TY  - GEN
AB  - Managing ecological communities requires fast detection of species that are sensitive to perturbations. Yet, the focus on recovery to equilibrium has prevented us from assessing species responses to perturbations when abundances fluctuate over time. Here, we introduce two data-driven approaches (expected sensitivity and eigenvector rankings) based on the time-varying Jacobian matrix to rank species over time according to their sensitivity to perturbations on abundances. Using several population dynamics models, we demonstrate that we can infer these rankings from time-series data to predict the order of species sensitivities. We find that the most sensitive species are not always the ones with the most rapidly changing or lowest abundance, which are typical criteria used to monitor populations. Finally, using two empirical time series, we show that sensitive species tend to be harder to forecast. Our results suggest that incorporating information on species interactions can improve how we manage communities out of equilibrium.
AD  - Massachusetts Institute of Technology
AD  - University of Chicago
AD  - Université de Montpellier
AD  - University of California San Diego
AD  - Massachusetts Institute of Technology
AU  - Medeiros, Lucas P.
AU  - Allesina, Stefano
AU  - Dakos, Vasilis
AU  - Sugihara, George
AU  - Saavedra, Serguei
DA  - 2022-11-01
ID  - 13957
JF  - Ecology Letters
KW  - eigenvector
KW  - forecasting
KW  - Jacobian matrix
KW  - population dynamics
KW  - species interactions
KW  - time series
L1  - https://knowledge.uchicago.edu/record/13957/files/Ecology%20Letters%20-%202022%20-%20Medeiros%20-%20Ranking%20species%20based%20on%20sensitivity%20to%20perturbations%20under%20non%E2%80%90equilibrium%20community.pdf
L1  - https://knowledge.uchicago.edu/record/13957/files/ele14131-sup-0001-supplementarysi.pdf
L2  - https://knowledge.uchicago.edu/record/13957/files/Ecology%20Letters%20-%202022%20-%20Medeiros%20-%20Ranking%20species%20based%20on%20sensitivity%20to%20perturbations%20under%20non%E2%80%90equilibrium%20community.pdf
L2  - https://knowledge.uchicago.edu/record/13957/files/ele14131-sup-0001-supplementarysi.pdf
L4  - https://knowledge.uchicago.edu/record/13957/files/Ecology%20Letters%20-%202022%20-%20Medeiros%20-%20Ranking%20species%20based%20on%20sensitivity%20to%20perturbations%20under%20non%E2%80%90equilibrium%20community.pdf
L4  - https://knowledge.uchicago.edu/record/13957/files/ele14131-sup-0001-supplementarysi.pdf
LA  - eng
LK  - https://knowledge.uchicago.edu/record/13957/files/Ecology%20Letters%20-%202022%20-%20Medeiros%20-%20Ranking%20species%20based%20on%20sensitivity%20to%20perturbations%20under%20non%E2%80%90equilibrium%20community.pdf
LK  - https://knowledge.uchicago.edu/record/13957/files/ele14131-sup-0001-supplementarysi.pdf
N2  - Managing ecological communities requires fast detection of species that are sensitive to perturbations. Yet, the focus on recovery to equilibrium has prevented us from assessing species responses to perturbations when abundances fluctuate over time. Here, we introduce two data-driven approaches (expected sensitivity and eigenvector rankings) based on the time-varying Jacobian matrix to rank species over time according to their sensitivity to perturbations on abundances. Using several population dynamics models, we demonstrate that we can infer these rankings from time-series data to predict the order of species sensitivities. We find that the most sensitive species are not always the ones with the most rapidly changing or lowest abundance, which are typical criteria used to monitor populations. Finally, using two empirical time series, we show that sensitive species tend to be harder to forecast. Our results suggest that incorporating information on species interactions can improve how we manage communities out of equilibrium.
PY  - 2022-11-01
T1  - Ranking species based on sensitivity to perturbations under non-equilibrium community dynamics
TI  - Ranking species based on sensitivity to perturbations under non-equilibrium community dynamics
UR  - https://knowledge.uchicago.edu/record/13957/files/Ecology%20Letters%20-%202022%20-%20Medeiros%20-%20Ranking%20species%20based%20on%20sensitivity%20to%20perturbations%20under%20non%E2%80%90equilibrium%20community.pdf
UR  - https://knowledge.uchicago.edu/record/13957/files/ele14131-sup-0001-supplementarysi.pdf
Y1  - 2022-11-01
ER  -