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“The strong pass of the obstacles is like a wall of iron,

yet with firm strides, we are conquering its summit.”

— Mao Zedong
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ABSTRACT

Large-scale data centers store vast amounts of user data across numerous disks, necessitating re-

dundancy mechanisms like erasure coding (EC) to protect against disk failures. As storage systems

scale in size, complexity, and layering, disk failure frequency and rebuild times increase. For man-

aging tens or hundreds of thousands of disks, traditional single-level erasure coding (SLEC) does

not scale well, as it struggles to balance repair overhead with rack- and enclosure-level failure tol-

erance. Multi-level erasure coding (MLEC), which applies EC at both network and local levels,

has been deployed in large-scale systems. However, no in-depth study has addressed its design

considerations at scale, leaving many research questions unaddressed. This dissertation provides a

comprehensive analysis of MLEC at scale, focusing on its design considerations and relationship

to deep learning (DL) workloads.

We begin by presenting a detailed analysis of MLEC’s design space across multiple dimen-

sions, including code parameter selection, chunk placement schemes, and repair methods. We

quantify their performance and durability, identifying which MLEC schemes and repair methods

best tolerate independent and correlated failures and reduce repair network traffic by orders of mag-

nitude. Evaluation methods include simulation, splitting, dynamic programming, and mathemati-

cal modeling. We also compare MLEC’s performance and durability with other EC schemes like

SLEC and LRC, showing that MLEC can provide high durability with higher encoding throughput

and less repair network traffic over both SLEC and LRC.

We then discuss the relationship between MLEC and DL workloads. As DL workloads become

increasingly data-intensive, training datasets often exceed local storage, requiring access to remote

erasure-coded storage. To cost-effectively evaluate MLEC’s ability to meet the throughput de-

mands of DL workloads, we develop an emulation-based approach. We introduce GPEmu, a GPU

emulator designed for efficient evaluation of DL systems without physical GPUs. GPEmu supports

over 30 DL models and 6 GPU models, providing capabilities for time emulation, memory emula-

tion, distributed system support, and GPU sharing. We also develop MLECEmu, which simulates

xiv



the read throughput of erasure-coded disk arrays with I/O-throttled in-memory file systems. Using

these tools, our end-to-end experiments show that MLEC storage can enhance GPU utilization with

wider stripes, and our optimized MLEC repair methods reduce training performance degradation

during catastrophic local failure repairs.

While MLEC storage provides high aggregated intra-cluster read throughput for DL workloads,

the network bandwidth between the GPU cluster and the MLEC storage cluster can become a bot-

tleneck during training, as inter-cluster bandwidth is typically more constrained than intra-cluster

bandwidth. Since many samples significantly reduce in size during preprocessing, we explore se-

lective offloading of preprocessing tasks to remote MLEC storage to mitigate data traffic. Our

case study evaluates this approach’s potential benefits and challenges. Based on our findings, we

propose SOPHON, a framework that selectively offloads preprocessing tasks at a fine granularity

to reduce data traffic. SOPHON uses online profiling and adaptive algorithms to optimize prepro-

cessing for each sample in each training scenario. Evaluations using GPEmu and MLECEmu show

that SOPHON reduces data traffic and training time by 1.2x to 2.2x compared to existing solutions.
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CHAPTER 1

INTRODUCTION

Large-scale data centers store a huge amount of user data in a massive number of disks and require

redundancy approaches such as erasure coding (EC) to protect them from disk failures [62, 63,

64, 73, 130, 131, 144, 157]. The sheer size, scale, complexity, and layering of distributed mass-

capacity storage keep growing and have never stopped. Figure 1.1 shows that the number of disks

managed in Backblaze and US DOE laboratories keeps increasing and the per-disk capacity also

keeps growing for both max available capacity and average capacity of sold disks. Such extreme

scales lead to more frequent disk failures and longer time to rebuild a failed disk.

For managing tens or hundreds of thousands of disks, the classical single-level erasure coding

(SLEC) no longer scales and cannot provide a good balance between minimizing repair overhead

and maximizing rack/enclosure-level failure tolerance. Multi-level erasure coding (MLEC), which

performs EC at both network and local levels, becomes a popular choice for several reasons. (a)

MLEC is a hybrid of the network- and local-level SLEC schemes, hence gaining the benefits of

the two worlds. Local SLEC only performs EC inside a rack/enclosure and thus cannot tolerate

rack/enclosure failures [100, 120, 164]. Network SLEC tolerates rack failures but requires cross-

rack network traffic for repairing lost chunks [124, 125, 158]. MLEC, on the other hand, can repair

most disk failures locally without interfering user network traffic while at the same time being

able to tolerate rack failures. (b) MLEC’s performance scales better. With tens of thousands of

disks, deploying more parity chunks and wider stripes to achieve higher durability will lead to

higher encoding computation overhead. However, the 2-level nature of MLEC can provide high

durability with less encoding overhead than SLEC. (c) MLEC is stackable and easy to deploy/scale

in practice. Since storage vendors sell RBODs (reliable bunch of disks) with EC controllers inside,

larger-scale customers can build network-level EC on top of the local RBODs. (d) MLEC is more

configurable. Customers can choose how many parities and what kind of chunk placement scheme

to use at each level that fit their goals and constraints.
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Figure 1.1: Storage scaling over the years. The figures show (a) the increasing number of disks

managed in Backblaze and US DOE laboratories and (b) per-disk capacity over the last 15 years

MLEC has seen large deployments in the field, including in HPC data centers in national lab-

oratories [90], enterprise-grade storage softwares [42], and commercial storage systems [1]. How-

ever, based on literature study and personal communications, there is no in-depth study of design

considerations for MLEC at scale. Many research questions remain unanswered. What are the

possible chunk placement schemes for MLEC at scale? What are their pros/cons in terms of per-

formance and durability? What are the types of failure modes an MLEC system can face? Can we

introduce advanced repair methods that are optimized for every specific scheme and failure mode?

What are the implementation requirements for advanced repairs? Though other works analyze

hierarchical RAID for small-scale systems [55, 122, 141, 142, 152], we have not seen any work

answering the questions above or studying design considerations of MLEC for large-scale systems.

Furthermore, with the rapid advancement of deep learning (DL), DL training has become one

of the primary workloads in modern cloud systems, requiring vast amounts of training data. This

data, often too large to be stored locally, is typically housed in remote data centers and accessed

during training [66, 103, 148, 162, 167]. To ensure data reliability, these data centers employ

erasure coding. This raises a critical question in the context of MLEC: How does multi-level

erasure-coded storage perform when serving DL workloads? Answering this question involves

evaluating the performance of MLEC in the context of DL workloads. However, DL training

requires costly GPUs, and MLEC storage relies on extensive disk arrays—both of which are limited

resources in academic clouds. Is there a cost-effective approach to evaluate MLEC storage for DL

workloads, enabling us to identify performance bottlenecks inexpensively and quickly prototype
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optimizations?

This dissertation addresses these key research challenges surrounding MLEC. Specifically,

this work provides the most comprehensive design considerations and analysis of MLEC

for large-scale data centers, and introduces an emulation-based approach for evaluating the

performance of MLEC storage under deep learning workloads, without relying on physical

GPUs or disk arrays. This approach enables fast and cost-effective identification of system

bottlenecks and optimization strategies.

In the rest of this chapter, we introduce our comprehensive design considerations and analysis

of MLEC (Section 1.1), present our emulation-based approach for cost-effective evaluation of

MLEC storage performance against deep learning workloads (Section 1.2), and explain how the

emulators can be used to evaluate a novel selective preprocessing offloading approach that reduces

network traffic between deep learning training workloads and remote MLEC storage (Section 1.3).

1.1 Design Considerations and Analysis of MLEC at Scale

There are many design choices in various dimensions (including code parameter selections, chunk

placement schemes, and repair methods) when configuring MLEC for large-scale data centers. Dif-

ferent design choices offer various trade-offs between data durability, implementation complexity,

and system performance. Configuring or extending an MLEC design at extreme scale can be costly

without a clear understanding of the implications of proposed changes.

Therefore, we first provide, to the best of our knowledge, the most comprehensive design

considerations and analysis of MLEC at scale [149], covering diverse design choices, offering

multiple evaluation methods, considering various failure scenarios, and analyzing numerous trade-

offs.

We introduce the design space of MLEC across multiple dimensions, including code parameter

selections, chunk placement schemes, and repair methods—ranging from simple and practical ap-

proaches to more optimized ones that leverage multi-level EC but require cross-level transparency.
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To evaluate different design choices, we employ a variety of strategies, including simulation,

splitting, dynamic programming, and mathematical modeling. We build MLECSim, to the best

of our knowledge, the first sophisticated MLEC simulator (approximately 13,000 lines of code

(LOC)) capable of measuring MLEC performance and durability at scale (over 50,000 disks). Key

features include simulating disk failures (based on distributions, rules, or real traces), supporting

multi-level clustered/declustered placements, expressing failure tolerance, and executing complex

repair strategies.

Based on these evaluation strategies, we quantify the performance (e.g., encoding throughput,

repair network traffic, repair time) and durability (under both independent and correlated fail-

ures) of MLEC under various design choices. We demonstrate which MLEC schemes and repair

methods offer the best tolerance against independent/correlated failures and reduce repair network

traffic by orders of magnitude.

We also compare the performance and durability of MLEC with other EC schemes, such as

SLEC and LRC [89], and show that MLEC can provide high durability with higher encoding

throughput and less repair network traffic over both SLEC and LRC.

We hope that our analysis—along with the released simulation code [27] and evaluation arti-

fact [26]—will enable engineers and operators of extreme-scale EC systems to gain a comprehen-

sive understanding of the advantages and disadvantages of various MLEC schemes.

1.2 Cost-Effective Evaluation of MLEC Storage Against DL Workloads

With the rapid growth of deep learning, data centers increasingly store large datasets used for

training models. These datasets, often scaling to tens or even hundreds of terabytes [33, 167], are

typically too large for local storage and must be housed in remote data centers and ingested during

training [66, 103, 148, 162, 167]. Data centers need to provide enough data throughput to feed the

deep learning workloads; otherwise, data transfer can become a bottleneck and slow down training.

Meanwhile, to ensure data reliability, data centers commonly use erasure coding [69, 89, 128].
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Therefore, in the context of MLEC storage, it is essential to evaluate its performance against deep

learning workloads, identify bottlenecks, and explore potential optimization opportunities.

However, evaluating MLEC in deep learning workloads poses significant challenges. Deep

learning training requires expensive GPUs, which are often inaccessible to the research community

due to their high cost. Additionally, MLEC storage requires large, self-configurable disk arrays that

are difficult to obtain from academic cloud providers. Even for industry engineers, accessing these

resources for evaluation is challenging, as they are costly and typically reserved for real-world

workloads.

To address this, we develop an emulation-based approach that enables cost-effective evaluation

of MLEC storage in deep learning workloads using an end-to-end setup. Specifically, we introduce

GPEmu, a GPU emulator that allows for the cheap evaluation of deep learning workloads without

the need for real GPUs, and MLECEmu, an emulator that simulates the MLEC storage system

without requiring physical disk arrays.

Our goal with GPEMU and MLECEmu is to provide a cost-effective way to identify system

bottlenecks in deep learning and MLEC storage through emulation, offering valuable insights into

system performance and enabling the prototyping of new optimizations.

1.2.1 GPEmu: A GPU Emulator for Cheaper Evaluation of DL System

Research

We first introduce GPEmu, a GPU emulator designed for faster and more cost-effective prototyping

and evaluation of deep learning systems research. GPEmu is motivated by the insight that, for many

deep learning research projects [54, 104, 105, 112, 113, 113, 145, 162, 163, 173], real, physical

GPUs are not required. For example, when evaluating and optimizing MLEC storage for deep

learning training workloads, the focus is often on increasing GPU utilization by improving layers

above the GPU, such as data loading and preprocessing. In such cases, rather than the results of

GPU computations, the key factor is the performance of the GPU.
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We argue that the research community needs a GPU emulator capable of replicating GPU

behavior without the need for physical GPUs. Such an emulator would significantly enhance

prototyping efficiency and reduce research costs. While there are some existing emulators, such

as MLPerf Storage [28] or ad-hoc emulators developed for specific research [95, 167], they lack

essential components like memory emulation and data preprocessing support. Furthermore, they

only accommodate a limited number of configurations and domains.

We present GPEMU, a GPU emulator designed for faster and cheaper prototyping and evalua-

tion of deep learning systems research. The design of GPEMU is versatile, supporting over 30 deep

learning models and six different GPU configurations. GPEMU is easy to use: users can run typ-

ical deep learning frameworks (e.g., PyTorch, TensorFlow) on top of GPEMU in both single-node

and distributed setups (such as Kubernetes). GPEMU focuses on deep learning training workloads.

We introduce four key features in GPEmu: (1) time emulation, using a sleep-based approach

to emulate GPU computations, host-to-GPU data transfers, and GPU-driven data preprocessing;

(2) memory emulation, which replicates both GPU memory usage and pinned memory; (3) dis-

tributed system support, enabling multi-GPU single-node training, multi-node training, and multi-

job scheduling; and (4) GPU sharing support, which emulates time-sharing for both single-node

and Kubernetes setups.

To demonstrate the benefits of GPEMU, we leverage GPEMU to reproduce the main experi-

mental results from several papers [54, 104, 105, 112, 113, 113, 145, 162, 163, 173] across diverse

setups and levels of complexity. Additionally, we show how GPEMU can be used to introduce and

evaluate a set of new micro-optimizations.

1.2.2 MLECEmu: An Emulator for Cheaper Evaluation of MLEC Storage

In addition to GPEmu, we introduce MLECEmu, an emulator designed for the fast evaluation of

multi-level erasure coded storage systems. MLECEmu is motivated by the challenge that configur-

ing MLEC storage typically requires a large number of disks, which academic cloud environments
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do not usually provide. For instance, typical academic clouds, such as Chameleon Cloud [10, 97],

often offer only one disk per machine. As a result, configuring even a simple MLEC system with

50 disks would require 50 machines, making it prohibitively expensive and inefficient.

To address this limitation, we present MLECEmu, an emulator for fast evaluation of MLEC

storage. MLECEmu configures an emulated MLEC storage system using real HDFS [133] on top

of ZFS [126]. Instead of relying on physical disks, MLECEmu uses multiple tmpfs devices in

memory with throttled throughput to simulate the performance characteristics of real disks. It also

emulates reduced throughput during disk failure repairs by limiting the emulated disk and rack

bandwidth, with repair duration projected using MLECSim. Through these emulations, MLE-

CEmu enables the evaluation of a configured MLEC storage system for both normal operations

and degraded states during disk failure repairs.

By combining GPEmu and MLECEmu, we can evaluate MLEC storage performance for deep

learning workloads without the need for physical GPUs or disk arrays. Using these tools, we

demonstrate that MLEC storage can enhance GPU utilization in deep learning training through the

use of wider stripes. Additionally, we show that our optimized MLEC repair methods can reduce

the duration of trainin performance degradation in DL training caused by repairs under catastrophic

local failures.

1.3 Reducing Cross-Cluster Data Traffic Between DL Training and

Remote MLEC Storage

While MLEC storage can provide abundant aggregated intra-cluster bandwidth serving deep learn-

ing workloads when with wide stripes thanks to distributed reading from multiple disks and racks,

the inter-cluster bandwidth is usually more constrained than intra-cluster bandwidth [48, 80].

Therefore, the cross-cluster network bandwidth can become a critical bottleneck for DL workloads

and limiting GPU utilization [66, 103, 148, 167]

Several strategies have been proposed to address data fetch bottlenecks, with most approaches
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focusing on selectively caching data in local storage or memory [66, 103, 105, 113, 116, 162,

167]. However, these methods are limited by local capacity, especially as datasets grow. Other

approaches store preprocessed datasets in remote storage for reuse across epochs [91, 93, 106], but

this can reduce training accuracy by omitting random transformations during preprocessing, which

are essential for learning.

Previous work [54, 145, 169, 170, 171] has explored offloading preprocessing to reduce CPU

bottlenecks by shifting tasks to extra CPU nodes, without addressing data fetch traffic. These

methods also uniformly offload preprocessing, ignoring that many samples shrink significantly

during intermediate stages.

We utilize preprocessing offloading differently: by observing that many data samples un-

dergo significant size reductions at intermediate stages of the preprocessing pipeline, we propose

to selectively offload parts of preprocessing for certain samples to the remote storage server. This

approach leverages the higher intra-cluster bandwidth compared to inter-cluster bandwidth [48,

80, 88, 149]. By preprocessing larger samples within the storage cluster and transmitting smaller,

partially processed data, our method reduces data traffic and improves training efficiency.

We introduce SOPHON (Selectively Offloading Preprocessing with Hybrid Operations Near-

storage), a framework designed to selectively offload DL preprocessing tasks to remote storage

servers with the goal of reducing data transfer traffic [151]. SOPHON has two key components:

(1) A two-stage profiler that collects essential metrics for making offloading decisions. Offloading

is activated only when the workload is identified as I/O-bound during profiling. (2) A decision

engine that determines which samples to offload and identifies the specific operations to offload

for each chosen sample, striking a balance between reducing traffic and managing CPU overhead.

Together, these components enable SOPHON to provide tailored offloading strategies to meet the

unique needs and constraints of each training scenario.

We evaluated SOPHON with deep learning training workloads which reads data from remote

MLEC storage, using GPEMU and MLECEmu introduced Section 1.2. Our evaluation results
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demonstrate that SOPHON can effectively enhance training efficiency, achieving a 1.2-2.2x re-

duction in training time over existing solutions.

1.4 Thesis Organization

The rest of this dissertation is organized as follows:

• In Chapter 2, we introduce the background of redundancy techniques used to ensure data

center reliability and provide an overview of existing erasure coding studies and their limita-

tions. We also discuss existing emulation and simulation techniques for cost-effective evalu-

ation of system research, as well as the relationship between deep learning (DL) training and

storage systems, motivating our study of evaluating MLEC storage under DL workloads.

• In Chapter 3, we present a comprehensive analysis and design consideration of multi-level

erasure coding (MLEC) for large-scale data centers. We explore various code parameters,

chunk placement schemes, and repair methods, analyzing the trade-offs between perfor-

mance and durability and comparing MLEC with other EC schemes.

• In Chapter 4, we introduce an emulation-based approach to evaluate MLEC storage under

DL workloads. We describe GPEMU, a GPU emulator for evaluating DL workloads without

using real GPUs, and MLECEmu, an MLEC storage emulator that emulates MLEC storage

without requiring extensive real disk arrays. We also show how these tools can be used

together to evaluate MLEC storage under DL workloads and identify system bottlenecks.

• In Chapter 5, we introduce SOPHON, which uses selective preprocessing offloading to

reduce cross-cluster data traffic between DL training and remote MLEC storage, evaluated

using GPEMU and MLECEmu.

• In Chapter 6, we briefly mention our other work on availability and reliability of storage

systems.
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• In Chapter 7, we conclude the dissertation and discuss potential future directions for MLEC

storage and its relationship to DL workloads.
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CHAPTER 2

BACKGROUND AND MOTIVATIONS

In this chapter, we briefly introduce the background of redundancy techniques used to ensure data

center reliability and provide an overview of existing erasure coding techniques in Section 2.1.

Additionally, we discuss the remote I/O bottleneck problem in deep learning in Section 2.2, which

motivates our study of evaluating MLEC storage under DL workloads. In Section 2.3, we review

existing emulation and simulation methods for cost-effective system evaluation and highlight their

limitations, motivating our development of GPEMU and MLECEmu. Finally, we introduce prepro-

cessing offloading in Section 2.4, which is central to our optimization for reducing traffic between

MLEC storage and DL workloads.

2.1 Existing Redundancy Approaches

2.1.1 Replication

The most straightforward way to protect data durability is replication [133], which makes multiple

copies of the same data and distributes them across different disks. When a disk fails, its data can

be recovered by reading from the copies in other disks. However, the price is the high storage

overhead. For example, the commonly used 3-way replication requires 3x storage space as the

original data.

2.1.2 RAID and Erasure Coding

Since replication introduces high storage overhead, nowadays many systems use parities to protect

their data [120]. For example, the conventional RAID5 [38] systems use one parity per stripe and

can tolerate any single device failure, and RAID6 [39] systems can tolerate up to 2 device failures

by using 2 parities. In order to be more flexible and tolerate additional failures, many storage

systems have started to use erasure coding (EC) [155].

11



In EC systems, a stripe of data is split into k data chunks, based on which p parity chunks are

computed. These (k+ p) chunks are distributed into different storage devices. When one device

fails, the lost chunks can be reconstructed from computation on the surviving chunks. Any (k+ p)

erasure can tolerate up to p device failures without data loss. The conventional RAID5 systems

utilizes (k+1) erasure and RAID6 systems uses (k+2) erasure.

2.1.3 Chunk Placement: Clustered vs. Declustered EC

When distributing chunks into storage devices, there are two typical kinds of data placement

schemes: clustered and declustered.

In order to better illustrate the difference between clustered and declustered erasure, let’s start

with an example. Let’s assume we want to do (9+1) erasure among 100 drives.

In clustered erasure, we divide the 100 drives into 10 groups, each containing 9+1 = 10 drives.

Every stripe is assigned to a specific group, and the (9+ 1) chunks are distributed among the 10

drives. A stripe either has no chunk in a group, or has all the chunks residing in the group. When

a drive fails, we read from 9 surviving drives to reconstruct the lost data and write to a new spare

drive. Only 10 drives participate in the rebuild, and the rebuild rate is bottlenecked by the single

drive’s read/write rate.

When using declustered erasure [12, 53, 86], every stripe is distributed across 10 pseudorandom

drives. Each drive has some spare space where no data nor parity is stored. When a drive fails, it has

a huge number of lost chunks on it. For each lost chunk, 9 pseudorandom surviving drives are read

to reconstruct it, and the reconstructed chunk is written to the spare space on one pseudorandom

drive. Since there are a huge number of lost chunks, the total build work is spread across all 99

surviving drives, and therefore the rebuild rate is much faster than that of clustered erasure.

The price for the faster rebuild is the less tolerance against concurrent failures. For example,

if drive 1 and drive 99 fail simultaneously, in clustered erasure, the system is recoverable since

the two failed drives belong to two different drive groups. In declustered erasure, however, due
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to its pseudorandom placement scheme, some stripes have chunks on both failed drives, and these

2-chunk-failure stripes can no longer be restored using (9+1) erasure.

To address the issue of low burst tolerance in conventional declustered parity placement, re-

cent research has introduced a placement method known as Single-Overlap Declustered Parity

(“SODp“) [96]. Unlike conventional Dp’s random chunk placement, SODp organizes determinis-

tic declustered ”stripesets,” and each incoming stripe can only be mapped to one of these stripesets.

A stripeset refers to a specific set of disks chosen for a one-to-one correspondence with a stripe.

2.1.4 Local vs. Network SLEC

Many distributed storage systems today use declustered erasure and are built with similar hardware.

Clients send and receive data from servers which, in turn, send and receive data between themselves

and distributed storage enclosures. Storage enclosures are typically between four and five rack

units high and contain around 100 drives. These enclosures contain controllers which either act

merely as a path to the individual devices or add a degree of virtualization.

There are two existing single-level erasure coding (SLEC) approaches: network-only SLEC

and local-only SLEC. To describe them, we imagine a data center that has five racks of storage,

each holding two enclosures, each holding fourteen storage devices.

As exemplified in Figure 2.1(a), a network-only SLEC server splits received data into three

data chunks, computes two parity chunks, and then distributes those chunks across enclosures

by sending them to the controllers, which forward the data to the requested devices [49, 72, 129,

133]. Because racks and enclosures are well-known failure domains, typical network-only systems

ensure a layout such that no stripe has more than p chunks per rack or enclosure.

In Figure 2.1(c), we show a typical layout in which each chunk is stored in a different rack and

no one rack has more than one chunk. In this way, the system minimizes the number of chunks

lost in any one stripe when a rack fails. Note that we assume that all approaches use declustered

erasure such that the placement shown in the figures is only for one particular stripe of data. Other
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Figure 2.1: Logical Erasure Workflows and Physical Layouts of SLEC. The upper figures

show the logical flow and parity generation when new data is stored. Rounded rectangles represent

the controllers within each enclosure, and cylinders represent their drives. The lower figures show

the resulting physical layout in an exemplary data center. All figures use colors to indicate the

type of data being stored: blue for the original user data, and orange for the parity computed from

that data. For the purpose of elucidation, not all elements are shown in each figure. For example,

servers are not shown in the physical layouts, and not all enclosures are shown in the logical flows.

Each is configured such that all have the same capacity overhead (40%).

stripes will have different layouts (i.e. will be stored on different devices). The enclosures used in

network-only architectures are often referred to as JBOD (just a bunch of disks).

The second SLEC approach, local-only SLEC uses RBOD (reliable bunch of disks) instead

of JBOD [59, 84, 114]. An RBOD, which is typically created using erasure firmware running

on the controller, appears to the upper-level system as a very large drive. However, internally it

is protecting data using erasure. As shown in Figures 2.1(b) and 2.1(d), a client sends data to a

server, and that server passes the data directly to an RBOD controller, which then splits the data,

computes the parity, and stores the five resulting chunks onto five of its drives.

