
THE UNIVERSITY OF CHICAGO

TESTING FOR DIFFERENCES IN POLYGENIC SCORES IN THE PRESENCE OF

CONFOUNDING

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE BIOLOGICAL SCIENCES

AND THE PRITZKER SCHOOL OF MEDICINE

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF HUMAN GENETICS

BY

JENNIFER GRACE BLANC

CHICAGO, ILLINOIS

DECEMBER 2024



Copyright 2024 by Jennifer Grace Blanc

All Rights Reserved



To my parents



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 A POPULATION GENETIC MODEL OF BIAS IN POLYGENIC SCORES . . . 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Genotypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Phenotypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 The impact of stratification bias on polygenic scores . . . . . . . . . . . . . . 16
2.4 Bias in polygenic scores leads to biased polygenic score associations . . . . . 18
2.5 Controlling for stratification bias in polygenic association tests . . . . . . . . 20

2.5.1 Including F̃Gr removes stratification bias . . . . . . . . . . . . . . . . 20
2.5.2 Relationship between F̃Gr and PCA . . . . . . . . . . . . . . . . . . . 21

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 Author contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.8 Extended model and results . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.8.1 Full Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.8.2 Expectation of marginal effects . . . . . . . . . . . . . . . . . . . . . 33
2.8.3 The expected polygenic scores . . . . . . . . . . . . . . . . . . . . . . 35
2.8.4 Polygenic score association test bias using marginal effects . . . . . . 38
2.8.5 Expectation of polygenic scores while controlling for F̃Gr . . . . . . . 39
2.8.6 Polygenic score association test bias controlling for F̃Gr . . . . . . . . 42
2.8.7 Modeling the correlation structure among test panel individuals . . . 43

3 CONTROLLING FOR STRATIFICATION BIAS IN PRACTICE . . . . . . . . . 46
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 F̂Gr and sample PCs as estimators of F̃Gr . . . . . . . . . . . . . . . . . . . 49

3.2.1 Sample principal components . . . . . . . . . . . . . . . . . . . . . . 49
3.2.2 Estimating F̃Gr directly using test panel genotypes . . . . . . . . . . 50

3.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.1 Toy model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.2 Grid simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.3 Example data analysis in UK Biobank . . . . . . . . . . . . . . . . . 64

3.4 Testing for differences in polygenic scores in empirical data . . . . . . . . . . 67
3.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

iv



3.4.2 Overlap between panels . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.4.3 Variance in F̂Gr explained by sample PCs . . . . . . . . . . . . . . . 76
3.4.4 Polygenic score association test results from 17 phenotypes . . . . . . 83

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.6 Author contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.7 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.7.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.7.2 Empirical Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.8 Extended results and supplemental figures . . . . . . . . . . . . . . . . . . . 111
3.8.1 Downward bias with true signal . . . . . . . . . . . . . . . . . . . . . 111
3.8.2 Supplemental tables and figures . . . . . . . . . . . . . . . . . . . . . 114

4 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

v



LIST OF FIGURES

1.1 Causal models for confounding in effect size estimates in GWAS . . . . 3

3.1 Schematic of two different panel configurations. The effect of stratifi-
cation depends on the overlapping structure between the GWAS and
test panels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Error in estimators of F̃Gr depends on the number of SNPs used to
compute them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Stratification bias in more complex demographic scenarios. . . . . . . . 59
3.4 Quantifying error in the estimates of F̂Gr and sample PCs for the six-

by-six stepping stone demographic model. . . . . . . . . . . . . . . . . . . 62
3.5 Different patterns of confounding and F̂Gr are captured by different

GWAS panel sample PCs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.6 Quantifying error in F̂Gr for two polygenic score association tests in

the UK Biobank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.7 GWAS panel sampling scheme and proportion of variance explained. . 77
3.8 The larger the average proportion of variance a contrast explains, the

more accurate the estimates of F̂Gr . . . . . . . . . . . . . . . . . . . . . . 79
3.9 The ratio of variance explained by sample PCs to signal in F̂Gr indicates

how well captured F̃Gr is by J PCs. . . . . . . . . . . . . . . . . . . . . . . 84
3.10 Confounding increases with the proportion of variance explained. . . . 86
3.11 Polygenic association test results for 17 phenotypes in the HGDP and

1kGP combined dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.12 Evidence for decreased height polygenic scores in Sardinian individuals

compared to mainland Europeans. . . . . . . . . . . . . . . . . . . . . . . . 89
3.13 No significant relationship between height polygenic scores and latitude

in Non-Finnish European samples. . . . . . . . . . . . . . . . . . . . . . . . 91
3.14 No significant relationship between height polygenic scores and longi-

tude in Eurasian samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.15 Limited evidence for polygenic score divergence between countries of

birth in the British Isles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.16 No replication of selection signals in ancient DNA contrasts. . . . . . . 95
3.17 Evidence for recent selection on height using singleton density scores. 97
3.18 Including F̃Gr, F̂Gr, or PC 1 as a covariate in the GWAS model main-

tains power to detect true association signal. . . . . . . . . . . . . . . . . 115
3.19 Error in estimates of F̃Gr predicts bias in q̂ across population models. 116
3.20 F̂Gr as observed in the GWAS panel. . . . . . . . . . . . . . . . . . . . . . 117
3.21 HGDP and 1kGP test panels . . . . . . . . . . . . . . . . . . . . . . . . . . 118

vi



LIST OF TABLES

3.1 Sample sizes for different groups in the combined HGDP 1kGP dataset.117
3.2 Sample sizes for different countries of birth within the British Isles. . 119
3.3 UKBB phenotypes used for polygenic score association tests. . . . . . . 119
3.4 Significant polygenic score association tests in the HGDP1kGP panel. 120
3.5 Significant polygenic score association tests using British Isles country

of birth contrasts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.6 Significant polygenic score association tests in the ancient DNA con-

trasts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.7 Significant polygenic score association tests using SDS constrasts. . . . 121

vii



ACKNOWLEDGMENTS

I am very grateful to my advisor, Dr. Jeremy Berg, who has been an amazing mentor to

me throughout my graduate career. All of the following work would not have been possible

without his support and mentorship. Being a professor’s first graduate student is a unique

experience, and I am thankful Jeremy took a chance on me and supported me through both

the highs and lows of this project. Jeremy is a careful and innovative scientist while being

an exceedingly kind mentor who always puts his students first, and I am grateful to have

trained in his lab. I would also like to thank all past and present members of the Berg lab,

especially Vivaswat Shastry, who has supported me scientifically and as a friend.

I would also like to thank my committee members, Dr. Matthew Stephens, Dr. John

Novembre, and Dr. Xuanyao Liu, for the invaluable feedback and support I have received.

Additionally, I’d like to thank Dr. Peter Carbonetto, Dr. Andy Dahl, Dr. Matthias Stein-

ruecken, and Dr. Maryn Carlson for their help with various stages of this project. Thank you

to the entire human genetics community at The University of Chicago for fostering a collab-

orative and rigorous environment where I have learned to become a better, more thoughtful

scientist. Also, a special thank you to Sue Levison for all her help throughout the years; I

don’t know what we’d do without you.

