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a b s t r a c t 

Describing patterns of plant phenology through models has been critical for quantifying species responses to 
climate change and forecasting future vegetation impacts. However, many species remain unincluded in large 
analyses because they are poorly represented in the large public or citizen science datasets that form the founda- 
tion of these efforts. Botanical living collections are often key resources that facilitate study of rare and sparsely 
observed species, but alone are insufficient to predict species phenology throughout their observed ranges. We 
investigate whether predictions for rare and data-poor species observed at a single site can be improved by lever- 
aging observations of similar taxa observed at multiple locations. We combined observations of oak ( Quercus ) 
budburst and leaf out from one botanical garden with a subset of congeneric species observed in the USA-NPN 

citizen science dataset using Bayesian hierarchical modeling. We show that including USA-NPN observations into 
a simple thermal time model of budburst and leaf out did not reduce geographic bias in model predictions over 
models parameterized only with single-site observations. However, using USA-NPN data to add non-taxonomic 
spatial covariates to the thermal time model improved model performance for all species, including those only 
observed at a single site. Living collections at botanical gardens provide valuable opportunities to observe rare or 
understudied species, but are limited in geographic scope. National-scale citizen science observations that cap- 
ture the spatial variability of related or ecologically similar taxa can be combined with living collections data to 
improve predictions of species of conservation concern across their native range. 
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. Introduction 

Plant phenological responses to spring temperatures and warming
rends over recent decades is one of the clearest indicators of climate
hange impacts on plants and ecosystems across the globe [1 , 2] . As
any as 78% of European cold-deciduous plant species are now showing

arlier budburst, leaf out, or flowering timing than 50 years ago [2] . The
echanistic ties among plant phenology, species reproductive success,

nd individual survival have allowed for improved understanding of
limate vulnerability for many temperate tree species [3 , 4] . However,
henology research and climate vulnerability assessments are typically
nly possible for common temperate deciduous species in the northern
emisphere where there is high data availability from long-term re-
earch, experiments, and citizen science studies [5 , 6] . The climate risk
or species with narrow ranges, common in rare and threatened taxa,
s often more difficult to assess [7 , 8] and different methods of evalu-
ting this vulnerability may provide diverging results [9] . Providing
∗ Corresponding author. 
E-mail address: lfitzpatrick@mortonarb.org (L. Fitzpatrick). 

ttps://doi.org/10.1016/j.ecochg.2021.100032 
eceived 23 December 2020; Received in revised form 17 September 2021; Accepted
vailable online 4 October 2021 
666-9005/© 2021 The Authors. Published by Elsevier Inc. This is an open access ar
 http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
dditional information to help manage rare or restricted-distribution
lants is of interest to the botanical garden and conservation commu-
ities as these taxa are generally considered to have a higher risk of
eing impacted by anthropogenic events [10] , are often phylogenet-
cally diverse [10] , and the identification of threats of extirpation to
opulations of rare species can be helpful in informing conservation
riorities [10–12] . 

Data limitations describing biological responses to climate and the
nvironment is a common and pervasive challenge for robust threat
ssessments of rare species. Incorporating the effects of climate change
ulnerability into established threat programs such as the IUCN Red
ist is a particular challenge for many species due to a lack of available
ata on the effects of climate variability and change on individual and
opulation-scale biology [13] . Although phenological observations are
elatively easy to make, most taxa of current conservation concern
re not incorporated into large data networks due to challenges of
ccess and identification that complicate data reliability [14] . For
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xample, The USA National Phenology Network (USA-NPN) Nature’s
otebook citizen science program is one of the largest phenological
onitoring programs and has been used to make species-level forecasts

f activity for dozens of both plant and animal species to be used for
oth research and management-focused audiences [15–17] . However,
f the 91 Quercus L. species in the US, only 29 are included in the
SA-NPN observing program, and all except two ( Q. engelmanii Greene,
. lobata Née) are considered species of “least concern ” in the Red
ist of US Oaks [18] . Existing information on phenology and climate
esponses for rare and endemic species is often the product of isolated
ampling efforts, inconsistent methodologies, and environmental con-
itions that challenge species comparisons and extrapolation to other
onditions [13 , 19 , 20] . To address these limitations, analytical methods
hat combine datasets, particularly those that borrow strength from
ata-rich related or functionally similar species over broader regions,
ay enhance our ability to predict phenology for data-poor species. 

Botanical garden living collections and herbaria are able to help
ll critical data needs for rare and restricted-distribution species that
re logistically challenging to observe in situ and are typically absent
rom large-scale and citizen science datasets such as the USA-NPN
21–23] . Botanical gardens and arboreta have long been key sources of
axonomic and phylogenetic comparisons of traits like phenology across
he diversity of taxa grown in common garden environments and have
een essential for global biodiversity work [24 , 25] . Through just two
ears of observations, data from botanical gardens have highlighted
ow phylogenetic and trait patterns explaining spring leaf out do not
old for autumn senescence [25 , 26] . However, the ability of gardens
o address information needs for individual species responses to both
limate variability and change has been difficult due to the common
imitations of single-site studies to describe the full geographic or
limatic range of in situ individuals making the extrapolation of the ex
itu conditions tenuous [27] . Bolstering the comparably-narrow climate
nd geography of botanical collections with the large geographic and
nvironmental extent of citizen science phenology programs has the
otential to improve the robustness of phenological predictions for rare
pecies in habitats where direct observation can be infeasible. 

