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ABSTRACT

We introduce a novel family of Gaussian Processes (GPs) kernels, derived from the limit of

graph neural networks (GNNs) when their layers become infinitely wide. We start with a

prominent example of GNNs, the graph convolutional networks (GCNs), and establish the

corresponding GP kernel. We conduct an in-depth analysis of the kernel universality and the

behavior in the limit of depth. To address computational efficiency, we propose a low-rank

approximation of the covariance matrix, enabling scalable posterior inference with large-scale

graph data. Our experiments reveal that the kernel achieves competitive classification and

regression performance on diverse graph datasets, while offering significant advantages in

computation time and memory efficiency.

Expanding on this, we derive various members of this kernel family by extending the

equivalence to several interesting GNN architectures. We consider their limits in depth, and

demonstrate how to efficiently compose these kernels from the building blocks of GNNs. Our

results show that these GNN-based kernels effectively capture rich graph information from

graph-structured data, achieving superior performance compared to their GNN counterparts.

We further delve into the dynamic evolution of these kernels during the training process.

Specifically, we introduce the Graph Neural Tangent Kernel (GNTK), representing the kernel

obtained at the end of training. We show that the GNTK can be computed efficiently using

our proposed methods and shares similar performance metrics with GNNGP kernels.

Finally, we conduct a comprehensive performance analysis, investigating how large GNNs

scale with respect to model size, dataset size, and training cost. We derive and empirically

validate the scaling laws governing these models, providing useful guidance for designing and

training scalable GNNs for various graph applications.
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CHAPTER 1

INTRODUCTION

1.1 Gaussian Processes

Machine learning is a branch of study that focus on using data and algorithms that enable

machines to learn from data, extract knowledge and patterns from them and make predictions

for new examples. Over the years, machine learning has become a powerful tool for solving

complex problems in various domains, such as object recognition, representation learning and

recommendation systems. With limited number of training examples and computational

resources, the key challenge in machine learning is how to dealing with noisy, incomplete

or heterogeneous data, while ensuring the robustness, efficiency and interpretability of the

learned models.

Gaussian processes (GPs) are a powerful and attractive class of machine learning models,

enabling us to make predictions about our data by incorporating prior knowledge. They

are widely used in machine learning, uncertainty quantification, and global optimization

[Rasmussen and Williams, 2006], because of their simplicity and flexibility as building blocks

of more complex Bayesian models. For a given set of training points, there are potentially

infinitely many functions that fitting the data. Gaussian processes assign a probability to

each of these functions, with the mean of this probability distribution representing the most

probable characterization of the data. Additionally, the probabilistic view of GPs allows us

to estimate the confidence of the prediction result.

We give a brief introduction of the mathematical formula for Gaussian processes. Con-

sider a machine learning scheme where we are interested in to fitting a function to the

data. Our task is to model the underlying distribution from a dataset of N examples

X = {xi ∈ Rd : i = 1, · · · , N} and their target labels Y = {yi ∈ R : i = 1, · · · , N}.

The label is either a real number (regression) or a categorical value (classification). The
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Gaussian distribution is characterized by a mean function µ and a covariance function k,

with the following probability distribution:

f(x) ∼ GP(µ(x), k(x, x′)), µ : Rd → R, k : Rd × Rd → R. (1.1)

We often assume that µ = 0 to simplify the equations for our predictions: If µ ̸= 0,

we can just center the data in preprocessing step and add back the resulting values of µ

in the prediction. The covariance function k, also known as the kernel, determines the

characteristics of the distribution and the statistical model f(x) we want to predict: The

function f(x) follows a Gaussian distribution determined by its covariance matrix K, whose

entries are generated by evaluating the kernel for each pairwise combination of all points:

Y = f(X) ∼ N (0, K), Kij = k(xi, xj). (1.2)

The kernel describes the similarity between values of our function f(x). Kernels are

widely used in machine learning, particularly in support vector machines (SVMs), due to

their ability to measure similarity beyond the standard Euclidean distance (L2-distance).

There are numerous kernels that can describe different classes of functions, which can be

used to model the desired shape of the function. The following figure illustrates examples of

some common kernels for Gaussian processes.
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For each kernel, the covariance matrix is created from (N = 25) linearly spaced values ranging from [−5, 5].

Each entry in the matrix represents the covariance between points in the range of [0, 1]. Variance σ = 0.8,

Length l = 0.8, Periodicity p = 0.5, Variance σb = 0.3, Offset c = 0.

Figure 1.1: Various kernels used in Gaussian processes. Taken from [Görtler et al., 2019].

We now shift our focus back to the original task of prediction. In supervised learning

scheme, the goal of Gaussian processes is to learn the underlying distribution from training

examples and generalize to unseen test examples and predict their labels correctly. We denote

the training data as X1 the test data as X2. In Gaussian processes, each point is treated as a

random variable, and the corresponding joint distribution of X1 and X2 is a N -dimensional

Gaussian distribution N (0, K). In Bayesian inference, this is called the prior distribution.

If no training examples have been observed, this distribution is symmetric around µ = 0,

according to our original assumption.

Once provided with the training data, we can incorporate this additional information

into our model, yielding the posterior distribution X2|X1. We form the joint distribution

between the test points and the training points as

X1

X2

 = X ∼ N (0, K) = N


0

0

 ,

K11 K12

K21 K22


 . (1.3)
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The Gaussian conditioning determines the posterior distribution as

X2|X1 ∼ N (K21K
−1
11 X1, K22 −K21K

−1
11 K12). (1.4)

The result is also a multivariate Gaussian distribution. Unlike the prior distribution,

the result of conditioning the joint distribution of test and training data will most likely

have a non-zero mean and smaller covariance. The mean is used for prediction and the

covariance serves as an uncertainty measure. The closed-form posterior allows for exact

Bayesian inference, resulting in the great attractiveness and wide usage of GPs.

(Left) The prior distribution of a Gaussian process with a RBF kernel. (Right) The situation after

datapoints have been observed. The mean prediction is shown as the pink line and three samples are shown

as gray lines. In both plots the shaded region denotes twice the standard deviation at each input value x.

Figure 1.2: Prior vs. Posterior Distribution. Taken from [Görtler et al., 2019].

An example of GP prior and posterior distributions is illustrated in Figure 1.2, helping

to develop a visual intuition of the flexibility of GPs. For the prior distribution, no training

points have been observed, and accordingly the mean prediction remains at 0 with the

same standard deviation for each test point. For the posterior distribution, the Gaussian

conditioning precisely pass through each training point. The intuition behind is that if a

test point lies on the training point, the prediction value of our function should be the same

as the training point. The uncertainty of the prediction is smaller in regions closer to the
4



training point, suggesting that influence of observing a training point is limited locally.

1.2 Graph Learning

In this thesis, we focus on a particular type of data that is important in many applications:

Graph-structured data. It is not uncommon to observe objects connected to other entities.

The set of objects, and the connections between them, are naturally expressed as a graph.

We first establish what a graph is.

(Left) The adjacency matrix is a usual way of visualizing the connectivity of a graph, whose entries are

indicators showing if two nodes share an edge. (Right) Graphs are mathematical structures consisting of a

set of nodes, or vertices, and a set of edges that connect pairs of nodes. The edges can be directed, where

an edge has a source node and a destination node. They can also be undirected, where there is no notion of

source or destination nodes, and information flows both directions.

Figure 1.3: Definition of Graphs. Taken from [Sanchez et al., 2021].

Graphs are prominent in real world. For example, modern people are probably familiar

with social networks, a type of graph data. We further illustrate several important types of

data that can be modeled as graphs.

Images as Graphs. We typically represent an image as a rectangular grid of image

pixels. Another way to think of images is a graphs with a regular structure, where each pixel
5



as a node connected via edges to adjacent pixels (neighbors). The RGB value information

at each pixel is stored in a 3-dimensional attribute of the node representing the pixel. The

graph representation also helps to build an intuition on how to generalize convolutions over

images to convolutions over graphs, which we will discuss in the later section.

(Left) A simple example of a 5× 5 image in a rectangular grid. (Right) The same image as a graph, where

each node representing one of the 25 pixels in this case, and a nodes is connected via an edge to all its

adjacent pixels. (Center) The 25× 25 adjacency matrix of the graph. Note that each of these three

representations are different views of the same data.

Figure 1.4: Graph representation of a smiley face image. Taken from [Sanchez et al., 2021].

Text as Graphs. Text can be viewed as a sequence of words (or tokens). We can

associate a unique index with each word, thus creating a simple directed graph: each word

is a node connected via an edge to the node that follows it. This graph representation is

often used in Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM)

models. Other models, such as Transformers, can be comprehended as constructing a fully

connected graph between words and learn the relationship between them.
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Figure 1.5: Graph representation of a sequence of tokens. Taken from [Sanchez et al., 2021].

Molecules as Graphs. Molecules, the fundamental units of matter, consist of atoms

and electrons arranged in 3D space. When atoms maintain a stable distance, they form

covalent bonds. These bonds vary in length depending on whether they are single, double,

or triple bonds. Representing molecules as graphs is both convenient and common, with

atoms as nodes and covalent bonds as edges. Below is an example of a molecule and its

corresponding graph representation.

(Left) 3D representation of the molecule. (Center) Adjacency matrix of the molecule. (Right) Graph

representation of the molecule.

Figure 1.6: Graph representation of the Caffeine molecule. Taken from [Sanchez et al., 2021].

Social Networks as Graphs. Social networks analyze patterns in the collective be-

7



havior of individuals, institutions, and organizations. We can represent these networks as

graphs by modeling people as nodes and their interactions or relationships as edges.

(Left) Adjacency matrix of the social network. (Right) Graph representation of the social network.

Figure 1.7: Graph representation of the Zach’s karate club social network [Zachary, 1977].
Taken from [Sanchez et al., 2021].

Citation Networks as Graphs. In academic publishing, scientists frequently cite work

from other scientists. These citation networks can be visualized as graphs, where each paper

is a node and each citation is a directed edge connecting two nodes. Additional information,

such as a word embedding of the abstract, can be included in each node to enrich the graph.

Dataflow as Graphs. In computer vision, labeling objects in visual scenes can be

represented as graphs, with objects as nodes and their relationships as edges. Similarly,

machine learning models, programming code, and mathematical equations can be expressed

as graphs, where variables are nodes and operations are edges connecting these variables.

8



(Upper) The original image is segmented into five entities: each of the fighters, the referee, the audience

and the mat. (Lower) The relationships between these entities represented in a graph.

Figure 1.8: Graph representation of dataflow. Taken from [Sanchez et al., 2021].

1.3 Graph Neural Networks

In many real-world scenarios, labeled data is often limited or expensive, while unlabeled

data is abundant and easily accessible. This thesis delves into the semi-supervised learning

paradigm, where only a small amount of labeled data alongside a large amount of unlabeled

data can be used together for training [Zhu, 2008]. In recent years, representation learning

on graphs has emerged as a promising approach for this problem, when the labeled and

unlabeled data are connected by a graph. For example, consider a vast social network

with only a few users providing personal information, while we want to create personalized

advertising effectively and ethically for everyone. In such situations, the graph structures

9



play a key role allowing us to leverage all available data, both labeled and unlabeled, to train

a model with generalization capability.

In the thesis we focuses on node-level tasks, which are concerned with predicting the

identity or role of each node within a graph. Fig 1.9 below demonstrates a classic example

of node-level prediction problem on Zach’s karate club dataset, as we saw in Fig 1.7. The

prediction task is to classify each individual of the social network based on whether this

member shows allegiance to either the instructor or the administrator after a political rift.

Notably, the distance between a node and either the instructor or administrator correlates

with this label.

(Left) Initial graph with unlabled nodes. (Right) Graph with each node classified based on the alliance.

The dataset depicts a social network of individuals, with nodes represent individual karate practitioners and

edges denote interactions outside karate. Following a feud between instructor (Mr. Hi) and administrator

(John A.), the karate club splits. The task is to predict which one a member aligns with after the split.

Figure 1.9: Node-level prediction problem of the Zach’s karate club social network [Zachary,
1977]. Taken from [Sanchez et al., 2021].

A significant challenge in graph-based learning is representing graphs in a manner com-

patible with machine learning. Traditional models typically require regular, grid-like input

formats, but graphs are inherently lacking in fixed shapes or sizes, and vary widely in topology

and complexity. This irregularity complicates the application of standard machine learning

methods, as shown in 1.10.
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Figure 1.10: Left: image in Euclidean space. Right: graph in non-Euclidean space. Taken
from [Zhou et al., 2020] Fig 1.

Graph Neural Networks (GNNs) have marked a groundbreaking milestone in machine

learning on graphs [Zhou et al., 2020, Wu et al., 2021b], particularly in the context of semi-

supervised learning. They are capable of learning meaningful representations of nodes by

capturing both local and global information within the graph. This capability makes them

highly effective for various downstream tasks, such as clustering, prediction and generative

modelling. A common approach in many GNNs is the message-passing scheme [Gilmer et al.,

2017], where information from neighboring nodes is aggregated to update the representation

of a target node. Some notable examples include the Graph Convolutional Network (GCN)

[Kipf and Welling, 2017], the Graph Attention Network (GAT) [Veličković et al., 2018], and

the Graph Isomorphism Network (GIN) [Xu et al., 2019]. It is found that the performance of

GNNs tends to degenerate as the networks become deeper. This issue is often addressed by

incorporating techniques like residual or skip connections, as done by GraphSAGE [Hamilton

et al., 2017], Jumping Knowledge [Xu et al., 2018], and GCNII [Chen et al., 2020].

GNNs operate on the principle of propagating and aggregating information along the

edges of a graph. This concept can be viewed as a generalization of 2D convolution that

takes the weighted average of a node’s neighborhood information, as illustrated in Fig 1.11.
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(Left) 2D Convolution. Analogous to a graph, each pixel in an image is taken as a node where neighbors

are determined by the filter size. The 2D convolution takes the weighted average of pixel values of the red

node along with its neighbors. The neighbors of a node are ordered and have a fixed size. (Right) Graph

Convolution. To get a hidden representation of the red node, one simple solution of the graph

convolutional operation is to take the average value of the node features of the red node along with its

neighbors. Different from image data, the neighbors of a node are unordered and variable in size.

Figure 1.11: 2D Convolution vs. Graph Convolution. Taken from [Wu et al., 2021b] Fig 1.

The competitive performance of GNNs is often attributed to a proper choice of inductive

bias, which helps models generalize from training data. However, there is a trade-off: a

strong inductive bias might restrict the model’s flexibility, limiting its ability to capture all

patterns in the data and its generalization power, whereas a weak inductive bias could lead

to overfitting, when the model becomes too complex and fits irrelevant details in the training

data. Balancing these trade-offs is crucial for effective machine learning. The inductive bias

of GNN models inspire us to design GP models under limited observations, by building the

graph structure into the covariance kernel.

Another significant challenge in graph learning is designing efficient computational pro-

cedures [Daigavane et al., 2021]. From the example above, nodes in graphs typically connect

to only a few others, and the number of edges per node can be highly variable, which results

in sparse adjacency matrices. These sparse matrices, while space-efficient, can complicate
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learning from the graph’s global structure and the long-range dependencies. Benchmark

graph datasets used in GNN research often contain thousands or even millions of labeled

nodes [Hu et al., 2020b]. In a semi-supervised setting, this challenge is exacerbated, as the

adjacency matrix needs to be recursively usde in evaluation of the graph convolution op-

eration. Thus, designing efficient computational procedures for predictions (regression and

classification) while ensuring scalability concerning the number of training data is essential.

1.4 Main Idea

In this thesis, we propose a new family of Gaussian Processes (GPs) kernels that are derived

from the limit of graph neural networks (GNNs) when their layers are infinitely wide. We

call these kernels Graph Neural Gaussian Processes (GNNGP) kernels. We show that these

kernels can capture rich graph information from graph-structured data, and can be used

for various semi-supervised learning tasks on graphs. We also propose efficient and scalable

methods for computing these kernels and their derivatives, and analyze their properties

and their behavior in depth. We demonstrate the effectiveness and the efficiency of these

kernels on several graph datasets, and compare them with the state-of-the-art GNNs and

GPs models. We also study the evolution of these kernels as we train the model on data, and

introduce the Graph Neural Tangent Kernel (GNTK), which is the kernel obtained at the end

of the training process. We show that the GNTK has similar properties and performance as

the GNNGP kernels, and can be computed efficiently using our proposed methods. Finally,

we perform a comprehensive performance analysis of these kernels, and investigate how they

scale with respect to different factors, such as model size, dataset size, and training cost. We

derive and empirically verify the scaling laws of these kernels, and provide useful guidance

for designing and training scalable GNNs for various graph applications.

