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Overview of Therapeutic Ultrasound
Applications and Safety
Considerations: 2024 Update
Kenneth B. Bader, PhD , Frederic Padilla, PhD, Kevin J. Haworth, PhD , Nicholas Ellens, PhD,
Diane Dalecki, PhD, Douglas L. Miller, PhD, Keith A. Wear, PhD,
Bioeffects Committee of the American Institute of Ultrasound in Medicine

A 2012 review of therapeutic ultrasound was published to educate
researchers and physicians on potential applications and concerns for
unintended bioeffects (doi: 10.7863/jum.2012.31.4.623). This review serves
as an update to the parent article, highlighting advances in therapeutic ultra-
sound over the past 12 years. In addition to general mechanisms for
bioeffects produced by therapeutic ultrasound, current applications, and the
pre-clinical and clinical stages are outlined. An overview is provided for
image guidance methods to monitor and assess treatment progress. Finally,
other topics relevant for the translation of therapeutic ultrasound are dis-
cussed, including computational modeling, tissue-mimicking phantoms, and
quality assurance protocols.
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U ltrasound is known commonly as a diagnostic imaging
modality that has an excellent safety record when used as
intended by a qualified sonographer.1 Although the

mechanical energy of the ultrasound wave is nonionizing, it can
still induce biological effects for sufficient exposure conditions.2

Most diagnostic ultrasound imaging systems display indices to help
the sonographer understand the likelihood of bioeffects, and avoid
unnecessary exposure.3,4 It is also possible to harness ultrasound to
cause bioeffects intentionally for therapeutic purposes.5 At the
time this statement was written (2024), multiple therapeutic
ultrasound devices have been approved, cleared, or had de novo
request granted by the U.S. Food and Drug Administration (FDA)
since 2012 (Table 1), including applications in thermal or
mechanical ablation of pathologic tissue, or to enhance the
delivery of therapeutic drugs. Further, the U.S. Centers for
Medicare and Medicaid Services (CMS) provided reimbursement
codes for ultrasound treatments of certain thrombotic embolisms
(37211), palliation of pain due to bone metastases (C9734),
essential tremor (0398T), tremor-dominant Parkinson’s disease
(0398T), prostate conditions (55880 and C9734), solid renal
tumors (C9790), and primary and metastatic liver tumors
(0686T). The European Medicines Agency (EMA) approved
devices for these applications and others, including hypertension,6

varicose veins,7 thyroid nodules,8 primary and metastatic tumors
(pancreas,9 soft tissue,10 and breast11), along with other
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musculoskeletal12,13 and neurological applica-
tions.14,15 It is anticipated that new applications and
devices will be approved or cleared over time. Beyond
these approved and cleared indications for use, more
than 1,900 active investigations with therapeutic
ultrasound were listed on clinicaltrials.gov, ranging
from Phase I safety-focused investigations to Phase III
efficacy-focused studies (search terms: “therapeutic
ultrasound,” “focused ultrasound,” “HIFU” for high-
intensity focused ultrasound, “HITU” for high-
intensity therapeutic ultrasound, search date August
1, 2024).

The field of therapeutic ultrasound has been
reviewed extensively, notably by members of the
Bioeffects Committee of the American Institute of
Ultrasound in Medicine in 2012.5 Since that time, the
field of therapeutic ultrasound has expanded to new
fronts in technology, translational applications, and
clinical implementation. The goal of this review is to
provide an update on the field from 2012 to 2024. In
addition to clinical applications, the topics of image
guidance, challenges to the field, and other consider-
ations (eg, tissue phantoms, quality assurance, simula-
tions, reporting acoustic parameters, and patient
safety) are addressed.

Basis for Therapeutic Ultrasound
Applications

There are 2 known physical mechanisms caused by
ultrasound that result in bioeffects: thermal and
mechanical interactions (Figure 1).16 Heating occurs
as ultrasound energy is absorbed by the tissue.17 The
likelihood of cell death due to heating can be gauged
by thermal dose, which combines information about
the degree and duration of temperature rise in
tissue.18 The transfer of momentum from the ultra-
sound wave to tissue or biofluids can cause mechani-
cal displacement or fluid streaming respectively, each
of which are known mechanisms of mechanical
bioeffects.19 Cavitation is another source for mechani-
cal bioeffects, and is caused through interactions
between the ultrasound pulse and gaseous nuclei such
as microbubble contrast agents.20,21 The behavior of
cavitation is categorized by 2 primary descriptors:
inertial or stable.22 Inertial cavitation often occurs
when a microbubble expands more than 2-fold during

the tensile phase of the ultrasound pressure field.22

The pressures in the fluid or tissue surrounding the
microbubble overcome its internal pressures, resulting
in a rapid contraction. The near symmetric collapse
generates a large energy density that can damage
nearby biological structures.21 In contrast, stable cavi-
tation is a lower amplitude, sustained microbubble
oscillation that is less likely to cause irreversible
mechanical damage to tissue.

Triggering thermal and mechanical bioeffects can
result in the desired therapeutic endpoints. Different
bioeffects will require different ultrasound exposure
conditions. Heating is influenced by frequency, acous-
tic power, in situ spatial-peak, time-average intensity
(ISPTA), and tissue attenuation.23 Radiation force and
fluid streaming that give rise to mechanical bioeffects
are driven in part by ISPTA and frequency.24,25 Attenu-
ation and viscosity are also contributing factors for
radiation force and streaming, respectively.26,27 The
peak negative pressure and frequency of the ultra-
sound pulse are among the primary controlling fac-
tors in cavitation.28,29 Other factors such as the
pulse repetition frequency are also important con-
siderations for cavitation,30 and the population of
microbubble nuclei.31,32 Different bioeffects will
require different amounts of ultrasound, and ther-
mal and mechanical mechanisms can occur simulta-
neously for some exposure conditions. In situ
factors also affect bioeffects, including tissue prop-
erties (eg, density, sound speed, attenuation coeffi-
cient, backscatter coefficient, acoustic impedance,
thermal conductivity, perfusion, elasticity, and viscos-
ity), and specifications of the therapeutic device
(eg, geometry, frequency, bandwidth, pulse duration,
pulse repetition frequency, acoustic intensity, and
pressure amplitude).

Treatment of Tissues Without Exogenous
Agents

In the absence of exogenous agents, bioeffects are
generated due to a direct interaction between the
ultrasound pressure wave and tissue. The precise bio-
effect depends on exposure conditions, with modula-
tion of gene expression and increased perfusion for
mild acoustic outputs, and ablation associated with
higher acoustic outputs.33,34 A wide range of
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ultrasound-induced mechanisms are responsible for
generating these bioeffects, including heating, stream-
ing, radiation force, and cavitation generated de novo
(Figure 2).

Low-Intensity Pulsed Ultrasound
Ultrasound exposure within and just beyond diagnos-
tic acoustic output levels have been investigated for
therapeutic benefit (1–3 MHz, 0.02–1 W/cm2).35

Low-intensity pulsed ultrasound (LIPUS) has been
categorized as insufficient to generate significant ther-
mal effects, but can cause tissue displacement or fluid
streaming due to radiation force.36 Given the low
acoustic output of LIPUS systems, cavitation effects
are unlikely without the addition of exogenous
agents.31

Bone Fractures
The application of LIPUS to aid in bone fracture
healing was approved by the U.S. FDA in 1994,37 and
has been shown to be effective at each stage of tissue
remodeling.38 Several ultrasound-induced bioeffects
may contribute to the healing process,39–42 though
the variation in exposure conditions between studies
limits identifying a cohesive narrative. Nevertheless,
bone healing remains the most studied area of LIPUS,
and is the only FDA-approved indication.

Neuromodulation
Transcranial LIPUS has been shown to promise in
altering neural circuits in the brain.43 Specifically,
low-frequency ultrasound interacts with calcium-
selective mechanosensitive ion channels.44 The
resulting outcome is modulation of the long-term
plasticity and short-term excitability and connectivity
in the brain.45–47 Studies in non-human primates
demonstrate that LIPUS can achieve sustained effects
in deep-brain circuits and oculomotor perfor-
mance.48,49 Single-neuron discharge in macaques has
been recorded during ultrasound exposure, providing
direct evidence of neuromodulatory effects.50 Another
interesting outcome of LIPUS-induced neuro-
modulation has been the induction of torpor in
rodents, resulting in a hypothermic and hypo-
metabolic state.51 This finding provides insights to
the hibernation behavior of mammals and has applica-
tions for long-term space travel and slowing disease
progression.

Neuromodulation has been explored in a range
of conditions, including chronic pain, disorder of con-
sciousness, Alzheimer’s disease, Parkinson’s disease,
depression, schizophrenia, anxiety disorders, sub-
stance use disorder, drug-resistant epilepsy, recovery
from stroke, dementia, and traumatic brain injury.45,52

No safety concerns were noted in these studies,

Figure 1. (Left) Absorption of the ultrasound (US) energy heats tissue within the focal zone. Bioeffects that range from mild hyperthermia to
thermal necrosis or boiling can be induced due to heating. (Middle) Schematic of temperature–time isodamage relationship leading to irre-
versible cell death as a thermal bioeffect. Cavitation and heating are not mutually exclusive effects. Cavitation can alter the rate of heating,
and temperature elevation can reduce the cavitation threshold pressure. (Right) Schematic of bubble oscillations in response to ultrasound.
Cavitation is capable of producing significant mechanical bioeffects, including cavitation, ablation, sonoporation, and streaming. Time
increases from left to right as a cavitation nucleus under the influence of ultrasound grows into a microbubble that expands to a maximum
diameter and then collapses. Damage can be imparted to cells surrounding the bubble during these oscillations.
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suggesting neuromodulation with LIPUS may be con-
sidered as a therapeutic tool and for scientific investi-
gation.53 A working group has been formed to
develop standardized protocols to report exposure
parameters for LIPUS neuromodulation studies. A
goal of these protocols is to facilitate the use of
neuromodulation in research and clinical transla-
tion.54 Indeed, several clinical trials are ongoing to
explore potential applications (NCT06249711,
NCT06453109).

Sonogenetics
The goal of sonogenetics is to modulate cell activity
through engineered or modified protein mediators that
confer or amplify sensitivity to ultrasound.55 Early
sonogenetic studies focused on ultrasound-induced gene
switch activation.56,57 Its current focus is geared toward
findings in the neuromodulation community.58 Other
potential applications include diseases of the central and
peripheral nervous system,59 retinal cells,60 and stimula-
tion of neurons for vision restoration.61

Figure 2. A subset of therapeutic ultrasound applications without exogenous agents. Ultrasound is frequently applied transcutaneously to
targets under image guidance, though intravascular sources are also under development. Histotripsy uses ultrasound pulses with sufficient
tension to generate bubbles in situ that reduce ablated tissue (A) to acellular debris, as noted in the left image. At increased magnification
there is a sharp boundary (dashed line) between viable (V) and tissue ablated mechanically (A). Treated regions exhibit viable vessels
(arrowheads) and loss of cell nuclei (*) within the treatment zone (Reprinted from IEEE Trans Biomed Eng, vol. 71, no. 6, Development of
Convolutional Neural Network to Segment Ultrasound Images of Histotripsy Ablation, pp. 1789–1797, Copyright 2024, under creative com-
mons license CC BY-NC-ND 4.0). Thermal Ablation is achieved through absorption of ultrasound, and has been used to treat patients with
pathological conditions in the prostate (left, Reprinted from Medical Physics, vol. 46, no. 2, MRI-guided transurethral insonation of silica-
shell phase-shift emulsions in the prostate with an advanced navigation platform, pp. 774–788, Copyright 2019, with permission from Wiley)
and liver (right, Reprinted from PLoS ONE, vol. 10, no. 2, First Clinical Experience of Intra-Operative High Intensity Focused Ultrasound in
Patients with Colorectal Liver Metastases: A Phase I-IIa Study, article number e0118212, Copyright 2015, reproduced under creative com-
mons license CC BY 4.0). Several forms of Lithotripsy have been developed to break down mineralized tissue in the kidney and pancreas
and vasculature. Burst wave lithotripsy applies tone bursts with broadly focused ultrasound that is able to comminute multiple types of kid-
ney stones, including the struvite sample displayed above (Images provided courtesy Adam Maxwell). This figure was created in part in Bio-
Render.com
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Mechanically driven sonogenetic effects were first
demonstrated in nematodes (Caenorhabditis elegans)
modified to express the stretch-sensitive mechano-
transduction cation channels TRP-4 and MEC-4. The
locomotional behavior of modified nematodes was
altered following exposure to LIPUS.62 These results
were promising, although TRP-4 and MEC-4 do not
translate into mammals. Applicable genes have been
identified that can be modified that express mechano-
or thermo-sensitive proteins.63,64 Current approaches
focus on altering the intercellular calcium concentra-
tion.44,65 Ultrasound-induced hyperthermia (see
Mild Hyperthermia section) in combination with
temperature-actuated switches has been investigated
for activation of immune checkpoint inhibitors in
engineered bacteria.66 This approach has also been
shown to regulate chimeric antigen receptor T cells
(CAR-T cells) in tumor environments.67