Note that the work performed is fundamentally the same in both SLEC approaches with only

two small differences. One is whether a server or a controller does the splitting, computing, and
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(a) Azure-LRC (8,4,2) (b) Optimal LRC (9,4,2)

(c) Combined Locality (8,4,2,3)

Figure 2.2: Locally repairable coding (LRC). The figures illustrate the workflows of different

LRC approaches including (a) Azure-LRC (b) optimal-LRC (c) Combined Locality.

distributing, and the second is whether the distribution is done across enclosures or within a single

one.

Also note that local-only SLEC does not protect data from rack or enclosure failures. Network-

only SLEC does tolerate rack failures, but the repair introduces heavy network traffic.

2.1.5 Locally Repairable Coding

In (k+ p) erasure coding, repairing any lost chunk requires reading k surviving chunks from other

disks. When k is large, the repair becomes IO-intensive and computation-intensive. Locally Re-

pairable Coding (LRC) deals with this problem by adding local parities.

For example, in (n,k,r) Azure-LRC [89], k data chunks are divided into ⌈k/r⌉ local groups.

Each local group contains r data chunks, and one local parity is computed. Meanwhile, it encodes

n−k−⌈k/r⌉ global parity chunks using all data chunks. This results in n chunks in total per stripe.

When a data chunk or local parity is lost, it can be reconstructed by reading only r surviving chunks
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in the same local group. Figure 2.2(a) shows an example of LRC (8,4,2), which has 4 data chunks,

2 local parities, and 2 global parities.

Note that the repair of global parities in Azure LRC still requires reading k surviving chunks.

Such LRCs are referred to as data-LRCs [101]. On the other hand, full-LRCs can repair any chunk

(including the global parity chunk) using r surviving chunks.

Optimal-LRC [140] is a typical full-LRC, where all data chunks and global parity chunks are

divided into local groups of size r, and each local group has one local parity. For example, Figure

2.2(b) shows optimal-LRC (9,4,2).

Note that Azure-LRC distributes each chunk of a stripe into a different rack. By doing this, it

can tolerate rack failures. However, the repair of any lost chunk will introduce cross-rack network

traffic.

Azure-LRC+1 [101], in the evaluation, first tried to place a local group in a rack to reduce

cross-rack repair network traffic.

Combined locality (CL) [88] first systematically explores how to deploy LRC in a rack-hierarchical

structure in order to reduce network traffic. In CL (n,k,r,z), they added a new parameter z to denote

how many stripes to place a stripe. For example, Figure 2.2(c) shows CL (8,4,2,3) which distributes

the 8 chunks into 3 racks. In this example, repairing data chunks or local parities requires 0 net-

work traffic. Repairing the global parity chunk, however, requires 4 chunks of cross-rack network

traffic cost.

2.1.6 MLEC and Hierarchical RAID

Multi-level erasure coding (MLEC) architecture, shown in Figure 2.3(a), combines two single-

level erasure coding (SLEC) approaches. In MLEC, a server receiving data splits the data into

chunks, computes parity chunks, and distributes them across enclosures in a rack-aware layout.

Each enclosure, an RBOD, further splits the data it receives, computes additional parity, and stores

these subchunks across its internal drives.
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Figure 2.3: MLEC Architecture. The upper figures show the logical flow and parity generation

when new data is stored. The lower figures show the resulting physical layout in an exemplary

data center.

MLEC has seen large-scale deployments in HPC data centers at national laboratories [90],

enterprise-grade storage software [42], and commercial storage systems [1]. However, an in-depth

study of design considerations for MLEC at scale has not yet been conducted. While previous

works analyze hierarchical RAID (also known as nested RAID or 2D RAID, which combines two

RAID levels) for small-scale systems [55, 122, 141, 142, 152], they do not consider hierarchical

RAID in the context of large-scale data centers.

Thus, many important research questions remain unanswered: What are the possible chunk

placement schemes for MLEC at scale? What are their pros and cons in terms of performance and

durability? What types of failure modes might an MLEC system face? Can we introduce advanced

repair methods optimized for specific schemes and failure modes? What are the implementation

requirements for such advanced repairs?

None of these questions have been addressed in existing works. Therefore, we aim to answer

these questions in Chapter 3.
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2.2 Remote I/O Bottlenecks in DL Training

Deep Learning has emerged as a transformative technology across diverse domains, including

computer vision, natural language processing, and audio processing [65, 77, 83, 102, 134]. To

support this growing demand, cloud platforms now offer specialized services for facilitating DL

training at scale [6, 8, 18].

DL training is characterized by its intense computational demands, requiring vast datasets,

significant CPU resources for preprocessing, and powerful GPUs for executing complex neural

network models [60, 66, 103, 105, 112, 113, 121, 148, 159, 160, 161, 167, 173]. As the size of

DL datasets now frequently scales to tens or even hundreds of terabytes [33, 167], the data volume

often exceeds the local storage capacity of cloud compute nodes. This has led to a common archi-

tecture where DL training occurs on compute nodes that fetch data from remote storage clusters

such as distributed file systems or object stores [4, 7, 17, 133].

The use of remote storage introduces a critical performance bottleneck in DL training. As

GPUs become faster, the data transfer speeds must match this pace to avoid stalls, underutilized

GPUs, and delayed training results [66, 103, 105, 113, 116, 162, 167]. If the data feed is insuffi-

cient, the entire DL pipeline suffers, resulting in inefficient use of resources.

To mitigate this, it is essential to ensure that the remote storage architecture can provide suffi-

cient aggregated I/O bandwidth to meet the demands of DL workloads. This involves optimizing

the data organization, management, and storage architecture to deliver the required bandwidth for

high-throughput data access. In the context of Multi-Level Erasure Coding (MLEC) storage, a key

question arises: Can distributed MLEC storage, with its specific file placement and design, provide

enough aggregated bandwidth to efficiently feed DL workloads?

If MLEC storage fails to deliver the necessary bandwidth, the goal becomes identifying and

resolving the system’s bottlenecks to improve GPU utilization and overall performance. Optimiz-

ing the MLEC system design can potentially alleviate I/O bottlenecks, leading to faster and more

efficient training.
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However, addressing this issue is costly, particularly in academic settings where GPUs and

large disk arrays—both of which are essential for DL workloads and MLEC storage—are scarce

and expensive. Thus, a cost-effective method is needed to evaluate MLEC storage against DL

workloads, allowing for the identification of system bottlenecks and the rapid prototyping of opti-

mizations.

Motivated by these challenges, in Chapter 4, we introduce an emulation-based approach to

evaluate MLEC storage in the context of DL workloads. This method provides a practical solution

to overcome resource limitations in academic environments while offering insights for identifying

system bottlenecks and optimizing performance.

2.3 Emulators and Simulators: Existing Work and the Need for New Tools

In Chapter 4, we introduce two emulators: GPEMU, a GPU emulator designed to evaluate deep

learning system research without requiring real GPUs, and MLECEmu, a storage emulator that

replicates the behavior of MLEC storage without the need for real disk arrays. In this section, we

review existing emulation and simulation techniques and explain why developing new tools like

GPEMU and MLECEmu is necessary.

2.3.1 Existing Emulation Tools

Emulators replicate specific components of a system to allow them to function on different plat-

forms. A wide variety of emulation tools exist for system components other than GPUs. For

example, FEMU [107] and RAMSSD [40] emulate SSDs, FAME [111] and HME [67] emulate

memory, and Emulab [85] and CloudLab [15, 68] are popular for network emulation.

However, there are limited options for GPU emulation, particularly in the context of deep learn-

ing (DL) workloads. For instance, Silod [167] profiles model computation time on expensive V100

GPUs and emulates it on cheaper K80 GPUs for cluster scheduling evaluation, but still requires real

GPUs. MLPerf Storage [28] and DLCache [95] offer simple host-side GPU emulation, focusing
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on compute time but lacking critical features for full-stack DL system evaluation. These emulators

support limited configurations and experiments, highlighting the need for a more versatile GPU

emulator.

There are also no existing emulators for erasure-coded storage systems. While tools like

FEMU [107] and RAMSSD [40] emulate SSDs, no emulator currently supports the complex be-

haviors of erasure-coded storage systems, particularly MLEC.

2.3.2 Simulators for GPU and Erasure-Coded Systems

Simulators model the behavior of real-world systems for performance analysis and prediction.

Numerous GPU simulators exist, such as MacSim [99], GPGPU-Sim [56], MGPU-Sim [139], and

Accel-Sim [98], as well as GPU cluster scheduling simulators used in prior work [79, 104, 112,

138].

These simulators can analyze GPU performance metrics, such as memory usage and clock

cycles, but they lack support for end-to-end DL system experiments that incorporate all layers,

including storage, CPUs, host memory, and network. In contrast, GPEMU is designed to facilitate

full-stack experimentation, encompassing a broader range of system components.

While there are simulators for single-level erasure-coded storage systems [96, 166], none exist

for multi-level erasure coding (MLEC). The only MLEC simulator, MLECSim, was developed by

us to simulate MLEC performance and durability. However, MLECSim does not support end-to-

end experiments, motivating the development of MLECEmu, which enables such experiments by

emulating MLEC storage in full-stack settings.

2.3.3 The Need for GPEMU and MLECEmu

The limitations of existing emulators and simulators underscore the need for new tools tailored to

the unique demands of DL workloads and MLEC storage. GPEMU addresses the gaps in GPU

emulation by providing extensive support for a wide range of configurations and features essential
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for deep learning system research. Similarly, MLECEmu fills the void in erasure-coded storage

emulation, enabling detailed performance evaluation of MLEC storage without requiring real disk

arrays.

By combining these two emulators, researchers can conduct full-stack experiments that cover

both GPU and storage layers, identify system bottlenecks, and prototype optimizations in a cost-

effective and resource-efficient manner.

2.4 Preprocessing Offloading

Preprocessing is a crucial stage in deep learning (DL) training, involving tasks such as data aug-

mentation, normalization, and transformation to prepare raw data for model consumption. This

step is CPU-intensive and often becomes a significant bottleneck, especially in large-scale DL

workloads with continuously processed data. As a result, previous studies [54, 145, 169, 170, 171]

have explored offloading preprocessing tasks to additional CPU nodes to alleviate this bottleneck.

However, these works primarily focus on reducing CPU load and overlook the substantial data

fetch traffic between remote storage and compute nodes. Additionally, they apply a uniform,

coarse-grained offloading strategy that treats all data samples equally, failing to account for the

varying data sizes at different preprocessing stages.

In Chapter 5, from the storage perspective, we propose a different approach to preprocessing

offloading: by observing that many data samples undergo size reductions during intermediate

stages of preprocessing, we propose to selectively offload specific preprocessing tasks to the re-

mote storage server. Given that intra-cluster bandwidth (within storage) is generally much higher

than inter-cluster bandwidth (between storage and compute) [48, 80, 88, 149], our approach pre-

processes larger data samples within the storage cluster itself. By preprocessing large data within

the storage cluster and transmitting only smaller, partially processed data to compute nodes, we

reduce data traffic, optimize network usage, and improve training efficiency.
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CHAPTER 3

DESIGN CONSIDERATIONS AND ANALYSIS OF MULTI-LEVEL

ERASURE CODING IN LARGE-SCALE DATA CENTERS

3.1 Introduction

MLEC has seen large deployments in the field, including in HPC data centers in national laborato-

ries [90], enterprise-grade storage softwares [42], and commercial storage systems [1]. However,

based on literature study and personal communications, there is no in-depth study of design consid-

erations for MLEC at scale. Many research questions remain unanswered. What are the possible

chunk placement schemes for MLEC at scale? What are their pros/cons in terms of performance

and durability? What are the types of failure modes an MLEC system can face? Can we introduce

advanced repair methods that are optimized for every specific scheme and failure mode? What are

the implementation requirements for advanced repairs? Though other works analyze hierarchical

RAID for small-scale systems [55, 122, 141, 142, 152], we have not seen any work answering the

questions above or studying design considerations of MLEC for large-scale systems.

In this chapter, we provide, to the best of our knowledge, the most comprehensive design con-

siderations and analysis of MLEC at scale that addresses the questions above. More specifically,

we present the following contributions.

1. We introduce the design space of MLEC in multiple dimensions, including various code

parameter selections, chunk placement schemes, and various repair methods from a simple

and practical one to a more optimized one that leverages the multi-level EC but requires

cross-level transparency.

2. We quantify their performance (encoding throughput, repair network traffic, repair time, etc.)

and durability (under independent and correlated failures). We show which MLEC schemes

and repair methods can provide the best tolerance against independent/correlated failures
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and reduce repair network traffic by orders of magnitude.

3. To achieve all of the above, we use various evaluation strategies including simulation, split-

ting, dynamic programming, and mathematical modeling. We build, to the best of our

knowledge, the first sophisticated MLEC simulator (in almost 13,000 lines of code (LOC))

that allows us to measure MLEC performance and durability at scale (over 50,000 disks),

with many capabilities such as simulating disk failures (based on distributions, rules, or

real traces), combining multi-level clustered/declustered placements, expressing failure tol-

erance, and executing complex repairs.

4. We also compare the performance and durability of MLEC with other EC schemes such as

SLEC and LRC [89] and show that MLEC can provide high durability with higher encoding

throughput and less repair network traffic over both SLEC and LRC.

In this chapter, we first introduce the MLEC design in Section 3.2, followed by our evalua-

tion methodologies in Section 3.3. We then present an in-depth analysis of the performance and

durability implications of various MLEC schemes and repair methods in Section 3.4, and evalu-

ate MLEC in comparison with SLEC and LRC in Section 3.5. In Section 3.6, we discuss how

our findings can guide large-scale storage architects in selecting optimal configurations tailored to

their specific environments and requirements. Finally, we conclude the chapter in Section 3.7.

3.2 MLEC Design

We begin by describing the MLEC design, starting from the logical and physical views (§3.2.1-

3.2.2) to the failure modes and possible repair methods (§3.2.3-3.2.6). To ease readers in finding

definitions and descriptions, we use bold text for findings, the first mentions of figure references,

and important terms.
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3.2.1 MLEC Basics and Logical View

We begin with showing the logical view of the MLEC architecture by comparing it with basic

SLEC architectures in Figure 3.1. For simplicity, not all physical elements are shown yet. We use

the (k+p) notation to describe an SLEC setup with k data and p parity chunks. For MLEC, we use

the (kn+pn)/(kl+pl) notation where n and l respectively stand for “network” and “local.”

Network SLEC: Figure 3.1a shows a simple (2+1) network SLEC with three enclosures.

When user data arrive (a1 and a2), the storage server builds the parity chunk (a12) and sends each

of these chunks to a separate rack, and in each rack the chunk might go to a different enclosure

(e.g., a1 might go to rack R1 enclosure E1, a2 to R2E3, and a12 to R3E2. But for simplicity, a1,

a2, a12 all go to E1 in the figure). An enclosure is a collection of disks stored within the same

rack. A “disk” can be an HDD, SSD, or other types of drives. Network-level SLEC can tolerate

rack/enclosure-level failures but requires cross-rack network traffic for every repair.

Local SLEC: Figure 3.1b shows a (2+1) local SLEC with one enclosure. The storage server

picks an enclosure and simply forwards the entire user data stripe to the enclosure-level controller,

which then builds the parity chunk and writes all the chunks to different disks in the enclosure.

Local SLEC can tolerate disk failures but not rack/enclosure-level failures.

MLEC: Figure 3.1c shows a (2+1)/(2+1) MLEC architecture, which is a combination of net-

work and local SLEC architectures. Note that the kn and kl do not have to be the same, but we

use kn=kl=2 here for simplicity. Upon receiving a full data stripe (four chunks, from a1 to a4),

the storage server splits it to two network data chunks (a1a2 and a3a4) and build one network

parity chunk (a12a34). Note here, a network-level chunk contains two local-level chunks. The

server then distributes them across different enclosures in separate racks. Each enclosure takes the

data and splits it to local data chunks (e.g., a1a2 is split to a1 and a2 chunks), computes the local

parity chunk (e.g., a12 in R1E1), and sends them to three different disks in the enclosure.

Overall, the local-level MLEC manages the local stripes (e.g., a1–a2–a12 is a local stripe with

three local chunks). Likewise, the network-level MLEC is responsible for managing the network
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stripes where each network stripe contains multiple local stripes (e.g., a1a2a12–a3a4a34–a13a24aP

is a network stripe containing three local stripes). aP is the parity of a13 and a24.

Clustered vs. declustered parity (Cp vs. Dp): Now let’s look at the local placement, where

one can deploy the conventional clustered or declustered parity placement. In the clustered parity

(“Cp”) placement, every (k+p) disks will form a pool. In Figure 3.1d, the 6 disks in one enclosure

form two (2+1) local-Cp pools. Here, a local stripe must go to a specific pool, i.e., a stripe either

has no chunk in the pool, or has all the chunks residing in the pool. When a disk in a local-Cp

pool fails, the local repairer reads from the k (two) surviving disks to reconstruct the lost data and

write to a new spare disk. The rebuild time is bottlenecked both by the read bandwidth of only

the participating disks (two disks here) and by the single disk’s write bandwidth (to the one spare

disk).

In order to improve the rebuild rate, declustered parity (“Dp”) placement was proposed. Here

we briefly introduce the design idea of declustered parity. More details can be found in litera-

ture [51, 52, 86, 96, 115, 135]. In declustered parity, a local-Dp pool should have (much) more

than (k+p) disks. For example, in Figure 3.1e, all the 6 disks in the enclosure form only one

local-Dp pool. Here, the data, parities, and spare space are pseudorandomly spread (declustered)

across all the disks. When a disk fails, all the surviving disks in the large pool participate in both

reading and writing which leads to faster repair rate. Later on, the admin can bring in a new disk

and rebalances the data in the background.

Declustered parity placement can also be applied to network SLEC. In network-Dp SLEC, the

entire system is treated as a pool, and each chunk in the stripe is placed pseudorandomly in a

separate rack. When a disk fails, all the surviving disks in the system can participate in the repair,

utilizing the network bandwidth of all the racks in the system to speed up the repair.

While declustered parity offers improved repair speed because of its pseudorandom chunk

placement, it is susceptible to lower tolerance against correlated failure bursts. For instance, in a

6-disk pool using a (2+1) declustered parity scheme, if two disks fail simultaneously, there must
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Figure 3.1: SLEC vs. MLEC logical view (§3.2.1). The figures show (a) a network SLEC, (b) a

local SLEC, and (c) an MLEC. Light-colored boxes (e.g., a1, a2) are data chunks and dark-colored

boxes (e.g., a12, a24) are parity chunks. “R” and “E” respectively denote racks and enclosures.

Figures (d) and (e) differentiates local clustered and declustered parity placements. Figure (f) and

(g) illustrates how SODp works. Note that figures a-e assumes (2+1) in 6 disks for simplicity, while

figures f-g assumes (2+2) in 8 disks to better illustrate the features of SODp.

be a stripe that contains chunks on both failed disks. Consequently, this stripe cannot be repaired,

resulting in data loss in the event of any two disk failures.

Single-overlap declustered parity (SODp): To address the issue of low burst tolerance in

conventional declustered parity placement, recent research has introduced a placement method

known as Single-Overlap Declustered Parity (“SODp“) [96]. Unlike conventional Dp’s random

chunk placement, SODp organizes deterministic declustered ”stripesets,” and each incoming stripe

can only be mapped to one of these stripesets. A stripeset refers to a specific set of disks chosen for

a one-to-one correspondence with a stripe. Figure 3.1f illustrates the SODp placement for (2+2)

on a 8-disk pool. Here 8 stripesets are formed, and an incoming stripe can only be put onto one of

the stripesets.

SODp can still reap the advantages of parallel reconstruction. For instance, as illustrated in

Figure 3.1f, when Disk 1 encounters a failure, its associated stripesets—S1, S3, S4, and S7—span

all other disks within the pool. Consequently, all remaining disks can actively contribute to the
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repair process. Moreover, SODp exhibits enhanced resilience against failure bursts. In scenarios

like Figure 3.1g, where three disks (D1, D2, and D3) fail simultaneously, there is no data loss

since no stripe contains three failed chunks.

3.2.2 MLEC Schemes and Physical View

Given the two levels (network and local) and the three chunk/parity placements (clustered, declus-

tered, and SODp), we can permute them into six basic placement schemes (or “MLEC schemes”

for short). It’s worth noting that the SODp paper [96] exclusively introduces the algorithm for

constructing SODp in the context of local SLEC, without addressing its application in network

SLEC, which presents non-trivial challenges. Consequently, when we study SODp for MLEC, we

will focus on the design covering local-level SODp.

Below we define each MLEC scheme, using Figure 3.2 to illustrate the physical views. Again,

for simplicity, we use a (2+1)/(2+1) MLEC, i.e., kn=2, pn=1, kl=2, and kl=1. Hence, we show 3

racks (R1to R3), where each rack contains 2 enclosures (E1 and E2) and each enclosure contains 6

disks (D1 to D6).

Clustered-clustered (C/C) scheme: In Figure 3.2a, this simplest scheme performs clustered

parity at both network and local levels. A (2+1) local stripe is mapped to a local-Cp pool, con-

taining adjacent kl+pl disks; for example, a1a2a12 and b1b2b12 are mapped to two different local

pools, each with three consecutive disks. Moving up to the network level, every kn+pn enclosures

at the same position across the three racks form a network pool for (2+1) network stripes. For

example, for the network stripe a1. . . aP, they all have to reside in the same local-Cp pool position

in the three E1enclosures across the three racks.

Clustered-declustered (C/D) scheme: In Figure 3.2b, this scheme performs a network clus-

tered and local declustered placements. Starting from the top, all the data and parity chunks of a

network stripe still have to reside within the same local-Dp pool position within the same enclosure

position in each rack. For example, a1. . . aP are mapped to the first local-Dp pool in enclosure E1
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Figure 3.2: Four MLEC schemes and their physical views (§3.2.2). The figure shows three

racks, each with two enclosures, each with six disks. For simplicity, we only show chunk per disk

(no disk cylinders); e.g., a1 chunk is in Rack R1, Enclosure E1, Disk D1. We are not showing C/S

and D/S here, because they will look similar to C/D and D/D in this setup. The detailed difference

between Dp and SODp can be found in Section 3.2.1

across the three racks. Locally, as explained before, the local-Dp pool has 6 disks. The chunks of a

local stripe are pseudorandomly spread across the 6 disks (e.g., a2, a1, and a12 chunks are mapped

to disks D1, D3, and D4, respectively), but the chunks in the stripe cannot go to the same disk (to

tolerate disk-level failure).

Clustered-SODp (C/S) scheme: The C/S scheme is very similar to C/D, given that SODP serves

as a variation of conventional declustered parity. As a result, we will not provide a separate illus-

tration for C/S, as it would closely resemble Figure 3.2b. It’s important to note that the primary

distinction between C/S and C/D lies in the local stripe placement. In C/D, the chunks of a local stripe

are pseudorandomly distributed across all local disks, while in C/S, a local stripe is assigned to one

of the deterministic stripesets.

Declustere-clustered (D/C) scheme: Reversing the previous scheme, now we have the network

level performing declustered parity. That is, the local-stripes of a network stripe will be pseudo-
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randomly spread across the enclosures within the network pool, but they cannot go to the same

rack (to tolerate rack-level failure). For simplicity, Figure 3.2c shows a network pool containing

only six enclosures across the three racks. The network stripe a1. . . aP is split to three local stripes

stored in different enclosure positions in the three racks (e.g., the local stripe a1a2a12 is mapped to

enclosure E2 in rack R3). At the local level, D/C follows C/C, i.e., a local stripe goes to a local-Cp

pool.

Declustered-declusted (D/D) scheme: In this scheme, we have declustered placements in both

network and local levels. For example, in Figure 3.2d, just like in the previous figure/scheme, the

local stripe a1a2a12 is mapped to enclosure E2 in rack R3, but now the chunks of this local stripe

are scattered across the 6 disks in the local-Dp pool.

Declustered-SODp (D/S) scheme: Finally, we introduce D/S scheme. Again, D/S is very similar

to D/D in Figure 3.2d, despite specific details of the local stripe placement. Consequently, we will

not provide a distinct figure illustration for D/S.

In large-scale deployments, in network clustered (C/∗)1 schemes, every kn+pn inter-rack local

pools in the same enclosure position will form a network pool, hence the total rack count must

be a multiple of kn+pn. However, in network declustered (D/∗) schemes, a network pool usually

contains much more than but does not have to be a multiple of kn+pn racks. Likewise, in local

clustered (∗/C) schemes, a local pool contains kl+pl disks, and hence an enclosure must have a

multiple of kl+pl disks. However, in local declustered (∗/D) and local SODp (∗/S) schemes, a local

pool usually contains much more than but does not have to be a multiple of kl+pl disks.

3.2.3 Failure Modes

Given the more complex chunk placements, MLEC can face various failure modes, as listed in

Table 3.1, which we will use heavily throughout the paper. With the listed definitions, we now

can derive the data loss conditions, which vary across the MLEC schemes. A data loss is defined

1. ∗ is a don’t-care symbol.
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Local level failures

• A failed chunk: A lost (but may be recoverable) chunk due to a disk failure.

