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A B S T R A C T

How do cells coordinate the diverse elements that regulate their cholesterol homeostasis? Our model postulates 
that membrane cholesterol forms simple complexes with bilayer phospholipids. The phospholipids in the plasma 
membrane are of high affinity; consequently, they are fully complexed with the sterol. This sets the resting level 
of plasma membrane cholesterol. Cholesterol in excess of the stoichiometric equivalence point of these com-
plexes has high chemical activity; we refer to it as active cholesterol. It equilibrates with the low affinity phos-
pholipids in the intracellular membranes where it serves as a negative feedback signal to a manifold of regulatory 
proteins that rein in ongoing cholesterol accretion. We tested the model with a review of the literature regarding 
fourteen homeostatic proteins in enterocytes. It provided strong albeit indirect support for the following hy-
pothesis. Active cholesterol inhibits cholesterol uptake and biosynthesis by suppressing both the expression and 
the activity of the gene products activated by SREBP-2; namely, HMGCR, LDLR and NPC1L1. It also reduces free 
cell cholesterol by serving as the substrate for its esterification by ACAT and for the synthesis of side-chain 
oxysterols, 27-hydroxycholesterol in particular. The oxysterols drive cholesterol depletion by promoting the 
destruction of HMGCR and stimulating sterol esterification as well as the activation of LXR. The latter fosters the 
expression of multiple homeostatic proteins, including four transporters for which active cholesterol is the likely 
substrate. By nulling active cholesterol, the manifold maintains the cellular sterol at its physiologic set point.

1. Introduction

Cholesterol is a major and essential component of the lipid bilayer of 
animal cell plasma membranes and figures prominently in human health 
and disease [1–3]. An elaborate manifold of regulatory proteins man-
ages its abundance [1,4–9]. Cells keep their cholesterol in balance by 
specifying how much they need, sensing how much they have and 
adjusting what they have to what they need. (The terms sterol and 
cholesterol are used interchangeably.) A simple model has been proposed 
to describe the mechanism of cell cholesterol homeostasis [10]. It pos-
tulates that the cholesterol in the plasma membrane is held in tight 

complexes with its polar lipids (at least the glycerophospholipids and 
sphingomyelin) up to stoichiometric equivalence. This establishes the 
physiologic set point of the cholesterol in the plasma membrane. Excess 
cholesterol is uncomplexed and has a high chemical activity [11,12]. 
This active cholesterol equilibrates with the intracellular membranes 
(endomembranes) and provides a negative feedback signal to the reg-
ulatory proteins in the ER and mitochondria. They respond by inhibiting 
the accretion of the sterol and promoting its depletion, thereby restoring 
the plasma membrane to its resting level.

The basic features of the active cholesterol model are well supported 
experimentally [10,13]. However, it remains to be shown that active 
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cholesterol coordinates the diverse functions that manage cholesterol 
homeostasis. That is, are the activities of these proteins governed by this 
unitary signal? We address this question by reviewing relevant literature 
on enterocytes, the absorptive cells that line the lumen of the intestine. 
Enterocytes utilize the same sterol regulatory mechanisms as other cells 
but also manage the body’s cholesterol load. That is, they make the final 
call as to whether sterol molecules are retained or excreted. To this end, 
they integrate inputs from the diet, the bloodstream and the liver with 
their own sterol synthesis [6,14–17]. The secretion of cholesterol from 
the bloodstream to the gut is referred to as transintestinal cholesterol 
excretion or TICE [18–20].

Here, we consider fourteen proteins that regulate enterocyte sterol 
(see Fig. 1). The premise being tested is that the operative feedback 
signal is not cell cholesterol itself, as is often assumed, but a particular 
small and dynamic fraction thereof: active cholesterol. The relevant 
literature is supportive, but much of it is indirect. Therefore, our review 
is often speculative. Nevertheless, the data affirm the hypothesis. 
Furthermore, what is proposed for the fourteen proteins in enterocytes is 
applicable to other proteins that regulate their cholesterol as well as to 
cells generally.

2. The disposition of cellular cholesterol

Plasma membranes hold about 90 % of the cholesterol and sphin-
gomyelin and about half of the glycerophospholipids in cells like fi-
broblasts [10,21]. The remaining sterol and phospholipids are 
distributed unequally among the intracellular organelles. Cholesterol 
circulates throughout the cell with a characteristic time of about an hour 
and appears to be at diffusional equilibrium among the membranes 
[10,13,22,23]. A variety of soluble and intermembrane transporters 
mediate this flux, mostly independent of vesicular traffic [13,24–28].

