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Significance

 A difficult problem in describing 
language acquisition is knowing 
when children go beyond their 
input to produce novel, structured 
utterances—that is, to achieve 
linguistic productivity, the 
hallmark of human language. We 
address this problem by detailing 
onsets and trajectories of 64 
English-learning children 
producing determiner–noun 
combinations (the dog, a dog ) and 
by capturing these behaviors with 
a computational model. Because 
we know the model’s input, we 
can determine when it predicts 
combinations not in its training 
set. We find parallels between 
child and model in the timing of 
novel combinations, suggesting 
productivity in the children. 
Marrying behavioral observations 
and computational modeling 
provides an approach that can be 
used to assess productivity in any 
language, spoken or signed.
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Language is a productive system––we routinely produce well- formed utterances that we 
have never heard before. It is, however, difficult to assess when children first achieve linguis-
tic productivity simply because we rarely know all the utterances a child has experienced. 
The onset of linguistic productivity has been at the heart of a long- standing theoretical 
question in language acquisition––do children come to language learning with abstract cat-
egories that they deploy from the earliest moments of acquisition? We address the problem 
of when linguistic productivity begins by marrying longitudinal behavioral observations 
and computational modeling to capitalize on the strengths of each. We used behavioral data 
to assess when a sample of 64 English- learning children began to productively combine 
determiners and nouns, a linguistic construction previously used to address this theoretical 
question. After the onset of productivity, the children produced determiner–noun combi-
nations that were not attested in our sample of their linguistic input from caregivers. We 
used computational techniques to model the onsets and trajectories of determiner–noun 
combinations in these 64 children, as well as characteristics of their utterances in which the 
determiner was omitted. Because we knew exactly what input the model was trained on, 
we could, with confidence, know that the model had gone beyond its input. The parallels 
found between child and model in the timing and number of novel combinations suggest 
that the children too were creatively going beyond their input.

linguistic productivity | modeling language acquisition | grammatical development |  
generalization | syntactic categories

 Language is a productive system. Although there are some utterances that are rotely learned 
and recalled as wholes (e.g., “How are you?”), there are many more productively generated 
utterances that are not likely to be produced a second time. Take the following example, 
which first appeared in the Letters to the Editor of a popular TV magazine [quoted in 
( 1 )]: “How Ann Salisbury can claim that Pam Dawber’s anger at not receiving her fair 
share of acclaim for Mork and Mindy’s success derives from a fragile ego escapes me”. This 
convoluted utterance is completely grammatical, and it is also understandable––because 
we know how English works, not because we have memorized the utterance. Here, we 
tackle the onset of productivity in children learning determiner–noun combinations in 
English and explore an approach that can tell us when a learner produces pattern-conforming 
utterances.

 The question of linguistic productivity has been at the heart of a theoretical debate in 
language acquisition—do children come to language-acquisition equipped with abstract 
categories that they deploy at the earliest moments of language learning, or do they construct 
these categories ( 2           – 8 )? Our goal is not to resolve this debate, but to provide a unified behav-
ioral/computational approach to the onset-of-productivity question, which is central to the 
debate—how can we determine when a child has achieved linguistic productivity?

 One approach to knowing when a pattern is productive in a language-learning child is 
to look at the errors the child makes. For example, at a certain point in development, children 
learning the endings of English verbs will occasionally say “I eated that yesterday.” Although 
this is not an acceptable utterance in English, the utterance does reveal that the child who 
produced it knows an English pattern—that -ed  is added to verbs to indicate the past. Errors 
that reveal knowledge of a pattern can only occur when there are exceptions to the pattern; 
in this case, ate , the correct form, lacks the - ed  ending and thus is an exception to how past 
tense is regularly formed in English. These exceptions give learners an opportunity to create 
a form that they have not heard before but still follows an English pattern. The problem 
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with this approach is that it is applicable only in forms that violate 
regular patterns of a language.

 But the approach is based on a useful assumption––if learners 
produce pattern-conforming forms without ever having heard 
them, they must have an understanding of the patterns that gen-
erate the forms. Language acquisition researchers routinely use 
this reasoning when they uncover apparently productive uses of a 
form in a child and can find no evidence that the child has heard 
this form before. If, for example, a child hears a pineapple  and 
then produces the pineapple  without ever having heard the com-
bination, we then guess that this combination was the child’s 
creation. But, of course, our sample of the child’s input is just 
that––a sample. Can we be certain that a child has never heard a 
 particular  well-formed combination?

 Here, we add computational modeling to our behavioral anal-
yses to address this problem. We use a model that simulates the 
onset and developmental trajectory of a productive form in a large 
sample of English-learning children. We know all the utterances 
that the model received during its training. As a result, we can tell 
with certainty whether, and when, forms the model predicts go 
beyond the input given. If the generalized forms predicted by the 
model are comparable to the generalized forms produced by chil-
dren, we greatly strengthen the evidence that these forms are not 
rotely learned in the child and instead are productive forms.

 We use determiner–noun combinations in English (a dog , the dog ) 
as a test case for our approach for two reasons. First, this construction 
has been a focus of research designed to address the abstractness of 
linguistic categories ( 2           – 8 ). Second, the determiner–noun construc-
tion is regular *  in English and thus contains no violations of the 
pattern, forcing us to seek new types of evidence for productivity. 
Children begin to use a  and the  with nouns early in development. 
Our question is when do English-learning children know that a noun 
can be used with both a  and the ; that is, when do they have productive 
use of determiner–noun combinations? 