Phenological models that incorporate species-level biological
hreshold responses to weather and climate conditions have been used
o accurately forecast phenology in near real time [16 , 17] but these
tudies and applications typically focus on common data-rich taxa.
urrent phenological models range in complexity from thermal time
odels that use a single parameter, such as a growing degree-day

hreshold, to more complex multivariate models that account for addi-
ional cues such as chilling and spatio-temporal variability in light and
inter temperatures [27–29] . Multivariate models often out-perform

impler models when predicting phenological events over large areas
r outside of the data collection site [28 , 30 , 31] , but because the data
eeded to parameterize models scales non-linearly with complexity,
ccurate phenology modeling and prediction is typically not possible
or many rare or uncommon species when analyzed on their own
31 , 32] . Historically, hierarchical mixed models have been widely used
o borrow statistical strength across unbalanced datasets and improve
redictions in many applications, but they have not yet been widely
pplied to facilitate the use of large citizen science datasets to improve
odeling for rare and data-limited species [13 , 14] . 

In this study, we test whether phenological models for rare and data-
oor species observed at a single site can be improved by leveraging
bservations of phenologically similar, congeneric species from a large,
istributed citizen science dataset. We modeled leaf out and budburst
f seven temperate deciduous oak ( Quercus ) species using a hierarchical
ayesian thermal time model with and without spatial covariates to
ombine observations from The Morton Arboretum (TMA) and the
SA National Phenology Network (USA-NPN). Three species were

parsely-observed in USA-NPN ( < 25 sites) and were modeled using
ata from only TMA ( “TMA Only ” group) and validated using all avail-
ble USA-NPN observations to test the ability of leveraging data from
2 
ongeneric species to improve phenology models: Q. imbricaria Michx.,
. montana Wiild.(syn Q. prinus L. p.p., nom. utique rej. ), and Q. velutina

am. ( Table 1 ). To test the power of using large, spatially-distributed
atasets for improving predictions far outside of the available training
ata, USA-NPN data for the remaining four congeneric species was
ncluded in models to explain phenological patterns over larger spatial
cales ( “TMA + NPN ” group): Q. alba L., Q. macrocarpa Michx., Q.

alustris Münchh., Q. rubra L.. Predicted phenology for species in the
MA + NPN group were evaluated using a random 25% of USA-NPN
ites excluded from model fitting ( Table 1 ). We modeled leaf out and
udburst phenology for all seven species using four hierarchical phe-
ological models: 1) TMA data only (TMA); 2) TMA and USA-NPN data
COMB); 3) TMA and USA-NPN data and a latitude spatial covariate
LAT); 4) TMA and USA-NPN data and a winter temperature spatial
ovariate (WT). All models and species were evaluated based on root
ean square error (RMSE) and spatial bias in prediction accuracy using
SA-NPN observations withheld from model fitting. 

. Method 

.1. Data sets descriptions and data cleaning 

We analyzed phenology of seven Quercus species native to the
astern U.S. observed both at The Morton Arboretum’s Oak Collection
TMA) and at least five other USA-NPN sites ( Fig. 1 , Supplemental Table
1 & S2). Of the 16 species common to both TMA and USA-NPN, seven
pecies met our criteria for inclusion in our study following data clean-
ng, described below. TMA data were collected approximately weekly in
018 and 2019 following USA-NPN protocols [33] . Additional species
re observed at TMA, but are not included in this study due to lack
f available independent observations for prediction evaluation. For
SA-NPN data, leaf out and budburst individual phenometrics [34] for
008–2019 were downloaded from Nature’s Notebook using the rnpn

ackage in R [35] . Individual phenometrics are calculated by USA-NPN
nd indicate onset and end date for phenophases such as budburst and
eaf out [34] . USA-NPN sites are distributed across the United States
nd are often concentrated in population dense areas ( Fig. 1 ). 

Both TMA and USA-NPN datasets were cleaned prior to analysis fol-
owing approaches used in other studies [36] and TMA observations
ere removed from the USA-NPN dataset (site 26202) to avoid obser-
ation duplication. We restricted our analyses to exclude observations of
udburst or leaf out presence that had not been preceded by an absence
bservation within the prior 10 days, which removed 39% of the initial
243 individual budburst and leaf out USA-NPN phenometrics for our
tudy taxa. For individuals with multiple budburst or leaf out entries
er year, we used the first instance. We also removed observations after
he summer solstice (day of year 172) to restrict observations to start-
f-season phenophase activity. Finally, we excluded outliers in the USA-
PN dataset by removing any observations outside of three standard de-
iations from the mean day of year for each phenophase for each species.
inal number of unique budburst and leaf out observations, trees, and
ites for both TMA and USA-NPN can be found in Tables S1 and S2. 

The objective of this study was to evaluate the ability of observa-
ions from related taxa in geographically dispersed datasets such as
SA-NPN to improve predictions for rare or sparsely-observed species

rom a single site. To achieve this objective, we categorized species
sed in this study into two groups. Species in the “TMA + NPN ” group
sed observations from both TMA and USA-NPN to parameterize
pecies-level effects in all models ( Section 3 ), while the “TMA Only ”
roup withheld all USA-NPN observations for model validation ( Fig. 1 ).
hus, the “TMA Only ” group provides a means of evaluating the likely
rediction error and spatial bias for other species observed at sites
uch as TMA, but for which no independent prediction evaluation is
urrently possible. Because our goal was to focus on the ability to
mprove predictions for rare and endemic species, we chose species
bserved in less than 20 sites for the “TMA Only ” group: Q. velutina ,
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Table 1 

Description of how data from living collections at The Morton Arboretum’s (TMA) and The USA National Phenology 
Network (USA-NPN) are used in multi-site models of leaf out and budburst in our study. For species with observations 
at more than 20 sites ( Q. alba , Q. macrocarpa , Q. palustris , Q. rubra ; collectively termed “TMA + NPN ”), 25% of USA-NPN 

sites for each species were withheld from model fitting for model validation while the remaining sites used TMA data 
in the model fitting process (calibration). All USA-NPN sites for the remaining three species were withheld from model 
fitting to test the ability of using congeneric observations to improve predictions made with species observations from a 
single site ( “TMA Only ”; Q. imbricaria , Q. montana , Q. velutina ). 