Almost all the cholesterol in cell membranes is complexed with their 
phospholipids, and this is a primary determinant of its intracellular 
distribution [10,11,13]. The different phospholipids have characteristic 
affinity constants and stoichiometries. Complexes of cholesterol with 
various disaturated phosphatidylcholines as well as sphingomyelin have 

apparent cholesterol:phospholipid stoichiometries of CH:PL ~ 1 mol/ 
mol [29,30]. This is (1 mol CH)/(1 mol CH + 1 mol PL); hence, a mole 
fraction of 0.5 or 50 mol%. At least some unsaturated phospholipids, for 
example dioleoylphosphatidylcholine, appear to have CH:PL=~ 0.5; i. 
e., 33 mol% or a mole fraction of 0.33. Resting plasma membranes 
generally have CH:PL ~0.7 mol/mol; i.e., ~41 mol%. This is consistent 
with roughly equal amounts of phospholipids with CH:PL ~ 1.0 and 0.5 
mol/mol [10]. Enterocyte brush border membranes have a CH:PL value 
of ~0.50–0.65 mol/mol; i.e., ~33–40 mol% [31–33]. It therefore seems 
that phospholipids with a stoichiometry of CH:PL 0.5 predominate in 
these cells. Plasma membrane cholesterol serves multiple structural 
roles: condensing the bilayer and modulating its elasticity, viscosity, 
compressibility, impermeability, thickness and lateral phase behavior 
[13].

The phospholipids in plasma membranes are particularly avid for 
cholesterol; consequently, they are normally fully complexed at their 
stoichiometric equivalence point (Fig. 2A) [10,11,13,34]. In sharp 
contrast, the intracellular membranes of a variety of cell types contain 
relatively little cholesterol; that is, CH:PL < 0.1 mol/mol or < 10 mol% 
[10,35–38]. These endomembranes are not saturated with cholesterol, 
since loading cells can expand their intracellular sterol content several 
fold [34]. It thus appears that endomembrane phospholipids have weak 
affinity for cholesterol (Fig. 2B) [10,11,13]. It has been estimated that 
the dissociation equilibrium of avid plasma membrane complexes leaves 
only a few percent of its cholesterol uncomplexed while perhaps 10 % of 
the sterol in endomembranes is dissociated [10,29,39].

The complexation of sterols with phospholipids reduces their 
chemical activity by orders of magnitude [29]. Consequently, the 
titration of membrane phospholipids with cholesterol produces a J curve 
in cholesterol chemical activity (dashed red line in Fig. 2A) [10,13,40]. 
Ligands for sterols must compete with the membrane phospholipids for 
their complexed cholesterol. As a result, the binding isotherms even of 
monomeric proteins are perforce sigmoidal [41,42]. Ligands with low 
affinity compete poorly with the phospholipids and only associate well 
with the uncomplexed sterol as it becomes available at the equivalence 
point (dashed blue line inFig. 2A). Two such weak ligands are 

Fig. 1. How active cholesterol (CH) regulates cholesterol homeostasis: a hypothesis. This is a summary of the regulatory manifold described in the text. Plus signs 
signify their stimulation, minus signs signify their inhibition, solid arrows represent their activities and dashed arrows indicate their expression. The functions in the 
left column generally mediate cholesterol accretion; those in the right column mediate its depletion. The transcription of sterol regulatory element (SRE)-containing 
genes is driven by activated SREBP-2. This leads to the expression of HMGCR, LDLR, NPC1L1 and additional SREBP-2 (dashed blue arrows). The excess cholesterol 
acquired from intestinal micelles, circulating LDL and biosynthesis is chemically active (shown in red) and distributes among the cell membranes (double headed 
arrows). Active plasma membrane cholesterol is conveyed to the ER by GramdD1b and presumably by other transporters. There, it reduces the abundance of the free 
sterol by cueing the sequestration of SREBP-2 and promoting its own esterification by ACAT2. Active cholesterol is also the substrate for mitochondrial 27-hydrox-
ylase. Its product, 27HC, mediates the degradation of HMGCR and the activation of LXR. The latter drives the expression of mitochondrial 27-hydroxylase, IDOL, the 
CM apolipoprotein B-48, and four plasma membrane transporters (dashed orange arrows). Excess cholesterol is secreted to the circulation by these transporters as 
well as via CM. Not shown: 27HC inhibits the expression of NPC1L1 and activated LXR inhibits the destruction of ABCA1. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)
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cholesterol oxidase and β-cyclodextrins [11,13,30,43]. Similarly, the 
sterol-binding domain of the cholesterol import protein, GramD1b, as-
sociates weakly with plasma membrane cholesterol in resting cells but 
binds strongly to the uncomplexed excess [44,45]. This characteristic 
befits a homeostatic function: removing the sterol that exceeds the 
physiologic set point of the plasma membrane (see Section 4.2).