Thank you to all my former mentors, including Dr. Michael Turelli, Dr. Graham Coop,

Dr. Eimear Kenny, Dr. Emily Josephs, and Dr. Gillian Belbin, without whom I never would

have considered a career in genetics.

I would like to thank all of my friends and fellow graduate students who I have met here,

including Dr. Kate Farris, Dr. Selene Clay, Dr. Katie Aracena, Jaeda Patton, Santiago

Herrera, Astra Huang, Abhimanyu Lele, Renée Fonseca, and many others. I especially want

to thank Jojo Tang, my roommate of six years, who has been there for me through my best

and worst moments, Maggie Steiner, who has brought so much joy and friendship to my life,

and Shreya Ramachandran, my partner in crime, who helped make Chicago feel like home.

viii



I also want to thank all my friends from Davis and my volleyball crew for their support (and

their willingness to listen to me complain) over the years.

Thank you to my boyfriend, Christopher; your support means the world to me. You

believed in me at times when I didn’t believe in myself and have been there both as a

cheerleader and a shoulder to cry on every time I needed it. Your kindness and optimism

about the future are inspiring, and I can’t wait to do it all with you.

Finally, thank you to my family - my brother, Kevin, my parents, Anna and Jim, and

my grandparents, Marcia, Stephen, Marilu, and Gene. Without you, none of this would be

possible. Mom, it’s no mystery where my love of science came from. My whole life I’ve

seen you fight tirelessly for your students, for science education, and for social justice. You

inspire me every day, and I can never thank you enough for your endless support. Dad, you

have taught me to stand up for myself, treat others with kindness and understanding, and

to "not sweat the small stuff." I want to thank you for all the sacrifices you have made so

that Kevin and I can achieve our goals. I love you all; your support has gotten me to where

I am today, and I am so excited for the next chapter.

ix



ABSTRACT

Polygenic scores have become an important tool in human genetics, enabling the pre-

diction of individuals’ phenotypes from their genotypes. Understanding how the pattern

of differences in polygenic score predictions across individuals intersects with variation in

ancestry can provide insights into the evolutionary forces acting on the trait in question,

and is important for understanding health disparities. However, because most polygenic

scores are computed using effect estimates from population samples, they are susceptible

to confounding by both genetic and environmental effects that are correlated with ancestry.

The extent to which this confounding drives patterns in the distribution of polygenic scores

depends on patterns of population structure in both the original estimation panel and in the

prediction/test panel. Here, we use theory from population and statistical genetics, together

with simulations and empirical analysis, to study the procedure of testing for an association

between polygenic scores and axes of ancestry variation in the presence of confounding. We

use a general model of genetic relatedness to describe how confounding in the estimation

panel biases the distribution of polygenic scores in a way that depends on the degree of

overlap in population structure between panels. We then show how this confounding can

bias tests for associations between polygenic scores and important axes of ancestry variation

in the test panel. Specifically, for any given test, there exists a single axis of population

structure in the GWAS panel that needs to be controlled in order to protect the test. Based

on this result, we propose a new approach for directly estimating this axis of population

structure in the GWAS panel. We then use simulations to compare the performance of this

approach to the standard approach in which the principal components of the GWAS panel

genotypes are used to control for stratification. Finally, we develop a hybrid approach for

empirical data analysis that uses the test panel genotypes to estimate how well protected

any given test is by the inclusion of principal components and apply this approach across a

diverse set of tests.
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CHAPTER 1

INTRODUCTION

A fundamental goal of human genetics is to understand the genetic basis of phenotypic

variation. The explosion of sequencing data and the development of genome-wide association

studies (GWAS) throughout the 21st century have accelerated our knowledge of the genetic

architecture underlying important anthropometric, physiological, behavioral, and disease

traits. By measuring the association between a genetic variant and phenotype, GWAS results

provide an estimate of a variant’s effect on the phenotype, averaged over the environments

experienced by the individuals in that sample. Human GWAS results have shown that the

majority of traits of interest are highly polygenic, with each individual variant estimated to

have a small effect size1. The ability to estimate effect sizes has opened up the possibility of

phenotypic prediction. For example, these effect estimates can be combined into polygenic

scores in a separate prediction panel by taking a sum of the genotypes of individuals in

that panel, weighted by the estimated effects2. Under the relatively strict assumptions that

genetic and environmental effects combine additively, that variation in the phenotype is not

correlated with variation in ancestry within the GWAS panel, and that the prediction panel

individuals experience a similar distribution of environments to the GWAS panel individuals,

these scores can be viewed as an estimate of each individual’s expected phenotype, given

their genotypes at the included variants. If these assumptions are met, polygenic scores

would seem to provide a means of separating out at least some of the genetic effects on a

given phenotype. The promise of polygenic scores is therefore that they provide a means for

phenotypic prediction from genotype data alone.

The promise of phenotypic prediction and the ability to link complex trait variation

to underlying genetic variants has transformed many areas of human genetics where the

calculation of polygenic scores has already become a routine procedure. In medicine, poly-

genic scores have shown potential for predicting some diseases with accuracy comparable to
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monogenic mutations and traditional risk factors3. In evolutionary biology, polygenic scores

allow for the investigation into the evolution of the genetic basis of complex traits4. The

application of polygenic scores to the growing collection of ancient DNA data, in particular,

offers an exciting opportunity to better understand the evolutionary forces that have shaped

current variation5,6,7,8. Finally, in social science, polygenic scores are used as a tool to study

the relationship between genetic variation and social outcomes9.

Although polygenic scores have become ubiquitous across human genetics literature, nu-

merous implementation problems still exist. Here we focus on a singular known problem:

the susceptibility of polygenic scores to ancestry-based confounding, also known as popula-

tion stratification. As stated above, the promise of polygenic scores is that, under specific

assumptions, they allow for phenotypic prediction from genotype data alone. However, the

effects of individual variants are typically estimated from population samples in which the en-

vironments that individuals experience vary as a function of their social, cultural, economic,

and political contexts. Differences in these factors are often correlated with differences in

ancestry within population samples, and these ancestry-environment correlations can induce

systematic biases in the estimated effects of individual variants (Figure 1.1A). Similar biases

can also arise if genetic effects on the phenotype vary as a function of ancestry within the

GWAS sample (Figure 1.1B). Ancestry stratification is a long recognized problem in the

GWAS study design, and many steps have been taken to guard against its effects.

Next, I provide an overview of some of the most common approaches to control for

stratification in GWAS and highlight both their successes and where they have fallen short,

providing both theoretical and empirical examples. I divide existing mitigation approaches

into two major categories: statistical correction and bias avoidance. Starting with statistical

correction, the three most common approaches that I cover here are principal component

analysis (PCA), linear mixed models (LMMs) and LD score regression. PCA is one of

the earliest approaches and corrects for ancestry associated biases through inclusion of top

2



Figure 1.1: Causal models for confounding in effect size estimates in GWAS
In GWAS, we aim to measure the association between a single SNP, Gℓ, and phenotype, y,
in a population sample. However, ancestry variation across samples can lead to differences
in the allele frequency of the SNP. If this ancestry variation is correlated with environmental
effects on the phenotype (A) or the causal genetic background (B), then the association
between the SNP and phenotype is confounded, and the resulting effect size estimate will
be biased (i.e population stratification in the GWAS literature). We note that A and B are
not mutually exclusive, and both types of confounding can occur simultaneously.

genetic principal components (PCs) as fixed effects in the GWAS model10. It has long been

appreciated that in human datasets top principal components often mirror major geographic

patterns in the sample and therefore their inclusion in the GWAS model should capture and

regress out major confounders11,12,13,14,15. Inclusion of top PCs is a very popular approach

to correcting for population stratification due in part to its simplicity and interpretability.