Mild Hyperthermia
Hyperthermia refers to the heating of tissue to tem-
peratures in the range of 41–45�C for durations of
�30–60 minutes. These effects are achieved with
acoustic powers of approximately 10–100 W.68–70

Mild heating has been shown to combine synergisti-
cally with other cancer therapies.71–73 Hyperthermia
has been shown to enhance tissue damage from radia-
tion therapy,74,75 and including in clinical trials for
multiple tumor types.73 Other applications of hyper-
thermia include enhanced drug delivery using
thermosensitive liposomes76–78 and enhanced
immune effects for CAR-t cell immunotherapy.79 The
systems used to produce acoustic fields for hyperther-
mia include single or multi-element sources, phased
arrays, or intracavity devices.72,80 Volumetric heating
can be accomplished through mechanical scanning,
and/or phased arrays that offer electronic beam for-
ming and steering. Recent investigations demon-
strated the feasibility to design holographic lens
transducers that produce uniform thermal dose pro-
files over arbitrary tumor volumes.81

Thermal Ablation
The application of focused ultrasound to cause ther-
mal ablation has been extensively investigated for
multiple targets. Focused ultrasound was applied to
more than 98 k patients worldwide in 2022, the
majority of which were thermal ablation cases.82

The typical fundamental frequency for thermal abla-
tion ranges from 0.5 and 10 MHz, predominantly at
the lower end of this spectrum.83 Focused pulses have
spatial-peak, time-average intensities (ISPTA) from
0.001 to more than 1 kW/cm2. The resultant effect is
the generation of in situ temperatures ranging from
48�C to more than 70�C that causes cell death in
minutes to seconds, respectively.84 Therapeutic vol-
umes larger than the focal region are achieved by
targeting multiple locations sequentially or in an
interleaved fashion.85 For all but the most superficial
targets, image guidance is employed with ultrasound
or magnetic resonance imaging (MRI).

Many applications of thermal ablation have trans-
itioned into clinical use since 2012. The Insightec
Exablate Neuro received U.S. FDA approval for uni-
lateral thalamotomy to treat essential tremor in 2016.
The indications for use were expanded to include
tremor-dominant Parkinson’s disease in 2018.86,87 A
thermal lesion generated within the ventral intermedi-
ate nucleus ablates misfiring neurons responsible for
symptoms.88 This system uses a hemispherical array
of 1024 elements to deliver transcranial ultrasound
corrected for phase aberrations caused by the skull.
The corrections are determined through simulations
based on computed tomography scans of the skull. In
situ corrections are also applied based on MRI ther-
mometry to track mild heating from sub-therapeutic
test pulses. Thalamotomy to treat tremor syndromes
targets volumes of 100–200 mm3 at maximum tem-
peratures around 56�C.89 A large clinical trial demon-
strated significant improvement in hand tremor
scores with persistence of 36 months.90 The Exablate
Neuro is in clinical trials underway for targeting pedi-
atric tumors (NCT03028246) and gliomas
(NCT03100474). A trial targeting other brain tumors
with the Exablate Neuro system was recently com-
pleted (NCT01698437).

The Sonalleve system was designed to target
uterine fibroids, and has been adapted to treat pri-
mary and secondary bone cancers.91,92 Thermal abla-
tion has also been approved for palliative care of
bone metastases with the Sonalleve.93 Focused ultra-
sound is applied to disrupt nerves endings on the
periosteum of the diseased bone to alleviate pain, not
the lesion itself.94 Thermal ablation has been cleared
for other benign musculoskeletal tumors, such as
osteoid osteomas.95 For patients with hypertension,
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thermal ablation is being applied to tissue surround-
ing the main renal arterial supply.96,97 The goal of this
trial is to decrease the over-activity of nerves and
reduce blood pressure (NCT02649426). Multiple
focused and unfocused systems have been developed
and approved for prostate ablation.98–102 A healthcare
cost analysis indicated focused ultrasound had lower
expenditures than radical prostatectomy and external
beam radiotherapy as primary treatment options.103

There is also ongoing work to treat liver,85 kidney,85

breast cancers,104 thyroid nodules,105 desmoid
tumors,106 and nerves107 with thermal ablation.

Catheter-Based Ultrasound
Intravascular catheter devices are used commonly by
physicians to perform minimally invasive procedures.
Clinical studies have demonstrated the safety and effi-
cacy of the EKOS system, an FDA-cleared
ultrasound-assisted, catheter-directed thrombolysis
device to treat pulmonary embolism.108–110 The
device emits cylindrically symmetric ultrasound pulses
within the thrombus between 2.0 and 2.25 MHz fun-
damental frequency, 1.5 MPa peak negative pressure,
and 15% duty cycle.111 Thrombolytic therapy is
administered through infusion ports in the catheter
during insonation. A clinical study regarding the ben-
efit of the EKOS system was inconclusive, potentially
due to insufficient statistical power in the experimen-
tal design.112 An ongoing, multinational/multicenter/
randomized/controlled clinical trial is underway
designed to provide sufficient data to compare EKOS
with an anticoagulant with anticoagulant alone.113 In
addition to pulmonary embolism, pre-clinical studies
have indicated that the EKOS system provides effec-
tive drug delivery for the treatment of peri-stent
restenosis.114,115.

Other catheter-based ultrasound systems have
been developed to treat vascular calcifications. Severe
vascular calcification can inhibit balloon expansion
during angioplasty and stent placement in a stenotic
vessel.116 An FDA-approved device has been devel-
oped for intravascular lithotripsy to disrupt calcifica-
tions mechanically.117–121 An electric spark discharge
produces ultrasound waves that interact with calcifica-
tions in an analogous fashion to lithotripsy for renal
calcifications (see Kidney Stone Management sec-
tion).122 The system has been applied to peripheral

and coronary targets, each of which requires a differ-
ent number of pulses for effective treatment.

Histotripsy
Mechanical bioeffects can also be used to ablate tis-
sue. Histotripsy (histo: cells; tripsy: breaking) applies
pulses 1 μs to 10 ms in duration with much higher
spatial-peak, pulse-average intensities than used in
thermal ablation to generate inertial cavitation
(> 20 kW/cm2 for histotripsy compared to
0.001 kW/cm2 for thermal ablation).123,124 Bubbles
formed in the focal zone fractionate cells without
heating the target.125 There are multiple types of his-
totripsy, each of which use different mechanisms to
generate bubbles.126,127 Intrinsic-threshold histotripsy
applies pulses of 1 cycle with a peak negative pressure
that exceeds �25 MPa.31 Bubbles are generated due
to the tension of the ultrasound pulse. Shock-
scattering histotripsy uses highly nonlinear pulses 3 to
20 cycles in duration, with peak negative pressures of
15 MPa or greater. A cloud of bubbles is formed due
to interactions between the incident pulse, and the
shock wave of the pulse that scatters from bubbles
formed in the focal zone.128 Boiling histotripsy relies
on pulses 1–10 ms in duration that cause rapid shock
wave-induced heating.129 The increased temperature
lowers the peak negative pressure required to cause
bubble nucleation.130 To date (2024), clinical trials
are underway or have been completed to test the
safety and technical success of histotripsy technology
for the treatment of prostate tissue (NCT01896973),
liver (NCT04572633), kidney (NCT05820087), pan-
creatic adenocarcinoma (NCT06282809), and calci-
fied aortic stenosis (NCT03779620). Further, the
FDA granted a de novo request for this technology in
the treatment of lesions in the liver.

Pre-clinical studies have demonstrated that histo-
tripsy sensitizes pathologies to other therapeutic
approaches. Bubble activity decellularizes tissue, but it
is not as effective for breaking down stiff extracellular
structures.131 This property of histotripsy can be
advantageous for targets that encompass major vessels
with extensive collagen and fibrin.132 Extracellular
structure can be problematic for applications like
venous thrombosis, where fibrin will be undertreated
and may serve as a nidus for re-thrombosis.133 Com-
bining histotripsy with a fibrinolytic drug has been
shown to treat the cellular and extracellular clot
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components synergistically.134 Histotripsy has been
also shown to enhance the delivery of doxorubicin in
a murine model of pancreatic cancer.135

Systemic bioeffects have been observed when his-
totripsy is applied to free-flowing blood or venous
thrombosis without sufficient anticoagulation. The
mortality rate of swine in these studies was 45–50%
compared to 0% when heparin was administered dur-
ing insonation.136,137 The precise cause of mortality
in these studies is unknown. There were no cases of
vascular perforation or pulmonary embolism. Histo-
tripsy causes significant hemolysis,134 which is a path-
way for platelet activation and intravascular
thrombosis.138 Microclotting was observed in the
heart and lung of pigs that expired during
treatment,137 consistent with platelet-induced intra-
vascular thrombosis. Spontaneous thrombus forma-
tion may be beneficial when targeting certain lesions.
Histotripsy has been applied successfully across the
capsule of the liver and kidney without extraneous
bleeding issues. This was accomplished when thera-
peutic and supratherapeutic dose of the anti-
thrombotic warfarin were administered.139 The lack
of excessive bleeding was attributed in part due to
thromboses in vessels that coincided with the treat-
ment zone. The thrombus resolved over time, as
evidenced by patent vessels in follow-up contrast-
enhanced imaging.140 Note that the antithrombotic
warfarin is not an anti-platelet agent.138

Kidney Stone Management
Shock Wave Lithotripsy
Among the primary uses of therapeutic ultrasound,
shock wave lithotripsy has been part of the standard-
of-care for kidney stones since the 1980s.141 The pri-
mary goal of lithotripsy is to break down mineralized
structures to return the patient to homeostasis. As a
result of lithotripsy treatment, kidney stones are
reduced to a manageable size that can be passed natu-
rally. Shock wave lithotripsy is also used to target gall-
stones.142 Lithotripters are often focused sources that
generate shock waves within the treatment zone. The
first sources were electrohydraulic, using a spark gap
at one focus of a truncated ellipsoidal reflector to
generate a shock wave. Subsequent revisions to litho-
tripsy devices rely on electromagnetic and piezoelec-
tric sources. Multiple mechanisms are responsible for
stone erosion, including inertial cavitation, spallation

(reverberations of ultrasound waves within the miner-
alization), shear stresses, super focusing, squeezing,
and fatigue.143

Though shock wave lithotripsy remains the pri-
mary intervention for certain stone types, its use has
declined in recent years in favor of ureteroscopy
devices.144,145 In a recent meta-analysis, ureteroscopy
devices were found to have more favorable outcomes
than shock wave lithotripsy for stones 1–2 cm in
diameter in terms of total removal, retreatment, and
need for auxiliary approaches.146 For the same group
of stones, shock wave lithotripsy was preferable in
terms of the procedure duration and time to recovery.
No differences were noted between the therapies for
stones less than 1 cm diameter. Shock wave litho-
tripsy retains advantages over ureteroscopy, including
a reduced impact on patient quality of life, and
shorter hospital stays.

Burst Wave Lithotripsy
Spallation and shear stresses are among the mecha-
nisms of kidney stone degradation under shock wave
lithotripsy.147 Burst wave lithotripsy accentuates these
mechanisms through applying tone bursts of 100–
800 kHz that are lower in amplitude relative to shock
wave lithotripsy (a shock amplitude of 30–100 MPa
for shock wave lithotripsy compared with peak pres-
sures of 2–6 MPa for burst wave lithotripsy).148,149

Stones treated with burst wave lithotripsy acquire
periodic fracturing throughout the structures prior to
fragmentation. The periodicity of fractionation is pro-
portional to the wavelength of the tone burst, provid-
ing a means to “dial in” the size of residual debris. In
contrast, shock wave lithotripsy tends to bisect the
stone. These outcomes appear to be due to differ-
ences in scattering within the stone based on data col-
lected in a photoelastic model stone that was used to
visualize stress waves.150 Shock wave lithotripsy pro-
duced a single region of high tensile stress via spall-
ation, whereas agrid of standing waves were produced
in burst wave lithotripsy.