Species Data for model parameterization Data for Validation 

Q. alba TMA + 75% USA-NPN sites Random 25% sample of USA-NPN sites 
Q. macrocarpa TMA + 75% USA-NPN sites Random 25% sample of USA-NPN sites 
Q. palustris TMA + 75% USA-NPN sites Random 25% sample of USA-NPN sites 
Q. rubra TMA + 75% USA-NPN sites Random 25% sample of USA-NPN sites 
Q. imbricaria TMA All USA-NPN sites 
Q. montana TMA All USA-NPN sites 
Q. velutina TMA All USA-NPN sites 
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. montana , Q. imbricaria (Table S1, S2). To provide context for the
erformance of phenology predictions made from the single-site TMA
roup, we randomly excluded one-fourth of USA-NPN sites for each
emaining “TMA + NPN ” species ( Q. alba , Q. macrocarpa , Q. palustris ,
. rubra ; Tables S1, S2) for model validation and used the remaining
bservations in the model calibration and fitting process ( Fig. 1 ). One
dditional species, Q. ilicifolia Wangenh., met the criteria for inclusion
n our study as a “TMA Only ” validation species, but the species
arameters were unable to converge in our models (described below). 

.2. Meteorological Data 

Weather data used in this study was acquired for TMA and all
SA-NPN sites from Daymet using the daymetr package [38] . Daymet is
 national weather collection service that provides gridded estimates of
aily weather parameters at 1 km spatial resolution [39 , 40] . We used
aily minimum and maximum temperatures to calculate the daily mean
emperature value which was then used to calculate accumulated grow-
ng degree days (GDD) and winter season mean temperature (WT). GDD
as calculated by subtracting a base temperature of 5 ̊C from the daily
ean temperature with any negative values being set to 0. The GDD

alue associated with a budburst or leaf out event was the sum of GDD
etween January 1st and the date of that phenological event observation
e.g. day of first budburst or leaf out). Winter season mean temperature
WT) was calculated as the mean daily temperature from Jan. 1st
hrough March 1st. Winter season mean temperature at TMA was
3.97 ̊C in 2018 and -5.19 ̊C in 2019. WT of associated with our USA-
PN observations had a median (range) of -0.6 ̊C (-16.3 ̊C - 13.3 ̊C). 

. Calculation 

We used a series of four models to evaluate the ability of leveraging
dditional phenological observations of related taxa from large data
etworks such as USA-NPN to improve predictions made from data at
 single site, TMA. Two models are simple thermal-time models with
pecies-level cumulative growing degree-day thresholds (base tempera-
ure 5 ̊C) that were parameterized with two different datasets: 1) data for
ll seven species from The Morton Arboretum (TMA model); and 2) TMA
bservations for all seven species plus additional observations for four
pecies from USA-NPN (COMB model). Because the power of big data
uch as USA-NPN often comes from its ability to describe spatial varia-
ion in patterns rather than detail for many species [14] , we create two
dditional models where USA-NPN observations were used to add one
f two global spatial covariates: latitude (LAT model) or winter temper-
ture (WT model). In all models, the accumulated growing degree-days
t the time of first observed budburst or leaf out for each individual in
ach year was used as the response variable (GDD) and budburst and
eaf out were modeled separately. More detail on all model structures
re described below. Models were constructed using the Gibbs sampler
3 
oftware Jags [41] , and the rjags [42] and coda [43] packages. All
odels and analyses were performed using R [44] and Rstudio [45] . All

ode is available in the following Github repository: https://github.
om/MortonArb-ForestEcology/Collections _ phenology _ vulnerability . 

.1. TMA thermal time model (single-site) 

Both the TMA and COMB models are simple GDD thermal time mod-
ls that differ in the datasets used in parameterization of those models.
he TMA model ( Eq. (1) ) used all available observations of budburst or

eaf out (GDD ijl ) from The Morton Arboretum for all seven study species
nd included fixed effects to describe species differences in GDD thresh-
lds for budburst and leaf out ( 𝜇𝐬𝐩𝐩 ) and individual precision around
hose effects ( 𝜇𝐢𝐧𝐝 ). Model structure for the TMA was as follows: 

𝐃 𝐃 𝐢𝐣𝐥 ∼ 𝐍 

(
𝜇𝐢𝐧𝐝 ( 𝐣𝐥 ) , 𝜏𝐨𝐛𝐬 

)
(1) 

here GDD ijl was the accumulated GDD at the time of phenological
vent observation ( i ) of an individual ( j ) that belongs to species ( l ). The
erm 𝜇𝑜𝑏𝑠 measured the overall precision (error) in our data and μind(jl) 
escribed individual effects of individual ( j ) belonging to species ( l ).
he term μind ( jl ) was defined as a normal distribution: 

