorder deflations σ−2n bydrawing
a super-quasilattice connecting 8-fold vertices (Fig. 2a).

In this setting, we consider a dimer model. Dimer models enjoy a
deceptively simple definition: microscopic DOFs live on the links of a
graph (here, the edges of the quasilattice), which can be either occu-
pied or empty. The key element is a hard local constraint: at every
vertex where the links meet, one and only one of the links is occupied
by a dimer. This gives rise to a surprisingly richphenomenology. Dimer
models on regular lattices have been studied extensively, originally
due to their purported relevance to high-Tc superconductivity33. They
have since been shown to support topological order and
fractionalisation34,35 and exotic critical points36. The classical problem
is closely related to the quantum one37,38 and has deep connections to
combinatorics39–41 and the study of random surfaces42,43.

Recent work has begun to explore the interplay of (strongly-cor-
related) dimer physics and quasiperiodicity. Particularly, AB tilings, in
contrast to Penrose tilings26, host perfectly matched dimer config-
urations (i.e. with a vanishing density of uncovered vertices) in the
thermodynamic limit. Numerically computed dimer correlations
exhibit a quasi power-law decay with a complex spatial structure25.
Moreover, the combinatorial proof of perfect matching pointed to a
hierarchy of self-similar effective matching problems at different
scales.

Taken together, these facts suggest a conjecture that not only the
AB tilings themselves, but crucially also the physics of the dimers on
the AB tilings, exhibit DSI25—a potentially striking and unusual example
of the relevance of quasiperiodicity for critical behaviour. A proof and
a microscopic physical mechanism at the level of the dimer ensemble
has, however, proven elusive. The putative criticality naturally calls for
anRGanalysis, but generalRGapproaches for quasiperiodic systems in
D ≥ 2 dimensions are in their infancy.

In the following, we will first identify the natural block structures
to coarse grain the dimer DOFs with a certain scale transformation of
the quasilattice. We will then use our compression approach based on
Eq. (2) to address two key questions regarding the dimer model on AB
tilings: What are the collective coarse-grained DOFs, and what is the
structure of their correlations? Finally, by analysing the compressed
data providedbyour algorithm,wedemonstrate the presenceofDSI in
the dimer model on the AB tiling.

Collective Zn clock degrees of freedom
To construct the collective DOFs, we first need to specify the block
regions V to be coarse grained. In the AB tiling there are natural
choices, set by the recursive structure of the AB quasilattice itself 44. At
each scale, the AB tiling can be covered by four ‘classes’ of blocks25Vn,
shown in different colours in Fig. 2, each deflating to vertices of dif-
fering connectivity n in the super-quasilattice. In the following, we
label each class by the corresponding connectivity n of the super-
quasilattice. Our method does not rely on any fine-tuned choice of the
block shape (see Section III in Supplementary Information).

In each different class, the algorithm identifies the collective DOF
as aZn clock variable45, with n the connectivity, or class, of the central
supervertex ofVn. This is revealed by a variational compressionmapΛn

which assigns to a Monte Carlo dimer configuration Vn a short binary
code Hn (Fig. 3a). The binary digits are set by applying individual
components Λn

k to Vn (itself a long bitstring of dimer occupations in
the block). Each component of the vector Λn is a priori a general
nonlinear map, parametrised by a NN, whose output is finally
binarized.

