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INTRODUCTION

Ecological communities are subject to external pertur-
bations such as fires, storms, pollution, and overfishing, 
which are increasing in magnitude and frequency due 

to anthropogenic impacts (Barlow et al., 2018; Jackson 
et al., 2001; Turner et al., 1997). Indeed, strong and fre-
quent perturbations can lead to species extinctions and, 
as a consequence, to the loss of critical ecosystem ser-
vices (Cardinale et al., 2012; Levin & Lubchenco, 2008). 
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Abstract

Managing ecological communities requires fast detection of species that are 

sensitive to perturbations. Yet, the focus on recovery to equilibrium has prevented 

us from assessing species responses to perturbations when abundances fluctuate 

over time. Here, we introduce two data- driven approaches (expected sensitivity 

and eigenvector rankings) based on the time- varying Jacobian matrix to rank 

species over time according to their sensitivity to perturbations on abundances. 

Using several population dynamics models, we demonstrate that we can infer 

these rankings from time- series data to predict the order of species sensitivities. 

We find that the most sensitive species are not always the ones with the most 

rapidly changing or lowest abundance, which are typical criteria used to monitor 

populations. Finally, using two empirical time series, we show that sensitive species 

tend to be harder to forecast. Our results suggest that incorporating information on 

species interactions can improve how we manage communities out of equilibrium.
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In order to avoid the loss of biodiversity and ecosystem 
services under these circumstances, it is crucial to un-
derstand not only the response of the whole community 
to perturbations but also the response of its constituent 
species. Individual species may vary in their sensitivity 
to perturbations— that is, how much their abundance 
changes after a perturbation— and such sensitivity may 
be linked to their role in the community (Beauchesne 
et al., 2021; Dirzo et al., 2014; Estes et al., 2011). For in-
stance, keystone species such as apex predators can be 
highly sensitive to perturbations and also crucial to 
maintain community functioning (Estes et al.,  2011). 
Therefore, detecting sensitive species has the potential 
to greatly improve management and conservation strate-
gies for maintaining community functioning and avoid-
ing biodiversity loss.

Traditional studies in theoretical population ecology 
have established several important measures of how 
single species respond to perturbations (Caswell, 2000; 
Morris & Doak,  2002). Following these developments, 
indicators such as species abundance or rate of de-
cline are routinely used to characterize the behaviour 
of populations and determine extinction risks (Mace 
et al.,  2008). More recently, several studies have incor-
porated information on species interactions to further 
explore how individual species respond to perturbations 
(Arnoldi et al., 2018; Beauchesne et al., 2021; Medeiros 
et al.,  2021; Saavedra et al.,  2011; Weinans et al.,  2019) 
and, in turn, how individual species can inform us about 
whole- community changes (i.e. best- indicator or sensor 
species) (Aparicio et al.,  2021; Dakos,  2018; Ghadami 
et al.,  2020; Lever et al.,  2020; Patterson et al.,  2021). 
These studies often rely on the assumption of a popula-
tion dynamics model under a stable equilibrium to which 
the community returns after a small pulse perturbation 
on abundances. A pulse perturbation is defined as an in-
stantaneous external shock (e.g. fire, storm) that causes 
a change in species abundance (Bender et al., 1984; Kéfi 
et al., 2019). Under this assumption, information on the 
Jacobian matrix— the matrix containing the local effects 
of each species on the growth rate of other species and 
itself (Song & Saavedra, 2021)— can be used to partition 
the recovery rate of the community into its constituent 
species (Arnoldi et al., 2018; Ives et al., 1999; Medeiros 
et al., 2021). A community slightly displaced from equi-
librium will asymptotically return along the direction 
spanned by the leading eigenvector of the Jacobian ma-
trix, that is, the eigenvector associated with the lead-
ing (i.e. largest) eigenvalue (Dakos,  2018; Patterson 
et al.,  2021; Strogatz,  2018). Thus, over the short- term, 
different species may show distinct recovery rates after 
a perturbation depending on the direction of the leading 
eigenvector (Arnoldi et al., 2018; Dakos, 2018; Ghadami 
et al., 2020; Patterson et al., 2021; Weinans et al., 2019). 
Nevertheless, these ideas cannot be directly applied to 
communities without a stable equilibrium for which 
abundances fluctuate over time such as communities with 

cyclic or chaotic dynamics (Benincà et al.,  2009, 2015; 
Clark & Luis, 2020; Krebs et al., 1995; Sugihara, 1994; 
Ushio et al., 2018). Moreover, from a practical point of 
view, it can be unfeasible to monitor how species respond 
to perturbations using parameterized models given the 
large amounts of data required to test model assump-
tions and infer parameters (Bartomeus et al.,  2021; 
Bender et al., 1984).

These limitations raise the question of whether we can 
measure species responses to perturbations in communi-
ties for which dynamics are not at equilibrium. To address 
this problem, recent methodologies have focused on ex-
tracting information directly from abundance time series 
and measuring how non- equilibrium communities re-
spond to perturbations (Cenci & Saavedra, 2019; Rogers 
et al., 2022; Ushio et al., 2018). Using a data- driven method 
known as the S- map to reconstruct the time- varying 
Jacobian matrix (Deyle et al., 2016; Sugihara, 1994), re-
cent studies have investigated how communities respond 
to perturbations on abundances (Ushio et al., 2018) and 
on the governing dynamics (Cenci & Saavedra,  2019). 
Regarding perturbations on abundances, it has been sug-
gested that the leading eigenvalue of the Jacobian matrix 
can be used to quantify how communities respond to 
small perturbations at any given time (Ushio et al., 2018). 
Differently from a recovery rate in a community with a 
stable equilibrium, under non- equilibrium dynamics, the 
leading eigenvalue approximates the local growth rate of 
small perturbations along a given direction (Eckmann & 
Ruelle, 1985; Mease et al., 2003; Vallejo et al., 2017). Thus, 
in contrast to a community at equilibrium with a constant 
capacity to recover from perturbations, a community 
under non- equilibrium dynamics has a response to pertur-
bations that depends on how species abundances change 
over time (i.e. state- dependent) (Cenci & Saavedra, 2019). 
In particular, the state of a community may determine 
its response to perturbations not only through the local 
species' effects on each other (i.e. Jacobian matrix) but 
also through the local time scale of the dynamics (e.g. per-
turbation effects may take longer to appear under a long 
transient) (Hastings et al., 2018; Rinaldi & Scheffer, 2000). 
Because of such state- dependent behaviour, species abun-
dances have been shown to be harder to forecast, on av-
erage, in states where a community is more sensitive to 
perturbations (Cenci et al.,  2020). The question that re-
mains to be answered is whether we can decompose a 
community's response to monitor the time- varying sen-
sitivity of each of its species and whether this can com-
plement traditional single- species indicators that do not 
use the information on species interactions. Developing 
such a species- level measure of response to perturbations 
could also allow us to test the hypothesis that, as observed 
for entire communities (Cenci et al., 2020), species that are 
more sensitive to perturbations at a given state are also 
harder to forecast.