Overall, PCA combined with strict genome-wide significance thresholds has resulted in a high

replication rate for significant loci16,17. However, because PCA tries to control for ancestry

using a low-dimensional representation, more subtle confounding may not be captured and it

is known to fail when distant family members are included in the GWAS panel (often called

“cryptic relatedness” in the literature)18,19,20,21. Relatedly, it is difficult to determine the

number of PCs to include in the model without making assumptions about the distribution

of confounders.
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A more sophisticated, albeit related, approach to controlling for confounding in associa-

tion studies is the use of linear mixed models (LMMs) for GWAS22,23. In LMMs, relatedness

between individuals is modeled via the inclusion of a random effect, the covariance of which

is structured by the genetic relatedness matrix (GRM). Statistically, using an LMM with

the GRM included as a random effect is equivalent to including all PCs as covariates, each

with a normal prior24,25,26. In the PCA approach, including J PCs as fixed effects simply

eliminates some of the dimensions along which genotypes and phenotype can be spuriously

correlated. This can be thought of as modeling the genetic background in J dimensions

and/or as assuming that major environmental confounders are correlated with these top

axes of variation. This formulation demonstrates two limitations of PCA. First, it can result

in loss of power from completely eliminating entire dimensions and second, it is unable to

capture confounders, of either type, that align with lower PCs that were not included26. On

the other hand, effect sizes estimated using LMMs eliminate variation along all PCs but in

proportion to their eigenvalue. LMMs, therefore, have the benefit of modeling all axes of

variation but are constrained in the amount of variation that can be captured by each.

The role of LMMs in population structure control depends on one’s assumptions about

the distribution of confounders. If genetic confounding is the primary concern, it is easy

to conceptualize the LMM as modeling the genetic background, and LLMs are expected to

decrease stratification by removing this effect23,27,28,29. Simulation under this scenario (i.e,

with no environmental effects) confirms that LMMs that include the GRM as the sole con-

trol for population structure outperform an approach that uses only the PCs18. If one views

LMMs as controlling primarily for environmental confounding, then the assumption is that

environmental confounders have a distribution similar to the GRM30 and contribute in pro-

portion to their eigenvalue. It is unclear how plausible this assumption is in human datasets

and in simulations with strong environmental confounding PCA outperforms LMMs31. One

option, often done in practice, is to include top PCs as fixed effects alongside the GRM. This
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hybrid approach combines the ability of fixed effects to completely eliminate axes of variation

that we might expect to have strong confounding while also including some control along all

axes. Therefore, if both types of confounding are of significant concern, the primary innova-

tion of LMMs might be their ability to account for both large-scale population structure via

inclusion of PCs and smaller-scale structure via inclusion of the GWAS panel GRM. Overall,

the flexibility of LMMs, alongside recent algorithmic advances that have reduced the compu-

tational burden, has made LMMs the preferred approach for biobank-scale GWASs23,27,28,29

but there are still open questions surrounding the optimal parameterization in the face of

unknown confounders.

Finally, LD score regression has been an important development for both stratification

control in GWAS and tests for associations between ancestry gradients and effect size esti-

mates. LD score regression is designed to distinguish between polygenicity and confounding

in GWAS summary statistics32. The core idea is that for highly polygenic traits there should

be a positive relationship between an individual variant’s LD score (i.e, the sum of r2 val-

ues between the focal site and all other SNPs) and it’s squared marginal effect size, where

the slope of this relationship is proportional to the heritability of the trait. Confounding,

on the other hand, will inflate effect sizes regardless of LD score such that the intercept of

the regression is > 1. The intercept can then be used to re-scale the association statistics,

which can be seen as a form of genomic control that is not overly conservative when the

trait is in fact highly polygenic. However, re-scaling effect sizes is equivalent to moving the

genome-wide significance threshold, and does not remove ancestry-associated bias in effect

size estimates themselves, the key issue for polygenic scores.

In bivariate LD score regression, the products of effect sizes for two traits are regressed

on LD scores. The slope of this regression is proportional to the genetic correlation between

traits, while the intercept is still interpreted as capturing confounding33. Bivariate LD score

regression has been used to test for directional selection on complex traits by replacing one
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set of effect sizes with a set of site-level summary statistics that measure allele frequency

change or differentiation34,35. A significantly positive slope with minimal inflation of the

intercept is interpreted as evidence of selection acting on alleles associated with the trait.

However, previous work has raised concerns about spurious inflation of the LD score slope

due to background selection36. Overall, LD score regression is a very important tool in

complex trait genetics but it is not yet clear if it produces effects sizes or selection statistics

that are completely immune from stratification bias.

Alongside the development of statistical correction approaches, numerous bias avoidance

strategies have emerged with the proliferation of GWAS datasets. Here I cover three ap-

proaches: family-based association tests, homogeneous GWAS panels, and evolutionarily

diverged GWAS and prediction panels in the context of polygenic scores. The first class

of bias mitigation strategies is family-based association tests. One common study design

is within-sibship GWAS, where the difference between sibling phenotypes is regressed on

the difference in genotypes. Because full siblings share the same parents and are typically

raised in the same (or a very similar) environment, any systematic phenotypic differences

between sibling pairs will be due to the random transmission of parental alleles to each

sibling37. Therefore, effect size estimates from within-sibship GWASs should be immune

to population stratification38. It should be mentioned that effect sizes from within-sibship

GWASs are only guaranteed to be unbiased if the allele has the same average effect in a

heterozygous vs. a homozygous parent, an assumption that could be violated by gene-by-

environment interactions, gene-by-gene interactions, or LD pattern differences39. However,

this is separate from ancestry-based stratification that I am considering in this thesis and

family based association tests are considered the “gold standard” for protecting effect sizes

from stratification bias. Empirically, effect size estimates from within-sibship GWASs are

generally smaller and result in smaller heritability estimates40,41,42, suggesting that popula-

tion GWAS effects are partially capturing indirect effects, including stratification effects, on

6



the trait. While family-based association studies are a compelling way forward in regards to

eliminating ancestry-based bias in polygenic scores, current datasets are limited in terms of

sample size and diversity of phenotypes; therefore, limiting the type of questions that can

be answered using these data. The scale of current “unrelated” population GWAS datasets

is unmatched, hence ancestry-based bias is an important problem to solve if we are to take

full advantage of polygenic scores as a tool.

For population GWAS, a very common mitigation strategy is to select homogeneous sam-

ples, with respect to both ancestry and the environment. Focusing on GWAS panels with

comparatively little genetic diversity decreases the magnitude of potential spurious correla-

tions between genetic variants and phenotypes. Additionally, limiting sampling to narrow

geographic regions should similarly decrease variation in the distribution of environmen-

tal effects on the phenotype, though this is difficult to measure empirically. Many of the

largest available GWAS datasets (e.g UK Biobank43, Biobank Japan44, FinnGen45) consist

of individuals living in the same country and it is not uncommon for researchers to further

restrict their GWAS and polygenic score analyses to a subset of individuals with similar

ancestry43,29.