• An affected local stripe: a local stripe with any number of chunk failures.

• A locally-recoverable local stripe: A local stripe containing 1 to pl failed chunks.

• A lost local stripe: A local stripe containing pl+1 or more failed chunks but may still be

recoverable from the network level.

• A catastrophic (locally-unrecoverable) local pool: A local pool with 1 or more lost

local stripes, e.g., in (10+2)/(17+3) MLEC, a local pool with 4 disk failures is not recover-

able locally and requires network repair.

Network level failures

• An affected network stripe: a network-wide stripe with any number of lost local stripes.

• A recoverable network stripe: A network stripe containing 1 to pn lost local stripes.

• A lost network stripe (a data loss): A network stripe with pn+1 or more lost local

stripes.

Table 3.1: MLEC failure modes (§3.2.3).

as the loss of a network stripe, more specifically the loss of pn+1 local stripes. In network-Cp

(C/∗) schemes, only pn+1 catastrophic local pools in the same network pool can cause a network

stripe to have pn+1 lost local stripes. Since a C/∗ system can have many network-level pools,

pn+1 catastrophic local pools that are scattered in multiple network-level pools will not cause

data loss. In network-Dp (D/∗) schemes, since there is only one network pool in the system, any

arbitrary pn+1 catastrophic local pools may lead to a lost network stripe with pn+1 lost local

stripes. However, the probability for such a lost network stripe to happen can be extremely low,

depending on the actual chunk placement (which is pseudorandom) in network-Dp (D/∗) schemes.

3.2.4 Repair Methods

When it comes to repair, the network pool level is more important. Repairing locally-recoverable

pools is straightforward (similar to SLEC repairs in Figures 3.1d-e). The challenge is to recover2 a

catastrophic (locally-unrecoverable) local pool (defined in Table 3.1). For this, we introduce four

possible local-pool repair methods applicable to all the MLEC schemes, as illustrated in Figure

2. We use recover/repair/rebuild/reconstruct interchangeably.
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3.3, from the simple to optimum ones, along with their pros and cons.

Repair All (RALL): In Figure 3.3a, the failures of disks D1 and D3 in rack R1 caused a

catastrophic local pool failure, thus chunks a1 and a2 need to be reconstructed. “Repair All”

(RALL) is a method that simply rebuilds the entire local pool (e.g., disks D1 to D6 in rack R1) from

the other healthy local pools in other racks (R2 and R3) via a network-level parity calculation.

As the downside, it unnecessarily leads to a much higher amount of network traffic. However,

RALL is common in deployment (e.g., in MarFS [90]) because it is considerably the easiest to

implement. That is, the network repairer does not need to know the layouts of the local part of the

MLEC. The network-level sysadmins can use black-box/off-the-shelf RBODs (e.g., CORVAULT

[11], ZFS pools [58], and PowerEdge RAID [13]).

Repair Failed Chunks Only (RFCO): Unlike RALL, RFCO only rebuilds the failed chunks.

For example, in Figure 3.3b, a1 in rack R1 is rebuilt by network parity calculation on a3 and

a13 from the other two racks (and similarly for a2). By doing this, RFCO reduces the network

repair traffic. Although it seems simple, RFCO is less straightforward to implement. It requires the

local/enclosure-level repairer to report which chunks have failed and coordinates with the network-

level repairer. This is one reason why repair methods like RFCO are not supported by many existing

RAID systems. For example, ZFS [58] handles its own block device mappings internally, and does

not readily expose the mapping information. Therefore, when a ZFS local pool fails, it is often

impossible for the network-level repairer to know which chunks have failed. Thus, although RFCO

is more efficient than RALL, RFCO requires a proper API design and metadata management across

the local and network levels.

Repair Hybrid (RHYB): RHYB repairs the failed chunks in a hybrid way using both network

and local repairs. To show this optimization, Figure 3.3c shows a slightly different layout, where

two failed chunks a2 and b2 are stored in the same failed disk D3 in rack R1(plus another failed

chunk a1 in disk D1). Here, RHYB basically analyzes every failed chunk and asks whether a

network repair is needed or not. The loss of a1 and a2 form a lost local stripe, hence they cannot be
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Figure 3.3: Four repair methods, RALL to RMIN (§3.2.6). For simplicity, we only show a

(2+1)/(2+1) C/D MLEC scheme. Also, not all the figures use the same chunk locations.

repaired locally and require the network repair. However, for b2, it can be rebuilt locally because b1

and b12 are still available in the surviving disks (i.e., a locally-recoverable stripe). As we measure

and explain later in Section 3.4.2, RHYB works well for local-Dp (∗/D) schemes.

Repair Minimum (RMIN): Taking the insight from the previous method, this last method

incurs the minimum amount of network repair traffic. It does so in two stages. First, it finds all the

lost local stripes and reads the minimum number of chunks over the network such that the stripes

transition to locally-recoverable local stripe. Second, all the locally-recoverable local stripes can

be rebuilt locally. For example in Figure 3.3d, the lost local stripe a1a2a12 is partially repaired by

rebuilding a1 first (by xor-ing a3 and a13) over the network. Now, a2 is still lost but can be rebuilt

locally by xor-ing a12 and the recently-rebuilt a1.

3.2.5 Encoding

For encoding in MLEC, there are two options:
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Figure 3.4: Parity updates in MLEC. The figure shows how MLEC updates local parity, global

parity, and double parity.

1. The network-level server computes all local parities, network parities, and double parities

and then distributes all chunks to local pools.

2. The network-level server only computes network parities, distributes the chunks to local

pools, and lets local controllers compute the local parities and double parities.

Our experiments indicate that both methods achieve similar encoding throughput when using the

same number of CPUs. However, the first method introduces more cross-rack network traffic dur-

ing chunk distribution since it also distributes local parities and double parities across racks. In

contrast, the second method computes them locally, resulting in less cross-rack network traffic

overhead. Additionally, many local pools, such as RBODs, are already equipped with local con-

trollers, making the second choice more practical. Therefore, we have adopted the second choice

in all our designs and analyses.

3.2.6 Updates

Existing MLEC systems, such as MarFS [90], do not support in-place updates, as they target

workloads characterized by bulk ingestion and retrieval, where read-modify-write operations are

not required. However, for completeness, we describe how parity updates during read-modify-

write operations on data chunks in MLEC can be performed with minimal cross-rack data transfers.
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Figure 3.4 depicts how to update the parities in MLEC. It can be divided into three steps:

1. Local parity update: We first update the local parities in the same rack. For example,

when a data chunk a1is updated to a1
′, we compute the delta chunk a1

′−a1, and update the

local parity a′12 = a12 +αL(a
′
1 − a1), where αL is the local-level encoding coefficient for

computing a12.

2. Network parity update: We next update the network parities across racks. For example,

in Figure 3.4 we transfer the delta chunk a1
′−a1across rack and compute the network parity

a′13 = a13+αN(a
′
1 − a1), where αN is the network-level encoding coefficient for computing

a13.

3. Double parity update: Finally we update the double parities within the rack based on up-

dates of the network parity. For example, in Figure 3.4, we use the delta chunk for network

parity (computed in prior step) a13
′−a13to compute the double parity: a′P = aP +αL(a

′
13 −

a13)

Among all these steps, only Step 2 requires cross-rack network traffic. Therefore, MLEC only

requires plcross-rack transferred chunk for updating parities. The disk IO cost, however, can be as

much as 2(pl +1)(pn+1) in order to finish the read-modify-write updates for all parities.

3.3 Methodology

To perform in-depth analysis for various MLEC schemes and repair methods, we use the four

evaluation strategies: simulation, splitting, dynamic programming, and mathematical modelling.

In this section, we introduce these four evaluation strategies, followed by the description of our

target system setup.
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3.3.1 Simulation

To quantify performance and reliability, one can start with a mathematical model. However, our

work introduces complex repair methods that are hard to model. For this reason, we build a so-

phisticated MLEC simulator (in almost 13 kLOC) with many capabilities such as simulating disk

failures (based on distributions, rules, or real traces), combining multi-level (de)clustered place-

ments, expressing failure tolerance, and executing complex repairs.

The high-level logic of the event-driven simulator works as follows:

1. We first geenerate failure times (following a specific distribution or from a real-world trace)

for all the drives in the system

2. We then select the failure times that are less than the mission time (e.g. one year).

3. For each disk failure:

(a) We calculate the repair time for drive by following the erasure coding policy and con-

sidering the current state of the system

(b) We check if the drive failure causes the rack to fail.

i. If the rack fails, we calculate the repair time for the rack.

ii. We also check if the rack failures causes the system to fail. If so, fail the system,

return fail.

(c) We update system states when detecting a disk failure, starting a repair, done repairing

high-prioirty stripes, and finished repairing the entire disk.

(d) We generate new failures for those drives that have been repaired

4. If the system survives after the mission time, return success.

5. Repeat process 1-4 for M times, get N failures and M-N successes. The the probability of

data is N/M.
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The details on how to handle differnet events (e.g. failure detection, repair initialization, high-

prioirity repair, etc) depends on the specific erasure coding design, which adds more complexity to

the simulator.

We use this simulator to measure repair traffic, repair time, and system durability in Sections

3.4.1, 3.4.1, 3.4.2, 3.4.2, 3.5.1, 3.5.2.

3.3.2 Splitting (multi-stage simulation)

A uniqueness of our work is the focus on extreme-scale deployments (e.g., >10k disks), which

require protection from a large number of parities. However, to estimate high durability, a simula-

tion must run a large number of iterations to capture even one system data loss event (it will take

years even with a 200-core simulation). To reach rare events faster, we adopt the splitting method

[74, 119]. First, we simulate the durability of a single local pool using regular simulation and

collect local pool failure samples. Second, we systematically inject catastrophic local pool failures

from the samples at MLEC level. We use this to evaluate high durability in Sections 3.4.2, 3.5.1,

and 3.5.2.

3.3.3 Dynamic programming

While splitting is efficient to measure high durability under independent failures, it is hard to

do the same under correlated failure bursts. This is because each local pool’s durability is not

deterministic but correlated to other local pools’ durability. Thus, we use dynamic programming,

specifically by using it to count the number of all the possible disk failure layouts under a certain

correlated failure burst scenario, and then count how many such failure layouts could cause a

data loss in MLEC. We use this strategy for measuring the probability of data loss (PDL) under

correlated failure bursts in Sections 3.4.1, 3.5.1 and 3.5.2.
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3.3.4 Mathematical model

For thoroughness, we also build a mathematical model to verify our simulation strategies, but we

can only do so for the simplest repair method (RALL). We choose to use Markov Chain model

as it’s commonly used to analyze durability of SLEC systems [50, 69, 78]. To model the MLEC

system, we first took existing SLEC durability models that use Markov chain models and proba-

bility theory [50, 69, 78, 143], and then we iteratively apply the model to network-level MLEC by

treating a local pool like a disk.

Here we give a description on how we build the model.

We model the data durability using a Markov chain [143, 153]:

0 1 2 ••• p DL

Sλ

µ

(S−1)λ

µ

(S− p)λ

An erasure coded system has S = k + p storage devices, where k and p are respectively the

number of data and parity chunks. Storage devices fail and are repaired at the respective constant

rates of λ and µ . As drives fail more quickly than they are repaired, a stripe of data becomes

increasingly at-risk. With p failed drives, the stripe can survive no further failures. At p + 1

failures, data has been lost (DL).

We assume that the reliability of each individual storage device d can be described by an

exponential function:

Rd(t) ∼ e−λ t , (3.1)

where λ is the failure rate. EC across S devices with p parities results in the Mean Time To Data

Loss(MTTDL) given by:

MTTDLs =
(µ

λ

)k (S− p−1)!

λS!
, (3.2)

where µ is the repair rate. With the common assumption that the data loss times are exponentially
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distributed [82, 123], we have:

R(t) ∼ e−t/MTTDLs ≡ e−λst , (3.3)

such that system level data loss rate is:

λs =
1

MTTDLs
=

(

λ

µ

)k λS!

(S− p−1)!
. (3.4)

The data durability of such a system is typically measured in number of nines (NoN); defined as

follows:

NoN =− log(1−R(t)) ≃ log(MTTDLs) , (3.5)

in which we set t = 1year and measure MTTDL in years. For MLEC, a second layer of EC

is implemented using the erasure blocks already computed at the first layer. We consider Sn of

such systems and create a second layer of EC with pn second layer parities. We can then use

Eq. 3.2 substituting the network level EC parameters: {Sn, pn,λs,µn} (the subscript “n” stands for

network) to get:

MTTDLJ =

(

µn

λs

)pn (Sn− pn −1)!

λsSn!
, (3.6)

in which we used the superscript J to show that this is the joint MTTDL for MLEC.

Using Eq. 3.5, we calculate the NoN for MLEC as:

NoNJ= log
(

MTTDLJ
)

Note that the model assumes the use of the RALL repair method, a detection time of 0, the

exponential distribution of data loss times, and an infinite number of stripes in the local pool.

Therefore, the model is only used in special cases with these assumptions enabled to verify the
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correctness of our simulator. More complicated cases with different assumptions are evaluated

using the simulator.

3.3.5 Setup

We use the following setups, which mimic real large-scale deployments [34, 35, 90].

Datacenter setup: We simulate 57,600 disks across 60 racks, with 8 enclosures per rack, 120

disks per enclosure, 20 TB per disk, and a chunk size of 128 KB.

MLEC configuration: We use a (10+2)/(17+3) MLEC. For ∗/C schemes, a local-CP pool con-

tains exactly 20 disks. For ∗/D schemes, given the local declustered approach, a local-DP pool

contains 120 disks.

Available repair bandwidth: The raw bandwidth is set to be 200 MB/s for per-disk I/Os and 10

Gbps per rack for cross-rack network, respectively. However, for repairs, disk and network traffics

are both capped at 20% of their respective raw bandwidth. Thus, we use the term “available repair

bandwidth” to reflect the resulting data repair bandwidth that is subject to this policy.

Fault simulation: To simulate a catastrophic local pool failure, we generate pl+1 disk failures

simultaneously. However, to measure long-term durability (e.g., over one year), we generate ran-

dom disk failures independently following an exponential distribution with an annual failure rate

(AFR) of 1%.

Failure detection time: We also follow previous works [88, 89] that use 30 minutes to detect

each failure and trigger the repair.

3.4 MLEC Analysis

We now present an in-depth analysis of performance and durability implications of various MLEC

schemes in Section 3.4.1 and repair methods in Section 3.4.2.
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Figure 3.5: PDL under correlated failures (§3.4.1). The square color represents the PDL of the

MLEC scheme when a total of y simultaneous disk failures are randomly scattered across x racks.

3.4.1 Analysis of MLEC Schemes

First, we analyze the six MLEC schemes (C/C to D/S), particularly the impact of their chunk/parity

placements on the probability of data loss under correlated failures (§3.4.1), repair speed (§3.4.1),

and probability of catastrophic local failure (§3.4.1).

PDL under Correlated Failures

We begin with analyzing the impact of different MLEC schemes on the probability of data loss

(PDL) under a wide range of failure burst topologies, from scattered disk failures across many

racks to highly correlated failures localized in a single rack. PDL is defined as the probability

that a storage system unrecoverably loses any data, and failure bursts refer to failures that are

temporally correlated and happen concurrently at the same time or within a small time window

[69].

Figure 3.5 shows heatmaps of the PDL, where greenish squares (near the value of 0) represent

high durability and reddish squares (near the value of 1) represent low durability. We vary the

number of disk failures (in the y-axis) and spread them across one or more racks (in the x-axis).

For example, {y = 60,x = 60} implies that every rack has a single disk failure (i.e., scattered

failures), while {y = 60,x = 1} implies that only one rack experiences 60 disk failures. The six

subfigures show the impact of these various failures on C/C, C/D, C/S, D/C, D/D, and D/S schemes,

respectively.
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Below we present our findings “F#1-8” in Figure 3.5. Findings #1-4 are applicable to all

six schemes, but for presentation clarity, we spread them across the subfigures. Findings #5-8,

however, are unique to the labeled schemes, respectively. We believe Findings #2-#8 were never

reported before.

Finding #1: When a failure burst happens in at least pn+1 racks, the more failed disks in

those racks, the higher the PDL. For example, in the highlighted vertical area in Figure 3.5b, pn is

2, but we have 3 racks (x = 3) experiencing failures. If the number of failed disks goes up (in the

y-axis), it will cause more local stripe failures. As a result, the PDL will go up (greenish to reddish

squares), and data loss will happen if pn+1 or more local stripe failures happen within a network

stripe (as the network stripe cannot recover).

Finding #2: MLEC is more robust to scattered failures. As highlighted in the horizontal area

in Figure 3.5d, when a fixed number of disk failures happen concurrently, the more racks they are

scattered to, the lower the PDL is. This is because each rack is more likely to have fewer disk

failures, which is more tolerable by the local-level EC of MLEC.

Finding #3: Full local failures can be recovered by the network-level EC up to some limit.

In Figure 3.5a, zero data loss can be guaranteed (PDL = 0) when the number of affected racks is

smaller than or equal to 2. This is because a network stripe can survive any pn rack failures, and

pn is 2 here. The PDL is also 0 when no more than x+8 disk failures are scattered in x racks.

This is because a local (17+3) stripe can tolerate any 3 failures. Thus, x+8 disk failures in x racks

can cause at most 2 lost local stripes in the same network stripe, which can be tolerated by the

network-level (10+2) EC.

Finding #4: MLEC is susceptible to data loss under highly localized failure bursts. Deriving

from previous findings, MLEC suffers the most when failures bursts happen in exactly pn+1 racks,

depicted in Figure 3.5e. In all the figures, we can also see that PDL is the highest when 60 disk

failures happen concurrently in 3 racks.

Finding #5: C/D has lower tolerance than C/C under more localized failure bursts. By com-
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paring the area pointed to by Finding #5 in Figure 3.5b and the same area in Figure 3.5a, we can

see that C/C has better tolerance than C/D when failure bursts happen in more than pn racks. This

is because a local-Dp pool can only tolerate pl arbitrary concurrent disk failures out of many (let’s

say Dl) disks. On the other hand, a local-Cp pool can tolerate up to pl disk failures out of (kl+pl)

disks, where usually Dl>kl+pl . Therefore, when the same number of random disks in a rack fail

concurrently, it’s more possible to cause local pool failures in C/D than in C/C, and more frequent

local pool failures in turn make system-wide data loss more likely.

Finding #6: Likewise, D/C has lower tolerance than C/C. Similar to above, when pn+1 or

more racks have failures, D/C performs worse than C/C, yet for a different reason. Whenever more

than pn racks have local pool failures, no matter which local pool in the rack fails, D/C can lose

data. On the other hand, C/C experiences data loss only when more than pn local pools in the same

network-level pool fail.

Finding #7: D/D has the worst data durability under failure bursts. In Figure 3.5, D/D has the

most reddish squares (higher PDL) among all the schemes. This is because the local-Dp scheme

makes local pool failures more likely, and local pool failures in the network-Dp scheme are more

likely to cause data loss. Even when failures are roughly scattered, unlike other schemes, D/D

has a lower chance of survival, because its local-Dp pools are more possible to fail compared to

local-Cp pools in C/C and D/C. Furthermore, D/D can lose data when any arbitrary pn+1 local

pools in separate racks fail, while C/C and C/D only lose data when pn+1 local pools in the same

network-level pool fail, which is less likely to happen.

Finding #8: ∗/S has the higher tolerance than ∗/D, but has lower tolerance than ∗/C. The burst

tolerance of ∗/S falls betwen ∗/C and ∗/D. This is attributed to the local-SODp scheme, which posi-

tions a local stripe onto a set of deterministic stripesets rather than using purely random placement.

As a result, a local-SODp pool is less susceptible to failures in comparison to a local-Dp pool, re-

ducing the risk to network-level erasure. However, in many cases, when pl+1 disks fail, it can

still lead to the failure of a local-SODp pool, making it more susceptible to failure compared to a
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Single disk failure Local pool failure

MLEC Disk Avail. Repair Pool Avail. Repair

Schemes size (TB) BW (MB/s) size (TB) BW (MB/s)
C/C 20 40 400 250
C/D 20 264 2400 250
C/S 20 160 2400 250
D/C 20 40 400 1363
D/D 20 264 2400 1363
D/S 20 160 2400 1363

Table 3.2: Repair size and available repair bandwidth (§3.4.1). Under (a) single disk failure

and (b) catastrophic local failure.
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Figure 3.6: Repair time (§3.4.1). Under (a) a single disk failure and (b) a catastrophic local

failure.

local-Cp pool.

In conclusion, different MLEC chunk placement schemes provide different tolerance against

correlated failure bursts. Among them, C/C performs the best while D/D has the largest probability

of data loss. However, C/C’s repair rate unfortunately is not as fast as the other schemes, as we will

dissect in the next section.

Repair Speed

We now analyze how long data repair will take under various MLEC schemes. Specifically, we

analyze the time of repairing (a) a single disk and (b) a catastrophic local failure. This section starts

with the simplest method, Repair-All (RALL), but later Section 3.4.2 uses all the repair methods.

Figure 3.6 shows the rebuild time of the six MLEC schemes under both failure conditions.

To explain the rebuild time in the figure, Table 3.2 provides further information on the amount of

43



data to rebuild and the available repair bandwidth, which also depends on how many disks/local

pools/racks participate in the repair as explained in earlier in the “RALL” paragraph of Section

3.2.6. We now elaborate findings “F#1-5” in Figure 3.6.

Finding #1: In repairing a single disk failure, local declustered placement in C/D and D/D

makes rebuilding fast. Figure 3.6a shows that C/D and D/D are 6x faster compared to C/C and D/C.

This is because, when a disk in a 120-disk local-Dp pool fails, the local repairer can in parallel

read the healthy chunks from and write the reconstructed chunks to spare spaces on all the 119

surviving local disks. On the other hand, the local-Cp repairer reads from 19 surviving disks and

rebuilds to only 1 spare disk. Since it only has at most 20 disks to participate in the local repair, its

available repair bandwidth is lower. In Table 3.2, the single disk repair bandwidth in C/C and D/C is

around 6x lower than that of C/D and D/D.

Finding #2: In repairing a single disk failure, local SODp placement in C/S and D/S makes

rebuilding faster than C/C and D/C, but slightly slower than C/D and D/D. Figure 3.6a shows that

both C/S and D/S are 4x faster compared to C/C and D/C. This enhancement is attributed to the

use of declustered stripe placement in local-SODp pools, which facilitates parallel rebuilding and

boosts repair bandwidth. However, it’s important to note that SODp’s declustering is not perfectly

balanced, which means it cannot achieve optimal parallel rebuilding. In a SODp pool, when a

disk fails, some healthy disks may share more stripes with the failed disk than others, requiring

greater participation in the repair process and potentially becoming bottlenecks. As a result, the

repair bandwidth in a SODp pool is slightly lower than that in a Dp pool, causing C/S and D/S to be

slightly slower than C/D and D/D when repairing a single disk.

Finding #3: In repairing a catastrophic local failure, C/D and C/S takes the longest time due to

its larger local pool size. While in Figure 3.6a, C/D and C/S are faster than C/C in rebuilding a single

disk failure, it is the contrary under a catastrophic local failure, as shown in Figure 3.6b. This is

because C/D and C/S have a local-Dp or local-SODp pool whose sizes are much larger than that

of a local-Cp pool, leading to more data to reconstruct across the network with limited network
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bandwidth. As detailed in Table 3.2, the local-Dp (∗/D) and local-SODp (∗/S) pool size is 2400 TB

while the local-Cp (∗/C) pool size is only 400 TB.

Finding #4: In repairing a catastrophic local failure, D/C is the fastest scheme. The speed-

up comes from the network-level declustered chunk placement. When reconstructing the target

local pool, the repairer needs to read chunks from other local pools. Thanks to the network-level

declustering, the chunks are spread across all the other 59 racks and the rebuilt data can be written

to spare spaces in all the 60 racks, including the rack that contains the failed local pool. This in

turn gives a 5x repair rate compared to C/C, which has only 12 (from 10+2) racks participating in

the repair at most. As shown in Table 3.2, C/C’s local pool repair bandwidth is 250 MB/s while

D/C’s can be as high as 1,363 MB/s.

Finding #5: D/D and D/S are faster than C/D and C/S, but slower than D/C and slightly slower

than C/C. Still in Figure 3.6b, compared to C/D and C/S (the slowest of all), D/D and D/S are around

5x faster due to the network declustering. However, with its local pool that is 6x larger in size

compared to that of D/C, D/D and D/S are around 6x slower than D/C. As a result, D/D and D/S

take a bit longer than C/C as the repair overhead caused by the large local-Dp pool dominates

here. However, in a cluster with more racks and smaller local-Dp pool size, or in a cluster with

“unlimited” network bandwidth, D/D and D/S could be faster than C/C in repairing a catastrophic

local pool. This is because D/D and D/S theoretically can read from and write to all local pools.