The rest of the thesis is organized as follows: Chapter 2 introduces the GNNGP kernels

and their computation methods. Chapter 3 extends the GNNGP kernels to different archi-
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tectures and combinations of GNNs. Chapter 4 introduces the GNTK and its computation

methods. Chapter 5 presents the experimental results and the performance analysis of these

kernels. Chapter 6 concludes the thesis and discusses the future work.
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CHAPTER 2

GCNGP KERNELS

2.1 Introduction

An intimate relationship between neural networks and GPs is known: a neural network

with fully connected layers, equipped with a prior probability distribution on the weights

and biases, converges to a GP when each of its layers is infinitely wide [Lee et al., 2018,

de G. Matthews et al., 2018]. Such a result is owing to the central limit theorem [Neal, 1994,

Williams, 1996] and the GP covariance can be recursively computed if the weights and biases

in each layer are iid Gaussian. Similar results for other architectures, such as convolution

layers and residual connections, were subsequently established in the literature [Novak et al.,

2019, Garriga-Alonso et al., 2019].

One focus of this work is to establish a similar relationship between GNNs and the limiting

GPs. We will derive the covariance kernel that incorporates the graph inductive bias as GNNs

do. We start with one of the most widely studied GNNs, the graph convolutional network

(GCN) [Kipf and Welling, 2017], and analyze the kernel universality as well as the limiting

behavior when the depth also tends to infinity.

In this section, we focus on a specific family of GPs, which we call GCNGP kernels, that

are derived from the limit of GCNs. We first review the definition and the computation

of GCNs, and then show how to obtain the corresponding NNGPs. We also analyze the

properties of these NNGPs, such as their universality and their depth limit. We then present

some experimental results on different graph datasets, and compare the performance and the

efficiency of GCNGP kernels with those of GCNs.

Meanwhile, we design efficient computational procedures for posterior inference (i.e.,

regression and classification). GPs are notoriously difficult to scale because of the cubic

complexity with respect to the number of training data. Benchmark graph datasets used
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by the GNN literature may contain thousands or even millions of labeled nodes [Hu et al.,

2020b]. The semi-supervised setting worsens the scenario, as the covariance matrix needs to

be (recursively) evaluated in full because of the graph convolution operation. We propose

a Nyström-like scheme to perform low-rank approximations and apply the approximation

recursively on each layer, to yield a low-rank kernel matrix. Such a matrix can be computed

scalably. We demonstrate through numerical experiments that the GP posterior inference is

much faster than training a GNN and subsequently performing predictions on the test set.

2.2 Kernels from Graph Convolutional Networks

We start with a few notations used throughout this paper. Let an undirected graph be

denoted by G = (V , E) with N = |V| nodes and M = |E| edges. For notational simplicity, we

use A ∈ RN×N to denote the original graph adjacency matrix or any modified/normalized

version of it. Using dl to denote the width of the l-th layer, the layer architecture of GCN

reads

X(l) = ϕ
(
AX(l−1)W (l) + b(l)

)
, (2.1)

where X(l−1) ∈ RN×dl−1 and X(l) ∈ RN×dl are layer inputs and outputs, respectively;

W (l) ∈ Rdl−1×dl and b(l) ∈ R1×dl are the weights and the biases, respectively; and ϕ is the

ReLU activation function. The graph convolutional operator A is a symmetric normalization

of the graph adjacency matrix with self-loops added [Kipf and Welling, 2017].

For ease of exposition, it will be useful to rewrite the matrix notation (2.1) in element-

sums and products. To this end, for a node x, let z
(l)
i (x) and x

(l)
i (x) denote the pre- and

post-activation value at the i-th coordinate in the l-th layer, respectively. Particularly, in an

L-layer GCN, x(0)(x) is the input feature vector and z(L)(x) is the output vector. The layer
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architecture of GCN reads

y
(l)
i (x) =

dl−1∑
j=1

W
(l)
ji x

(l−1)
j (x), (2.2)

z
(l)
i (x) = b

(l)
i +

∑
v∈V

Axvy
(l)
i (v), (2.3)

x
(l)
i (x) = ϕ(z

(l)
i (x)). (2.4)

The following theorem states that when the weights and biases in each layer are iid zero-

mean Gaussians, in the limit on the layer width, the GCN output z(L)(x) is a multi-output

Gaussian Process over the index x.

Theorem 1. Assume d1, · · · , dL−1 to be infinite in succession and let the bias and weight

terms be independent with distributions

b
(l)
i ∼ N (0, σ2b ), W

(l)
ij ∼ N (0, σ2w/dl−1), l = 1, · · · , L. (2.5)

Then, for each i, the collection {z(l)i (x)} ∈ RN over all graph nodes x follows the Gaussian

Process GP(0, K(l)), where the covariance matrix K(l) can be computed recursively by

C(l) = E
z
(l)
i ∼N (0,K(l))

[ϕ(z
(l)
i )ϕ(z

(l)
i )T ], l = 1, · · · , L, (2.6)

K(l+1) = σ2b1N×N + σ2wAC
(l)AT , l = 0, · · · , L− 1. (2.7)

with C(0) defined as

C(0) =
X(0)(X(0))T

d0
. (2.8)

All proofs of this paper are given in Appendix A. Note that different from a usual GP,

which is a random function defined over a connected region of the Euclidean space, here
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z(L) is defined over a discrete set of graph nodes. In the usual use of a graph in machine

learning, this set is finite, such that the function distribution degenerates to a multivariate

distribution. In semi-supervised learning, the dimension of the distribution, N , is fixed when

one conducts transductive learning; but it will vary in the inductive setting because the graph

will have new nodes and edges. One special care of a graph-based GP over a usual GP is that

the covariance matrix will need to be recomputed from scratch whenever the graph alters.

Theorem 1 uses the same construction C(0) as traditional literature [Lee et al., 2018],

the inner product that gives the covariance between two input nodes. Meanwhile, nothing

prevents us using any positive-definite kernel alternatively. For example, we could use the

squared exponential kernel 1

C(0)(x, x′) = exp

−1

2

d0∑
j=1

(
xj − x′j

ℓj

)2
 . (2.9)

Such flexibility in essence performs an implicit feature transformation as preprocessing.

2.3 Computation of Kernels

2.3.1 Computation in Kernel Matrices

Before deriving the approximation recursion, we note that for the ReLU activation ϕ, C(l)

in (2.6) is the arc-cosine kernel with a closed-form expression:

C
(l)
xx′ =

1

2π

√
K

(l)
xxK

(l)
x′x′

(
sin θ

(l)
xx′ + (π − θ

(l)
xx′) cos θ

(l)
xx′

)
, (2.10)

1. Here, we abuse the notation and use x in place of x(0)(x) in the inner product.
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where

θ
(l)
xx′ = arccos

 K
(l)
xx′√

K
(l)
xxK

(l)
x′x′

 . (2.11)

Hence, the main idea is that starting with recursive relationship in (2.6). Starting with

K(l), we compute the closed-form expression of C(l) by using (2.10), and then obtain an

approximation of K(l+1), and repeat. The procedure gives the following naive computation

algorithm:

Algorithm 1 Naive computation

Require: C(0) ≥ 0

1: K(0) ← σ2b1N×N + σ2wAC
(0)AT

2: for l = 0, · · · , L− 1 do

3: for x, x′ ∈ V do

4: C(l)(x, x′)← Ez∼N (0,K(l))[ϕ(z(x))ϕ(z(x
′))]

5: end for

6: K(l+1) ← σ2b1N×N + σ2wAC
(l)AT

7: end for

with time complexity O(LMN) and space complexity O(N2). For larger datasets, the

computation is the main computational bottleneck for GP posterior inference.

To reduce the computational costs, we resort to a low-rank approximation of C(l), from

which we easily see that K(l+1) is also low-rank using (2.6). Starting with C, we may

consider reducing the computation cost by using its by using the Nyström approximation

[Drineas and Mahoney, 2005]:

C(l) ≈ Ĉ(l) =

C
(l)
aa C

(l)
:a

T

C
(l)
:a C

(l)
:a (C

(l)
aa )
−1C(l)

:a
T

 , (2.12)

19



where subscript a denotes a set of Na landmark points and : denotes all remaining rows/columns.

Such an approximation requires only computation of terms C(l)
aa and C

(l)
:a , effectively a N×Na

submatrix. We may rewrite the formula in the Cholesky style as

C(l) ≈ Ĉ(l) = Chol(C(l)) Chol(C(l))T , Chol(C(l)) :=

 (C
(l)
aa )

1/2

C
(l)
:a (C

(l)
aa )
−1/2

 . (2.13)

Proceed with induction. Then, (2.6) leads to a Cholesky style approximation of K(l+1),

denoted by Q = Chol(K) ∈ RN×(Na+1):

K(l+1) ≈ K̂(l+1) := Q(l+1)Q(l+1)T , Q(l+1) =

(
σwAChol(C(l)) σb1N×1

)
. (2.14)

Clearly,

Q(l+1)Q(l+1)T = σ2b1N×N + σ2wAĈ
(l)AT , (2.15)

completing the induction. The Nyström computation is summarized in Algorithm 2:

Algorithm 2 Nyström computation

Require: C(0) ≥ 0

1: Q(0) ←
(
σwAChol(C(0)) σb1N×1

)
2: for l = 0, · · · , L− 1 do

3: for x ∈ V, x′ ∈ Va do

4: C(l)(x, x′)← E
z∼N (0,Q(l)Q(l)T )

[ϕ(z(x))ϕ(z(x′))]

5: end for

6: Q(l+1) ←
(
σwAChol(C(l)) σb1N×1

)
7: end for

Overall, the time complexity is O(LMNa + LNN2
a ) and space complexity is O(NNa).
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2.3.2 Scalable Computation in Posterior Inference

We start the exposition with the mean prediction. We compute the posterior mean

ŷc = K̂
(L)
cb (K̂

(L)
bb + ϵI)−1yb, (2.16)

where the subscripts b and c denote the training set and the prediction set, respectively. Let

there be Nb training nodes and Nc prediction nodes. The parameter ϵ, called the nugget, is

the noise variance of the training data.

Using the Nyström approximation summarized in Algorithm 2, K(L) is approximated by

a rank-(Na+1) matrix K̂(L) = Q(L)Q(L)T . Once it is formed, the (Nb+Nc)×Nb submatrix

of K(L) for the task can be approximated by

K̂
(L)
cb = Q

(L)
ca Q

(L)
ba

T
, K̂

(L)
bb = Q

(L)
ba Q

(L)
ba

T
. (2.17)

And using the push-through identity, the posterior mean is computed as

ŷc = Q
(L)
ca Q

(L)
ba

T
(
Q
(L)
ba Q

(L)
ba

T
+ ϵI

)−1
yb = Q

(L)
ca

(
Q
(L)
ba

T
Q
(L)
ba + ϵI

)−1
Q
(L)
ba

T
yb, (2.18)

where note that the matrix to be inverted has size (Na+1)× (Na+1), which is assumed to

be significantly smaller than Nb ×Nb. Similarly, the posterior variance is

V̂cc = K̂
(L)
cc − K̂

(L)
cb

(
K̂

(L)
bb + ϵI

)−1
K̂

(L)
bc (2.19)

= Q
(L)
ca Q

(L)
ca

T
−Q

(L)
ca Q

(L)
ba

T
(
Q
(L)
ba Q

(L)
ba

T
+ ϵI

)−1
Q
(L)
ba Q

(L)
ca

T
(2.20)

= ϵQ
(L)
ca

(
Q
(L)
ba

T
Q
(L)
ba + ϵI

)−1
Q
(L)
ca

T
. (2.21)

The computational costs of Q(L) and the posterior inference from (2.18) to (2.19) are sum-

marized in Table 2.1.
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Table 2.1: Computational costs for GCNGP.

M : number of edges; N : number of nodes; Na/Nb/Nc: number of landmark / training / prediction nodes;

L: number of layers. Assume Na ≪ Nb, Nc. For posterior variance, assume only the diagonal is needed.

Time O(·) Storage O(·)

Kernel computation LMNa + LNN2
a NNa

Posterior mean (2.18) NcNa +NbN
2
a (Nb +Nc)Na

Posterior variance (2.19) NcNa +NbN
2
a (Nb +Nc)Na

2.4 Properties

2.4.1 Universality

A covariance kernel is positive definite; hence, the Moore-Aronszajn theorem [Aronszajn,

1950] suggests that it defines a unique Hilbert space for which it is a reproducing kernel.

If this space is dense, then the kernel is called universal. One can verify universality by

checking if the kernel matrix is positive definite for any set of distinct points. 2

For the case of graphs, it suffices to verify if the covariance matrix for all nodes is positive

definite. We note (again) that for the ReLU activation ϕ, C(l) in (2.6) is the arc-cosine kernel

with a closed-form expression as a function of the angle between x and x′, hence named the

arc-cosine kernel [Cho and Saul, 2009].

It is also known that the expectation in (2.6) is proportional to the arc-cosine kernel

up to a factor
√

K(l)(x, x)K(l)(x′, x′) [Lee et al., 2018]. Therefore, we iteratively work on

the post-activation covariance and the pre-activation covariance (2.6) and show that the

covariance kernel resulting from the limiting GCN is universal, for any GCN with two or

more layers.

2. Note the conventional confusion in terminology between functions and matrices: a kernel function is
positive definite (resp. strictly positive definite) if the corresponding kernel matrix is positive semi-definite
(resp. positive definite) for any collection of distinct points.
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Theorem 2. Assume A is invertible and non-negative, and X(0) does not contain two lin-

early dependent rows. Then, K(l) is positive definite for all l ≥ 2.

2.4.2 Limit in the Depth

The depth of a neural network exhibits interesting behaviors. Deep learning tends to favor

deep networks because of their empirically outstanding performance, exemplified by gen-

erations of convolutional networks for the ImageNet classification [Krizhevsky et al., 2012,

Wortsman et al., 2022]; while graph neural networks are instrumental to be shallow because

of the over-smoothing and over-squashing properties [Li et al., 2018, Topping et al., 2022].

For multi-layer perceptrons (networks with fully connected layers), several previous works

have noted that the recurrence relation of the covariance kernel across layers leads to con-

vergence to a fixed-point kernel, when the depth L → ∞ [Lee et al., 2018]. We elaborate

this limit as follows:

Theorem 3. (Limit for NNGP)

Let δ = 1
2σ

2
w. The following results hold as l→∞.

1. When σ2b = 0, ρmin(K
(l)) ↗ 1, where ρmin denotes the minimum correlation between

any two nodes x and x′.

2. When δ < 1, the K(l) → q1N×N where q :=
σ2b

1−σ2w/2
linearly.

3. When δ > 1, the scaled κ(l) := K(l)/δl → vvT where vx :=

√
σ2b

σ2w/2−1
+K(0)(x, x).

The NNGP can be seen as a special case of GCNGP with adjacency matrix A = I. We

offer the parallel analysis for GCNGP with primitive, i.e. irreducible aperiodic non-negative

matrix A.

Theorem 4. (Limit for GCNGP)

Assume A is a symmetric primitive matrix, with Perron-Frobenius eigenvalue r > 0 and

corresponding eigenvector v. Let δ = 1
2σ

2
wr

2. The following results hold as l→∞.
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1. When σ2b = 0, ρmin(K
(l))↗ 1.

2. When δ < 1, K(l) converges linearly with a rate of convergence of δ1/2.

3. When δ > 1, the scaled κ(l) := K(l)/δl → cvvT for some constant c.

A few remarks follow. The first case implies that the correlation matrix converges

monotonously to a matrix of all ones. As a consequence, up to some scaling cl that may

depend on l, the scaled covariance matrix K(l)/cl converges to a rank-1 matrix. The third

case shares a similar result, with the scaling and limit explicitly spelled out. The second case

is challenging to analyze, and we note convergence of K(l) to a unique fixed point, dependent

only on A, σ2b and σ2w.

2.5 Experiments

In this section, we conduct a comprehensive set of experiments to evaluate the performance

of the GP kernels derived by taking limits on the layer width of GCN and other GNNs. We

demonstrate that these GPs are comparable with GNNs in prediction performance, while

being significantly faster to compute. We also show that the low-rank version scales favorably,

suitable for practical use.

2.5.1 Datasets

The experiments are conducted on several benchmark datasets of varying sizes, covering

both classification and regression. They include

1. predicting the topic of scientific papers organized in a citation network (Cora, Citeseer,

PubMed and ArXiv);

2. predicting the community of online posts based on user comments (Reddit);
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3. predicting the average daily traffic of Wikipedia pages using hyperlinks among them

(Chameleon, Squirrel, and Crocodile).