There is also a fundamental difference in bubble
activity between the 2 lithotripsy approaches. Cavita-
tion can be a prominent feature of shock wave litho-
tripsy due to the long-duration peak negative phase
of the pulse combined with the shock wave.149 The
nearly linear excitations for burst wave lithotripsy
with relatively low pulse peak negative pressures
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minimize bubble activity.148 These features allow
burst wave pulses to be delivered at a considerably
higher rate (10–100 Hz) compared to shock wave
lithotripsy (1–2 Hz) without producing cavitation
in vivo.151 Further, pre-clinical studies have demon-
strated that burst wave lithotripsy does not cause
hemorrhagic injury or alter renal function.152 This
finding is particularly important given other extracor-
poreal stone removal procedures are associated with
more than a 50% decline in renal function after
treatment.153

The technology was tested in a prospective, multi-
institutional feasibility study (NCT03873259).154 Sub-
jects screened for at least 1 stone less than 12 mm in
diameter via computerized tomography were recruited
for testing. The primary outcome was safety. Injury was
found to be negligible and included mild reddening of
the papilla with some hematuria. In terms of efficacy,
91% of stones showed fragmentation. Of these, 39%
were fragmented completely within 10 minutes. These
results indicate burst wave lithotripsy results in commi-
nution of the total stone volume into fragments for 90%
of cases with only mild tissue injury.

Intracorporeal Lithotripsy
Minimally invasive intracorporeal devices are also avail-
able to achieve stone comminution. Guidelines from the
American Urological Association and the Endourology
Society recommend percutaneous nephrolithotomy as
the first line of therapy for symptomatic patients with a
total kidney stone burden greater than 20 mm.155 This
system utilizes a rigid endoscope to place a comminu-
tion device near the stone. Current devices rely on
energy generated by ultrasound, pneumatic, or laser
sources, or a combination thereof. Ultrasound-based
devices use piezoelectric elements with a center fre-
quency of �24 kHz or an electrohydraulic spark dis-
charge to create the pressure waves, and potentially
cavitation, responsible for stone comminution.156 Similar
stone clearance rates were found in a prospective study
comparing ultrasound and pneumatic devices.157 A ret-
rospective study found that an ultrasound systems per-
formed the same or better than a laser-based device,
though was dependent on stone hardness.158

Ultrasonic Propulsion
Following the fragmentation of kidney stones, clear-
ance of residual debris is among the primary

considerations in the effective management of the dis-
ease.159 Passage of fragments can be affected by sev-
eral factors, including infundibulopelvic angle,
infundibular length, and spatial orientation of caliceal
anatomy.160 Acoustic radiation force is one means to
address fragments lodged in the lower pole.19 Early
studies demonstrated the feasibility to displace kidney
stones at velocities up to 1 cm/s with radiation force
generated by focused ultrasound.161 Refinement of
the technology has advanced to vortex beams that use
acoustic trapping to displace the stone.162 Here, the
vortex is created by varying the phase of the wave
emitted across the transducer surface to generate a
helical wavefront. The outcome is an intensity ring in
the plane orthogonal to the beam axis. The force of
the high-intensity ring pushes an object (such as a
kidney stone) toward the center of the ring. Proto-
types for this vortex beam manipulated model kidney
stones of millimeter size in 3 dimensions both
in vitro and in the kidney of a pig. Deviations of the
stone motion remained on average within 10% of the
intended path, with no injury to the bladder wall or
intervening tissue.

First-in-human trials of ultrasonic propulsion
relied on modified C5-2 curvilinear probe (Philips
Ultrasound, Andover, MA) driven by a research plat-
form (VAS, Verasonics Inc, Redmond, WA),163

including a low output setting for stones at depths
less than 7 cm, and a high output setting for stones at
greater depths. A maximum of 40 pushes were
applied to each patient. An initial 15-patient trial
demonstrated movement in 65% of targets, with 30%
moving more than 3 mm. The maximum stone dis-
placement was 10 mm. Over 30 fragments were pas-
sed in 4 of 6 subjects that had previously undergone a
lithotripsy procedure. Discomfort during the proce-
dure was rare, mild, brief, and self-limited. An
updated device was tested in a follow-up single-
institution trial (NCT02028559). This device
updated the C5-2 system by increasing the pulse
duration (2–5 seconds, 5–40 W), a limiting factor to
the amount of radiation force applied to the stone.
Further, the new instrumentation improved the pene-
tration depth for the pushing pulse and had a broader
beamwidth to provide better manipulation of stone
fragments.164 Successful movement of at least 1 stone
target was achieved in 95% of cases, with no notable
influence of body mass index or other features.165 No
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serious or unanticipated adverse events related to the
treatment were noted, consistent with prior clinical
and pre-clinical studies.165

Physical Therapy
Ultrasound can be used to alleviate injuries that limit
mobility or the performance of daily functions, such
as osteoarthritis, soft tissue injuries, and myofascial
pain. Unfocused ultrasound sources with low
spatial-average, temporal-average intensities (0.02–
2.5 W/cm2), heat-injured tissue to increase blood
flow, and oxygen delivery to accelerate healing.166,167

However, there is debate in the physical therapy com-
munity regarding the benefits of heating for these
injuries.168

Extracorporeal shock waves have been used to
address musculoskeletal disorders such as plantar fas-
ciitis and lateral epicondylitis. Success rates for shock
wave therapy range from 30 to 90% in muscular
applications (eg, plantar fasciitis, lateral epicondylitis,
calcified tendinitis of the shoulder, and Achilles ten-
dinopathy) and 50–85% in bone disorders (eg, non-
union and delayed union of long bone fracture).169

The therapeutic mechanisms of shock waves for bene-
fit in physical therapy are not fully understood. The
primary hypothesis is that shock waves cause intersti-
tial and extracellular responses that promote tissue
regeneration.170 In addition to these direct effects of
the shock wave, cavitation generated via boiling histo-
tripsy has been investigated to address Achilles ten-
dinopathy as an alternative to dry needling.171 Purely
mechanical disruption was achieved with pulse dura-
tions of 0.1–1 ms in the form of fiber separation and
fraying. A combination of thermal and mechanical
damage was observed for longer pulse duration, indi-
cating that a range of exposure parameters can be
identified that achieve tendon disruption.

Cosmetic Ultrasound
Esthetic medicine focuses on improving the appear-
ance of patients. Therapeutic claims described
for ultrasound in cosmetic medicine include fat
reduction,172 wrinkle smoothing,173 tightening of
loose skin areas,174 stretch mark removal,175 cellulite/
orange-peel skin treatment,176 spider veins,
telangiectasis,177 abnormal pigmentations, acne, and
scar reduction.178 Reported studies testing ultrasound
for cosmetic purposes have often been industry

sponsored. There have been no randomized con-
trolled trials, although a few clinical studies have com-
pared treated and untreated sites within subjects.179

Most reports have been based on single-center studies
ranging in size from 6 to 152 subjects. Use of analge-
sia with paracetamol, or of anesthesia, has been spo-
radically reported. Reported adverse effects range
from mild transient pain, erythema and edema of skin
lasting a few days,180 to more prevalent and wide-
ranging effects,181 including pain after treatment
(75%), edema (75%), bruising (66%), pain during
treatment (66%), tingling (60%), erythema (45%),
and skin burns (2/152 = 1.3%) that can occur at the
second-degree level (1/152 = 0.65%). Pain scores
were higher when higher energy levels were used.182

In several studies where blood lipids and other liver
function tests were examined, no anomalies were
detected after treatment.183,184 Some studies have
reported the appearance of hard subcutaneous nod-
ules, a burning sensation, mild blisters, and 1 case of
purpuric lesions.183,185,186 In general, patients
describe most adverse effects resolved spontaneously
within 4–12 weeks.

Immnuno-oncology
The immunostimulatory effects induced by ultra-
sound also hold promise in cancer treatment.187–190

There are 2 distinct translational strategies. The first
strategy targets diseases with a poor response to exis-
ting immunotherapies (eg, breast, ovary, prostate,
pancreas, and primary brain tumors). The goal of this
approach is to initiate or modulate an anti-tumor
immune response. The second strategy seeks to boost
treatment efficacy or delivery in cancers responsive to
immunotherapies (eg, melanoma, kidney, and liver).

Histotripsy, thermal ablation, and hyperthermia
have been explored for their immunological
impacts.79 Approaches that use exogenous micro-
bubble nucleation agents in combination with ultra-
sound have also been shown to promote an immune
response.191 Mechanical ablation with histotripsy can
initiate damage-associated molecular patterns
(DAMP) release, modulate cytokine and chemokine
profiles, and reduce pro-tumor immune cells.192

Increased CD8+ infiltration was found in murine
subcutaneous melanoma tumor (B16GP33 cell line)
following histotripsy relative to radiation therapy or
radiofrequency ablation.193 These outcomes were
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hypothesized to result from preservation of tumor-
presenting antigens under histotripsy, in contrast to
thermal ablation which can denature protein struc-
tures.194 Changes in tumor oxygenation due to histo-
tripsy may also contribute to the observed immune
response. Assessment of neuroblastoma tumor follow-
ing histotripsy exposure in a murine orthotopic model
indicated mitigation of tumor hypoxia, a primary
prognostic of disease resistance.195 These shifts were
attributed to the proliferation of vasculature sur-
rounding the treatment zone, providing means for
blood flow and reoxygenation in the targeted
tumor.196 Thermal treatments alter vascular perme-
ability/perfusion, induce heat shock proteins and pro-
inflammatory cytokines/chemokines, boost immune
cell infiltration and the cytotoxic activity of natural
killer and CD8+ T cells.79 Partial ablation strategies
during thermal ablation might further enhance
immune cell infiltration.197 These effects can vary
with tumor type. For instance, fibrous tumors like
pancreatic cancer may benefit from mechanical dis-
ruption of the extracellular matrix to facilitate
immune cell penetration infiltration.198 Focused ultra-
sound and microbubbles have been used for blood–
brain barrier (BBB) opening, which induce inflamma-
tion to neurogenesis stimulation, and modulation of
microglial structure.199–202 Clinical studies have docu-
mented immuno-modulation of cancers, including
liver,203 breast,204,205 thyroid,206 and others.207 Nota-
bly, thermal ablation of breast cancer results in an
increase of activated dendritic cells, macrophages, and
B lymphocytes.205,208 Combining sonodynamic ther-
apy (see Sonodynamic Therapy section) with anti-
PD1/PD-L1 therapies initiates a favorable adaptive
immune response in multiple tumor models.209 More
immuno-competent tumors with pre-existing
anti-tumor immune cells may respond better to non-
ablative, lower-power treatments that amplify cyto-
kine signaling without harming infiltrative immune
cells.210 Some tumors with significant pro-
tumorigenic infiltration might require more aggressive
ablative methods.204

Control of local diseases and at distant sites
(abscopal effect) has been reported in case reports for
thermal ablation of pancreatic cancer211 and mechani-
cal ablation of liver cancer.212 There is a lack of evi-
dence that therapeutic ultrasound alone can have an
immuno-stimulatory effect strong enough to be

curative. Several combinatorial approaches have been
tested in preclinical tumor models, including thermal
ablation with toll-like receptor agonist CpG and anti-
PD1 in breast tumor models.213,214 Histotripsy has
been tested in combination with anti-CTLA-4 and
anti-PD-L1 for neuroblastoma,215 with anti-PD1 and
CAR T cells for brain tumors,216 and anti-CTLA-4 or
CD40 agonist for melanoma.193,217 Clinical trials are
ongoing to assess the potential of combination treat-
ment, including thermal ablation with checkpoint
inhibitors to treat breast cancer and solid tumors
(NCT04116320), and ultrasound and microbubble
BBB opening to deliver nivolumab in melanoma brain
metastases (NCT04021420) or pembrolizumab for
recurrent glioblastoma (NCT05879120). Partial ther-
mal ablation of tumors is also being tested to promote
immune responses for undifferentiated pleomorphic
sarcoma (NCT04123535). Key unresolved issues
include determining effective exposures to generate the
intended bioeffect, the sequence for combined therapies,
and methods to monitor the immunological impacts.