In conclusion, under a single disk failure, C/D and D/D have the fastest repair rate, but D/C is the

fastest under a catastrophic local failure. However, we emphasize the tradeoffs again that all these

speed-ups are obtained at the cost of a higher probability of data loss against correlated failure

bursts (as explained in Section 3.4.1 where C/C has the lowest PDL). We also have shown other

tradeoffs where single disk repair is faster (e.g., C/D is faster than C/C in Figure 3.6a) but at the cost

of slower local pool repair (e.g., C/D is slower than C/C in Figure 3.6b).
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Local Failure Probability

Prior sections have established that a catastrophic local pool failure is an Achilles’ heel of MLEC

because it will lead to a huge amount of network traffic with limited available bandwidth. Even

worse, when pn+1 catastrophic local failures happen concurrently, the system will lose data. Thus,

we now ask what the probability of catastrophic local failure is in different MLEC schemes.

Figure 3.7 shows that fortunately the probability of the catas-
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ure.

trophic local failure is low in all MLEC schemes. For example, the

probability with C/C and D/C is lower than 0.001% per year. Even

better, the probability is almost 0.00001% with C/D and D/D. There

are two main reasons why the latter is better by orders of magnitude.

First, a local-Dp pool has higher durability than a local-Cp pool. This

is not only because the local-Dp pool has a higher disk repair rate,

but also because it has less high-priority stripes (i.e. stripes that have multiple failed chunks),

which can be prioritized and repaired quickly. Accordingly, a local-Dp pool is more durable in

our setup. Second, since the local-Dp pool size (120) is larger than the local-Cp pool size (20),

the system has fewer local-Dp pools. Thus, the probability of an arbitrary local-Dp pool failing is

lower.

Additionally, we observe that the catastrophic local failure probability with C/S and D/S is

slightly higher than with C/D and D/D. This discrepancy arises from the fact that when multiple

disks fail, a local-SODp pool typically has more high-priority stripes to repair than a local-Dp

pool. This results in longer high-priority repair time and ultimately leads to lower durability. With

a large parity number (>2), this durability loss even surpasses the durability gain achieved through

SODp’s burst tolerance, causing local-SODp pools to exhibit lower durability than local-Dp pools.
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3.4.2 Analysis of Repair Methods

Previous section brings the good news that the probability of the catastrophic local failure is low in

general. However, as alluded to in Section 3.4.1, the repair will take a large amount of time under

a straightforward repair method, RALL. Thus, in the following sections, we extend the evaluation

to include RFCO, RHYB and RMIN’s performance in repairing a catastrophic local pool failure.

Cross-Rack Repair Traffic

We begin with quantifying the cross-rack network traffic of the four repair methods (RALL to

RMIN) in all the six MLEC schemes (C/C to D/S), as shown in Figure 3.4.2 with the findings F#1-5

described below.

Finding #1: RALL is the simplest to implement but results in the most network traffic. As

elaborated in Section 3.2.6, RALL does not require the network-level and local-level repairers to

be aware of each other, and hence simple to implement. As an implication, however, RALL needs

to repair the entire local pool, as opposed to just the failed data in the local pool, which in turn

leads to unnecessary work. RALL also results in much more network traffic in local-Dp (∗/D) and

local-SODp (∗/S) than in local-Cp (∗/C) schemes (26,400 vs. 4400 TBs in the figure). This is

because local-Dp and local-SODp have a larger local pool to reconstruct (120 disks) than local-Cp

(20 disks).

Finding #2: RFCO significantly improves upon RALL. This is because, instead of repairing

the entire pool, RFCO only repairs the failed chunks. The reduction is more apparent for local-Dp

(∗/D) schemes due to larger local pool sizes (e.g., from 26,400 to 880 TB in C/D). As alluded to

in Section 3.2.6, an MLEC deployment with two different vendors might need to implement some

APIs to pass failure information across the two layers.

Finding #3: RHYB (a hybrid local and network repair) further reduces cross-rack repair traffic

for local-Dp (∗/D) and local-SODp (∗/S) schemes. For C/D and D/D, RHYB only transfers 3.1 TB,

much fewer than 880 TB in RFCO. This is because in a local-Dp pool, when pl+1 disks fail, only a
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Figure 3.8: Cross-rack network traffic (§3.4.2). The figure shows the cross-rack traffic (in TB)

generated by the four different repair methods (RALL to RMIN) on six MLEC schemes.

small fraction of affected local stripes are lost local stripes which require network-level repair, and

other affected local stripes that have less than pl+1 chunk failures can be repaired locally. RHYB

also reduces cross-rack repair traffic for C/S and D/S, from 880TB to 44TB. The reduction is smaller

than that for C/D and D/D, because a failed local-SODp pool in ∗/D typically have more lost local

stripes than a local Dp pool. For local-Cp (∗/C) schemes, the figure shows that RHYB does not give

advantage over RFCO, because here we inject all the pl+1 disk failures at the same time. Later in

Section 3.4.2, we simulate different timings of failures.

Finding #4: RMIN provides the minimum cross-rack traffic among the four repair methods. For

all MLEC schemes, RMIN reduces network traffic by 4x or more compared to RHYB, thanks to the

opportunistic 2-stage method in RMIN. In this case, for example, instead of repairing all 4 failed

chunks from the network level, RMIN only repairs one failed chunk from each 4-chunk-failure

stripe (the first stage) and after that rebuilds the three remaining failed chunks locally (the second

stage).

Repair Time

As the last section focuses on the network traffic size, we now measure the repair time and describe

findings F#1-3 in Figure 3.9. The first two repair methods, RALL and RFCO, only employ network-

level repair, while the last two, RHYB and RMIN, leverage local repairs, depending on the MLEC

schemes, as we explain below.
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Figure 3.9: Repair time (§3.4.2). The figure shows the network-level (-N) and local (-L) repair

time with solid and striped bars, respectively. When the solid bars are not visible, the numbers are

very small.

Finding #1: RALL imposes the longest time and RFCO reduces the network-level repair time by

5-30x. RALL reconstructs the entire local pool, leading to a slow repair (with network throttling)

in all the MLEC schemes. However, RFCO only reconstructs the 4 failed disks, resulting in much

faster repair time.

Finding #2: RHYB reduces network repair time, but induces local repair time. This is true

for C/D, D/D, C/S, and D/S, wherein after the affected stripes are partially reconstructed via network

repair, the local pool exits the catastrophic state and can be repaired locally. The local repair

however can only read from the disks in the local pool (i.e., less parallelism compared to reading

from network-wide disks in other racks). For example, on C/D, RHYB takes a similar amount of

time as RFCO to fully recover the data.

Finding #3: While RMIN transfers the minimum amount of data over the network, it can take

even longer to repair the local pool. In all the MLEC schemes, as RMIN quickly repairs a less

amount of data from the network level, it makes the failed local pool exit the catastrophic state

faster, but could take longer time to fully repair all the failed disks. We would like to note that

although the total repair time is longer due to local repair, RMIN reduces network contention for

foreground I/Os and improves the durability of the system (since the network-level EC is able to

tolerate more catastrophic local failures after the fast network-level repair).
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Data Durability

Continuing what we built in the last section, we now analyze how different repair time from dif-

ferent methods would affect long-term data durability, as shown in Figure 3.10 along with find-

ings F#1-4. Data durability in one year is measured in the number of nines which is defined

as − log10 (PDL), e.g., 99.999% durability means 5 nines. In addition to the basic setups (§3.3),

we also prioritize repairing local stripes with more failed chunks in local-Dp (∗/D) schemes, and

network stripes with more affected local stripes in network-Dp (D/∗) schemes.

Finding #1: Compared to RALL, RFCO increases the durability by 0.9-6.6 nines. RALL’s slow

repair impacts durability, but RFCO’s faster repair increases the durability. The increase is as high

as 6.6 nines in D/D due to two reasons. First, the repair time reduction is large in D/D (Section

3.4.2). Second, when D/D has pn+1 catastrophic local pools, it might not have any lost network

stripe because each catastrophic local-Dp pool only has a small number of lost local stripes, and

the probability of a lost network stripe with pn+1 lost local stripes is as low as 0.03% due to the

network-Dp placement. However, RALL is not able to detect this information as it treats the entire

local-Dp pool as lost. But again in RFCO, the network repairer has the knowledge of which exact

chunks are lost, and hence it can tolerate the cases where there are pn+1 catastrophic local pools

but no lost network stripes.

Finding #2: RHYB further increases the durability by 0.6-4.1 nines. This is because RHYB’s

faster repair only rebuilds the lost local stripes. The increase is more apparent in C/D and D/D

because each local-Dp pool only has a small portion of lost local stripes (due to the declustered

placement). Note that RHYB also increases the durability of local-Cp (∗/C) schemes although RHYB

did not show repair traffic/time reduction in earlier sections. This is because previously we injected

all the pl+1 disk failures at the same time to reflect a catastrophic local pool failure. However, to

measure long-term durability (Section 3.3), we let disks fail independently following exponential

distribution, and thus disks usually fail at different times. Therefore, some disks could have been

partially repaired when a catastrophic local pool failure happens. In such cases, only part of the
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Figure 3.10: Durability (§3.4.2). The figure shows the durability of MLEC schemes under

various repair methods.

affected local stripes are lost local stripes, and RHYB can still deliver the traffic reduction for ∗/C

schemes.

Finding #3: RMIN further increases the durability by 0.1-1.2 nines. RMIN further increases

the durability since it further decreases the repair time, especially for C/C. However, the increase

is small in C/D and D/D. This is because their network repair is already fast (because the local

declustered placement results in much fewer lost local stripes that require network repair), and

thus the repair is bottlenecked by the time to detect the failure and trigger the repair.

Finding #4: After all the optimizations, C/D and D/D provide the best durability while D/C

provides the worst. Among all MLEC schemes, C/D and D/D provide the best durability, because

a local-Dp pool has higher durability than a local-Cp pool, thanks to the priority reconstruction in

local-Dp. Moreover, a catastrophic local-Dp pool has fewer lost local stripes to repair compared

to a catastrophic local-Cp pool, resulting in less network repair time, especially under RMIN. Note

that although D/D has a higher chance to have pn+1 catastrophic local pools in a network pool

compared to C/D, its disadvantage in terms of the durability is compensated as there are cases when

D/D has pn+1 catastrophic local pools but no lost network stripes, as mentioned in Finding #1

above. On the other hand, D/C provides the worst durability as it can lose data when any pn+1

arbitrary local-Cp pools in separate racks fail catastrophically, and its benefit of fast repair from

network-Dp is bottlenecked by the failure detection time.
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Finding #5:: ∗/S provides lower durability than ∗/D, especially after repair optimizations and

when network-level is Dp. This lower long-term durability in */S is attributed to three key reasons.

Firstly, as discussed in Section 3.4.1, local-SODp pools tend to exhibit lower durability than local-

Dp pools. While this difference may not be substantial for local pools, it becomes more pronounced

and is amplified multiple times in the multi-level nature. Secondly, in the event of catastrophic local

failures, a local-SODp pool has more lost local stripes compared to a local-Dp pool. These lost

local stripes cannot be repaired locally and necessitate network repair. Consequently, this extended

network repair time under RHYB and RMIN leads to lower durability. Thirdly, under network-Dp

placement, the increased number of lost local stripes in a local-SODp pool significantly raises

the probability of encountering a lost network stripe with pn + 1 lost local stripes, reaching as

high as 76%. This is much worse than D/D placement, where the probability is only 0.03%. This

heightened likelihood of lost network stripes further diminishes the durability of D/S placements.

3.5 vs. Other EC Schemes

We now evaluate MLEC with SLEC and LRC [89], in terms of their encoding throughput, dura-

bility, failure burst tolerance, and repair network traffic.

3.5.1 vs. SLEC

Encoding Throughput

Figure 3.11 shows the single-core encoding throughput (the heatmap color) under various k and

p configurations, in the x- and y-axis, respectively. We perform the measurement using the Intel

ISA-L tool [22] on a single core of Intel(R) Xeon(R) Gold 6240R CPU @ 2.40GHz.

Generally, EC with larger values of k and p has lower encoding throughput. When more

parities (higher p) need to be computed, more computation overheads are introduced. On the other

hand, with wider stripes (larger k), the encoding process might not be able to fit the required input
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data into CPU cache, which can degrade the encoding throughput [88]. This is a reason why SLEC

is hard to scale. With MLEC, we can limit the number of parities and stripe width and attain better

durability as we show next.

Durability vs. Throughput

EC designers face performance-durability tradeoffs, for example more parities give higher dura-

bility, but lower encoding throughput. Figure 3.12 quantifies this tradeoff with two main findings,

F#1-2. Here we show two notable MLEC schemes, (a) C/C and (b) C/D, vs. a local (de)clustered

SLEC (“Loc-Cp-S” or “Loc-Dp-S”, respectively) and a network (de)clustered SLEC (“Net-Cp-S”

or “Net-Dp-S”), whose layouts were already presented in Section 3.2.1). We don’t compare local

SODp here because it’s already shown to have lower long-term durability than local-Dp in Section

3.4.1. For MLEC’s repair method, we use RMIN, the most optimized one. For fairness, all the

points in the figure come from MLEC/SLEC configurations with a capacity (parity space) overhead

of roughly 30%.

Finding #1: For both MLEC and SLEC, higher durability leads to lower encoding throughput.

To achieve higher durability, both MLEC and SLEC need more parities, and to maintain the same

capacity overhead, they will need a wider stripe.

Finding #2: MLEC can provide high durability while maintaining higher encoding throughput.

At low durability (e.g., <20 nines), MLEC’s throughput is lower than SLEC, however at high dura-

bility (e.g., >20 nines), MLEC can maintain almost the same throughput while at the same time
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Figure 3.11: Encoding throughput for various (k+p) (§3.5.1).
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Figure 3.12: MLEC vs. SLEC durability/throughput tradeoff (§3.5.1). A dot represents a

specific configuration. For example, the green MLEC C/C and C/D dots come from various config-

urations such as (5+1)/(5+1), (10+2)/(17+3), and many others. For fairness, all the dots have a

configuration with around 30% parity space overhead.

increasing its durability dramatically, thanks to the two-level protection (pl and pn) and our repair

optimizations. For example, at the two points pointed by F#2 in Figure 3.12a, a (17+3)/(17+3)

C/C can reach 39-nine durability with 3GB/s throughput while a local (28+12) SLEC reaches 33-

nine durability with only 1GB/s throughput. Increasing throughput can be done with more CPU

cores, but would lead to higher hardware cost, and potentially extra overhead caused by imperfect

parallelism.

Durability vs. Update Cost

Here we analyze another tradeoff: the tradeoff between update cost and durability. We compare

two kinds of update cost: the cost of disk IO when updating a data chunk, and the cost of cross-

rack network traffic required to update a data chunk. Figure 3.13 quantifies this tradeoff. Again we

show two notable MLEC schemes, (a) C/C and (b) C/D, vs. a local (de)clustered SLEC (“Loc-Cp-S”

or “Loc-Dp-S”, respectively) and a network (de)clustered SLEC (“Net-Cp-S” or “Net-Dp-S”). We

have two findings:

Finding #1: MLEC requires same, or sometimes even more disk IO cost for data updates. As

Figure 3.13 a and b show, with the same durability, MLEC introduces same or even more disk IO

when updating a chunk. This is because MLEC not only needs to update local parities, but also
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Figure 3.13: MLEC vs. SLEC durability/update tradeoff (§3.5.1). Figures a and b are

comparing update cost of disk IO, and figures c and d are comparing update cost of cross-rack

network traffic overhead. A dot represents a specific configuration. For example, the green MLEC
C/C and C/D dots come from various configurations such as (5+1)/(5+1), (10+2)/(17+3), and many

others. For fairness, all the dots have a configuration with around 30% parity space overhead.

needs to update network parities, and even double parities (the network parity of a local parity).

Finding #2: MLEC incurs lower cross-rack network traffic update costs in comparison to

network-SLEC. Although MLEC’s data updates may involve increased disk IO, its cross-rack net-

work traffic expenses are significantly reduced when compared to network-SLEC. This cost reduc-

tion is a result of MLEC’s unique update strategy, where updates for network parity and double

parities within the same rack only necessitate the transfer of a single chunk across racks. This

chunk is used to update the network parity, and subsequently, the double parities can be computed

locally. As a result, MLEC only requires pn cross-rack network costs to update a single data chunk,

and thus requires less update cost than network SLEC when aiming for the same level of durability.

It’s important to note that local SLEC doesn’t incur any network costs but comes at the tradeoff of
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Figure 3.14: PDL of SLEC under correlated failures (§3.5.1). Whose patterns (but not

the actual values) can be compared with Figure 3.5. A total of y simultaneous disk failures are

randomly scattered across x racks. The square color represents the PDL.

not being able to tolerate rack failures.

Failure Burst Tolerance

Similar to the MLEC’s failure burst analysis earlier in Figure 3.5 in Section 3.4.1, Figure 3.14

shows the PDL of an (7+3) SLEC under correlated failure bursts with four possible chunk place-

ments (local-Cp, local-Dp, network-Cp, and network-Dp). We describe their pros/cons. Again, by

combining the two levels, MLEC hides each of the SLEC’s limitations and gains the benefits of

the two worlds.

Local SLEC is more susceptible to localized failure bursts. In Figure 3.14a, local-Cp SLEC

can survive highly scattered failures when no more than y=x+p failures are scattered in x racks.

However, it is susceptible to localized failure bursts since any p+1 disk failures in the same local-

Cp pool can cause data loss. In Figure 3.14b, local-Dp SLEC performs even worse under localized

failure bursts (high y, low x), since it has a larger local pool and thus has a higher chance to have

p+1 disk failures in the pool, which can lead to data loss. In Figure 3.14c, local-SODp falls be-

tween local-Cp and local-Dp in terms of performance. This positioning is attributed to its reduced

randomness in declustered placement, allowing it to withstand more failure bursts compared to

local-Dp.
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Network SLEC is more susceptible to scattered failure bursts. In Figure 3.14c, network-Cp

SLEC performs well under localized failure bursts, and the PDL is 0 when no more than p racks

have failures. However, it can lose data under scattered failures (high y, high x), which are more

likely to have p+1 or more disk failures in the same network-Cp pool. In Figure 3.14d, network-

Dp SLEC performs even worse under scattered failures, since it can lose data when any arbitrary

p+1 disks in separate racks fail.

Repair Network Traffic

Lastly, we analyze the repair network traffic. We find that network SLEC requires a huge amount

of cross-rack repair network traffic, which can increase with more parities and wider stripes for

higher durability. A (7+3) network SLEC requires hundreds of TB repair network traffic every

day, which can largely interfere user network traffic. On the other hand, MLEC only requires a

few TB repair network traffic every thousand of years, thanks to both the local protection and our

repair optimizations.

3.5.2 vs. LRC

We now perform the same evaluation but with LRC, a popular EC approach that has been ex-

tensively studied in recent years [88, 89, 92, 101, 128, 140]. We start with describing the layout

differences.

MLEC vs. LRC Layouts

A (k,l,r) LRC, in the first stage, divides k data chunks into l local groups and computes one local

parity in each group, and in the second stage, computes r global parities from all the k data chunks

[89]. Figure 3.15 shows a (4,2,2) LRC. We treat LRC as a one-level placement EC, but with

two-stage encoding. Unlike LRC, MLEC might fit better deployments where the two levels are

managed by different organizations; for example, a large institution buys RBODs (local EC pools)
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Figure 3.15: A (4,2,2) LRC (§3.5.2). To be compared with MLEC layout in Figure 3.1c. Here,

aP and aQ are the first and second parities of a1 to a4 using specific LRC encoding formulas [89].

from storage vendors and on top of them manages the network-level EC. LRC on the other hand

might be more desirable to deployments that have direct access to and can manage all the disks.

Although MLEC and LRC both perform two stages of coding, they differ in several ways. (a)

For the top-level encoding, each of MLEC’s network parity is computed from only part of data

chunks in the network stripe (e.g., back in Figure 3.2.1c, a13 is computed from a1 and a3), but each

of LRC’s global parity is computed from all the data chunks in the stripe (e.g., in Figure 3.15, aP

and aQ are computed based on a1 to a4). (b) For the bottom-level encoding, MLEC can have mul-

tiple parities in each local stripe (e.g., an ∗/(4+2) MLEC has 2 local parities in a local stripe), but

LRC always has one single parity in each local group (e.g., a12 in Figure 3.15). (c) Regarding the

double parity, MLEC always computes double parities from network parities (e.g., back in Figure

3.2.1c, aP is based on a13 and a24), but many LRCs don’t do the same (although some of its variants

do [101, 140]). (d) On chunk placement, MLEC puts one local stripe in a local pool on a sepa-

rate rack, and can choose de/clustered placement for inter-pool and clustered/declustered/SODp

for intra-pool, resulting in six possible schemes. In contrast, LRC usually puts every chunk in a

separate rack in a declustered way [89, 92]. Although it’s possible for LRC to put one local group

in the same rack [88], we are not aware of any existing LRC systems that adopt this.

Durability vs. Throughput

Due to these differences, MLEC and LRC provide different tradeoffs in performance and durabil-

ity, which we evaluate here. Figure 3.16 quantifies the durability and throughput tradeoff in MLEC

and LRC. Here, we only show declustered LRC (“LRC-Dp”) as the most common configuration;
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we never found “LRC-Cp.” For the MLEC scheme, we only show C/D as it gives the best durability

among all the other schemes. Just like previously, we compare various configurations all having

capacity (parity space) overhead of around 30%.

Finding #1: MLEC can provide high durability with higher
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Figure 3.16: MLEC vs. LRC

durability and throughput

tradeoff (§3.5.2).

encoding throughput. This is because LRC only has one par-

ity in each local group, and thus depends on more global par-

ities to provide higher durability, but again more global par-

ities can degrade the encoding throughput. Moreover, LRC-

Dp places chunks in a one-level declustered way just similar

to network-Dp SLEC, making it have a similar durability pat-

tern as network-Dp SLEC.

Finding #2: The multi-level nature of MLEC allows fewer parities in each level, which then

helps MLEC alleviate durability loss due to failure detection time. Note that when multiple disks

fail, a declustered (Dp) pool usually has a very small number of high-priority stripes (i.e., stripes

that have multiple failed chunks). Such stripes are prioritized and repaired fast, leading to high

durability. This durability benefit increases with more parities and larger pool size (due to an even

smaller number of high-priority stripes). However, because there is a 30-minute failure detection

time (commonly used [88, 89, 92]), the increased durability diminishes and is not fully reflected.

This is the reason why both C/D and LRC-Dp lose some durability. But, since C/D performs declus-

tered parity in a local pool (which is smaller than LRC-Dp’s pool) and has fewer parities at each

level, the declining durability is less severe compared to LRC-Dp.

Furthermore, our multi-level-aware repair optimizations further improve C/D’s durability, help-

ing it reach high durability with higher encoding throughput compared to LRC-Dp. We also note

that if failure detection time is reduced significantly (e.g., to 1 minute), LRC-Dp’s durability could

be similar or slightly better than MLEC, which we will explore in the future. However, such fast

failure detection is not realistic as disks often fail transiently and should not be rebuilt hastily.
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Figure 3.17: MLEC vs. LRC durability and update cost tradeoff (§3.5.2).

Durability vs. Update Cost

We also analyze the tradeoff between durability and update cost. Here we focus on comparing

the udpate cost of cross-rack network traffic, since LRC is typically designed for network-level

erasure.

Figure 3.17 quantifies the durability and update cost tradeoff in MLEC C/D and LRC-Dp. As

we can see, LRC incurs significantly higher cross-rack network traffic when updating a chunk.

This is because LRC needs to update all global parities across different racks, and LRC needs to

have more global parities in order to achieve high durability. On the other hand, MLEC eliminates

this overhead by using a smaller pn while maintaining same high durability.

Failure Burst Tolerance

Just like in Section 3.5.1, we now measure the PDL of LRC under correlated failure bursts, as

shown in Figure 3.18, using a (14, 2, 4) LRC-Dp. We pick this LRC configuration as it has a

similar throughput rate as our (10+2)/(17+3) MLEC configuration, based on previous section’s

findings. However, we emphasize that their actual values in the figure should not be directly

compared with the MLEC’s PDL results shown earlier in Figure 3.5, as it would be an unfair

comparison since one could always increase the number of parities and stripe width to get better

durability/PDL. We already compare MLEC vs. LRC fairly in the previous section.
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Figure 3.18: PDL pattern of LRC under correlated failures. Whose patterns can be compared

with Figures 3.5 and 3.14.

LRC-Dp is susceptible to highly scattered failure bursts. Since LRC-Dp places chunks in a

one-level declustered way across racks, its failure burst tolerance pattern is similar to network-

Dp SLEC (shown earlier in Figure 3.14d), and can lose data under highly scattered failure bursts.

However, as discussed earlier in Section 3.4.1, MLEC in general is robust to highly scattered

failures.

Repair Network Traffic

Finally, we analyze the repair network traffic of LRC-Dp. We find that LRC-Dp’s repair network

traffic is less than network SLEC since most failures can be repaired using the local group with

less chunks. However, every repair still needs to read and write over the network, which can still

lead to lots of repair network traffic. Therefore, LRC-Dp still requires tens or even hundreds TB of

cross-rack network traffic every day. On the other hand, MLEC requires minimal network traffic

on average, since most failures are repaired locally.
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3.6 Discussions

3.6.1 Takeaways

We believe our findings will provide guidance for large-scale storage architects to choose ideal

configurations for their particular environments and requirements. Here are some examples:

1. For institutions without large storage devops teams, they can buy RBODs from storage ven-

dors, build MLEC on top easily, and choose RepairALL with some sacrifice in performance

and durability.