Background on Behavioral Measures and 
Computational Models of Determiner–Noun 
Productivity

 In seeking a quantitative measure of determiner–noun productivity 
that could be applied to spontaneous child productions, Pine and 
Lieven ( 2 ) developed an overlap score. The overlap in question is 
between the set of nouns used with a  and the set of nouns used with 
 the . For example, a child who produced a dog, a sock, the dog,  and 
 the plant  would receive an overlap score of 1/3, or 33%, having 
produced one noun type out of three (dog, sock, plant ) with both a  
and the  (a dog , the dog ). But using a measure based on all the nouns 
a child produces misses an important aspect of English use—certain 
nouns in English are more likely to appear with one of the two 
determiners (e.g., the bathroom  is more frequent than a bathroom ). 
As a result, some nouns are not likely to occur with both determiners 
in spontaneous discourse. Yang ( 8 ) solved this problem by comput-
ing an expected  overlap score—the overlap score that children would 
receive if they used language like adults (i.e., a score that takes into 
account how likely a noun in adult speech is to occur with both 
determiners). When applied to a sufficiently large corpus, children’s 
 expected  and observed  overlap scores ought not differ if  they have a 
productive use of determiner–noun combinations.

 Meylan et al. ( 9 ) took a different approach to the problem and 
simulated determiner–noun productivity in a Bayesian model. 
Under their model, a child’s determiner productions for each of 

their nouns are guided by two information sources—(A) direct 
experience and (B) productive knowledge. The strength of each 
source’s contribution to the child’s productions is determined by 
individual weighting parameters. Meylan et al. applied their model 
to data from 27 children, the youngest of whom was 9 mo. Their 
simulation results suggest that the youngest age groups in previous 
behavioral studies were not young enough to reveal a gradual 
increase in productivity. In addition, they argue that because pre-
viously used measures are highly sensitive to the size of the sampled 
data, the measures ought not be used to estimate productivity at 
the earliest stages of learning when children do not produce many 
determiner–noun combinations.

 Here, we follow Cartmill et al. ( 10 ), who used a straightforward 
measure that works well with small samples to identify when chil-
dren first produce a particular construction. Onset age for pro-
ductive determiner–noun combinations in our study is established 
when a child uses both a  and the  with at least two different nouns 
(a dog, the dog, a book, the book ). We first establish the onset age 
for determiner–noun productivity in 64 English learners. We then 
use a computational model to simulate onset age and trajectory 
of determiner–noun combinations in each of these children.

 Previous computational studies have simulated determiner 
productivity using neural network models. Phillips and Hodas 
( 11 ) used an autoencoder architecture, whose goal is to recon-
struct (or repeat) an input utterance. The architecture was trained 
on child-directed utterances from corpora in CHILDES ( 12 ). 
The model learns a compact, latent representation for every 
incoming utterance, which it then uses to regenerate the same 
utterance. The authors measured the estimated and empirical 
overlap scores in adult utterances from the training corpora and 
in the utterances generated by the autoencoder model. They then 
showed that if the model’s parameters are set to allow for more 
generalizability, its estimated overlap scores are close to those of 
adults. Crucially, this study does not compare the behavior of the 
trained model to the behavior of children and therefore says little 
about the trajectory children follow in learning determiner–noun 
combinations.

 To address both issues, Alhama et al. ( 13 ) compared the pre-
dictions of a neural network model to longitudinal observations 
of children producing the determiner–noun construction. The 
model, which is based on the Transformer architecture ( 14 ), is 
trained to predict masked words in a sentence. They found that 
the model mimicked overlap  scores and the simpler onset  metric 
( 10 ) in both the Manchester corpus ( 4 ) and the Language 
Development Project corpus [LDP ( 15 )] used here (see next sec-
tion), following developmental trajectories comparable to the 
children’s in both corpora. Here, we take a step forward by using 
the same model metric to further analyze when child and model 
go beyond the data given.

 The contributions of our behavioral and computational study 
are three-fold. i) We characterize the trajectory of determiner–
noun combinations in individual children and, in so doing, con-
firm and extend to a larger group of children Meylan et al.’s ( 9 ) 
finding that determiner–noun productivity emerges gradually and 
stabilizes with age. ii) We show that the computational model 
developed by Alhama et al. ( 13 ) not only closely mimics children’s 
productive uses of determiners over time, but also captures the 
uncertainty surrounding determiner omission in their early utter-
ances. iii) We take advantage of our fully comprehensive knowl-
edge of the model’s input data (something that is not feasible in 
children) and identify cases in which the model makes predictions 
that yield novel  determiner–noun combinations, not found in its 
training set. The children show comparable novel combinations 
when their data are compared to their parents’ data. We then use 

 *  Mass nouns (e.g., flour ) complicate the determiner–noun pattern in English; however, 
previous work on this topic has omitted this exception for simplicity.D
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the onset of novel determiner–noun combinations to validate our 
measure of determiner–noun productivity (when a  and the  are 
both used with at least two different nouns) in the child and in 
the model. In the child, the age at which children produce their 
first novel determiner–noun combination correlates with the age 
at which they meet our criterion for determiner–noun productiv-
ity. In the model, the session when the model predicts novel deter-
miner–noun combinations (i.e., a combination not found in its 
training set) correlates with the session when the model predicts 
 a  and the  in the context of at least two different nouns, thereby 
providing evidence that this metric captures productivity.  