Avid proteins, certain integral plasma membrane proteins among 
them, can competitively extract cholesterol from its phospholipid 
complexes below their stoichiometric equivalence point (Fig. 2A and B) 
[41,42]. Toxins like PFO are also avid; they can associate with unen-
riched cells so as to permeabilize them [41,46,47]. Thresholds for the 
binding of PFO mutants vary widely well below the stoichiometric 
equivalence point of the sterol [48,49]. Whether a protein extracts 
complexed cholesterol competitively or binds only the active excess can 
be difficult to discern. Thus, the membrane sterol associated with toxins 
and GramD1b has simply been called accessible cholesterol 
[9,28,47,50–53]. Four forms of cell cholesterol are therefore relevant to 
its homeostasis: complexed, uncomplexed (the active excess), extract-
able (that competitively removed from its complexes by a ligand) and 
esterified.

3. Cholesterol homeostasis

Fig. 1 applies our model to enterocytes. The left side of the figure 
shows the accretion of cholesterol, driven by SREBP-2 through the 
expression of SRE gene products (see Section 5.1). SREBP-2 also pro-
motes its own elaboration autocatalytically in a feed-forward fashion 
[54,55]. The cholesterol in the cell would increase indefinitely were it 
not for feedback responses that inhibit and reverse its accumulation. 
These responses are managed by the manifold of homeostatic proteins 
depicted in the right side of the Figure. The hypothesis being tested is 
that the activity of these proteins is coordinated by excess (uncom-
plexed, active) plasma membrane cholesterol and its oxysterol de-
rivatives (center of the figure).

We propose that homeostasis works like this: The regulatory mani-
fold keeps the avid plasma membrane phospholipids replete with 
cholesterol at their stoichiometric equivalence point. Excess plasma 
membrane cholesterol spills down its chemical activity gradient to the 
intracellular membranes. There, it serves as a feedback signal to the 
regulatory elements [10,12,13]. The influx of active cholesterol can 
enlarge the small sterol pools in the endomembranes several-fold on a 
time scale of minutes [23,34]. Conversely, the cholesterol in the ER falls 

rapidly when that in the plasma membrane drops below its resting level 
[56]. The activities of ER effectors like SREBP-2, ACAT and HMGCR 
respond homeostatically to the local cholesterol level [12,13,38,56]. In 
a like manner, incrementing plasma membrane cholesterol above its 
physiologic set point stimulates the synthesis of the feedback signal, 
27HC, in mitochondria (see Section 4.1) [57]. In that study, excess 
cholesterol moved from the plasma membrane to the mitochondria 
where it was converted to 27HC which promoted the proteolytic inac-
tivation of HMGCR in the ER with a half-time of 8.5 min overall.

The activity of a homeostatic protein varies with its fractional satu-
ration with cholesterol. This is determined by the cholesterol affinity of 
the protein, that of the phospholipids with which it competes and the 
local membrane concentration of the sterol [10,42]. At least some of the 
homeostatic proteins are high-affinity oligomers that bind the sterol well 
below stoichiometric equivalence of the sterol with the phospholipids, 
as simulated in Fig. 2B [42]. Accordingly, the thresholds for the activity 
of these proteins do not reflect the emergence of active cholesterol in the 
endomembranes but, rather, their extraction of the sterol from its 
complexes. This appears to be the case for ACAT tetramers, the activity 
of which rises sigmoidally at a bilayer cholesterol concentration of ~10 
mol% (see Section 4.3) [58]. This is far below the presumed stoichio-
metric equivalence point for the egg phosphatidylcholine vesicles used 
in that membrane reconstitution study [29]. Similarly, the isotherm for 
the inactivation of SREBP-2 was shown to be acutely sigmoidal at an ER 
cholesterol concentration of ~6 mol% (see Section 5.1) [38,59]. This ER 
threshold lies well below the stoichiometric equivalence point of com-
mon phospholipids [29,30]. The implication that ER phospholipids have 
a low sterol affinity is supported by the finding that the association of 
PFO with isolated ER membranes has a threshold of ~6 mol% choles-
terol while its binding to the cholesterol associated with avid phos-
pholipids has thresholds of 30–45 mol% [47,59]. It therefore appears 
that the low threshold for SREBP-2 mobilization reflects both the weak 
cholesterol affinity of ER phospholipids and the cooperative binding of 
the sterol by the avid protein that sequesters SREBP-2; namely, Scap 
tetramers [10,60].

