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INTRODUCTION

Ecological communities are subject to external pertur-
bations such as fires, storms, pollution, and overfishing,
which are increasing in magnitude and frequency due
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Abstract

Managing ecological communities requires fast detection of species that are
sensitive to perturbations. Yet, the focus on recovery to equilibrium has prevented
us from assessing species responses to perturbations when abundances fluctuate
over time. Here, we introduce two data-driven approaches (expected sensitivity
and eigenvector rankings) based on the time-varying Jacobian matrix to rank
species over time according to their sensitivity to perturbations on abundances.
Using several population dynamics models, we demonstrate that we can infer
these rankings from time-series data to predict the order of species sensitivities.
We find that the most sensitive species are not always the ones with the most
rapidly changing or lowest abundance, which are typical criteria used to monitor
populations. Finally, using two empirical time series, we show that sensitive species
tend to be harder to forecast. Our results suggest that incorporating information on

species interactions can improve how we manage communities out of equilibrium.

KEYWORDS
eigenvector, forecasting, Jacobian matrix, population dynamics, species interactions, time series

to anthropogenic impacts (Barlow et al., 2018; Jackson
et al., 2001; Turner et al., 1997). Indeed, strong and fre-
quent perturbations can lead to species extinctions and,
as a consequence, to the loss of critical ecosystem ser-
vices (Cardinale et al., 2012; Levin & Lubchenco, 2008).
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In order to avoid the loss of biodiversity and ecosystem
services under these circumstances, it is crucial to un-
derstand not only the response of the whole community
to perturbations but also the response of its constituent
species. Individual species may vary in their sensitivity
to perturbations—that is, how much their abundance
changes after a perturbation—and such sensitivity may
be linked to their role in the community (Beauchesne
et al., 2021; Dirzo et al., 2014; Estes et al., 2011). For in-
stance, keystone species such as apex predators can be
highly sensitive to perturbations and also crucial to
maintain community functioning (Estes et al., 2011).
Therefore, detecting sensitive species has the potential
to greatly improve management and conservation strate-
gies for maintaining community functioning and avoid-
ing biodiversity loss.

Traditional studies in theoretical population ecology
have established several important measures of how
single species respond to perturbations (Caswell, 2000;
Morris & Doak, 2002). Following these developments,
indicators such as species abundance or rate of de-
cline are routinely used to characterize the behaviour
of populations and determine extinction risks (Mace
et al., 2008). More recently, several studies have incor-
porated information on species interactions to further
explore how individual species respond to perturbations
(Arnoldi et al., 2018; Beauchesne et al., 2021; Medeiros
et al., 2021; Saavedra et al., 2011; Weinans et al., 2019)
and, in turn, how individual species can inform us about
whole-community changes (i.e. best-indicator or sensor
species) (Aparicio et al., 2021; Dakos, 2018; Ghadami
et al., 2020; Lever et al., 2020; Patterson et al., 2021I).
These studies often rely on the assumption of a popula-
tion dynamics model under a stable equilibrium to which
the community returns after a small pulse perturbation
on abundances. A pulse perturbation is defined as an in-
stantaneous external shock (e.g. fire, storm) that causes
a change in species abundance (Bender et al., 1984; Kéfi
et al., 2019). Under this assumption, information on the
Jacobian matrix—the matrix containing the local effects
of each species on the growth rate of other species and
itself (Song & Saavedra, 2021)—can be used to partition
the recovery rate of the community into its constituent
species (Arnoldi et al., 2018; Ives et al., 1999; Medeiros
et al., 2021). A community slightly displaced from equi-
librium will asymptotically return along the direction
spanned by the leading eigenvector of the Jacobian ma-
trix, that is, the eigenvector associated with the lead-
ing (i.e. largest) eigenvalue (Dakos, 2018; Patterson
et al., 2021; Strogatz, 2018). Thus, over the short-term,
different species may show distinct recovery rates after
a perturbation depending on the direction of the leading
eigenvector (Arnoldi et al., 2018; Dakos, 2018; Ghadami
et al., 2020; Patterson et al., 2021; Weinans et al., 2019).
Nevertheless, these ideas cannot be directly applied to
communities without a stable equilibrium for which
abundances fluctuate over time such as communities with

cyclic or chaotic dynamics (Beninca et al., 2009, 2015;
Clark & Luis, 2020; Krebs et al., 1995; Sugihara, 1994;
Ushio et al., 2018). Moreover, from a practical point of
view, it can be unfeasible to monitor how species respond
to perturbations using parameterized models given the
large amounts of data required to test model assump-
tions and infer parameters (Bartomeus et al., 2021;
Bender et al., 1984).