Skin Permeabilization
The skin presents a large and easily accessible pathway
for the delivery of therapeutics to the body. Drugs that
are hydrophilic or greater than 500 Daltons have limited
penetration across the skin,218,219 and require injection
or surgical approaches for administration. Ultrasound
has been shown to permeabilize the skin in both animal
models and human skin,220 and for a wide variety of
drugs ranging from molecules to microparticles.221 Both
thermal and cavitation effects have been indicated as a
possible mechanism of action. Ultrasound frequencies
from 100 kHz to greater than 10 MHz have been inves-
tigated, and may contribute to variability of cavitation
from endogenous nuclei.222,223 Exogenous microbubble
nucleation agents are also employed to achieve the
intended bioeffects (see Types of Exogenous Agents
section).224 Ultrasound can be administered through
either traditional piezoelectric transducers or wearable
devices.225

Ultrasound Therapy with Exogenous
Agents

Cavitation is among the most common mechanism
used for therapeutic ultrasound. Endogenous bubble
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nuclei must be activated by specialized driving elec-
tronics to generate reliable activity.31 Exogenous
nucleation agents lower the peak negative pressures
required to generate cavitation,226–228 thereby expan-
ding the number of targets that can be treated safely
with mechanical bioeffects (Figure 3).

Types of Exogenous Agents
Ultrasound Contrast Agents
There are several commercially available ultrasound
contrast agents that have been approved by the FDA
for diagnostic imaging. Ultrasound contrast agents are
the most widely investigated cavitation nuclei in
investigated in therapeutic ultrasound, as reported
previously.32,229 Lipid shells counter the effects of sur-
face tension to increase the persistence of ultrasound
contrast agents in whole blood,230 though other stabi-
lizing materials have also been investigated.231 A gas
with low solubility in blood relative to air (eg, sulfur
hexafluoride or perfluorocarbon) is used to increase
the half-life of the contrast agent.232,233 Bioactive gas-
ses that release upon rupture of the contrast agent
have also been explored.234,235 Approved agents are
typically between 1 and 10 μm in diameter,236 though
advanced formulation methods have been developed
with microfluidics to produce size-isolated distribu-
tions.237–240 Multi-functional vesicles have been
developed that incorporate drug-loading onto the
microbubble shell,230 or integrate the microbubble
into a multilamellar structure that encapsulates the
therapeutic.241 Targeting ligands have also been
incorporated into the shell to localize therapeutic
effects to a specific biomarker.32

Ultrasound-Activated Droplets
Liquid droplet agents have been explored for thera-
peutic applications as an alternative to microbubbles.
Droplets are commonly formed with a liquid perfluo-
rocarbon core with a transition temperature near
physiologic conditions. The perfluorocarbon liquid is
in a metastable state, and transitions to a gas micro-
bubble following ultrasound exposure.242–246 This
method of creating microbubbles in situ is known as
acoustic droplet vaporization, and has been found to
be well tolerated in vivo.247 A shell comprised of
polymers, proteins, or lipids is used to stabilize the
aqueous phase.245,248,249 There are numerous
manufacturing methods for droplets, including

amalgamation, condensation, sonication, extrusion,
high-shear homogenization, and microfluidics. Each
process generates different ranges of droplet size
(100 nm to more than 10 μm) and polydisper-
sity.242,250–256 Multiple studies have been published
to understand the physical processes that lead to
vaporization,246,257 including the exposure parameters
required for droplet transition, and the portion of the
droplet population that transitions.258–262

Initial studies in therapeutic applications of drop-
lets focused on embolotherapy to reduce perfusion
that causes detrimental cooling during thermal abla-
tion.263 Droplet vaporization embolization has been
applied to increase drug uptake into targeted tis-
sues.264–266 Droplets have been tethered with micro-
bubbles to reduce the pressure required for
embolization (ie, acoustic cluster therapy), and are
undergoing testing in a clinical trial (NCT04021277).
Drug delivery has been further enhanced by co-
administering droplets and a pharmacologic
therapeutic,267,268 or binding the pharmacologic ther-
apeutic to the droplet surface.269–271 Double emul-
sions have also been developed for volumetric
therapeutic loading.260,272–274 The in situ formation
of microbubbles has been demonstrated to accelerate
ablation with focused ultrasound through thermal275–
278 and mechanical279–283 approaches. The unique
ability of perfluorocarbons to solubilize oxygen has
also led to pre-clinical studies to modified dissolved
gas concentrations.284,285

Other Agents
Additional agents include nanobubbles,286 and gas-
stabilizing solid cavitation agents.287 Through an
interfacial seed polymerization method,288 nanocups
have been manufactured from polystyrene spheres.289

The hydrophobic surface of the nanocup harbors a
gaseous core that undergoes inertial cavitation at peak
negative pressures between 0.5 and 1 MPa.290 Due to
their relatively small size compared to microbubbles
(100–500 nm versus 1–10 μm), nanocups, nan-
odroplets, and nanobubbles can efficiently penetrate
leaky tumor vasculature.32,291 Other potential applica-
tions for nanocups include transdermal transport of
vaccines and delivery of oncolytic vaccinia
viruses.292,293 Similar nanocone formulations have
been investigated for histotripsy.294
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Another form of nucleation agent under develop-
ment is gas vesicles, a genetically encodable, air-filled
protein nanostructure. These nanostructures evolved
in photosynthesis bacteria and archaea to achieve cel-
lular buoyancy.295 Multigene clusters within bacteria
and mammalian cells can be modified to encode gas
vesicles that can be used as ultrasound contrast agent
activated via gene expression.296–298 Gas vesicles hone
to specific cell types, which make them ideal for

targeted ablation therapies. The capacity of gas vesi-
cles to generate both stable and inertial cavitation
under the action of focused ultrasound has been vali-
dated in vitro.299 Based on these findings, gas vesicles
have been generated for treating cancer through mod-
ifying tumor-homing bacteria. Outcomes were tested
in a murine subcutaneous tumor treated in parallel
with the administration of checkpoint inhibitors
known to be synergistic with mechanical tumor

Figure 3. A subset of therapeutic ultrasound applications that rely on exogenous agents to generate bubble activity. Blood–Brain Barrier
Disruption uses transcranial or intracranial ultrasound in combination with microbubbles to enable large molecule drugs to pass from the
vasculature into brain matter. An increase in brain permeability is apparent pre (left) and post (right) via contrast extravasation on
T1-weighted MRI (arrows, Reprinted from Brain, vol. 146, no. 3, Blood–brain barrier opening of the default mode network in Alzheimer’s dis-
ease with magnetic resonance-guided focused ultrasound, pp. 865–872, Copyright 2023, by permission of Oxford University Press).
Sonothrombolysis enhances the penetration of a thrombolytic drug (eg, recombinant tissue plasminogen activator, rt-PA) via microbubble
activity into thrombus (left column) to promote fibrinolysis as indicated by plasminogen, a step in the fibrinolysis process highlighted in right
column (Reprinted from Ultrasound in Medicine and Biology, vol. 34, no. 9, Ultrasound-enhanced thrombolysis using Definity as a cavitation
nucleation agent, pp. 1421–1433, Copyright 2008, by permission of Elsevier under creative commons license CC BY-NC-ND 4.0). Cavita-
tion-enabled therapy for hypertropic cardiomyopathy generates microlesions to reduce excessive heart muscle bulk. The treated region
(light area in left image) indicated inflammation 2 days after bubble activity concurrent with swelling (arrows in right image) and inflammatory
cells indicated via blue-stained nuclei (Reprinted from Ultrasound in Medicine and Biology, vol. 44, no. 7, Ultrasound cavitation-enabled
treatment for therapy of hypertrophic cardiomyopathy: Proof of principle, pp. 1439–1450, Copyright 2018, by permission of Elsevier under
creative commons license CC BY-NC-ND 4.0). Acoustic cluster therapy relies on a microbubble/droplet moiety to embolize vasculature to
increase the penetration of therapeutics into the target (Reprinted from Journal of Controlled Release, vol. 10, no. 337, Acoustic Cluster Ther-
apy (ACT®) enhances accumulation of polymeric micelles in the murine brain, pp. 285–295, Copyright 2021 under creative commons license
CC BY 4.0).
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disruption. The combined effects of gas vesicles,
focused ultrasound, and checkpoint inhibitors
increased survival by a factor of 2 relative to the
checkpoint inhibitor alone. In addition to ablation,
gas vesicles have been proposed to enhance radiation
force on cells for applications such as tissue
engineering.300

Blood–Brain/Blood–Spinal Cord Barrier
First demonstrated in 2001,301 focused ultrasound
insonation of circulating microbubbles is capable of
safely and reversibly increasing the permeability
of the BBB and blood–spinal cord barrier (BSCB)
using stable cavitation.302,303 The BBB and BSCB
exclude most drugs from extravasating into the brain
or spinal cord, which complicates treatment for malig-
nancies in these biological structures. Ultrasound-
mediated BBB and BSCB disruption has enabled the
delivery of multiple drugs, antibodies, genes, viruses,
and even cells in pre-clinical animal models.304–306

Ultrasound-mediated BBB disruption was first
tested clinically to treat Alzheimer’s disease in
2018.307 In this clinical trial, the primary goal was
technical success of BBB disruption. The primary
safety endpoints were met, which demonstrated the
BBB could be reversibly disrupted without hemor-
rhage, swelling, or neurological deficits. No clinically
significant change in patient cognition or function
was observed. A pre-clinical study indicated BBB dis-
ruption alone is capable of reducing amyloid-β plaque
burden in a mouse model of Alzheimer’s disease.308

Reduction in amyloid-β has also been observed in
patients for BBB opening only,309–312 and when focused
ultrasound was combined with aducanumab.313 Imaging
with 18F-florbetaben PET indicated the amyloid-β
plaque burden was reduced in regions targeted with
focused ultrasound relative to the control hemisphere
after 26 weeks.

Several other clinical BBB opening studies are
ongoing, including the delivery of chemotherapy for
Her2-positive brain metastases (NCT03714243).
Another trial is ongoing that seeks to deliver the syn-
thetic enzyme Cerezyme to the brains of patients with
Parkinson’s disease (NCT04370665). A phase 1 trial
is underway to test the feasibility of BBB opening to
enhance the delivery of paclitaxel to the peritumoral
brain of patients with recurrent glioblastoma with a
device transplanted in the skull during surgical

resection (NCT04528680). Pharmacokinetic analysis
from the trial indicates that operation of the device to
activate circulating microbubbles increased the con-
centration of albumin-bound paclitaxel in sonicated
portions of the by a factor of 3 to 4, and carboplatin
by a factor of 5 to 9.314 These effects were achieved
with no observed treatment-related neurological defi-
cits, and closing of the BBB over the course of an
hour following the procedure.

Clinical results of BBB opening reflect conserva-
tive exposure parameters (eg, pulsing parameters to
minimize BBB disruption), with no reported serious
adverse outcomes. Pre-clinical evidence encourages
this caution. Disruption of the BBB can be accom-
plished across a wide range of exposure frequencies,
peak negative pressures, pulse durations, and micro-
bubble formulations. Off-target bioeffects have been
observed at the upper range of peak negative pres-
sures and microbubble concentrations investigated,
including red blood cell extravasation, dilated blood
vessels, astroglia scars, upregulation in the transcrip-
tion of proinflammatory cytokines and chemokines,
glial cell activation, macrophage infiltration, and mod-
ulation of microglial activities.202 A mild and tempo-
rary inflammatory response was shown to promote
the removal of cellular debris.315 The relevance of this
finding is uncertain given the use of an increased
microbubble concentration of approximately 5- to
10-fold increased relative to other pre-clinical or clini-
cal studies.313,316

Confirmation of safe exposure parameters can be
achieved with MRI to determine the duration and
spatial extent of BBB opening, and identify adverse
events such as extravasation or bleeding.317,318 To
account for changes in the in situ acoustic field given
the heterogeneity of the skull, patient-specific simula-
tions can be performed based on pre-treatment com-
puterized tomography (CT) data.319 Real-time
passive cavitation detection is also being investigated to
gauge the efficacy and safety of BBB procedures.316,320

In addition to enhancing drug delivery, focused
ultrasound-induced BBB disruption can be used for
diagnostic purposes. Liquid biopsy has entered clini-
cal practice to guide treatment for numerous tumor
types,321 but remains challenging for brain cancers
due to the BBB.322 The use of focused ultrasound to
permeabilize the BBB is thought to enable “2-way
trafficking,” both to enhance drug delivery as well as
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increase the prevalence of tumor-derived biomarkers
in the bloodstream.323 Further, focused ultrasound
provides spatiotemporal control to determine the
location of suspicious lesions. This sonobiopsy
method improves the detection of glioblastoma muta-
tions in murine and porcine models324,325 A first-
in-human sonobiopsy trial with neuronavigation
delivery to apply focused ultrasound indicated an
enrichment in plasma circulating DNA in patients
with high-grade glioma.326 Cavitation monitoring was
used to mitigate any inertial activity,327 and there
was no observable tissue damage in this trial.