𝐢𝐧𝐝 ( 𝐣𝐥 ) ∼ 𝐍 

(
𝜇𝐬𝐩𝐩 ( 𝐥 ) , 𝜏𝐢𝐧𝐝 

)
(2) 

here μspp(l) was the species effect for each species ( l ) and 𝜏ind was
he precision of individuals. The species effect term, 𝜇spp (l) , was also
efined as a normal distribution: 

𝐬𝐩𝐩 ( 𝐥 ) ∼ 𝐍 

(
𝛼𝐥 , 𝜏𝐬𝐩𝐩 ( 𝐥 ) 

)
(3) 

here 𝜶l was the prior for each species ( l ) and 𝜇spp (l) was the precision
f each species ( l ). The fixed species effect had a uniform prior: 

𝐥 ∼ 𝐮𝐧𝐢𝐟𝐨𝐫𝐦 ( 0 , 1000 ) (4) 

Precision parameters were given gamma priors because gamma dis-
ributions are nonnegative and are conjugate to normal distributions: 

𝐨𝐛𝐬 , 𝜏𝐢𝐧𝐝 , 𝜏𝐬𝐩𝐩 ( 𝐥 ) ∼ 𝐠𝐚𝐦𝐦𝐚 ( . 01 , . 1 ) (5)

.2. COMB thermal time model 

The COMB model ( Eq. (6) ) was fit using all available TMA obser-
ations for all seven species and observations from three-quarters of
he available USA-NPN sites for each of the four “TMA + NPN ” species
 Q. alba , Q. macrocarpa , Q. palustris , Q. rubra ). The COMB model had a
imilar structure as the TMA model, but with an additional hierarchical
ocation effect that the single-site TMA model lacked without including
 spatial covariate in the GDD model. The structure for the COMB
odel was as follows: 

𝐃𝐃 𝐢𝐣𝐤𝐥 ∼ 𝐍 

(
𝜇𝐢𝐧𝐝 ( 𝐣𝐤𝐥 ) , 𝜏𝐨𝐛𝐬 

)
(6) 

https://github.com/MortonArb-ForestEcology/Collections_phenology_vulnerability
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Fig. 1. Locations of all The Morton Arboretum 

(TMA) (orange square) and USA National Phe- 
nology Network (USA-NPN) observations for 
seven oak ( Quercus ) species used in this study. 
For species with observations at more than 
20 sites ( Q. alba , Q. macrocarpa , Q. palustris , 
Q. rubra ; collectively termed “TMA + NPN ”), 
25% of USA-NPN sites for each species were 
withheld from model fitting for model valida- 
tion (green triangles) while the remaining sites 
used TMA data in the model fitting process 
(calibration; yellow circles). All USA-NPN sites 
for the remaining three species were withheld 
from model fitting to test the ability of using 
congeneric observations to improve predictions 
made with species observations from a single 
site ( “TMA Only ”; Q. imbricaria , Q. montana , 
Q. velutina ). Native species ranges from Little 
[37] are shown in gray. 
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here GDD ijkl was the accumulated GDD at the time of phenological
vent observation ( i ) of an individual ( j ) observed at site ( k ) that
elongs to species ( l ). The term 𝝉obs measured the overall precision
error) in the observations and 𝜇ind ( jkl ) described individual effects of
ndividual ( j ) at site (k) belonging to species ( l ). The term 𝜇ind ( jkl ) was
efined as a normal distribution: 

𝐢𝐧𝐝 ( 𝐣𝐤𝐥 ) ∼ 𝐍 

(
𝜇𝐥𝐨𝐜 ( 𝐤𝐥 ) , 𝜏𝐢𝐧𝐝 

)
(7)
4 
here 𝜇loc ( kl ) was the location effect at site ( k ) for each species ( l ) and

ind was the precision of individuals. The location effect term ( μloc(kl) )
as defined as a normal distribution: 

𝐥𝐨𝐜 ( 𝐤𝐥 ) ∼ 𝐍 

(
𝜇𝐬𝐩𝐩 ( 𝐥 ) , 𝜏𝐥𝐨𝐜 ( 𝐤𝐥 ) 

)
(8) 

here μspp(l) was the species effect for each species ( l ) and 𝝉 loc(kl) was
he precision at site ( k ) for each species ( l ). The species effect term,
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spp(l) , was also defined as a normal distribution: 

𝐬𝐩𝐩 ( 𝐥 ) ∼ 𝐍 

(
𝛼𝐥 , 𝜏𝐬𝐩𝐩 ( 𝐥 ) 

)
(9)

here 𝜶l was the prior for each species ( l ) and 𝝉spp(l) was the precision
ttributed to each species ( l ). The fixed species effect had a uniform
rior: 

𝐥 ∼ 𝐮𝐧𝐢𝐟𝐨𝐫𝐦 ( 0 , 1000 ) (10) 

Precision parameters were all given gamma priors because gamma
istributions are nonnegative and conjugate to normal distributions: 

𝐨𝐛𝐬 , 𝜏𝐢𝐧𝐝 , 𝜏𝐥𝐨𝐜 ( 𝐤𝐥 ) , 𝜏𝐬𝐩𝐩 ( 𝐥 ) ∼ 𝐠𝐚𝐦𝐦𝐚 ( . 01 , . 1 ) (11)