Plasma membrane cholesterol can fall below its stoichiometric 
equivalence point due to cell growth or cholesterol export. Cholesterol 
will then flow from the intracellular membranes to the plasma mem-
brane [13,24,56]. Presumably, transporters are able to extract choles-
terol from its phospholipid complexes in the intracellular membranes far 
below their stoichiometric equivalence point, as simulated in Fig. 2B. 
The extent of transfer is independent of the abundance, affinity and 

Fig. 2. Association of sterol-binding proteins with active and extractable cholesterol. Panel A. Simulated titration curves illustrate the formation of complexes of 
cholesterol (CH) with high affinity plasma membrane phospholipids (PL) (solid red line) up to their stoichiometric equivalence point of CH:PL = 0.71 mol/mol 
phospholipid (i.e., 40 mol% cholesterol; vertical line). The dashed red line is the uncomplexed (chemically active) cholesterol. Ligands with relatively weak affinity 
(e.g., cholesterol oxidase, methyl-β-cyclodextrin and GramD1b) associate well only with the uncomplexed sterol (dashed blue line). More avid proteins (e.g., PFO and 
some oligomeric plasma membrane proteins) competitively extract the sterol from its phospholipid complexes and therefore bind it below the equivalence point 
(solid blue line). Panel B. Some regulatory proteins are avid oligomers that bind cholesterol cooperatively (e.g., ACAT and Scap). They extract the sterol from its weak 
ER complexes well below its stoichiometric equivalence with the phospholipids. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)
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velocity of the transporters; rather, it reflects the equilibration of active 
cholesterol down its chemical activity gradient between the endomem-
branes and the plasma membrane.

The homeostatic manifold uses active and extractable cholesterol 
differently. Active cholesterol is that delivered from the plasma mem-
brane to the endomembranes as a homeostatic signal. Extractable 
cholesterol is the regulator of homeostatic activities in the endomem-
branes; it is also the substrate for cholesterol flux to the cell surface. 
Homeostatic responses are sharpened by two thresholds in tandem. One 
is the stoichiometric equivalence point of the plasma membrane phos-
pholipids beyond which active cholesterol moves to the endomembranes 
(Fig. 2A). The other threshold is the sigmoidal dependence of the ac-
tivities of the regulatory proteins on the extractable cholesterol in the 
endomembranes (Fig. 2B). This dual feedback system maintains the 
cholesterol in the plasma membrane replete at its physiologic set point 
while that in the intracellular membranes is variable and kept far below 
stoichiometric equivalence with the phospholipids by the homeostatic 
effectors. Maintaining a low level of endomembrane sterol makes 
feedback responses sensitive to small fluctuations in the plasma mem-
brane at its threshold.

We now review evidence bearing on the hypothesis that cholesterol 
homeostasis in enterocytes is coordinated by active cholesterol.

4. Active cholesterol regulates homeostatic proteins

4.1. 27-hydroxylase

Side-chain oxysterols are cholesterol derivatives, some of which 
serve as homeostatic feedback signals [61–63]. Here, we focus on 27HC 
because it has been shown to be synthesized from active cholesterol 
[40,57]. As charted in Fig. 1 and discussed below, 27HC directly regu-
lates the activity of at least three homeostatic ER effectors: HMGCR, 
ACAT and SREBP-2. Importantly, oxysterols also activate LXR and thus 
drive the expression of several proteins mediating cholesterol depletion 
(see Section 5.2) [9,64,65]. One of these is the steroidogenic acute 
regulatory (StAR) protein that facilitates the mitochondrial production 
of oxysterols [66]. This is a feed-forward mechanism that intensifies the 
activation of LXR. Furthermore, 25-hydroxycholesterol (from the ER) 
and 27HC (from mitochondria) stimulate the nuclear expression of their 
respective hydroxylases through LXR; these pathways are also positive 
feedback loops that boost LXR activity [62,67]. In addition, oxysterols 
inhibit the expression of NPC1L1 in enterocytes, thereby curtailing the 
uptake of intestinal cholesterol (see Section 6.2) [68]. Finally, oxysterols 
exit cells rapidly, thus adding to the elimination of excess sterol [69].

4.2. GramD1b

This shuttle protein (also called Aster-B) transports cholesterol from 
the plasma membrane to the ER at their contact sites in many cells, 
including enterocytes [28,51–53]. It is regulated by active cholesterol in 
two ways. First, active cholesterol is its transport substrate [45,70]. 
Second, the expression of GramD1b is promoted by LXR which is acti-
vated by the side-chain oxysterols synthesized from active cholesterol 
(see Sections 4.1 and 5.2) [71]. GramD1b might also facilitate reverse 
cholesterol transport down its chemical activity gradient from ER to 
plasma membrane but this has not been reported [56].

4.3. ACAT2

ACATs (also known as SOATs) catalyze the esterification of choles-
terol in the ER. ACAT1 is abundant in most tissues while ACAT2 is 
expressed preferentially by enterocytes [7]. The catalytic activity of 
ACAT is acutely stimulated by the inward flux of excess plasma mem-
brane cholesterol [40,56]. This is because the active sterol and its oxy-
sterol products serve both as substrates and as allosteric activators of the 
enzyme [58,72,73]. The esterified cholesterol product is stored in lipid 

droplets or incorporated into chylomicrons for secretion to the circula-
tion (see Section 7.3). Cholesterol is liberated from its esters by cyto-
plasmic (neutral) cholesterol esterase. Degradation of the esterase is 
promoted by oxysterols [74]. This helps to keep the concentration of 
unesterified sterol low, another negative feedback mechanism 
responding to excess cholesterol.