Observing and Modeling Determiner–Noun 
Productivity in Children Learning English

Our Behavioral Data. The behavioral data for this study come 
from the LDP corpus (LDP, see ref. 15) in which 64 English- 
learning children were observed longitudinally. Children and 
their primary caregivers were video- recorded while engaging in 
spontaneous interactions for 90 min in their homes every 4 mo, 
from 14 to 58 mo. We used spontaneous production data from 
each of the children and their caregivers (the parent in every case). 
The parent data served two purposes. First, we compared each 
parent’s data on determiner–noun combinations to the data from 
their child. Second, we trained our model on child- directed speech 
from the LDP corpus (see next section).

 To estimate determiner–noun productivity, we follow Cartmill 
et al. ( 10 ) in requiring that the child produce two instances of the 
relevant construction. Cartmill et al’s goal was to compare the 
onset of point+noun combinations (e.g., point at dog + dog ) to 
the onset of determiner–noun combinations (e.g., the dog ). Their 
criterion for the onset of determiner–noun combinations was met 
when a child produced a  and the , each combined with two differ-
ent nouns (e.g., a girl, a bottle, the dog, the cookie ; the authors were 
not interested in our productivity question––whether the child 
knew that any noun used with the  can also be used with a , and 
vice versa). They found that the age at which a child first produced 
these point+noun combinations reliably predicted the age at which 
the child first produced determiner–noun combinations. Moreover, 
the point+noun combinations declined in frequency after the 
onset of determiner–noun combinations, validating their onset 
criterion. Here, we adopt this two-instance criterion and assume 
that a speaker (child or parent) demonstrates productive  use of 
determiner–noun combinations when the speaker uses both a  and 
 the  with the same noun, and does so with at least two different 
nouns (a car, the car, a bottle, the bottle ).  

Our Computational Model. Our computational goal is to use 
a model, trained on child- directed data, that simulates the 
developmental trajectory of determiner–noun productivity. We do 
not seek to capture the mechanism that children use for learning 
and processing language. Nevertheless, we chose a modeling 
framework and architecture that satisfied two criteria. First, the 
model must not rely on any data or supervision signal that is not 
available to children. Second, the model must not rely on any 
explicit, latent representation of abstract syntactic categories in 
advance. However, our model does have an advantage over child 
learners––the model can use the training data over and over; in 
contrast, the child’s language- learning process is incremental and 
online (although children can, in principle, revisit what they have 
heard and thus process it multiple times).

 A common goal, inspired by human language processing and 
widely used in building cognitive computational models of lan-
guage, is for a model to predict the next word in an incoming 

utterance (known as language modeling  in computational linguis-
tics). There is strong empirical evidence that both children and 
adults form expectations about incoming words when receiving 
and processing an unfolding utterance. This task is simulated in 
various (mainly neural network-based) modeling architectures, 
going back to Elman ( 16 ,  17 ). Our focus here is on production 
rather than reception. As a result, we use a model that makes 
predictions about determiners based on the context of the child’s 
entire utterance since children have access to this context when 
they produce their utterances. The Transformer-based model used 
by Alhama et al. ( 13 ) meets our two criteria. The model is trained 
on linguistic data that the parents in the LDP corpus produced; 
hence it does not receive input that is different from a child learn-
er’s input, meeting our first criterion. In addition, the model does 
not rely on preexisting syntactic knowledge, which meets our 
second criterion.

 We trained the model from scratch on child-directed utterances 
from the LDP input corpus. Since the child-directed data for each 
individual child were not large enough to train the model, we 
accumulated utterances from all the parents in LDP, divided by 
the observation session. We incrementally trained the model on 
these data so that at each stage in learning, the model saw all the 
child-directed data up to that point. The model was trained to 
predict the masked words in an utterance using an error-driven 
algorithm.

 The model was tested on individual child-produced utterances 
taken from each observation session. We first extracted all the 
determiner+noun usages in the utterances produced by each indi-
vidual child, following Pine et al. ( 3 ,  18 ). We then masked the 
determiner in each child’s usage and fed the usages to the model 
to predict the most likely filler for the masked slot. As an example, 
for the utterance Where is the stroller  in the child data, we present 
the model with Where is [MASK] stroller . For each masked slot, 
we replace the child’s word with the word predicted by our model. 
We use the resulting utterances to determine when the model first 
predicts two different nouns, each produced with both a  and the , 
for each child.   

Study 1: Identifying the Onset of Determiner–
Noun Productivity in Children and the Model

The Children. Children first produced a determiner, either a or 
the, between 14 mo (the first observation session) and 38 mo; 
mean onset age = 21.80 (SD = 4.83) mo. Of the 64 children, 63 
met the criterion for determiner–noun productivity within the 12 
observation sessions; that is, they produced a and the with the same 
noun and did so for two different nouns. The number of sessions 
between a child’s first determiner and achieving determiner–noun 
productivity varied from 0 sessions (n = 4) to 7 sessions (n = 1); 
mean number of sessions between first appearance of determiners 
and determiner–noun productivity = 2.29 (SD = 1.36). In other 
words, after producing their first determiner, children took, on 
average, 9 mo to become productive at approximately 30 mo (recall 
that the interval between each session was 4 mo; SI Appendix, 
Table S1, for descriptive data on the corpus).