2. Those with more flexibility can optimize their MLEC with our advanced repair techniques

such as RepairMIN.

3. Systems detecting frequent occurrences of correlated failure bursts should utilize C/C to get

better failure burst tolerance.

4. Systems with rare failure bursts should use C/D or D/D to get higher durability under inde-

pendent failures.

5. Systems with lower durability requirements should choose SLEC for better performance.

6. Systems that prioritize high durability (e.g. certain HPC systems where any lost chunk can

make PBs of correlated data useless) should choose MLEC to minimize overheads.

We also hope our paper will encourage more research on MLEC for ML/HPC/cloud systems.

For example, when offloading analytics to computational storage in HPC systems, efficiently map-

ping logical objects to physical blocks in erasure-coded systems poses a challenge. MLEC adds

complexity to this problem due to its layering, which can be explored in future work.
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3.6.2 Reproducibility of the Study

This project has been ongoing for over 1.5 years involving a group consisting of a theorist, a large-

scale system administrator (>20k disks), a developer/maintainer, an architect, and academics. The

diversity of roles ensures that the assumptions in our work closely match real-world scenarios.

The group has verified many important failure cases, possible/practical repair methods, and

actual system architectures.

We together scrutinized the correctness of every scheme and method. We went back and forth

to fix errors/misassumptions. Our multiple methodologies verify each other. For example, when

the simulator result didn’t conform with the theoretical model, the theorist and simulator developer

went back and forth in multiple iterations to resolve discrepancies.

Our results are fully reproducible. We have released our source code [27] on Github and a

detailed evaluation artifact [26] on Chameleon Trovi.

3.7 Conclusion

We have provided comprehensive design considerations and analysis of MLEC at scale. MLEC

can be designed in multiple dimensions. We have quantified their performance and durability

with various evaluation strategies, and have shown which MLEC schemes and repair methods can

provide the best failure tolerance and greatly reduce repair network traffic. We have also shown

that MLEC can provide high durability with higher encoding throughput and less repair network

traffic over other EC schemes.
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CHAPTER 4

AN EMULATION APPROACH FOR COST-EFFECTIVE EVALUATION

OF MULTI-LEVEL ERASURE CODED STORAGE AGAINST DEEP

LEARNING WORKLOADS

With the rapid development of deep learning, one prevalent type of workload in large-scale erasure-

coded data centers is deep learning. Deep learning training requires vast amounts of data to ensure

model accuracy, and this data is often too large to fit into local storage, necessitating storage and

retrieval from remote erasure-coded systems [66, 103, 148, 162, 167]. As a result, it is critical to

evaluate the performance and identify bottlenecks in MLEC storage systems when serving deep

learning workloads.

However, conducting such evaluations poses two significant challenges for the academic com-

munity. First, deep learning workloads typically require GPUs, which are scarce in academic

clouds and costly to rent from commercial providers. Second, MLEC storage requires a substan-

tial number of disks to configure, while academic clouds often lack flexible, configurable disk

arrays on individual machines. For example, in Chameleon Cloud [10, 97], most machines have

only a single disk. Although a small number of machines come with pre-configured 7+1 RAID

disk arrays, these arrays are not easily configurable for custom erasure coding and are insufficient

for wide-stripe erasure coding setups.

To overcome these challenges in evaluating MLEC storage for deep learning workloads, we in-

troduce an emulation-based evaluation approach. We have developed two emulation tools: GPEMU,

a GPU emulator that allows for efficient prototyping and evaluation of deep learning systems with-

out the need for real GPUs, and MLECEmu, a storage emulator that can cheaply emulate the

performance of multi-level erasure-coded storage systems without using physical disk arrays.

GPEMU is based on the observation that for many deep learning research projects, including

the evaluation of MLEC against deep learning workloads, real GPUs are not necessary. In such
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experiments, the focus is on GPU performance rather than the actual computation results, and GPU

performance is predictable. Similarly, MLECEmu is motivated by the fact that when using MLEC

storage for deep learning training, the throughput of the storage system is the critical factor. This

can be effectively emulated by throttling in-memory tmpfs loop devices.

The two emulators are designed to ensure broad applicability. GPEMU provides extensive

support for emulating a wide range of models, GPUs, and batch sizes, with features such as time

emulation, memory emulation, distributed system support, and GPU sharing support. MLECEmu

supports various code parameters and chunk placement schemes.

With these two efficient tools, users can effectively identify system bottlenecks during em-

ulations of MLEC storage for deep learning workloads, providing valuable insights into system

performance. Furthermore, the emulators enable users to quickly demonstrate the benefits of new

system optimizations across a wide range of research areas.

In this chapter, we introduce the design of GPEMU in Section 4.1. We demonstrate the capabil-

ities of GPEMU by reproducing the main results from nine recent publications in Section 4.2 and

prototyping three new micro-optimizations in Section 4.3. Next, we present the design of MLE-

CEmu in Section 4.4, followed by a demonstration of how GPEMU and MLECEmu can be used

together to evaluate the performance of MLEC storage for deep learning workloads in Section 4.5.

We conclude this chapter in Section 4.6.

4.1 GPEMU Design Features

We first introduce the design of GPEMU. To prototype and evaluate without GPUs, people resort to

many simulation approaches [56, 79, 98, 104, 112, 138] but impedes end-to-end/full-stack exper-

iments. Others try “emulation” approaches as summarized in Table 4.1. Silod [167] for example,

profiled model compute time on the expensive V100 GPU and emulated it on a cluster of cheaper

K80 GPUs to evaluate GPU cluster scheduling. MLPerf [28] and DLCache [95] provide a host-

side emulator that only performs compute time emulation. As hinted in the table, these approaches
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G TTT MM DDD S

Features F CTP CP GNJ S #DL #GPU #BS

Silod [167] . x.. .. xxx . 8 1 N/A

DLCache [95] x x.. .. ... . 2 1 5

MLPerf [28] x x.. .. x.. . 3 2 1

GPEMU x xxx xx xxx x 36 6 256

Table 4.1: Features and configurations supported by prior GPU emulators and GPEMU

(§2). The features’ abbreviations read from top to bottom. Labeled by “x”, supported features are

compared across five categories: (1) GPU-Free (GF); (2) Time emulation: Compute (TC), Data

Transfer (TT), and Preprocessing (TP); (3) Memory emulation: GPU Memory Consumption (MC)

and Pinned memory (MP); (4) Distributed system support: Multi-GPU training (DG), Multi-Node

(DN) training, and Multi-Job scheduling (DJ); (5) GPU Sharing Support (SS). Furthermore, we

evaluate the configurations that they support, including the number of DL models (#DL), GPU

models (#GPU), and batch sizes (#BS).

lack vital emulation components and support only limited configurations and experiments.

To the best of our knowledge, GPEMU is the first advanced GPU emulator that provides various

time emulation (compute time, data transfer time, preprocessing time), memory emulation (GPU

memory consumption, pinned memory), distributed system support (multi-GPU training, multi-

node training, multi-job scheduling), and GPU sharing support. In addition, to date GPEMU is

the first emulator that supports the largest number of DL models, GPU models and DL configs,

as shown in the right hand side of Table 4.1. Below we detail the GPEMU design and various

emulation challenges that we have addressed.

4.1.1 Time Emulation

Time emulation is a feature where the emulator “fakes” the GPU-side operation with a simple sleep

timer. While this sounds simple, providing an accurate time emulation requires understanding of

the various steps of DL workloads: (1) Reading samples; (2) Preprocessing; (3) Data Transfer

(from host memory to GPU memory); (4) Forward Propagation; (5) Backpropagation [75]. It’s

also worth noting that some frameworks, such as DALI [30], allow for the preprocessing step to be

shifted from the CPU to the GPU, altering the sequence of steps 2 and 3.

To emulate DL workloads without actual GPUs, we replace GPU-related steps (steps #3–5,
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and Step 2 if GPU-based) with simple sleep(T) calls, where T represents the projected time for

each specific step. This method effectively emulates the wait time for data transfer between host

memory and GPU memory, as well as the completion of GPU preprocessing and model computa-

tion. We encapsulate these time emulation methods into a Python package, providing convenient

APIs such as emuForward(config) for users to easily emulate the corresponding operation. The

config parameter encompasses workload-specific details such as the DL model, batch size, and

GPU model. These factors are pivotal as they influence the predicted operation time.

We also need to support both synchronous (sync) and asynchronous (async) modes. In sync

mode, the sleep-based emulation blocks until the sleep duration has elapsed. In async mode, the

emulation is non-blocking and can be used to simulate operation pipelining optimizations found

in PyTorch [36] and TensorFlow [116]. For PyTorch, this is achieved using the asyncio library.

In TensorFlow, the sleep is integrated into the computation graph. It’s crucial in async mode to

maintain dependencies between operation emulations to prevent unexpected reordering or pruning

in asynchronous execution. For instance, we ensure that the forward propagation emulation (Step

4) only starts after the input tensor has been transferred to the GPU (Step 3).

Finally, accurately predicting the emulated sleep time for each step, tailored to the user’s spe-

cific configuration (model, batch size, and GPU type), is essential. The subsequent subsections

delve into this aspect for each step.

2.1.1 COMPUTE/PROPAGATION TIME: We first predict GPU compute time for forward and

backward propagations (Steps 4 and 5), a critical aspect of DL workloads. Fortunately, they are

notably predictable with minimal variability, since the compute process involves a predefined se-

quence of tensor operations and has no conditional branches [81, 159]. For instance, as illustrated

in Figure 4.1a, training ResNet50 on a NVIDIA V100 GPU for 1000 batches with a batch size

of 128 shows highly consistent forward and backward propagation durations. The only exceptions

are the first 1-2 batches, which typically take longer due to initialization.

To predict per-batch GPU compute time, we profile various models, GPU types, and batch
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Figure 4.1: Compute time’s pattern (§2.1.1). The figures show that (a) compute time is consis-

tent within the same setup, (b) compute time doesn’t always linearly correlate with batch size.

sizes. We then calculate the average compute time, excluding outliers during initialization, and

store this data in a database. When users emulate training for a specific configuration, GPEMU

retrieves the profiled compute time from the database for that setting.

Some might think GPU compute time linearly correlates with batch size, allowing for straight-

forward projections from just two profiled batch sizes. However, this holds true primarily for

compute-heavy models like ResNet50. For compute-light models like AlexNet, the relationship is

more complex and less predictable. In the case of AlexNet on a P100 GPU, as shown in Figure

4.1b, the correlation appears as a piecewise linear pattern rather than a simple linear one. Conse-

quently, we employ linear projection methods solely for compute-heavy models with clear linear

relationships. In contrast, for compute-light models, we extensively profile across a broader range

of batch sizes. Additionally, we offer users a profiling tool for their custom settings (§4.1.6).

2.1.2 DATA TRANSFER TIME: We also predict the time required to transfer the input tensor from

host to GPU memory. This aspect is often overlooked by other emulation tools [28, 95], yet its

importance varies depending on the model and GPU. For instance, as indicated in Figure 4.2, in

larger models like ResNet50 where GPU compute time predominantly dictates performance, the

transfer time can be relatively negligible. However, for computation-light models such as AlexNet,

the input transfer time becomes more significant, reaching as much as 20% of the GPU compute

time.
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Like GPU compute time, the host-to-GPU data transfer time shows minimal variability for a

fixed-sized tensor on a specific GPU, and it typically has a linear relationship with the data volume.

Therefore, we predict the input transfer time based on this linear relationship.

2.1.3 PREPROCESSING TIME: Most existing DL frame-
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Figure 4.2: Amount of data trans-

fer time (§2.1.2).

works perform data preprocessing (Step 2) on CPUs, thus

no emulation is needed (the preprocessing still runs on

CPUs). However, some DL libraries, such as DALI and

FFCV, support offloading preprocessing to the GPU [30,

105], and GPEMU also supports this. The challenge is

that GPU-side preprocessing time is often not constant.

For instance, in Figure 4.3, we display the CDF of two

preprocessing operations, normalization and decoding, from FFCV and DALI, respectively. Op-

erations like normalization exhibit smaller variability, as their computational complexity remains

consistent across batches. However, other operations like decoding vary significantly by batch,

depending on factors like file format, compression quality, and image complexity.

To accurately emulate GPU-side preprocessing time,
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Figure 4.3: CDF of preprocessing

time (§2.1.3).

we begin by profiling the time distribution for various op-

erations across different batch sizes, storing this data in a

database. During emulation, rather than relying on a fixed

average value, we randomly draw preprocessing times from

this distribution. It’s worth noting that our profiling for

preprocessing is dataset-based rather than model-based,

as many models often share the same preprocessing op-

erations when training on the same dataset.

Additionally, we’ve observed that the time cost of certain operations, such as decoding in

DALI, also changes with the number of CPUs used. This is because DALI’s decoding involves a
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mix of CPU and GPU processing. Since the mix is within the DALI native code and challenging

to decouple, we emulate both CPU and GPU processing in this operation. To correctly emulate its

time cost, we profile its time distribution for various CPU counts. To account for CPU consumption

by decoding, we use busy-waiting loops during the emulation.

4.1.2 Memory Emulation

Next, we discuss the need for memory emulation. We divide this into two features: tracking GPU

memory consumption and pinning host-side memory.

2.2.1 GPU MEMORY CONSUMPTION: Not all DL workloads can run on a specific GPU; a job’s

GPU memory requirement might exceed the GPU’s memory capacity. To precisely emulate if a DL

workload can fit into a GPU’s memory capacity, it’s crucial to understand three types of memory

usage in DL jobs: (1) compute peak, (2) model persistent, and (3) preprocessing memory usages.

Compute peak memory usage means the maximum memory to hold all intermediate results

produced by model computation during the propagation phase. Persistent memory usage pertains

to storing model parameters over time and plays a role in emulating GPU sharing (§4.1.4). For

these two types of usages, we analyze how a DL model uses memory during propagations. Fortu-

nately, they follow a repeating pattern, as seen in Figure 4.4a. This happens because each batch

goes through the same calculations and memory (de)allocations. We also found that both of these

usages remain consistent across different GPUs and demonstrate a strong linear correlation with

batch size. To mimic this predictable behavior, we profile both usages after processing a few

batches across different models. This data serves as the basis for predicting memory usage for

configurations that we have not profiled yet.

For preprocessing memory usage (if done on the GPU side like in DALI), we also analyze its

behavior as illustrated in Figure 4.4b. The memory consumption keeps growing and reaches its

maximum after a significant number of batches and never decreases afterward. This is because

DALI does not free up the preprocessing memory during training to avoid the costly overhead of
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Figure 4.4: GPU memory consumption over time (§2.2.1). The figures show the GPU memory

consumption of propagation and GPU-driven preprocessing during DL training.

freeing and reallocating memory. The maximum memory usage is typically reached when a batch

of images that require extensive preprocessing is processed. To accurately mimic this behavior, we

profile the highest memory usage for preprocessing after a few epochs, ensuring that it reaches its

peak.

2.2.2 PINNED MEMORY: To ensure accurate memory emulation, we need to emulate pinned

memory at the host that is managed by CUDA. In real GPU runs, Direct Memory Access (DMA)

is vital for efficient data transfer from the host to GPU memory. During this data transfer process,

CUDA first allocates a pinned (page-locked) host memory region, copies the host data into this

pinned region, and subsequently transfers the data from the pinned region to the GPU memory

[20].

Failure to properly emulate the use of pinned memory can lead to inconsistent performance

compared to real GPU runs. For instance, we observed differences in AlexNet’s epoch time with

various PyTorch setups as shown in Figure 4.5. When the emulation does not involve pinned

memory (the orange bar), the epoch time can be up to 20% longer than in real GPU runs (vs.

the red bar). After investigating PyTorch internals, we discovered that this additional time arises

from Python garbage collections (GC) within the main training loop when the pageable input

data is dereferenced. This overhead does not occur in real GPU runs because GC takes place

in the background workers after the pageable input data is copied to pinned memory. CUDA
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refrains from freeing the pinned memory during training to avoid the overhead of reallocation,

which eliminates the need for Python GC within the main training loop.

For these reasons, we need to support pinned memory
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Figure 4.5: Impact of emulating

pinned memory (§2.2.2).

emulation. Since the host-side pinned memory was initially

managed by CUDA, which does not run on CPU nodes, we

developed our own pinned memory manager. Our manager

employs the mlock() system call function to allocate gen-

uine page-locked memory on the host. We meticulously

mimic CUDA’s memory management to allocate the same

amount of space and avoid deallocation. As indicated by the

green bar in Figure 4.5, our pinned memory emulation successfully resolves the GC stall problem.

4.1.3 Distributed System Support

Next we discuss how to emulate DL workloads in distributed setups, covering multi-GPU, multi-

node, and multi-job (cluster) scheduling.

2.3.1 MULTIPLE-GPU (SINGLE-NODE) TRAINING: When emulating multiple GPUs within

the same machine, we opt for PyTorch’s DataParallel (DP) module due to its simplicity and con-

venience. DP divides a batch of input data into multiple smaller chunks, with each chunk sent

to a different GPU for training. Since our time and memory emulations are robust and flexible,

the timing and memory usage can be adapted directly with the smaller chunk size via the input

configuration (e.g., 2x smaller chunk results in ∼2x faster compute time).

2.3.2 MULTI-NODE TRAINING: When emulating distributed DL training across multiple nodes,

we leverage PyTorch’s Distributed DataParallel (DDP) module [108]. Initially, we ran our time

and memory emulations on each node. However, we found that this naive approach caused each

node’s training to operate without proper synchronization with other nodes. This discrepancy arises

because the gradient synchronization, originally performed within the backward function, has been
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replaced with our sleep operation, leading to a lack of coordinated training across nodes.

A straightforward solution would be to manually initiate gradient synchronization based on

CPUs once the backward emulation is completed. However, we observed that after implement-

ing this solution, the batch training time in our emulation becomes notably longer compared to

real GPU training. This can be attributed to two primary reasons. First, gradient synchronization

requires computing the average of gradients across all nodes using AllReduce operations, which

is considerably less efficient on CPUs compared to real GPUs. Second, the DDP framework in

PyTorch inherently overlaps gradient reduction with the backward pass, thus masking the commu-

nication overhead.

Accurately emulating this overlap is challenging, as gradient reduction occurs when a bucket

of gradients is ready. Achieving precise emulation would require a finer-grained profiling of time

emulation for operations during the backward pass, which is more complicated. Therefore, we

opted for a simpler solution: we perform an AllReduce operation on a basic tensor after the back-

ward pass is completed, which synchronizes the training across all nodes while incurring minimal

time overhead. While this solution may not precisely replicate the network communication aspect,

it allows us to make multi-node distributed training emulation functional. This approach is already

quite effective for emulating evaluations that are less concerned about gradient communications,

as later shown in Section 4.2.4.

2.3.3 MULTI-JOB (CLUSTER) SCHEDULING: We also offer support for emulating multi-job

(cluster) GPU scheduling, catering to both custom schedulers and Kubernetes environments, which

brings different challenges.

First, custom schedulers like Synergy [112] rely on predefined cluster configuration files con-

taining detailed resource information for the GPU cluster. We enable GPU scheduling emulation

by providing emulated GPU availability information within these configuration files. This allows

the scheduler to continue scheduling DL jobs using its original scheduling algorithm. Each DL

job runs within a container that already integrates GPEMU and executes the emulation with the
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allocated GPUs’ configurations.

In contrast, Kubernetes scheduling operates differently. It discovers the availability of custom

resources such as GPU on nodes through the custom device plugin [14]. To accommodate this,

we introduced a new resource type called “emuGPU” (emulated GPU) and developed a custom

device plugin specifically for it. Each emuGPU’s information is represented as a file on the worker

node. The emuGPU device plugin runs on each worker node, identifies the corresponding files, and

reports this information to the Kubernetes scheduler. Based on the reported data, the Kubernetes

scheduler can schedule emuGPUs using the same algorithm it employs for real GPUs. When a job is

scheduled, the device plugin receives the emuGPU allocation decision from the Kubernetes scheduler

and mounts the allocated emuGPU files to the job’s container. The job can subsequently access the

emulated GPU information from these files and emulate DL workloads accordingly.

4.1.4 Sharing Support

DL workloads often need to time-share the GPU, a technique commonly used in both academia

[81, 156, 163] and industry [45, 46]. They typically time-slice the GPU at the granularity of a

batch or an inference request. Hence, we build time-sharing support in GPEMU for both single-

node setups and Kubernetes environments.

We start with single-node configurations. The emulation poses two key challenges. First, we

must effectively coordinate the time emulation of various DL applications sharing the GPU to

ensure that only one application uses the GPU at any given moment. Second, we need to emulate

GPU memory usage during this sharing process. If the combined usage of the model persistent

memory of waiting applications and the compute peak memory of the running application surpass

the GPU’s memory capacity, the application will crash.

Based on these considerations, we’ve developed an emulation sharing manager. DL appli-

cations first register with their model persistent memory usage. Registered applications seeking

GPU access send time emulation requests to the manager via RabbitMQ [37]. When dealing with
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a shared GPU, the manager handles one request at a time, sleeping for the requested duration and

returning a completion response. The request is rejected if the combined memory usage exceeds

the GPU memory capacity.

For Kubernetes setups, to mimic real GPU time sharing on Kubernetes [46], we create mul-

tiple replica files for each emuGPU. This allows our device plugin to allocate them to multiple DL

job containers. Additionally, we deploy a RabbitMQ broker and a sharing manager for each node

as Kubernetes daemonsets, facilitating communication and emulating GPU time-sharing manage-

ment.

4.1.5 Extensibility

Although we have covered a large variety of popular models and GPUs, we believe it is important

to continuously extend GPEMU to support an even broader range of deep learning models and GPU

architectures. Fortunately, adding supports for new models or GPUs is convenient with GPEMU.

We offer users a Profiler tool and an extensible library to profile and use new models and GPUs

with ease. The profiling process typically requires only 1-2 hours for a new model-GPU pair, and

this is a one-time effort. Once profiled, the data can be added to our library for repeated use,

benefiting not only the initial user but also others for future experiments.

The challenge of profiling more configurations is not unique to GPEMU, but same for other

simulators and emulators, including those in the storage or networking worlds. For example, SSD

simulators (e.g. SSDSim[87]) and emulators (e.g. FEMU[107]) also need to profile new SSD

models.

We believe our Profiler is also a contribution, as it comes with many features to profile various

metrics such as model compute time, CPU-GPU data transfer time, and GPU memory consump-

tion. The features can also be extended in the future to profile more fine-grained metrics like

layer-level compute time and inter-GPU communication time. With this Profiler, we hope the

community can work with us together to cover more models and GPUs.
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(a) LOC

Emulation lib 916

K8s device plugin 488

Profiler 1482

PyTorch integration 79

TF integration 20

DALI integration 46

Total 3031

(b) Reimpl. LOC

CoorDL 2756

LADL 96

Muri 298

Micro-Opt.

SFF 45

Async Batch 1171

File grouping 695

Total 5061

Table 4.2: Implementation efforts (§2.5). The left table shows the LOCs for implementing

GPEMU. The right table shows the LOCs for re-implementing work from existing papers and for

implementing our new micro-optimizations.

4.1.6 Implementation Efforts

Our entire effort is quantified in Table 4.2a, a total of 3031 LOC for the GPEMU implementa-

tion, comprising an all-in-one emulation library (in Python) for time emulation (§4.1.1), memory

emulation (§4.1.2), multi-GPU and multi-node training (§4.1.3.1, §4.1.3.2), and sharing support

(§4.1.4), a Kubernetes device plugin for multi-job cluster scheduling and sharing support (§4.1.3.3,

§4.1.4), and a Profiler for profiling data used for time and memory emulation (§4.1.1, §4.1.2). Fi-

nally, by adding 20-80 LOC “hooks,” we easily integrated these features into various platforms

such as PyTorch, TensorFlow, and DALI.

Furthermore, for showing many case studies in the next two sections, we wrote another 5061

LOC (Table 4.2b) for re-implementing existing work from scratch (either because they are not

available or not fully functional) and for adding new micro-optimizations. For example, we

reimplemented CoorDL (§4.2.4), LADL (§4.2.4), and Muri (§4.2.6). We also wrote three micro-

optimizations: small-file first (SFF) caching policy (§4.3.1), asynchronous batch reading (§4.3.2),

and random-class file grouping (§4.3.3).

We have open-sourced our code, data, and other artifacts on Github ([19]). All our experiment

results are reproducible, and we will submit our experiments for reproducibility evaluation if the

paper gets accepted. We hope we and the community can work together to extend GPEMU.
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T T T M M D D D S

C T P C P G N J S

§4.2.1 DataStall [113], VLDB ’21 x x . x x x x . .

§4.2.2 TF-DS [54], SoCC ’23 x x . x . x . . .

§4.2.2 FastFlow [145], VLDB ’23 x x . x . . . . .