The datasets Cora/Citeseer/PubMed/Reddit are downloaded from the PyTorch Geomet-

ric library [Fey and Lenssen, 2019] and used as is. The dataset ArXiv comes from the Open

Graph Benchmark [Hu et al., 2020b]. The datasets Chameleon/Squirrel/Crocodile come

from MUSAE [Rozemberczki et al., 2021]. A summary of the datasets is given in Table 2.2,

and additional preprocessing details are given in Appendix B.

Table 2.2: Dataset Statistics.

The edge column lists the number of directed edges.

Dataset Task Nodes Edges Features Train/Val/Test Ratio

Cora Classification 2,708 5,429 1,433 0.05/0.18/0.37

Citeseer Classification 3,327 4,732 3,703 0.04/0.15/0.30

PubMed Classification 19,717 44,338 500 0.003/0.025/0.051

ArXiv Classification 169,343 1,166,243 128 0.54/0.18/0.28

Reddit Classification 232,965 11,606,919 602 0.66/0.10/0.24

Chameleon Regression 2,277 36,101 3,132 0.48/0.32/0.20

Squirrel Regression 5,201 217,073 3,148 0.48/0.32/0.20

Crocodile Regression 11,631 180,020 13,183 0.48/0.32/0.20

2.5.2 Methodology

We first conduct the semi-supervised learning tasks on all datasets by using GCN and GPs

with different kernels. These kernels include the one equivalent to the limiting GCN (GC-

NGP), a usual squared-exponential kernel (RBF), and the GGP kernel proposed by [Ng

et al., 2018]. 3 Each of these kernels has a low-rank version (suffixed with -X). RBF-X and

3. We apply only the kernel but not the likelihood nor the variational inference used in [Ng et al., 2018],
for reasons given in Appendix B.
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GGP-X 4 use the Nyström approximation, consistent with GCNGP-X.

For all datasets except Reddit, we train GCN using the Adam optimizer in full batch

for 100 epochs. Reddit is too large for GPU computation and hence we conduct mini-batch

training. Hyperparameter tuning is done on the validation set. For additional hyperparam-

eter details, see Appendix B.

GPs are by nature suitable for regression. For classification tasks, we use the one-hot

representation of labels to set up a multi-output regression. Then, we take the coordinate

with the largest output as the class prediction. Such an ad hoc treatment is widely used in the

literature, as other more principled approaches (such as using the Laplace approximation on

the non-Gaussian posterior) are too time-consuming for large datasets, meanwhile producing

no noticeable gain in accuracy.

2.5.3 Results

Table 2.3 summarizes the accuracy for classification and the coefficient of determination, R2,

for regression. Whenever randomness is involved, the performance is reported as an average

over ten runs. The results of the two tasks show different patterns. For classification,

GCNGP(-X) is sligtly better than GCN and GGP(-X), while RBF(-X) is significantly worse

than all others; moreover, the low-rank version is outperformed by using the full kernel

matrix. On the other hand, for regression, GCNGP(-X) significantly outperforms GCN,

RBF(-X), and GGP(-X); and the low-rank version becomes better. The less competitive

performance of RBF(-X) is expected, as it does not leverage the graph inductive bias. It is

attractive that GCNGP(-X) is competitive with GCN.

4. GGP-X in our notation is the Nyström approximation of the GGP kernel, different from a technique
under the same name in [Ng et al., 2018], which uses additionally the validation set to compute the prediction
loss.
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Table 2.3: Performance of GCNGP in comparison with GCN and typical GP kernels.

The Micro-F1 score is reported for classification tasks and R2 is reported for regression tasks.

Dataset GCN GCNGP GCNGP-X RBF RBF-X GGP GGP-X

Cora 0.8183±0.0055 0.8280 0.7980 0.5860 0.5850 0.7850 0.7410

Citeseer 0.6941±0.0079 0.7090 0.7080 0.6120 0.6090 0.7060 0.6470

PubMed 0.7649±0.0058 0.7960 0.7810 0.7360 0.7340 0.7820 0.7380

ArXiv 0.6990±0.0014 OOM 0.7011±0.0011 OOM 0.5382 OOM 0.6527

Reddit 0.9330±0.0006 OOM 0.9465±0.0003 OOM 0.5920 OOM 0.9058

Chameleon 0.5690±0.0376 0.6720 0.6852 0.5554 0.5613 0.5280 0.5311

Squirrel 0.4243±0.0393 0.4926 0.4998 0.3187 0.3185 0.2440 0.2251

Crocodile 0.6976±0.0323 0.8002 0.8013 0.6643 0.6710 0.6952 0.6810

We compare the running time of the methods covered by Table 2.3. Different from usual

neural networks, the training and inference of GNNs do not decouple in full-batch training.

Moreover, there is not a universally agreed split between the training and the inference steps

in GPs. Hence, we compare the total time for each method.
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For each dataset, the computation times are normalized against that of GCN.

Figure 2.1: Timing comparison.

Figure 2.1 plots the timing results, normalized against the GCN time for ease of com-

parison. It suggests that GCNGP(-X) is generally faster than GCN. Note that the vertical

axis is in the logarithmic scale. Hence, for some of the datasets, the speedup is even one to

two orders of magnitude.
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Figure 2.2: Scaling of the running time.

For graphs, especially under the semi-supervised learning setting, the computational cost

of a GP is much more complex than that of a usual one (which can be simply described as

cubic in the training set size). One sees in Table 2.1 the many factors that determine the cost

of our graph-based low-rank kernels. To explore the practicality of the proposed method, we

use the timings gathered for Figure 2.1 to obtain an empirical scaling with respect to the

graph size, M +N .

Figure 2.2 fits the running times with respect to the graph size M + N , plotted in the

log-log scale, by using a straight line. We see that for neither GCN nor GCNGP(-X), the

actual running time closely follows a polynomial complexity. However, interestingly, the

least-squares fittings all lead to a slope approximately 1, which agrees with a linear cost.

Theoretically, only GCNGP-X and GCN are approximately linear with respect to M + N ,

while GCNGP is cubic.

Chapter 2, in part, is a reprint of the material as it appears in [Niu et al., 2023].
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CHAPTER 3

GNNGP KERNELS: EXTENSIONS FROM GCNGP

3.1 Introduction

Graph Neural Networks (GNNs) have emerged as a powerful paradigm for learning on

graph-structured data, enabling a wide range of applications from social network analysis

to molecular biology [Zhou et al., 2020, Wu et al., 2021b]. While the Graph Convolutional

Network (GCN) architecture has been a significant milestone in this domain, researchers

have continued to explore various architectural innovations to overcome its limitations and

improve performance. In this section, we delve into three such notable variations: GCN with

skip/residual connections (GCNII), GraphSAGE, and Graph Attention Networks (GAT).

GCNII: Extending GCN with Skip Connections. The GCNII architecture intro-

duces skip connections, also known as residual connections, to the standard GCN framework

[Chen et al., 2020]. This enhancement addresses the over-smoothing problem that often

plagues deep GCN models, where repeated graph convolution operations lead to indistin-

guishable node representations. By incorporating initial residual and identity mapping,

GCNII allows for the construction of deeper models without the loss of representational

power, thereby preserving the discriminative node features across layers. GCNII shows its

effectiveness in semi-supervised tasks across various datasets in accuracy and robustness.

GraphSAGE: Inductive Learning on Large Graphs. GraphSAGE stands out as an

inductive framework that generates node embeddings by sampling and aggregating features

from a node’s local neighborhood [Hamilton et al., 2017]. Unlike transductive methods that

require all nodes to be present during training, GraphSAGE can generalize to unseen nodes,

making it particularly suitable for dynamic graphs. By learning a function that aggregates

local neighborhood information, GraphSAGE can efficiently produce embeddings for new

nodes, facilitating scalable and generalizable graph learning.
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GAT: Leveraging Attention Mechanisms in GNNs. Graph Attention Networks

(GAT) leverage masked self-attentional layers to weigh the importance of neighboring nodes

differently, allowing for a more nuanced aggregation of neighborhood information [Veličković

et al., 2018]. This approach enables nodes to attend over their neighborhoods’ features se-

lectively, implicitly assigning different weights to different nodes in a neighborhood. GATs

have demonstrated state-of-the-art results across various graph benchmarks, both transduc-

tive and inductive, showcasing their ability to adaptively learn from the graph structure.

Each of these architectural variations represent significant strides in the evolution of

GNNs, introducing novel mechanisms to capture and leverage graph-structured data more

effectively. By exploring the unique properties and applications of these advanced archi-

tecture variations, we gain deeper insights into the design and optimization of GNNs for a

multitude of graph-based learning tasks.

3.2 Composing Graph Neural Network-Inspired Kernels

In Chapter 2, we show the equivalence between GCNs and GCNGPs in the limit of infi-

nite width in Theorem 1, which suggests the covariance matrix of the limiting GP can be

computed in a composable manner. Moreover, we also derived the low-rank approximation

of the covariance matrix in Algorithm 2, indicating they can be similarly composed. Alto-

gether, such a nice property allows one to easily derive the corresponding covariance matrix

and its approximation for a new GNN architecture, like writing a program and obtaining

a transformation of it automatically through operator overloading [Novak et al., 2020]: the

covariance matrix is a transformation of the GNN and the composition of the former is in

exactly the same manner and order as that of the latter. We call the covariance matrices

programmable.

For example, we write a GCN layer as X ← Aϕ(X)W+b, where for notational simplicity,

X denotes pre-activation rather than post-activation as in the earlier sections. The activation
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ϕ on X results in a transformation of the kernel matrix K into g(K), defined as:

C = g(K) := Ez∼N (0,K)[ϕ(z)ϕ(z)
T ], (3.1)

due to (2.6). Moreover, if K admits a low-rank approximation QQT where

Q = Chol(K) := K:aK
−1/2
aa . (3.2)

then g(K) admits a low-rank approximation Chol(g(QQT )).

The next operation, graph convolution, multiplies A to the left of the post-activation.

Correspondingly, the covariance matrix K is transformed to AKAT and the low-rank ap-

proximation factor Q is transformed to AQ. Then, the operation, multiplying the weight

matrix W to the right, will transform K to σ2wK and Q to σwQ. Finally, adding the bias b

will transform K to K + σ2b1N×N and Q to
(
Q σb1N×1

)
. Altogether, we have obtained

the following updates per layer:

GCN : X ← Aϕ(X)W + b (3.3)

K ← σ2wAg(K)AT + σ2b1N×N (3.4)

Q←
(
σwAChol(g(QQT )) σb1N×1

)
. (3.5)

One may verify the K update against Theorem 1 and the Q update against Algorithm 2.

Both updates can be automatically derived based on the update of X.

The programmable property arises from the correspondence between neural network

building blocks and kernel operations, allowing for the design of kernels that reflect the

inductive biases of their GNN counterparts. To elucidate this concept, we present Table 3.1

that maps common neural network components to their analogous kernel operations.
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Table 3.1: Neural network building blocks, kernel operations, and the low-rank counterpart.

Building block Neural network Kernel operation Nyström operation

Input X ← X(0) K ← C(0) Q← Chol(C(0))

Bias term X ← X + b K ← K + σ2b1N×N Q←
(
Q σb1N×1

)
Weight term X ← XW K ← σ2wK Q← σwQ

Graph convolution X ← AX K ← AKAT Q← AQ

Activation X ← ϕ(X) K ← g(K) Q← Chol(g(QQT ))

Independent sum X ← X1 +X2 K ← K1 +K2 Q←
(
Q1 Q2

)
Skip connection X ← β1X + β2XW K ← (β21 + β22σ

2
w)K Q←

√
β21 + β22σ

2
wQ

Mean aggregation X ← XW1 + AXW2 K ← σ2w1
K + σ2w2

AKAT Q←
(
σw1Q σw2AQ

)
Self attention X ← ζ(d−1XXT )X K ← ζ(K)Kζ(K)T Q← ζ(QQT )Q

Using this framework, we can understand the construction of GCNGP and GINGP ker-

nels. For another example of the composability, we consider the popular GIN layer [Xu et al.,

2019], which we assume uses a 2-layer MLP after the neighborhood aggregation:

GIN : X ← Aϕ(ϕ(X)W + b)W ′ + b′ (3.6)

K ← σ2wAg(K
′)AT + σ2b1N×N , K ′ = σ2wg(K) + σ2b1N×N (3.7)

Q←
(
σwAChol(g(Q′(Q′)T )) σb1N×1

)
, Q′ =

(
σw Chol(g(QQT )) σb1N×1

)
.

(3.8)

Building on the established concepts, we extend the idea to three novel variations of

GNNs: GCNII, GraphSAGE, and GAT in the following section. By translating these ar-

chitectural innovations into kernel operations, we construct GNNGP kernels that retain the

expressive power of their GNN inspirations while also benefit from the computational ef-

ficiency and probabilistic nature of GPs. This approach paves the way for designing and
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training scalable GNNs that can effectively tackle a wide range of graph-based learning

tasks.

3.3 Variations in Architectures

3.3.1 Skip Connections

The GCNII architecture extends the standard GCN by incorporating initial residual connec-

tions and identity mapping to alleviate the over-smoothing problem [Chen et al., 2020]. The

layer-wise propagation rule for GCNII is given by:

X(l) =
(
(1− α)Aϕ(X(l−1)) + αX(0)

)
((1− β)I + βW (l)), (3.9)

where X(l) is the pre-activation values at the l-th layer; A is the graph convolutional operator

[Kipf and Welling, 2017]; α and β are hyperparameters controlling the amount of initial

residual and identity mapping; I is the identity matrix; W (l) is the layer-specific trainable

weight matrix; and ϕ is the ReLU activation function.

This formula incorporates the initial node features X(0) and the transformed node features

ϕ(X(l−1)) from the previous layer, combined through the weights W (l). This helps maintain

distinct node representations across layers, enhancing the model’s depth without losing its

discriminative power. When these skip/residual connections are between two layers separated

by a fully connected layer, we conclude that the two inputs are independent and we write

the updates of K and Q as in the last row of the table. For example, here is the composition
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for the GCNII layer [Chen et al., 2020], where a skip connection with X(0) occurs:

GCNII : X ←
(
(1− α)Aϕ(X) + αX(0)

)
((1− β)I + βW ) (3.10)

K ←
(
(1− α)2Ag(K)AT + α2C(0)

)
((1− β)2 + β2σ2w) (3.11)

Q←
(
(1− α)AChol(g(QQT )) αQ(0)

)√
(1− β)2 + β2σ2w. (3.12)

We leave the proof of the recursive formula (3.10) in Appendix A.

3.3.2 GraphSAGE

GraphSAGE generates embeddings by sampling and aggregating features from a node’s

local neighborhood [Hamilton et al., 2017]. For simplicity, we focus on the mean-aggregation

version of GraphSAGE, whose update rule for a node u in GraphSAGE is:

X(l)(u) = W
(l)
1 ϕ(X(l−1)(u)) +W

(l)
2 ·meanv∈N (u)ϕ(X

(l−1)(v)). (3.13)

As before, X denotes pre-activation rather post activation and X(l)(u) denotes the feature

vector of node u at layer l. A GraphSAGE layer has two weight matrices, W (l)
1 and W

(l)
2 ,

and hence we use two variance parameters σw1 and σw2 for them, respectively. N (u) denotes

the neighborhood of u, and the mean is computed on all nodes in the neighborhood.

This method combines the node’s own features, weighted by W
(l)
1 , with the mean of its

neighbors’ features, weighted by W
(l)
2 and effectively the random walk matrix A whose

entries have a row sum of 1. The two resulting embeddings are also independent, and the
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updates are:

GraphSAGE : X ← ϕ(X)W1 + Aϕ(X)W2 (3.14)

K ← σ2w1
g(K) + σ2w2

Ag(K)AT (3.15)

Q←
(
σw1 Chol(g(QQT )) σw2AChol(g(QQT ))

)
. (3.16)

We leave the proof of the recursive formula (3.21) in Appendix A.