 Did children have the opportunity to meet our productivity 
criterion before achieving it? To find out, we examined the sessions 
prior to the session at which each child first met our criterion, and 
asked whether the child had produced at least two different nouns 
twice (e.g., shoes  twice and book  twice) during this period. We 
found that 53 children (84%) had produced two nouns two times 
in at least one session preceding that child’s onset of productivity. 
In other words, the children had produced enough noun phrases 
that they could  have met our onset productivity criterion––but D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.p

na
s.

or
g 

by
 K

ir
st

en
 V

al
le

e 
on

 N
ov

em
be

r 
22

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
99

.7
.2

.4
8.

http://www.pnas.org/lookup/doi/10.1073/pnas.2316527121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2316527121#supplementary-materials


4 of 9   https://doi.org/10.1073/pnas.2316527121 pnas.org

they did not, suggesting that we had captured the period when 
children were first productive. For the remaining 10 children 
(16%), their first productive session was the first time that the 
child met the enabling conditions for productivity.

  Fig. 1  presents the median number of different nouns (i.e., 
noun types) that appear with both a  and the  determiners (orange 
dots), grouped according to the age at which the child first met 
our criterion for productivity. The dashed line represents the lower 
boundary of our criterion for productivity (i.e., two nouns, each 
produced with a  and the ). Note that after having met the criterion, 
children in each group produced roughly the same number of 
different nouns with both a  and the,  no matter when they first 
achieved productivity. The majority of children (52 of 63, 83%) 
met our productivity criterion on at least half of the sessions fol-
lowing their onset; 22 children reached this criterion on every 
subsequent session. The emergence of determiner–noun produc-
tivity in children is a gradual process and, for most children, once 
the generalization criterion is achieved, it is maintained. †          

 However, the onset measure is sensitive to sample size, which 
generally increases as children grow older and become more talk-
ative. Thus, meeting our onset criterion (a  and the  both used with 
at least two different nouns) might merely reflect the fact that the 
number of determiners children produce increases over develop-
mental time. To address this concern, we looked at the sessions 
prior to the one when the child reached our criterion (the onset 
session) and took the maximum number of determiners produced 
by the child during one preonset session. The maximum number 
ranged from 4 to 287 (M = 59) across children, which itself sug-
gests that onset of determiner–noun productivity is not  due to the 
number of determiners produced (16 children had to be elimi-
nated from this analysis because they did not produce the mini-
mum of 4 determiners in their session prior to onset).

 We then used the maximum number of determiners produced 
preonset and randomly selected this number of determiner–noun 
combinations from those produced by the child at the onset ses-
sion. We then calculated whether the selected combinations met 
the criterion for productivity (two nouns each used with a  and 
 the ) in the truncated sample; if so, the session was considered 
productive. We conducted 100 simulations for each child’s onset 
session and calculated how likely the child was to reach our pro-
ductivity criterion for this session. We found that when the num-
ber of determiners produced at onset was limited to the number 
produced prior to onset, the probability of meeting our produc-
tivity criterion was 0.20 (SD = 0.29), compared to the preonset 
level, which was 0. In other words, the children display produc-
tivity at their onset session even when we restrict their number of 
determiners to preonset levels.  

The Model. Fig. 1 also presents the number of noun types that 
appear with both determiners in the model’s output for each 
session (blue lines). The model’s predictions for each child 
create a pattern of onset and maintenance of determiner–noun 
productivity comparable to the child data.

  Fig. 2 , Left  panel, highlights the parallels between model and 
child by plotting the median number of noun types occurring 
with both determiners (a  and the ) produced by all children (orange 
dots), predicted by the model (blue line), and produced by the 
children’s parents (magenta dots). Not surprisingly, the parents 
were fully productive from the first recorded session. On average, 
both children and the model meet our criterion for productive 
determiner–noun combinations at 30 mo (±4 mo).        

 A second way to look at the fit between model and child is to 
correlate onset sessions for the two. The age at which children first 
met the onset criterion strongly correlates with the onset session 
determined by model’s predicted responses, r = 0.71, as shown in 
 Fig. 2 , Right  panel.

 However, it is possible that the similarity between the model’s 
predictions and the children’s behavior is a function of proper-
ties of the child-produced utterances that we used at test (rather 
than true similarities between determiner–noun patterns for 
child and model). To address this concern, we ran a control 
experiment in which we tested the model on parent-produced 
utterances. We sampled utterances with determiner construc-
tions (n = 48 for each session) separately for the child utterances 
and for the parent utterances; we then used them as test frames 
for the model. We computed the number of different nouns 
produced with both a  and the  for each set of sentences and 
performed a paired statistical test. We repeated this experiment 
10 times; none of the tests yielded a significant difference 
between test frames taken from parent speech and test frames 
taken from child speech. This result rules out the hypothesis 
that the parallels between model and child are due to the lin-
guistic context of child produced speech used at test. Note that 
the analysis also controls for sample size (i.e., number of test 
items given to the model for each session).

 To further address concerns about the impact of sample size on 
our onset criterion, we systematically undersampled determiner–
noun combinations in the model just as we did for the children. 
As in the behavioral analysis, we took the number of determiners 
that each child produced prior to the session when that child 
achieved productivity, and randomly selected that number of 
determiner–noun responses in each child’s onset session to use as 
test items for the model. We asked whether the model’s predictions 
passed our productivity criterion in this randomly selected sample, 
and conducted this analysis 100 times per child. We found that 
the model predicted responses that displayed productivity on 0.18 
of the randomly generated samples, which is comparable to the 
0.20 found for the behavioral analysis, and, even more important, 
is above 0. Thus, the model  can make predictions that suggest 
determiner productivity even when we limit the number of items 
it is tested on to the number the child produced prior to onset 
when productivity was 0.