The length of the code is not supplied, but it is inferred by
sequentially increasing the number of components in Λn, and training
the compression of Vn to optimally preserve the mutual information
with its environment En. Crucially, the maximal retained information
about En plateaus with a different optimal code-length depending on
the classVn. Particularly, forV8 (green8-star patch in Fig. 2) theoptimal
number of components is four, while for V3 (blue patch in Fig. 2) it is
only two (Fig. 3b,f). Further, nonlinearity of Λ networks does not

a

b

Fig. 2 | Self-similarity of the Ammann-Beenker tiling, and the coarse graining
blocks. a A microscopic dimer configuration on the AB tiling’s edges, with an
overlaid AB super-quasilattice, self-similar to the microscopic one. The effective
degree of freedom at a supervertex with valence n will be obtained by coarse
graining the dimer configuration in the surrounding polygon tile Vn. In total there
are 4 classes of such polygons, here shown in green, blue, red and yellow for
n = 8, 3, 4, 5, respectively. The shape of the block tile is dictated by the valence n of
the central supervertex in matching colour. b The inflation (deflation) σ2(−2) of the
elementary rhombi and squares generating the tiling, with parts of the polygonal
domains indicated in colour. Coarse graining all such polygonal patches executes a
deflation σ−2 of the original AB quasilattice, yielding the super-quasilattice shown.
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improve compression: the same amount of information is preserved
with only linear components. Optimal linear maps on the space of
dimer configurations Vn on subgraph Vn are shown for n = 8, 3 in
Fig. 3c, g, respectively.

To unravel the physical content of these encodings, we query the
outputs of our algorithm. The code statistics in Fig. 3d reveal striking
features: In class-8, of the sixteen 4-digit binary codes, only eight are
ever assigned toH8, with half of the codes unused. Yet a 3-digit binary
encoding, which has exactly eight available codes, is sub-optimal
(Fig. 3b). Moreover, all eight codes have identical probability 1/8
(Fig. 3d). This is in contrast to what happens in class-3, where the
optimal compression uses three 2-digit binary codes, where only two
codes are equiprobable, and the remaining one has probability 1/8
(Fig. 3h). These puzzling results indicate that the optimal compression
finds structure beyondmerely the number of states of the DOF, which
is essential to correlations with E, and which is impossible to encode
using fewer bits.

The used codes (that is, the n states of effective DOF Hn) are not
arbitrary, but are related to the local symmetries of the super-
quasilattice. This can be seen by investigating the structure of codes
and the Λn maps. Notice, for example, that the eight 4-bit states ofH8

can be arranged on a closed 8-cycle, such as (Fig. 3e)

1101 ! 1100 ! � � � ! 1001 ! 1101, ð4Þ

where each code has exactly two 1-bit-distant neighbours. Interest-
ingly, this solves the four dimensional ‘coil in the box’problem familiar
from coding theory. Together with the equiprobability of these codes
in Fig. 3d, this cyclic structure hints at a symmetry.

Indeed, a class-8 patch V8 of the AB quasilattice is locally sym-
metric under π/4 rotations. The mutual information should be invar-
iant under the action of this symmetry on the compression map Λ8.

Such rotations transform the linear filters Λ8
k via a permutation and

inversion of the components, as can be verified visually in Fig. 3c:

C8 : Λ8
1 ,Λ

8
2,Λ

8
3,Λ

8
4

� �
! Λ8

4, � Λ8
3, � Λ8

1 , � Λ8
2

� �
, ð5Þ

which is a representation of a generator of the cyclic group C8. We
emphasise that it is now the compression map, and consequently the
collective DOF now carrying a representation of what is a priori a
(local) symmetry only of the AB tiling.

Strikingly, when we apply the transformation Eq. (5) to the states
of the coarse grained DOF H8 (where it now amounts to the permu-
tationof thebinary digits andbit-flips), wefind that it generates exactly
the 8-cycle of Eq. (4). Since the 1-bit-flip transitions on this cycle are
directly induced by π/4-rotations, the eight states ofH8 can be aligned
with the spatial orientations along the eight links of the 8-supervertex,
as shown in Fig. 3i. This establishes H8 as a Z8 clock variable.