These limitations raise the question of whether we can
measure species responses to perturbations in communi-
ties for which dynamics are not at equilibrium. To address
this problem, recent methodologies have focused on ex-
tracting information directly from abundance time series
and measuring how non-equilibrium communities re-
spond to perturbations (Cenci & Saavedra, 2019; Rogers
etal., 2022; Ushio et al., 2018). Using a data-driven method
known as the S-map to reconstruct the time-varying
Jacobian matrix (Deyle et al., 2016; Sugihara, 1994), re-
cent studies have investigated how communities respond
to perturbations on abundances (Ushio et al., 2018) and
on the governing dynamics (Cenci & Saavedra, 2019).
Regarding perturbations on abundances, it has been sug-
gested that the leading eigenvalue of the Jacobian matrix
can be used to quantify how communities respond to
small perturbations at any given time (Ushio et al., 2018).
Differently from a recovery rate in a community with a
stable equilibrium, under non-equilibrium dynamics, the
leading eigenvalue approximates the local growth rate of
small perturbations along a given direction (Eckmann &
Ruelle, 1985; Mease et al., 2003; Vallejo et al., 2017). Thus,
in contrast to a community at equilibrium with a constant
capacity to recover from perturbations, a community
under non-equilibrium dynamics has a response to pertur-
bations that depends on how species abundances change
over time (i.e. state-dependent) (Cenci & Saavedra, 2019).
In particular, the state of a community may determine
its response to perturbations not only through the local
species' effects on each other (i.e. Jacobian matrix) but
also through the local time scale of the dynamics (e.g. per-
turbation effects may take longer to appear under a long
transient) (Hastings et al., 2018; Rinaldi & Scheffer, 2000).
Because of such state-dependent behaviour, species abun-
dances have been shown to be harder to forecast, on av-
erage, in states where a community is more sensitive to
perturbations (Cenci et al., 2020). The question that re-
mains to be answered is whether we can decompose a
community's response to monitor the time-varying sen-
sitivity of each of its species and whether this can com-
plement traditional single-species indicators that do not
use the information on species interactions. Developing
such a species-level measure of response to perturbations
could also allow us to test the hypothesis that, as observed
for entire communities (Cenci et al., 2020), species that are
more sensitive to perturbations at a given state are also
harder to forecast.

Here, we develop two complementary approaches
based on dynamical systems theory and nonlinear time
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series analysis to rank species over time under non-
equilibrium dynamics according to their sensitivity to
small pulse perturbations on abundances. By doing so,
we provide a data-driven framework to detect which spe-
cies in a community are the most and least sensitive to
such perturbations at any given time. Our ranking ap-
proaches consist of an analytical measure of the expected
sensitivity of each species and an alignment measure of
each species with the leading eigenvector of the Jacobian
matrix. We test both approaches by performing pertur-
bation analyses using five synthetic time series gener-
ated from population dynamics models. We show that
we can accurately rank species sensitivities, especially
using the expected sensitivity approach. However, the
eigenvector approach requires no a priori information
about perturbations and performs better when infor-
mation about perturbations—used to compute expected
sensitivities—is biased. Importantly, we show that both
approaches remain accurate when inferring the Jacobian
matrix directly from the time series with the S-map.
Finally, we apply both approaches to two empirical time
series and show that species that are more sensitive to
perturbations at a given time tend to have larger abun-
dance forecast errors, especially when the local growth
rate of perturbations is high.

QUANTIFYING SPECIES
SENSITIVITIES TO
PERTURBATIONS

To quantify species sensitivities to perturbations, we
assume that species abundances in a community with
S species change through time according to a generic
function: d—lj = f(N), where f (f: RS - RS) is an unknown
nonlinear model and N = [N, ..., Ng] is the vector of
species abundances (Cenci & Saavedra, 2019). At any
given time, the community can be affected by a pulse
perturbation p = [py, ..., pg] " that changes Ninto N (i.c.
N =N+ p) (Bender et al., 1984). The vector N would then
change in time according to f. Following similar defini-
tions in ecology, we conceptually define sensitivity as the
amount of change in species abundances following a per-
turbation (Dakos, 2018; Dominguez-Garcia et al., 2019).
Mathematically, we define the sensitivity of species i to a
specific perturbation p from time ¢ to ¢ + k as the squared
difference between its perturbed and unperturbed abun-
dance at the time ¢ + k in relation to the initial squared
difference caused by the perturbation at the time ¢:

[N+ =Nt +6)]"  pe+ky
[N - N0’ P}

M)

Therefore, s; quantifies the distance between perturbed
and unperturbed states over time, similarly to measures of
sensitivity to initial conditions (Eckmann & Ruelle, 1985;

Strogatz, 2018; Vallejo et al., 2017). However, s;1s completely
dependent on p. In natural communities, we typically have
no prior information about the direction and magnitude of
p—that is, there is large uncertainty about how much each
species will be affected by a perturbation. To quantify spe-
cies sensitivity in a way that embraces this uncertainty, we
focus on a collection of randomly perturbed abundances
(Arnoldi et al., 2018; Bender et al., 1984). Thus, we define
the sensitivity of species i from time ¢ to ¢ + k as the average
squared difference between a set of n randomly perturbed
abundances and its unperturbed abundance at the time
t+ k in relation to the initial average squared difference
at the time #:

. 2
1 on =~ () n i
0 =1 [Ni (Hk)_Ni(Hk)] B %Zj=1py)(1+k)2

(s;) =

Ly (8ol IR0,
o)

where N i(’)(t) is the jth perturbed abundance of species i
at time ¢. The denominator in Equation (2) controls for the
initial displacement of species abundances but can be ig-
nored if the variance of perturbations is the same for every
species (SI Section 4). Note that we use (s;) as a notation
for the ratio of the mean squared deviations and that (s;) is
greater than zero but not bounded because the numerator
may be arbitrarily large.

Under non-equilibrium dynamics, the identity of
the most and least sensitive species can change over
time. We illustrate this statement using the following
3-species food chain model that exhibits chaotic dynam-
ics (Hastings & Powell, 1991) (parameter values given in
SI Section 3):

dN N N,N.
_1=,N1<1__1>_u

dt K ) 1+b/N,
—==—sN,+hN,N,— —=—= 3
AR S v Ay A ®
dN,
7=—1N3+HN2N3,

where N, N, and N; are the abundances of the primary
producer, primary consumer, and secondary consumer,
respectively. To study species sensitivities under this
model, we numerically integrate Equation (3) producing
time series (Figure la,b) that can be visualized as an at-
tractor in state space (Figure lc,d). Then, we perform a
small arbitrary pulse perturbation p to species abundances
at the time ¢ (orange vertical line in Figure la,b) and com-
pute species sensitivities to it (si) after k = 1 time step (red
vertical line in Figure la,b). We use £ =1 as an example
here, but explore the effects of changing this time step
in our analyses. Figure la,b shows that even under the
same perturbation p, species exhibit drastically different
sensitivities depending on when the perturbation occurs.
That is, the species that has the largest sensitivity to this