Here, we develop two complementary approaches 
based on dynamical systems theory and nonlinear time 
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series analysis to rank species over time under non- 
equilibrium dynamics according to their sensitivity to 
small pulse perturbations on abundances. By doing so, 
we provide a data- driven framework to detect which spe-
cies in a community are the most and least sensitive to 
such perturbations at any given time. Our ranking ap-
proaches consist of an analytical measure of the expected 
sensitivity of each species and an alignment measure of 
each species with the leading eigenvector of the Jacobian 
matrix. We test both approaches by performing pertur-
bation analyses using five synthetic time series gener-
ated from population dynamics models. We show that 
we can accurately rank species sensitivities, especially 
using the expected sensitivity approach. However, the 
eigenvector approach requires no a priori information 
about perturbations and performs better when infor-
mation about perturbations— used to compute expected 
sensitivities— is biased. Importantly, we show that both 
approaches remain accurate when inferring the Jacobian 
matrix directly from the time series with the S- map. 
Finally, we apply both approaches to two empirical time 
series and show that species that are more sensitive to 
perturbations at a given time tend to have larger abun-
dance forecast errors, especially when the local growth 
rate of perturbations is high.

QUA NTI FY ING SPECIES 
SENSITIVITIES TO  
PERTU RBATIONS

To quantify species sensitivities to perturbations, we 
assume that species abundances in a community with 
S species change through time according to a generic 
function: dN

dt
= f(N), where f (f: ℝS

→ ℝ
S) is an unknown 

nonlinear model and N =
[
N1, … ,NS

]⊤
 is the vector of 

species abundances (Cenci & Saavedra,  2019). At any 
given time, the community can be affected by a pulse 
perturbation p =

[
p1, … , pS

]⊤
 that changes N into Ñ (i.e. 

Ñ = N + p) (Bender et al., 1984). The vector Ñ would then 
change in time according to f. Following similar defini-
tions in ecology, we conceptually define sensitivity as the 
amount of change in species abundances following a per-
turbation (Dakos, 2018; Domínguez- García et al., 2019). 
Mathematically, we define the sensitivity of species i to a 
specific perturbation p from time t to t + k as the squared 
difference between its perturbed and unperturbed abun-
dance at the time t + k in relation to the initial squared 
difference caused by the perturbation at the time t:

Therefore, si quantifies the distance between perturbed 
and unperturbed states over time, similarly to measures of 
sensitivity to initial conditions (Eckmann & Ruelle, 1985; 

Strogatz, 2018; Vallejo et al., 2017). However, si is completely 
dependent on p. In natural communities, we typically have 
no prior information about the direction and magnitude of 
p— that is, there is large uncertainty about how much each 
species will be affected by a perturbation. To quantify spe-
cies sensitivity in a way that embraces this uncertainty, we 
focus on a collection of randomly perturbed abundances 
(Arnoldi et al., 2018; Bender et al., 1984). Thus, we define 
the sensitivity of species i from time t to t + k as the average 
squared difference between a set of n randomly perturbed 
abundances and its unperturbed abundance at the time 
t + k in relation to the initial average squared difference 
at the time t:

where Ñ i
(j)
(t) is the jth perturbed abundance of species i 

at time t. The denominator in Equation (2) controls for the 
initial displacement of species abundances but can be ig-
nored if the variance of perturbations is the same for every 
species (SI Section 4). Note that we use ⟨si⟩ as a notation 
for the ratio of the mean squared deviations and that ⟨si⟩ is 
greater than zero but not bounded because the numerator 
may be arbitrarily large.

Under non- equilibrium dynamics, the identity of 
the most and least sensitive species can change over 
time. We illustrate this statement using the following 
3- species food chain model that exhibits chaotic dynam-
ics (Hastings & Powell, 1991) (parameter values given in 
SI Section 3):

where N1, N2 and N3 are the abundances of the primary 
producer, primary consumer, and secondary consumer, 
respectively. To study species sensitivities under this 
model, we numerically integrate Equation  (3) producing 
time series (Figure 1a,b) that can be visualized as an at-
tractor in state space (Figure  1c,d). Then, we perform a 
small arbitrary pulse perturbation p to species abundances 
at the time t (orange vertical line in Figure 1a,b) and com-
pute species sensitivities to it 

(
si
)
 after k = 1 time step (red 

vertical line in Figure 1a,b). We use k = 1 as an example 
here, but explore the effects of changing this time step 
in our analyses. Figure  1a,b shows that even under the 
same perturbation p, species exhibit drastically different 
sensitivities depending on when the perturbation occurs. 
That is, the species that has the largest sensitivity to this 

(1)si =

[
Ñ i(t+k)−Ni(t+k)

]2
[
Ñ i(t)−Ni(t)

]2 =
pi(t+k)

2

pi(t)
2

.