3.3.3 Attention Layers

The GAT architecture utilizes masked self-attention layers to weigh the importance of each

neighboring node’s feature [Veličković et al., 2018]. The attention mechanism in GAT is

defined as:

αuv =
exp(euv)∑

w∈N (u) exp(euw)
, euv = Att(xuW,xvW ), (3.17)

and

zu =
∑

v∈N (u)

αuvxvW, (3.18)

where zu and xu are the pre- and post-activation feature vector of node u, respectively;

W is the attention weight shared by queries, keys and values, following the convention of

the attention mechanism [Hron et al., 2020]; N (u) is the set of neighbors of u; αuv is the

attention coefficient between nodes u and v, being a row-wise masked softmax of the euv

matrix, which we denote by operator ζ : Rn×n → Rn×n:

[ζ(K)]uv :=
exp(Kuv)∑

w∈N (u) exp(Kuw)
. (3.19)
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The self-attention Att : Rn × Rn → R determines how much attention node u should pay

on node v during the aggregation, and enables the model to assign different importance to

different neighbors. We choose Att to be the d−1 scaled inner products as proposed in [Yang,

2019], and rewrite the attention coefficients in matrices as:

euv = d−1xuWWTxTv , E = d−1XWWTXT . (3.20)

Finally, the updates for each GAT layer are:

GAT : X ← ζ(d−1XWWTXT )XW (3.21)

K ← σ2wζ(σ
2
wK)Kζ(σ2wK)T (3.22)

Q← σwζ(σ
2
wQQT )Q. (3.23)

We leave the proof of the recursive formula (3.21) in Appendix A.

3.4 Properties of Composed Kernels

The programmable nature of GNNGPs allows us to extend the property observed in GCNs to

more complex architectures. We demonstrate this with the GCN2GP and GraphSAGE-GP

model.

Theorem 5. (Limit for GCN2GP)

Assume A is a symmetric primitive matrix, with Perron-Frobenius eigenvalue r > 0 and

corresponding eigenvector v. Let δ = 1
2((1 − β)2 + β2σ2w)(1 − α)2r2. The following results

hold as l→∞.

1. When α = 0, ρmin(K
(l))↗ 1.

2. When δ < 1, K(l) converges linearly with a rate of convergence of δ1/2.

37



3. When δ > 1, the scaled κ(l) := K(l)/δl → cvvT for some constant c.

Theorem 6. (Limit for GraphSAGE-GP)

Assume A is a symmetric primitive matrix, with Perron-Frobenius eigenvalue r > 0 and

corresponding eigenvector v. Let δ = 1
2(σ

2
w1

+ σ2w2
r2). The following results hold as l→∞.

1. The ρmin(K
(l))↗ 1.

2. When δ < 1, K(l) converges linearly with a rate of convergence of δ1/2.

3. When δ > 1, the scaled κ(l) := K(l)/δl → cvvT for some constant c.

A few remarks follow. The first case suggests that, without initial mappings, skip connec-

tions can only partially address the degeneration in kernels observed in deep GCNGPs. While

they may help mitigate the issue, the node features will still converge towards collinearity

and eventually become indistinguishable. The second and third case illustrate extending the

contraction property the from GCNGP to GCN2GP and GraphSAGE-GP. The results are

consistent: K(l) or its scaled version converge to a unique fixed point, aligning with the

observation that deep GNNs converge to linear models [Hron et al., 2020].

The result demonstrates the inherent problem with stability and predictability of these

deep architectures. Understanding these behaviors, and adjust to appropriate mechanisms

such as initial residual and identity mappings, is crucial for designing GNN or GNNGP

architectures that can effectively leverage depth while maintaining robustness and prediction

power. Balancing the benefits of depth with the need to prevent over-smoothing remains a

key challenge in the development of GNN models.

3.5 Experiments

We conduct experiments with several popularly used GNN architectures (GCNII, GIN, and

GraphSAGE) and GPs with the corresponding kernels. We test with the three largest
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datasets: PubMed, ArXiv, and Reddit, for the latter two of which a low-rank version of the

GPs is used for computational feasibility.

Table 3.2 summarizes the results. The observations on other GNNs extend similarly those

on the GCN. In particular, on PubMed the GPs noticeably improve over the corresponding

GNNs, while on ArXiv and Reddit the two families perform rather similarly. Noticeably, the

best architecture is also often shared between GNN and the GP counterpart. An exception

is ArXiv, on which GCN and GCNII results are close. It may improve with an extensive

hyperparameter tuning.

Table 3.2: Performance of GNNGP in comparison with corresponding GNNs.

The architecture with highest Micro-F1 score is highlighted in boldface.

Dataset GCN GCNII GIN GraphSAGE

PubMed
GNN 0.7649±0.0058 0.7558±0.0096 0.7406±0.0112 0.7535±0.0047

GNNGP 0.7960 0.7840 0.7690 0.7900

ArXiv
GNN 0.6989±0.0016 0.7008±0.0021 0.6340±0.0056 0.6984±0.0021

GNNGP-X 0.7011±0.0011 0.6955±0.0011 0.6652±0.0012 0.6962±0.0007

Reddit
GNN 0.9330±0.0006 0.9482±0.0007 0.9398±0.0016 0.9628±0.0007

GNNGP-X 0.9465±0.0003 0.9500±0.0003 0.9428±0.0005 0.9539±0.0003

Chapter 3, in part, is a reprint of the material as it appears in [Niu et al., 2023].
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CHAPTER 4

GRAPH NEURAL TANGENT KERNELS: EVOLUTION OF

GNNGP

4.1 Introduction

While the Neural Network Gaussian Process (NNGP) framework provides a theoretical un-

derstanding of randomly initialized NNs in the infinite width limit, the Neural Tangent

Kernel (NTK) represents a generalization of the Neural Network Gaussian Process (NNGP)

by incorporating the dynamics of learning over time [Jacot et al., 2018, Lee et al., 2019].

The NNGP provides a static view of the network’s function distribution before training.

In contrast, NTK extends this perspective by describing how the function evolves as the

network is trained using gradient descent.

The NTK was introduced in [Jacot et al., 2018] to study the convergence and gener-

alization properties of fully connected neural networks. Their work laid the foundation

for understanding the duality between training wide neural networks and kernel methods.

This duality has profound implications, as it simplifies the training dynamics and predic-

tions of wide neural networks into closed-form equations. Subsequent research has extended

the NTK framework to various neural network architectures beyond fully connected layers,

demonstrating its versatility and robustness.

For instance, [Du et al., 2019] introduced the concept of GNTKs, which correspond to

infinitely wide multi-layer GNNs trained by gradient descent. [Krishnagopal and Ruiz, 2023]

investigated the training dynamics of large-graph GNNs using GNTKs and graphons, re-

vealing how the GNTK evolves as the graph size increases. Nonetheless, these prior work

predominantly focus on graph classification tasks, leaving a gap in research on node classi-

fication and regression tasks. Here, we propose to adapt the idea and framework of GNTK,

as introduced by [Du et al., 2019], to node-level learning tasks, and gaining a deeper under-
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standing of the learning dynamics in graph-based models. This adaptation aims to explore

the potential of GNTKs in predicting individual node attributes and behaviors within a

graph, expanding their applicability beyond graph-level predictions.

The NTK effectively describes the network’s learning trajectory, providing a time-dependent

kernel that reflects the influence of gradient descent optimization on the function space [Avi-

dan et al., 2023]. At the initialization of a neural network, the function distribution is

described by the NNGP. As training commences, the NTK captures the changes in the

network’s output concerning infinitesimal changes in its parameters. This dynamic kernel

thus serves as a powerful tool for understanding both the static and dynamic aspects of

neural network behavior, offering valuable insights into the optimization and generalization

properties of deep learning models.

This transition from GNNGP to GNTK over the course of training illustrates the gen-

eralization capability of the GNNGP framework. We have represented the GNNGP family

and are now poised to introduce the Graph Neural Tangent Kernel (GNTK). The GNTK

not only captures the initial function distribution, akin to GNNGP, but also the network’s

evolution during training, providing a comprehensive view of the learning process in neural

networks with infinite width. This comprehensive understanding is pivotal for advancing the

theoretical and practical applications of GNNs in complex graph-based learning tasks.

4.2 Evolution of Graph Convolutional Networks

In this section, we once again represent our idea using GCN, extending the connection

between the training process of infinitely wide neural networks and Gaussian Processes,

and investigate the Graph Convolutional Network Neural Tangent Kernel (GCNNTK) as

evolution of the GCNGP.
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We briefly review the GNTK parameterization of GCN as follows:

y
(l)
i (x) =

σw√
dl−1

dl−1∑
j=1

W
(l)
ji x

(l−1)
j (x), (4.1)

z
(l)
i (x) = σbb

(l)
i +

∑
v∈V

Axvy
(l)
i (v), (4.2)

x
(l)
i (x) = ϕ(z

(l)
i (x)). (4.3)

Note we apply an explicit rescale weight d
−1/2
l−1 in the formula to avoid divergence with

infinite-width networks. The constant scalar σb and σw controls the bias term and weight

terms. Collect all P =
∑L

l=1(dl−1 + 1)dl neural network parameters W
(l)
ij , b

(l)
i into a vector

θ ∈ RP .

During the training process, we aim to minimize the loss function L using gradient descent

on the parameter θ, as described by

dθ(t)

dt
= −η∇θL = −η(∇θf)

T (∇fL), (4.4)

where η > 0 is the learning rate, f = f(X(0); θ(t)) ∈ RN×dL is the neural network output

at time t, and the Jacobian ∇θf ∈ RN×P ,∇fL ∈ RdL . Then according to the chain rule,

df(t)

dt
= (∇θf)

dθ(t)

dt
= −η[(∇θf)(∇θf)

T ](∇fL). (4.5)

The Neural Tangent Kernel (NTK), is defined in the above formula as

Θ = Θ(θ(t)) = (∇θf)(∇θf)
T ∈ RN×N . (4.6)

The following theorem states that during the training process, in the limit on the layer width,

the NTK for the GCN output z(L)(x) remains constant.
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Theorem 7. Assume d1, · · · , dL−1 to be infinite in succession and let the bias and weight

terms be independent with distributions

b
(l)
i ∼ N (0, 1), W

(l)
ij ∼ N (0, 1), l = 1, · · · , L. (4.7)

Then, for each i, the collection {z(l)i (x)} ∈ RN over all graph nodes x have a constant NTK

Θ(l), which can be computed recursively by

C(l) = E
z
(l)
i ∼N (0,K(l))

[ϕ(z
(l)
i )ϕ(z

(l)
i )T ], l = 1, · · · , L, (4.8)

Ċ(l) = E
z
(l)
i ∼N (0,K(l))

[ϕ̇(z
(l)
i )ϕ̇(z

(l)
i )T ], l = 1, · · · , L, (4.9)

K(l+1) = σ2b1N×N + σ2wAC
(l)AT , l = 0, · · · , L− 1, (4.10)

Θ(l+1) = σ2b1N×N + σ2wA(Θ
(l) ⊙ Ċ(l) + C(l))AT , l = 0, · · · , L− 1. (4.11)

with C(0) is defined the same as Theorem 1 as follows:

C(0) =
X(0)(X(0))T

d0
. (4.12)

To illustrate the evolution process during training, we present a visual representation in

Figure 4.1 with a minimal artificial example: Consider a dataset containing one training data

point and one test data point connected with each other. We represent the neural network’s

output with a single blue point, where the x-axis corresponds to the training data and the

y-axis corresponds to the test data. To capture the variability of neural network outputs,

we perform 100 random initializations of the neural network and record the output at four

distinct times: t = 0, 10, 20, 100. These times are displayed in four separate subplots. For

each time t, we compare the neural network’s output with the theoretical Gaussian Process.

The theoretical Gaussian Process is depicted with its mean µ(t) represented by a red point

and the 2σ confidence ellipse for that GP with black dashed line, which encapsulates the
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variability of the Gaussian Process at each time point.

Figure 4.1: Evolution of GNNGP on minimal artificial dataset.

The evolution of the Gaussian Process during training reveals how the network’s predic-

tions become more refined and accurate as the training progresses. At the initial time point

t = 0, the Gaussian Process reflects the prior distribution, which is broad and uncertain.

As training advances to t = 10 and t = 20, the Gaussian Process begins to converge, with

the confidence ellipse becoming narrower and the mean shifting closer to the true value. By

t = 100, the Gaussian Process has further evolved, providing a more precise and confident

prediction.

This progression highlights the dynamic nature of the Gaussian Process under the in-

fluence of gradient descent optimization. The GCNNTK captures this evolving behavior

and extends the GCNGP by incorporating the temporal dynamics of training, providing a
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richer and more detailed understanding of the learning process. The GCNNTK framework

offers a comprehensive view of how the network’s function and uncertainty change over time,

which is crucial for designing and optimizing graph neural networks and leverage the power

of Gaussian Processes.

4.3 Computation of GNTKs

4.3.1 Computation in Kernel Matrices

The recursive relationship in (4.11) gives the following naive computation algorithm:

Algorithm 3 Naive computation

Require: C(0) ≥ 0

1: K(0) ← σ2b1N×N + σ2wAC
(0)AT

2: Θ(0) ← K(0)

3: for l = 0, · · · , L− 1 do

4: for x, x′ ∈ V do

5: C(l)(x, x′)← Ez∼N (0,K(l))[ϕ(z(x))ϕ(z(x
′))]

6: Ċ(l)(x, x′)← Ez∼N (0,K(l))[ϕ̇(z(x))ϕ̇(z(x
′))]

7: end for

8: K(l+1) ← σ2b1N×N + σ2wAC
(l)AT

9: Θ(l+1) ← σ2b1N×N + σ2wA(Θ
(l) ⊙ Ċ(l) + C(l))AT

10: end for

with time complexity O(LMN) and space complexity O(N2).

We use the Nyström approximation introduced in GNN-GP.
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Algorithm 4 Nyström computation

Require: C(0) ≥ 0

1: Q(0) ←
(
σwAChol(C(0)) σb1N×1

)
2: R(0) ← Q(0)

3: for l = 0, · · · , L− 1 do

4: for x ∈ V, x′ ∈ Va do

5: C(l)(x, x′)← Ez∼N (0,Q(l)Q(l)T )[ϕ(z(x))ϕ(z(x
′))]

6: Ċ(l)(x, x′)← Ez∼N (0,Q(l)Q(l)T )[ϕ̇(z(x))ϕ̇(z(x
′))]

7: end for

8: Q(l+1) ←
(
σwAChol(C(l)) σb1N×1

)
9: R(l+1) ←

(
σwAChol((R(l)R

(l)
a· T )⊙ Ċ(l) + C(l)) σb1N×1

)
10: end for

Overall, the time complexity is O(LMNa + LNN2
a ) and space complexity is O(NNa).

4.3.2 Scalable Computation in Posterior Inference

Assume there are N data points, denoted by input X ∈ RN×d0 and target y ∈ RN , and we

use subscripts b and c the same meaning as Section 2.3.2. Consider the choice of L as the

empirical l2 loss, used in traditional literature [Jacot et al., 2018]:

L = L(t) = ∥f(Xb; θ(t))− yb∥22. (4.13)

Note that the empirical loss is computed on training points only. According to the gradient

update rule (4.5), we know that the output of an infinite width network is as follows:

d

dt

fb(t)

fc(t)

 = −ηΘ(L)(∇fL) = −η

Θ
(L)
bb Θ

(L)
bc

Θ
(L)
cb Θ

(L)
cc


fb(t)− yb

0

 . (4.14)
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Solving the above simple linear ODE gives the following closed-form solution:

fb(t) = yb − exp
(
−ηtΘ(L)

bb

)
(yb − fb(0)), (4.15)

fc(t) = fc(0) + Θ
(L)
cb

(
Θ
(L)
bb

)−1 (
I − exp

(
−ηtΘ(L)

bb

))
(yb − fb(0)), (4.16)

where fb(0) and fc(0) are zero-mean Gaussian processes according to Theorem 1. Thus the

estimated posterior mean with nugget ϵ is

ŷc(t) = Θ̂
(L)
cb

(
Θ̂
(L)
bb + ϵI

)−1 (
I − exp

(
−ηtΘ̂(L)

bb

))
yb. (4.17)

With Nyström approximation in Algorithm 4, we have

Θ̂
(L)
cb = R

(L)
ca R

(L)
ba

T
, Θ̂

(L)
bb = R

(L)
ba R

(L)
ba

T
. (4.18)

And using the push-through identity,

ŷc(t) = R
(L)
ca R

(L)
ba

T
(
R
(L)
ba R

(L)
ba

T
+ ϵI

)−1(
I − exp

(
−ηtR(L)

ba R
(L)
ba

T
))

yb (4.19)

= R
(L)
ca

(
R
(L)
ba

T
R
(L)
ba + ϵI

)−1
R
(L)
ba

T
(
I − exp

(
−ηtR(L)

ba R
(L)
ba

T
))

yb (4.20)

= R
(L)
ca

(
R
(L)
ba

T
R
(L)
ba + ϵI

)−1(
I − exp

(
−ηtR(L)

ba

T
R
(L)
ba

))
R
(L)
ba

T
yb. (4.21)

where the matrix inversion and exponentiation are done on a size (Na+1)×(Na+1) matrix,

significantly smaller than the whole matrix of size Nb ×Nb.