Similar to the BBB, the BSCB prevents dissemi-
nation of therapeutics from the vasculature.328 This
barrier is problematic for the 5% of patients with solid
tumors that develop leptomeningeal metastases.329

Inspired by work on BBB disruption, investigators
have developed methods to improve the delivery of
therapeutics through BSCB via focused ultrasound-
induced microbubble activity. Initial studies in a
rodent model of leptomeningeal metastases demon-
strated good suppression of tumor growth when
trastuzumab was combined with focused ultrasound
and microbubbles. Findings indicated that the tumor
volume was reduced for the focused ultrasound group
relative to trastuzumab alone.330 A particular chal-
lenge applying focused ultrasound to the BSCB is
bone that surrounds the target, which cause standing
waves that decrease targeting accuracy.331 To over-
come this challenge, specialized dual aperture sources
that use short burst, phase keying exposures have
been proposed to mitigate standing waves.332 This
approach has been shown to be successful for pene-
trating the BSCB in rodents and swine.302,333

Sonothrombolysis
Ultrasound has been explored as a means to expedite
dissolution of a thrombus for the treatment of stroke,
pulmonary embolism, myocardial infarction, and
venous thrombosis.334 Depending on the exposure
conditions, ultrasound can act either as a standalone
therapy, or as adjuvant to thrombolytic drugs. Acous-
tic cavitation is a primary mechanism of action to
enhance outcomes for sonothrombolysis therapies.335

Stable cavitation can act as a micro-pump to enhance
the penetration of thrombolytic drugs into the throm-
bus while removing fibrin degradation products.336

Minimal changes have been observed in the clot

burden for stable cavitation alone, demonstrating that
thrombolytics are a necessary component for this
treatment strategy.337 The ability of stable cavitation
to enhance a thrombolytic drug depends on the clot
subtype.338 Stable cavitation effectively enhances the
action of thrombolytics for unretracted, porous clots.
These outcomes enable a dose reduction of thrombo-
lytic drugs,339 a key requirement to mitigate bleeding
complications associated with thrombolytic therapy.
Thrombolytic therapy is not improved via stable cavi-
tation in clots characteristic of subacute or chronic
disease. These aged thrombus subtypes are more
resistant to thrombolytic therapy340 but may be prone
to inertial cavitation.341 Indeed, sonothrombolysis has
been demonstrated to be effective in acute thrombus
for histotripsy or histotripsy-like exposures and ret-
racted thrombus.134,342–345

Multiple devices have been explored for
sonothrombolysis, ranging from focused transducers
to imaging probes with extended acoustic out-
puts.346–348 Transcranial systems developed to treat
stroke include unfocused, low-frequency systems for
rapid treatment based on landmark-based targeting,349–
351 and MRI-guided focused transducers.352 Venous
thromboemboli have been treated with intravascular
and extracorporeal systems. The EKOS endovascular
system is used for pulmonary embolisms that are sur-
rounded by bone and air-filled tissue.353 The system
was cleared by the U.S. FDA in 2005, though this clear-
ance did not include coadministration of a cavitation
nucleation agent. Newer intravascular systems have been
developed with an intention to co-deliver nanometer-
sized droplets as bubble nucleation agents.354,355 Extra-
corporeal systems are primarily developed for targeting
deep vein thrombosis in the iliofemoral vasculature.
Both spherically and cylindrically focused transducers
have been produced for rapid targeting through elec-
tronic steering along the length of the vessel.347,348

Outcomes for clinical testing of sonothrom-
bolysis techniques have been mixed. The
“CLOTBUST-ER” trial (NCT01098981) found no
difference at 90 days for stroke patients treated with
standard-of-care thrombolytic alone with or without
2-MHz transcranial ultrasound exposure.356 The trial
ended early because outcomes were not improved rel-
ative to the administration of thrombolytic alone.
There were no issues in terms of patient safety, con-
sistent with metanalysis of prior studies that used
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ultrasound to enhance thrombolytic drugs.357 It was
hypothesized that the hands-free device designed for
this study provided inadequate coverage of the
thrombus. Similar outcomes were observed in
the Norwegian Sonothrombolysis in Acute Stroke
Study (NOR-SASS),358 which included the addition
of a microbubble agent. High mechanical index diag-
nostic ultrasound pulses (5-μs duration, MI = 1.1–
1.5, 1.8 MHz) in combination with microbubbles
have been shown to restore epicardial and microvas-
cular flow in acute ST-segment elevation myocardial
infarction (NCT02410330).359 Patients who received
ultrasound showed an improvement in terms of reso-
lution of the ST-segment and infarct volume relative
to percutaneous coronary intervention alone. These
results suggest there is a role for sonothrombolysis,
though technological developments are needed to
ensure effective and safe microbubble activation.

Sonodynamic Therapy
The known capacity of inertial cavitation to produce
rare chemical species has been investigated as a
means to provide therapeutic benefit.360 Photosensi-
tive agents that generate reactive oxygen species fol-
lowing exposure to light have been studied for over a
century,361 including to saturate tumors with cyto-
toxic chemicals (ie, photodynamic therapy).
Sonodynamic therapy sought to provide an acoustic
analog to photodynamic therapy,362,363 capitalizing
on the fact that several photosensitizing agents can
also be activated by ultrasound.364 Unlike light, ultra-
sound can be applied to targets several centimeters
deep, giving sonodynamic therapy a distinct advan-
tage relative to photodynamic therapy.365 Common
sonosensitizing agents include titanium dioxide,366

Rose Bengal,367 PpIX,368 and fluorescein.369 The
inclusion of 5-aminolevulinic acid (5-ALA) increases
the uptake of sonosensitizers like PpIX in proliferat-
ing cells such as glioma, thereby disrupting the heme
pathway to promote apoptosis following ultrasound
exposure.370–372

The precise mechanism of activation for
sonodynamic therapy remains under investigation,373

though light generation during inertial cavitation
remains a common theme.374 To accentuate cavita-
tion effects, several groups aim to develop moieties to
co-deliver bubble nuclei with sonodynamic
agents.287,367 There are significant differences in gas

content between microbubble contrast agents (eg,
perfluorocarbon) and early studies into bubble-
induced light emissions (eg, air with a need for noble
gasses).375 Nevertheless, photons have been detected
from ultrasound activation of microbubbles in vitro
and in vivo.376,377 Despite their lack of noble gasses,
oxygen-loaded microbubbles have been shown to
generate sufficient light to activate the sonodynamic
agents.376 These findings demonstrate there is still a
lack of understanding of the primary mechanisms of
the process for light generation during cavitation.
Given that a primary mechanism for sonodynamic
therapy is the formation of reactive oxygen species,
the therapy has been shown to have poor outcomes
in hypoxic tumors that lack molecular oxygen.378

Hypoxia is a ubiquitous eventual outcome for all solid
tumors.379 To ensure efficacy for sonodynamic ther-
apy, oxygen-loaded microbubbles have been devel-
oped to titrate the targeted tissue to a normoxic
state.380

There are several clinical trials that have tested
sonodynamic therapy. A cohort of 3 patients with
metastatic breast cancer were treated using a combi-
nation of sonodynamic and photodynamic therapy.381

The targeted tumors displayed good regression,
though patients experienced pain as the result of
treatment. In a study with 115 patients, various can-
cer diagnoses were treated with sonodynamic and
photodynamic therapy.382 Outcomes with the combi-
nation approach were favorable, with an increase in
median survival time and no adverse events. Positive
outcomes were linked to an acute inflammatory
response that activated the innate immune system.
Additional trials are underway to test sonodynamic ther-
apy for neuro-oncology applications (NCT06039709,
NCT04845919, NCT04559685, NCT05362409,
NCT05370508, and NCT05123534).

Sonoporation
Ultrasound has been shown to accelerate drug and
gene transfection for a number of years.383 Compared
with other transfection methods, sonoporation pro-
vides the best potential for clinical adoption due to its
high specificity, deep tissue penetration, and low
cost.384 The generation of transient pores in cells via
cavitation is hypothesized to be the primary mecha-
nism of action for sonoporation.385 Hence, micro-
bubble contrast agents are a critical component for
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any sonoporation strategy. The precise mechanisms
of pore formation are under investigation. Stable cavi-
tation generates microstreaming that increases shear
stresses near the cell wall,386 which has been associ-
ated with membrane pore generation.385 Inertial cavi-
tation effects may also contribute, including shock
waves or jetting from an asymmetric collapse.387–389

The observed duration of permeabilization ranges
from a few seconds up to 24 hours.390 In some cases,
the pore may be permanent. For example, 1-MHz
pulses of 10 cycles and 0.85-MPa peak negative pres-
sure were applied to microbubbles affixed to MRC-5
fetal fibroblasts.391 Openings less than 3 μm in diam-
eter resealed the cell membrane, but pores larger than
�6 μm diameter persisted indefinitely. Beyond the
physical mechanisms responsible for pore generation,
the resulting increased penetration of molecules into
the cell cytoplasm is also not fully understood.
Hypotheses range from non-selective poration of the
cell membrane, endocytosis stimulation, and large cell
membrane wounds.390

There have been few updates to clinical adoption
of sonoporation since 2012, though several new appli-
cations have emerged. Multiple studies have investi-
gated sonoporation for mRNA and DNA vaccines
delivery.392,393 To facilitate vaccine delivery, designer
microbubbles were developed with mRNA incorpo-
rated into the lipid shell.394 Ultrasound-induced
microbubbles activity enhanced transfection by more
than a factor of 40 relative to intramuscular injection,
resulting in modification of genetic expression for
more than 400 days.393 Sonoporation methods have
been developed to load the cryoprotectant trehalose
into erythrocytes, enabling storage of the formed
blood elements at room temperature. The resulting
product is a “freeze-dried blood” for transfusions.
More than 95% of erythrocytes can be recovered fol-
lowing sonoporation, and �90% after rehydration.395

Microfluidics devices are under development to
perform sonoporation to accentuate trehalose
transfection.396

Cavitation-Enabled Therapy for Hypertrophic
Cardiomyopathy
Hypertrophic cardiomyopathy is a life-threatening
condition associated with progressive heart malfunc-
tion, which can lead to sudden death in otherwise
healthy young athletes.397 Available treatment

methods are invasive, including intra-cardiac surgery
and alcohol ablation.398,399 Inertial cavitation can
reduce excessive heart muscle to address hypertrophic
cardiomyopathy. Proof-of-concept for this approach
was demonstrated in a rodent model using ultrasound
pulses of 1.5 MHz fundamental frequency and 4 MPa
peak negative pressure. These exposure conditions
resulted in good cavitation, as visualized on B-mode
grayscale with a 10 MHz imaging probe.400,401 Thera-
peutic efficacy was indicated by premature ventricular
contractions induced by the cardiomyocyte injury,
and measurements of troponin.402 Ultrasound pulses
were ECG-gated to coincide with the end of systole,
which resulted in the best production of premature
complexes with minimal heart function disruption.403

The resulting effect was tissue reduction indicated on
vital staining.404 The lesions healed within �6 weeks
with minor fibrin formation but effective heart func-
tion.405 Application of this approach on a genetic rat
model of hypertrophic cardiomyopathy resulted in a
16% reduction in endocardial wall thickness, which
was considered a clinically significant outcome.406

An undesirable consequence of the treatment
was swelling in heavily treated volumes which led to
infarction-like injury. Swelling associated with these
off-target effects was substantially reduced by steroids,
and cardiac fibrosis limited by losartan. The preva-
lence of excessive injury was reduced when the frac-
tionating therapy occurred over the course of
3 treatment sessions separated by 1 week.407 These
results demonstrate the promise of cavitation-enabled
tissue reduction for hypertrophic cardiomyopathy,
though additional tests are required prior to the initia-
tion of a large-scale clinical study.

Radiosensitization
Therapeutic ultrasound in combination with micro-
bubbles has been shown to increase the sensitivity of
tumors to radiation therapy. Disruption of the BBB
with ultrasound combined with systemic micro-
bubbles increases regional blood flow and oxygena-
tion.408 These conditions are necessary for the
formation of free radical by radiation, and the resul-
tant DNA damage.379 Radiotherapy combined with
ultrasound-induced BBB opening was found to
enhance tumor control and prolonged survival com-
pared to radiotherapy alone in a murine model of
glioblastoma.409 These results led to a prospective
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pilot study for patients with recurrent high-grade gli-
oma that included reirradiation for disease control
(NCT04988750). A BBB opening procedure was per-
formed 2 hours prior to fractioned stereotactic radio-
surgery or conventional radiotherapy. Analysis of the
initial 6 patients indicated there were no BBB
opening-related adverse events. One patient had a
partial response after the combined procedure or an
objective response rate of 16.7%.