 Note that we are not suggesting that our model is capturing the 
processing steps that children follow to arrive at determiner–noun 
productivity. Rather, we are using the model as a tool to explore 
the trajectories individual children follow in acquiring deter-
miner–noun constructions. It is likely that many types of models 
can, in principle, serve as an assessment tool for child productivity 
since many data-driven models can generalize and produce novel 
strings. Importantly, however, not all models account for our 
behavioral data. We used an n-gram model with backoff (which 
has the advantage of being online and incremental, as in child 
language learning) to predict our behavioral data. Nevertheless, 
we found that compared to the children and to the model that we 
used in our study, the n-gram model underestimates productivity 
(SI Appendix, Fig. S1 ).   

 †  Although children tend to remain productive after onset, their productivity levels do dip 
on occasion, as do the parents’ levels. To get a handle on these fluctuations, we calculated 
type/token ratio (number of different nouns/total number of nouns) for nouns the child 
produced in each session. We correlated this ratio with the number of productive nouns 
the child produced in the session. We did the same for each parent’s nouns to explore 
fluctuations in their data (see  Fig. 2 , Left  graph, magenta dots). In both groups, type/token 
ratio increased as the number of productive nouns decreased (correlation in children = 
–0.33 post onset; correlation in parents = –0.51). We then looked at the sessions where the 
children’s (and the parents’) number of productive nouns decreased and calculated the 
proportion of those sessions that were accompanied by an increase in type/token noun 
ratio. We found that 119/178 (67%) of sessions where there was a decrease in the number 
of productive nouns were accompanied by an increase in type/token ratio for the children; 
186/289 (64%) for the parents.
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Study 2: Modeling Uncertainty Surrounding 
Determiner Omissions in Children’s Utterances

 Our model does a good job of predicting determiners in utterances 
where children produce them, increasing in accuracy with child 
observation session (SI Appendix, Fig. S2 ). But the model was not 
given utterances where children should have produced a deter-
miner but did not. The model might therefore predict determiners 
when children omit them. Not capturing children’s omissions, 
particularly at the early stages, weakens the parallels between child 
and model.

 To address this issue, we enlarged the set of utterances used to 
test determiner productivity in the model. In addition to the utter-
ances children produced that contained a determiner, we added 
children’s utterances that should have contained a determiner but 
did not (e.g., “open bottle,” “cat eating”; see experimental setup in 
 Materials and Methods ). We masked the position where the deter-
miner should have been, and gave the model these determiner-omitted 

utterances, along with the children’s determiner-produced utter-
ances. The model does not have the option of leaving a blank so 
(unlike the child) it must fill in a word for the masked item. If, 
however, the model is working from a system that is comparable to 
the child’s, it should be relatively uncertain about the word it pro-
duces in the blank in the test utterances that come from the chil-
dren’s nonproductive period; and it should become more certain as 
the children’s systems become productive. We estimate uncertainty 
by measuring the model’s entropy, with higher entropy reflecting 
more uncertainty.

 In practice, the model predicts a probability distribution for 
the lexical items that could fill in the slot of the missing word. In 
Study 1, we focused on the most likely item from this distribution 
and showed that it paralleled the children’s use of determiners. In 
Study 2, we compute the entropy over the predicted probability 
distribution. If the probability mass is more peaked and centered 
on a few lexical items, then the model has lower entropy and less 
uncertainty; if the probability mass is more evenly distributed, 

Fig. 1.   Median number of noun types produced with both determiners, grouped by the age at which the child (orange dots) first achieved productivity or the model 
(blue line) first predicted two different nouns combined with a and the. The dashed horizontal line denotes two different nouns, each used with both a and the.

Fig. 2.   Left graph: Median number of noun types combined with both a and the that the children produced (orange dots), the parents produced (magenta dots), 
and the model predicted (blue line). The dashed horizontal line denotes two different nouns, each used with both a and the. Right graph: Age at which children 
first produced two different nouns, each with a and the (x- axis) and the session at which the model predicted two different nouns, each combined with a and 
the (y- axis). Pearson’s correlation is r = 0.71. A random jitter of 0.5 has been added to overlapping points in the graph. The Right graph is reprinted from (13).D
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then the model has higher entropy and more uncertainty. We 
expect the model to be relatively uncertain (higher entropy) on 
the items from the children’s early nonproductive sessions, for 
both the determiner-omitted and determiner-produced utter-
ances. As the children’s systems become productive, we expect 
uncertainty to decline, again for both types of utterances.

  Fig. 3  presents the model’s mean entropy scores for 
determiner-omitted utterances and for determiner-produced 
utterances. Note that the entropy score for both types of utterances 
begins high and, as expected, decreases and stabilizes around 30 
mo, when the children became productive users of determiner–
noun combinations. Interestingly, after this point, the mean 
entropy score for determiner-omitted utterances is consistently 
higher than for determiner-produced utterances, perhaps because 
the places where children fail to produce determiners later in devel-
opment are generally less obvious.          