Large homogeneous GWAS panels combined with the use of PCs and/or LMMs is of-

ten considered the “silver standard” for controlling for population stratification in GWAS

and have been largely successful in minimizing the number of false positive single variant

associations46. However, effect size estimates can still exhibit slight residual stratification

biases that are not large enough to significantly alter the false discovery rates for individual

variants. These biases can be compounded when aggregating across loci in polygenic scores

leading to confounded predictions in which the ancestry-associated effects are mistaken for

genetic effects. A recent simulation study47 used both PCA and LMMs to correct for popu-

lation structure in the face of both broad and localized environmental confounders and found

that both methods resulted in slightly biased effect sizes that confounded polygenic scores

7



built in a separate panel drawn from the same demographic model. The confounding was

particularly acute for localized environmental confounders not easily captured by top PCs.

Empirically, polygenic scores exhibit geographic clustering even in relatively homogeneous

samples and after strict control for population stratification48,49,50,51 and display patterns

that are not robust to the choice of effect size estimates52,53, suggesting that residual ances-

try stratification may still be a problem.

This issue has been particularly apparent in the detection of directional selection acting

on complex traits. In some ways, polygenic scores are an ideal tool for this task, as studying

the distribution of scores among individuals who differ in ancestry allows us to aggregate the

small changes in allele frequencies induced by selection on a polygenic trait into a detectable

signal54,55,56,57. Several research groups have developed and applied methods to detect

these signals58,59,34,60,61,62,63,64. However, these efforts have been met with challenges,

as several papers reported signals of recent directional selection on height in Europe using

effects obtained from GWAS meta-analyses65,66,58,59,67,68,69,60,70,71,34; only for these signals

to weaken substantially or disappear entirely when re-evaluated using effects estimated in the

larger and more genetically homogeneous UK Biobank36,72,62,63. Further analysis suggested

that much of the original signal could be attributed to spurious correlations between effect

size estimates and patterns of allele frequency variation, presumably induced by uncorrected

ancestry stratification in the original GWAS36,72.

Recently, in the context of selection tests, Chen et al. (2020)73 proposed a strategy to

mitigate the impact of stratification by carefully choosing the GWAS panel so that even if

residual stratification biases in effect size estimates exist, they will be unlikely to confound

the test (see also Le et al. (2022)6 and Akbari et al. (2024)35 for examples of this approach).

They reasoned that because polygenic selection tests ask whether polygenic scores are as-

sociated with a particular axis of population structure in a given test panel, and because

the bias induced by stratification in effect sizes depends on patterns of population structure
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in the GWAS panel67, then one should be able to guard against bias in polygenic selection

tests by choosing GWAS and test panels where the patterns of population structure within

the two panels are not expected to overlap.

However, this approach comes at a cost of reduced power. Polygenic scores are generally

less accurate when the effect sizes used to compute them are ported to genetically divergent

samples74,75,76,77,78. Less accurate polygenic scores are then less able to capture the evolu-

tion of the mean polygenic score, all else equal77. These decays in polygenic score accuracy

also pose a significant challenge to their use in medicine, as scores that are predictive for

some and not for others may exacerbate health inequities79. Thus, realizing the potential of

polygenic scores in both basic science and medical applications will require the use of large

and genetically diverse GWAS panels and will necessitate a more precise understanding of

how ancestry overlap between panels influences stratification bias.

In this thesis, I investigate confounding in polygenic scores using theory, simulations, and

empirical analysis. In Chapter 2, we first model the covariance of genotypes between a GWAS

and test panel in terms of an underlying population genetic model, and give expressions for

the bias in the distribution of polygenic scores as a function of the underlying model. We

then show how bias in the association between polygenic scores and a specific axis of ancestry

variation in the test panel depends on the extent to which potential confounders in the GWAS

lie along a specific axis of ancestry variation in the GWAS panel. We show how including this

singular axis of ancestry as a covariate in the GWAS removes effect size bias, such that the

resulting polygenic scores are unbiased with respect to the target axis in the test panel. In

Chapter 3, we evaluate ways to control for confounding along this axis in practice, including

the standard PCA-based approach, as well as a new approach that uses test panel genotypes

to estimate the target axis directly. Using simulations and theory, we find that the utility of

each approach depends on a host of factors, including the number of independent SNPs used

to compute the correction, the number of samples in the GWAS panel, and the amount of
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variance in the GWAS panel explained by the target axis. Finally, building on our theoretical

and simulation results, we develop a hybrid approach for empirical applications that allows

researchers to use the direct approach to estimate how well protected any given polygenic

score association test is by different numbers of PCs. We apply our approach to 30 different

tests and 17 different phenotypes, including re-analyzing previously documented cases of

polygenic selection. In Chapter 4 I summarize the progress we have made in understanding

and controlling for stratification bias in polygenic score association tests and highlight future

research questions related to our work.

10



CHAPTER 2

A POPULATION GENETIC MODEL OF BIAS IN POLYGENIC

SCORES

2.1 Introduction

Since the first introduction of polygenic scores to the human genetics literature, Purcell

et al. (2009)2, ancestry-based confounding has been a concern. In that study, the authors

built polygenic scores for schizophrenia and state that “We eliminated several possible con-

founders, with emphasis on subtle population stratification. Defining score alleles in British

Isles samples and testing in target samples from Sweden, Portugal and Bulgaria, and vice

versa, we observed a similar pattern of results. It is unlikely that the same substructure is

overrepresented in the corresponding phenotype class when discovery and target samples are

from distinct populations”. This approach of using evolutionarily diverged GWAS and test

panels, which we discuss in depth in Chapter 1, operates under a model where confounding

due to population stratification is a function of the overlap in structure between panels.

The intuition behind this model is conceptually sound: if effect sizes become correlated

with ancestry in the GWAS panel (see Figure 1.1), either due to correlated environmental

effects or background genetic effects, then polygenic scores computed using those effect sizes

will also become spuriously correlated with the same ancestry gradient(s), if they exist, in

the prediction panel. In 2015, Robinson et al.67 wrote down a population genetic model for

stratification bias in effect size estimates. They consider a stratified GWAS sample where

individuals are drawn equally from two diverged subpopulations whose mean phenotypes

differ due to both an allele frequency difference at the causal focal site and a non-genetic

effect. The authors show that if the non-genetic effect is ignored, then the estimated effect

size is biased, and that the bias is a function of the FST between the two populations (see

Equation 2.3 in their supplement). Next, they show that if those uncorrected effect sizes

11



are used to build polygenic scores in individuals drawn from the same two subpopulations,

the scores will be biased in the direction of the non-genetic confounding effect in the GWAS

panel. The Robinson et al. (2015) model clarifies how bias is produced in terms of common

population quantities (e.g FST , heterozygosity, and allele frequency differences) for a simple

two-population split model.

The Robinson et al. model, while very useful, is a simplified toy model with only a single

axis of population structure in both the GWAS and test panels. The reality of human genetic

variation is far more complex, and often GWAS and prediction panels come from different

datasets, each with panel-specific and (potentially) shared structure. Additionally, there

is also a growing appreciation for the fact that discrete population models, while useful in

some applications, are not the most faithful representation of human genetic variation80,81.