95U8917 SUOWILLIOD SAITERID 9|cedljdde ay) Ag pauieAob aJe Sajolle O ‘9SN J0 3N oy Aleud 1 uluO AS|1M U (SUOTIPUOI-PUE-SWULBYWID" A8 1M ARe1q 1 BUIJUD//:SAY) SUONIPUOD pue SWis | 81 89S " [#20Z/TT/TT] Uo AriqiauluO A8|IM ‘TETHT @R/TTTT OT/I0p/W0d A3 |IM Aleiq 1 jputuo//SAny Wwou) papeojumod ‘T ‘€202 ‘820TorT



MEDEIROS ET AL. 173
(a) — Unperturbed, N %
== Perturbed, N r+1 5
8
c 40
% ( species
_§ 20 3
< t
0 species
* 2 7 8 9 10
Time * Time
\£ species
species 2 is the most sensitive 7| 1 species 3 is the most sensitive
to perturbations to perturbations
(c) Perturbed abundances (d)
at time 7, N(7)
@ Perturbed abundances
A attmez+ 1, N+ 1)
AP =
§ g
B >
S 2
0 © s s i 0 &
gn 0 =
O \ <5] > 40 3]
= ¢ &
@ (5,) 60 g
w2 S Q N 80 CO
" ©
N
’qbunda S 5 700 Qb
Ne, © Q S
e D s 20 Q
ec/es K7 <
FIGURE 1 Identity of most sensitive species to perturbations changes through time under non-equilibrium dynamics. (a, b) Abundance

time series generated from a 3-species chaotic food chain model (Equation 3) showing the effect of a pulse perturbation p = [7,7,7]" that
increases all abundances at different times #. Whereas species 2 (primary consumer, blue) shows the highest sensitivity s, to p (i.e. the largest
squared difference between perturbed and unperturbed abundance at 7 + 1) in (a), species 3 (secondary consumer, purple) shows the highest

s; to pjust a few time steps ahead in (b). (c, d) Chaotic attractor of the food chain model (black) with multiple perturbed abundances around
N(#) (N(#), orange points) at different times ¢. The red points show these perturbed abundances after one time step (N(¢ + 1)). We can measure
the sensitivity of species 7 to random perturbations ((s;)) by computing the average squared difference between its set of perturbed abundances
(N,(¢ + 1)) and its unperturbed abundance (N,-(t + 1)) at ¢ + 1. Note that this sensitivity measure is normalized by the average squared difference
between N,(7) and N,(¢) at time ¢ (Equation 2). Whereas species 2 shows the highest (s;) in (c), species 3 shows the highest (s;) in (d).

particular perturbation can change from the primary (spe-
cies 2 in Figure la) to the secondary consumer (species 3
in Figure 1b) after a short time. Next, we extend this il-
lustration and consider how multiple randomly perturbed
abundances (N(¢), orange points in Figure lc,d) change
after one time step (N(¢ + 1), red points in Figure lc,d) by
computing species sensitivities ({s;)). Figure lc,d confirms
that the most sensitive species changes from the primary
(species 2 in Figure Ic) to the secondary consumer (species
3 in Figure 1d) under random perturbations. Therefore,
the problem we aim to solve in this study is how to predict
the order of the (s;) values of all species in a community at
any given time. Clearly, in natural communities, we cannot
produce multiple random perturbations to compare the re-
sponses of different species in perturbed and unperturbed
communities. Therefore, in what follows, we provide a

rationale for using the Jacobian matrix at time ¢ to predict
the order of (s;).

RANKING SPECIES SENSITIVITIES
TO PERTURBATIONS

Without loss of generality, we can write the linearized dy-
namics of a small perturbation on abundances as D Jp,
where J is the Jacobian matrix of f evaluated at N (SI
Section 1) (Boyce et al., 2017; Eckmann & Ruelle, 1985;
Mease et al.,, 2003; Strogatz, 2018). Following results
from dynamical systems theory (Arnoldi et al., 2018;
Boyce et al., 2017; Strogatz, 2018), we propose two com-
plementary approaches to rank species according to

their sensitivity to perturbations (Boxes 1 and 2). These
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BOX 1 Expected sensitivity ranking

Rationale

This approach is based on analytically computing an expected value for the sensitivity of species i to perturba-
tions ([E(s,-)) using the solution p(¢ + k) = e’*p(¢) of the linearized dynamics (SI Section 2) (Boyce et al., 2017).
Note that, for sufficiently small perturbations under equilibrium dynamics, this solution is exact because J is
constant when evaluated at an equilibrium point (N* for which f(N*) = 0). By assuming that P(?) follows a dis-
tribution with mean zero, we can obtain E(s;) at time ¢ from the covariance matrix of p(¢ + k): Z,,, = e’*Z, (e’ )T
, where X, is the covariance matrix of p(¢). A distribution with a mean zero for p(¢) represents the most unin-
formative case where all perturbation directions (i.e. which species are most impacted) are equally likely to
occur. Thus, the distribution of perturbed abundances (N) described by X, will approximate X, after k time
steps (Figure 2a). Then, we can compute the expected sensitivity of species i as: E(s;) = Ui, +x Where afHk is
the ith diagonal element of X, (i.e. the variance of p;(s + k)). We define the order of E(s;) values across spe-
cies as the expected sensitivity ranking and use it to predict the order of species sensitivities to perturbations
((s;); Figure 2a).