Study 3: Going Beyond the Input Given to 
Children and the Model

 We are assuming that the children are productively generating their 
determiner–noun combinations. But they could be copying these 
combinations from their parents, particularly since we require com-
binatoriality with only two different nouns to achieve onset. Our 
next step is to examine child combinations in relation to the input 
children receive. We use the child’s first instance of a novel deter-
miner–noun combination to validate the child’s productivity onset 
measure; we do a comparable analysis for the model.

  Fig. 4  displays the number of novel determiner–noun combi-
nations produced by the children (in orange) and predicted by 
the model (in blue). A combination was considered novel in a 
child if the combination did not appear in that child’s parent’s 
input up to that point. A combination was considered novel in 
the model if it did not appear in the input that the model had 
been trained on up to that point; recall that the model had to go 
beyond the input from all  the parents to be credited with a novel 
combination. The figure shows the age at which the child produces 
and the model predicts its first novel determiner–noun combina-
tion. We may have overestimated the number of novel combina-
tions in the children simply because we have only a sample of their 

input; they could easily have heard, at other points in their lives, 
some of the combinations we labeled as novel. However, since we 
have access to all  the training data the model has received in its 
lifetime, we can track novel combinations with confidence.        

 Our last step is to use the onset of novel determiner–noun com-
binations to validate the productivity onset measure for the child. 
If the first novel instances of determiner–noun combinations coin-
cide with the onset age identified using our productivity criterion, 
we can take this as evidence that the onset measure is a valid measure 
of productivity.  Fig. 5 , Left  graph, shows the correlation (r = 0.64) 
between age of productivity as estimated by the onset measure 
(x -axis) and age of first novel  determiner–noun combination (y -axis) 
for the children. The positive correlation validates our onset measure 
as an index of linguistic productivity for the child.  Fig. 5 , Right  
graph, shows a parallel correlation (r = 0.58) for the model. The 
positive correlation not only validates the onset measure for the 
model, but does so with a novelty measure that is more reliable than 
the child’s (since we know precisely which combinations the model 
was trained on). The parallel findings lend weight to the claim that 
the child, like the model, has gone beyond the data given.          

Discussion

 We have taken an approach that marries computational modeling 
and behavioral analysis to identify the onset of linguistic productivity 
in child language learners, using determiner–noun combinations as 
a test case. We used a large, longitudinal corpus of spontaneous 
speech to examine the onset of productive use of determiner–noun 
combinations in children learning English. We used a straightfor-
ward measure of productivity (to be productive, a child had to use 
 a  and the  with the same noun, and do this for two different nouns), 
and were able to identify the age at which 63 of 64 children began 
to productively produce determiner–noun combinations. We found 
that on average, children began to produce productive determiner–
noun combinations at approximately 30 mo, roughly 9 mo after 
they produced their first determiner, confirming previous findings 
(cf. 9). This delay is particularly striking given comprehension studies 
showing that 14-mo-old Canadian French-learning children ( 19 ) 
and 14- to 16-mo-old German-learning children ( 20 ) can use the 
determiners they hear to categorize a following novel word as a noun, 

Fig. 3.   The mean entropy score for the model at each developmental session for utterances in which children correctly produced a determiner (determiner- 
produced) or failed to produce a determiner when it was needed (determiner- omitted). The boxes show the quartiles; the horizontal line in the box is the 
median, and the vertical line extends to the rest of the distribution. Diamonds indicate outliers. The vertical discontinuous gray line indicates the average age 
at which children in Study 1 began to productively use determiner–noun combinations; note that the line coincides with the model’s stabilization of entropy.
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and they are able to do this many months before producing their 
first determiner. The open question that our findings highlight is 
why, given this early understanding that determiners precede nouns 
in comprehension , children fail to demonstrate productivity when 
they first produce  determiner–noun combinations and take, on aver-
age, 9 mo to do so.

 We then made use of the computational model we developed 
that was trained on parent input data to all 64 children ( 13 ). The 
model’s learning trajectory of determiner–noun combinations 
paralleled the children’s onset age and trajectory in the determiners 
that children produced, and displayed uncertainty at the appro-
priate sessions in the determiners that children failed to produce. 
Importantly, the model that we used was not pretrained on deter-
miner–noun categories, but instead was trained on the linguistic 
input provided to the 64 children in our sample. Our findings 
thus suggest that these abstract categories can  be derived from 
linguistic input. We return to this point later in the discussion.

 Our final step was to leverage the parallels that we found 
between child and model to explore whether children truly go 
beyond the input they are given. The children in our study did 
indeed produce determiner–noun combinations that could not 
be found in the linguistic input we had in our sample. But, of 
course, these parental utterances are only a small sample of the 
language children actually hear. We also found that our model 
predicted determiner–noun combinations that could not be found 
in the data on which it was trained. In this case, however, the 
training data are all the input the model received. We can therefore 
be certain that our model has gone beyond the input given, pre-
dicting previously unseen combinations that meet our criterion 
for productivity. The parallels that we see between child and model 
lend weight to our claim that the children have gone beyond the 
input given to achieve linguistic productivity.

 Our model allows us to ask whether a preexisting syntactic 
category is needed to develop the determiner class and use it pro-
ductively with the noun class. Our results suggest that the deter-
miner category can  be learned in a bottom–up fashion, implying 
that a priori abstract categories are not a prerequisite for explaining 
determiner–noun productivity. There is, however, an important 
caveat. Our model had access to the child’s entire utterance (not 
just the noun). This decision is not unwarranted since speakers 
(including children) know which words they are about to produce. 