Combining the above observations, it is difficult to determine how diverged panels have to

be to ensure that polygenic scores are immune to stratification. Overall, while the empirical

approach of using evolutionarily diverged panels surely does reduce the overlap in structure,

and therefore the potential for confounding, I believe that developing a more comprehensive

model that clarifies precisely how continuous shared structure between panels generates bias

in the distribution of polygenic scores is needed.

In this Chapter, we combine elements of both population and statistical genetic modeling

to investigate how bias in the distribution of polygenic scores is produced. Specifically, we

model the relatedness between individuals in the GWAS and test panels, and show how

confounding in the GWAS panel translates into biased polygenic score predictions in a way

that depends on the cross-panel relatedness. We then explore the procedure of testing for

an association between polygenic scores and axes of ancestry variation in the test panel. We

show that for any given test, there exists a single axis of ancestry variation in the GWAS

panel that must align with the confounders to produce a biased test. Building on this result,

we outline a set of conditions for guaranteeing an unbiased association test. Finally, we
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describe a new theoretical approach for meeting these conditions, and revisit the standard

PCA approach in light of our results.

2.2 Model

To model the distribution of genotypes in both panels, we assume that each individual’s

expected genotype at each site can be modeled as a linear combination of contributions from

a potentially large number of ancestral populations, which are themselves related via an

arbitrary demographic model. Natural selection, genetic drift, and random sampling each

independently contribute to the distribution of genotypes across panels, and we make the

approximation that these three effects can be combined linearly. In Section 2.8.1 we develop

the full population model, which we then extend to individuals. Here, we present just the

individual genotype model, along with our model of the phenotype.

2.2.1 Genotypes

We consider two samples of individuals, one to compose the GWAS panel and one to

compose the test panel. Individuals in each panel are created as mixtures of an arbitrary

number of K underlying populations, related via an arbitrary demographic model (see sup-

plement Section 2.8.1), where aℓ is the ancestral allele frequency at site ℓ. There are N test

panel individuals, and the vector of deviations of their genotypes from the mean genotype

in the ancestral population (2aℓ) is

Xℓ = Xℓ,D +Xℓ,S +Xℓ,B , (2.1)

where Xℓ,D and Xℓ,S are the deviations due to drift and natural selection, respectively. We

can think of the quantity 2aℓ+Xℓ,D +Xℓ,S as giving a set of expected genotypes, given the

evolutionary history of the populations from which the test panel individuals were sampled
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from, while Xℓ,B contains the binomial sampling deviations across individuals given these

expected genotypes.

Similarly, for the M GWAS panel individuals, the deviation of their genotypes can be

decomposed as

Gℓ = Gℓ,D +Gℓ,S +Gℓ,B , (2.2)

where Gℓ,D and Gℓ,S are the deviations due to drift and selection. Gℓ,B captures the binomial

sampling variance given the expected genotypes of the GWAS panel individuals.

Individuals in the two panels may draw ancestry from the same populations, or from

related populations, which induces the joint covariance structure

V ar

(Xℓ,D

Gℓ,D

) = 4aℓ (1− aℓ)F (2.3)

where the matrix

F =

FXX FXG

FGX FGG

 (2.4)

contains the within and between panel relatedness coefficients. Entries of F give the re-

latedness between pairs of individuals, given the underlying demographic model and the

fraction of ancestry each individual derives from each population. Thus, the entries of F are

directly related to the expected pairwise coalescent times between pairs of samples, given

the demographic model82.
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2.2.2 Phenotypes

We assume that individuals in the GWAS panel are phenotyped and that the trait includes

a contribution from S causal variants, which make additive genetic contributions, as well as

an independent environmental effect. The vector of mean-centered phenotypes for the M

individuals in the GWAS panel can then be written

y =
S∑
ℓ

βℓGℓ + e

= u+ e (2.5)

where u =
∑S

ℓ βℓGℓ is the combined genetic effect of all S causal variants, and e represents

the combination of all environmental effects.

We assume that the environmental effect on each individual is an independent Nor-

mally distributed random variable with variance σ2e , but that the expected environmental

effect can differ in some arbitrary but unknown way across individuals with no assump-

tions about the covariance structure. We write the distribution of environmental effects as

e ∼ MVN
(
c, σ2eI

)
, where c is the vector of expected environmental effects.

Similar to our decomposition in Equation 2.2, the genetic effect, u, can be broken down

into the contributions from drift, selection, and binomial sampling, such that u = uD+uS+

uB . Here uS =
∑S

ℓ βℓGℓ,S contains fixed effects reflecting the expected genetic contributions

to the phenotype, given history of selection acting on the phenotype, and given the ancestries

of the individuals in the GWAS panels (see supplement Section 2.8.1). Both uD and uB have

expectation zero, so E[u] = uS . The vector of individuals’ expected phenotypes, given their

ancestry and socio-environmental contexts, is therefore given by uS + c. We assume that

these are not known.
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2.3 The impact of stratification bias on polygenic scores

Now, given these modeling assumptions, we describe how the relationship between the

GWAS and test panels impacts the distribution of polygenic scores and the association

between the polygenic scores and a given axis of population structure, which is observed

only in the test panel. We first consider the case where no attempt is made to correct

for population structure. Motivated by these results, we then outline the conditions that

need to be met to ensure an unbiased association test. Finally, we explore two different

correction strategies, the standard PCA approach, and a novel approach that uses the test

panel genotypes.

We consider a vector of mean-centered polygenic scores, computed in the test panel. If

the causal effects (βℓ) were known, then the polygenic scores would be given by

Z =
S∑
ℓ

βℓXℓ. (2.6)

Of course, the causal effects are not known, and must be estimated in the GWAS panel.

Conditional on the genetic and environmental effects on the phenotypes of the individuals

in the GWAS panel (i.e. u and e), and genotypes at the focal site (Gℓ), the marginal effect

size estimate for site ℓ is given by

β̂ℓ | Gℓ, u, e =
y⊤Gℓ

G⊤
ℓ Gℓ

= βℓ +
u⊤−ℓGℓ

G⊤
ℓ Gℓ

+
e⊤Gℓ

G⊤
ℓ Gℓ

(2.7)

where we have decomposed the genetic effect into the causal contribution from the focal

site and the contribution from the background, i.e. u = βℓGℓ + u−ℓ. This allows us to

further decompose the marginal association in Equation 2.7 into the causal effect (βℓ), the

association between the focal site and the background genetic contribution from all other
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sites (u⊤−ℓGℓ/G⊤
ℓ Gℓ), and the association with the environment (e⊤Gℓ/G⊤

ℓ Gℓ).

The deviation of an allele’s estimated effect size from its expectation depends in part

on Gℓ,D, the component of variation in the GWAS panel genotypes due to genetic drift.