(2)

⟨si⟩ =
1

n

∑n

j=1

�
Ñ

(j)

i
(t+k)−Ni(t+k)

�2

1

n

∑n

j=1

�
Ñ

(j)

i
(t)−Ni(t)

�2 =

1

n

∑n

j=1
p
(j)

i
(t+k)2

1

n

∑n

j=1
p
(j)

i
(t)2

,

(3)

dN1

dt
= rN1

(
1−

N1

K

)
−
a1N1N2

1+b1N1
dN2

dt
= −sN2+hN1N2−

a2N2N3

1+b2N2
dN3

dt
= − lN3+nN2N3,
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particular perturbation can change from the primary (spe-
cies 2 in Figure 1a) to the secondary consumer (species 3 
in Figure 1b) after a short time. Next, we extend this il-
lustration and consider how multiple randomly perturbed 
abundances (Ñ(t), orange points in Figure  1c,d) change 
after one time step (Ñ(t + 1), red points in Figure 1c,d) by 
computing species sensitivities (⟨si⟩). Figure 1c,d confirms 
that the most sensitive species changes from the primary 
(species 2 in Figure 1c) to the secondary consumer (species 
3 in Figure  1d) under random perturbations. Therefore, 
the problem we aim to solve in this study is how to predict 
the order of the ⟨si⟩ values of all species in a community at 
any given time. Clearly, in natural communities, we cannot 
produce multiple random perturbations to compare the re-
sponses of different species in perturbed and unperturbed 
communities. Therefore, in what follows, we provide a 

rationale for using the Jacobian matrix at time t to predict 
the order of ⟨si⟩.

RA N K ING SPECIES SENSITIVITIES 
TO PERTU RBATIONS

Without loss of generality, we can write the linearized dy-
namics of a small perturbation on abundances as dp

dt
= Jp , 

where J is the Jacobian matrix of f evaluated at N (SI 
Section 1) (Boyce et al., 2017; Eckmann & Ruelle, 1985; 
Mease et al.,  2003; Strogatz,  2018). Following results 
from dynamical systems theory (Arnoldi et al.,  2018; 
Boyce et al., 2017; Strogatz, 2018), we propose two com-
plementary approaches to rank species according to 
their sensitivity to perturbations (Boxes 1 and 2). These 

F I G U R E  1  Identity of most sensitive species to perturbations changes through time under non- equilibrium dynamics. (a, b) Abundance 
time series generated from a 3- species chaotic food chain model (Equation 3) showing the effect of a pulse perturbation p = [7,7,7]⊤ that 
increases all abundances at different times t. Whereas species 2 (primary consumer, blue) shows the highest sensitivity si to p (i.e. the largest 
squared difference between perturbed and unperturbed abundance at t + 1) in (a), species 3 (secondary consumer, purple) shows the highest 
si to p just a few time steps ahead in (b). (c, d) Chaotic attractor of the food chain model (black) with multiple perturbed abundances around 
N(t) (Ñ(t), orange points) at different times t. The red points show these perturbed abundances after one time step (Ñ(t + 1)). We can measure 
the sensitivity of species i  to random perturbations (⟨si⟩) by computing the average squared difference between its set of perturbed abundances 
(Ñ i(t + 1)) and its unperturbed abundance 

(
Ni(t + 1)

)
 at t + 1. Note that this sensitivity measure is normalized by the average squared difference 

between Ñ i(t) and Ni(t) at time t (Equation 2). Whereas species 2 shows the highest ⟨si⟩ in (c), species 3 shows the highest ⟨si⟩ in (d).
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approaches are based on the assumption that if J is nearly 
constant from time t to t + k, the solution p(t + k) of the 
linearized dynamics provides a good approximation of 
how perturbed abundances change over this time period. 
Thus, in addition to the challenge of approximating a 
nonlinear system (i.e. f(N)) by its linearized dynamics, 
here we explore the extent to which the linearized dy-
namics inform us about species sensitivities under non- 
equilibrium dynamics (i.e. when J is state- dependent). 
Importantly, we use information from the Jacobian ma-
trix (i.e. community- level information) to measure how 
individual species respond to perturbations.

We illustrate how �
(
si
)
 (Box 1) and ∣ v1i ∣ (Box 2) allow 

us to predict the order of ⟨si⟩ under three simple sce-
narios of Lotka- Volterra dynamics at equilibrium (SI 
Section  13). These examples contain an unstable equi-
librium point— that is, J evaluated at N∗ has at least one 
𝜆i > 0, as is typically observed for points along a non- 
equilibrium attractor (e.g. limit cycle, chaotic attractor). 
We show that the order of �

(
si
)
 is exactly the same as 

the order of ⟨si⟩, whereas the order of ∣ v1i ∣ is similar to 
the order of ⟨si⟩ for all three scenarios (Figures S1– S3). 
A potential limitation of these approaches, however, is 
that they rely on a parameterized model (f) to obtain J, 

which we rarely have. Therefore, in addition to comput-
ing �

(
si
)
 and ∣ v1i ∣ using the analytical J, we show that we 

can accurately rank ⟨si⟩ by inferring J using the S- map. 
The S- map is a locally weighted state- space regression 
method that has been shown to provide accurate infer-
ences of the time- varying Jacobian matrix from time se-
ries (Cenci et al., 2019; Deyle et al., 2016; Sugihara, 1994) 
(SI Section 5).

TESTING RA N K ING APPROACH ES 
W ITH SY NTH ETIC TIM E SERIES

To test whether the order of expected sensitivities (�
(
si
)
 ; 

Box  1) and eigenvector alignments (∣ v1i ∣; Box  2) can 
predict the order of species sensitivities (⟨si⟩), we per-
form perturbation analyses using synthetic time series. 
Specifically, we generate multivariate time series with 
500 points ({N(t)}, t = 1, … , 500) using five population 
dynamics models that produce non- equilibrium dynam-
ics (Figure S5; SI Section 3). Then, for half of each time 
series (t = 250, … , 500), we perform n = 300 random per-
turbations at each time t: Ñ = N + p, where p ∼

(
0,�t

)
 

with �t being a diagonal matrix with diagonal element i 

BOX 1 Expected sensitivity ranking

Rationale
This approach is based on analytically computing an expected value for the sensitivity of species i to perturba-
tions (�

(
si
)
) using the solution p(t + k) = eJkp(t) of the linearized dynamics (SI Section 2) (Boyce et al., 2017). 