Application

Three ingredients are required to apply the expected sensitivity ranking. First, we need the Jacobian matrix of
the community (J) evaluated using the abundances (N) at time 7. This matrix can be computed directly from
a parameterized population dynamics model (SI Section 1) or, as we focus here, inferred from the time series
without assuming a specific model (SI Section 5). Second, we need to define an initial covariance matrix of
perturbations at time ¢ (¥,). Without any knowledge of perturbations, we suggest an uninformative approach
by setting X, =1, where I is the identity matrix (i.e. perturbations to each species are independent of each
other). Finally, we need to specify the time for which perturbations evolve (k) on the time unit of the time series
(e.g. day, month). Because information on the local time scale of the dynamics can be challenging to obtain,
we suggest using a small value for k to investigate short-term species sensitivities (e.g. kK = 1). Alternatively, it
is possible to set k to be inversely proportional to the local rate of change calculated from the time series (SI
Section 4). In conclusion, although this approach has the advantage of using the information on the entire
Jacobian matrix to compute [E(si), it has the disadvantage of requiring additional information that may be

hard to obtain in natural communities (X, and k).

approaches are based on the assumption that if Jis nearly
constant from time ¢ to ¢ + k, the solution p(¢ + k) of the
linearized dynamics provides a good approximation of
how perturbed abundances change over this time period.
Thus, in addition to the challenge of approximating a
nonlinear system (i.e. f(IN)) by its linearized dynamics,
here we explore the extent to which the linearized dy-
namics inform us about species sensitivities under non-
equilibrium dynamics (i.e. when J is state-dependent).
Importantly, we use information from the Jacobian ma-
trix (i.e. community-level information) to measure how
individual species respond to perturbations.

We illustrate how E(s;) (Box 1) and | vy; | (Box 2) allow
us to predict the order of (s;) under three simple sce-
narios of Lotka-Volterra dynamics at equilibrium (SI
Section 13). These examples contain an unstable equi-
librium point—that is, J evaluated at N* has at least one
A; >0, as is typically observed for points along a non-
equilibrium attractor (e.g. limit cycle, chaotic attractor).
We show that the order of E(s;) is exactly the same as
the order of (s;), whereas the order of | v; | is similar to
the order of (s;) for all three scenarios (Figures SI1-S3).
A potential limitation of these approaches, however, is
that they rely on a parameterized model (f) to obtain J,

which we rarely have. Therefore, in addition to comput-
ing E(s;) and | v}; |using the analytical J, we show that we
can accurately rank (s;) by inferring J using the S-map.
The S-map is a locally weighted state-space regression
method that has been shown to provide accurate infer-
ences of the time-varying Jacobian matrix from time se-
ries (Cenci et al., 2019; Deyle et al., 2016; Sugihara, 1994)
(ST Section 5).

TESTING RANKING APPROACHES
WITH SYNTHETIC TIME SERIES

To test whether the order of expected sensitivities (E(s;,);
Box 1) and eigenvector alignments (| v;; |; Box 2) can
predict the order of species sensitivities ({s;)), we per-
form perturbation analyses using synthetic time series.
Specifically, we generate multivariate time series with
500 points ({N(#)}, t =1, ..., 500) using five population
dynamics models that produce non-equilibrium dynam-
ics (Figure SS5; SI Section 3). Then, for half of each time
series (1 =250, ... ,500), we perform n = 300 random per-
turbations at each time /: N= N + p, where p ~ N'(0,X,)
with X, being a diagonal matrix with diagonal element i
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FIGURE 2 Ranking species sensitivities to perturbations. (a) Illustration with two species showing the expansion of perturbed abundances

(N(#), orange points) after k time steps (N(# + k), red points). The expected sensitivity of species i to perturbations (fE(sl- )) can be computed

as the corresponding variance of the predicted distribution of perturbations (i.e. ith diagonal element of covariance matrix X,,, depicted in
black). Note that X,,; is shown at time ¢ as it is computed using only information at that time point. We propose that the order of E(s;) values
can be used to predict the order of species sensitivities to perturbations ({s;) values). Alternatively, the order of species alignments with the
leading eigenvector of the Jacobian matrix ( | v;; | values) can be used to predict the order of (s;) values. (b) for the 3-species food chain model
(Equation 3) at a given time, there are six possible ways to rank (s;) values, each one giving a Spearman's rank correlation value (p). (c) Rank

correlation (p) between fE(sl-) (computed analytically from the model) and (s;) over time quantified for a synthetic time series generated from the
3-species food chain model. The vast majority of points (97.2%) show a positive p. (d) Same as (c) but with the Jacobian matrix used to compute

E(s;) inferred with the S-map using only past time-series data. Again, the great majority of points (94.8%) show a positive p.
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BOX 2 Eigenvector ranking

Rationale

This approach is based on the alignment of species i with the leading eigenvector (v;) of J| v;; |. The solution
of the linearized dynamics can also be written as p(t + k) = Zf:l c;e’*v,, where v, is the real part of the ith
eigenvector of J, 4, is the real part of the ith eigenvalue (Ag < -+ < 4;), and each ¢, is a constant determined
by the initial condition p(¢) (SI Section 9) (Boyce et al., 2017, Strogatz, 2018). As long as the imaginary parts
are small compared to real parts, | v;; | can still be used to estimate species sensitivities even under small local
oscillations caused by complex eigenvalues (SI Section 9). After a sufficient amount of time &, A, will dominate
over other eigenvalues and the solution can be approximated by p(¢ + k) ~ ¢,e**v,. Thus, v, dictates the local
direction of the greatest expansion (or smallest contraction) of perturbations. That is, the distribution of per-
turbed abundances (N) will expand over time approximately along the direction of v, and at a rate given by 4,
(positive values lead to expansion, whereas negative values lead to contraction). We also show that v, serves
as a proxy for the local leading Lyapunov vector, which provides the exact direction of perturbation growth
under non-equilibrium dynamics (Kuptsov & Parlitz, 2012; Mease et al., 2003; Vallejo etal., 2017) (Figure S4;
SI Section 10). Specifically, we compute the alignment of species i with v, as the absolute value of its ith element
( vy; ), where || v, || = 1. We define the order of | v;; | values across species as the eigenvector ranking and use it
to predict the order of (s;) (SI Section 11). Note that we use the absolute value because only the line spanned by
v, and not its direction determines how perturbed abundances change over time.