§4.2.3 FFCV [105], CVPR ’23 x x x x x . . . .

§4.2.4 LADL [162], HiPC ’19 x x . x x x x . .

§4.2.5 Synergy [112], OSDI ’22 x x . x x x . x .

§4.2.5 Allox [104], EuroSys ’20 x x . x x . . x .

§4.2.6 Salus [163], MLSys ’20 x x . x x . . . x

§4.2.6 Muri [173], SIGCOMM ’22 x x . x x . . . x

Table 4.3: GPEMU features for paper reproductions (§3). The features’ short names are

identical to the names in Table 4.1.

4.2 Case Studies of GPEMU’s Supported Research

To demonstrate GPEMU’s versatility and capabilities, we reproduced experiments from nine pa-

pers [54, 104, 105, 112, 113, 113, 145, 162, 163, 173], each utilizing different GPEMU features.

Table 4.3 provides a comprehensive overview of GPEMU’s design features used (labeled by ”x”)

in each reproduction. These experiments encompass a wide range of complexities, from single-

node training to multi-node distributed training, and even a cluster configuration of 13 nodes for

GPU scheduling emulation.

The papers also span a variety of analyses and optimization techniques pertinent to deep

learning systems, including data stall analysis in DL training (§4.2.1), optimizations in single-

node training data loaders (§4.2.3), disaggregating data preprocessing tasks across remote work-

ers (§4.2.2), caching optimizations in distributed DL training (§4.2.4), resource allocation and

scheduling optimization within GPU clusters (§4.2.5), and GPU sharing along with its associated

optimizations (§4.2.6).

The advantage of GPEMU over existing emulators can be seen by joining Table 4.1 with Table

4.3. If an emulator in Table 4.1 doesn’t support the features needed in Table 4.3, then it means this

emulator cannot evaluate the corresponding paper. For example, MLPerf [28] doesn’t support the

multi-job scheduling (DJ) feature and thus cannot evaluate Synergy [112] and Allox [104] papers

in Table 4.3.
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A primary usage of GPEMU is for faster prototyping and evaluation of systems related research

in the area of deep learning, given the scarcity of GPU resources. Therefore, our evaluation focused

on validating that GPEMU can effectively replicate the patterns observed in the original papers by

comparing our results with their figures. Additionally, we also evaluated GPEMU’s accuracy by

comparing GPEMU ’s results with actual GPU runs for some of the experiments. For example,

we presented the accuracy of epoch time compared to real GPU runs in Figures 4.5 and 4.9 with

satisfying results. While we are pleased with the accuracy achieved, we emphasize that our intent

is not to advocate for GPEMU as a complete replacement for actual GPU usage.

In the following subsections, we illustrate how GPEMU can support different types of deep

learning system research.

4.2.1 Data Stall Analysis

A common use case for our GPEMU is analyzing system behaviors with varying DL training

workloads. Here, we reproduce the DataStallVLDB22 [113] paper (”DS” for short). The DS

paper extensively studied the impact of input data pipelines on training durations for popular deep

learning models. They found that data stalls, referring to time spent waiting for data fetching

and CPU preprocessing, accounted for the majority of training time in numerous instances. We

demonstrate how GPEMU can be used to reproduce this conclusion without the need for real GPUs.

The first step in the DS paper was measuring the fetch stall percentage (defined as the time

spent waiting for data fetching divided by the total training time) when only 35% of data can be

cached in memory. In Figure 4.6a, we successfully reproduced these measurements for 6 models

with GPEMU. We made two key observations from the figure. First, the pattern is consistent.

Fetch stalls are common, with varying percentages (y-axis) across different models. AlexNet, with

its lightweight computations, spends more time waiting for data, resulting in the largest fetch stall.

Conversely, Vgg11, with heavier computations, shows better performance as most data fetch time

is masked by GPU computation time due to prefetching. Second, the exact values differ, which is
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Figure 4.6: Data stall analysis with GPEMU (§3.1). The figures show that we successfully

reproduced the analysis experiments in the DS paper [113] using GPEMU.

expected due to differences in end-to-end setups. For instance, the data stall percentage for AlexNet

in our experiment is 26%, compared to 40% in the DS paper. This variation can be attributed to

factors like different dataset sizes (we used a subset for fast prototyping), fluctuating page cache

size during training (due to PyTorch memory usage), and differing data loaders (PyTorch default

vs. DALI).

The DS paper next assessed training time impacts relative to cached data amounts. In Fig-

ure 4.6b, our reproduction of this experiment with GPEMU shows that lower cache percentages

lead to longer training times from increased fetch stalls. We omitted the DS paper result [113,

Fig.4] to avoid overcrowding the graph. The first bar indicates that with only 40% of data cached

in host memory, training slows by a factor of 5.2 compared to full dataset caching in host mem-

ory. This figure also reveals the inefficiency of the OS page cache in DL training due to thrashing.

For example, with 40% data cached, the ideal cache hit rate should be 40%, resulting in a fetch
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stall of 158 seconds per epoch. But with the OS page cache, the fetch stall can reach up to 270

seconds. While our emulation results align with the DS paper patterns, exact values differ due to

setup variations.

Finally, the DS paper evaluates the relation between CPU numbers per GPU and training speed

in terms of images per second [113, Fig. 5]. In Figure 4.6c, we successfully reproduced the same

relationship using GPEMU for four models. Each model shows distinct CPU requirements per

GPU to minimize prep stalls (i.e., delays due to CPU data preprocessing). For instance, ResNet50

(the purple line), a computation-intensive model, needs only 3 CPUs per GPU to eliminate prep

stalls and fully utilize GPU. In contrast, AlexNet (cyan line), with lighter computations, requires

24 CPUs per GPU to avoid prep stalls and optimize GPU use.

4.2.2 Preprocessing Disaggregation

To alleviate data stalls, extensive research has focused on optimizing the data preprocessing stage,

which is often a bottleneck in DL training across various scenarios. A common solution is pre-

processing disaggregation [54, 76, 145, 169, 171]. In this subsection, we reproduce two notable

studies with GPEMU: tf.data serviceSoCC23 [54] and FastFlowVLDB23 [145].

The first system, tf.data service (TF-DS for short) [54], is an open-source data preprocessing

disaggregation framework based on TensorFlow’s tf.data module. Unlike traditional methods that

reply on local CPUs for data preprocessing— which may not feed GPUs quickly enough—TF-DS

disaggregates these tasks to remote worker machine CPUs. This method allows for scaling out

data preprocessing independently of expensive GPUs, by adding more worker machines.

We reproduced the results from the TF-DS paper using GPEMU. Our experiments ran a single

training client with 4 CPUs, emulating GAN model training on the CUB-200-2011 dataset on

4 RTX-6000 GPUs in TensorFlow, integrated with GPEMU. The baseline involved local data

preprocessing on the client machine. We then offloaded preprocessing to a variable number of

remote workers, each with 4 CPUs. Training time speedups relative to the baseline are shown in

80



0 2 4 6 8 10 12

� of wo��e�s

1

2

�

4

�

�

p
e
e
d
u
p

w  !"#mu

$peedup

Base%i&e

Figure 4.7: TF-DS [54] training speedup with GPEMU (§3.2). The figure shows that we

managed to demonstrate TF-DS’s benefits with GPEMU.
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Figure 4.8: FastFlow’s benefits with GPEMU (§3.2). These figures show that we successfully

reproduced experiments in the FastFlow paper [145] using GPEMU.

Figure 4.7.

We have two observations from this figure. First, the speedup increases with more work-

ers, demonstrating TF-DS’s effectiveness. Second, beyond the deployment of 7 or more workers,

adding more workers yields minimal training time improvements. This is because data prepro-

cessing is already fast enough, and the bottleneck becomes the (emulated) GPU compute. These

observations align closely with those reported in the TF-DS paper [54, Fig. 9], although their

experiment involved more workers on a larger scale.

Next, we reproduce FastFlow [145], built atop TF-DS. FastFlow enhances the disaggregation

mechanism by using both local and remote CPUs for data preprocessing. It dynamically divides the

preprocessing pipeline between local and remote workers based on performance metrics, aiming

to optimize training time.
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We obtained the FastFlow source code from their GitHub [16] and reproduced experiments for

Transformer ASR and GAN ADA workloads using GPEMU. Our setups varied local-to-remote

CPU ratios (3:3, 3:6, 6:3). Figures 4.8a and b compare epoch times across three policies: TF-NO

(no preprocessing disaggregation), TF-DS, and TF+FF (FastFlow). Notably, FastFlow consistently

outperforms the others in all scenarios. TF-NO struggles with limited local CPUs, while TF-DS

lags behind with few remote CPUs. Our emulation results closely mirror the FastFlow paper [145,

Fig. 6].

4.2.3 Data Loader Optimization

Another approach to reducing data stall is optimizing the data loading phase in DL training. For

example, FFCVCVPR23 [105] introduces techniques like efficient file storage formats, optimized

process-level caching, and just-in-time compiled data preprocessing. Here we demonstrate FFCV’s

benefits using GPEMU.

In Figure 4.9, we present results from three setups: a
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Figure 4.9: FFCV’s [105] benefits

shown with GPEMU (§3.3).

real RTX-6000 GPU (red bars), original FFCV paper (blue

bars), and GPEMU (green bars). Our emulation success-

fully shows the performance improvement from FFCV. For

example, it cut training time by 80% compared to Py-

Torch’s default ImageFolder data loader (leftmost green

bar vs. rightmost green bar). The emulation results closely

match those from real GPU experiments and align with the FFCV paper. Note, the y-axis is nor-

malized to the maximum training time per configuration, as we utilized a smaller dataset for faster

research. Once again, the use of GPEMU serves the purpose of fast prototyping.
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4.2.4 Distributed Training Optimization

In the previous subsections, we focused on using GPEMU to reproduce single-node training anal-

yses and optimizations. Now, we show how GPEMU can also be used to reproduce optimizations

for distributed training, like those related to distributed caching, which aims to reduce data stalls

in distributed training [109, 113, 136, 162, 174]. We reproduce two papers: CoorDL from the

DataStallVLDB21 (”DS”) paper [113], and the locality-aware data loading (”LADL”) paper from

HiPC 2019 [162].

Let’s start with CoorDL [113], which introduces partitioned caching. In this approach, differ-

ent compute nodes cache distinct parts of the dataset and coordinate to speed up data loading in

distributed training. With partitioned caching, a local cache miss leads to fetching the missing data

from remote caches on other nodes via network communication. CoorDL applies this technique to

their MinIO caching algorithm, demonstrating significant advantages.

Now, we show using GPEMU to assess CoorDL’s benefits. Initially, we tried to obtain Co-

orDL’s source code from its GitHub repository [25], but faced challenges in compiling due to de-

pendency issues with an older version of DALI. As a result, we re-implemented CoorDL’s MinIO

and partitioned caching from scratch in PyTorch.

To reproduce CoorDL’s results, we used GPEMU for distributed training across various com-

pute nodes, each emulating 8 GPUs. We experimented with different local cache percentages (65%

and 40%). The normalized training speedups are shown in Figure 4.10. In it, orange bars represent

the baseline, blue bars are CoorDL results from the DS paper, and green bars indicate CoorDL with

GPEMU. The DS paper’s results show CoorDL’s speedups increasing with more nodes, attributed

to partitioned caching. Our emulation also reveals this pattern, though values may vary due to

different setups. For instance, at 65% local cache with 1 node, CoorDL with GPEMU achieves a

3x speedup, mainly due to MinIO caching. With 2 nodes, the speedup reaches 6x as the combined

cache covers the entire dataset.

Next, let’s move to “locality-aware data loading” (or “LADL”) [162]. Distributed caching
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Figure 4.10: CoorDL’s benefits with GPEMU (§3.4). The figures show that with GPEMU we

successfully demonstrated the effectiveness of CoorDL from the DS paper [113].

techniques like CoorDL offer impressive gains with few nodes and adequate bandwidth but face

scalability challenges in large-scale distributed training. These challenges are mainly due to in-

creased network traffic, potentially causing bandwidth bottlenecks. LADL addresses this by alter-

ing the sampling algorithm to prefer locally cached samples, reducing data fetching from remote

cache. Though this slightly reduces sampling randomness, it significantly decreases network traf-

fic, thus enhancing scalability for distributed training.

Here we use GPEMU to showcase LADL’s advantages.
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Figure 4.11: LADL’s [162]

benefits demonstrated with

GPEMU (§3.4).

With the original source code unavailable and no response

to our request, we re-implemented it in PyTorch based

on our earlier CoorDL implementation. While the orig-

inal paper used a 16-128 node cluster to show distributed

cache scalability challenges, our resources are more lim-

ited. However, as GPEMU is designed for rapid proto-

typing, we emulated results on a 4-node cluster. To mimic

network bandwidth bottlenecks typical in large-scale train-

ing, we limited our cluster’s network bandwidth to 3Gbps.

The emulation results are depicted in Figure 4.11, with orange bars for regular distributed

cache and cyan bars for that with LADL. The results clearly demonstrate LADL’s improvment on

distributed training scalability. For instance, for 4-node training with data all cached (either locally

or remotely), regular distributed cache still takes 60 sec per epoch due to network bandwidth
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Figure 4.12: Synergy [112] JCT reduction with GPEMU (§3.5). The figures show that GPEMU

successfully demonstrated Synergy’s JCT reduction over GPU-proportional resource allocation.

limitations. However, LADL reduces the epoch time to just 12 sec, thanks to the reduced network

bandwidth demands. These results align with the original paper.

4.2.5 GPU Scheduling

Next, we explore using GPEMU in GPU scheduling. Numerous techniques have been proposed

for enhancing GPU scheduling in clusters [104, 112, 117, 160, 167, 168]. We reproduce two:

SynergyOSDI22 [112] and AlloxEurosys20 [104]. Synergy is selected for its custom scheduler’s

easy compatibility with GPEMU, and we also reproduce Allox to demonstrate GPEMU’s ability to

support Kubernetes scheduling.

We first reproduce some of the Synergy experiments [112]. Synergy is a scheduler that evalu-

ates each job’s resource needs through optimistic profiling and allocates GPUs, CPUs, and memory

accordingly. This approach effectively prevents data stalls and maximizes GPU utilization.

To reproduce the Synergy paper, we obtained its source code from their GitHub repository [43]

and integrated it with GPEMU, using GPEMU for resource demand profiling and GPU scheduling

emulation. Synergy was designed for jobs that utilize DNN-aware cache systems like MinIO [113].

We opted for our implementations of MinIO instead of the original, as it faced compilation issues

due to dependency conflicts.
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We conducted experiments scheduling 40 DL jobs on a 4-node cluster. Each node had 24

CPUs, 100GB DRAM, and 8 emulated GPUs. Our evaluation compared Synergy against GPU-

proportional resource allocation using the Least Attained Service (LAS) and Shortest Remaining

Time First (SRTF) policies respectively. Figure 4.12 presents the CDF of job completion time

(JCT) for both policies, with results from both the original paper and GPEMU. Consistent with

the original paper, our emulation shows Synergy’s effectiveness in reducing JCT. For instance,

in Figure 4.12a, Synergy decreases average JCT by 22% and 95th percentile JCT by 25% (solid

orange vs. green lines) for the LAS policy.

Next, we reproduce Allox [104] to showcase our Kubernetes scheduling support capabilities.

Allox is designed for DL jobs that have interchangeable resource configurations, such as CPU

versus GPU. It strategically schedules jobs across various compute resources, selecting the optimal

configuration for each while maintaining fairness.

We acquired the Allox source code from their GitHub

D�FF D�F� ���o�

�chedu�i�� �o�ic�

0.0

0.�

1.0

�

o

� m
a

� i�

e
d
 �

C

�
�ape� w� ���mu

Figure 4.13: Allox’s [104] JCT re-

duction with GPEMU (§3.5).

[3] and integrated it with GPEMU based on our Kuber-

netes support. In our experiments, we set up a cluster with

one master node, four emuGPU worker nodes, and eight

CPU worker nodes. We scheduled 40 PyTorch jobs among

four users. The emulated GPU vs. CPU worker speedup

ranged from 1.3 to 8.2 for these jobs. Figure 4.13 shows

the normalized average JCT for three scheduling policies:

Dominant Resource Fairness with First Come First Serve (DRFF), Dominant Resource Fairness

with Shortest Job First (DRFS), and Allox. Consistent with the original paper, our emulation re-

sults highlight Allox’s effectiveness. For example, it reduces average JCT by 42% compared to

DRFF (leftmost green bar vs. rightmost green bar).

Other than Synergy and Allox, we believe other scheduling papers such as Gavel, HiveD, SiloD

[117, 167, 168] can also be reproduced with our GPEMU features. Papers like OASis and Themis
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[57, 110] could be reproduced too, but they require integrating GPEMU features into other ML

frameworks like MXNet [61] and other scheduling frameworks like YARN [146].

4.2.6 GPU Sharing

Finally, we reproduce papers on GPU sharing. There’s been considerable research into enabling

GPU sharing among DL workloads and optimizing GPU job scheduling based on this sharing [81,

159, 160, 163, 173]. We focus on two notable studies: SalusMLSys20 [163] and MuriSIGCOMM22

[173]. Salus is chosen for its focus on enabling fine-grained GPU sharing in DL applications, and

Muri for its insights on GPU sharing’s impact on GPU job scheduling.

We begin with reproducing Salus [163], which offers
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Figure 4.14: Salus’s [163] GPU

sharing with GPEMU (§3.6).

an efficient execution service for fine-grained GPU shar-

ing through iteration-level computation scheduling, thereby

enabling rapid job switching between different DL appli-

cations.

With our GPU sharing emulation support, we success-

fully emulated iteration-level job switching akin to Salus.

We integrated GPEMU into PyTorch and reproduced [163,

Fig. 9] by running three ResNet50 training jobs on the same machine, fairly sharing an emulated

P100 GPU via our manager. The emulated training throughput is shown in Figure 4.14. Initially,

Job 1 achieves 220 images/sec, fully utilizing the GPU. With the start of Job 2 at 30s, the per-job

throughput halves (dashed blue line). This division intensifies with Job 3 at 60s, resulting in each

job’s share dropping to a third. As jobs conclude in reverse order, this trend reverses. The pattern

matches the one in [163, Fig. 9].

Next, we reproduce Muri [173]. Muri is a DL job scheduler for multi-resource clusters based

on GPU time sharing. It interleaves DL jobs bottlenecked by different resources like GPU, CPU,

storage, and network. Muri groups these jobs onto the same machine and interleaves their GPU
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executions to optimize resource utilization.

To reproduce Muri, we obtained its code from their GitHub [29]. However, the available code

for testbed deployments was primarily pseudocode, with the original industry code not publicly

available. Consequently, we developed our simplified version of Muri. For fast reproduction, our

version focused on scheduling on a single machine, interleaving just CPU and GPU resources. We

used our GPU sharing emulation for GPU interleaving.

In our experiments, we used Muri with GPEMU to schedule 10 emulated training jobs, from

CPU-bound ones like AlexNet to GPU-bound like ResNet50. We compared two algorithms: SRTF

and Muri-S (Muri with SRTF). Figure 4.15a illustrates the job queue length changes over time

under each policy. Muri outperforms SRTF, reducing queue length faster by running more jobs

concurrently and using GPUs more efficiently, in line with [173, Fig. 8]. Figure 4.15b shows

normalized makespan for both. Our emulation shows Muri’s 1.35x speedup in makespan compared

to SRTF, validating its effectiveness and aligning with the original paper.

4.3 Micro-Optimizations Evaluated Using GPEMU

Besides reproducing existing work, we showcase the power of GPEMU by prototyping and evalu-

ating new micro-optimizations without using real GPUs. Below, we present several storage-stack

optimizations that can improve DL training epoch time, such as small-file first (SFF) caching pol-

icy (§4.3.1), asynchronous batched data (§4.3.2), and random-class file grouping (§4.3.3).

4.3.1 Cache Small Files

In this section, we explore the impact of tailoring caching algorithms by considering the character-

istics of DL training datasets and HDDs, and show the benefits with GPEMU. We took inspiration

from the datastall paper where they propose the “MinIO” algorithm [113]. MinIO is designed

around the unique data access pattern in DL training, where data is read in epochs, and every

epoch reads every item in the dataset exactly once in a random order. Consequently, if a certain
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Figure 4.15: Muri’s benefits shown using GPEMU (§3.6). The figures show that, utilizing

GPEMU, we successfully reproduced the experiments in the Muri paper [173].

percentage (X%) of data can be cached, the maximum attainable cache hit rate will also be X%.

Based on this observation, MinIO never evicts data items once the cache is filled with randomly

fetched data items. This strategy effectively mitigates the thrashing issue associated with prior

cache eviction policies, where valuable items could be evicted prematurely.

We implemented MinIO by ourselves in PyTorch and evaluated it using GPEMU. Figure 4.16a

shows that we can run MinIO with GPEMU and demonstrate its benefits, where the purple bars

represent the performance of the OS page cache, while the orange bars depict the results achieved

with MinIO. With the same cache percentage, MinIO outperforms the OS page cache. For example,

when cache size is 40%, MinIO achieves an epoch time of only 394 seconds, compared to the 537

seconds with the OS page cache.

However, we found a limitation in MinIO: it treats all data items as equal and populates the

cache with random items. Yet, the storage reads can exhibit preferences for certain files over

others within the same dataset. For example, Figure 4.16b illustrates the cumulative distribution

function (CDF) of file sizes in the ImageNet dataset [127]. Evidently, file sizes exhibit significant

variability, with orders of magnitude separating the smallest from the largest files. On the other

hand, storage systems, especially HDDs, favor large file reads over small ones. This preference

arises from the fact that large file reads are more sequential and entail fewer seek and rotation

overheads. As illustrated in Figure 4.16c, when reading files randomly from disk, larger files
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Figure 4.16: SFF’s benefit with GPEMU (§4.1). The figures show (a) SFF’s benefit demon-

strated using GPEMU, (b) variable Imagenet file sizes, (c) better throughput with larger file reads.

generally achieve higher read throughput compared to smaller ones.

To address this limitation, we introduce the Small Files First (SFF) caching strategy, which

gives precedence to small files when populating the MinIO cache. Specifically, we begin by reading

the metadata for all files in the dataset information prior to training. We then sort them by file

size and find a size threshold (Th) such that all files smaller than Th could exactly fill the cache.

Subsequently, we pass this threshold to MinIO and instruct it to cache only files smaller than the

threshold during the first epoch. By adopting this approach, we ensure that a greater number of

small files are cached, while only large files are read from storage.

We implemented SFF into MinIO, and evaluated it with GPEMU. The cyan bars in Fig-

ure 4.16a represent the training performance achieved by MinIO+SFF. The figure shows that with

the same cache size, we can achieve better performance compared to MinIO alone. Notably, the

greatest improvements are observed when the cache percentage is relatively small. For instance,
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with a cache percentage of 20%, we reduce the training time by 28% compared to MinIO. As the

cache percentage increases, the benefits of SFF become less pronounced, primarily because the file

sizes cached in MinIO align more closely with the SFF strategy.

4.3.2 Async Batch

Another way to reduce the overhead of random reads is by leveraging I/O reordering, a technique

employed by the Linux I/O scheduler [23]. The I/O scheduler reorders I/O requests based on their

logical block addresses (LBA) in order to reduce seek time and rotational latency, hence increasing

the overall throughput. The more requests the scheduler can process together, the greater the

reduction is.

Unfortunately, we found that PyTorch’s data loader does not fully benefit from I/O reordering.

More specifically, PyTorch’s official ImageNet training script [21] employs four workers to load

data, with each worker handling one batch. Each worker reads one image at a time, waiting for the

read to complete. Consequently, at most four read requests are simultaneously sent to the OS.

PyTorch’s design is simple to implement; every worker can read and preprocess each image

synchronously (without having to worry about concurrency issues). Overall, it also uses minimal

memory; each worker only has a single batch in memory during loading. However, it is not efficient

because the OS does not have enough in-flight I/Os to reorder to improve the I/O performance and

the LBA gaps between the four target I/Os remain large, causing high seek and rotational overhead.

Ideally we should send more concurrent requests to the OS so that it may benefit more from

reordering. To do this, we send all the requests in the entire batch. While this sounds simple, one

minor complication is that we must move from the blocking/synchronous style to an asynchronous

I/O design, otherwise the OS cannot see all the requests. To achieve this, we (1) utilize io uring

[47] asynchronous system call, (2) organize the sending and receiving of asynchronous I/Os using

input and completion queues, and (3) carefully employ spinlocks and atomics to handle concur-

rency issues when using io uring. Furthermore, since the OS is limited by its maximum queue
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depth of 2048 requests [2], when submitting more than this limit, we must pre-sort the requests by

LBA at the application level before sending them to the OS.

Within this “asynchronous-batch” design, we found more room for optimization. The number

of concurrent I/O requests is currently bottlenecked by the training batch size, and in some scenar-

ios the batch size can be as small as 2 [31], limiting the benefits of I/O reordering. To overcome

this limitation, we introduce “superbatch, ” which is a multiple (e.g., 2x) of the regular batch size.

During data loading, we asynchronously send a superbatch of requests to the OS, maximizing the

advantages of I/O reordering. It is important to note that superbatch only affects data loading and

does not alter the training batch size or other training steps.