Note that, for sufficiently small perturbations under equilibrium dynamics, this solution is exact because J is 
constant when evaluated at an equilibrium point (N∗ for which f

(
N∗

)
= 0). By assuming that p(t) follows a dis-

tribution with mean zero, we can obtain �
(
si
)
 at time t from the covariance matrix of p(t + k): �t+k = eJk�t

(
eJk

)⊤

, where �t is the covariance matrix of p(t). A distribution with a mean zero for p(t) represents the most unin-
formative case where all perturbation directions (i.e. which species are most impacted) are equally likely to 
occur. Thus, the distribution of perturbed abundances (Ñ) described by �t will approximate �t+k after k time 
steps (Figure 2a). Then, we can compute the expected sensitivity of species i as: �

(
si
)
= �2

i,t+k, where �2
i,t+k

 is 
the ith  diagonal element of �t+k (i.e. the variance of pi(t + k)). We define the order of �

(
si
)
 values across spe-

cies as the expected sensitivity ranking and use it to predict the order of species sensitivities to perturbations  
(⟨si⟩; Figure 2a).
Application
Three ingredients are required to apply the expected sensitivity ranking. First, we need the Jacobian matrix of 
the community (J) evaluated using the abundances (N) at time t. This matrix can be computed directly from 
a parameterized population dynamics model (SI Section 1) or, as we focus here, inferred from the time series 
without assuming a specific model (SI Section 5). Second, we need to define an initial covariance matrix of 
perturbations at time t (�t). Without any knowledge of perturbations, we suggest an uninformative approach 
by setting �t = I, where I is the identity matrix (i.e. perturbations to each species are independent of each 
other). Finally, we need to specify the time for which perturbations evolve (k) on the time unit of the time series 
(e.g. day, month). Because information on the local time scale of the dynamics can be challenging to obtain, 
we suggest using a small value for k to investigate short- term species sensitivities (e.g. k = 1). Alternatively, it 
is possible to set k to be inversely proportional to the local rate of change calculated from the time series (SI 
Section 4). In conclusion, although this approach has the advantage of using the information on the entire 
Jacobian matrix to compute �

(
si
)
, it has the disadvantage of requiring additional information that may be 

hard to obtain in natural communities (�t and k).
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F I G U R E  2  Ranking species sensitivities to perturbations. (a) Illustration with two species showing the expansion of perturbed abundances 
(Ñ(t), orange points) after k time steps (Ñ(t + k), red points). The expected sensitivity of species i  to perturbations (�

(
si

)
) can be computed 

as the corresponding variance of the predicted distribution of perturbations (i.e. ith diagonal element of covariance matrix �t+k depicted in 
black). Note that �t+k is shown at time t as it is computed using only information at that time point. We propose that the order of �

(
si

)
 values 

can be used to predict the order of species sensitivities to perturbations (⟨si⟩ values). Alternatively, the order of species alignments with the 
leading eigenvector of the Jacobian matrix ( ∣ v1i ∣ values) can be used to predict the order of ⟨si⟩ values. (b) for the 3- species food chain model 
(Equation 3) at a given time, there are six possible ways to rank ⟨si⟩ values, each one giving a Spearman's rank correlation value (�). (c) Rank 
correlation (�) between �

(
si

)
 (computed analytically from the model) and ⟨si⟩ over time quantified for a synthetic time series generated from the 

3- species food chain model. The vast majority of points (97.2%) show a positive �. (d) Same as (c) but with the Jacobian matrix used to compute 
�
(
si

)
 inferred with the S- map using only past time- series data. Again, the great majority of points (94.8%) show a positive �.

1.0

0.5

0.0

0.5

1.0

250 300 350 400 450 500
Time

C
or

re
la

tio
n

(
)b

et
w

ee
n 

ex
pe

ct
ed

an
d 

ob
se

rv
ed

 s
en

si
tiv

iti
es

1.0

0.5

0.0

0.5

1.0

250 300 350 400 450 500
Time

C
or

re
la

tio
n

(
)b

et
w

ee
n 

ex
pe

ct
ed

an
d 

ob
se

rv
ed

 s
en

si
tiv

iti
es

Abundance species 2

Ab
un

da
nc

e 
sp

ec
ie

s 
1

species 2 is the most 
sensitive to perturbations 

(a)

(c)

(d)

 computed from model

 inferred from time series
(S-map fitted sequentially on 250 past points)  = 0.73

Percentage 
of points (%)

 = 0.72

38.0

56.8

(b)

species 
1

species 
2

species 
3

Possible rankings Rank correlation 

1.0

0.5

0.5

-0.5

-0.5

-1.0

species 
1

species
 2

species 2 has the highest 
expected sensitivity 

Observed sensitivities

4.0

2.8

48.8

48.4

1.2

 14610248, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.14131, W

iley O
nline L

ibrary on [11/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



176 |   DETECTING SENSITIVE SPECIES

given by �2
i,t
= r2 (i.e. independent normally distributed 

perturbations for each species with the same variance r2 ).  
We set r to be 15% of the mean standard deviation of spe-
cies abundances, but relax this assumption in additional 
analyses (SI Section 4). Next, we numerically integrate 
the model f for a time k using each Ñ as an initial con-
dition. Because the response of communities to pertur-
bations can depend on the time scale of the dynamics 
(Hastings et al., 2018; Rinaldi & Scheffer, 2000), we set k 
to be inversely proportional to the mean rate of change 
of the dynamics (SI Section  4). Then, we compute ⟨si⟩ 
from time t to t + k as well as �

(
si
)
 and ∣ v1i ∣ using J at 

time t as described in Boxes 1 and 2. We compute �
(
si
)
 

and ∣ v1i ∣ both analytically from the true J evaluated at 
N and by sequentially inferring J with the S- map on 250 
past points.