.3. Spatial covariate models: LAT, WT 

We also created two models that included similar effects describing
pecies-level sources of variation in GDD thresholds (TMA model), but
lso included global spatial covariate effects to describe spatial varia-
ion in GDD cues across the geographic extent of available observation
ata, regardless of species identity ( Eq. (12) ). This differed from the
OMB model which simply added more species-specific data because

t used the USA-NPN data to capture the spatial extent of the USA-NPN
ata to describe spatial variation across the data set independent of
pecies. These models used the same data inputs as the COMB model
n conjunction with either a latitude or winter temperature spatial
ovariate taken from the location of observation. The structure of both
he LAT and WT models were the same: 

𝐃 𝐃 𝐢𝐣𝐤𝐥 ∼ 𝐍 

(
𝜇𝐢𝐧𝐝 ( 𝐣𝐥 ) + 

(
𝛼𝐢𝐧𝐝 ( 𝐣𝐤 ) + 𝛽𝐢𝐧𝐝 ( 𝐣𝐤 ) × 𝐒𝐏𝐀𝐓 

)
, 𝜏𝐨𝐛𝐬 

)
(12)

here GDD ikjl was the accumulated GDD at the time of phenological
vent observation ( i ) of an individual ( j ) observed at site (k) belonging
o species ( l ). The term 𝝉obs described the overall precision in our data
nd μind(jl) described taxonomic effects of each individual ( j ) belonging
o species ( l ). The term 𝜶ind(jk) was the spatial intercept for each indi-
idual ( j ) at site ( k ), and the term 𝜷 ind(jk) was the spatial slope for each
ndividual ( j ) at site ( k ). SPAT represented the spatial covariate that
as either the latitude (LAT model) or the winter season growing mean

emperature (WT model) of the observation site. The three terms μind(jl), 

ind(jk), and 𝜷 ind(jk) had unique hierarchies that were defined as follows.
s in the TMA model, μind(jl) , was defined as a normal distribution: 

𝐢𝐧𝐝 ( 𝐣𝐥 ) ∼ 𝐍 

(
𝜇𝐬𝐩𝐩 ( 𝐥 ) , 𝜏𝐢𝐧𝐝 

)
(13)

here μspp(l) was the species effect for each species ( l ) and 𝝉 ind was the
recision of individuals. The species effect term, μspp(l) , was defined as
 normal distribution: 

𝐬𝐩𝐩 ( 𝐥 ) ∼ 𝐍 

(
𝛼𝐥 , 𝜏𝐬𝐩𝐩 ( 𝐥 ) 

)
(14)

here 𝜶l was the species effect prior for each species ( l ) and 𝝉spp(l) 
as the precision of each species ( l ). The spatial intercept, 𝜶ind(jk) , was
efined as a normal distribution: 

𝐢𝐧𝐝 ( 𝐣𝐤 ) ∼ 𝐍 

(
𝛼𝐥𝐨𝐜 ( 𝐤 ) , 𝜏𝛼 𝐢𝐧𝐝 

)
(15)

here 𝜶loc(k) was the location intercept effect at each site ( k ) and 𝝉𝜶 ind 
as the precision of the spatial intercept. The location intercept effect,

loc(k) , was defined as a normal distribution: 

𝐥𝐨𝐜 ( 𝐤 ) ∼ 𝐍 

(
𝛼𝐠𝐥𝐨𝐛𝐚𝐥 , 𝜏𝛼𝐥𝐨𝐜 ( 𝐤 ) 

)
(16)

here 𝜶global was the global intercept effect and 𝝉𝜶 loc(k) was the
recision attributed to each site ( k ). The global intercept effect, 𝜶global ,
as defined as a normal distribution: 

𝐠𝐥𝐨𝐛𝐚𝐥 ∼ 𝐍 

(
𝛼𝟎 , 𝜏𝛼𝐠𝐥𝐨𝐛𝐚𝐥 

)
(17)

here 𝜶0 was the global intercept prior and 𝝉𝜶global was the precision
f the global intercept. The spatial slope, 𝜷 ind(jk) , was defined as a
ormal distribution: 

𝐢𝐧𝐝 ( 𝐣𝐤 ) ∼ 𝐍 

(
𝛽𝐥𝐨𝐜 ( 𝐤 ) , 𝜏𝛼𝐢𝐧𝐝 

)
(18)
5 
here 𝜷 loc(k) was the location slope effect at each site ( k ) and 𝝉𝜶 ind was
he precision of the spatial slope. The location slope effect 𝜷 loc(k) was
efined as a normal distribution: 

𝐥𝐨𝐜 ( 𝐤 ) ∼ 𝐍 

(
𝛽𝐠𝐥𝐨𝐛𝐚𝐥 , 𝜏𝛼𝐥𝐨𝐜 ( 𝐤 ) 

)
(19) 

here 𝜷global was the global slope effect and 𝝉𝜶 loc(k) was the precision
ttributed to each site ( k ). The global slope effect, 𝜷global , was defined
s a normal distribution: 

𝐠𝐥𝐨𝐛𝐚𝐥 ∼ 𝐍 

(
𝛽𝟎 , 𝜏𝛼𝐠𝐥𝐨𝐛𝐚𝐥 

)
(20) 

here 𝜷0 was the global slope prior and 𝝉𝜶global was the precision of
he global slope. Species-specific parameters were drawn from normal
rior distributions centered at 0 with normal precisions: 

𝐥 ∼ 𝐍 

(
𝟎 , 𝜏𝛼𝐥 

)
(21) 

The global spatial parameters were drawn from normal prior
istributions centered at 0 with normal precisions: 

𝟎 ∼ 𝐍 

(
𝟎 , 𝜏𝛼𝟎 

)
(22) 