But a consequence of this decision is that words other than the 
noun may have influenced the model’s prediction. For example, 
repeated occurrences of give me the <noun>  may prompt the model 
to learn that the  can be used after give me . Note, however, that the 
same point can be made for children. As a result, the notion of 
productivity that we have modeled is determiner production that 
may be cued not only by the noun that follows it, but also by 
words, such as the verb, that precede it. However, since our goal 
is to determine when the model predicts that both a  and the  will 
appear in the slot preceding the same  noun, the noun must be 
centrally involved in the prediction.

 The naturalistic input from the children’s parents that we used 
to train the model was sufficient to lead to model predictions that 
reflect determiner–noun productivity. But we do not know how 
little input, and what type of input, are necessary for the model 
to predict these productive forms. Our model would obviously 
not be able to predict determiner–noun combinations if it did not 
have access to the linguistic input we provided, but children are  
able to do so. The evidence comes from homesigners ––profoundly 
deaf children whose hearing losses prevent them from acquiring 
a spoken language, and whose hearing parents have not exposed 
them to a signed language. Despite their lack of linguistic input, 
these children communicate using self-generated homesigns. 
Although homesigns do not display all the properties of natural 
language ( 21 ,  22 ), they do contain productive ( 23 ) determiner–
noun combinations ( 24 ). Importantly, the homesigners’ hearing 
parents do not  display determiner–noun combinations in the 
spontaneous gestures that they produce when they talk to their 
deaf children ( 25 ), indicating that the children do not have a 
model for this category either from a conventional language or 
from spontaneous gesture.

 The homesign observations suggest that children come to lan-
guage learning prepared to create a determiner category if they are 
not receiving linguistic input. Our behavioral findings here make 
it clear that if children do  receive linguistic input, they can use that 
input to achieve productivity in determiner–noun combinations 
early in development, although it does take them approximately 
9 mo after they have produced their first determiner to achieve 
determiner productivity in the language they are learning.

 How little input can we give our model and still have it achieve 
determiner–noun productivity (e.g., how few nouns need to be 
paired with both a  and the  for the model to predict utterances 
consistent with productivity)? Our methodology provides us with 
a starting point for further investigating the amount and type of 
input that triggers learning the determiner category. Our first step 
was to characterize at a fine-grained level the timing associated with 
onset and development of determiner–noun productivity in chil-
dren and  in a computational model. Having completed this step, 
we can now ask questions about the type and amount of linguistic 
input needed to model the individual learning trajectories displayed 
by the children in our study. For example, our analysis of 
child-produced determiner–noun combinations in a sample of 64 
children indicates variability in the onset and rate of productivity 
among the children. We can use our computational model to inves-
tigate factors that might have led to these differences (e.g., charac-
teristics of the linguistic input each child receives during their 
learning process, the patterns of interaction between parent and 
child, etc.). In the current study, we combined child-directed data 
for all the children in our corpus to train our computational model 
(we individualized the data by using child-produced utterances as 
test cases for each version of the model). We made this decision 
because we did not have enough training data for each child. In the 
future, we hope to develop creative ways to simulate differences in 
the linguistic input that individual children receive (including 

Fig. 4.   Number of determiner–noun combinations produced by the child 
(in orange) and predicted by the model (in blue) that were not in the child’s 
parental input or the model’s training set up to that session, and that also had 
not been earlier produced by child or predicted by the model.
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homesigners who receive no linguistic input) and compare the mod-
els’ outcomes to children’s actual trajectories.

 Finally, we focused here on the development of the determiner 
category for historical and practical reasons. English determiners 
have been the focus of much research attention ( 2           – 8 ), likely due 
to the simplicity of the determiner–noun construction (which 
involves closed class words, a  and the ) and the fact that its acqui-
sition begins relatively early. However, there is nothing in the 
behavioral and computational framework used here that is spe-
cific to this case. The same approach can be applied to construc-
tions involving nouns, verbs, adjectives, adverbs, etc. Comparing 
the developmental patterns for these constructions in our com-
putational model to the developmental patterns produced by 
children can help us determine the onset of productivity for the 
constructions. Assessing the relevant input provided to the model 
and child can then help us investigate the role that linguistic 
input plays in determining when productivity for each construc-
tion begins.

 In sum, we have married longitudinal behavioral observations 
and computational modeling to capitalize on the strengths of each. 
Our behavioral data gave us a rich picture of when children begin 
to productively combine determiners a  and the  with the same 
noun. Although the children produced combinations that were 
not attested in the sample we had of their parental linguistic input, 
it is always possible that they had heard these particular combi-
nations at other times in their lives. This is precisely where our 
computational modeling comes in––we developed a model that 
did an excellent job of predicting the onsets and trajectories of 
determiner–noun combinations in the 64 children in our sample. 
Because we knew exactly what input the model was trained on, 
we could, with confidence, know that the model had gone beyond 
the input given. The parallels found between child and model 
support the claim that the children too were creatively going 
beyond their input.  