Because Gℓ,D can be correlated with Xℓ,D (deviations due to drift in test panel genotypes)

due to shared ancestry, the estimated effect sizes can become correlated with the pattern

of genotypic variation in the test panel for reasons that have nothing to do with the actual

genetic effect of the variant. This leads to a bias in the polygenic scores,

E
[
Ẑ − Z

]⊤
= E

 S∑
ℓ=1

u⊤Gℓ

G⊤
ℓ Gℓ

X⊤
ℓ +

S∑
ℓ=1

e⊤Gℓ

G⊤
ℓ Gℓ

X⊤
ℓ

 (2.8)

≈ S

M

(
µ⊤S + c⊤

)
F̃GX , (2.9)

(see Section 2.8.3) where µS is the vector of expected genetic backgrounds, c is the vector

of expected environmental effects, and

F̃GX = E

[
Gℓ,DX⊤

ℓ,D

(Gℓ,D+Gℓ,B)⊤(Gℓ,D+Gℓ,B)/M

]

≈ FGX

1 + FG
. (2.10)

Here FG = 1
M

∑M
m=1 Fmm is the average level of self relatedness in the GWAS panel and

F̃GX is the expected cross-panel genetic relatedness matrix computed on standardized geno-

types, which is approximately equal to FGX

(1+FG)
if FG is small.

If the GWAS and test panels do not overlap in population structure, then F̃XG = 0, and

the polygenic scores are unbiased with respect to ancestry (i.e. E
[
Ẑ − Z

]
= 0), independent

of the confounders, µS and c2,73,6. Stratification may still bias individual effects, but these

residual biases are indistinguishable from noise from the perspective of the polygenic scores,

as they are uncorrelated with all axes of population structure present in the test panel.
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2.4 Bias in polygenic scores leads to biased polygenic score

associations

We want to test the hypothesis that the polygenic scores are associated with some test

vector, T . We assume that T is measured only in the test panel, and might represent an

eco-geographic variable of interest (e.g latitude59 or an encoding of whether one lives in a

particular geographic region or not49,83, the fraction of an individual’s genome assigned to a

particular “ancestry group” 58,60, or one of the top genetic principal components of the test

panel genotype matrix61).

To test for association of polygenic scores with the test vector, we take our test statistic

the as slope of the regression of the polygenic scores against the test vector, which we denote

q. Assuming T is standardized, this slope is given by

q =
1

N
Z⊤T. (2.11)

A more powerful test is available by modeling the neutral correlation structure among indi-

viduals due to relatedness (see Section 2.8.7), but the simpler i.i.d. model presented here is

sufficient for our purposes. Under the null model where selection has not perturbed allele

frequencies in the test panel, E[q] = 0, reflecting the fact that genetic drift is directionless.

In practice, an estimate of q is obtained using the polygenic scores computed from esti-

mated effect sizes, i.e. q̂ = 1
N Ẑ⊤T . The bias in the polygenic score association test statistic

(q̂) then follows straightforwardly from the bias in the polygenic scores,

E [q̂ − q] = E
[
Ẑ − Z

]⊤
T

≈ S

NM

(
µ⊤S + c⊤

)
F̃GXT. (2.12)

Therefore, we expect the polygenic score association test to be biased when the test vector (T )
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aligns with the vector of expected phenotypes (µS + c) in a space defined by the cross panel

genetic similarity matrix (F̃XG). The conditions for an unbiased polygenic score association

test are therefore narrower than the conditions needed to ensure unbiased polygenic scores

in general. Rather than requiring that F̃XG = 0, we need only to ensure that a certain

linear combination of the entries of F̃XG are equal to zero, i.e. that F̃GXT = 0.

We can gain further intuition by expressing the association statistic, q, in a different way.

Specifically, we can reframe this test as a statement about the association between the effect

sizes and a set of genotype contrasts, rℓ = 1
NX⊤

ℓ T , which measure the association between

the test vector and the genotypes at each site59. Writing β and r for the vectors of effect

sizes and genotype contrasts across loci, the association test statistic can be rewritten as

q = β⊤r. (2.13)

This allows us to rewrite the bias in the estimator, q̂, as

E [q̂ − q] =
S

M
E
[(

β̂⊤ − β⊤
)
r
]

≈ S

M

(
µ⊤S + c⊤

)
F̃Gr (2.14)

where

F̃Gr = E

[
Gℓ,Dr⊤ℓ,D

(Gℓ,D+Gℓ,B)⊤(Gℓ,D+Gℓ,B)/M

]
(2.15)

= F̃GXT.

Here Equation 2.14 expresses the bias entirely in terms of vectors that belong to the GWAS

panel: for each GWAS panel individual m, F̃Gr,m measures the covariance between individual

m’s genotype and the genotype contrasts of the test, standardized at each site by the variance

of genotypes across individuals in the GWAS panel (Equation 2.15). Thus, q̂ is biased when
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the vector of expected phenotypes (µS+c) aligns with this vector of standardized covariances

(F̃Gr). Confounders that are orthogonal to this axis do not generate bias in the association

test, even if they bias the polygenic scores along other axes.

2.5 Controlling for stratification bias in polygenic association tests

Given the above results, how can we ensure that patterns we observe in the distribution of

polygenic scores are not the result of stratification bias? As discussed above, a conservative

solution is to prevent bias by choosing a GWAS panel that does not have any overlap in

population structure with the test panel, but this is not ideal due to the well-documented

portability issues that plague polygenic scores74,84,78, and because it limits which GWAS

datasets can be used to test a given hypothesis. Another obvious solution is to include the

vectors of expected genetic and environmental effects, uS and c, respectively, as covariates in

the GWAS. Doing so would remove all ancestry associated bias from the estimated effects,

and thus ensure that any polygenic score association test carried out using these effects

would be unbiased. However, uS and c are typically not measurable, so this is generally not

an option. Alternatively, our analysis above suggests that including F̃Gr as a covariate in

the GWAS model is a sufficient condition for an unbiased test regardless of the pattern of

confounding that exists in the GWAS panel.

2.5.1 Including F̃Gr removes stratification bias

If we include F̃Gr as a single fixed-effect covariate in the GWAS model, variation along

F̃Gr can no longer be used to estimate effect sizes. As a result, β̂ is uncorrelated with

genotype contrasts r under the null. If there is confounding along other shared axes of

ancestry variation, the polygenic scores may still be biased along other axes, as

E
[
Ẑ − Z

]⊤
≈ S

M

(
µ⊤S + c⊤

)
F̃
⊥F̃Gr
GX (2.16)
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where

F̃
⊥F̃Gr
GX ≈ PF̃GX (2.17)

and P =

(
I− 1

∥F̃Gr∥
F̃GrF̃

⊤
Gr

)
. F̃

⊥F̃Gr
GX therefore captures cross panel relatedness along all

axes of variation other than that specified by F̃Gr. Controlling for variation aligned with

F̃Gr ensures that F̃
⊥F̃Gr
GX T = 0, and it follows that

E [q̂ − q] ≈ S

NM

(
µ⊤S + c⊤

)
F̃
⊥F̃Gr
GX T

≈ 0 (2.18)

and thus the polygenic score association test is unbiased (see Sections 2.8.5 and 2.8.6).

2.5.2 Relationship between F̃Gr and PCA

A standard approach to controlling for population stratification in polygenic scores is to

include the top J principal components of the GWAS panel genotype matrix as covariates

in the GWAS for some suitably large value of J 10. In our model, how does this approach

relate to including F̃Gr as a covariate in the GWAS?