𝟎 ∼ 𝐍 

(
𝟎 , 𝜏𝛽𝟎 

)
(23) 

ll precision parameters were given gamma priors because gamma
istributions are nonnegative and conjugate to normal distributions.
he distributions were: 

𝐨𝐛𝐬 , 𝜏𝜇𝐢𝐧𝐝 , 𝜏𝜇𝐬𝐩𝐩 ( 𝐥 ) , 𝜏𝛼𝐢𝐧𝐝 , 𝜏𝛼𝐥𝐨𝐜 ( 𝐤 ) , 𝜏𝛼𝐠𝐥𝐨𝐛𝐚𝐥 , 𝜏𝛽𝐢𝐧𝐝 , 𝜏𝛽𝐥𝐨𝐜 ( 𝐤 ) , 𝜏𝛽𝐠𝐥𝐨𝐛𝐚𝐥 , 𝜏𝛼𝐥 , 𝜏𝛼𝟎 , 𝜏𝛽𝟎 

∼ 𝐠𝐚𝐦𝐦𝐚 ( . 01 , . 1 ) (24) 

.4. Model evaluation 

Species-scale GDD thresholds and model performance were eval-
ated using the posterior distributions of parameters from all four
odels. To compare differences in model-estimated GDD thresholds for

eaf out or budburst, we generated a 500-member posterior distribution
f threshold values using the latitude and mean winter temperature
or TMA in the spatial models. To compare differences in GDD dis-
ributions among models, we used a mixed effects model with either
edian or 95% credible interval range as the response variable and

nteractive effects of model (TMA, COMB, LAT, WT) and species group
 “TMA + NPN ” or “TMA Only ”) as fixed effects with a random species
ntercept. Budburst and leaf out were analyzed separately. 

Model performance was evaluated using root mean square error
RMSE) and latitudinal trends in model prediction error. For both
nalyses, we first used the model posterior distributions to calculate a
00-member distribution of GDD threshold values for each budburst
r leaf out for USA-NPN observation that was withheld from the model
tting process ( Fig. 1 ). We then used the median GDD value to calculate
he day of year of predicted budburst or leaf out for each observation
sing weather data from Daymet and then calculated the residual
ifference in days between predicted and observed, from which we
alculated RMSE and analyzed latitudinal trends in this residual error.
ross-species model effects on RMSE were analyzed similarly to GDD
istribution characteristics with a response variable of RMSE and inter-
ctive effects of model and species group and a random species effect. 

Latitudinal trends in prediction error were used to infer the abil-
ty of each model to capture spatially nonstationary trends in GDD
hreshold for leaf out and budburst. For this analysis, each species was
nalyzed independently with prediction error as the response variable,
nteractive fixed effects of latitude and model, and a random site effect.
n the results, we present whether the latitude trend for each result is
ignificantly different from 0 as well as whether there was any trend
eduction relative to the single-site TMA model. Degrees of freedom for
his analysis vary by species and can be found in Table S5. 

All linear mixed effects models used to analyze predictive ability of
he phenology models were performed using the lme function in the
lme package in R [46] . All results presented are significant at ɑ = 0.05
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Fig. 2. Model posterior predictions for growing degree-day thresholds (GDD) for budburst (A) and leaf out (B) at The Morton Arboretum (TMA). Shaded areas 
indicate the 95% credible interval for GDD thresholds with a base temperature of 5 ̊C for predictions from thermal-time models using TMA data only (TMA), TMA 

and USA National Phenology Network (USA-NPN) data (COMB), TMA and USA-NPN data with a latitude spatial covariate (LAT), and TMA and USA-NPN data with 
a mean winter temperature spatial covariate (WT). 
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ith the TMA model as the reference point for comparison for model
mprovements unless otherwise noted. 

. Results 

Inclusion of data from USA-NPN with and without spatial covariates
hifted the mean and uncertainty of model-estimated GDD thresholds for
udburst and leaf out at The Morton Arboretum ( Fig. 2 ). For budburst,
he TMA model had a mean GDD threshold of 134 (SD 8) GDD while the
OMB model was statistically higher + 42 (SD 71) GDD ( p = 0.04; df = 18).
he GDD thresholds from the LAT and WT models were statistically
imilar with + 23 (SD 8) GDD and WT + 0 (SD 8), respectively ( p > 0.05;
f = 18). All leaf GDD thresholds estimated using USA-NPN data were
ower than those calculated by the ARB model ( p < 0.05; df = 18) where
he mean ARB threshold was 190 (SD 20 GDD) and model differences
ere as follows: COMB -48 (SD 26) GDD, LAT -34 (SD 16) GDD, and
T -52 (SD 13) GDD. GDD threshold uncertainty, as measured by the

5% CI range, greatly increased in the COMB model relative to TMA for
he “TMA Only ” species group for both budburst and leaf out ( p < 0.05;
f = 15) with no difference in range for the LAT or WT models for either
6 
henophase. Budburst threshold uncertainty increased from 39 (SD 14)
DD in the TMA model to 188 (SD 284) in the COMB model, whereas

eaf out increased from 93 (SD 34) GDD to 180 (SD 285), respectively. 
In all cases, the inclusion of USA-NPN data with spatial covariates

n phenology models reduced budburst and leaf out prediction RMSE
 Fig. 3 ). Model improvements did not vary among “TMA + NPN ” and
TMA Only ” species groups (df = 15), but RMSE across all models
as higher for the “TMA Only ” group for both budburst and leaf out