Application

Similarly to the expected sensitivity ranking, the Jacobian matrix of the community (J) evaluated using the
abundances (N) at time ¢ is also required to apply the eigenvector ranking. The main advantage of the eigen-
vector ranking is that J is the only ingredient required to compute| v;; |and we do not need to specify the initial
covariance matrix of perturbations (X,) nor the time for which perturbations evolve (k). Nevertheless, using
a single eigenvector instead of the entire Jacobian matrix, the eigenvector ranking uses less information than
the expected sensitivity ranking. Importantly, we show that [E(si) and | v; | are related in the special case of a

symmetric J (SI Section 12), which is also when all eigenvalues of J are real.

given by of = r? (i.e. independent normally distributed
perturbations for each species with the same variance r2).
We set r to be 15% of the mean standard deviation of spe-
cies abundances, but relax this assumption in additional
analyses (SI Section 4). Next, we numerically integrate
the model f for a time k using each N as an initial con-
dition. Because the response of communities to pertur-
bations can depend on the time scale of the dynamics
(Hastings et al., 2018; Rinaldi & Scheffer, 2000), we set k&
to be inversely proportional to the mean rate of change
of the dynamics (SI Section 4). Then, we compute (s;)
from time 7 to 7 + k as well as E(s;) and | v}, | using J at
time ¢ as described in Boxes 1 and 2. We compute E(s;)
and | v;; | both analytically from the true J evaluated at
N and by sequentially inferring J with the S-map on 250
past points.

To assess how well the order of E(s;) and | vy, | predicts
the order of (s;), we compute the Spearman's rank cor-
relation (p) between each ranking and (s;) at each time ¢.
We focus on predicting the order instead of the exact
values of (s;) for two reasons. First, the exact values of
(s;) depend on the initial covariance matrix X, and on
the time step k, which we rarely know for natural com-
munities. Second, we can only infer an approximation
of J with the S-map even from ideal time-series data (SI
Section 5; Cenci & Saavedra, 2019). We can illustrate our

ranking procedure for [E(s,-) by considering the 3-species
food chain model (Figure 1; Equation 3). With 3 species,
there are 6 possible ways to rank a given set of (s;) at any
given time, resulting in 4 different p values (Figure 2b).
If the order of E(s;) matches the order of (s;) exactly, we
obtain p = 1 (Figure 2b). Otherwise, p decreases depend-
ing on the mismatch between the order of E(s;) and the
order of (s;). An advantage of using p is that it allows
us to penalize prediction mistakes consistently, irrespec-
tive of whether the mistaken species are amongst the
most or least sensitive ones. For example, in Figure 2b,
the second and third rankings have because both
contain one correct prediction, which is the least sensi-
tive species and the most sensitive species, respectively.
Under the 3-species food chain model, we find that the
order of matches the order of (s;) exactly (i.e. p=1;
Figure 2c) for 48.8% of points in the time series. For
another 48.4% of points, the order of E(s;) allows us to
correctly detect the position of either the least or most
sensitive species (i.e. p = 0.5). Finally, for 2.8% of points,
the order of [E(s,-) is not a good predictor of the order of
(s;) (i.e. p < 0). But most strikingly, we obtain very similar
results when inferring [E(sl-) directly from the synthetic
time series using the S-map, without any knowledge of
the underlying model (Figure 2d). Hence, this illustra-
tion suggests that we can accurately predict the relative
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sensitivity position of most species (i.e. p > 0.5) for the
vast majority of points in a time series.

To benchmark our approaches, we use two simple
single-species indicators to predict the order of (s;) val-
ues. First, we use abundances absolute percent change
between 7 — 1 and ¢: AN;(1) = %‘ The rationale
for this indicator is that a species will be more sen-
sitive when its abundance is changing more rapidly.
Second, we use abundances at time ¢ after a sign rever-
sal: — N,(¢). This indicator is based on the notion that
a species will be more sensitive when it has a low abun-
dance, for example, due to density dependence effects.
For both indicators, we compute the rank correlation
p between (s;) and the indicator at each time ¢. Note
that computing AN;(¢) or — N,(¢) for a given species i
only requires species-level information (i.e. time se-
ries of species i) and not community-level information
(i.e. Jacobian matrix) as E(s;) and | v}; | require.

We demonstrate the generality of our ranking ap-
proaches using the set of five synthetic time series (SI
Section 3). Although we find a high variation in p over
time (grey points in Figure 3a), the mean correlation p
between (s;) and E(s;) as well as between (s;) and | v, |
is positive and high for all five models when we com-
pute these rankings from the model (horizontal lines in
Figure 3a). In particular, we find that E(s;) shows the
higher accuracy in ranking (s;), followed by | v; |, AN (?),
and — N,(¢). Note that we focus on p given that p is ex-
pected to vary over time due to changes in nonlinearity
and rate of change of J. Importantly, we obtain very sim-
ilar results for all models when inferring E(s;) and | v, |
using the S-map (horizontal lines in Figure 3b). In addi-
tion to quantifying prediction accuracy, we can visual-
ize how the value of (s;), E(s;), and | v}, | of each species
changes over time (Figure S6). We find that, even when
inferring E(s;) and | v;; | with the S-map, we are able to
detect shifts in (s;) across species (Figure S6).