As outlined in Section 2.2.1, FGG contains the expected within panel relatedness for the

individuals in the GWAS panel, the structure of which is determined by the demographic

model. If we could take the eigendecomposition of FGG directly, the resulting PCs are

what we refer to as “population” PCs. The number of population PCs that correspond

to structure is entirely dependent on the population model. For example, below (Section

3.3.1), we simulate under a 4 population sequential split model (Figure 3.1), in which case

there are three population PCs that reflect real underlying structure. Later (Section 3.3.2)

we simulate under a symmetric equilibrium migration model on a six-by-six lattice grid

(Figure 3.3), in which case there are 35 population PCs reflecting the underlying population
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structure. Including these population PCs as covariates in the GWAS would be sufficient to

remove all ancestry-associated bias in effect size estimates and render the resulting polygenic

scores uncorrelated with any axis of ancestry variation under the null hypothesis.

To see how the PCA correction approach works in the context of our theory, we can write

F̃Gr as a linear combination of GWAS panel population PCs,

F̃Gr =
∑
i

ηiUi (2.19)

where Ui is the ith PC of FGG and the weights are given by ηi = Cov(Ui, F̃Gr). Estimating

the marginal associations with F̃Gr as a covariate can, therefore, be understood as fitting a

model in which all population PCs are included as covariates, but the relative magnitude of

the contributions from different PCs is fixed, and we estimate only a single slope that scales

the contributions from all the PCs jointly, i.e.,

y = Gℓβℓ +

(∑
i

ηiUi

)
ω + e. (2.20)

As a corollary, if we perform a polygenic score association test using GWAS effect size

estimates in which the top J population PCs of FGG are included as covariates, a sufficient

condition for the included PCs to protect against bias from unmeasured confounders in a

particular polygenic score association test is that F̃Gr is captured by those J top PCs, i.e.

that ηi ≈ 0 for i > J .

A second interpretation of the PC correction approach is that it operates on a hypothesis

that the major axes of confounding in a given GWAS panel (i.e., µS and c in our notation)

can be captured by the included PCs30. If this condition is met, effect size estimates will be

unbiased with respect to all axes of ancestry variation, whether they exist within a given test

panel or not, and therefore any polygenic score association test that uses these effect size

estimates will be unbiased with respect to ancestry as well. Combining this interpretation
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with the results from above, population PCs should successfully eliminate bias in polygenic

score association tests if the J PCs included in the GWAS either capture the confounding

effects on the phenotype, eliminating all effect size bias, or if they capture F̃Gr, ensuring

that effect size bias relevant to the test is removed.

2.6 Conclusion

Ancestry stratification in polygenic scores has been recognized as a potential implemen-

tation problem since their inception to the human genetics literature2. Intuitively, stratifica-

tion bias in polygenic scores should depend on the overlap in population structure between

the GWAS and prediction panels. However, to the best of our knowledge, no existing model

has jointly analyzed the GWAS and polygenic score procedures in a comprehensive way that

reflects the complex and continuous nature of human genetic variation. In this Chapter, we

developed this model and showed that the bias in an individual polygenic score is propor-

tional to the dot product of the vector of expected confounders and the kinship coefficients

between the test panel individual and every individual in the GWAS panel. This expression

(Equation 2.9) illustrates how bias in polygenic scores is generated and provides insight into

paths that minimize potential biases.

It is worth noting some of the assumptions we make throughout this Chapter. First, I

have emphasized the need for models that do not rely on discrete, panmictic populations.

However, our full model (see Section 2.8.1) does model an individual’s ancestry as a mixture

of K ancestral populations that are themselves related via an arbitrary demographic model.

Under our model, it is clear that the expected covariance between pairs of individuals, Fij ,

depends on how similar their ancestry proportions are. We chose to include this underlying

population model because it provides a concrete and familiar interpretation of F. However,

none of our key results about the distribution of polygenic scores (see Equation 2.9) or

the bias in the association test statistics (see Equation 2.12) rely on the assumption that
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there is an underlying population model. Rather, they follow from the assumption that

the covariance structure of the drift component of the genotypes is proportional to F. If

the expected covariance matrix is known, or can be written down for a different type of

generative models (e.g., a model in which individuals in the sample are related via a known

pedigree, or a continuous model in which the expected covariance is a function of the spatial

separation among individuals), all our results follow from there, and assumptions about

discrete populations are not needed.

Our choice to model individual genotypes as mixtures of underlying populations is related

to our decision to explicitly model the genotypes as a linear combination of the contributions

of selection, drift, and binomial sampling. Specifically, we chose to frame our polygenic as-

sociation test as testing for a perturbation of test panel genotypes that aligns with the test

vector, where the perturbation is due to a selection event that occurred in an ancestral popu-

lation. Again, we make this choice because models of selection acting on a polygenic trait are

well-studied59,54,55,85,86, we were able to define a clear null and alternative hypothesis, and

we have expertise in polygenic adaptation tests. However, our key results still apply when

perturbations in the polygenic scores are due to other non-neutral processes (e.g, phenotype

biased migration, assortative mating on ancestry, phenotype dependent ascertainment). In

practice, q̂ is usually compared to an empirical null constructed by breaking the relation-

ship between effect sizes and genotypes, either by resampling frequency-matched SNPs or

randomly flipping the sign of the effect sizes59,87,6,35. Thus, these types of polygenic score

association tests, as presented here, are unable to distinguish between causal mechanisms

causing perturbations in real data anyway.

In terms of controlling for bias, the results of the theoretical work in this Chapter il-

luminate several paths to mitigating the impact of confounding. I began this Chapter by

drawing attention to the fact that concern about confounding in polygenic scores, and the

strategy of using diverged panels as a way to diminish its effects, is common in the polygenic
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score literature. Our work suggests that F̃GX = 0 is the condition that needs to be met

in order to ensure unbiased polygenic scores. For polygenic score association tests, only a

single axis of variation in the GWAS panel, F̃Gr, needs to be controlled for to eliminate bias

in q̂. In Section 2.5.1, we used properties of multiple regression to show that including F̃Gr

itself as a covariate in the GWAS model removes any confounders along this axis directly.

Additionally, in Section 2.5.2, we outline the conditions that need to be met for J population

PCs to remove any bias in q̂.

In the realm of theoretical models, it is not too difficult to come up with demographic

scenarios where there is no overlap in structure between GWAS and prediction panels, making

F̃GX = 0. Any tree-based model where individuals from each panel don’t share any internal

branch length would satisfy this condition (see Figure 3.1C for an example). Similarly, in

cases of overlapping population structure, controlling for F̃Gr via population PCs would

amount to including the correct linear combination of population PCs that records structure

along shared branches relevant to the test (PC 1 in Figure 3.1A is an example of this).

However, F̃GX , F̃Gr, and population PCs are theoretical quantities. In reality, we have to

take the insights gained from our model and figure out how to correct for bias in practice when

we must rely on estimating quantities of interest. The reason I make a distinction between

“population” PCs, which come from taking the eigen decomposition of FGG directly, and

“sample” PCs which, come from taking the eigen decomposition of the observed genotypic

covariance matrix, is that the success of PCA, as an approach to capturing F̃Gr, will depend

on the accuracy of sample PCs as estimators of the population PCs. In the next Chapter,

we explore the factors that affect the accuracy of sample PCs, develop an approach that uses

test panel genotypes to estimate F̃Gr directly, and propose a test for independence between

an ancestry gradient in the test panel and structure in the GWAS panel. The theoretical

results from this Chapter were vital for my work in the next Chapter and helped to highlight

both the challenges and opportunities in developing tests for differences in polygenic scores
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in the presence of confounding.
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2.8 Extended model and results

2.8.1 Full Model

To model the distribution of genotypes in both panels, we assume that each individual’s

expected genotype at each site can be modelled as a linear combination of contributions

from a potentially large number of ancestral populations, which are themselves related via

an arbitrary demographic model. Natural selection, genetic drift, and random sampling each

independently contribute to the distribution of genotypes across panels, and we make the

approximation that these three effects can be combined linearly. We begin by first developing

the population level model, before extending it to individuals.