df = 23). “TMA + NPN ” species had a mean RMSE of 16 (SD 5) days
or budburst and 14 (SD 3) days for leaf out, whereas “TMA Only ”
pecies had a mean RMSE of 23 (SD 8) days for budburst and 22 (SD
) days for leaf out. Patterns of RMSE between TMA and COMB models
aried among species and phenophases ( Fig. 3 ). When performance was
nalyzed across all species, there was no statistical difference in RMSE
etween those two models for budburst (df = 18), but the COMB model
ad higher RMSE (3 SD 4 days) for leaf out ( p = 0.03, df = 18). Both
he LAT and WT models displayed significant improvements in model
erformance as measured by RMSE. Budburst RMSE was reduced by
1% by the LAT model (10 SD 5 days) and 28% by the WT model (7 SD
 days) compared to the TMA model. RMSE improvements in the two
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Fig. 3. (in color): Root mean square error (RMSE, in days) for predicted budburst (A) and leaf out (B) from thermal-time models using The Morton Arboretum data 
only (TMA), TMA and USA National Phenology Network (USA-NPN) data (COMB), TMA and USA-NPN data with a latitude spatial covariate (LAT), and TMA and USA- 
NPN data with a mean winter temperature spatial covariate (WT). For species whose GDD thresholds were modeled using TMA and USA-NPN data ( “TMA + NPN ”), 
RMSE was calculated on a random subset of 25% of USA-NPN sites excluded from model calibration whereas RMSE for “TMA Only ” species were calculated using 
all available USA-NPN observations. 
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patial models were more modest for leaf out, which had overall lower
MSE than budburst in the TMA model (19 SD 5 days for leaf out versus
4 SD 7 days for budburst). For leaf out, RMSE was reduced by 29% (6
D 3 days) in the LAT model and 17% (3 SD 2 days) in the WT model. 

There was a significant latitudinal trend in the single-site TMA
odel error for six of seven species for budburst and five species for

eaf out ( Fig. 4 , Table S5). Across all species, the mean latitudinal trend
n model error for the TMA model was -3.6 (SD 2.2) days per degree
atitude for budburst and -3.4 (SD 2.1) days per degree latitude for
eaf out, indicating that models predicted later budburst than observed
t southern latitudes and earlier than observed at northern sites. No
tatistically significant latitudinal trend was found in any models or
henophase predictions for Q. montana , which had a relatively small
atitudinal distribution compared to the other species ( Fig. 1 , Fig. 4 ).
urthermore, the addition of data from USA-NPN alone, without a
patial covariate, only reduced the trend in prediction error for Q.

elutina budburst, which had a statistically significant trend of -2.3 (SE
.1) days per degree latitude in the TMA model to a nonsignificant trend
f -1.1 (SE 1.1) days per degree latitude in the COMB model (Table
5). Of the “TMA Only ” species, only Q. velutina , which had the largest
7 
atitudinal range ( Fig. 1 , Fig. 4 ), showed significant improvement in
atitudinal error trends in both LAT and WT spatial covariate models
Table S5). However, the LAT and WT models reduced latitudinal error
rends in all “TMA + NPN” species ( Fig. 4 , Table S5). Across all species,
he LAT model reduced latitudinal trends by a mean of 3.2 (SD 0.1)
ays per degree latitude for budburst and 3.4 (SD 0.3) days per degree
atitude for leaf out. The WT model showed less improvement than LAT
ith mean trend reductions of 1.3 (SD 0.7) days per degree latitude for
udburst and 1.8 (SD 0.8) days per degree latitude for leaf out. 

. Discussion 

Living botanical collections and data originating from citizen
cience networks offer complementary strengths that can be combined
o improve phenology predictions for data-poor species, including
are species whose vulnerability to climate change is often difficult
o study. Phenology monitoring programs at botanical gardens and
rboreta are often able to observe hundreds of taxa from across the
orld, including rare and data-poor species that have been collected

pecifically for ex situ study and conservation [25 , 47] . In our study, we
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Fig. 4. (in color): Latitudinal trends in model prediction error from four thermal-time models of leaf out and budburst: The Morton Arboretum data only (TMA), 
TMA and USA National Phenology Network (USA-NPN) data (COMB), TMA and USA-NPN data with a latitude spatial covariate (LAT), and TMA and USA-NPN data 
with a mean winter temperature spatial covariate (WT). Points indicate the difference between predicted and observed for USA-NPN observations not used in the 
model fitting process. For the four “TMA + NPN ” species ( Q. abla , Q. macrocarpa , Q. palustris , Q. rubra ) points and latitudinal trends shown are for a random subset 
of 25% of sites available in the USA-NPN datasets. The three remaining species ( Q. imbricaria , Q. montana , Q. velutina ) only used data from The Morton Arboretum 

in the model fitting process and all available USA-NPN data was used for model evaluation. 
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ave leveraged this diversity by jointly modeling the GDD thresholds
or leaf out and budburst for multiple congeneric species. However,
elatively high RMSE and strong latitudinal trends from our TMA model
ompared to others demonstrates the common limitation of single-site
tudies in being able to predict responses outside of the limited range
f conditions captured in the training data [48 , 49] . Conversely, the
eographically dispersed nature of citizen science datasets leads them
o better capture the observations for individual species throughout
8 
heir native ranges than is possible with datasets focused on a single or
ven a few intensive sites ( Fig. 1 ). The broad geographic distribution of
hese datasets is often mirrored by broad representation of organismal
ypes and phylogenetic clades, although individual clades or functional
roups such as Quercus may be sparsely represented relative to their
lobal taxonomic richness [34 , 50] . 