4.4. HMGCR

Enterocytes not only receive cholesterol from the diet, the circulation 
and, through bile, from the liver but they also synthesize it as needed 
[75]. Excess (active) cholesterol down-regulates the activity of HMGCR, 
the rate-limiting enzyme for sterol production in the ER. This inhibition 
is implemented at both the transcriptional and the post-translational 
level [76]. The expression of HMGCR is held in check by the com-
bined effect on SREBP-2 of active cholesterol and its side-chain oxysterol 
products (see Sections 4.1 and 5.1). The enzyme is also rapidly inacti-
vated in a hypersharp response to active cholesterol [57,77]. This 
feedback function requires 27HC, at least in cultured human fibroblasts 
[40,61]. The pathway is as follows: active cholesterol is the substrate for 
the synthesis of 27HC which activates Insig which binds HMGCR which 
promotes its conjugation with ubiquitin which stimulates its proteoso-
mal degradation [9,76]. Squalene monooxygenase is another rate- 
controlling enzyme in the sterol biosynthetic pathway [8]. It is regu-
lated by cholesterol at multiple levels, just like HMGCR; however, the 
agency of active cholesterol remains to be examined.

4.5. IDOL

The function of IDOL is to facilitate the destruction of LDLRs so as to 
curtail the ingestion of LDL cholesterol from the circulation (see Section 
6.1) [78,79]. Consistent with our paradigm, the expression of IDOL is 
promoted by the oxysterol-mediated activation of LXR; hence, by active 
cholesterol (see Section 5.2) [80].

5. Active cholesterol regulates gene expression

5.1. SREBP-2

Several nuclear receptors are involved in the management of cell 
cholesterol [81]. SREBP-2 activates the expression of a variety of sterol 
regulatory element (SRE)-containing genes that encode proteins cata-
lyzing the biosynthesis and uptake of cholesterol [7,60,82]. These 
include NPC1L1, LDLR and HMGCR. SREBP-2 is mobilized, cleaved and 
delivered to the nucleus when the concentration of the sterol in the ER 
falls below a resting threshold of ~6 mol% [38,59]. Importantly, SREBP- 
2 also stimulates its own expression autocatalytically [54,55]. This 
would lead to the inexorable accumulation of cell cholesterol were it not 
that feedback from excess cholesterol supervenes. In particular, active 
cholesterol and its side-chain oxysterol derivatives inhibit SREBP-2 
activation by binding the regulatory proteins, Scap and Insig 
[60,83,84]. In addition, the oxysterols produced from active cholesterol 
protect Insig against proteolytic turnover and this too promotes the 
sequestration of SREBP-2 [60,85].

5.2. LXR

LXRα and LXRβ form heterodimers with the retinoid X receptor, RXR 
[86]. When activated by 27HC or other oxysterols, the LXR dimer 
stimulates the expression of a battery of proteins that serve to reduce 
excess cell cholesterol [7,9,63,87,88]. These are described in Sections 
4.5 and 7 and depicted in Fig. 1. (For a different view, see Saito et al. 
[84].) As mentioned in Section 4.1, activated LXR also promotes the 
expression of GramD1b, StAR and the sterol-25 and sterol-27 hydroxy-
lases [62,66,67,71]. These are feed-forward mechanisms that amplify 
LXR activity. Active LXR also down-regulates the expression of NPC1L1, 
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thereby reducing cholesterol ingestion [68]. Finally, oxysterol-bound 
LXRβ directly stabilizes ABCA1 against proteolytic clearance, an addi-
tional feedback mechanism that facilitates the depletion of excess cell 
cholesterol (see Section 7.1) [89].

6. Active cholesterol regulates cholesterol uptake

Cholesterol is so water-insoluble that it is only found in association 
with “carriers”: mostly phospholipid bilayers but also low and high 
density lipoproteins, micelles of bile salts and sterol-binding proteins. 
Cholesterol molecules are distributed among these compartments 
through various mechanisms [25]. (a) Sterols spontaneously desorb 
from donors and diffuse to acceptors through the aqueous medium 
[19,90,91]. Their distribution reflects the sterol affinities of the donor 
and acceptor compartments. Typically, equilibrium is attained with a 
half-time of hours. (b) In contrast, cholesterol molecules are rapidly 
transferred between donors and acceptors during their transient colli-
sion. Presumably, sterol molecules with a high chemical activity bob in 
and out of membranes and are captured in a two-step “activation- 
collision” mechanism [92]. (c) Various transporters convey active 
cholesterol down its chemical activity gradient through the cytoplasm, 
across bilayer barriers and between organelles via intermembrane 
contact sites [13,24–28,93]. Enterocytes use GramD1b, NPC1L1 and SR- 
BI in this way (see Sections 4.2, 6.2 and 7.5) [7,53]. (d) Sterol transport 
can be facilitated directly or indirectly through its coupling to metabolic 
energy as in the case of the transport ATPases (see Sections 7.1, 7.2 and 
7.4) [94,95]. The energy could be used thermodynamically to drive the 
sterol against its chemical gradient or kinetically to lower the activation 
energy barrier that slows its passive flux. Pumps that extract cholesterol 
from its complexes might lack an end point–if the process went too far, it 
could put cell cholesterol out of balance and undermine the material 
properties of the plasma membrane. In contrast, using metabolic energy 
to lower the kinetic barrier for the transfer of the active sterol down its 
chemical gradient would promote the removal of just the excess.