Inertial cavitation also increases tumor sensitiza-
tion to radiation therapy,410 potentially via vascular
damage.411–417 Ultrasound-activated microbubbles
damage endothelial cells and induce thrombosis, simi-
lar to outcomes of high-dose radiation. Acidic
sphingomyelinase (ASMase) activation within the
endothelium results in ceramide-induced cell death
and rapid apoptosis.413,417–420 This process enhances
low (less than 6 Gy) and high (more than 8 Gy) radi-
ation doses to provide a synergistic approach to can-
cer treatment.412,413,416,417,419,421,422 These results
indicate endothelial cell death due to vascular shut-
down and direct canonical DNA damage are primary
contributors to ultrasound-enhanced radiotherapy.

Insights from preclinical studies on ultrasound
vascular ablation have led to several clinical trials.
A pilot clinical trial (NCT03199274) explored
ultrasound-triggered microbubble destruction to
enhance the treatment response in hepatocellular car-
cinoma patients undergoing transarterial radio-
embolization.423 Ultrasound pulses with a 1.5 MHz
fundamental frequency, 2.3 μs duration, and mechani-
cal index of 1.13 were applied at a rate of 100 Hz for
several minutes prior to radioembolization. A higher
tumor response rate was noted in participants who
received microbubble destruction compared to those
who received radioembolization alone. No significant
complications were reported in this study. A first-in-
human, phase 1 prospective interventional trial
(NCT04431674) of 8 breast cancer patients assessed
fractionated radiotherapy combined with focused
ultrasound-microbubble treatment (800 kHz funda-
mental frequency, 570 kPa peak negative pressure,
and 16-cycle tone burst over a 50 ms period repeated
for 5–10 minutes). The ultrasound microbubble
treatment was applied an hour prior to the first and
fifth radiotherapy fractions.424 Seven patients experi-
enced a complete response at the treated site over
3 or more months of follow-up. There were no late

effects related to radiotherapy or toxicity from the
ultrasound-microbubble treatment, indicating a signif-
icant potential for radiosensitization. These results
have prompted another clinical trial underway to test
ultrasound microbubble destruction to radiosensitize
head and neck cancers (NCT04431648).

Mechanical Ablation
Histotripsy relies on peak negative pressures in excess
of 25 MPa to generate spontaneous bubbles for tissue
ablation (see Histotripsy section).126 Such pressures
can be difficult to achieve in situ due to factors such
as aberration and complex acoustic paths.425–427 To
mitigate these issues, nanodroplets have been
explored to lower the threshold for bubble nucleation.
Formulations of nanodroplets to target micro-
metastases were developed and tested in vitro.428 Ini-
tial studies found a significant decrease in the thresh-
old for bubble cloud formation with �200 nm
diameter nanodroplets (�10 MPa) compared to
without the droplets (�28 MPa) for 500-kHz pulses
of 2 cycle duration.228 The droplet transition thresh-
old was found to increase with frequency for single-
cycle pulses,429 in contrast to measurements with
non-histotripsy insonations.242 These results suggest
homogenous nucleation of the perfluorocarbon liquid
under histotripsy,429 whereas heating via super-
harmonic focusing is a mechanism for non-histotripsy
droplet transition.257,430 A larger number of pulses
was required for complete treatment with nan-
odroplets relative to insonation without droplets,
indicating exogenous nuclei lower the efficiency of
histotripsy relative to intrinsic nuclei. Other nuclei for
histotripsy have also been investigated, including
nanocones and microbubbles.226,431,432 Nanobubbles
combined with low frequency, low amplitude ultra-
sound (�80 kHz fundamental frequency, �250 kPa
peak negative pressure) have been shown to produce
mechanical ablation in vitro and in vivo.282,433,434

Monitoring Bioeffects

Therapeutic ultrasound is a non- or minimally inva-
sive procedure. To ensure the procedure is accurate
and effective, imaging is used for therapy planning,
monitoring (eg, track heating or cavitation), and
assess outcomes. The type of imaging will vary based

Bader et al—Overview of Therapeutic Ultrasound: 2024 Update

J Ultrasound Med 2024; 9999:1–53 19

 15509613, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jum

.16611 by U
niversity O

f C
hicago, W

iley O
nline L

ibrary on [11/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



on the pathologic target, therapeutic mechanism, and
system (Figure 4). This section will focus on imaging
associated with bioeffects in the therapy monitoring
and assessment of outcome stages. Imaging for pre-
treatment planning has been described previously.435

Ultrasound Imaging
Treatment Monitoring
Focused ultrasound systems are often fit with a coax-
ial imaging probe. The type of ultrasound imaging
used for treatment monitoring depends on the
intended bioeffect. Bubbles are effective scatters of
ultrasound, making even a standard B-mode imaging
sequence a starting point to track cavitation-based
therapies.436 Imaging sequences intended for diagnos-
tic use have limitations for therapy monitoring,
including the presence of interference between the
imaging and therapy pulses. These artifacts can limit
meaningful assessment during application of the ther-
apy. Modified imaging sequences have been proposed
to address constructive interference, including filter-
ing to remove the fundamental therapeutic frequen-
cies and the corresponding harmonics or pulse
inversion.437,438 Ultrafast, plane wave sequences
enable the imaging and therapy sequences to be inter-
leaved, thereby avoiding interference.439 Scatter from
cavitation can be limited with plane waves due to
their unfocused nature, particularly for targets at
depth. The integration of a chirp-coded excitation
sequence has been shown to significantly increase
bubble detection.440 Additional processing of the ste-
ered signals with a nonlinear Volterra filter increases
the bubble-to-contrast ratio more than 20 dB relative
to standard image processing.441 Ultrafast pulses
interact with cavitation to enhance the rate of bubble
dissolution,442 a rate-limiting factor for cavitation-
based histotripsy.443

Diagnostic imaging systems can also be used to
monitor ultrasound therapy through the detection of
acoustic emissions (eg, cavitation). Structures within
tissue scatter the incident therapy pulse, and can be
used to determine in situ information about shifts in
focal location due to aberration.444,445 Cavitation is
often the strongest source of acoustic emissions and
is among the primary considerations when monitoring
bubble-based therapies. Indeed, acoustic emissions have
been shown to correlate with a number of bioeffects,
such as ablation,439,446,447 drug delivery,134,337 and BBB

or BSCB disruption.448–451 Historically, emissions were
detected with single element transducers. The received
signals were processed to indicate the strength of spec-
tral components associated with inertial (eg, broadband
or inharmonic emissions) or stable (eg, harmonics,452

subharmonics,316 or ultraharmonics336) cavitation. Stud-
ies have also used imaging probes as passive detec-
tors.453,454 The received signals are processed in an
analogous method to standard B-mode sequences to
form images that not only quantify the strength of
acoustic emissions, but their location and extent. These
images are termed passive acoustic maps or passive cavi-
tation images, and have been an active field of research
since the early 2010s.444,453–456 With the advent of com-
mercial ultrasound imaging systems operated with high-
level computing languages, passive imaging has become
more readily integrated into pre-clinical studies.457

Passive imaging has been implemented onto clinical-
grade scanners,458 and tested in a trial for delivery of
temperature-sensitive liposomes in combination with
cavitation nuclei (ISRCTN17598292) and neu-
ronavigated BBB opening with microbubble contrast
agents (NCT04118764).

Passive images are often collected without using
absolute time of flight information, which restricts
resolution based on the point spread function of the
array.457 For standard imaging probes, the point
spread function is increased by a factor of 10 along
the range dimension relative to the axial dimension
for delay-and-sum-like beamformers. This means
there is poor localization of cavitation along the cen-
tral axis of therapy source for co-axially placed imag-
ing probes. Outcomes are improved for custom
detection arrays. For instance, transcranial systems
have a point spread function that spans approximately
1 wavelength in all directions.459 A number of
approaches have been proposed to address the resolu-
tion of passive imaging,460–462 which demonstrates
this is a primary area of research for the field of thera-
peutic ultrasound. Due to variability in detection
instruments, there has been significant interest in the
development of absolute, system-independent mea-
surements of cavitation.463 Methods to calibrate imaging
systems to report system-independent data have been
outlined, including accounting for effects such as
diffraction,464 attenuation,465 and probe configuration.466

The use of ultrasound for monitoring thermal
therapies has also been investigated, largely through
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the collection of quantitative acoustic parameters.
Ultrasound imaging-based temperature mapping can
be achieved based on assessment in shifts of the
speed of sound.467–469 These estimates of tissue
heating have not shown the same level of robustness

as MRI thermometry. Other quantitative ultrasound
parameters have been shown to be good surrogates
for heating over temperatures from 38 to 64�C, such
as the effective acoustic concentration or scatterer
diameter.470

Figure 4. Imaging for treatment monitoring and assessment of outcomes is critical for successful therapeutic ultrasound. Treatment moni-
toring: Temperature is tracked with MRI thermometry (Reprinted from Medical Physics, vol. 46, no. 2, MRI-guided transurethral insonation of
silica-shell phase-shift emulsions in the prostate with an advanced navigation platform, pp. 774–788, Copyright 2019, with permission from
Wiley). Cavitation can be gauged by hyperechogenicity on B-mode imaging or the detection of acoustic emissions (Reprinted from Brain,
vol. 146, no. 3, Blood–brain barrier opening of the default mode network in Alzheimer’s disease with magnetic resonance-guided focused
ultrasound, pp. 865–872, Copyright 2023, by permission of Oxford University Press). Noncontrast assessment of outcomes: Native MRI con-
trast (Reprinted from Physics in Medicine and Biology, vol. 62, no. 17, The response of MRI contrast parameters in in vitro tissues and tissue
mimicking phantoms to fractionation by histotripsy, article number 7167, Copywrite 2017, with permission from IOP Publishing), standard
ultrasound grayscale (Reprinted from Scientific Reports, vol. 9, Pilot in vivo studies on transcutaneous boiling histotripsy in porcine liver and
kidney, article number 20176, Copyright 2019, with permission from Nature Publishing under creative commons license CC BY 4.0), bubble-
induced color Doppler (Reprinted from IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 63, no. 6, Bubble-
induced color Doppler feedback for histotripsy tissue fractionation, pp. 408–419, Copyright 2016, with permission from IEEE), or
elastography (Reprinted from IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 59, no. 6, Imaging feedback of
histotripsy treatments using ultrasound shear wave elastography, pp. 1167–1181, Copyright 2012, with permission from IEEE) can be used to
gauge treatment outcomes. Contrast assessment of outcomes: Regions of nonperfusion on contrast MRI or ultrasound are primary methods
used to assess ablation (Reprinted from International Journal of Hyperthermia, 39(1), First-in-man histotripsy of hepatic tumors: the
THERESA trial, a feasibility study, pp. 1115–1123, Copyright 2022, with permission from Taylor and Francis Group under creative commons
license CC BY 4.0; Reprinted from Medical Physics, vol. 46, no. 2, MRI-guided transurethral insonation of silica-shell phase-shift emulsions
in the prostate with an advanced navigation platform, pp. 774–788, Copyright 2019, with permission from Wiley; Reprinted from IEEE Trans-
actions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 68, no. 9, Contrast-Enhanced Ultrasound: A Useful Tool to Study and
Monitor Hepatic Tumors Treated With Histotripsy, pp. 2853–2860, Copyright 2021, with permission from IEEE; Reprinted from European
Journal of Radiology, vol. 81, no. 12, Clinical Utility of a Microbubble-Enhancing Contrast (“SonoVue”) in Treatment of Uterine Fibroids with
High Intensity Ultrasound: A Retrospective Study, pp. 3832–3838, Copyright 2012, with permission from Elsevier).
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Treatment Outcomes
Ultrasound imaging is often the initial approach used
to gauge treatment outcomes. For standard B-mode
imaging, thermal ablation appears hyperechoic due to
an increase in perfusion and boiling bubbles gener-
ated within the focal zone.471,472 Changes in
echogenicity have been found to correlate with tissue
temperature.473 This information was integrated onto
a transrectal prostate ablation device to guide the
acoustic output based on changes in echogenicity.
Outcomes for 97 patients treated with echogenicity
feedback resulted in a post-treatment negative biopsy
rate of 97%.99 Ultrasound images processed with echo
decorrelation are less sensitive to artifacts and more
sensitive to ablation than classical quantitative acous-
tic metrics.474 Based on its success in pre-clinical
studies, echo decorrelation was tested in a clinical
study for radiofrequency ablation.475 Histotripsy abla-
tion reduces tissue structure to acellular debris,
resulting in a hypoechoic appearance on B-mode
imaging for ex vivo specimen and phantoms.341,476,477

The appearance of histotripsy ablation can be more
difficult to assess in vivo,140 prompting the develop-
ment of a neural network for image segmentation of
ablation.478 The network performed well in vitro,
with an overall accuracy of 82%, IoU score of 92%,
and area under the ROC curve of 92%. The network
had poor predictive ability in the early stages of treat-
ment due to morphological changes in the appear-
ance of ablation on ultrasound imaging.