Although E(s;) is in general more accurate than | vy, |,
we can use information on the leading eigenvalue (4,) to
increase the accuracy of the latter approach. We expect
that the higher A,, the greater the local growth rate of
perturbations in the direction of v;, which should im-
prove our ability to rank (s;) using | v;; | For the non-
equilibrium attractors used here, 4, is generally positive,
whereas subsequent eigenvalues are negative or close to
zero, implying that 4; alone carries enough information
to improve the eigenvector approach. Indeed, we find
that p generally increases for the eigenvector approach
when using only a subset of points with a high value of 4,
(Figure S7). We also find a positive correlation between
the analytical and inferred A, (2-species predator—prey:
0.52; 3-species food chain: 0.70; 3-species food web: 0.57;
4-species competitors: 0.23; and 5-species food web: 0.70)
and a high alignment between the analytical and inferred
v, for all models (Figure S8).

For most models, the expected sensitivity (E(s;))
and eigenvector (| v;; |) approaches computed from the

analytical J show a high accuracy in ranking species
sensitivities ({(s;)) when using different perturbation dis-
tributions (Figures S9 and S10) or time steps (k) to evolve
perturbations (Figures S11 and S12; SI Section 4). In par-
ticular, [E(s,-) shows an extremely high accuracy when k
is small and fixed over time (e.g. k = I; Figure S11), given
that the solution for the linearized dynamics (p(z + k))
is more precise for smaller k. In contrast, we find that
| v; | performs best when k depends on the time scale
of the dynamics (Figure 3), given that the eigenvector
approach depends on the convergence of p(t+k) to
the line spanned by v,, which requires a larger k& when
dynamics are slower. We also find that the accuracy of
[E(si) computed using wrong values of k and X, remains
high (Figures S10 and S13), except when these values are
greatly misspecified (Figure S14). Finally, although the
accuracy decreases in some cases, we find that E(s;) and
| v; |inferred with the S-map remain accurate when nor-
malizing species abundances (Figure S15), using shorter
time series (Figure S16), adding observational noise to
the time series (Figure S17) or adding process noise to
the model (Figure S18; SI Section 6).

DETECTING SENSITIVE SPECIES
IN EMPIRICAL TIME SERIES

To illustrate the implementation of our data-driven ap-
proaches, we apply them to rank species sensitivities
(Boxes 1 and 2) using two empirical time series. Each
time series depicts a different marine community with
four interacting variables that have been shown to ex-
hibit non-equilibrium dynamics (SI Section 7; Beninca
et al., 2009, 2015). Note that some variables represent
physical attributes (e.g. bare rock) and others consist of
species aggregations (e.g. barnacles) but we use the term
species to refer to all variables. We first fit the S-map
sequentially to both time series to infer E(s;) and | vy; |
(SI Section 7). Because we do not know the governing
population dynamics in these communities (i.e. f(IN)),
we cannot compute (s;). Instead, we perform abundance
forecasts using a Long Short-Term Memory (LSTM)
neural network (James et al., 2021) and test the hypoth-
esis that species that are more sensitive to perturbations
(i.e. have a higher value of E(s;) or| v;; |) at a given time
will be harder to forecast. That is, for a community
under perturbations, the LSTM neural network will not
be able to accurately forecast the abundance of a given
species at a point in time when that species is highly sen-
sitive to perturbations (Cenci et al., 2020). Both empirical
communities described above are thought to be under
perturbations triggered by changes in environmental
conditions (Beninca et al., 2009, 2015).

For both the Jacobian matrix inference (i.e. S-map)
and the forecasts (i.e. LSTM neural network), we assign
70% of the data as a training set and use the remain-
ing 30% as a test set. For each time 7 in the test set, we
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Ranking method

FIGURE 3 Expected sensitivity and eigenvector approaches allow us to accurately rank species sensitivities to perturbations under

several population dynamics models. (a) Rank correlation (p) between species sensitivities to perturbations ({s;)) and four different approaches
(expected sensitivity, [E(si); eigenvector, | vy; |; rate of change, AN,(¢); and abundance, — N,(¢)). Note that the Jacobian matrix and, therefore, [E(s,-)
and| vy; | are computed analytically from the model. Each panel shows the percentage of points with a given p value (size of grey points) and the
average of these values across time (p, black horizontal lines) for a synthetic time series generated from the corresponding population dynamics
model. (b) Same as (a) but with the Jacobian matrix and, therefore, [E(si) and | v;; |inferred with the S-map using only past time-series data. In
(a), the expected sensitivity approach shows a higher p than the other three ranking approaches under all models. In (b), the expected sensitivity
approach outperforms the eigenvector approach for three out of five models.

compute a standardized forecast root-mean-square error last point in the current training set (N;(z — 1)). We then

(RMSE) for each species i as (Perretti et al., 2013): compute the rank correlation (p) between [E(s,-) and ¢; as
well as between | v; | and €; at each point in the test set to

o1 test the hypothesis that our rankings can predict the order

\/ [N - N, (I)] @ of forecast errors. We also compute the rank correlation

between each of the two alternative indicators previously
\/ t” ! N (H)—N,; (t—l)] described (AN;(¢) and — N,(¢)) and €; to verify whether

these single-species indicators can predict the order of

where 7 = 3is the number of forecasts, the numerator is the forecast errors. Because we do not know how perturba-
RMSE for the LSTM neural network forecast (N,(j)), and  tions affect these communities, we set X, =T and k = 7 to
the denominator is the RMSE for a naive forecast usingthe ~ compute [E(s,-) (Box 1). We confirm the rationale behind
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our hypothesis by performing forecasts under perturba-
tions with the five models used in our theoretical analyses
(Figure S19; SI Section 8).