6.1. LDLR

LDL carries cholesterol through the bloodstream to the cells of the 
body [96]. It is taken up by endocytosis via the LDLR and delivered to 
late endosomes and lysosomes for digestion. The liberated sterol has 
high chemical activity and is transported downhill from the digestive 
compartments to the plasma membrane and organelles where it serves 
as a feedback signal [97,98]. As with other proteins mediating sterol 
accretion, the expression of the LDLR is promoted by SREBP-2 and is 
curtailed by active cholesterol (see Section 5.1). A related homeostatic 
mechanism is the proteolysis of the LDLR cued by oxysterols through the 
LXR-dependent expression of IDOL (see Section 4.5).

6.2. NPC1L1

Cholesterol is carried through the intestine in mixed micelles of bile 
salts, phospholipids and lipid digestion products. NPC1L1 transports the 
sterol from the lumen into the apical plasma membranes of enterocytes 
[99–102]. The protein closely resembles its lysosomal homolog, NPC1 
[99,103,104]. In particular, the N-terminal domain of NPC1L1 spans the 
glycocalyx that protects the brush border surface and conveys sterol 
molecules through the surrounding unstirred water layer. A tunnel in 
the transporter presumably delivers the sterol to the inner leaflet of the 
plasma membrane bilayer, making it available to intracellular trans-
porters. NPC1L1 cannot avoid taking up sitosterol and other plant ste-
rols, a toxic cargo that must then be removed by ABCG5/G8 (see Section 
7.4) [105,106].

NPC1L1 does not pump cholesterol. Rather, it reduces the barrier to 
diffusion between donor micelles in the bile and the plasma membrane 
[107,108]. Because the sterol is conveyed down its chemical gradient, 
its uptake is favored when the micelles have a high proportion of (low 

affinity) bile salts relative to (high affinity) phospholipids 
[105,109,110]. But how does the cell take up micellar cholesterol when 
its plasma membrane phospholipids are fully complexed? Presumably, 
the incoming sterol is active and immediately becomes available to 
GramD1b and to cytosolic transporters (see Section 4.2) [99]. The excess 
sterol is moved to the undersaturated intracellular membranes and 
thence, as physiologically mandated, to the blood stream via chylomi-
crons and HDL (see Sections 7.1–7.3).

NPC1L1 activity is curtailed by active cholesterol. The excess 
cholesterol both inhibits the nuclear expression of NPC1L1 via LXR and 
sequesters its transcription factor, SREBP-2, in the ER (see Sections 5.1 
and 5.2) [68,82]. In addition, excess cholesterol drives the redistribution 
of plasma membrane NPC1L1 to the endocytic recycling compartment, 
ERC [111,112]. It has been suggested that a reversible vesicle inter-
nalization cycle is the mechanism for cholesterol uptake [7,102]. A 
plausible alternative is that endocytosis is regulatory: it sequesters 
NPC1L1 once the plasma membrane sterol is replete [113]. This is why 
the inhibitor, ezetimibe, blocks NPC1L1 internalization [113]. That is, 
by inhibiting cholesterol uptake, this agent reduces active plasma 
membrane cholesterol, the putative stimulus for the endocytosis of the 
protein. A cholesterol concentration dependence J curve as in Fig. 2A 
could test the hypothesis that active cholesterol controls the cellular 
disposition of NPC1L1.

7. Active cholesterol regulates cholesterol secretion

7.1. ABCA1

The mechanism by which ABCA1 uses ATP hydrolysis to transport 
cholesterol is uncertain and debated [95,114,115]. We favor the view 
that ABCA1 exports cholesterol through a multi-step process [116]. 
First, the hydrolysis of ATP drives the perturbation of the plasma 
membrane bilayer, mobilizing both its cholesterol and its phospholipids 
[117]. Then, the “activated” phospholipids move down their chemical 
activity gradient to the apoA1 bound to ABCA1. This creates a phos-
pholipid bilayer acceptor compartment on the nascent HDL that is avid 
for cholesterol. The removal of phospholipids from plasma membranes 
renders their cholesterol active; i.e., susceptible to cholesterol oxidase, 
methyl-β-cyclodextrin extraction and PFO binding. Finally, the active 
plasma membrane sterol follows the phospholipids passively to the 
nascent HDL [116].