Other non-contrast modes of ultrasound imaging
have been investigated to assess outcomes. Ablation dis-
rupts the microvasculature, which appears as a reduction
in blood flow under power and color Doppler imag-
ing.479 Changes in the color Doppler are also indicative
of successful tissue fraction under histotripsy due to
changes in bubble motion.480,481 Ablation alters the elas-
tic properties of the tissue. Thermal coagulation
increases tissue stiffness,482 which can be tracked with
ultrasound shear wave elastography.483 Advanced
elastography sequences take advantage of the therapy
pulse to generate shear waves.484 In contrast, histotripsy
liquefaction reduces tissue stiffness. Complete treatment
generates liquefaction that prohibits the generation of
shear waves, and therefore produces a null region on
elastography images.485

Contrast-enhanced imaging provides a proxy
for perfusion within the tissue, particularly for

intravascular microbubble contrast agents.32 Both
thermal and mechanical ablation disrupt the capillary
bed, which prevents the penetration of contrast into
treated regions. The resulting ablation gives a
hypointense appearance on contrast-enhanced ultra-
sound.140,486–488 There can be some question on the
margins of treatment, which can appear hyperintense
due to sublethal damage.472 A similar hypointense
rim is also observed for other forms of contrast-
enhanced imaging (eg, MRI or CT).84

In summary, ultrasound imaging provides real-
time information and is substantially less expensive
than other modalities.489 There remain limitations to
the use of ultrasound imaging for therapy guidance,
including inaccuracies in estimating the ablation zone
extent, and interobserver and objective variability in
assessment of outcomes.490,491 Standard ultrasound
scanners largely lack volumetric assessment, which is
a deterrent relative to other imaging modalities.

Magnetic Resonance Imaging
Therapy Monitoring with MRI Thermometry
The known temperature dependence of the proton
resonance frequency shift for water is well established
(on the order of �0.01 ppm/�C),492 and can be
assessed with MRI. Successive MRI acquisitions with
phase-sensitive sequences like gradient echo enable
the generation of accurate temperature change maps
in near real-time.493 Temperature monitoring with
MRI is used extensively to guide thermal ablation,
both for targeting and to gauge outcomes based on
thermal dose.18,494 There are limitations to the accu-
racy of MRI thermometry. Assessment of proton res-
onance frequency requires sufficient water content,
posing a challenge to assess temperature shifts in fatty
tissue such as breast or liver.495 There can be artifacts
due to drifts in the magnetic field or high heating that
cause phase wrapping.496 Finally, proton resonance
frequency thermometry is sensitive to macroscopic
motion (eg, caused by the patient moving) and even
changes in blood flow.497

Treatment Outcomes
Excellent soft tissue contrast can be achieved with
MRI to evaluate ablation. Even ultrasound-guided
treatments often rely on MRI to confirm outcomes
24–72 hours after the procedure.436 There are several
forms of inherent MRI contrast to determine
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treatment outcomes, including longitudinal relaxation
time (T1), transverse relaxation time (T2), and pro-
ton density. Diffusion is another form of MRI con-
trast, and is well correlated with histopathology.498–
501 For thermal ablation, changes in diffusivity depend
on the tissue type and insonation parameters.501,502

Mechanical ablation increases local diffusivity and
perfusion within targeted regions.499,503,504 Intravoxel
incoherent motion is an extension of diffusion-
weighted imaging that accounts for diffusion and per-
fusion of the tissue.505 Based on its ability to distin-
guish between inflammation and necrosis, intravoxel
incoherent motion shows promise to help identify the
edges of treatment zones.506 Longitudinal and trans-
verse contrast have also been employed to assess abla-
tion in pre-clinical models.427,499,503,507 Quantitative
T2 mapping has been applied to thermal ablation of
desmoid tumors, with progressive changes observed
in the relaxation time over the course of treatment.508

Contrast-enhanced MRI remains the gold stan-
dard to assess ablation. Non-perfusing regions corre-
late strongly with histologically assessment of tissue.84

Contrast-enhanced MRI is twice as sensitive to abla-
tion relative to contrast CT.509 Heating can cause
ambiguity in determining the precise borders of the
treatment zone due to reactive hyperthermia.510 For
histotripsy, hyperintense contrast within major vessels
have been observed in the otherwise hypointense treat-
ment zone.436 These findings are consistent with the
known properties of histotripsy to spare major vessels.132

In addition to ablation, contrast MRI is used to confirm
BBB and BSCB disruption studies in pre-clinical and clin-
ical studies.317,449,511 Good correlation has been observed
between contrast enhancement and extravasated dyes in
pre-clinical studies.302,512

There are some additional considerations when
performing contrast MRI with typical gadolinium-
based agents. Contrast MRI is performed at the end
of treatment due to a decrease in the half-life of gado-
linium with increasing temperature.513 Gadolinium
cannot be cleared by patients with renal insuffi-
ciency.514 Recent studies indicated the agent may be
deposited and retained within the brain,515 though
there is a lack of clinical evidence that this creates off-
target effects. Finally, the increased healthcare costs
for MRI relative to ultrasound are a consideration
when considering the systems used for image
guidance.516

Computed Tomography
Hounsfield units are a relative quantitative measure-
ment of radio density.517 There is temperature depen-
dence for Hounsfield units, which make CT a
potential method to monitor thermal therapies.518

Real-time monitoring with CT is not common due to
the associated ionizing radiation. The primary use of
CT is to assess ablation outcomes. Similar to MRI,
regions of ablation appear as hypointense on contrast
CT acquired with a 3-phase sequence.436,519 There
can be a rim of enhancement surrounding the pri-
mary ablation zone indicative of benign physiologic
response to thermal injury. The enhancing rim is usu-
ally resolved over the course of 1 month,520 and the
hypointense ablation zone involutes as tissue recovers
from the treatment.519

A further use of CT is for treatment planning of
transcranial or spinal procedures with multi-element
phased array sources. The approximate mapping
between Hounsfield units and acoustic properties are
included in calculations to estimate the in situ acous-
tic field.521 The calculation is used to develop appro-
priate targeting strategies to account for aberration
through appropriate phasing of each element of the
therapeutic source.522 Information about aberration
collected with CT can also be used to correct passive
imaging for treatment monitoring, and hence better
localization of cavitation.459

There can be limitations with identifying lesions
with the imaging probe coaxial to the therapy source,
particularly for deep-seated targets. To address this limi-
tation, methods that use computed tomography have
been developed in the pre-treatment planning phase for
histotripsy procedures.523 This approach uses a well-
characterized phantom to determine the transfer func-
tions between a cone-beam CT system and robotic arm
use for placement of the histotripsy source. Once regis-
tered, the robotic positioner for the histotripsy system
places the transducers within to target regions under
cone-beam CT with 1.4 � 0.5 mm precision.

Pre-Clinical Testing, Simulations, and
Other Non-Clinical Considerations

Tissue-Mimicking Materials
Therapeutic ultrasound systems are often calibrated
or evaluated with tissue-mimicking materials
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(TMMs). Compared to animal and human studies,
experiments with TMMs are relatively inexpensive,
easier to conduct, more reproducible, and have fewer
regulatory hurdles. For most applications, it is impor-
tant that TMMs model the attenuation coefficient
and speed of sound to approximate the propagation
of ultrasound correctly. The nonlinearity coefficient
should be considered for TMMs used to test high
Gol’dberg number conditions,524 including thermal
ablation,525 histotripsy,526 and lithotripsy.143 Quanti-
tative acoustic parameters (eg, backscatter coefficient)
should be properly addressed to evaluate an
ultrasound-guided system.470 For MRI-guided thera-
pies, the longitudinal relaxation time (T1) and effec-
tive spin–spin-relaxation time (T2*) should be
replicated.527,528

Phantoms for Thermal Therapies
Thermal properties of a TMM will impact the spatial
distribution of heating, and therefore the prediction
of thermal bioeffects. Phantoms have been developed
that approximate the soft tissue thermal properties
such as conductivity, diffusivity, and specific
heat.525,528–533 Some of these TMMs also mimic the
backscatter coefficient,525,530,532 nonlinearity
coefficient,525,530 or mechanical properties.526,528–
530,532 The acoustic,525,529,534,535 thermal,525,529,536,537

and mechanical529 properties of TMMs have been
measured over a range of temperatures relevant for
thermal therapies (ie, room temperature to 70�C).
To qualitatively assess thermal therapies, a polyacryl-
amide hydrogel and bovine serum albumin TMM was
developed that becomes opaque in locations heated
to 60�C.534,535,538,539 Thermochromic ink-based
TMMs also provide visual cues for outcomes of thera-
peutic levels of heating.540,541

Targets other than soft tissue can by modeled by
phantoms. Blood TMMs within the physiologic range
of attenuation coefficient, speed of sounds, non-
linearity coefficient, thermal conductivity, thermal diffu-
sivity, and viscosity have been produced.532,536,537,542

The temperature-dependent properties of 2 blood
phantoms were characterized up to 70�C.536,537 A
2-component phantom that approximates bone
within soft tissue was generated to test palliation of
metastases with MRI-guided focused ultrasound.543 A
bilayer gel TMM was developed to study phase

aberration that causes defocusing of the acoustic field
across multiple tissue layers.544

Phantoms for Histotripsy
Mechanical ablation with histotripsy relies on bubble
activity to lyse cells in the focal zone.545 The most
common TMM used in pre-clinical studies to evalu-
ate histotripsy is an agarose gel that includes a thin
layer of red blood cells.477 Over the course of histo-
tripsy exposure, treated regions become optically
transparent and serve as a ground truth for identifying
ablation. Further, changes in the phantom appearance
on ultrasound imaging are consistent with the appear-
ance of tissue ablated ex vivo. Fiducial markers can be
embedded in the phantom to facilitate registration
between digital photographs of ablation and medical
imaging (eg, ultrasound or MRI).499 Agarose has a
low attenuation coefficient relative to soft tissue,
which may alter nonlinearities in the histotripsy pres-
sure waveform relative to that generated in vivo.526

Additives such as evaporated milk increase the TMM
attenuation within the range of ex vivo tissues, though
at a loss of transparency.526 While the concentration
of agarose can be altered to adjust outcomes based
on material stiffness,132,341 there are questions as to
whether this material truly replicates the viscoelastic
properties of tissue that affect bubble dynamics
in vivo. More recent work with hydrogels has been
shown to replicate tissue toughness, particularly repli-
cating structures with significant extracellular matrix
such as benign prostate hyperplasia.546 Additional
phantoms with multiple layers to approximate soft tis-
sue aberration have also been investigated.547

Quality Assurance
Clinical-focused ultrasound systems are tested on a
regular basis to identify possible malfunctions prior to
patient treatment. Several publications document
quality assurance (QA) protocols for single-
institution studies.548–550 A report by the American
Association of Physicists in Medicine (AAPM) Task
Group 241 includes recommendations for periodic
testing of MRI-guided focused ultrasound sys-
tems.551,552 The recommendations are divided into
categories according to the frequency of inspection.
Tests that are conducted daily or before each patient
treatment include transducer focusing capability,
transducer steering, imaging signal-to-noise ratio,
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safety interlock evaluation, visual check of equipment
for damage, and inspection of the coupling mem-
brane. Tests to be conducted every 6 months or every
twenty patients include motor system evaluation,
table positioning and homing capability, the accuracy
of MRI thermometry, planning/delivery software
function evaluation, cavitation detection, and
degassing system. Tests that should be conducted
annually or every 100 patients include acoustic output
power with a radiation force balance and ultrasound
beam characterization with a hydrophone.551

The AAPM Task Group 333 was formed in 2019
to develop a more detailed MRI-guided focused ultra-
sound systems QA protocol that should be executed
before each patient treatment. Further, the protocol
was tested in an interlaboratory comparison study.
The protocol included specifications for a new phan-
tom that was custom-designed for MRI-guided
focused ultrasound systems. Detailed methods for
measurements of peak temperature rise, targeting
error, signal-to-noise ratio, and assessing the thermal
ablation volume were included as part of data acquisi-
tion required for the protocol. Five institutes were
included in the interlaboratory comparison study,
each with a variety of commercial and custom therapy
systems. The study was completed in 2023, and
processing of collected data was underway at the time
this manuscript was written (June 2024).