We first illustrate our approaches to detect sensitive
species with a rocky intertidal community. We find that
barnacles have the highest expected sensitivity ([E(si))
followed by either algae or mussels depending on the
point in time (Figure 4a and Figure S20). Interestingly,
barnacles also show the highest alignment with the
leading eigenvector (| v;; |) for the majority of points
in time (Figure S20). We also find consistent results
for E(s;) and | v;; | with a marine plankton community

(Figures S20 and S21). Thus, although the values of
E(s;) over time are different from those of | v, |, these
two complementary approaches suggest some general
patterns in how species sensitivities change over time
in these two communities. Importantly, we find that
the mean rank correlation p between E(s;) and ¢; is
positive for both time series, but only significant for
one of them (rocky intertidal community: p =0.04,
p-value = 0.287, 1000 randomizations; marine plank-
ton community: p =0.23, p-value <0.001; Figure 4b).
However, we find that the mean rank correlation p be-
tween | vi; | and ¢; is positive and significant for both
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FIGURE 4 Species abundance forecast errors are associated with species sensitivities to perturbations. (a) Time series of a rocky intertidal
community containing four variables (bare rock, barnacles, algae, and mussels). The diagram on the right depicts the cyclic succession in this
community (adapted from Beninca et al., 2015). Note that percentage of cover does not necessarily sum to 100% as individuals of different
species may overlap on top of the rock. We use a moving training set (grey region) to train the S-map and compute expected sensitivities ([E(s,.))
as well as species alignments with the leading eigenvector (| v; |) at the last point in the training set. Simultaneously, we train an LSTM neural
network to forecast species abundances and compute species forecast errors (g;). Barnacles (blue) show the highest value of[E(s,-) followed by
either algae (green) or mussels (purple) depending on the point in time. Note that [E(s,.) values across species sum to 1 for each point in time
(darker points denote higher lE(s,- )). (b) Rank correlation (p) between €; and four different approaches (expected sensitivity, [E(sl- ); eigenvector,

| vi; |; rate of change, AN,(¢); and abundance, — N,(¢#)). Each panel shows the percentage of points with a given p value (size of grey points) and
the average of these values over the test set (p, black horizontal lines) for a given empirical time series (asterisks denote a p-value less than 0.05
for p according to a randomization test). (c) Average correlation (p) between €; and the different ranking approaches computed for points in the
test set with a A4, value higher than a given percentile of the 4, distribution. For the expected sensitivity and eigenvector approaches, p increases
as we only use points with successively higher values of 4, for both time series (asterisks denote a p-value less than 0.05 for p using the 50th
percentile). Pictures are under the creative commons Licence: Rock by Piotr Zurek, barnacles by tangatawhenua, algae by redrovertracy, and
mussels by Wayne Martin.
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time series (rocky intertidal community: p=0.13,
p-value = 0.023; marine plankton community: p = 0.26,
p-value <0.001; Figure 4b).

We find further evidence that species with higher E(s;)
or | vi; | are harder to forecast by computing p only for
points in the test set with successively higher values of 4,
(i.e. higher local growth rate of perturbations; Figure 4c).
Forexample, asexpected from our analyses with synthetic
time series (Figure S7), p between | v;; | and €, increases
for both time series when we only use points for which 4,
is higher than its 50th percentile (rocky intertidal com-
munity: p = 0.19, p-value = 0.021; marine plankton com-
munity: p = 0.45, p-value <0.001; Figure 4c). The fact that
p does not increase in general by using only points with a
high A, for the alternative indicators (AN;(¢) and — N,(?))
supports our ranking approaches in linking species fore-
cast errors to their sensitivities (Figure 4c). We find these
results to remain similar when changing the size of the
training set and the number of steps ahead (7) to forecast
(Figures S22-S24) as well as to normalize species abun-
dances before performing the S-map (Figure S25).

DISCUSSION

Understanding how individual species affect the re-
sponse to perturbations of the whole community and, in
turn, how species interactions at the community level af-
fect the responses of individual species is paramount to
ecological management and conservation (Beauchesne
et al., 2021; Clark et al., 2021; Kéfi et al., 2019; Levin &
Lubchenco, 2008). Yet, the traditional focus of ecology
on recovery to equilibrium using parameterized models
has hampered efforts to understand how species respond
to perturbations when community dynamics are out of
equilibrium. Here, we introduce a data-driven frame-
work to solve a previously unexplored problem: how to
rank the species that compose a community according to
their sensitivity to small pulse perturbations under non-
equilibrium dynamics? Our findings provide three main
insights into how communities and their constituent spe-
cies respond to perturbations.

First, we show that information on the time-varying
local effects between interacting species (i.e. Jacobian
matrix) can be used to determine which species will
be most affected by perturbations at a given time. In
particular, using dynamical systems theory (Arnoldi
et al., 2018; Mease et al., 2003; Strogatz, 2018) and non-
linear time series methods (Cenci et al., 2019; Deyle
et al., 2016; Sugihara, 1994), we develop two complemen-
tary approaches that can accurately rank species from
most to least sensitive to small perturbations on abun-
dances under non-equilibrium dynamics. Both the ex-
pected sensitivity and the eigenvector ranking allow us
to detect which of the species that compose a natural
community are the most and least sensitive in real time if
a long-time series is available. Hence, it may be possible

to inform management and conservation programs re-
garding which species are currently the most sensitive
ones. Our measure of sensitivity uses community-level
information to quantify the likelihood of large changes
(either decreases or increases) in the abundance of a given
species. Therefore, species sensitivities may complement
indicators that estimate single-species vulnerability to
perturbations (Caswell, 2000; Mace et al., 2008; Morris
& Doak, 2002). That is, whilst some species obviously
require constant monitoring due to a high extinction risk
(Dirzo et al., 2014; Estes et al., 2011), other species may
require more attention during periods of time when they
have a high sensitivity, irrespective of their abundance.
Our results, however, cannot be extrapolated beyond
a given studied community as our framework uses in-
formation on that specific community to rank species
sensitivities.