We suggest that active cholesterol is involved in this process at no 
less than three levels. One is through the expression of ABCA1, elicited 
by LXR in response to oxysterols derived from active cholesterol (see 
Section 5.2). Another is the ability of active cholesterol to remove 
inhibitory LXR from the transporter [89]. Third, it is active plasma 
membrane cholesterol that is transferred to nascent HDL. This suppo-
sition follows from a homeostatic mandate: only excess sterol should be 
removed from the cell.

7.2. ABCG1

ABCG1 transfers plasma membrane cholesterol to the nascent HDL 
particles generated by ABCA1, furthering their maturation [116]. Its 
activity is not specific: a variety of other sterol acceptors suffice in vitro. 
The mechanism underlying the action of ABCG1 is not well understood 
[95,115]. The protein is a membrane-spanning homodimeric ATPase 
with an apparent cholesterol-binding cavity [118]. Like ABCA1, ABCG1 
apparently activates cholesterol in that it renders the plasma membrane 
sterol susceptible to cholesterol oxidase [116,119]. The activated sterol 
would then move passively to the bilayer compartment in the nascent 
HDL or to another acceptor. That active cholesterol suppresses the 
proteasomal degradation of both ABCA1 and ABCG1 is another facet of 
its function as a negative feedback regulator [120].
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7.3. Chylomicrons

Excess plasma membrane cholesterol is esterified by the ACAT2 (see 
Section 4.3). The esters are stored along with triglycerides in cyto-
plasmic droplets or packaged in CM particles [7,16,121]. The latter are 
secreted by exocytosis from the basolateral membrane of the enterocytes 
to the lymph and thence to the systemic circulation. The expression of 
apolipoprotein B-48, a CM surface protein, is dependent on LXR; thus, it 
too depends on active cholesterol (see Section 5.2) [122].

7.4. ABCG5/G8

Heterodimers of ABCG5 and ABCG8 in the apical brush borders of 
enterocytes and hepatocytes secrete sterol molecules into the intestine 
[123–126]. The expression of the transporter is turned on by LXR; ergo, 
by active cholesterol (see Section 5.2). Active cholesterol also stimulates 
the ATPase activity of the transporter, presumably as its substrate 
[127,128]. The transport mechanism is unclear [95]. Like other ABC 
transporters, ABCG5/G8 has a hydrophobic cavity or tunnel thought to 
bring sterols from the inner to the outer leaflet of the plasma membrane 
bilayer [128]. ATP hydrolysis might pump cholesterol to the bile 
directly. However, extraction of cholesterol from its complexes would 
reduce the level of plasma membrane cholesterol below its optimum. 
Furthermore, it would invite a futile cycle through the return of the 
secreted sterol to the depleted membrane. We prefer the hypothesis that 
it is the excess and not the complexed plasma membrane sterol that is 
the substrate for transport. It would have a higher chemical activity than 
that in bile micelles and therefore flow downhill to the acceptors in the 
gut. In this view, ATP hydrolysis would serve to lower the activation 
energy for the facilitated diffusion of the uncomplexed excess as sug-
gested above for the other transporters [107,108,129].

Plant sterols such as sitosterol abound in the diet, and NPC1L1 
unavoidably imports these xenosterols together with cholesterol (see 
Section 6.2) [62,105,123,126]. Unfortunately, such xenosterols can be 
toxic, causing a condition called sitosterolemia [106]. ABCG5/G8 
counters this hazard by transporting them back to the gut lumen [95].

7.5. SR-BI

The SR-BI channel mediates the bidirectional transfer of cholesterol, 
its esters, phospholipids and other lipids between extracellular partners 
and the plasma membrane [130–132]. SR-BI is located predominately in 
the apical brush border of the enterocyte [133]. (This contrasts with the 
hepatocyte where the protein is located in the basolateral membrane in 
order to import cholesterol from circulating HDL.) Active cholesterol 
drives the expression of the transporter through LXR activation via 
oxysterol production (see Section 5.2) [6,132]. Furthermore, the 
uncomplexed sterol is the presumed substrate for SR-BI [91,134,135]. 
Micelles rich in bile acids have relatively weak cholesterol affinity and 
so their excess cholesterol can be transported by SR-BI down its chemical 
activity gradient into the plasma membrane. This extra plasma mem-
brane sterol is active: it is susceptible to attack by cholesterol oxidase, 
extraction by β-cyclodextrin and esterification by ACAT in the ER 
[136–138]. Cholesterol will also flow the other way – from cells to mi-
celles – when the plasma membrane sterol has a sufficiently high 
chemical activity. This is the case when the sterol is in stoichiometric 
excess of the phospholipids [91,134]. In this way, SR-BI dissipates 
cholesterol activity gradients between cells and their exchange partners.