Similarly, the posterior variance is

V̂cc(t) = Θ̂
(L)
cc − Θ̂

(L)
cb

(
Θ̂
(L)
bb + ϵI

)−1
Θ̂
(L)
bc (4.22)

= ϵR
(L)
ca

(
R
(L)
ba

T
R
(L)
ba + ϵI

)−1(
I − exp

(
−ηtR(L)

ba

T
R
(L)
ba

))2

R
(L)
ca

T
. (4.23)
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The computational costs of GCNNTK and the posterior inference from (4.19) to (4.22)

are summarized in Table 4.1. The complexity differ only by a constant factor from the

computational cost of GCNGP in Table 2.1. Note that the GNTK cannot be computed

without the GNNGP kernel matrix, which adds to the computation complexity.

Table 4.1: Computational costs for GCNNTK.

M : number of edges; N : number of nodes; Na/Nb/Nc: number of landmark / training / prediction nodes;

L: number of layers. Assume Na ≪ Nb, Nc. For posterior variance, assume only the diagonal is needed.

Time O(·) Storage O(·)

Kernel computation LMNa + LNN2
a NNa

Posterior mean (4.19) NcNa +NbN
2
a (Nb +Nc)Na

Posterior variance (4.22) NcNa +NbN
2
a (Nb +Nc)Na

Similar to the programmable nature of GNNGP kernels, there exist correspondences

between neural network building blocks, NTK operations, and their low-rank counterparts.

This allows us to extend the GNTK framework to a wider range of GNN architectures,

enhancing its flexibility and applicability across various graph-based models.

Table 4.2: Neural network building blocks, NTK operations, and the low-rank counterpart.

Building block Neural network NTK operation Nyström operation

Input X ← X(0) Θ← 0 R← 0

Bias term X ← X + σbb Θ← Θ+ σ2
b1N×N R←

(
R σb1N×1

)
Weight term X ← σw√

d
XW Θ← σ2

wΘ+ σ2
wK R←

(
σwR σwQ

)
Graph convolution X ← AX Θ← AΘAT R← AR

Activation X ← ϕ(X) Θ← Θ⊙ K̇ R← Chol((RRT )⊙ ˙(QQT ))

Independent sum X ← X1 +X2 Θ← Θ1 +Θ2 R←
(
R1 R2

)
Skip connection X ← β1X + β2XW Θ← (β2

1 + β2
2σ

2
w)Θ + β2

2σ
2
wK R←

(√
β2
1 + β2

2σ
2
wR β2σwQ

)
Mean aggregation X ← XW1 +AXW2 Θ← σ2

w1
(Θ +K) + σ2

w2
A(Θ +K)AT R← ( σw1R σw2AR σw1Q σw2AQ )

Self attention X ← ζ(d−1XXT )X Θ← ζ(K)Θζ(K)T + 2K R←
(
ζ(QQT )R

√
2Q

)
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4.4 Experiments

We continue to evaluate the performance of GCNNTK using semi-supervised learning tasks

on six smaller datasets introduced in Table 2.2, along with GCN and GCNGP. GCNNTK

represents the temporal limit of GCNGP, and we include a low-rank version (suffixed with

-X) for the two methods.

Table 4.3 summarizes the performance on classification and regression results. GCN

performance and the two low-rank methods on large datasets are averaged over ten runs,

whereas other results involve no randomness. These results share a similar pattern to Table

2.3: For classification tasks, GCNNTK(-X) generally surpasses GCN while slightly better

than GCNGP, with the full kernel matrix outperforming the low-rank version. In contrast,

for regression tasks, GCNNTK(-X) shows superior results compared to GCNGP(-X) and

GCN, with the low-rank version leading. These findings align with theoretical expectations,

as GCNNTK is the temporal limit of GCNGP.

Table 4.3: Performance of GCNNTK in comparison with GCN and GCNGP.

The Micro-F1 score is reported for classification tasks and R2 is reported for regression tasks.

Dataset GCN GCNGP GCNNTK GCNGP-X GCNNTK-X

Cora 0.8183±0.0055 0.8280 0.8250 0.7980 0.7950

CiteSeer 0.6941±0.0079 0.7090 0.7180 0.7080 0.7030

PubMed 0.7649±0.0058 0.7960 0.7950 0.7810 0.7810

ArXiv 0.6990±0.0014 OOM OOM 0.7034±0.0028 0.7011±0.0011

Reddit 0.9330±0.0006 OOM OOM 0.9471±0.0006 0.9465±0.0003

Chameleon 0.5690±0.0376 0.6720 0.6802 0.6852 0.6928

Squirrel 0.4243±0.0393 0.4926 0.5007 0.4998 0.5084

Crocodile 0.6976±0.0323 0.8002 0.8036 0.8012 0.8058

For graph learning tasks, the trade-offs between accuracy and computational efficiency
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are crucial. The timing results of these tasks are shown in Table 4.4, whereas each time

is normalized against the GCN time. Table 4.4 shows the timing results, with each time

normalized against the GCN time. GCNNTK(-X) is generally faster than GCN, with the

exception of PubMed dataset. The GCNNTK(-X) shows competitive performance on cer-

tain tasks, yet have higher computation times compared to GCNGP(-X) methods due to

more complex kernel matrix computations. These insights are important for selecting the

appropriate method for specific graph-based learning tasks.

Table 4.4: Timing comparison of GCNNTK.

For each dataset, the computation times are normalized against that of GCN.

Dataset GCN GCNGP GCNNTK GCNGP-X GCNNTK-X

Cora 1.0000 0.1360 0.1470 0.1217 0.1326

CiteSeer 1.0000 0.1491 0.1571 0.1210 0.1323

PubMed 1.0000 0.8532 1.9420 0.0809 0.0876

ArXiv 1.0000 OOM OOM 0.1062 0.5412

Reddit 1.0000 OOM OOM 0.0054 0.0102

Chameleon 1.0000 0.2204 0.2540 0.3884 0.4010

Squirrel 1.0000 0.2693 0.4480 0.3136 0.3439

Crocodile 1.0000 0.4132 0.5796 0.6153 0.6578
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CHAPTER 5

PERFORMANCE ANALYSIS AND SCALING LAWS

5.1 Performance Analysis

The relationship between GNNs and GNNGPs allows us to examine the performance of

GNNs by considering their GNNGPs. By analyzing GNNGPs, we can gain insights into

the theoretical limits and properties of GNNs, providing a powerful analytical framework to

study their performance in the asymptotic regime.

5.1.1 Depth

One of the critical challenges in the performance of Graph Neural Networks (GNNs) is the

phenomenon of oversmoothing. As the depth of the network increases, node features tend

to converge towards similarity, making them indistinguishable. This effect is particularly

pronounced in deeper networks, where the repeated application of the graph convolution

operation causes the node representations to become overly smooth, leading to a loss of

valuable information and a subsequent deterioration in performance. The oversmoothing

issue is a significant bottleneck in the scalability of GCNs, as it limits the depth to which

these networks can be trained effectively without compromising their discriminative power.

Recent studies have proposed various methods to mitigate oversmoothing, such as in-

troducing skip connections and modifying the aggregation functions, such as in GCNII. A

natural question asks if the corresponding GP kernels behave similarly.
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Figure 5.1: Performance of GNNs and GNNGPs as depth L increases. Dataset: Pubmed.

Figure 5.1 shows that the trends of GCN and GCNII are indeed as expected. Inter-

estingly, their GP counterparts both remain stable for depth L as large as 12. Our depth

analysis (Theorem 4) suggests that in the limit, the GPs may perform less well because the

kernel matrix may degenerate to rank 1. This empirical result indicates that the drop in

performance may have not started yet.

5.1.2 Compute

The trade-off between accuracy and computational time is a fundamental consideration in

the design of GNNGP models. Higher accuracy often requires more complex models and

longer training times, which can be prohibitive in terms of computational resources. This

trade-off is particularly relevant in large-scale applications where the efficiency of the model

is as critical as its performance. Researchers are actively exploring methods to achieve a

balance where the model maintains high accuracy while being computationally feasible.

It is crucial to develop an empirical understanding of the accuracy-time trade-off it in-
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curs.In the GNNGP model, the number of landmark nodes, Na, controls the approximation

quality of the low-rank kernels and hence the prediciton accuracy. On the other hand, the

computational costs summarized in Table 2.1 indicate a dependency on Na as high as the

third power, highlighting the need for a comprehensive analysis of the trade-off between

accuracy and time in GNNGP models.

Figure 5.2: Performance of GCNGP-X as number of landmark nodes increases. Dataset:
Reddit.

Figure 5.2 clearly shows that as Na becomes larger, the running time increase is not

linear, while the increase of accuracy diminishes as the landmark set approaches the training

set. It is remarkable that using only 1/800 of the training set as landmark nodes already

achieves an accuracy surpassing that of GCN, by using time that is only a tiny fraction of

the time otherwise needed to gain an additional 1% increase in the accuracy.
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5.2 Scaling Laws

Another approach to understanding and enhancing the scalability of GNNs is through the

study of scaling laws. For various models and datasets, neural network performance has been

empirically observed to follow a power-law relationship with respect to factors such as model

size, dataset size, and training cost. These studies also offer simple yet valuable predictions

for training strategies, optimal computation allocations, and designing large models.

Scaling laws focus on the question: How to trade-off model size and training set size to

achieve optimal performance, under the constraint of total compute during training? We

aim to answer the question for GNNs. To achieve this, we start by training a range of

models varying both model size and dataset size. By systematically varying these factors,

we identify empirical estimators of scaling laws that govern GNN performance. We then use

the resulting training efficient frontier to fit a compute-optimal model and compare it with

its non-optimal counterpart.

Specifically, we employ a self-supervised learning framework, which has proven effective

for learning informative and transferable representations of graph data without relying on

manual labels. By incorporating self-supervised learning into our scaling law analysis, we

aim to reveal key insights into the trade-offs between model complexity and dataset size, as

well as the impact of training cost on the graph learning performance of GNNs. Our goal

is to discover new strategies for designing and training GNNs that can effectively handle

large-scale graph data, paving the way for future advancements in graph-based learning.

5.2.1 Introduction

We review the related work on graph self-supervised learning (SSL) and scaling laws.

While GNNs have garnered significant attention in the field of graph representation learn-

ing, most of the works have focused on supervised or semi-supervised learning settings, where

the model is directly trained by specific downstream tasks with labeled data. This may limit
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its application to real-world scenarios in which labels are often limited, expensive, and even

inaccessible due to requirement of extensive domain knowledge. Additionally, these methods

are prone to suffer from problems of over-fitting and poor generalization when training data

is limited. Furthermore, these models are vulnerable to adversarial attacks targeting the

labels, which compromises their robustness [You et al., 2021, Liu et al., 2022].

SSL is a powerful learning paradigm that alleviates the reliance on labeled data and

human supervision. As "the key to human-level intelligence" by Turing Award winners

Yoshua Bengio and Yann LeCun, SSL has been successfully applied to natural language

processing and computer vision, where it has shown to learn inherent structure of data

without human intervention. Compared with image and language sequence data, applying

SSL to graph data is challenging as graph data can capture rich structural and semantic

information that is not easily accessible by other data modalities.

A variety of Graph SSL frameworks have been introduced in the last few years. DGI

[Veličković et al., 2018] is a pioneering Graph SSL work that maximizes mutual information

between local patch representations and high-level summaries of graphs, capturing meaning-

ful embeddings within the graph by contrasting these representations. Building upon the

principles of DGI, InfoGraph [Sun et al., 2020] extends the principles to contrast between

the graph-level representation and the representations of substructures of different scales,

including nodes, edges, and entire graphs; GMI [Peng et al., 2020] jointly considers edge-

level reconstruction and node-level contrast; GraphCL [You et al., 2021] proposes contrasting

various data augmentations to the input graphs, such as node dropping, edge perturbation,

attribute masking, and subgraph sampling. These methods have demonstrated superior

performance on various graph-related tasks.

Scaling laws describe empirical relationships between model size, dataset size, training

cost, and test performance of a family of neural networks. Scaling laws have been studied

for various domains, particularly in natural language processing tasks, such as machine
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translation [Kolachina et al., 2012], speech [Hestness et al., 2017] and language modeling

[Kaplan et al., 2020, Hoffmann et al., 2022]. These studies reveal interesting insights into the

trade-offs and limits of neural architectures and learning algorithms, and propose formulas

to estimate the optimal model size or dataset size for a given task and budget. For example,

[Hoffmann et al., 2022] show that for compute-optimal training, the model size and dataset

size should be scaled in equal proportions to avoid under-training for large language models.

Scaling laws offer guidance for designing and training scalable neural networks across

various applications. However, the scaling laws of GNNs have not been well-studied, due

to the unique challenges and opportunities by the nature of graph data. Therefore, we aim

to extend the idea of scaling laws to GNNs, investigating how these factors influence GNN

performance, and how to choose the optimal model size to train for a given compute budget.

5.2.2 Optimal computation allocation

We use DGI [Veličković et al., 2018] as our self-supervised learning framework. DGI applies a

row-wise shuffle T on the node features of graph G to obtain an augmented graph G̃ = T (G),

and passes the two graphs through a GCN f to obtain node embedding

H = f(G), H̃ = f(G̃), (5.1)

and a graph-level summary s ∈ Rd as the mean node feature of H̃. The mutual information

between local features and the graph summary is estimated by a bilinear discriminator

D : Rd × Rd → R. The learning objective is defined as

L =
∑
hi∈H

logD(hi, s) +
∑
h̃i∈H̃

log
(
1−D(h̃i, s)

)
, (5.2)
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where hi and h̃i are the node embedding of node i in H and H̃, respectively. The DGI model

is trained by maximizing the score for the positive pair (node features and graph summary

from the same graph) and minimizing the score for the negative pair (node features and

graph summary from different graphs).

We assume a power-law relationship between the DGI loss L w.r.t model size N (number

of parameters of DGI model) and dataset size D (number of augmented graph nodes), as

done in [Kaplan et al., 2020]. Revisit the question behind scaling laws: How to trade-

off model size and training set size to achieve optimal performance, under the constraint

of total compute during training? The amount of compute C is a deterministic function

C = FLOPs(N,D) of model size N and dataset size D. With the notation, the question is

equivalent to minimizing L under the constraint of C:

min
N,D

L = L(N,D), s.t. C = FLOPs(N,D). (5.3)

For the number of computes C, we have the estimate C = FLOPs(N,D) ≈ 6ND, with

detailed counting given in Appendix B. We model the DGI loss L with a parametric function

as [Hoffmann et al., 2022], following a classical risk decomposition:

L̂(N,D) = E +
A

Nα +
B

Dβ
, (5.4)

whose first term represents the irreducible loss for an ideal model with infinite training time,

second term represents the difference between a neural network with N parameters and the

ideal model, and third term represents the difference between the model trained using finite

optimization steps and negative samples D and the same model trained to convergence.

Finally, minimizing the parametric loss function

min L̂ = E +
A

Nα +
B

Dβ
, s.t. C = 6ND, (5.5)
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gives the optimal allocation

N ∝ C
β/(α+β)
min , D ∝ C

α/(α+β)
min , (5.6)

and the optimal solution Cmin

L̂ = E +
F

C
γ
min

, γ =
αβ

α + β
, (5.7)

with coefficients given in [Hoffmann et al., 2022]. Therefore, with the power-law relationship,

the fitted function L̂ also has a power-law form w.r.t Cmin. When compute budget increases,

the optimal model size N and dataset size D should increase in β
α+β : α

α+β proportions on

log scale.

5.2.3 Empirical Results

We train a range of DGI models on the ArXiv dataset from the Open Graph Benchmark

[Hu et al., 2020b], varying both model size N (ranging 2.8k from to 33k) and the number

of samples D (ranging from 85m to 1.7b). Each of the experiment gives us a continuous

curve of DGI loss w.r.t FLOPs. We drop the first 5% of epochs and collect the epochs with

improvements in the SSL loss. We estimate parameters (A,B,E, α, β) by minimizing the

log loss between the predicted and observed values:

min
A,B,E,α,β

∑
runs j

(logLj − log L̂(Nj , Dj))
2, (5.8)

using Adam stochastic optimization [Kingma, 2014].
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Figure 5.3: SSL loss scales as a empirical power function of the model size (upper left),
training sample size (upper right), and amount of compute used for training (lower).