We evaluated the benefits of asynchronous (super)batch
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Figure 4.17: Async batch’s ben-

efit demonstrated with GPEMU

(§4.2).

reading with GPEMU. Figure 4.17 shows the epoch time

for emulating AlexNet training with 4 workers and batch

size of 16 using different data reading policies. Employ-

ing the asynchronous batch reading alone without super-

batch (yellow bar) reduces epoch time by 19% compared

to the original PyTorch data loader (purple bar). After ap-

plying the superbatch approach, the reduction can be up

to 50% (the cyan bars). Increasing the superbatch size too

big yields minimal additional benefits, as I/O reordering is already efficiently utilized. Excessively

large superbatch is also not recommended as it increases the memory pressure, which can adversely

affect the epoch time.

4.3.3 File Grouping

The last two micro-optimizations have focused on reducing the penalty of random file reads for

disk-based systems without altering the original random sampling order. In this subsection, we

propose another optimization, termed “file grouping,” which slightly reduces sampling randomness
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Figure 4.18: File grouping’s effect (§4.3). The figures show (a) successful showcasing of file

grouping’s performance benefits using GPEMU, and (b) file grouping’s impact on accuracy.

in exchange for enhanced I/O performance.

The file grouping approach works as follows: (a) Prior to training, we group every X random

small files into one large file, storing location and labels in the metadata. For a dataset with M

files, this results in M/X large files; (b) During training, instead of reading N random small files

per batch, we read N/X random large files.

With GPEMU, we evaluated file grouping’s impact on AlexNet training time with various group

sizes, as is shown in Figure 4.18a. For example, without grouping (group size = 1), the training

time reaches 498 seconds. With 8 images per group, the training time can be reduced by 2.4x.

Interestingly, grouping the images more than 32 images will not yield better performance, implying

that the disk seek overhead is already minimal compared to the data transfer time.

One concern about file grouping is its potential impact on model accuracy. Could the model

become biased and lose accuracy? We experimented with random-class grouping, where each

group contains a mix of random “classes” (e.g., “cat”, “dog”, “snake” in the ImageNet dataset)

and found no loss in accuracy (compared to no grouping) as shown in Figure 4.18b. We validated

the accuracy of random-class grouping across three different tasks (image classification, object

detection, audio classification), using three datasets (ImageNet, COCO, Speech Commands) and

five models (AlexNet, ResNet18, ResNet50, Faster R-CNN, M5), consistently observing the same

pattern.
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However, employing a naive “sequential” grouping (i.e., grouping the unzipped ImageNet

dataset images sequentially) significantly reduced accuracy, shown in the orange line in Fig-

ure 4.18b. This decline is likely because sequential groups contain images from the same category,

like all “cat”’ pictures, leading to biased learning. This bias can cause catastrophic forgetting [70],

where the model temporarily excels in the current category but may forget the previously learned

ones.

4.4 MLECEmu Design

In this section, we introduce the design of MLECEmu, an emulator developed to provide end-to-

end emulation of multi-level erasure-coded (MLEC) storage systems for workloads such as deep

learning training. MLECEmu operates using a real erasure-coded storage stack, including systems

like HDFS [133] and ZFS [126], but instead of physical disks, it utilizes tmpfs loop devices in

memory with throttled throughput to simulate the behavior of physical disks. Below, we detail the

key components of MLECEmu’s design.

4.4.1 Implementation of MLEC Storage Stack

MLECEmu builds an emulated MLEC storage system using real implementations of HDFS for

network-level erasure coding and ZFS for local-level erasure coding. There are several reasons for

choosing HDFS and ZFS. First, both systems are widely adopted: HDFS is a key technology in

big data and distributed computing, while ZFS is extensively used in national research laboratories.

Second, both HDFS and ZFS support single-level erasure coding configurations, either clustered

or declustered, which simplifies our development. Third, ZFS can be configured as a Linux kernel

module, interfacing seamlessly with HDFS like a traditional Linux filesystem.

In HDFS, when the number of nodes equals the network stripe width, it performs clustered

parity; when there are more nodes than the stripe width, it performs declustered parity by spreading

blocks across all nodes. ZFS similarly supports both clustered parity (using raidz) and declustered
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parity (using draid). This setup allows MLECEmu to flexibly configure various MLEC chunk

placements, including C/C, C/D, D/C, and D/D.

The implementation of MLEC with the RALL repair method in HDFS over ZFS is straightfor-

ward: HDFS treats each ZFS pool (ZPool) as a standalone volume, simulating a disk. Incoming

data stripes are divided into network chunks (called blocks in HDFS), and HDFS applies its in-

herent erasure coding mechanisms. Each HDFS block, whether data or parity, is then stored in a

different ZPool, where ZFS further performs erasure coding using its configured policies.

4.4.2 Disk Throughput Emulation

To emulate disks without relying on physical hardware, we create multiple loop devices [24],

which are pseudo-devices that allow a file to be accessed as a block device. These loop devices

are mounted using tmpfs, which mimics a disk in memory while providing controlled, throttled

bandwidth. We use the Linux cgroup tool [9] to limit the bandwidth of each tmpfs loop device,

effectively simulating the throughput of physical disks.

With these emulated disks, we create a ZFS pool (ZPool) using multiple loop devices. When

evaluating MLEC storage for deep learning workloads, the key performance metric is the stor-

age system’s throughput, which is directly influenced by the bandwidth of each emulated disk,

controlled using the cgroup throttling method described above.

4.4.3 Emulating Repair Time and System Degradation

As discussed in Section 3.2.6, we introduced four repair methods. When directly configuring

HDFS over ZFS, the default repair method is RALL. If a ZPool fails, HDFS reconstructs all data

from the failed ZPool onto other ZPools using network-level erasure coding, following the RALL

repair method.

However, implementing advanced repair methods presents several challenges: (1) During catas-

trophic local failures, ZFS suspends all I/O operations, preventing any repair attempts; (2) ZFS
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must signal HDFS to initiate network-level repairs for specific data chunks, which requires com-

plex internal checks and API designs; and (3) HDFS must support the repair of smaller, local

chunks, which differ from the typical network-level chunks.

Due to the complexity of these implementations, we defer the real implementation of advanced

repair methods to future work. Fortunately, MLECEmu provides a mechanism to emulate the per-

formance of these advanced repair methods. We simulate catastrophic failures by taking the ZPool

offline. To prevent HDFS from automatically performing repairs using RALL, we configure a long

repair delay. Instead of carrying out real repairs, MLECEmu emulates the system degradation that

would result from different repair methods.

Specifically, we project the disk and rack I/O bandwidth degradation that would occur during

the repair process based on the repair method and the projected duration calculated by our MLEC

simulator (introduced in Section 3.3). We then throttle the disk and rack bandwidth accordingly

for the repair duration, effectively simulating the performance impact of catastrophic failures and

their subsequent repairs.

4.4.4 Limitations and Future Work

While our emulation effectively mimics disk throughput, it does not currently support emulating

disk seek time, which is common for hard drives and varies dynamically in real workloads. We

believe seek time could be emulated by integrating MLECEmu with existing disk simulators. This

enhancement is left for future work and is discussed in Section 7.2.

4.5 Evaluating MLEC Storage for DL Workloads Using GPEMU and

MLECEmu

In this section, we demonstrate how GPEMU and MLECEmu can be used together to evaluate

MLEC storage in the context of deep learning (DL) workloads. We also identify system bot-
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Figure 4.19: GPU Utilization vs. Stripe Width for Local SLEC Storage. The figure demon-

strates that wider stripes in SLEC storage can lead to higher GPU utilization in deep learning

workloads, as distributed reads from more disks are enabled. However, limited inter-rack band-

width can become a bottleneck.

tlenecks and assess GPU utilization under different conditions, such as varying stripe widths,

(un)constrained network bandwidths, and under catastrophic failures.

4.5.1 Evaluating GPU Utilization with Varying Stripe Widths in SLEC

We begin by evaluating the performance of a single-level erasure-coded (SLEC) storage system

under DL workloads. Using GPEMU, we emulate training the ResNet-18 model on a V100 GPU

with an 11GB subset of the OpenImages [33] dataset, where the dataset is stored in a remote

erasure-coded storage system. The system is configured with ZFS and emulated HDDs using

SLEC with varying stripe widths. Each disk is throttled to a read bandwidth of 30MB/s to simulate

random read behavior typical of HDDs during DL training.

As shown by the green points in Figure 4.19, in the initial configuration (stripe width of 1,

with no redundancy), the GPU utilization is as low as 7% due to the slow reads from a single

emulated disk. As we increase the stripe width (e.g., 2+1 SLEC), the utilization nearly triples,

since the system can now read data from three disks concurrently. As more disks participate in the

distributed read process, GPU utilization continues to increase.

However, this assumes unconstrained inter-rack bandwidth. When we throttle the inter-rack
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Figure 4.20: GPU Utilization with MLEC Storage. The figures illustrate that (a) a wider

network-level stripe can improve GPU utilization despite bandwidth limitations at the rack level,

and (b) reading from an MLEC pool with different chunk placement schemes results in varying

GPU utilization.

bandwidth to 1Gbps, GPU utilization plateaus once the stripe width exceeds four, as the inter-rack

bandwidth becomes the bottleneck (shown by the red points in Figure 4.19).

4.5.2 Evaluating GPU Utilization in MLEC Storage

Given the limitations seen with local SLEC storage, we evaluate MLEC storage, where data is

inherently distributed across racks via network-level erasure coding, enabling us to take advantage

of the aggregated bandwidth across multiple racks.

We first configure MLEC with (4+1) erasure coding at the local level and vary the stripe width

at the network level. As Figure 4.20a shows, Though each rack’s network bandwidth is constrained,

as we increase the network-level stripe width, GPU utilization improves, reaching near 100% when

the network stripe width is large enough.

We also evaluate the performance of a (2+1)/(2+1) MLEC pool with different chunk place-

ment strategies in a cluster of 36 emulated disks across six racks, comparing C/C, C/D, D/C, and

D/D configurations. As shown in Figure 4.20b, GPU utilization varies depending on the chunk

placement:

• With C/C, GPU utilization is 54%, as only 3 disks per rack take part in reading, underutilizing
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each rack’s network bandwidth. Moreover, only 3 racks are involved.

• With C/D, GPU utilization improves to around 77%, as declustered placement results in data

being read from all 6 disks in each rack, fully utilizing the rack’s network bandwidth. How-

ever, not all racks are involved.

• With D/C, GPU utilization reaches almost 100%, as all racks participate. Although a local

clustered pool contains only 3 disks, declustered placement at the network-level allows both

local clustered pools in each rack to take part in reading, fully utilizing each rack’s network

bandwidth.

• With D/D, GPU utilization is near 100%, as it fully utilizes each rack’s network bandwidth

and involves all racks.

In this setup, we assume each MLEC pool operates as a separate server because HDFS on ZFS

does not support configuring multiple clustered pools within a single HDFS cluster. As a result,

in MLECEmu, we configure each MLEC pool as an independent server. Consequently, it is more

intuitive for the dataset to be stored in a specific MLEC pool, as users interact with individual

HDFS servers.

A more efficient approach could involve a network-level storage manager that supports multi-

ple clustered pools and dynamically distributes data across different MLEC pools. For instance,

MarFS [90] implements this by distributing data across various MLEC pools through its internal

hashing mechanism.

4.5.3 GPU Utilization Under Constrained Inter-Cluster Bandwidth

In the previous experiments, we demonstrated how MLEC storage can meet the bandwidth de-

mands of DL workloads by distributing data across multiple racks. However, when inter-cluster

network bandwidth is limited, the situation changes. To illustrate this, we restrict the network

bandwidth between the DL training node and the MLEC storage cluster to 2 Gbps. We configure
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Figure 4.21: GPU utilization with limited inter-cluster bandwidth. The GPU utilization stops

to increase when the inter-cluster bandwidth is constrained.

an C/C MLEC storage with a (4+1) scheme at the local level and progressively increase the stripe

width at the top level to include more racks.

As shown in Figure 4.21, the maximum GPU utilization is capped at 52%. When 3 or more

racks are involved, GPU utilization ceases to increase because the inter-cluster bandwidth is no

longer the bottleneck.

4.5.4 Evaluating Training Throughput During Catastrophic Failure Repairs

Finally, we assess the training throughput during catastrophic failure repairs using the C/C (2+1)/(4+1)

configuration with two different repair methods: RALL and RMIN, with per-rack network band-

width throttled to 500 Mbps. We simulate a catastrophic failure by emulating the simultaneous

failure of two disks in a pool. We simulate the repair methods using projected repair durations and

their impact on disk and rack bandwidth based on MLECSim. During the repair process, we limit

repair bandwidth to 20% of the available capacity to ensure adequate bandwidth remains for DL

workloads.

Figure 4.22 shows the training throughput over time during data repair. Before the failure, train-

ing throughput is approximately 900 samples/sec. During the repair, throughput drops to around
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Figure 4.22: Training Throughput During Catastrophic Local Repair. The figure illustrates

the training throughput over time during catastrophic local failure repairs, comparing the impact

of two different repair methods.

480 samples/sec because only two of the three racks remain available to serve the DL workload,

and network bandwidth is consumed by the repair process. Additionally, when reading lost data,

HDFS must retrieve two chunks to reconstruct each lost chunk, doubling the read overhead.

With RALL, this performance degradation lasts about 400 seconds, as the entire local pool must

be reconstructed via network repair. In contrast, with RMIN, degradation time is shorter, lasting

only about 130 seconds, since only one failed disk is repaired via network repair. After this, the

training throughput returns to its original rate, even as the second disk continues local repair. This

is because the rack’s bandwidth limit, rather than disk bandwidth, is the bottleneck, allowing the

remaining disk bandwidth to fully utilize the rack bandwidth even during local repairs.

4.6 Conclusion

In this chapter, we present an emulation-based approach to evaluate MLEC storage for deep learn-

ing (DL) workloads in a cost-effective manner, without the need for real GPUs or disk arrays. We

first introduce GPEMU, a comprehensive GPU emulator specifically designed for DL workloads,

equipped with extensive emulation features and support for a variety of DL configurations. Next,

we introduce MLECEmu, an MLEC storage emulator capable of simulating the performance of
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MLEC storage without using actual disk arrays. Finally, we demonstrate how GPEMU and MLE-

CEmu can be used together to evaluate MLEC storage for DL workloads.
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CHAPTER 5

SOPHON: A SELECTIVE PREPROCESSING OFFLOADING

FRAMEWORK FOR REDUCING DATA TRAFFIC FROM REMOTE

STORAGE IN DEEP LEARNING TRAINING

As we have shown in 4.5, while MLEC storage can provide substantial aggregated intra-cluster

bandwidth for deep learning workloads with wide stripes and distributed reads from multiple disks

and racks, the inter-cluster bandwidth can become a bottleneck for training throughput. In practice,

inter-cluster bandwidth is often more limited than intra-cluster bandwidth [48, 80], making cross-

cluster network bandwidth a critical constraint on DL workloads and GPU utilization [66, 103,

148, 167].

In this chapter, we introduce SOPHON (Selectively Offloading Preprocessing with Hybrid

Operations Near-storage), a framework designed to selectively offload DL preprocessing tasks to

remote storage servers to reduce data transfer traffic. SOPHON has two key components: (1) A

two-stage profiler that collects essential metrics for offloading decisions. Offloading is activated

only when the workload is identified as I/O-bound during profiling. (2) A decision engine that

determines which samples to offload and identifies the specific operations to offload for each sam-

ple, balancing reduced traffic and CPU overhead. Together, these components enable SOPHON

to provide tailored offloading strategies that meet the unique needs and constraints of each training

scenario.

We evaluated SOPHON with deep learning training workloads that read data from remote

MLEC storage, using GPEMU and MLECEmu introduced in Section 1.2. Our evaluation results

show that SOPHON effectively enhances training efficiency, achieving a 1.2-2.2x reduction in

training time compared to existing solutions.

As Table 5.1 shows, SOPHON is the first work that implements data-selective offloading for

DL preprocessing, where ”data-selective” refers to selecting specific samples for offloading based
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Operation Data Data To Near

Selective Partial Selective Storage

tf.data svc — — — —

GoldMiner
√

— — —

FastFlow —
√

— —

cedar
√

— — —

SOPHON
√ √ √ √

Table 5.1: Existing Offloading [54, 145, 169, 170] vs. SOPHON.

on each individual sample’s characteristics.

In this chapter, we analyze a specific DL training workload to demonstrate the potential for traf-

fic reduction through preprocessing offloading in Section 5.1. Section 5.2 introduces the design of

SOPHON, followed by an evaluation of SOPHON for DL training workloads with remote MLEC

storage using our emulators in Section 5.3. We discuss the use cases and limitations of SOPHON

in Section 5.4 and examine potential challenges that MLEC storage may pose for preprocessing

offloading in Section 5.5. Finally, we conclude in Section 5.6.

5.1 Preprocessing Analysis

A typical DL training iteration entails: (1) Fetching data from storage, (2) Preprocessing data

on CPUs, (3) Transferring data to GPUs, (4) Forward propagation for predictions, (5) Backward

propagation for parameter updates.

In this section, we analyze the preprocessing pipeline of a specific DL workload, revealing op-

portunities and challenges in minimizing data traffic through strategic offloading of preprocessing

tasks. Our investigation is anchored in a case study on image classification workloads. We employ

the official PyTorch example training script, sourced from its GitHub repository [21], conducting

experiments on subsets of two key datasets in computer vision DL research: OpenImages [33] and

ImageNet [127].

The workload’s preprocessing pipeline consists of five key operations: (1) Decode: Converts

raw binary (e.g., JPEG) to an image object for manipulation via Python libraries like PIL; (2)
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Figure 5.1: Analysis of Preprocessing Pipeline. The figures are explained in Section 5.1.

RandomResizedCrop: Crops a random image section and resizes it to a specified size; (3) Ran-

domHorizontalFlip: Flips the image horizontally at random; (4) ToTensor: Transforms the PIL

Image from a uint8 ([0,255]) list to a float Tensor, scaling to [0.0, 1.0]. (5) Normalize: Normalizes

the tensor image with mean and standard deviation.

By measuring file sizes before and after each preprocessing step and assessing the preprocess-

ing time cost, we arrived at several key findings:

Finding #1: Variations in file size across the preprocessing steps highlight opportunities for

reducing data transfers through preprocessing offloading. For example, as illustrated in Figure

5.1a, Sample A’s size drops from 462KB raw JPEG to 151KB post RandomResizedCrop—when

the image is cropped and resized to 224x224 pixels, with each pixel’s R/G/B value represented

by 1 byte. This suggests that offloading Decode and RandomResizedCrop to the remote storage

server before network transmission can notably reduce data traffic.
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Finding #2: The observation that the minimum file size occurs before the final preprocessing

step suggests a decomposed preprocessing offloading approach. Existing offloading frameworks

often consider the entire preprocessing as a singular unit [54, 145], missing opportunities for data

traffic reduction. As depicted in Figure 5.1a, the file size post-Normalize is 4x larger than after

RandomResizedCrop and RandomHorizontalFlip, due to the ToTensor operation converting pixel

values from 1 byte per R/G/B to 4 byte floats. Thus, to minimize network traffic, an offloading

framework should permit the selective offloading of specific preprocessing operations.

Finding #3: The varied impact of preprocessing offloading across different images necessitates

finer-grained decision making. For instance, Sample B’s smallest file size occurs in its raw JPEG

format, as shown in Figure 5.1a. Thus, unlike Sample A, Sample B would transfer more efficiently

without any preprocessing offloading. As further illustrated by Figure 5.1b, while 76% of Open-

Images exhibit size reductions post certain preprocessing operations, 24% are smallest in their raw

JPEG format and should not undergo offloading. A similar pattern is observed with ImageNet,

with 26% of images benefiting from offloading, while 74% do not, underscoring the need for a

tailored offloading strategy.

Finding #4: Preprocessing traffic reductions have varying CPU costs. Reflecting on previous

research, preprocessing tasks are notably CPU-intensive [54, 113, 145]. When such tasks are

offloaded to remote storage nodes, which typically possess lesser CPU capabilities compared to

compute nodes, considerable CPU overhead is incurred. This scenario highlights the need for

weighing this overhead against efficiency gains. To better understand this tradeoff, we measured

preprocessing time for each operation and image in the 12GB subset, with the raw data cached in

memory and processed using 8 CPU cores running in parallel. For each image, we then calculated

the preprocessing time cost needed to offload in order to reach the minimum data transfer.

As illustrated in Figure 5.1c, the ratio of file size reduction to preprocessing time across the

OpenImages dataset serves as an indicator of the trade-off between network traffic savings and the

CPU time cost. Notably, 24% of images attain their minimum size in raw JPEG and thus exhibit
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a ratio of 0 and do not need offloading. For the remaining 76% of images, this ratio varies, ne-

cessitating a refined offloading strategy that prioritizes images yielding the highest network traffic

savings per unit of CPU time, particularly when CPU resources at the storage node are limited.

Finding #5: DL workloads exhibit varying demands for preprocessing offloading, which calls

for customized offloading decisions. As depicted in Figure 5.1d, the GPU utilization across three

distinct models—trained using the same configuration of a V100 GPU, ample CPUs, and con-

strained bandwidth to remote storage—is different. Specifically, ResNet50, with high GPU com-

pute intensity, achieves near-maximal GPU utilization, rendering it less susceptible to gains from

preprocessing offloading. Conversely, ResNet18, with lighter GPU compute requirements, spends

about 65% of its time in a data-fetching idle state, suggesting considerable offloading benefits.

Hence, the decision regarding preprocessing offloading should not only factor in image size and

preprocessing time but also account for the resource demands and characteristics of each work-

load.

5.2 Design

Based on Finding #1, there exists a substantial opportunity to improve data fetching efficiency

in DL training through the strategic offloading of preprocessing tasks. However, Findings #2-5

also highlight several challenges that need to be addressed in order to fully capitalize on these

opportunities. An efficient offloading framework must: (1) assess the need for preprocessing of-

floading to mitigate network traffic for specific workloads, (2) choose appropriate data samples for

preprocessing offloading, and (3) select the precise preprocessing operations to offload for each

sample.

To tackle these challenges, we introduce SOPHON (Selecti- vely Offloading Preprocessing

with Hybrid Operations Near-storage), a solution engineered to selectively offload DL preprocess-

ing to remote storage servers, aiming at minimizing data transfer traffic. SOPHON is designed to

systematically navigate each of these decision points, utilizing online data analysis and adaptive
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Figure 5.2: SOPHON Design Overview.

algorithms to tailor offloading decisions to the unique demands of each training scenario.

SOPHON has two key components: a two-stage profiler that collects essential metrics for in-

formed offloading decisions, and a decision engine that determines the optimal offloading strategy

using these metrics.

Figure 5.2 illustrates how SOPHON works. ©a The profiler first assesses GPU, CPU, and I/O

throughput to determine if the given DL workload needs offloading to reduce I/O constraints. ©b If

the workload is I/O-bound, SOPHON moves to the second profiling stage, noting the time and size

changes for each preprocessing step across all samples. ©c With detailed metrics and knowledge

of compute and storage node resources, SOPHON formulates the best offloading plan per sample.

©d Offloading directives for each sample are then incorporated into data fetch requests to the

storage server, detailing the specific operations for offloading. ©e The storage server processes

these operations as instructed, sending back the partially processed data to the compute node. ©f

Finally, the compute node finishes any remaining preprocessing and forwards the data to GPUs for

training.

5.2.1 Two-Stage Profiler

To minimize the profiling overhead while collecting essential metrics for informed offloading de-

cisions, our approach harnesses a two-stage profiling process.

Inspired by Finding #5 and borrowing the idea from [113], the first stage briefly assesses the

108



primary bottleneck within the workload by measuring GPU, I/O, and CPU throughput. This is

achieved by executing 50 batches under three distinct settings: (1) model training on the GPU

using synthetic data to eliminate CPU or I/O delays, (2) data retrieval from remote storage, devoid

of CPU or GPU processing to isolate I/O throughput, and (3) CPU-intensive preprocessing on the

data cached during the second setting to gauge CPU throughput. This approach provides insights

into the workload’s throughput demands with minimal overhead (a typical training job spans over

50 epochs, each with thousands of batches). If the workload is I/O-bound, SOPHON proceeds

to the second profiling stage; otherwise, it defaults to the standard training without offloading.

CPU-bound scenarios may benefit from other solutions to mitigate preprocessing delays [54, 145].

In the second stage, we collect details on CPU time for preprocessing and changes in each sam-

ple’s size through all preprocessing operations. This stage, requiring detailed, sample-specific data,

involves processing the entire dataset, potentially incurring significant overhead. To minimize this,

we use an on-the-fly profiling method: we proceed with the first training epoch without offloading

any preprocessing tasks and collect essential per-sample metrics. This approach effectively lowers

profiling overhead, facilitating efficient acquisition of performance data.

We currently assume identical CPU types on compute and storage nodes, allowing prepro-

cessing times profiled on the compute node to be used for the storage node. We plan to explore

heterogeneous CPU scenarios in the future.

5.2.2 Offloading Policy

Leveraging the metrics obtained through comprehensive profiling, SOPHON determines the most

advantageous offloading strategy based on Findings #2-4.