As is the case for NPC1L1 (Section 6.2), active cholesterol also 
manages the cellular disposition of the SR-BI. In a study of cultured 
hepatocytes, the transporter was shown to be associated with the 
basolateral membrane when the cells were deprived of cholesterol 
[139]. This location enables SR-BI to take up HDL cholesterol from the 
circulation. Cholesterol enrichment redistributed the transporter to the 
apical plasma membrane, enabling the hepatocytes to secrete the excess 
sterol to the bile. In similar experiments on isolated intestinal mucosa, 

feeding lipid mixtures rich in cholesterol to the explants prompted 
internalization of the SR-BI from the enterocyte brush borders, pre-
sumably to prevent their overload [140]. It remains to be seen whether 
these translocations are controlled by active cholesterol.

8. Concluding comments and suggestions

Various mathematical models have addressed the mechanism of 
cholesterol homeostasis [141–144]. They mostly have assumed that cell 
cholesterol is held at a steady state level by multiple opposed kinetic 
processes. Other studies have considered accessible cholesterol as a 
homeostatic signal but have not specified what determines the set point 
for the sterol [9,47,52]. Here, we have evaluated a stringent equilibrium 
model [10]. It has three postulates: (a) Cholesterol is maintained 
homeostatically at stoichiometric equivalence with the plasma mem-
brane phospholipids. (b) Cholesterol exceeding the complexation ca-
pacity of these phospholipids is chemically active (dashed red line in 
Fig. 2A). (c) By equilibrating with the endomembranes, active choles-
terol regulates a manifold of homeostatic proteins that keep the plasma 
membrane sterol at its physiologic set point. This homeostatic mecha-
nism does not sense cholesterol deficits directly. Rather, it is the absence 
of active cholesterol that relieves the suppression of its accretion and 
halts its depletion. While the model is general, it does not consider all 
features of cholesterol management such as those in specialized cells like 
the liver and steroidogenic tissues.

Is the cholesterol in plasma membranes actually set at stoichiometric 
equivalence with their phospholipids, as stipulated by the model 
[10,12,13]? The question cannot be answered directly at present 
because the sterol stoichiometries of the plasma membrane phospho-
lipids have not been well enough determined. However, we have 
reasoned as follows: The thresholds of the J curves for the cholesterol 
oxidase digestion of the sterol in vesicles of various phospholipids 
appear to correspond to their stoichiometric equivalence points (as 
depicted by the dashed blue curve in Fig. 2A.) [29]. Importantly, the 
threshold for the cholesterol oxidase digestion of plasma membrane 
cholesterol matches its physiologic set point [77,145]. It follows that 
plasma membranes are maintained at the stoichiometric equivalence 
point of their phospholipids. This premise makes the strong prediction 
that the resting level of plasma membrane cholesterol is indifferent to 
the characteristics of the regulatory proteins: their affinities, velocities, 
concentrations and fractional saturations.

The model predicts that the activity of each element in the homeo-
static manifold responds acutely to modest variations in plasma mem-
brane cholesterol, as illustrated by the dashed blue J curve in Fig. 2A. 
This has been shown for the synthesis of 27HC and for the activities of 
GramD1b, ACAT and HMGCR [13,40,45,56,77]. However, the gener-
ality of the hypothesis needs testing on the other regulatory proteins and 
on other cells. J curves can be constructed by varying the cholesterol in 
intact cells with methyl-β-cyclodextrin loaded with graded amounts of 
cholesterol [12,13,146]. There are also spot tests. Treating cells with 
phospholipase C or sphingomyelinase C frees the plasma membrane 
cholesterol from its complexes, thereby activating the sterol by shifting 
its J curve to the left [13]. Cholesterol also can be activated with a va-
riety of membrane intercalating amphiphiles that competitively displace 
it from its phospholipid complexes [39,77,147]. Introducing lysophos-
phatides and alkylphospholipids into bilayers has the opposite effect: 
these intercalators form complexes with cholesterol, thereby reducing 
its chemical activity [13,40,148]. Some assays for the availability of 
plasma membrane cholesterol in intact cells utilize its susceptibility to 
digestion by cholesterol oxidase, its extraction by methyl-β-cyclodextrin 
and its binding by tagged cytolysins [13]. Homeostatic responses can be 
tracked by the processing of SREBP-2, the esterification of the sterol and 
the catalytic activity of HMGCR [12].

The goal of this review was to examine the hypothesis that active 
cholesterol coordinates cellular cholesterol homeostasis. As a test case, 
we considered fourteen proteins in the homeostatic manifold of the 
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enterocyte. The model appears to be robust; however, it needs more 
direct testing, as suggested above.
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