We summarize the scaling laws in Figure 5.3 as follows:

1. For models with a limited number of parameters, trained until convergence:

L(N) ∼ A

Nα , A ∼ 1.665, α ∼ 0.410. (5.9)

2. For models with sufficiently large number of parameters, trained with limited epochs:

L(D) ∼ B

Dβ
, B ∼ 180.760, β ∼ 0.427. (5.10)

3. Training an model with optimal allocation of a fixed compute budget (optimally sized
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model and optimal number of steps):

L(C) ∼ F

C
γ
min

, F ∼ 0.030, γ ∼ 0.209. (5.11)

The empirical results suggest that as the compute budget increases, both model size

and the amount of training data should be increased in approximately equal proportions,

in accordance with the observation in [Hoffmann et al., 2022]. It is also noticeable in the

negative curvature in the efficient frontier, indicating the empirical results put more weight

to points with significantly higher or lower FLOPs due to the square loss. The findings

emphasize the importance of balancing model capacity and training data volume to achieve

optimal performance.

5.3 Experiments

5.3.1 Datasets

We evaluate our method on five recent real-world datasets specifically chosen for their suit-

ability in rigorously evaluating semi-supervised node classification methods [Mernyei and

Cangea, 2020, Shchur et al., 2018]. Detailed statistics of these datasets are provided in

Table 5.1.

1. WikiCS: A reference network from Wikipedia, where nodes represent articles about

computer science and edges are hyperlinks. Node features are the average of pretrained

GloVe word embeddings of words in each article. Nodes are labeled with ten classes

representing branches of the field.

2. Amazon-Computers and Amazon-Photo: Networks of co-purchase relationships from

Amazon, where nodes are goods and edges indicate items frequently bought together.
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Nodes have sparse bag-of-words feature encodings of product reviews and are labeled

with subcategories of Amazon goods.

3. Coauthor-CS and Coauthor-Physics: Academic networks from the Microsoft Academic

Graph (KDD Cup 2016). Nodes represent authors, and edges indicate co-authorship.

Nodes have sparse bag-of-words features based on paper keywords, labeled by the

author’s most active research field.

Table 5.1: Dataset Statistics.

The edge column lists the number of directed edges.

Dataset Nodes Edges Features Classes

WikiCS 11,701 216,123 300 10

Am. Comp. 13,752 245,861 767 10

Am. Photo 7,650 119,081 745 8

Co. CS 18,333 81,894 6,805 15

Co. Phy. 34,493 247,962 8,415 5

5.3.2 Methodology

We evaluate the performance of the optimized DGI and demonstrate that proportionately

scaling the model size and dataset size can still outperform or match prior methods while

utilizing limited computational resources. Following the evaluation scheme introduced in

[Veličković et al., 2018], the optimized DGI model is initially trained in an unsupervised

manner, and the resulting embeddings are used to train a simple classifier on the downstream

task of node classification. We use a 2-layer GCN model as our graph encoder in pre-training,

and a fully connected layer as the downstream model.

We primarily compare the performance of the optimized DGI against the original DGI

and other self-supervised graph methods from published results [Zhu et al., 2021, Peng
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et al., 2020]. To directly compare our proposed method with supervised counterparts, we

also report the performance of GCN [Kipf and Welling, 2017], trained directly in end-to-

end fashion. This allows us to measure the quality of the inductive biases present in the

pre-trained model. For these baselines, the models, architectures, and graph-augmentation

settings follow those used in prior works.

5.3.3 Results

The results are shown in Table 5.2. Overall, our proposed model demonstrates strong per-

formance across all five datasets. The superior results of the optimized DGI compared to the

original DGI highlight the benefits of our optimal computation allocation strategy. Com-

paring the DGI methods with the supervised GCN baseline, we observe that our optimized

DGI method consistently matches or surpasses the performance of supervised learning. This

further validates the importance of proportionately scaling model size and dataset size to

achieve high performance with limited computational resources.

Table 5.2: Performance of optimized DGI on node classification.

Dataset Supervised GCN Optimized DGI DGI GMI

WikiCS 0.7719±0.0012 0.7628±0.0022 0.7535±0.0014 0.7485±0.0008

Am. Comp. 0.8651±0.0054 0.8525±0.0009 0.8395±0.0047 0.8221±0.0031

Am. Photo 0.9242±0.0022 0.9150±0.0004 0.9161±0.0022 0.9068±0.0017

Co. CS 0.9303±0.0031 0.9320±0.0008 0.9215±0.0063 OOM

Co. Phy. 0.9565±0.0016 0.9530±0.0004 0.9451±0.0052 OOM
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CHAPTER 6

CONCLUSION

6.1 Contributions

This dissertation has made several significant contributions to the field of graph neural

networks (GNNs).

Firstly, we have established a comprehensive framework for understanding the relation-

ship between GNN architectures and their corresponding Gaussian Process (GP) equivalents

(GNNGPs). We have extended this framework to include a variety of GNN architectures,

such as GCNII, GraphSAGE, and GAT, demonstrating how these architectures can be trans-

lated into programmable covariance matrices within the GP paradigm.

Secondly, we have proposed efficient computational methods for the scalable computation

of these kernels, addressing the challenges of applying GPs to large-scale graph data. Our

methods have shown a significant reduction in computational complexity from cubic to near-

linear, making it feasible to apply GPs to graphs with thousands or even millions of nodes.

Thirdly, we further consider the evolution of GNNGP kernels as we train the model on

data and study how the kernel values change over time. We propose the Graph Neural Tan-

gent Kernel (GNTK), which represents the kernel values obtained at the end of the training

process. We demonstrate that the GNTK shares similar properties and performance char-

acteristics with the GNNGP kernels, and it can be computed efficiently using our proposed

methods.

Finally, we have conducted a thorough performance analysis of these kernels, exploring

the trade-offs between model depth and oversmoothing, as well as between accuracy and

computational time. Our findings provide valuable insights into the design of deep GNNs

and highlight the potential of GNNGP models to achieve state-of-the-art performance on

various graph datasets.
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The contributions of this dissertation not only advance the theoretical understanding of

GNNs and their GP counterparts but also provide practical tools and insights that can be

leveraged by practitioners in the field.

6.2 Future Work

Looking ahead, there are several promising directions for future research. One area involves

further exploration of the depth and width of GNNs to mitigate the oversmoothing problem

without compromising the model’s expressiveness. Another area of interest is the devel-

opment of more sophisticated approximation techniques that can improve the efficiency of

GNNGP models while maintaining high accuracy.

Additionally, the integration of GNNGP and GNTK frameworks presents an exciting

avenue for research, offering the potential to better understand the learning dynamics of

GNNs during training. Finally, the empirical scaling laws derived in this work lay the

groundwork for future studies to optimize the computational resources required for training

GNNs, which could lead to more efficient and powerful graph learning algorithms.
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APPENDIX A

PROOFS AND ADDITIONAL THEOREMS

A.1 Proof of Theorem 1

For the purpose of clarity we add an intermediate variable Y (l) to the GCN as follows:

input = X(0) X(1) · · · X(L−1)

↓ ↗ ↓ ↗ ↓ ↗ ↓

Y (1) ϕ Y (2) ϕ · · · ϕ Y (L)

↓ ↗ ↓ ↗ ↓ ↗ ↓

Z(1) Z(2) · · · Z(L) = output.

(A.1)

In matrix form:

Y (l+1)

N×dl+1

= X(l)

N×dl
W (l+1)

dl×dl+1

, (A.2)

Z(l+1)

N×dl+1

= 1
N×1

b(l+1)

1×dl+1

+ A
N×N

Y (l+1)

N×dl+1

, (A.3)

X(l)

N×dl
= ϕ(Z(l))

N×dl
. (A.4)

For l = 1, · · · , L and i = 1, · · · , dl, denote the i-th column of Z(l) by z
(l)
i ∈ RN . For a node

v ∈ V , let z(l)i (v) denote the element w.r.t node v. Similarly define x
(l)
i (v) and y

(l)
i (v), then

specially x(0)(v) is the input of node v. Then we may rewrite the formula as

y
(l+1)
i (x) =

dl∑
j=1

x
(l)
j (x)w

(l+1)
ji , (A.5)

z
(l+1)
i (x) = b

(l+1)
i +

∑
v∈V

Axvy
(l+1)
i (v), (A.6)

x
(l)
i (x) = ϕ(z

(l)
i (x)). (A.7)
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We use mathematical induction. Assume each z
(l)
i is i.i.d, then x

(l)
i is also i.i.d after acti-

vation ϕ. Thus, y(l+1)
i (x) are infinite sum of i.i.d terms and thus normal, and by applying

multivariate CLT y
(l+1)
i ∈ RN is multivariate normal. Also for different i, the y

(l+1)
i are

identically distributed.

Moreover, terms like y
(l+1)
i (x), y

(l+1)
i′ (x′) with i ̸= i′ are jointly Gaussian, with zero covari-

ance:

Cov(y
(l+1)
i (x), y

(l+1)
i′ (x′)) =

dl∑
j=1

dl∑
j′=1

Cov
(
x
(l)
j (x)w

(l+1)
ji , x

(l)
j′ (x

′)w(l+1)
j′i′

)
= 0. (A.8)

Thus, they are independent, despite they may share the same X(l) terms. In conclusion,

each column of Y (l+1) is an i.i.d Gaussian Process. And hence, each column of Z(l+1) is

also an i.i.d Gaussian Process GP(0, K(l+1)).

The covariance K(l) can be computed recursively. Similar to the case of a fully connected

network, the covariance of Y (l+1) is

Cov(y
(l+1)
i (x), y

(l+1)
i (x′)) =

dl∑
j=1

dl∑
j′=1

Cov
(
x
(l)
j (x)w

(l+1)
ji , x

(l)
j′ (x

′)w(l+1)
j′i

)
(A.9)

=
σ2w
dl

dl∑
j=1

dl∑
j′=1

δjj′E[x
(l)
j (x)x

(l)
j′ (x

′)] (A.10)

= σ2wE[x
(l)
j (x)x

(l)
j (x′)], (A.11)

and in matrix form:

Cov(Y
(l+1)
i ) = σ2wE[X

(l)
j (X

(l)
j )T ] := σ2wC

(l). (A.12)
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Since Z
(l+1)
i = 1b

(l+1)
i + AY

(l+1)
i , We know

K(l+1) = σ2b1N×N + ACov(Y
(l+1)
i )AT (A.13)

= σ2b1N×N + σ2wAC
(l)AT . (A.14)

From the theorem Z
(l)
i ∼ GP(0, K

(l)), so

C(l) = E[X
(l)
i (X

(l)
i )T ] = Ez∼N (0,K(l))[ϕ(z)ϕ(z)

T ]. (A.15)

Specially, when we focus on a particular element C(l)(x, x′) the expectation can be computed

by integration over the marginal distribution of z ∼ N (0, K(l)):

z(x)

z(x′)

 ∼ N
0,

K(l)(x, x) K(l)(x, x′)

K(l)(x′, x) K(l)(x′, x′)


 . (A.16)

A.2 Proof of Theorem 2

We first establish the following lemma that states that the kernel is universal over a half-

space.

Lemma 1. The arc-cosine kernel is universal on the upper-hemisphere

S =
{
x ∈ Rd : ∥x∥2 = 1, x1 > 0

}
, (A.17)

for all d ≥ 2.

Proof. We know that ϕ(w ·x) is the kernel representation of the arc-cosine kernel. It suffices

to show for different x1, · · · , xm ∈ S, functions

φxi(w) = ϕ(w · xi), i = 1, · · · ,m, (A.18)
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are linearly independent.

We use proof by contradiction: Assume there exists c1, · · · , cm nonzero, such that

m∑
i=1

ciϕ(w · xi) =
m∑
i=1

ciφxi(w) ≡ 0. (A.19)

Without loss of generality, further assume m is the smallest in all that satisfies (A.19).

Let e1 = (1, 0, · · · , 0), then x · e1 > 0, ∀x ∈ S. Assume xm · e1 = min1≤i≤m xi · e1 > 0. Then

for 1 ≤ i ≤ m− 1,

xi · xm
xi · e1

<
1

xm · e1
=

xm · xm
xm · e1

. (A.20)

So there exists t such that

xi · xm
xi · e1

< t <
xm · xm
xm · e1

, 1 ≤ i ≤ m− 1. (A.21)

Let w = xm − te1, then

w · xm > 0, w · xi < 0, 1 ≤ i ≤ m− 1. (A.22)

Using (A.19) we know cm(w · xm) = 0, so cm = 0. Thus, c1, · · · , cm−1 and φx1 , · · · , φxm−1

also satisfies (A.19) with a smaller number m, which forms a contradiction.

Now with Lemma 1, we come back to the proof of Theorem 2.

Proof. By our assumption, C(0) does not contain two parallel rows. Using the recursive rela-

tion (2.6), we know K(0) is element-wise non-negative, hence K(1) is element-wise positive.

Assume the Cholesky decomposition K(1) = LLT and denote L = (l1, · · · , ln)T and ri =

∥li∥2 > 0, xi =
li
ri

. Then x1 = ±e1, and without loss of generality, we assume x1 = e1. Then
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for each xi, we know

xi · e1 =
li · l1
rir1

=
K(1)(i, 1)

rir1
> 0, (A.23)

and each ∥xi∥2 = 1, therefore xi ∈ S defined in Lemma 1.

By our assumption K(1) also does not contain two parallel rows. Thus, li are pairwise non-

parallel, and xi ∈ S are pairwise distinct. Using Lemma 1, we know C(2) = g(K(1)) is

positive definite, hence K(2) is positive definite.

A.3 Proof of Theorem 3

For a covariance matrix K, denote its standard deviance and correlation by

σK(x) =
√
K(x, x), (A.24)

ρK(x, x′) =
K(x, x′)√

K(x, x)K(x′, x′)
. (A.25)

From the closed-form formula (2.10) for the arc-cosine kernel, we have

ρC(l)(x, x
′) =

1

π

(
sin θ

(l)
x,x′ + (π − θ

(l)
x,x′) cos θ

(l)
x,x′

)
, (A.26)

ρK(l)(x, x
′) = cos θ

(l)
x,x′ . (A.27)

We define the correlation mapping from ρK(l) to ρC(l) :

f : cos θ 7→ 1

π
(sin θ + (π − θ) cos θ) , θ ∈ [0, π]. (A.28)

We first establish a few properties of f . A pictorial illustration of f is given in Figure

A.1.
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Figure A.1: Correlation mapping f .

Lemma 2. The following facts hold.

1. f is increasing and f is a contraction mapping on [−1, 1].

2. f(ρ) ≥ ρ and the equation holds only when ρ = 1.

Proof.

Denote ρ = cos θ ∈ [−1, 1]. Then,

f ′(ρ) =
∂f(ρ)

∂θ

∂θ

∂ρ
=
−1
π

(π − θ) sin θ · −1
sin θ

=
π − θ

π
∈ [0, 1], (A.29)

so f is increasing and f is a contraction mapping on [−1, 1].

We know that f(1) = 1. Using the contraction mapping we know f(ρ) ≥ ρ for ρ ∈ [−1, 1],

and the equation holds only when ρ = 1.

Now, we are ready to prove Theorem 3.
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Proof of Theorem 3, part 1. From Lemma 2 for the correlation mapping f , we have

ρK(l+1)(x, x
′) = f(ρC(l)(x, x

′)) ≥ ρK(l)(x, x
′). (A.30)

Taking the minimum over all pairs of x and x′, we have

ρmin(K
(l+1)) = f(ρmin(C

(l))) ≥ ρmin(K
(l)). (A.31)

so ρmin(K
(l))↗ some ρ ∈ [−1, 1] with ρ = f(ρ), hence ρ = 1.

Proof of Theorem 3, part 2. Start with diagonal elements. We have

K(l+1)(x, x) = σ2b +
σ2w
2
K(l)(x, x). (A.32)

so K(l)(x, x)→ q =
σ2b

1−σ2w/2
linearly.

For the off-diagonal elements, we have

K(l+1)(x, x′) = σ2b +
σ2w
2
σK(l)(x)σK(l)(x

′)f
(
ρK(l)(x, x

′)
)

(A.33)

≥ σ2b +
σ2w
2
σK(l)(x)σK(l)(x

′)ρK(l)(x, x
′) (A.34)

= σ2b +
σ2w
2
K(l)(x, x′), (A.35)

so

lim inf
l

K(l)(x, x′) ≥ σ2b +
σ2w
2

lim inf
l

K(l)(x, x′) =⇒ lim inf
l

K(l)(x, x′) ≥ q. (A.36)

Also

lim sup
l

K(l)(x, x′) ≤ lim sup
l

√
K(l)(x, x)K(l)(x′, x′) = q. (A.37)
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so K(l)(x, x′)→ q linearly. In conclusion, K(l) → q1N×N linearly.