Importantly, the expected sensitivity ranking is more
accurate than the eigenvector ranking for most of our
perturbation analyses with synthetic time series. In
particular, the expected sensitivity ranking has its best
performance when the time over which perturbations
evolve (k) is small and fixed, and its worse performance
when the covariance matrix of perturbations (Z,) and
k are greatly misspecified. In contrast, the eigenvec-
tor ranking has the advantage of not depending on X,
and k for its computation and has its best performance
when k depends on the local time scale of the dynamics.
Indeed, in communities under non-equilibrium dynam-
ics, large differences in time scale and, therefore, in the
time it takes for perturbation effects to appear are wide-
spread (Hastings et al., 2018; Rinaldi & Scheffer, 2000;
Strogatz, 2018). Thus, it is reasonable to expect that as a
practical tool the heuristic eigenvector ranking may be
as useful as the more theoretically complete but assump-
tion bound expected sensitivity ranking.

Second, we find support for our hypothesis that the
abundance forecast errors for the different species in a
community are associated with their sensitivity to per-
turbations. The predictability of ecological dynamics
is known to change across communities (Dietze, 2017;
Pennekamp et al., 2019) and, for a single community,
across time (Cenci et al., 2020). In particular, it has been
shown that at points in time when a community is more
sensitive to perturbations its local predictability can be
lower and, therefore, the average abundance forecast
error can be higher (Cenci et al., 2020). Here, we have
extended this result for individual species by showing
that the local predictability of a given species is associ-
ated with its sensitivity to perturbations, which we infer
through its expected sensitivity and its alignment with
the leading eigenvector. The fact that the correlation
between forecast errors and our ranking approaches
strengthens when the leading eigenvalue is high (i.e.
perturbations grow rapidly along a given direction in
state space) further supports our hypothesis that species
forecast errors are associated with their sensitivities. In
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addition, the better performance with empirical data of
the eigenvector approach in relation to the expected sen-
sitivity approach suggests that we may be misspecifying
the information required to compute expected sensitivi-
ties. These results provide empirical support to the lead-
ing eigenvector as a way to detect sensitive species using
minimal information inferred from time-series data.
Overall, our findings suggest that sensitivity to pertur-
bations is an additional factor influencing the intrinsic
predictability of different species in ecological commu-
nities (Dietze, 2017, Pennekamp et al., 2019).

Applying our ranking approaches to empirical data
requires accurate inference of the Jacobian matrix with
the S-map. Although the S-map has been shown to
provide accurate inferences when time series are noisy
(Cenci et al., 2019; Deyle et al., 2016), several limitations
remain. Because information on the shape of the attrac-
tor is required to fit the S-map, longer time series with
smaller amounts of noise improve inference quality, all
else being equal. In our analyses with synthetic time se-
ries, we show that our ranking approaches remain accu-
rate when using shorter time series (Figure S16) or under
small amounts of noise (Figures S17 and S18). Long time
series with a strong signal of non-equilibrium determin-
istic dynamics, such as the rocky intertidal or plank-
ton community investigated here (Beninca et al., 2009,
2015), are examples of ideal data sets to apply our ap-
proaches. Thus, even if small perturbations are contin-
ually impacting the community (e.g. ongoing process
noise), if the attractor is not completely distorted, the
S-map should be able to accurately reconstruct the
time-varying Jacobian matrix required to compute
species sensitivities (Cenci et al., 2019) (Figure SI8).
Although here we focus on small communities and
small amounts of noise, future work may combine our
ranking approaches with recent improvements in the S-
map (e.g. regularization and multiview distance; Cenci
et al., 2019; Chang et al., 2021) to detect sensitive species
under more challenging settings.

Finally, we show that approaches based on linear dy-
namical systems that are typically used for communities
close to equilibrium can also provide information for
communities under non-equilibrium dynamics (Cenci
& Saavedra, 2019; Ushio et al., 2018). Even though the
methodology may be similar in both cases, the interpre-
tation is completely different. For instance, whereas the
linearized dynamics can be used to compute a recovery
rate under equilibrium (Arnoldi et al., 2018; Medeiros
et al., 2021; Strogatz, 2018), we show that they can be
used to derive the time-varying expected sensitivity of
different species to perturbations under non-equilibrium
dynamics. In addition, we use the leading eigenvector,
which has been previously employed to decompose com-
munity responses into species responses to perturbations
under equilibrium dynamics (Dakos, 2018; Ghadami
et al., 2020; Patterson et al., 2021; Weinans et al., 2019).
Therefore, the approaches introduced here to increase

our understanding of how communities and their con-
stituent species respond to perturbations when there is
no stable equilibrium. Both approaches are based on a
linearization of the dynamics and, thereby, only pro-
vide an assessment of responses to small perturbations.
Moreover, both approaches assume that the Jacobian
matrix does not change much over the time period for
which perturbations evolve. Improving our framework
to deal with strong nonlinearities, fast changes in the
Jacobian matrix and local oscillations due to complex
eigenvalues are promising avenues for future research.
As our knowledge of the impact of perturbations on a
community increases, it might also be possible to incor-
porate biased (e.g. certain species are more impacted) or
correlated (e.g. certain species are impacted in the same
way) perturbation distributions into our approaches.
Overall, our findings illustrate how integrating well-
known results of equilibrium dynamics with data-driven
methods for non-equilibrium dynamics provides a fruit-
ful avenue for future development and new insights into
the response of single species and entire communities to
perturbations.
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