A similar analysis can be performed for other classes of Vn, which
have a mirror symmetry. In particular, under the mirror reflection of
the class-3 patch V3, the two digits of H3 are swapped as (see Fig. 3g)

Mirror : Λ3
1 ,Λ

3
2

� �
! Λ3

2,Λ
3
1

� �
: ð6Þ

Since themirror axis is along the edge connecting the 8- and 3-vertices
(see Fig. 3i), it associates the swap-invariant state 11 with the edge
pointing towards the 8-vertex, and the remaining equiprobable states
01 and 10 with the other two edges. Like in class-8, its transformation
under symmetries establishes H3 as a 3-state clock variable, whose
states can be identified with the super-quasilattice edges.

Hence, we see that the DOFs of the dimer system remain discrete
under coarse graining. In particular, we compressed the dimer
microstates on the microscopic links into Zn clock variables that live
on the vertices of the underlying super-quasilattice, where they mimic

b

a

f h

d

e

c

g

i

Fig. 3 | Finding collective clock variables. a Coarse graining transformation Λ

compressingMonteCarlo configurationsV intobitstringsH on supervertices of the
σ−2 deflatedAB tiling. Each bitHk is decided by the sign of the linear transformation
Λk � V. b, f The length of the bitstring H8ð3Þ is determined by the saturation point
(shown in green) of mutual information at 4 (2) bits at 8- (3-)supervertices. c, g The
respective optimal filters Λ8 and Λ3 carry a representation of the local spatial
symmetries of corresponding supervertices, namely C8 and mirror. d, h The

probability distributions PðH8ð3ÞÞ occupy the space of codes sparsely, and form
abstractZ8ð3Þ clock variables. e In particular,H8 forms a closed 8-loop, where each
state has exactly twoneighbourswithHamming-distance 1. iThe representations of
the local symmetries on filters induce transitions between adjacent clock-states,
enabling the identification of abstract clock-states with spatial directions along the
links of the quasiperiodic lattice.
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the local symmetries.We found that this result holds equally at both σ−2

and σ−4 scale transformations, providing the first indication of a DSI.
The persistent discreteness of the collective variables is to be con-
trasted with the situation on periodic lattices, such as the dimer cov-
erings of the square lattice, which has an emergent continuous U(1)
symmetry35.

Binding of clock variables into emergent super-dimers
Having identified the collective clock DOFs in different classes of
blocks individually, we now turn to their correlations, where DSI is
manifested fully. To this end, we simultaneously coarse grain dimer
configurations in multiple blocks. Deflating the canonical blocks Vn

using trained compression maps (Fig. 3c,g), the correlations of the
collective variablesHn indicate that the effective renormalised model
of the clocks has hard-core attractive and repulsive interactions along
the links of the AB super-quasilattice (see the bold edges in Fig. 2a).

We probe the correlations by conditioning on the state of one of
the vertices. In Fig. 4b, c, fragments of σ−2 and σ−4 super-quasilattices
are shown, with the state of the conditioning variable, identified with a
direction, in orange and the conditional distribution of DOFs at the
other vertices in grey. Remarkably, this distribution is very strongly
correlated, effectively forcing occupation of some states and exclud-
ing others. To wit, when the 3-vertex DOF points towards the 8-vertex,
the distribution PðH8jH3Þ of the latter is sharply peaked in the
matching direction, while no other neighbour of the 3-vertex points
towards it (allowing, for example, the identification of the 8-vertex
code 1011 with a specific spatial orientation in Fig. 3i). Conversely,
when the 3-vertex DOF points towards one of its other neighbours, it is
‘matched’ by the latter, while the 8-vertex DOF distribution has zero
weight precisely and only in the direction towards that 3-vertex.

Examining all such correlations, we arrive at a striking conclusion:
the effective DOFs in Vs throughout the quasilattice are paired with
one and only one of their neighbours into emergent super-dimers on
the edges of the super-quasilattice. The exclusion of certain clock
variable orientations in Fig. 3a–e is a precise reflection of the hard
dimer-constraints, which these super-dimers obey. Moreover, com-
parison of further correlations to those of the microscopic dimers in

Fig. 4a reveals that not just the local-dimer constraints, but also longer-
range correlations are reproduced correctly. The physics of the
microscopic dimermodel on the AB quasilattice is thus replicated, to a
high degree of accuracy, at the δ−2 scale and, again, at the δ−4 scale
(where ‘locking’ is even sharper, see Fig. 4c), thereby demonstrating
DSI across three scales.