Materials and Methods

Corpus Data. The behavioral data for this study come from the LDP (LDP, see 
ref. 15) corpus, which contained longitudinal observations of 64 typically devel-
oping, monolingual, English- learning children from the Greater Chicagoland 
Area. Children and their primary caregivers were video- recorded, engaging in 

spontaneous interactions in their homes for twelve 90- min visits (M = 11.3, 
SD = 1.8, sessions, range 4 to 12 sessions), beginning when children were 14 
mo and ending at 58 mo. The resulting corpus of caregiver–child interactions 
contains over one million transcribed utterances (n = 646,685 for primary car-
egivers and n = 368,884 for children), and approximately 1,000 h of videos. 
Both the primary caregiver’s and child’s utterances were lemmatized, stripped 
of extraneous punctuation, and all instances of capitalization were removed. All 
utterances tagged as reading by a human transcriber were excluded for both 
child and parent. We identified syntactic categories using the part- of- speech 
taggers provided in the Python spaCy library (26). Additionally, a constituency 
parse tree was generated for each utterance in the corpus using the Berkeley 
Neural Parser (27, 28).

Computational Model. A key property of our model is that abstract knowledge 
of language emerges from domain- general principles of connection- based error- 
driven learning, based on feedback that is naturally available to children (that is, the 
actual next word in the data). The focus has been on architectures that can represent 
utterances as incoming sequences, such as the classic Recurrent Neural Network 
proposed by Elman (16) and its more recent variants, Long Short- term Memory (29), 
Gated Recurrent Units (30), and Transformers (14). The latter comes with a technical 
innovation called self- attention, where the representation of an utterance is built by 
computing the relationship between each of its words. This mechanism allows the 
model to exploit distributional information from the input words and dramatically 
improves performance on a number of tasks in Natural Language Processing. The 
model known as BERT (31) and its variants, such as RoBERTa (32), have become 
a focus for computational psycholinguistic research and have been used to sim-
ulate many aspects of human language processing, from reading times to brain 
activities (see ref. 33 for a survey). Although the existing Transformer- based models 
successfully replicate many empirical patterns observed in humans, they often need 
much more training data than are available to children. However, a much smaller 
variation of BERT called BabyBERTa (34) was recently proposed and trained on five 
million words of data directed at children between the ages of 1 to 6 y. Huebner and 
colleagues (34) performed postanalysis on the hidden representations of this model 
and showed that it acquires grammatical knowledge comparable to RoBERTa when 
pretrained on 160 GB of text.

In our study, we used a variation of BERT, described by Alhama et al. (13). In 
that study, we ran extensive analyses to validate the model against behavioral data 
from two different corpora [the Manchester corpus (4), and the LDP corpus used 
here]. We checked the accuracy of the model in predicting the same determiner 
that the child produced in the masked slot (a/an or the, as opposed to predicting 
any other word), at the end of training (SI Appendix, Fig. S2). The model predicts 
a determiner in 83.43% of the presented utterances, and it predicts the exact 
determiner in 65.48% utterances.

Fig. 5.   Left graph: Correlation between the child’s 
age at onset of determiner–noun productivity and 
the first novel determiner–noun combination not in 
that child’s parental input up to that session. Right 
graph: Correlation between the session when the 
model first predicted two different nouns, each 
combined with a and the, and the session when 
the model first predicted a determiner–noun com-
bination not in the training set up to that session.
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Experimental Setup. We train our model on child- directed utterances from 
the corpus under study using the Masked Language Model objective. Since the 
child- directed data for each individual child are not enough to train the model 
from scratch, we accumulate utterances of all the parents. We train the model 
with the input available up to each depicted age.

To test determiner predictions in the model (Studies 1 and 3), we first extract 
all the determiner usages in the utterances produced by each individual child. 
Following prior studies (3, 18), we mask the definite and indefinite determiners 
in DETERMINER + NOUN constructions that follow the pattern DETERMINER + 
NOUN(SINGULAR) <X> or DETERMINER + <X> + NOUN(SINGULAR), where 
<X> is any category except NOUN(singular). As an example, for the child’s utter-
ance Here’s the pink ear, we would present the model with Here’s [MASK] pink 
ear. We then feed the utterances to the model so that it predicts the most likely 
filler for the masked slot. For each masked slot, we record the prediction to which 
the model assigns the highest probability.

To assess the entropy of the model for utterances in which children pro-
duced determiners vs. utterances in which children failed to produce a deter-
miner when it was needed, we included all the test utterances in Study 1 and 
added utterances in which determiners were omitted. Omitted determiners in 
utterances were identified programmatically using the Berkeley neural parser 
(28). The final set contained utterances without a determiner but with a noun 
phrase whose terminal node was a singular common noun (i.e., not a proper 
noun, nor a pronoun) and did not contain a quantifier (“some,” “any”), numeral 
(“one”), or interrogative (“which”), which could take the place of “a,” or “the.” 
The grammaticality of this set of utterances was manually checked by a native 

speaker of English who had access to the surrounding conversational context. 
The model was given this set of utterances, where children should have pro-
duced a determiner but did not (determiner- omitted), along with utterances 
from Study 1, where children produced a needed determiner (determiner- 
produced). The model was asked to fill in a word in the slot where there was 
a determiner produced or where a determiner should have been produced. 
The model predicts a probability distribution for the lexical items that could 
fill in the slot of the missing word. We computed entropy over the predicted 
probability distribution for both types of utterances (determiner- omitted and 
determiner- produced).

Data, Materials, and Software Availability. Some study data are available. We will 
share all code associated with this study, along with in- depth descriptive summaries 
of the behavioral data underlying the models; however, we do not yet have consent 
to share the raw child language data previously collected and reported in (15).
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