To assess how well the order of �
(
si
)
 and ∣ v1i ∣ predicts 

the order of ⟨si⟩, we compute the Spearman's rank cor-
relation (�) between each ranking and ⟨si⟩ at each time t .  
We focus on predicting the order instead of the exact 
values of ⟨si⟩ for two reasons. First, the exact values of 
⟨si⟩ depend on the initial covariance matrix �t and on 
the time step k, which we rarely know for natural com-
munities. Second, we can only infer an approximation 
of J with the S- map even from ideal time- series data (SI 
Section 5; Cenci & Saavedra, 2019). We can illustrate our 

ranking procedure for �
(
si
)
 by considering the 3- species 

food chain model (Figure 1; Equation 3). With 3 species, 
there are 6 possible ways to rank a given set of ⟨si⟩ at any 
given time, resulting in 4 different � values (Figure 2b). 
If the order of �

(
si
)
 matches the order of ⟨si⟩ exactly, we 

obtain � = 1 (Figure 2b). Otherwise, � decreases depend-
ing on the mismatch between the order of �

(
si
)
 and the 

order of ⟨si⟩. An advantage of using � is that it allows 
us to penalize prediction mistakes consistently, irrespec-
tive of whether the mistaken species are amongst the 
most or least sensitive ones. For example, in Figure 2b, 
the second and third rankings have 

�(si)

 because both 
contain one correct prediction, which is the least sensi-
tive species and the most sensitive species, respectively. 
Under the 3- species food chain model, we find that the 
order of 

�(si)

 matches the order of ⟨si⟩ exactly (i.e. � = 1 ; 
Figure  2c) for 48.8% of points in the time series. For 
another 48.4% of points, the order of �

(
si
)
 allows us to 

correctly detect the position of either the least or most 
sensitive species (i.e. � = 0.5). Finally, for 2.8% of points, 
the order of �

(
si
)
 is not a good predictor of the order of 

⟨si⟩ (i.e. 𝜌 < 0). But most strikingly, we obtain very similar 
results when inferring �

(
si
)
 directly from the synthetic 

time series using the S- map, without any knowledge of 
the underlying model (Figure  2d). Hence, this illustra-
tion suggests that we can accurately predict the relative 

BOX 2 Eigenvector ranking

Rationale
This approach is based on the alignment of species i with the leading eigenvector (v1) of J ∣ v1i ∣. The solution 
of the linearized dynamics can also be written as p(t + k) =

∑S

i=1
cie

�ikvi, where vi is the real part of the ith 
eigenvector of J, �i is the real part of the ith eigenvalue 

(
�S ≤ ⋯ ≤ �1

)
, and each ci is a constant determined 

by the initial condition p(t) (SI Section 9) (Boyce et al., 2017, Strogatz, 2018). As long as the imaginary parts 
are small compared to real parts, ∣ v1i ∣ can still be used to estimate species sensitivities even under small local 
oscillations caused by complex eigenvalues (SI Section 9). After a sufficient amount of time k, �1 will dominate 
over other eigenvalues and the solution can be approximated by p(t + k) ≈ c1e

�1kv1. Thus, v1 dictates the local 
direction of the greatest expansion (or smallest contraction) of perturbations. That is, the distribution of per-
turbed abundances (Ñ) will expand over time approximately along the direction of v1 and at a rate given by �1 
(positive values lead to expansion, whereas negative values lead to contraction). We also show that v1 serves 
as a proxy for the local leading Lyapunov vector, which provides the exact direction of perturbation growth 
under non- equilibrium dynamics (Kuptsov & Parlitz, 2012; Mease et al., 2003; Vallejo etal., 2017) (Figure S4; 
SI Section 10). Specifically, we compute the alignment of species i with v1 as the absolute value of its ith element 
(∣ v1i ∣), where ‖v1‖ = 1. We define the order of ∣ v1i ∣ values across species as the eigenvector ranking and use it 
to predict the order of ⟨si⟩ (SI Section 11). Note that we use the absolute value because only the line spanned by 
v1 and not its direction determines how perturbed abundances change over time.
Application
Similarly to the expected sensitivity ranking, the Jacobian matrix of the community (J) evaluated using the 
abundances (N) at time t is also required to apply the eigenvector ranking. The main advantage of the eigen-
vector ranking is that J is the only ingredient required to compute ∣ v1i ∣ and we do not need to specify the initial 
covariance matrix of perturbations (�t) nor the time for which perturbations evolve (k). Nevertheless, using 
a single eigenvector instead of the entire Jacobian matrix, the eigenvector ranking uses less information than 
the expected sensitivity ranking. Importantly, we show that �

(
si
)
 and ∣ v1i ∣ are related in the special case of a 

symmetric J (SI Section 12), which is also when all eigenvalues of J are real.
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   | 177MEDEIROS et al.

sensitivity position of most species (i.e. � ≥ 0.5) for the 
vast majority of points in a time series.

To benchmark our approaches, we use two simple 
single- species indicators to predict the order of ⟨si⟩ val-
ues. First, we use abundances absolute percent change 
between t − 1 and t: ΔNi(t) =

|||
Ni (t)−Ni (t−1)

Ni (t−1)

|||. The rationale 
for this indicator is that a species will be more sen-
sitive when its abundance is changing more rapidly. 
Second, we use abundances at time t after a sign rever-
sal: −Ni(t) . This indicator is based on the notion that 
a species will be more sensitive when it has a low abun-
dance, for example, due to density dependence effects. 
For both indicators, we compute the rank correlation 
� between ⟨si⟩ and the indicator at each time t. Note 
that computing ΔNi(t) or −Ni(t) for a given species i 
only requires species- level information (i.e. time se-
ries of species i) and not community- level information  
(i.e. Jacobian matrix) as �

(
si
)
 and ∣ v1i ∣ require.

We demonstrate the generality of our ranking ap-
proaches using the set of five synthetic time series (SI 
Section 3). Although we find a high variation in � over 
time (grey points in Figure 3a), the mean correlation � 
between ⟨si⟩ and �

(
si
)
 as well as between ⟨si⟩ and ∣ v1i ∣ 

is positive and high for all five models when we com-
pute these rankings from the model (horizontal lines in 
Figure  3a). In particular, we find that �

(
si
)
 shows the 

higher accuracy in ranking ⟨si⟩, followed by ∣ v1i ∣, ΔNi(t) , 
and −Ni(t). Note that we focus on � given that � is ex-
pected to vary over time due to changes in nonlinearity 
and rate of change of J. Importantly, we obtain very sim-
ilar results for all models when inferring �

(
si
)
 and ∣ v1i ∣ 

using the S- map (horizontal lines in Figure 3b). In addi-
tion to quantifying prediction accuracy, we can visual-
ize how the value of ⟨si⟩, �

(
si
)
, and ∣ v1i ∣ of each species 

changes over time (Figure S6). We find that, even when 
inferring �

(
si
)
 and ∣ v1i ∣ with the S- map, we are able to 

detect shifts in ⟨si⟩ across species (Figure S6).
Although �

(
si
)
 is in general more accurate than ∣ v1i ∣ , 

we can use information on the leading eigenvalue (�1) to 
increase the accuracy of the latter approach. We expect 
that the higher �1, the greater the local growth rate of 
perturbations in the direction of v1, which should im-
prove our ability to rank ⟨si⟩ using ∣ v1i ∣. For the non- 
equilibrium attractors used here, �1 is generally positive, 
whereas subsequent eigenvalues are negative or close to 
zero, implying that �1 alone carries enough information 
to improve the eigenvector approach. Indeed, we find 
that � generally increases for the eigenvector approach 
when using only a subset of points with a high value of �1 
(Figure S7). We also find a positive correlation between 
the analytical and inferred �1 (2- species predator– prey: 
0.52; 3- species food chain: 0.70; 3- species food web: 0.57; 
4- species competitors: 0.23; and 5- species food web: 0.70) 
and a high alignment between the analytical and inferred 
v1 for all models (Figure S8).

For most models, the expected sensitivity (�
(
si
)
) 

and eigenvector (∣ v1i ∣) approaches computed from the 

analytical J show a high accuracy in ranking species 
sensitivities (⟨si⟩) when using different perturbation dis-
tributions (Figures S9 and S10) or time steps (k) to evolve 
perturbations (Figures S11 and S12; SI Section 4). In par-
ticular, �

(
si
)
 shows an extremely high accuracy when k 

is small and fixed over time (e.g. k = 1; Figure S11), given 
that the solution for the linearized dynamics (p(t + k)) 
is more precise for smaller k. In contrast, we find that 
∣ v1i ∣ performs best when k depends on the time scale 
of the dynamics (Figure  3), given that the eigenvector 
approach depends on the convergence of p(t + k) to 
the line spanned by v1, which requires a larger k when 
dynamics are slower. We also find that the accuracy of 
�
(
si
)
 computed using wrong values of k and �t remains 

high (Figures S10 and S13), except when these values are 
greatly misspecified (Figure S14). Finally, although the 
accuracy decreases in some cases, we find that �

(
si
)
 and 

∣ v1i ∣ inferred with the S- map remain accurate when nor-
malizing species abundances (Figure S15), using shorter 
time series (Figure  S16), adding observational noise to 
the time series (Figure S17) or adding process noise to 
the model (Figure S18; SI Section 6).

DETECTING SENSITIVE SPECIES 
IN EM PIRICA L TIM E SERIES

To illustrate the implementation of our data- driven ap-
proaches, we apply them to rank species sensitivities 
(Boxes 1 and 2) using two empirical time series. Each 
time series depicts a different marine community with 
four interacting variables that have been shown to ex-
hibit non- equilibrium dynamics (SI Section  7; Benincà 
et al.,  2009, 2015). Note that some variables represent 
physical attributes (e.g. bare rock) and others consist of 
species aggregations (e.g. barnacles) but we use the term 
species to refer to all variables. We first fit the S- map 
sequentially to both time series to infer �

(
si
)
 and ∣ v1i ∣ 

(SI Section  7). Because we do not know the governing 
population dynamics in these communities (i.e. f(N)), 
we cannot compute ⟨si⟩. Instead, we perform abundance 
forecasts using a Long Short- Term Memory (LSTM) 
neural network (James et al., 2021) and test the hypoth-
esis that species that are more sensitive to perturbations 
(i.e. have a higher value of �

(
si
)
 or ∣ v1i ∣) at a given time 

will be harder to forecast. That is, for a community 
under perturbations, the LSTM neural network will not 
be able to accurately forecast the abundance of a given 
species at a point in time when that species is highly sen-
sitive to perturbations (Cenci et al., 2020). Both empirical 
communities described above are thought to be under 
perturbations triggered by changes in environmental 
conditions (Benincà et al., 2009, 2015).

For both the Jacobian matrix inference (i.e. S- map) 
and the forecasts (i.e. LSTM neural network), we assign 
70% of the data as a training set and use the remain-
ing 30% as a test set. For each time t in the test set, we 
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178 |   DETECTING SENSITIVE SPECIES

compute a standardized forecast root- mean- square error 
(RMSE) for each species i as (Perretti et al., 2013):

where � = 3 is the number of forecasts, the numerator is the 
RMSE for the LSTM neural network forecast (N̂ i(j)), and 
the denominator is the RMSE for a naive forecast using the 

last point in the current training set (Ni(t − 1)). We then 
compute the rank correlation (�) between �

(
si
)
 and �i as 

well as between ∣ v1i ∣ and ϵi at each point in the test set to 
test the hypothesis that our rankings can predict the order 
of forecast errors. We also compute the rank correlation 
between each of the two alternative indicators previously 
described (ΔNi(t) and −Ni(t)) and ϵi to verify whether 
these single- species indicators can predict the order of 
forecast errors. Because we do not know how perturba-
tions affect these communities, we set �t = I and k = � to 
compute �

(
si
)
 (Box 1). We confirm the rationale behind 

(4)�i =

�
1

�

∑t+�−1

j=t

�
Ni(j)−N̂ i(j)

�2

�
1

�

∑t+�−1

j=t

�
Ni(j)−Ni(t−1)

�2
,

F I G U R E  3  Expected sensitivity and eigenvector approaches allow us to accurately rank species sensitivities to perturbations under 
several population dynamics models. (a) Rank correlation (�) between species sensitivities to perturbations (⟨si⟩) and four different approaches 
(expected sensitivity, �

(
si

)
; eigenvector, ∣ v1i ∣; rate of change, ΔNi(t); and abundance, − Ni(t)). Note that the Jacobian matrix and, therefore, �

(
si

)
 

and ∣ v1i ∣ are computed analytically from the model. Each panel shows the percentage of points with a given � value (size of grey points) and the 
average of these values across time (�, black horizontal lines) for a synthetic time series generated from the corresponding population dynamics 
model. (b) Same as (a) but with the Jacobian matrix and, therefore, �

(
si

)
 and ∣ v1i ∣ inferred with the S- map using only past time- series data. In 

(a), the expected sensitivity approach shows a higher � than the other three ranking approaches under all models. In (b), the expected sensitivity 
approach outperforms the eigenvector approach for three out of five models.
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our hypothesis by performing forecasts under perturba-
tions with the five models used in our theoretical analyses 
(Figure S19; SI Section 8).