Discussion
Guidedby theoutputs of theRSMI-NE algorithm,wehave seenhowthe
quasiperiodicity of the AB quasilattice and the hard-core interactions
of the dimer model conspire to recreate self-similar DOFs at a higher
scale, giving rise to DSI. A parallel work28 gives a microscopic inter-
pretation of the super-dimers as alternating dimer paths with respect
to a certain reference configuration, and studies the criticality
numerically.

Emergent continuous scale invariance is a standard signature of
critical phenomena, being one aspect of conformal symmetry46. Here
we insteadencounter anexotic kindof critical phenomenonwhere this
continuous conformal symmetry is broken to a discrete subgroup,
thereby complicating the usual effective continuum theory descrip-
tion at large scales. This is particularly interesting, as it appears to
challenge the receivedwisdom that quasicrystallinity should always be
RG irrelevant47.

We would like to also emphasise the dual computational and
conceptual aspect of this result: In particular for the σ−4 scale trans-
formation, the RSMI-NE algorithm successfully encodes the symme-
tries and large-scale correlations in approximately 210

3

dimer
microstates into a highly structured linear coarse graining map Λn,
which is effectively impossible to guess or analyse by human intuition
only. Our demonstration of this approach on an open problem shows
how machine learning tools, when paired with a physically motivated
objective function, can bridge gaps between complex data and formal
physical understanding.

In the Supplementary Information we have also applied the graph
RSMI-NE algorithm on a class of non-bipartite random graphs, where
we show that it can be used to construct a global order parameter for
the frustrated Ising antiferromagnet. From the dual perspective of

a

b

c

d

e

Fig. 4 | Emergent dimer exclusion rule and self-similar dimer-dimer correla-
tions across scales. a The probability distribution of microscopic (i.e. δ0) dimers
(in greyscale) on anABpatch, conditioned on one of the links (in orange) hosting a
dimer. b, c First two columns: the probabilities PðH8jH3Þ of the emergent clock
variables on the δ2 and δ4 super-quasilattice (in greyscale), conditioned on two
distinct states of one of the 3-clocks (in orange). The third column shows

distributions PðH3jH8Þ conditioned on a state of the central 8-clock. Binding of
adjacent clock variables into super-dimers obeying dimer exclusion constraints is
revealed by sharply peaked conditional distributions. The effective super-dimers
reproduce also longer-range dimer-dimer correlations at both δ2 and δ4 scales.
d, e Examples of optimal coarse-graining filters producing the central 8-state clock
variable at scales δ2 and δ4. The latter comprises 2760 microscopic links.
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combinatorial optimisation, this amounts to solving the well-known
optimal graph-bipartitioning problem in combinatorial optimisation
and graph theory48–51. These results illustrate the practical applicability
of ourmethod—formally apparent from itsmathematical definition—to
more generic graph topologies, and its independence of the knowl-
edge, or even existence, of preferred spatial blocks.

We therefore conclude that lossy compression allows effective
DOFs to be extracted from the structure of information inherent in raw
high-dimensional data, and that this approach excels in systems with
non-regular geometry. Given that such cases are the norm rather than
the exception in real-world applications, we expect compression the-
ory to become an essential tool in the physical sciences.

Methods
Real-space mutual information based coarse graining
Themethod used to construct the effective DOFs is a generalisation of
the compression theoretic approach first introduced by some of the
authors in ref. 16 for translation invariant systems. The key insight is
that the random variables, such as the local variable being coarse-
grained V and its environment E, in variational principle in Eq. (2) can
be defined in any metric space, and need not be restricted to regular
lattices as in ref. 16. Here we use the graph distance which provides a
meaningful measure for spatial length scale on graphs with a local
structure. This allows to define the optimal coarse-graining in any
geometry, addressing one of the main challenges to applying RG in
inhomogeneous systems.