Proof of Theorem 3, part 3. Again start with diagonal elements. When σ2w > 2, we have

κ(l+1)(x, x) =
σ2b

(σ2w/2)
l+1

+ κ(l)(x, x), (A.38)

so

lim
l→∞

κ(l)(x, x) =
∞∑
l=0

σ2b
(σ2w/2)

l+1
+ κ(0)(x, x) =

σ2b
σ2w/2− 1

+K(0)(x, x) = v2x. (A.39)

For the off-diagonal elements, we have

κ(l+1)(x, x′) =
σ2b
cl+1

+ σκ(l)(x)σκ(l)(x
′)f
(
ρκ(l)(x, x

′)
)

(A.40)

≥ σκ(l)(x)σκ(l)(x
′)ρκ(l)(x, x

′) (A.41)

= κ(l)(x, x′), (A.42)

so κ(l)(x, x′) has a limit c. Taking the limits on both side, we have

c = vxvx′ · f (c/(vxvx′)) , (A.43)

so c = vxvx′ . In conclusion, κ(l) → vvT .

A.4 Proof of Theorem 4

After the correlation mapping f in Lemma 2, we further consider the covariance mapping

g : K(l) 7→ C(l) defined in (2.6). We establish a few properties of g below.
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Lemma 3. For positive semi-definite matrices B,C ∈ RN×N , define

dist (B,C) = min
Y Y T=B,ZZT=C

∥Y − Z∥F . (A.44)

Then

1. dist (·, ·) is a valid distance function on the set of positive semi-definite matrices, with

dist (B,C)2 = tr (B) + tr (C)− 2∥B1/2C1/2∥∗, (A.45)

where (·)1/2 is the (symmetric) square root, and ∥ · ∥∗ is the nuclear norm.

2. dist (g(B), g(C)) ≤
√

1
2 · dist (B,C).

3. dist (B +B1, C + C1) ≤
√
dist (B,C)2 + dist (B1, C1)

2.

4. dist
(
ABAT , ACAT

)
≤ ∥A∥2 · dist (B,C).

Proof. 1. Rewrite the definition (A.44) as

dist (B,C) = min
Y Y T=B

min
ZZT=C

∥Y − Z∥F . (A.46)

For a given Y0 with Y0Y
T
0 = B, the sub-problem

min
ZZT=C

∥Y0 − Z∥F , (A.47)

is a orthogonal Procrustes problem. Choose an arbitrary Z with ZZT = C, and use

singular value decomposition Y T
0 Z = UΣV T , the solution is

Z0 = ZV UT . (A.48)
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Note that Y T
0 Z0 = UΣUT is positive semi-definite, and the minimum

min
ZZT=C

∥Y0 − Z∥2F = ∥Y0 − Z0∥2F (A.49)

= tr
(
Y0Y

T
0

)
+ tr

(
Z0Z

T
0

)
− 2 · tr

(
Y T
0 Z0

)
(A.50)

= tr (B) + tr (C)− 2∥Y T
0 Z0∥∗ (A.51)

= tr (B) + tr (C)− 2∥B1/2C1/2∥∗, (A.52)

is invariant w.r.t the choice of Y0. Therefore,

dist (B,C) = ∥Y0 − Z0∥F . (A.53)

Now for a positive semi-definite A, there exists X0 such that X0X
T
0 = A, and

dist (A,B) = ∥X0 − Y0∥F . (A.54)

Therefore

dist (A,B) + dist (B,C) = ∥X0 − Y0∥F + ∥Y0 − Z0∥F ≥ ∥X0 − Z0∥F ≥ dist (A,C) ,

(A.55)

so dist (·, ·) satisfies the triangle inequality. Easy to see it also satisfies positivity and

symmetry, so we conclude that dist (·, ·) is a valid distance function.

2. Assume dist (B,C) = ∥Y0 − Z0∥F . Denote

Y T
0 = (y1, · · · , yN ), ZT

0 = (z1, · · · , zN ), (A.56)
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then

dist (B,C)2 = ∥Y0 − Z0∥2F =
N∑
i=1

∥yi − zi∥22 =
N∑
i=1

[⟨yi, yi⟩+ ⟨zi, zi⟩ − 2⟨yi, zi⟩],

(A.57)

consists of only inner products. Now, using kernel representation of g:

φyi(w) = ϕ(w · yi), φzi(w) = ϕ(w · zi), (A.58)

we have a similar expression of inner products:

dist (g(B), g(C))2 ≤
N∑
i=1

∥φyi − φzi∥
2
2 =

N∑
i=1

[⟨φyi , φyi⟩+ ⟨φzi , φzi⟩ − 2⟨φyi , φzi⟩].

(A.59)

From Lemma 2 for the correlation mapping f , we have

⟨φyi , φyi⟩ =
1

2
⟨yi, yi⟩, (A.60)

⟨φzi , φzi⟩ =
1

2
⟨zi, zi⟩, (A.61)

⟨φyi , φzi⟩ =
1

2

√
⟨yi, yi⟩⟨zi, zi⟩f(ρyi,zi) ≥

1

2

√
⟨yi, yi⟩⟨zi, zi⟩ρyi,zi =

1

2
⟨yi, zi⟩. (A.62)

Combining the results, we have

dist (g(B), g(C))2 ≤
N∑
i=1

[⟨φyi , φyi⟩ − 2⟨φyi , φzi⟩+ ⟨φzi , φzi⟩] (A.63)

≤ 1

2

N∑
i=1

[⟨yi, yi⟩ − 2⟨yi, zi⟩+ ⟨zi, zi⟩] (A.64)

=
1

2
dist (B,C)2 . (A.65)
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3. Note that, in the definition (A.44)

dist (B,C) = min
Y Y T=B,ZZT=C

∥Y − Z∥F , (A.66)

Y and Z are not required to be a N×N square matrix, but rather any matrix of shape

N ×M and the definition remains the same.

Assume dist (B,C) = ∥Y0 − Z0∥F and dist (B1, C1) = ∥Y1 − Z1∥F . Then

dist (B +B1, C + C1) ≤ ∥
(
Y0 Y1

)
−
(
Z0 Z1

)
∥F (A.67)

=
√
∥Y0 − Z0∥2F + ∥Y1 − Z1∥2F (A.68)

=

√
dist (B,C)2 + dist (B1, C1)

2. (A.69)

4. Assume dist (B,C) = ∥Y0 − Z0∥F . Then

dist
(
ABAT , ACAT

)
≤ ∥AY0 − AZ0∥F (A.70)

≤ ∥A∥2∥Y0 − Z0∥F (A.71)

= ∥A∥2 · dist (B,C) . (A.72)

Now, we are ready to prove Theorem 4.

Proof of Theorem 4, part 1. When σ2b = 0, the recursion (2.6) can be simplified as

K(l+1) = σ2wAC
(l)AT , C(l) = g(K(l)). (A.73)
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To simplify notation, we temporarily write C = C(l). By the definition of ρmin(C),

C(x, x′) ≥ ρmin(C) · σC(x)σC(x′), ∀x, x′. (A.74)

Therefore

K(l+1)(x, x′) = σ2w
∑
v,v′

AxvAx′v′C(v, v′) (A.75)

≥ ρmin(C) · σ2w
∑
v,v′

AxvAx′v′σC(v)σC(v
′) (A.76)

= ρmin(C) · σ2w

(∑
v

AxvσC(v)

)∑
v′

Ax′v′σC(v
′)

 . (A.77)

Also

K(l+1)(x, x) = σ2w
∑
v,v′

AxvAxv′C(v, v′) (A.78)

≤ σ2w
∑
v,v′

AxvAxv′σC(v)σC(v
′) (A.79)

= σ2w

(∑
v

AxvσC(v)

)2

, (A.80)

and similarly

K(l+1)(x′, x′) ≤ σ2w

∑
v′

Ax′v′σC(v
′)

2

. (A.81)

Combining the results, we obtain

ρ(K(l+1))(x, x′) =
K(l+1)(x, x′)√

K(l+1)(x, x)K(l+1)(x′, x′)
≥ ρmin(C

(l)), ∀x, x′. (A.82)
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Hence

ρmin(K
(l+1)) ≥ ρmin(C

(l)). (A.83)

From Lemma 2 for the correlation mapping f , we have

ρmin(C
(l)) = f(ρmin(K

(l))), (A.84)

and by the properties of f ,

ρmin(K
(l+1)) ≥ f(ρmin(C

(l))) ≥ ρmin(K
(l)), (A.85)

so ρmin(K
(l))↗ some ρ ∈ [−1, 1] with ρ = f(ρ), hence ρ = 1.

Proof of Theorem 4, part 2. Consider mapping h : K(l) 7→ K(l+1) at each layer:

K(l+1) = σ2b1N×N + σ2wAg(K
(l))AT := h(K(l)). (A.86)

Note that

dist
(
h(K(l)), h(K̃(l))

)
= dist

(
σ2b + σ2wAg(K

(l))AT , σ2b + σ2wAg(K̃
(l))AT

)
(A.87)

≤ dist
(
σ2wAg(K

(l))AT , σ2wAg(K̃
(l))AT

)
(A.88)

≤
√

σ2wr
2 · dist

(
g(K(l)), g(K̃(l))

)
(A.89)

≤
√

1

2
σ2wr

2 · dist
(
K(l), K̃(l)

)
(A.90)

= δ1/2 · dist
(
K(l), K̃(l)

)
, (A.91)

so h is a contraction mapping. Using the Banach fixed-point theorem, we know h has a
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unique fixed point K, such that

K = σ2b1N×N + σ2wAg(K)AT = h(K). (A.92)

So K is dependent only on A, σ2b and σ2w. Let K̃(l) = K, we have

dist
(
K(l+1), K

)
≤ δ1/2 · dist

(
K(l), K

)
, (A.93)

so K(l) converges to K linearly with a rate of convergence of δ1/2.

Proof of Theorem 4, part 3. We have recursive relationship between κ(l) and κ(l+1):

κ(l+1) =
1

δl+1
(σ2b1N×N + σ2wAg(K

(l))AT ) =
σ2b
δl+1

1N×N +
2

r2
Ag(κ(l))AT . (A.94)

Using Lemma 3 for the covariance mapping g,

dist
(
κ(l+1), 0

)
≤ dist

(
σ2b
δl+1

1N×N , 0

)
+ dist

(
2

r2
Ag(κ(l))AT , 0

)
(A.95)

≤

√
Nσ2b
δl+1

+ dist
(
2g(κ(l)), 0

)
(A.96)

≤

√
Nσ2b
δl+1

+ dist
(
κ(l), 0

)
, (A.97)

so κ(l) is bounded.

Using the Perron-Frobenius theorem, we know v ≻ 0. Then

vTκ(l+1)v =
σ2b
cl+1

vT 1N×Nv +
2

r2
vTAg(κ(l))AT v (A.98)

≥ 2vT g(κ(l))v (A.99)

≥ vTκ(l)v, (A.100)
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so vTκ(l)v has a limit c > 0.

Also from the Perron-Frobenius theorem, r is a simple eigenvalue, and there is no other

eigenvalues with absolute value ≥ r. Let P = I − Projv = I − vvT , then

PA = AP, ∥PA∥2 = r′ < r. (A.101)

then

dist
(
Pg(κ(l))PT , 0

)2
= tr

(
Pg(κ(l))PT

)
(A.102)

= tr
(
g(κ(l))

)
− vT g(κ(l))v (A.103)

≤ 1

2
tr
(
κ(l)
)
− 1

2
vTκ(l)v (A.104)

= tr

(
1

2
Pκ(l)PT

)
(A.105)

= dist

(
1

2
Pκ(l)PT , 0

)2

. (A.106)

Using Lemma 3 for the covariance mapping g,

dist
(
Pκ(l+1)PT , 0

)
≤ dist

(
σ2b
δl+1

P1N×NPT , 0

)
+ dist

(
2

r2
PAg(κ(l))ATPT , 0

)
(A.107)

≤

√
Nσ2b
δl+1

+ dist

(
2

r2
PAPg(κ(l))PTATPT , 0

)
(A.108)

≤

√
Nσ2b
δl+1

+
r′

r
dist

(
2Pg(κ(l))PT , 0

)
(A.109)

≤

√
Nσ2b
δl+1

+
r′

r
dist

(
Pκ(l)PT , 0

)
, (A.110)

so Pκ(l)PT → 0.

Combining the results, we conclude that κ(l) → cvvT .
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A.5 Proof of Section 3.3

For initial residual and identity mapping used in GCNII (3.10) and GraphSAGE (3.14), the

key is the independent sum in Table 3.1. This building block is applicable here, as the

independence is guaranteed by the following lemma:

Lemma 4. Assume the input X passed through a fully connected layer X ← XW , where

the weight term W has width d → ∞ and elementwise i.i.d ∼ N (0,
σ2w
d ). Then X and

XW are elementwise independent; Further assume input X passed through two independent

fully connected layers, resulting in two outputs XW1 and XW2, then XW1 and XW2 are

elementwise independent.

Proof. For a finite dimensional distribution of X and XW , the number of shared weights in

the form of wij are also finite. With d → ∞, all these terms has a limit of 0, meaning the

input X and output XW are independent.

For a finite dimensional distribution of XW1 and XW2, the number of shared weights in the

form of xij are also finite. With d1, d2 →∞, they are jointly zero-mean normal distributed

because of multivariate CLT, and their products are sum of random variables symmetrically

distributed around 0. Thus these entries are uncorrelated and thus independent.

For self-attention layers in GAT (3.21), the proof is directly derived from Theorem 1:

Proof. Let

Y = XW, Z = ζ(E)Y. (A.111)

Using Theorem 1, each column of Y is an i.i.d Gaussian Process GP(0, σ2wC). Hence

E = d−1XWWTX = d−1
d∑

i=1

Yi(Yi)
T → σ2wC. (A.112)
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Therefore, each column of Z is an i.i.d Gaussian Process:

Zi ∼ GP
(
0, σ2wζ(σ

2
wC)Cζ(σ2wC)T

)
. (A.113)

A.6 Proof of Theorem 5

Proof of Theorem 5, part 1. When α = 0, the recursion (3.10) can be simplified as

K(l+1) = ((1− β)2 + β2σ2w)Ag(K
(l))AT , (A.114)

which is same up to a constant as Theorem 4, part 1. The rest is the same.

Proof of Theorem 5, part 2. Consider mapping h : K(l) 7→ K(l+1) at each layer:

K(l+1) =
(
(1− α)2Ag(K(l))AT + α2C(0)

)
((1− β)2 + β2σ2w) := h(K(l)). (A.115)

Note that

dist
(
h(K(l)), h(K̃(l))

)
(A.116)

=
√

(1− β)2 + β2σ2w · dist
(
(1− α)2Ag(K(l))AT + α2C(0), (1− α)2Ag(K̃(l))AT + α2C(0)

)
(A.117)

≤
√

(1− β)2 + β2σ2w · dist
(
(1− α)2Ag(K(l))AT , (1− α)2Ag(K̃(l))AT

)
(A.118)

≤
√

((1− β)2 + β2σ2w)(1− α)2r2 · dist
(
g(K(l)), g(K̃(l))

)
(A.119)

≤
√

1

2
((1− β)2 + β2σ2w)(1− α)2r2 · dist

(
K(l), K̃(l)

)
(A.120)

= δ1/2 · dist
(
K(l), K̃(l)

)
, (A.121)
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so h is a contraction mapping, and has a unique fixed point K. Let K̃(l) = K, we have

dist
(
K(l+1), K

)
≤ δ1/2 · dist

(
K(l), K

)
, (A.122)

so K(l) converges to K linearly with a rate of convergence of δ1/2.

Proof of Theorem 5, part 3. We have recursive relationship between κ(l) and κ(l+1):

κ(l+1) =
(1− β)2 + β2σ2w

δl+1

(
(1− α)2Ag(K(l))AT + α2C(0)

)
(A.123)

=
((1− β)2 + β2σ2w)α

2

δl+1
C(0) +

2

r2
Ag(κ(l))AT . (A.124)

Using Lemma 3 for the covariance mapping g,

dist
(
κ(l+1), 0

)
≤ dist

(
((1− β)2 + β2σ2w)α

2

δl+1
C(0), 0

)
+ dist

(
2

r2
Ag(κ(l))AT , 0

)
(A.125)

≤

√
((1− β)2 + β2σ2w)α

2

δl+1
tr
(
C(0)

)
+ dist

(
2g(κ(l)), 0

)
(A.126)

≤

√
((1− β)2 + β2σ2w)α

2

δl+1
tr
(
C(0)

)
+ dist

(
κ(l), 0

)
, (A.127)

so κ(l) is bounded.