The ability of large, spatially distributed datasets, including those
rom citizen science, to improve phenological predictions is not inherent
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nd additional steps to describe other sources of variability in observa-
ions is essential for improved model performance. The noise introduced
nto models from spatially broad citizen science data without the in-
lusion of spatial covariates can increase model parameter uncertainty
 Fig. 2 ) as well as overall error in many instances ( Fig. 3 ). The lack of
onsistent improvements in COMB model performance, as measured
y RMSE ( Fig. 3 ) and latitudinal error trends ( Fig. 4 ), indicate that the
ower of citizen science phenology networks, such as USA-NPN, stems
rom its ability to allow for more complex model fitting that captures
patio-temporal variation in phenological patterns rather than through
n intrinsic power of adding more data. Our results demonstrate that
onsideration of spatial nonstationarity in phenological cues [48 , 51]
nd the incorporation of data able to describe those patterns are
ssential for accurate inference and prediction of biological responses
o climate variability and change over large areas ( Fig. 3 , Fig. 4 ). 

As climate change threatens global biodiversity and the particular
hallenges of long-lived organisms such as trees increase in their
mmediacy [52 , 53] , arboreta and botanical gardens provide critical op-
ortunities to study the biology and climate responses of rare, endemic,
nd data-poor species that are often infeasible to study in their natural
abitats. This study restricted its analyses to taxa with robust data
vailable through USA-NPN for prediction evaluation, but botanical
ardens often include the opportunity to compare dozens or hundreds
f taxa commonly under-represented in traditional “big data ” networks
22 , 23] , and particularly networks that require repeat observations such
s USA-NPN [14] . For example, contribution of TMA observations to
he USA-NPN creates a 50% increase in the number of Q. palustris trees
bserved in a national-scale dataset (Tables S1, S2). However, data from
 single location alone is often limited in its ability to describe species’
esponses to weather over a wide spatio-temporal range of climate vari-
bility [30 , 31 , 48] , and thus coordination and participation with larger
etworks remains essential to phenology and climate change research. 

Large scale citizen science networks such as USA-NPN are es-
ential for climate change research and conservation as one of the
ew approaches for gathering individual and species-scale data over
ontinental geographic extents. Data maintained by the USA-NPN have
een used to make species-level forecasts of activity for dozens of both
lant and animal species to be used for both research and management-
ocused audiences [15–17] . However, only a fraction of species present
n citizen science programs such as USA-NPN have sufficient data den-
ity to parameterize robust phenological models [54] . We used a rela-
ively simple thermal time phenological model in our study because the
TMA Only ” species group that was representative of sparsely observed
r rare species did not have sufficient data to parameterize multiple
pecies-level phenological cues such as winter chilling or daylength
equirements [27 , 28] . A more complex and explicit representation of
he biological or ecological relationships among species from TMA and
hose in USA-NPN based on traits or phylogenetic relatedness may
rovide continued pathways for improvement [10 , 32 , 55 , 56] . However,
hen spatially broad citizen science data are used without attempts to

apture spatial nonstationarity, the additional observations do not im-
rove predictive ability. This lack of improvement was demonstrated in
ur study where model RMSE and latitudinal trends in prediction error
ere similar between the TMA model parameterized with only two
ears of data from a single site and the COMB model using both TMA
nd USA-NPN data ( Fig. 3 , Fig. 4 ). In fact, without additional measures,
ndescribed sources of variation within sparse data can create addi-
ional challenges for model fitting, as seen with Q. montana in the COMB
odel ( Fig. 3 ). In this instance, TMA is not within the native range of
. montana and has the greatest difference in latitude between TMA
nd USA-NPN observations ( Fig. 1 , Tables S1, S2). The lack of spatial
verlap between TMA observations made outside Q. montana ’s native
ange and the USA-NPN validation observations increased uncertainty
n latitudinal trends, leading to a lack of improvement in spatial trends
n phenology prediction ( Fig. 4 , Table S5), even though Q. montana had
 similarly reduced RMSE as the other species in this study ( Fig. 3 ).
9 
hus, while hierarchical modeling is a powerful approach to improve
henology predictions for rare or data-poor species, those with high un-
xplained variation will remain challenging without more robust data. 

Phenology predictions for rare and sparsely observed species can be
mproved by combining information from single sites, including botani-
al living collections outside of a species range, with observations of sim-
lar taxa in geographically broad citizen science networks. Ideally, ob-
ervations that capture the full environmental diversity of each species
f interest would be available for predicting responses to current and fu-
ure global change, but the logistical challenges of obtaining individual-
nd species-scale data for rare species make this an unrealistic goal.
Big data ” approaches for characterizing phenology such as citizen sci-
nce and remote sensing have the potential to partially address spatial
ariation in phenology at continental and global extents [57–59] . How-
ver, the ecology of many species with restricted distributions, includ-
ng those of conservation concern, remain poorly described and unad-
ressed through “big data ” [14] . Living collections monitoring programs
educe logistical hurdles for observing rare species and provide ac-
ess necessary for the frequent observations needed to describe phenol-
gy for individual species. Using hierarchical modeling approaches that
ombine detailed species observations from even a single site with com-
arable data for related or ecologically similar taxa that capture spatial
ariability can be a powerful tool for borrowing strength across research
pproaches. Through a combination of two approaches to phenological
onitoring with known limitations, botanical garden observations and

itizen science observations can be combined to provide key informa-
ion necessary to better understand and predict the responses of rare and
parsely-observed species to climate variability and change across space.
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