We first illustrate our approaches to detect sensitive 
species with a rocky intertidal community. We find that 
barnacles have the highest expected sensitivity (�

(
si
)
 ) 

followed by either algae or mussels depending on the 
point in time (Figure 4a and Figure S20). Interestingly, 
barnacles also show the highest alignment with the 
leading eigenvector (∣ v1i ∣) for the majority of points 
in time (Figure  S20). We also find consistent results 
for �

(
si
)
 and ∣ v1i ∣ with a marine plankton community 

(Figures  S20 and S21). Thus, although the values of 
�
(
si
)
 over time are different from those of ∣ v1i ∣, these 

two complementary approaches suggest some general 
patterns in how species sensitivities change over time 
in these two communities. Importantly, we find that 
the mean rank correlation � between �

(
si
)
 and ϵi is 

positive for both time series, but only significant for 
one of them (rocky intertidal community: � = 0.04, 
p- value  =  0.287, 1000 randomizations; marine plank-
ton community: � = 0.23, p- value <0.001; Figure  4b). 
However, we find that the mean rank correlation � be-
tween ∣ v1i ∣ and ϵi is positive and significant for both 

F I G U R E  4  Species abundance forecast errors are associated with species sensitivities to perturbations. (a) Time series of a rocky intertidal 
community containing four variables (bare rock, barnacles, algae, and mussels). The diagram on the right depicts the cyclic succession in this 
community (adapted from Benincà et al., 2015). Note that percentage of cover does not necessarily sum to 100% as individuals of different 
species may overlap on top of the rock. We use a moving training set (grey region) to train the S- map and compute expected sensitivities (�

(
si

)
)  

as well as species alignments with the leading eigenvector (∣ v1i ∣) at the last point in the training set. Simultaneously, we train an LSTM neural 
network to forecast species abundances and compute species forecast errors (ϵi). Barnacles (blue) show the highest value of �

(
si

)
 followed by 

either algae (green) or mussels (purple) depending on the point in time. Note that �
(
si

)
 values across species sum to 1 for each point in time 

(darker points denote higher �
(
si

)
). (b) Rank correlation (�) between ϵi and four different approaches (expected sensitivity, �

(
si

)
; eigenvector, 

∣ v1i ∣; rate of change, ΔNi(t); and abundance, − Ni(t)). Each panel shows the percentage of points with a given � value (size of grey points) and 
the average of these values over the test set (�, black horizontal lines) for a given empirical time series (asterisks denote a p- value less than 0.05 
for � according to a randomization test). (c) Average correlation (�) between ϵi and the different ranking approaches computed for points in the 
test set with a �1 value higher than a given percentile of the �1 distribution. For the expected sensitivity and eigenvector approaches, � increases 
as we only use points with successively higher values of �1 for both time series (asterisks denote a p- value less than 0.05 for � using the 50th 
percentile). Pictures are under the creative commons Licence: Rock by Piotr Zurek, barnacles by tangatawhenua, algae by redrovertracy, and 
mussels by Wayne Martin.

(a)

(b) (c)
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180 |   DETECTING SENSITIVE SPECIES

time series (rocky intertidal community: � = 0.13, 
 p- value = 0.023; marine plankton community: � = 0.26, 
p- value <0.001; Figure 4b).

We find further evidence that species with higher �
(
si
)
 

or ∣ v1i ∣ are harder to forecast by computing � only for 
points in the test set with successively higher values of �1 
(i.e. higher local growth rate of perturbations; Figure 4c). 
For example, as expected from our analyses with synthetic 
time series (Figure S7), � between ∣ v1i ∣ and ϵi increases 
for both time series when we only use points for which �1 
is higher than its 50th percentile (rocky intertidal com-
munity: � = 0.19, p- value = 0.021; marine plankton com-
munity: � = 0.45, p- value <0.001; Figure 4c). The fact that 
� does not increase in general by using only points with a 
high �1 for the alternative indicators (ΔNi(t) and −Ni(t)) 
supports our ranking approaches in linking species fore-
cast errors to their sensitivities (Figure 4c). We find these 
results to remain similar when changing the size of the 
training set and the number of steps ahead (�) to forecast 
(Figures S22– S24) as well as to normalize species abun-
dances before performing the S- map (Figure S25).

DISCUSSION

Understanding how individual species affect the re-
sponse to perturbations of the whole community and, in 
turn, how species interactions at the community level af-
fect the responses of individual species is paramount to 
ecological management and conservation (Beauchesne 
et al., 2021; Clark et al., 2021; Kéfi et al., 2019; Levin & 
Lubchenco, 2008). Yet, the traditional focus of ecology 
on recovery to equilibrium using parameterized models 
has hampered efforts to understand how species respond 
to perturbations when community dynamics are out of 
equilibrium. Here, we introduce a data- driven frame-
work to solve a previously unexplored problem: how to 
rank the species that compose a community according to 
their sensitivity to small pulse perturbations under non- 
equilibrium dynamics? Our findings provide three main 
insights into how communities and their constituent spe-
cies respond to perturbations.

First, we show that information on the time- varying 
local effects between interacting species (i.e. Jacobian 
matrix) can be used to determine which species will 
be most affected by perturbations at a given time. In 
particular, using dynamical systems theory (Arnoldi 
et al., 2018; Mease et al., 2003; Strogatz, 2018) and non-
linear time series methods (Cenci et al.,  2019; Deyle 
et al., 2016; Sugihara, 1994), we develop two complemen-
tary approaches that can accurately rank species from 
most to least sensitive to small perturbations on abun-
dances under non- equilibrium dynamics. Both the ex-
pected sensitivity and the eigenvector ranking allow us 
to detect which of the species that compose a natural 
community are the most and least sensitive in real time if 
a long- time series is available. Hence, it may be possible 

to inform management and conservation programs re-
garding which species are currently the most sensitive 
ones. Our measure of sensitivity uses community- level 
information to quantify the likelihood of large changes 
(either decreases or increases) in the abundance of a given 
species. Therefore, species sensitivities may complement 
indicators that estimate single- species vulnerability to 
perturbations (Caswell, 2000; Mace et al., 2008; Morris 
& Doak,  2002). That is, whilst some species obviously 
require constant monitoring due to a high extinction risk 
(Dirzo et al., 2014; Estes et al., 2011), other species may 
require more attention during periods of time when they 
have a high sensitivity, irrespective of their abundance. 
Our results, however, cannot be extrapolated beyond 
a given studied community as our framework uses in-
formation on that specific community to rank species 
sensitivities.