Our strategy evaluates the potential size reduction and required preprocessing time for each

data sample to reach its minimum size. Samples showing size reduction compared to their raw

forms are considered for offloading. SOPHON measures offloading efficiency by the ratio of

size reduction to preprocessing time, where a higher ratio suggests better potential for data traffic
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reduction per CPU time spent. Therefore, samples are selected for offloading in descending order

of efficiency, prioritizing those with the most significant effect on reducing data traffic.

SOPHON makes the decision based on four key metrics: (1) TG: The GPU time for one

training epoch; (2) TCC: The CPU time on the compute node for local preprocessing, calculated

as the total local preprocessing time divided by the CPU core count; (3) TCS: The CPU time

on the storage node for offloaded preprocessing tasks, determined by dividing the total offloaded

preprocessing time by the storage node’s available CPU core count; (4) TNet: The time for data

transfer from remote storage to the compute node over one epoch, derived from the total data traffic

and the network bandwidth.

The first step uses a baseline profile without any offloading, characterized by TNet as the pre-

dominant metric due to the I/O-bound nature of the workload and TCS being 0 (no offloading).

From this point, SOPHON selects the sample with the highest offloading efficiency, effecting a

reduction in both TCC and TNet while elevating TCS. The goal is to aggressively minimize network

traffic until it ceases to be the limiting factor. This iterative selection of high-efficiency samples

continues until either of two conditions is met: (1) TNet ceases to be the predominant metric, or (2)

no further samples with positive offloading efficiency remain. Through this algorithm, SOPHON

minimizes network traffic without imposing excessive preprocessing load on the storage server.

5.2.3 Why Not Preprocess Just Once

One could contemplate a strategy where samples are selectively preprocessed just once to mini-

mum size and then stored for reuse across all epochs. While this simplifies the process, it risks

diminishing training accuracy. Random augmentations, typically applied during online prepro-

cessing, are crucial for DL training accuracy and should be performed in each epoch. In contrast,

our solution retains the original training’s preprocessing logic and preserves accuracy.
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5.3 Evaluation

We implement SOPHON in Python on top of PyTorch 1.8.0 in around 990 LOC. We utilize the

gRPC framework to facilitate communication for data fetch requests and responses between the

compute node and the remote storage server. Both the profiler and the offloading decision maker

are encapsulated within a custom PyTorch data loader.

We evaluate SOPHON using small-scale emulation experiments with GPEMU and MLECEmu

to quickly assess its performance and demonstrate its benefits. We plan to use more comprehensive

and realistic settings in the future.

WORKLOAD BENCHMARKS: We benchmark the effectiveness of SOPHON on image classifi-

cation tasks in deep learning training. To do this, we utilize the official PyTorch example training

script, taken directly from its GitHub repository [21]. We use GPEMU to emulate the training

of the AlexNet model, known for being compute-light and often bottlenecked by data fetching.

Our experiments are conducted on subsets of two widely-used datasets in computer vision deep

learning research: a 12GB subset of OpenImages [33] and an 11GB subset of ImageNet [127].

EXPERIMENT SETUP: We use a two-node setup: one serving as the compute node and the other

as the storage server. Both nodes are equipped with two Intel Xeon Gold 6126 @ 2.60GHz proces-

sors, and, thanks to GPEMU, physical GPUs are not required. On the compute node, we allocate

48 logical cores to eliminate preprocessing bottlenecks present in the original workload, making

I/O the primary bottleneck. GPEMU is used to emulate the training on an RTX-6000 GPU. The

CPU allocation on the storage node is varied to evaluate the impact of CPU overhead introduced

by offloading preprocessing.

To simulate a bandwidth-constrained environment, network throughput is capped at 500 Mbps.

On the storage node, the data loader is connected to an emulated (4+1)/(4+1) MLEC storage system

with 25 emulated disks, each throttled to a 200 Mbps read bandwidth. This configuration provides

a total of 5 Gbps intra-cluster bandwidth. This setup reflects the common assumption that intra-
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cluster bandwidth significantly exceeds inter-cluster bandwidth [48, 80, 88, 149].

SIMULATION OF REAL-WORLD CONFIGURATION: While we use small subsets that techni-

cally could fit into local storage, our experiments consistently fetch data from the remote storage

node. This mimics real-world scenarios where datasets exceed local storage capacities. For ex-

ample, the full OpenImages dataset totals 18TB [32, 103]. Each subset used in our experiments

comprises over 40,000 images, randomly selected from the original dataset to represent the variety

in sizes and preprocessing costs found in the full dataset.

We limit the network bandwidth to 500 Mbps to introduce an easy remote I/O bottleneck. In

practical scenarios, training ResNet50 on ImageNet with 8 V100 GPUs requires nearly 16 Gbps

of I/O bandwidth to fully utilize GPUs [103, 167], and even a 10 Gbps network could cause a

significant remote I/O bottleneck.

BASELINES: We establish several baselines for comparison: No-Off, the original training pipeline

without preprocessing offloading; All-Off, with all preprocessing operations of all samples of-

floaded to the storage node; FastFlow [145], a preprocessing offloading framework designed to

alleviate CPU bottlenecks, which treats all preprocessing operations as a single unit and does not

differentiate between data samples; and Resize-Off, which offloads only the Decode and Random-

ResizedCrop operations to the storage node, based on the observation that resizing reduces many

images’ sizes.

Our evaluation of SOPHON spans two distinct scenarios: one with ample CPU cores at the

remote storage, and another where CPU resources are limited.

5.3.1 Ample CPU Cores on Storage Node

We start our evaluation using a storage node with ample (48) CPU cores to maximize the benefits

of preprocessing offloading. Figure 5.3 displays both training times and data traffic per epoch for

all offloading policies.

All-Off has the longest training time across all policies, increasing data traffic by 1.9x for
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Figure 5.3: SOPHON’s effect with ample CPU cores. SOPHON cuts traffic/epoch time when

storage node has ample CPUs.

OpenImages and 5.1x for ImageNet when compared to No-Off. This is due to the data being

converted into float tensors, which results in substantially larger sizes for most samples.

FastFlow chooses to not offload preprocessing in the evaluated setups. This decision is in-

formed by its coarse-grained profiling analysis, which indicates that offloading all operations

would lead to increased training time.

Resize-Off reduces data traffic by 2x for the OpenImages dataset compared to No-Off due to

the large raw sizes of most images (76% of samples become smaller after Decode and Random-

ResizedCrop.) However, Resize-Off increases traffic by 1.3x compared to No-Off for the ImageNet

dataset due to its smaller average image size (only 26% of samples become smaller after Decode

and RandomResizedCrop.)

SOPHON improves performance for both datasets, thanks to its fine-grained offloading. For

OpenImages, SOPHON achieves a 2.2x reduction in data traffic compared to No-Off, outperform-

ing Resize-Off by not offloading preprocessing for samples that do not benefit. Unlike Resize-Off,

SOPHON manages to reduce data traffic by 1.2x for ImageNet, thereby reducing training time.

Selectively offloading preprocessing steps based on which images become smaller during prepro-

cessing allows SOPHON to treat each sample optimally.

5.3.2 Limited CPU Cores on Storage Node

Next, we evaluate SOPHON’s efficacy by varying the number of CPU cores allocated for prepro-

cessing on the storage node. We focus on the OpenImages dataset, which has demonstrated greater

benefits from preprocessing offloading. Figure 5.4 shows the results for OpenImages.
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Figure 5.4: SOPHON’s effect with limited CPU cores. SOPHON finds the best solution when

storage node has limited CPUs.

All-Off results in the longest training time due to increased data traffic. Additionally, training

time is further increased when only 1 CPU core is allocated for remote preprocessing, as the remote

CPU overhead creates a bottleneck.

FastFlow consistently decides against preprocessing offloading as it anticipates that offloading

all operations would increase the training time.

Resize-Off achieves the lowest data traffic among all configurations. However, its training time

is not optimal as it offloads an excessive amount of preprocessing to the remote server, causing

CPU overhead to create a new bottleneck. When the storage node has ≤ 2 CPU cores available for

preprocessing, Resize-Off performs even worse than No-Off.

Finally, SOPHON exhibits the shortest training time among all policies, effectively balanc-

ing the trade-off between data traffic reduction and offloaded CPU overhead. Notably, there are

diminishing returns for training time when allocating additional CPU cores. For instance, the tran-

sition from 0 cores to 1 leads to a 22-second reduction in epoch time, whereas moving from 4

to 5 CPU cores results in only a 9-second reduction. This demonstrates SOPHON’s proficiency

in selecting samples for offloading with the highest efficiencies, optimizing outcomes even under

CPU constraints.

5.4 Use Cases and Limitations

While our work manages to reduce remote data traffic for specific DL training workloads, we

understand that it might not help in some scenarios. Below we discuss the use cases of SOPHON
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and scenarios where it might not be beneficial.

REMOTE I/O BOTTLENECK IN DL TRAINING: DL training often involves large datasets to

enhance model accuracy. For instance, the Google OpenImages dataset totals 18TB [32, 103].

Such large datasets often exceed local storage capacities, leading to the use of remote cloud storage

services to fetch data during training. In some GPU clusters, 97.3% of DL jobs store their data in

cloud storage [167], resulting in a separation between GPU clusters and remote storage.

The rapid advancement in GPU computation speeds necessitates high-speed data transfers to

avoid data stalls [66, 103, 105, 113, 116, 162, 167]. Furthermore, GPU clusters often run hundreds

or thousands of DL training jobs simultaneously, putting substantial strain on the network between

GPU clusters and remote storage. For example, a 400 V100 GPU cluster requires an aggregate I/O

bandwidth of 200Gbps [167], while Azure’s maximum egress bandwidth is only 120Gbps [41].

This remote I/O bottleneck is likely to worsen in the future due to the fast evolvement of GPUs

[167].

SOPHON is effective for such scenarios where remote I/O bottlenecks may occur, as it reduces

remote data traffic.

DL TRAINING WITH ESSENTIAL NEED FOR ONLINE PREPROCESSING: Many DL training

jobs, especially computer vision models, require online preprocessing to enhance training accu-

racy. These workloads provide opportunities for SOPHON to reduce data traffic via selective

preprocessing offloading.

NEAR STORAGE PROCESSING SUPPORT: Modern cloud storage services increasingly support

near-storage data processing, facilitating the offloading strategies of SOPHON. For instance, Ceph

enables near-storage data processing through dynamic object interfaces [154]. Similarly, Amazon

S3 Object Lambda allows users to submit custom data processing code that is executed automati-

cally before data is returned [5].

SCENARIOS WHERE SOPHON MIGHT NOT WORK: SOPHON may not help for Large Lan-

guage Models (LLMs), where input data preprocessing is less critical for accuracy, limiting op-
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portunities for preprocessing offloading. Though LLMs are becoming more popular, a substantial

number of DL training jobs still exist in current clusters. This is because LLMs are often very

expensive to run, while many DL models can achieve satisfactory accuracy at a much lower cost.

SOPHON assumes CPU-based preprocessing and currently doesn’t support GPU-based strate-

gies like NVIDIA DALI [30]. However, we believe our findings also points to new opportunities

in GPU-based preprocessing scenarios. For example, one can selectively split preprocessing tasks

between GPUs and CPUs to reduce CPU-GPU data transfers.

SOPHON doesn’t help when the entire dataset can fit into local storage and thus remote I/O is

not needed. For such training scenarios, many prior works have focused on alleviating the potential

local I/O bottleneck through effcient caching and prefetching strategies[105, 113, 116].

5.5 SOPHON and Multi-Level Erasure Coding

We have introduced SOPHON, which effectively reduces network traffic between the compute

cluster and storage cluster through selective preprocessing offloading. While the idea of SOPHON

can be applied to any remote storage system, the nature of MLEC introduces specific challenges

that may arise, which we hope future work will address. Here, we discuss some of these potential

challenges.

Our current implementation assumes that preprocessing is offloaded to a centralized server

within the remote storage cluster, which first gathers data from the MLEC storage cluster and then

performs the preprocessing tasks. However, this approach could create significant overhead on the

centralized node. A more efficient strategy would be to distribute the preprocessing work across

each rack’s server, which would not only decentralize the workload but also reduce inter-rack

traffic within the cluster.

However, the nature of MLEC poses a challenge: the data is split and erasure-coded across

multiple racks, with each rack storing only one chunk of the data stripe. Since erasure coding is

applied at the block level rather than the file level, the encoder does not fully understand the file

116



structure. As a result, a single data sample (e.g., an image) could be spread across multiple racks,

meaning that a single rack’s server may not have access to the entire sample locally. This creates a

challenge in efficiently distributing preprocessing tasks while maintaining data integrity.

Several possible solutions could address this challenge:

• Cross-Rack Coordination for Complete Sample Reconstruction: Implementing a cross-

rack coordination mechanism where rack servers collaborate to reconstruct full samples be-

fore preprocessing could decentralize the workload, though it would introduce inter-rack

communication overhead.

• Selective Rack-Level Preprocessing Based on Data Locality: Rack servers could prepro-

cess only the chunks stored locally, with the compute node handling final aggregation. This

would reduce inter-rack communication but require more sophisticated preprocessing logic.

• Padding with Chunk Size Optimization: Another approach is to add padding when stor-

ing data, ensuring that a complete file (e.g., an image) is stored within one rack. Proper

selection of chunk size based on file size distributions can minimize padding overhead while

maintaining the benefits of rack-local preprocessing.

Further complexity arises if we aim to offload preprocessing tasks directly to the storage de-

vices, leveraging the compute power of technologies like computational storage [94]. This adds

challenges because, in MLEC, each network-level chunk is divided into smaller local chunks for

local erasure coding, with each disk storing only a small portion of the local chunk. In this case,

additional solutions are required to address the complexities introduced by splitting the data across

both network and local levels.

5.6 Conclusion

We reveal opportunities and challenges in reducing data traffic through strategic preprocessing

offloading in DL training. We propose SOPHON, a framework that selectively offloads prepro-
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cessing tasks to minimize data traffic, utilizing online profiling and adaptive algorithms to optimize

for every sample. Our emulation results demonstrate that SOPHON can effectively reduce data

traffic and training time.
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CHAPTER 6

OTHER STORAGE WORK

In this chapter, we briefly mention our other work on availability and reliability of cloud storage

systems.

6.1 Layered Contention Mitigation for Cloud Storage

In this paper [150], we introduce an ecosystem of contention mitigation supports within the operat-

ing system, runtime and library layers. This ecosystem provides an end-to-end request abstraction

that enables a uniform type of contention mitigation capabilities, namely request cancellation and

delay prediction, that can be stackable together across multiple resource layers. Our evaluation

shows that in our ecosystem, multi-resource storage applications are faster by 5-70% starting at

90P (the 90thpercentile) compared to popular practices such as speculative execution and is only

3% slower on average compared to a best-case (no contention) scenario.

6.2 From Failure to Insight: Analyzing Disk Breakdowns in Large-Scale

HPC Environments

Disk failure data provides valuable insights for preventing failures, enhancing storage robustness,

guiding system design and deployment, and ensuring reliable operations at data centers. In our

colloborated paper [71] with ORNL and LANL, we introduced two disk failure datasets collected

from large-scale HPC production environments over the past five years, comprising over 5,000

failure records from more than 40,000 disks. We analyzed these datasets across multiple dimen-

sions, including temporal, spatial, and relational trends, and performed a comprehensive reliability

assessment. Our analysis yielded numerous observations and insights that influence various oper-

ational aspects of HPC storage systems. We believe this study offers a holistic understanding of

disk failure trends likely to interest the HPC storage community.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this chapter, we conclude and discuss potential future directions for this work.

7.1 Conclusion

In this document, we have provided the most comprehensive design considerations and analysis of

multi-level erasure-coded (MLEC) storage systems and explored its relationship to deep learning

(DL) workloads.

We presented comprehensive design considerations and analysis of MLEC at scale, highlight-

ing its multi-dimensional design space. We quantified MLEC’s performance and durability using

various evaluation strategies, identifying the MLEC schemes and repair methods that offer the best

failure tolerance and significantly reduce repair network traffic. We also demonstrated that MLEC

provides high durability, superior encoding throughput, and lower repair network traffic compared

to other erasure coding (EC) schemes.

We introduced an emulation-based approach to evaluate MLEC storage under DL workloads.

This includes GPEMU, a GPU emulator that facilitates fast and cost-effective evaluation and pro-

totyping of deep learning system research without the need for real GPUs. We also introduced

MLECEmu, a storage emulator that enables the evaluation of MLEC storage without requiring

physical disk arrays. Using these emulators, we demonstrated how to evaluate MLEC storage

under DL workloads and identify system bottlenecks.

Additionally, we have proposed SOPHON, a framework that selectively offloads preprocessing

tasks at a fine granularity to minimize cross-cluster data traffic between DL training and remote

MLEC storage. SOPHON uses online profiling and adaptive algorithms to optimize for each

sample. We emulated SOPHON in DL workloads with remote MLEC storage, and our results

show that SOPHON effectively reduces data traffic and training time.
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7.2 Future Work

Exploring Additional Levels of Erasure Coding

We introduced multi-level erasure coding, focusing on two levels: network-level and local-level

erasure coding. A potential future direction is to explore erasure coding with three or more lev-

els. This approach could enhance durability for extremely large data storage systems, where data

crosses multiple clusters or even zones, each with varying levels of network traffic, such as inter-

zone, inter-cluster, inter-rack, and intra-rack traffic.

On one hand, redundancy across clusters would protect against cluster-level failures. On the

other hand, bandwidth constraints increase at higher levels, for example, inter-cluster bandwidth

is more limited than intra-cluster bandwidth. This calls for erasure coding across more levels,

which introduces trade-offs in durability, storage overhead, computational complexity, and network

traffic.

With more levels, analysis becomes more complex; simulations will involve more disks and

might take longer to run. Exploring this direction could be valuable for scaling data storage sys-

tems.

Implementing Advanced MLEC Repair Methods

We demonstrated the configuration of MLEC storage using HDFS and ZFS, which formed the

basis for MLECEmu. However, the current implementation only supports the RALL repair method,

which repairs the entire local ZPool during catastrophic local failures. It does not support advanced

repair methods (RFCO, RHYB, RMIN) that can reduce repair traffic and improve durability.

Implementing these advanced methods is challenging due to the complexity of coordinating

HDFS and ZFS during repair. The key challenges include: (1) ZPool suspends I/O during catas-

trophic failures, halting repairs; (2) ZFS must signal HDFS for network-level repairs of specific

chunks, requiring robust checking mechanisms and well-designed APIs; and (3) HDFS must sup-
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port repairs of smaller local chunks. Future work could focus on overcoming these challenges and

implementing advanced repair methods in real systems.

Extending SODp to the Network Level and Applying it to MLEC

We have analyzed the effect of applying SODp to MLEC. The original SODp [96] was designed

for local-level SLEC, as a variation of local-Dp, but with improvements to tolerate concurrent

failures. The original SODp has not yet been applied to network-level erasure coding, as it was

focused on local SLEC. A potential future direction is to extend SODp to support network-level

erasure coding, allowing the design of MLEC with SODp at the top level.

This introduces challenges, particularly in adapting chunk placement for SODp so that each

chunk is placed on a different rack, a problem not encountered in local SODp. Future work could

explore these challenges and find solutions to extend SODp to network-level erasure coding.

Implementing SODp in Real Systems and Applying it to MLEC

Another future direction is to implement SODp in real systems. The original design of SODp in the

paper [96] was theoretical and evaluated only through simulations. It has not yet been implemented

in a real system. A promising direction would be to implement the chunk placement of SODp in

real systems, such as ZFS, which already supports local-Dp.

This would allow SODp to be implemented within the existing framework of local-Dp. Once

implemented, SODp could be applied to MLEC by configuring HDFS on top of SODp-ZFS to

create C/SODp or D/SODp MLEC storage clusters.

Evaluating MLEC with Real Failure Traces

The current analysis results focus on distribution-based failures. A future direction could be utiliz-

ing the simulator to evaluate trace-based failures. This would require obtaining real failure traces
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from large data centers. Fortunately, recent work [71] has released failure traces from national lab

data centers, which could be used for this analysis.

Extending GPEMU with More and Finer-Grained Features

We believe we have built the major features of GPEMU to facilitate faster prototyping and evalu-

ation of deep learning system research across various scenarios. However, it is not our intention

to encourage the community to use GPEMU as a full replacement for GPUs. We acknowledge

that GPEMU can be extended with more detailed features. Below, we discuss potential future

extensions.

LAYER-LEVEL PROFILING: Currently, our profiling operates at the model level. An enhance-

ment would involve collecting runtime statistics at the layer level (e.g., linear and convolutional

layers), allowing model computation times to be derived from the combination of these layers.

INTER-GPU COMMUNICATION TIME: GPEMU currently does not emulate inter-GPU commu-

nication time. We believe this can be profiled and emulated similarly to our existing time emulation

and supported by extending GPEMU.

COMPREHENSIVE SUPPORT FOR DISTRIBUTED TRAINING: GPEMU can be extended to em-

ulate the network communication for gradient synchronization during Distributed Data-Parallel

Training. We also aim to support other techniques like Fully Sharded Data Parallel (FSDP) [172]

and Model Parallelism (MP) [132].

SUPPORT DL INFERENCE: While our work has focused on DL training workloads, GPEMU

could be extended to emulate DL inference, enabling the evaluation and reproduction of system

optimization papers on DL inference [81, 118, 165].

GPU SPATIAL SHARING: The current sharing support in GPEMU focuses on time sharing. An

extension to support spatial sharing would allow multiple DL jobs to run concurrently on a GPU,

accounting for interference between jobs [137, 147, 159].
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SUPPORT LARGE LANGUAGE MODELS: GPEMU has mainly focused on traditional DL work-

loads. Given the rapid growth and popularity of large language models (LLMs), it would be valu-

able to extend GPEMU to emulate LLMs and foundation models.

Enhancing MLECEmu for Finer-Grained Performance and Latency Emulation

The current implementation of MLECEmu uses constant bandwidth throttling to control the through-

put of emulated in-memory disks. However, in reality, disk throughput is not constant and varies

based on factors such as file size and file location on the disk. A potential future extension would

be to account for these factors to provide more realistic emulations.

Additionally, we currently only emulate throughput. Emulating disk latency would allow us

to evaluate MLEC storage performance for latency-sensitive workloads, such as deep learning

inference. This requires considering the characteristics of hard drives (such as seek time) and

SSDs. This can be achieved by integrating existing disk simulators/emulators like DiskSim [44]

and FEMU [107].

Evaluating SOPHON with More Complex Configurations and Workloads

The current analysis and evaluation of SOPHON use a small workload and small-scale emulations

to quickly demonstrate its benefits. Future work could involve evaluating SOPHON with more

realistic workloads and exploring its potential across other datasets and deep learning training

categories, such as audio classification, video processing, and natural language tasks.

Extending SOPHON for Advanced Data Compression and Multi-Tenant Support

Data can be compressed to reduce size. Future work could involve designing a strategy to se-

lectively compress preprocessed data, further reducing data traffic while considering potential

increases in CPU overhead. This introduces a new trade-off between CPU overhead and traffic

reduction, which could be an interesting area for exploration.
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Additionally, future work could extend SOPHON to support environments with heterogeneous

CPU types across compute and storage nodes.

Moreover, SOPHON could be explored in multi-tenant environments, where multiple jobs

require preprocessing offloading. Future research could focus on developing a scheduler to effi-

ciently allocate storage-side CPUs among multiple jobs, maximizing global training efficiency.

Extending SOPHON for Distributed Preprocessing in MLEC Setups

Another future direction for SOPHON is to expand its functionality to support distributed prepro-

cessing in MLEC setups. The current implementation offloads preprocessing tasks to a centralized

server within the remote storage cluster, which first gathers data from the MLEC storage cluster

and then performs preprocessing. However, this centralized approach can create significant over-

head on the server. A more efficient strategy could distribute preprocessing tasks across each rack’s

server, decentralizing the workload and reducing inter-rack traffic.

MLEC, however, presents a challenge: data is split and erasure-coded across multiple racks,

with each rack storing only a single chunk of a data stripe. Since erasure coding operates at the

block level rather than the file level, the system lacks full awareness of the file structure. As a

result, a single data sample (e.g., an image) may be distributed across multiple racks, meaning that

no single rack server has the complete sample locally, which complicates efficient distribution of

preprocessing tasks.

Future work could explore solutions to address this challenge, such as implementing cross-rack

coordination to reconstruct complete samples before preprocessing, or applying selective rack-

level preprocessing based on data locality, where only locally stored chunks are processed, with

final aggregation performed by the compute node. Another approach could involve adding padding

to ensure that entire files (e.g., images) are stored within a single rack, with optimized chunk sizes

based on file distribution to minimize padding overhead.

Another potential future direction is to explore offloading preprocessing directly to storage
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devices, leveraging the computational power of emerging technologies like computational stor-

age [94]. This approach introduces new challenges, as MLEC divides each network-level chunk

into smaller local chunks, with each disk storing only a part of the local chunk. Future work could

focus on managing these complexities, particularly in coordinating data across both network and

local levels.
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