The above construction is also useful in tackling a second key
issue in RG approaches on disordered systems: One has to deal with
the changing coarse-grained graph across different scales4. Here, the
effective coarse-grained graph structure is defined by the correlations
of the collective DOFs themselves. Thereby the procedure takes
account of both the topology of the space and the interactions.
Endowed with these two properties, the compression principle in Eq.
(2) yields a mathematical definition of optimal coarse graining for
inhomogeneous systems with local structure.

In concrete terms, our compression method is defined as
follows. Consider a system of microscopic DOFs living on the
graph G, defined, as usual, as the sets of vertices and edges. The
physical space of configurations of the system living on the graph
is described by a (large dimensional) random variable X dis-
tributed according to some joint probability distribution P Xð Þ.
The DOFs may exist either on the vertices, on the edges (as in the
dimer model), or both.

Let further G =⋃iVi denote a decomposition of G into a set of
simply connected local subgraphs (patches). A coarse graining of a
partition X =

S
iV i of the physical configurations into new variables

X 0 =
S

iHi is then defined as a conditional probability distribution

PðX 0jX Þ=
Y
i

PΛi ðHijV iÞ, ð7Þ

where each factor is an individual coarse graining of block variable
V i 7!Hi. This will be a compression map by construction, so it mono-
tonically reduces the entropy HðHiÞ≤HðViÞ. We describe a specific
ansatz for such mappings below.

We emphasise the distinction between the spatial patch Vi, and
configurations of DOFs supported on this patch V i, which is a random
variable. ThepatchVi can be chosen as any local subgraph, for instance
a topological ball defined using graph distance, or another set dictated
by the structure of the problem, such as the tiles we used in the AB
example (Fig. 2a).

Algorithmically, the static graph structure allows us to define a
constant indexing of the individual DOFs that is fixed across all real-
space samples. Therefore, once we use the graph structure to define
the subsystems Vi, Ei we then can forget about the connectivity of the

subgraphs Vi, Ei and simply cast the DOFs into vectors:

Vi
j

n o
|fflffl{zfflffl}

set of DoFs

������!fixed

permutation
Vi
j

h i
|ffl{zffl}

vector of DoFs

: ð8Þ

Therefore, we can use standard NN architectures to handle the phy-
sical configurations on the graph. Note that would not be able to use
this trick in the more general case of dynamic graphs, as it requires
respecting the permutation invariance of the vertices.

Maximisation of the real-space mutual information (RSMI)

IðHi : EiÞ=EPðHi , EiÞ logPðHi, EiÞ � logPðHiÞPðEiÞ
h i

between Hi and its distant environment Ei provides a variational
principle for the coarse grainingmap Λi. The objective depends on the
coarse graining mapping via the compressed Hi variables:
IðHi : EiÞ � IΛi ðHi : EiÞ. The construction of the RSMI objective func-
tion enables distiling the most relevant large-scale features13,15, as it
tracks the correlations with a distant environment Ei. Formal
connections between this objective and the most relevant operators
in critical lattice systems has recently been demonstrated both
numerically and analytically13,14.

The compression is enforced by limiting the information capacity
ofHi using a predetermined number of encoding bits (as we describe
below), thereby directly implementing the rate constraint in the
information bottleneck problem12,13. Note that the compression is
informed both of the underlying graph structure, and of the physics of
the model living on it, which are encoded in the statistics of the con-
figuration samples ðVi, EiÞ.