Importantly, the expected sensitivity ranking is more 
accurate than the eigenvector ranking for most of our 
perturbation analyses with synthetic time series. In 
particular, the expected sensitivity ranking has its best 
performance when the time over which perturbations 
evolve (k) is small and fixed, and its worse performance 
when the covariance matrix of perturbations (�t) and 
k are greatly misspecified. In contrast, the eigenvec-
tor ranking has the advantage of not depending on �t 
and k for its computation and has its best performance 
when k depends on the local time scale of the dynamics. 
Indeed, in communities under non- equilibrium dynam-
ics, large differences in time scale and, therefore, in the 
time it takes for perturbation effects to appear are wide-
spread (Hastings et al., 2018; Rinaldi & Scheffer, 2000; 
Strogatz, 2018). Thus, it is reasonable to expect that as a 
practical tool the heuristic eigenvector ranking may be 
as useful as the more theoretically complete but assump-
tion bound expected sensitivity ranking.

Second, we find support for our hypothesis that the 
abundance forecast errors for the different species in a 
community are associated with their sensitivity to per-
turbations. The predictability of ecological dynamics 
is known to change across communities (Dietze,  2017; 
Pennekamp et al.,  2019) and, for a single community, 
across time (Cenci et al., 2020). In particular, it has been 
shown that at points in time when a community is more 
sensitive to perturbations its local predictability can be 
lower and, therefore, the average abundance forecast 
error can be higher (Cenci et al.,  2020). Here, we have 
extended this result for individual species by showing 
that the local predictability of a given species is associ-
ated with its sensitivity to perturbations, which we infer 
through its expected sensitivity and its alignment with 
the leading eigenvector. The fact that the correlation 
between forecast errors and our ranking approaches 
strengthens when the leading eigenvalue is high (i.e. 
perturbations grow rapidly along a given direction in 
state space) further supports our hypothesis that species 
forecast errors are associated with their sensitivities. In 
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addition, the better performance with empirical data of 
the eigenvector approach in relation to the expected sen-
sitivity approach suggests that we may be misspecifying 
the information required to compute expected sensitivi-
ties. These results provide empirical support to the lead-
ing eigenvector as a way to detect sensitive species using 
minimal information inferred from time- series data. 
Overall, our findings suggest that sensitivity to pertur-
bations is an additional factor influencing the intrinsic 
predictability of different species in ecological commu-
nities (Dietze, 2017, Pennekamp et al., 2019).

Applying our ranking approaches to empirical data 
requires accurate inference of the Jacobian matrix with 
the S- map. Although the S- map has been shown to 
provide accurate inferences when time series are noisy 
(Cenci et al., 2019; Deyle et al., 2016), several limitations 
remain. Because information on the shape of the attrac-
tor is required to fit the S- map, longer time series with 
smaller amounts of noise improve inference quality, all 
else being equal. In our analyses with synthetic time se-
ries, we show that our ranking approaches remain accu-
rate when using shorter time series (Figure S16) or under 
small amounts of noise (Figures S17 and S18). Long time 
series with a strong signal of non- equilibrium determin-
istic dynamics, such as the rocky intertidal or plank-
ton community investigated here (Benincà et al., 2009, 
2015), are examples of ideal data sets to apply our ap-
proaches. Thus, even if small perturbations are contin-
ually impacting the community (e.g. ongoing process 
noise), if the attractor is not completely distorted, the 
 S- map should be able to accurately reconstruct the 
time- varying Jacobian matrix required to compute 
species sensitivities (Cenci et al.,  2019) (Figure  S18). 
Although here we focus on small communities and 
small amounts of noise, future work may combine our 
ranking approaches with recent improvements in the S- 
map (e.g. regularization and multiview distance; Cenci 
et al., 2019; Chang et al., 2021) to detect sensitive species 
under more challenging settings.

Finally, we show that approaches based on linear dy-
namical systems that are typically used for communities 
close to equilibrium can also provide information for 
communities under non- equilibrium dynamics (Cenci 
& Saavedra, 2019; Ushio et al.,  2018). Even though the 
methodology may be similar in both cases, the interpre-
tation is completely different. For instance, whereas the 
linearized dynamics can be used to compute a recovery 
rate under equilibrium (Arnoldi et al.,  2018; Medeiros 
et al.,  2021; Strogatz,  2018), we show that they can be 
used to derive the time- varying expected sensitivity of 
different species to perturbations under non- equilibrium 
dynamics. In addition, we use the leading eigenvector, 
which has been previously employed to decompose com-
munity responses into species responses to perturbations 
under equilibrium dynamics (Dakos,  2018; Ghadami 
et al., 2020; Patterson et al., 2021; Weinans et al., 2019). 
Therefore, the approaches introduced here to increase 

our understanding of how communities and their con-
stituent species respond to perturbations when there is 
no stable equilibrium. Both approaches are based on a 
linearization of the dynamics and, thereby, only pro-
vide an assessment of responses to small perturbations. 
Moreover, both approaches assume that the Jacobian 
matrix does not change much over the time period for 
which perturbations evolve. Improving our framework 
to deal with strong nonlinearities, fast changes in the 
Jacobian matrix and local oscillations due to complex 
eigenvalues are promising avenues for future research. 
As our knowledge of the impact of perturbations on a 
community increases, it might also be possible to incor-
porate biased (e.g. certain species are more impacted) or 
correlated (e.g. certain species are impacted in the same 
way) perturbation distributions into our approaches. 
Overall, our findings illustrate how integrating well- 
known results of equilibrium dynamics with data- driven 
methods for non- equilibrium dynamics provides a fruit-
ful avenue for future development and new insights into 
the response of single species and entire communities to 
perturbations.
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