Reporting Therapeutic Ultrasound Treatment
Parameters
Recommendations have been developed to document
therapeutic ultrasound studies to promote experimen-
tal reproducibility.553 There are separate sets of rec-
ommendations for clinical and preclinical studies to
provide flexibility for differences in expertise and
equipment among institutions. The reporting recom-
mendations include descriptions of driving electron-
ics, transducer, hydrophone-based acoustic output
characterization, numerical simulations, monitoring
methods, and the intended bioeffect.

Measurements of the acoustic field with a hydro-
phone remain a mainstay parameter needed to ensure
the reproducibility of therapeutic ultrasound studies.
The effective size of a hydrophone element can be
much larger than its geometric size, particularly at
low frequencies.554 Methods have been developed to
compensate for spatial averaging across the

hydrophone sensitive element and for hydrophone
frequency-dependent sensitivity,555 including for
broadband therapeutic ultrasound pressure pulses.555–
559 The broadband nature of therapeutic ultrasound
pulses is due to nonlinear propagation, resulting in
energy at the fundamental frequency of the excitation
(f0) and harmonic frequencies (nf0, where n = 1,2,3,
…nmax, where nmax can exceed 100).130,560 The
�3 dB beamwidths of the harmonic beam compo-
nents of the therapeutic ultrasound acoustic field
decrease with n. Critical values of n can exist for an
excitation with harmonic beamwidths smaller than
the sensitive element of the hydrophone (Figure 5).
The resulting effect is equivalent to the application of
a low pass filter to pressure waveforms recorded by
the hydrophone. To address the need for spatial aver-
aging correction, an inverse-filter method has been
shown to improve the accuracy for hydrophone mea-
surements of focused ultrasound pressure fields.561

This method was adopted into an International Elec-
trotechnical Commission (IEC) standard.562 To facil-
itate implementation of the spatial averaging
correction, a simplified method was developed that is
equivalent to the full model.563,564

Numerical Simulations
The acoustic output for operational driving condi-
tions of therapeutic sources can be sufficient to either
damage hydrophones or cause inaccurate measure-
ments due to cavitation or excessive heating. Numeri-
cal simulations have been employed to address the
gap in field measurements. Modeling may provide a
better estimate of the field than measurements for
some conditions due to limitations in the hydrophone
bandwidth or spatial averaging effects.130 The IEC
has released technical specification TS62556 to pro-
vide guidelines in the use of numerical calculations to
report a subset of field parameters for therapeutic
ultrasound devices.565–568

There are multiple open-source codes available
to calculate the linear,569 nonlinear,570,571 and
shocked560,572 acoustic fields and pressure waveforms
of ultrasound sources (Table 2). Some codes also cal-
culate Pennes bioheat transfer equation in paral-
lel.566,573,574 These codes can often be run with a
high-level computing language (eg, MATLAB) to
facilitate ease of use. The assumptions integrated into
calculations for each model should be considered
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when analyzing data.575 For example, sources that are
highly focused (eg, f-number less than 1.2) require
additional considerations to address diffraction cor-
rectly.572 Increased computational power may be
required in the form of workstations or clusters for
highly nonlinear waveforms that include shock
waves.576 Differences among models to predict acous-
tic fields are unknown. The development of bench-
marks for numerical computations is a topic being
reviewed by IEC Technical Committee 87.

Patient Safety
Precautions for MRI-guided focused ultrasound pro-
cedures have been reviewed previously at length.551

Briefly, therapeutic ultrasound transducers can poten-
tially apply excessive heat to superficial tissues
between the source and the intended target.551,577,578

This problem can be ameliorated by cycling the trans-
ducer power to allow for adequate cooling between
exposures,579 circulating cooling water,580 or using
cooling balloons.581,582

Sub-therapeutic exposures can be performed to
verify the accuracy of targeting. Extra care should be
taken to avoid collateral exposure to nearby tissues
that are thermally sensitive, such as nerves, bones,
and bowel. Cavitation detection should be used to
minimize the risk of undesired mechanical
bioeffects.551

The standard to promote patient safety for thera-
peutic ultrasound procedures (IEC 60601-2-62) does
not allow: 1) display of incorrect numerical values
associated with the therapy; 2) production of
unwanted ultrasound output; 3) production of exces-
sive ultrasound output; 4) reflection of excessive
ultrasonic power at the transducer/patient interface
due to inadequate coupling; 5) unwanted targeting of
tissue regions away from the intended target region;
and 6) production of unwanted thermal or mechani-
cal tissue damage in or distal to the region of interest.

Challenges for Therapeutic Ultrasound

Despite its promise, challenges remain for therapeutic
ultrasound prior to adoption into routine clinic use.
The ultrasound field does not penetrate gas bodies
such as the lung or the bowel. These sites represent
the second and third most common cancers locations

Figure 5. Harmonic beamprofile plots for nonlinear pressurewaves pro-
duced by a focused therapy transducer measured with a high-resolution
(100-μmdiameter geometrical sensitive element) fiber-optic hydrophone.
The harmonic number is denoted by n. Gaussian fits are shown in dotted
lines. Error bars denote standard deviation in the measurement obtained
from transverse scans obtained horizontally and vertically. The black verti-
cal lines show the spatial extent of a medium-resolution (400-μm diame-
ter geometrical sensitive element) low-cost, robust needle hydrophone.
The 400-μm hydrophone can be used for accurate measurement of the
acoustic field after spatial averaging correction is applied. Each panel is
the same dataset but at differing extensions along the spatial dimension
(Reprinted from IEEE Transactions onUltrasonics, Ferroelectrics, and Fre-
quency Control, vol. 66, no. 9, Correction for Spatial Averaging Artifacts in
Hydrophone Measurements of High-Intensity Therapeutic Ultrasound:
An Inverse Filter Approach, pp. 1453–1464, Copyright 2019, with permis-
sion from IEEE). BBB, blood–brain barrier; FUS, focused ultrasound.
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in the United States, with an estimated annual patient
population of �350,000.583 Lung flooding with an
isotonic solution has been used successfully for pul-
monary ultrasound imaging,584 and was tested for
targeting nodules with focused ultrasound.585 Suc-
cessful outcomes were achieved with ex vivo tissue
human specimen, and in vivo porcine lung with no
reported complications. A tumor in the anterior por-
tion of the lung was treated with thermal ablation.586

No flooding was used for the treatment of this patient
with favorable outcomes. Outcomes were favorable,
but there has been no subsequent follow-up to the
treatment of additional patients. Targeting the pan-
creas is also complicated by overlapping gas-filled
intestine. Pre-clinical studies in a swine orthotopic
model pre-treated animals with simethicone and
bisacodyle to minimize the contents of the intes-
tines.587 Partial ablation with histotripsy was gener-
ated in the targeted pancreatic tumors, in part due to
the dense stroma. Gas was still present in the gastro-
intestinal tract which limited targeting, suggesting
additional methods to empty intestines may be
beneficial.

Defocusing of the acoustic field due to aberration
is a challenge for targets like the kidney, liver,85 and
brain.588 Investigators are working to address these
issues with multi-element systems the adjust the
phase of the output to correct for aberration.85,425

Simulations based on computed tomography imaging
of the skull have been used to estimate the degree of
aberration, and appropriating phasing of the ele-
ments.589 Pulses of �1 MHz from specialized
elements integrated in the array are used to localize
the skull. These data are co-registered with CT imag-
ing, which may enable transcranial targeting without
the need for MRI.590,591 Pre-clinical investigations
into transcranial histotripsy use information collected
from acoustic emissions generated by cavitation in
addition to CT imaging data to correct for aberration.
This 2-step protocol achieved �90% recovery of the
peak focal pressure compared to gold standard hydro-
phone correction on 3 excised human calvaria.592 Fur-
ther, there was a substantial reduction in the error of
positioning the focal zone within the intended target
relative to other approaches.

Off-target ablation may occur as the result of
respiratory motion.593 Longitudinal studies in a
rodent model indicate tissue ablated by histotripsyT
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resolves over the course of several days,427 suggesting
that collateral damage from mechanical ablation does
not have lasting effects. In contrast, thermal ablation
scars treated tissue indefinitely,594,595 which motivates
the development of methods to minimize off-target
damage. Using the fact that tissue motion is along
1 primary direction, elliptical treatment plans have
been tested.596 The resulting ablated region aligned
well with the intended spherical target. Therapeutic
transducers may be affixed to advanced robotic sys-
tems to translate the focal volume throughout the
intended target.597,598 Information on target motion
based on ultrasound imaging has been used to adjust
the robot position, and therefore therapeutic source,
in real time. Robotic-based motion-based correction
has been shown to reduce the targeting errors by
89% relative to a stationary source.599

The perfusion of targets can influence the out-
come of focused ultrasound. Heat sink effects in
highly perfused tumors diminish the efficacy of
thermal-focused ultrasound procedures.600 Investiga-
tions are underway to address heat sink effects,
including liquid perfluorocarbon droplets and
fibers.601,602 Focused ultrasound procedures that rely
on heating can be several hours in duration.603,604

This is in part due to nearfield heating, which distorts
the acoustic field and can lead to collateral damage.
Nearfield heating causes skin burns at low rates of
incidents,605 though long pauses are integrated into
the treatment profile to avoid these effects.578

Methods are needed to avoid bones and air cavities in
the near or far field that could cause irregular or
unintended heating to expedite thermal ablation
procedures.

Refinement is also needed for image guidance.
To align the focal region with a given target, co-
registered ultrasound imaging probes used for treat-
ment monitoring are often offset several centimeters
from target. The resulting target is in the far field of
the imaging system, which causes a reduction in
image quality. Novel sequences or therapy-specific
imaging probes may help to address this issue. Cavita-
tion emissions are a common approach to monitor
bubble-based therapies, but appropriate quantification
and correlation with bioeffects have yet to be fully
established. A virtual workshop was held in 2021 to
establish the state of the field for bubble detection
and quantification. Information gathered from that

workshop is being processed to provide recommenda-
tions to the community when reporting on the detec-
tion of cavitation.606 MRI remains the gold standard
for temperature quantification, though has limitations
in terms of accessibility and healthcare costs.607 To
address these issues for transcranial applications, neu-
ronavigation is being investigated to retain the bene-
fits of pre-treatment diagnostic scans without the
need for MRI during ultrasound exposure.326,608,609

Conclusions

There have been substantial shifts in the landscape of
therapeutic ultrasound in the years since the parent
to this review article was published in 2012.5 An addi-
tional 23 therapeutic ultrasound devices were given
FDA clearance or approval (Table 1). Treatment for
14 conditions with therapeutic ultrasound is now
reimbursable through insurance, and routine clinical
treatment was approved for an additional 18 condi-
tions.82 The expanded use of new devices into the
clinical will determine which systems are adopted into
the standard-of-care, and potentially provide new
information on bioeffects in therapeutic ultrasound.

The emergence of new applications of therapeu-
tic ultrasound outlined in this review largely reflects
recent advances in medicine. Some examples include
investigations into the immunomodulatory effects of
therapeutic ultrasound, which are consistent with the
rise of checkpoint inhibitors into the clinic.610

The neuromodulatory effects of transcranial ultra-
sound align with the recognition that improved
approaches are needed to address mental health.611

Sonogenetics complements gene editing techniques
like CRISPR-Cas9.612 Mechanotransduction has been
identified as an increasingly important tool in biology,
lending into the need for approaches with targeted
microbubbles or other cavitation nuclei to provide
localized, controlled perturbation.613 The develop-
ment of new therapeutic ultrasound techniques is
likely to reflect future challenges in healthcare, which
may be the result of multiple factors.

Based on the information outlined in this review,
the following should be considered for pre-clinical
and clinical tests of therapeutic ultrasound
technology:
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• Although clinically relevant bioeffects have not
been observed when ultrasound is used by qualified
professionals for diagnostic imaging and image-
guided intervention, sufficient and controlled expo-
sure levels can be used to generate therapeutic
benefits.

• The type of bioeffect generated by ultrasound
depends on many factors, including the
ultrasound source, exposure conditions, presence
of cavitation nuclei, and tissue type.

• Appropriate monitoring techniques based on the
mechanism-of-action and intended bioeffect should
be implemented.
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