Using the Perron-Frobenius theorem, we know v ≻ 0. Then

vTκ(l+1)v =
((1− β)2 + β2σ2w)α

2

δl+1
vTC(0)v +

2

r2
vTAg(κ(l))AT v (A.128)

≥ 2vT g(κ(l))v (A.129)

≥ vTκ(l)v, (A.130)

so vTκ(l)v has a limit c > 0.

Also from the Perron-Frobenius theorem, r is a simple eigenvalue, and there is no other
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eigenvalues with absolute value ≥ r. Let P = I − Projv = I − vvT , then

PA = AP, ∥PA∥2 = r′ < r. (A.131)

Same as Theorem 4, part 3, we have

dist
(
Pg(κ(l))PT , 0

)
≤ dist

(
1

2
Pκ(l)PT , 0

)
. (A.132)

Using Lemma 3 for the covariance mapping g,

dist
(
Pκ(l+1)PT , 0

)
(A.133)

≤ dist

(
((1− β)2 + β2σ2w)α

2

δl+1
PC(0)PT , 0

)
+ dist

(
2

r2
PAg(κ(l))ATPT , 0

)
(A.134)

≤

√
((1− β)2 + β2σ2w)α

2

δl+1
tr
(
C(0)

)
+ dist

(
2

r2
PAPg(κ(l))PTATPT , 0

)
(A.135)

≤

√
((1− β)2 + β2σ2w)α

2

δl+1
tr
(
C(0)

)
+

r′

r
dist

(
2Pg(κ(l))PT , 0

)
(A.136)

≤

√
((1− β)2 + β2σ2w)α

2

δl+1
tr
(
C(0)

)
+

r′

r
dist

(
Pκ(l)PT , 0

)
, (A.137)

so Pκ(l)PT → 0.

Combining the results, we conclude that κ(l) → cvvT .

A.7 Proof of Theorem 6

Proof of Theorem 6, part 1. Note that, in the proof of Theorem 4, part 1, the result

ρmin(ACAT ) ≥ ρmin(C), (A.138)
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A is not required to be a N ×N square matrix, but rather any non-negative matrix of shape

M ×N and the result remains the same. Consider

A =

(
σw1I σw2A

)
, C =

C(l) C(l)

C(l) C(l)

 , (A.139)

then in the recursion (3.14),

ρmin(K
(l+1)) = ρmin(ACAT ) ≥ ρmin(C) = ρmin(C

(l)), (A.140)

which is same as Theorem 4, part 1. The rest is the same.

Proof of Theorem 6, part 2. Consider mapping h : K(l) 7→ K(l+1) at each layer:

K(l+1) = σ2w1
g(K(l)) + σ2w2

Ag(K(l))AT := h(K(l)). (A.141)

Note that

dist
(
h(K(l)), h(K̃(l))

)
(A.142)

= dist
(
σ2w1

g(K(l)) + σ2w2
Ag(K(l))AT , σ2w1

g(K̃(l)) + σ2w2
Ag(K̃(l))AT

)
(A.143)

≤
√

dist
(
σ2w1

g(K(l)), σ2w1
g(K̃(l))

)2
+ dist

(
σ2w2

Ag(K(l))AT , σ2w2
Ag(K̃(l))AT

)2
(A.144)

≤
√
σ2w1

+ σ2w2
r2 · dist

(
g(K(l)), g(K̃(l))

)
(A.145)

≤
√

1

2
(σ2w1

+ σ2w2
r2) · dist

(
K(l), K̃(l)

)
(A.146)

= δ1/2 · dist
(
K(l), K̃(l)

)
, (A.147)
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so h is a contraction mapping, and has a unique fixed point K. Let K̃(l) = K, we have

dist
(
K(l+1), K

)
≤ δ1/2 · dist

(
K(l), K

)
, (A.148)

so K(l) converges to K linearly with a rate of convergence of δ1/2.

Proof of Theorem 6, part 3. We have recursive relationship between κ(l) and κ(l+1):

κ(l+1) =
1

δl+1
(σ2w1

g(K(l)) + σ2w2
Ag(K(l))AT ) =

σ2w1

δ
g(κ(l)) +

σ2w2

δ
Ag(κ(l))AT . (A.149)

Using Lemma 3 for the covariance mapping g,

dist
(
κ(l+1), 0

)2
≤ dist

(
σ2w1

δ
g(κ(l)), 0

)2

+ dist

(
σ2w2

δ
Ag(κ(l))AT , 0

)2

(A.150)

≤
σ2w1

2δ
dist

(
2g(κ(l)), 0

)2
+

σ2w2
r2

2δ
dist

(
2g(κ(l)), 0

)2
(A.151)

= dist
(
2g(κ(l)), 0

)2
(A.152)

≤ dist
(
κ(l), 0

)2
, (A.153)

so κ(l) is bounded.

Using the Perron-Frobenius theorem, we know v ≻ 0. Then

vTκ(l+1)v =
σ2w1

δ
vT g(κ(l))v +

σ2w2

δ
vTAg(κ(l))AT v (A.154)

= 2vT g(κ(l))v (A.155)

≥ vTκ(l)v, (A.156)

so vTκ(l)v has a limit c > 0.

Also from the Perron-Frobenius theorem, r is a simple eigenvalue, and there is no other
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eigenvalues with absolute value ≥ r. Let P = I − Projv = I − vvT , then

PA = AP, ∥PA∥2 = r′ < r. (A.157)

Same as Theorem 4, part 3, we have

dist
(
Pg(κ(l))PT , 0

)
≤ dist

(
1

2
Pκ(l)PT , 0

)
. (A.158)

Using Lemma 3 for the covariance mapping g,

dist
(
Pκ(l+1)PT , 0

)2
(A.159)

≤ dist

(
σ2w1

δ
Pg(κ(l))PT , 0

)2

+ dist

(
σ2w2

δ
PAg(κ(l))ATPT , 0

)2

(A.160)

=
σ2w1

2δ
dist

(
2Pg(κ(l))PT , 0

)2
+

σ2w2

2δ
dist

(
2PAPg(κ(l))PTATPT , 0

)2
(A.161)

≤
σ2w1

2δ
dist

(
2Pg(κ(l))PT , 0

)2
+

σ2w2
r′2

2δ
dist

(
2Pg(κ(l))PT , 0

)2
(A.162)

=
σ2w1

+ σ2w2
r′2

σ2w1
+ σ2w2

r2
dist

(
2Pκ(l)PT , 0

)2
(A.163)

≤
σ2w1

+ σ2w2
r′2

σ2w1
+ σ2w2

r2
dist

(
Pκ(l)PT , 0

)2
, (A.164)

so Pκ(l)PT → 0.

Combining the results, we conclude that κ(l) → cvvT .

A.8 Proof of Theorem 7

We use mathematical induction.

Start with L = 1, when there is no nonlinearity function and the input is only processed by
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an affine transformation:

f(X(0); θ) = Z(1) =
σw√
d0

AX(0)W (1) + σb1N×1b
(1). (A.165)

Since the weights and biases are initialized i.i.d., all the output nodes of this network Z
(1)
i (x)

are also i.i.d. Given different inputs, the i-th network outputs Z
(1)
i (x) follow a Gaussian

Process GP(0, K(1)), according to Theorem 1.

Now, we have

Θ(1)(θ) =
∂Z(1)

∂W (1)

( ∂Z(1)

∂W (1)

)T
+

∂Z(1)

∂b(1)

(∂Z(1)

∂b(1)

)T
(A.166)

=
σ2w
d0

AX(0)(X(0))TAT + σ2b1N×11
T
N×1 (A.167)

= σ2wAC
(0)AT + σ2b1N×N (A.168)

= Θ(1), (A.169)

which has no dependency on θ.

Using induction, we first assume the claim is true for a l-layer network with P̃ parameters

in total:

θ̃ = (W (1), . . . ,W (l), b(1), . . . , b(l)) ∈ RP̃ . (A.170)

We need to prove the claim is also true for L = l+1. The output function of this (l+1)-layer

network is:

f(X(0); θ) = Z(l+1) =
σw√
dl
Aϕ(Z(l))W (l+1) + σb1N×1b

(l+1). (A.171)

Using Theorem 1 for L = l, we know all the output nodes of this network Z
(l)
i (x) are also

i.i.d. and the i-th network outputs Z(l)
i (x) follow a Gaussian distribution GP(0, K(l)). Note
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that K(l) has no dependency on θ.

Also from our induction assumption for a l-layer network, the Z(l) has a NTK converging to

a deterministic limit Θ(l) when d1, . . . , dl−1 →∞:

Θ(l)(θ̃) =
∂Z(l)

∂θ̃

(∂Z(l)

∂θ̃

)T
→ Θ(l). (A.172)

Next let’s check the case L = l + 1. Compared to a l-layer network, a (l + 1)-layer net-

work has additional weight matrix W (l+1) and bias b(l+1). Thus the total parameters

θ = (W (l+1), b(l+1), θ̃). We can compute the derivative with respect to three different sets

of parameters:

Θ(l+1)(θ) =
∂Z(l+1)

∂W (l+1)

( ∂Z(l+1)

∂W (l+1)

)T
︸ ︷︷ ︸

(A)

+
∂Z(l+1)

∂b(l+1)

(∂Z(l+1)

∂b(l+1)

)T
︸ ︷︷ ︸

(B)

+
P̃∑

p=1

∂Z(l+1)

∂θ̃p

(∂Z(l+1)

∂θ̃p

)T
︸ ︷︷ ︸

(C)

.

(A.173)

Term (A):

(A) =
σ2w
dl

Aϕ
(
Z(l))ϕ(Z(l))TAT (A.174)

=
σ2w
dl

A

 dl∑
i=1

ϕ
(
Z
(l)
i

)
ϕ
(
Z
(l)
i

)TAT (A.175)

→ σ2wA

(
E
z
(l)
i ∼N (0,K(l))

[ϕ(z
(l)
i )ϕ(z

(l)
i )T ]

)
AT (A.176)

= σ2wAC
(l)AT . (A.177)

Term (B):

(B) = σ2b1N×11
T
N×1 = σ2b1N×N . (A.178)
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Term (C):

∂Z(l+1)

∂θ̃p
=

σw√
dl
A
∂ϕ(Z(l))

∂θ̃p
W (l+1) =

σw√
dl
A
(
ϕ̇(Z(l))⊙ ∂Z(l)

∂θ̃p

)
W (l+1), (A.179)

and

(C) =
σ2w
dl

P̃∑
p=1

A
(
ϕ̇(Z(l))⊙ ∂Z(l)

∂θ̃p

)
W (l+1)W (l+1)T

(
ϕ̇(Z(l))⊙ ∂Z(l)

∂θ̃p

)T
AT (A.180)

→ σ2w
dl

P̃∑
p=1

A
(
ϕ̇(Z(l))⊙ ∂Z(l)

∂θ̃p

)(
ϕ̇(Z(l))⊙ ∂Z(l)

∂θ̃p

)T
AT (A.181)

=
σ2w
dl

P̃∑
p=1

A

((
ϕ̇(Z(l))ϕ̇(Z(l))T

)
⊙

(
∂Z(l)

∂θ̃p

(∂Z(l)

∂θ̃p

)T))
AT (A.182)

=
σ2w
dl

A

(ϕ̇(Z(l))ϕ̇(Z(l))T
)
⊙

 P̃∑
p=1

∂Z(l)

∂θ̃p

(∂Z(l)

∂θ̃p

)TAT (A.183)

=
σ2w
dl

A
((

ϕ̇(Z(l))ϕ̇(Z(l))T
)
⊙Θ(l)

)
AT (A.184)

=
σ2w
dl

A

 dl∑
i=1

ϕ̇(Z
(l)
i )ϕ̇(Z

(l)
i )T

⊙Θ(l)

AT (A.185)

→ σ2wA

((
E
z
(l)
i ∼N (0,K(l))

[ϕ̇(z
(l)
i )ϕ̇(z

(l)
i )T ]

)
⊙Θ(l)

)
AT (A.186)

= σ2wA
(
Ċ(l) ⊙Θ(l)

)
AT . (A.187)

Altogether, the NTK for this (l + 1)-layer network

Θ(l+1)(θ)→ σ2wAC
(l)AT + σ2b1N×N + σ2wA(Ċ

(l) ⊙Θ(l))AT = Θ(l+1). (A.188)
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APPENDIX B

EXPERIMENT DETAILS

B.1 Datasets

The predefined training/validation/test splits for datasets Cora / Citeseer / PubMed / Red-

dit / WikiCS come from the PyTorch Geometric library [Fey and Lenssen, 2019]. The splits

for dataset ArXiv comes from the Open Graph Benchmark [Hu et al., 2020b]. The splits

of Chameleon / Squirrel come from Geom-GCN [Pei et al., 2020], in accordance with the

PyTorch Geometric library. The split for Crocodile is not available, so we conduct a ran-

dom split with the same 0.48/0.32/0.20 proportion as that used for Chameleon and Squirrel

[Rozemberczki et al., 2021]. The splits for Amazon and Coauthor dataset come from GCA

[Zhu et al., 2021].

For each graph, we treat the edges as undirected and construct a binary, symmetric

adjacent matrix A. Then, we apply the normalization proposed by Kipf and Welling [2017]

to define A used in (2.1). Specifically, A = (IN + D)−1/2(I + A)(IN + D)−1/2, where

D = diag{
∑

j Aij}. For GraphSAGE and GGP, we instead use the row-normalized version

A = (IN + D)−1(IN + A). No feature preprocessing is done except running the GPs on

ArXiv, for which we apply a centering on the input features.

B.2 Environment

All experiments are conducted on a Nvidia Quadro GV100 GPU with 32GB of HBM2 mem-

ory. The code is written in Python 3.10.4 as distributed with Ubuntu 22.04 LTS. We use

PyTorch 1.11.0 and PyTorch Geometric 2.1.0 with CUDA 11.3.

For all datasets except Reddit, we train GCN using the Adam optimizer in full batch

for 100 epochs. Reddit is too large for GPU computation and hence we conduct mini-batch

training (with a batch size 10240) for 10 epochs.
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B.3 Hyperparameters

Table B.1: Hyperparameters For Table 2.3 and 4.3.

classification
GCNGP L = 2, σb = 0.0, σw = 1.0.

GCN hidden dimension: 256, dropout: 0.5, lr: 0.01.

regression
GCNGP L = 2, σb =

√
0.1, σw = 1.0.

GCN hidden dimension: 256, dropout: 0.5, lr:
√
0.1.

Table B.2: Hyperparameters for Table 3.2.

GCN L = 2.

GCNII L = 2, α = 0.1, λ = 0.5 and βl = log(λl + 1).

GIN L = 2, ϵ = 0.0.

GraphSAGE L = 2, σw1 =
√
0.1 (Reddit) and σw1 = 0.0 (others), σw2 = 1.0.

B.4 Kernels

We choose C(0) to be the inner product kernel for GCNGPs and GNNGPs. The exception

is when working with the low-rank versions, we apply PCA on the input features to ensure

the number of features is smaller than the number of landmark nodes.

For low-rank kernels (suffixed with -X), the landmark points are chosen to be the training

set for small datasets, while for large datasets (ArXiv and Reddit) the landmark points are

a random 1/50 of the training set.

In posterior inference, the nugget ϵ is chosen using a grid search over [10−3, 101].

For the RBF kernel,

K(x, x′) = exp(−γ∥x− x′∥22), (B.1)
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where γ is chosen using a grid search over [10−2, 102].

For the GGP kernel,

K = AK0A
T , K0(x, x

′) = (xTx′ + c)d, (B.2)

where c = 5.0, d = 3.0 following the default of GGP [Ng et al., 2018]. Note that we use only

the kernel but not the robust-max likelihood nor the ELBO training proposed by [Ng et al.,

2018], because their code written in Python 2 is outdated and Pytorch officially dropping

Python 2 support.

B.5 FLOPs computation

We summarize the parameter and FLOPs counts in a full-batch forward pass as follows. The

counts include all layers of the GCN graph encoder of our DGI model. We use a factor of 2

for the multiply accumulate cost. For large models, the parameter and FLOP contribution

of bilinear discriminator is negligible.

Table B.3: Parameter and FLOPs Counts

Neural network Parameters FLOPs

Graph convolution 0 2dinputnedge

Weight term doutputdinput 2doutputdinputnnode

Bias term doutput doutputnnode

Total (approximate) doutputdinput 2doutputdinputnnode

The total amount of FLOPs used during forward step can be estimated as C = 2ND,

where N = doutputdinput is the total parameter count of each layer and D = nnode for

full-batch training. The backwards step is approximately twice the compute as the forwards

step, so the overall compute can be estimated as C = 6ND as [Kaplan et al., 2020].
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APPENDIX C

CODE

Code for [Niu et al., 2023] is available at https://github.com/niuzehao/gnn-gp.
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