Estimation of mutual information
The computationally challenging RSMI variational principle can be
efficiently implemented with differentiable lower bounds on mutual
information17,18. Such bounds areparametrised by a deepNN,whichwe
call the neural critic function (see below). The key idea behind this
approach is that the estimation of mutual information IðX : YÞ is
converted to a classification task; where the neural critic, f ðX ,YÞ, is
trained to distinguish so-called positive and negative sample pairs,
which are sampled respectively from the true joint distribution PðX ,YÞ
and the product of marginals PðX ÞPðYÞ19.

Some of the authors have recently used these techniques to
develop a tractable implementation of the variational principle in Eq.
(2) on regular lattices14,20. This is the RSMI-NE algorithm, where the
neural critic f is optimised simultaneously with a coarse graining
ansatz Λ using stochastic gradient descent, as we describe below.

In the present work we extended this compression framework for
RG, and the RSMI-NE package to systems on arbitrary static graphs by
casting the configurations into vectors according to the fixed coordi-
nate system defined by the graph. The graph-enabled RSMI-NE code
using the NetworkX backend52 is available publicly21.

The coarse-graining and neural critic ansatze
We specify the coarse graining PΛi ðHijViÞ using an inner-product
ansatz

Hi
k := τ Λi

kjV i
j

� �
, ð9Þ

parametrised by a vector of linear NNs Λi = ðΛi
kÞ, and τ, which is a

binary discretisationmap (e.g. sign function). The index k runs over the
components of a coarse-grained variable, and the index j refers to the
spatial positions in regionV, where the indexing is definedwith respect
to a fixed labelling of vertices in the graph. Though we considered
scalar DOFs in the AB dimer system, vector DOFs V i

jl can also be
handled by increasing the rank of the coarse graining filter by one:Λi

kjl .
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In general, non-linear NN ansatze can also be used, and may be even
necessary in certain cases, see for example ref. 53. Our code supports
such more general mappings that do not have this multilinear
structure, and are instead parametrised by deep NNs.

We implemented the binarymapping τ using theGumbel-softmax
trick54, which is an annealed relaxation of the Bernoulli distribution for
Hi

k . This allows us to backpropagate through the discrete sampling
process, and to train the coarse-graining filters using stochastic gra-
dient descent, while ensuring a fixed rate of compression via dis-
cretisation.We used an annealing schedule exponential relaxation rate
of 5 × 10−3, so that the variables are effectively binary at the end of the
training.

The critic function in the variational RSMI lower-bound is imple-
mented using a separable architecture

f ðH, EÞ= uðHÞTvðEÞ ð10Þ

where we used two-layer deep NNs for u and v, with hidden dimension
16 and output dimension 8 (the hidden dimension is contracted in the
product of the two networks).

Training details
We trained the NNs using stochastic gradient descent with learning
rate of 10−3 using 50,000 sample dimer configurations, generated via
the directed-loop Monte Carlo algorithm on the AB graph. The total
graph we considered contains 26,177 nodes (the full graph is shown in
the Supplementary Information). The sample dataset is supplied to the
RSMI-NE algorithm inmini-batches of size 1000 and 120 epochs of the
entire dataset.

The coarse-grained block variable V at a given scale δs is defined
on the σs inflated tiles V shown with different colours in Fig. 2a. The
corresponding environment regions E, are defined as a shell with
radius given by a fixed graph-distance from the centre of V. In parti-
cular for δ2, E is defined by an inner radius LE in

= 9 and outer radius
LEout

= 24, whereas for δ4 we used LE in
= 40, LEout

= 64, as shown in Sup-
plementary Fig. 2. Examples of the corresponding σ−4 coarse-graining
filters are shown in Supplementary Fig. 3.

Data availability
The data generated during the course of this study have been depos-
ited in the Figshare repository at https://doi.org/10.6084/m9.figshare.
27245481(ref. 55).

Code availability
The RSMI-NE software used in this study is available as an open-source
repository in the Zenodo repository linked in ref. 21 and https://github.
com/RSMI-NE/RSMI-NE.
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