Population model

We assume that for each site ℓ, the vector of allele frequencies across K populations can

be decomposed as

pℓ = aℓ +∆pℓ,D +∆pℓ,S (2.21)
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where aℓ is the allele frequency in the original ancestral population, while the deviations

∆pℓ,D and ∆pℓ,S capture variation in allele frequency across populations due to genetic

drift and natural selection respectively. We approximate the effect of drift via a multivari-

ate Normal model, such that ∆pℓ,D ∼ MVN
(
0, aℓ (1− aℓ)Fpop

)
, where Fpop describes the

covariance structure imposed by the population model88,89,90,91. Selection induces an addi-

tional deviation of ∆pℓ,S = ηβℓaℓ (1− aℓ)Apop, where βℓ is site ℓ’s effect (in standardized

units) on the phenotype of interest, η is the strength of selection on that phenotype, and

Apop is a vector recording the extent to which each population inherits from the ancestral

population in which selection occurred. Under the null, η = 0. Under the alternative,

η ∼ N
(
0, σ2η

)
, so that

∆pℓ,D +∆pℓ,S ∼ MVN
(
0, aℓ (1− aℓ)

(
Fpop + σ2ηβ

2
ℓ aℓ (1− aℓ)ApopA

⊤
pop

))
(2.22)

where ApopA
⊤
pop is a rank one matrix accounting for the impact of selection on the joint

distribution of allele frequencies. We assume the trait is sufficiently polygenic and/or that

selection is sufficiently weak that

β2ℓ aℓ (1− aℓ) ≪
1

σ2η
for all ℓ, (2.23)

so that for any individual variant, the effects of drift dominate over those of selection (i.e.

∆pℓ,D >> ∆pℓ,S for all ℓ). This condition is met, for example, if there are at least hundreds

of loci and σ2η is on the order of one.

Sampling individuals for GWAS and test panels

Next, we consider taking two samples, one to compose the test panel and one to com-

pose the GWAS panel. Individuals in each panel are created as mixtures of the underlying

populations. There are N test panel individuals and the deviation of their genotypes from
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the expected genotype in the ancestral population (2aℓ) is

Xℓ = Xℓ,D +Xℓ,S +Xℓ,B , (2.24)

where Xℓ,D = 2WX∆pℓ,D, Xℓ,S = 2WX∆pℓ,S . The matrix WX has dimensions N ×K,

with rows specifying the fraction of ancestry that each of the N test panel individuals inherit

from each of the K populations.

We can think of the quantity 2aℓ + Xℓ,D + Xℓ,S as giving a set of expected genotypes

given the evolutionary history of the population, while Xℓ,B contains the binomial sampling

deviations across individuals given these expected genotypes.

Similarly, for the M GWAS panel individuals, the deviation of their genotypes can be

decomposed as

Gℓ = Gℓ,D +Gℓ,S +Gℓ,B , (2.25)

where Gℓ,D = 2WG∆pℓ,D, Gℓ,S = 2WG∆pℓ,S , WG is an M × K matrix with rows spec-

ifying the amount of ancestry that each GWAS panel individual inherits from each of the

K populations and Gℓ,B captures the binomial sampling variance given the expected geno-

types of the GWAS panel individuals (similar to above, 2aℓ +Gℓ,D +Gℓ,S specifies this set

of individual specific expected genotypes).

Individual level model

Individuals in the two panels can draw ancestry from the same populations, or from

related populations, which induces the joint covariance structure

V ar

(Xℓ,D

Gℓ,D

) = 4aℓ (1− aℓ)F (2.26)
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where the matrix

F =

FXX FXG

FGX FGG

 (2.27)

contains the within and between panel relatedness coefficients. These are in turn related to

the population level covariance matrix as FXX = WXFpopW
⊤
X , FGG = WGFpopW

⊤
G , and

FGX = F⊤
XG = WGFpopW

⊤
X .

Similarly, the genotypic deviations due to selection can be written at the individual level

as Xℓ,S = 2ηβℓaℓ (1− aℓ)AX and Gℓ,S = 2ηβℓaℓ (1− aℓ)AG, where AX = WXApop and

AG = WGApop describe the extent to which individuals in each of the panels inherit from

the selection event.

The joint covariance structure of the individual genotypes is therefore

V ar

(Xℓ

Gℓ

) = 4aℓ (1− aℓ)
(
F+ σ2ηβ

2
ℓ aℓ (1− aℓ)A+Bℓ

)
(2.28)

where

A =

AXA⊤
X AXA⊤

G

AGA
⊤
X AGA

⊤
G

 (2.29)

and Bℓ is a diagonal matrix with entries accounting for overdispersion of the binomial sam-

pling step due to evolutionary variation of the underlying allele frequencies (i.e., from drift

and selection). The exact details of this matrix are not important other than that it is

diagonal; i.e., it does not contribute to covariance among individuals.
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Phenotypes

As in Section 2.2.2, we assume that the vector of mean-centered phenotypes for the M

individuals in the GWAS panel can be written as

y =
S∑
ℓ

βℓGℓ + e

= u+ e (2.30)

where u =
∑S

ℓ βℓGℓ is the combined genetic effect of all S causal variants, and e represents

the combination of all environmental effects. The distribution of environmental effects is

e ∼ MVN
(
c, σ2eI

)
, where c is the vector of expected environmental effects. We consider c

to be fixed (as opposed to random).

The genetic effect, u, can be broken down into the contributions from drift, selection,

and sampling. In this case, uS =
∑S

ℓ βℓGℓ,S is the vector of expected values of the genetic

contributions to the phenotype, given the ancestries of the individuals in the GWAS panels.

Both uD and uB have expectation zero and uD has a correlation structure determined by

relatedness matrix FGG (i.e uD ∼ MVN(0, 2VAFGG)), where VA = 2
∑S

ℓ β2ℓ aℓ (1− aℓ)

is the additive genetic variance in the original ancestral population. The full covariance

structure of u is therefore

V ar(u) = 2VAF+ σ2η

(
V 2
A + C2

A

)
A+ 2VABu (2.31)

where CA = σ2η
∑

ℓ̸=ℓ′ β
2
ℓ β

2
ℓ′aℓ (1− aℓ) aℓ′ (1− aℓ′)AGA

⊤
G and Bu =

∑
ℓBℓ

We are ultimately interested in the behavior of polygenic scores given that some strat-

ification effect exists in the phenotype. To this end, from here forward we will generally

condition on the strength of selection on the phenotype, η, treating it as a fixed effect along-
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side c. Doing so gives us the condition expectations and covariance structures:

E [y | η, c] = uS + c (2.32)

and

V ar (y | η, c) = 2VA (F+Bu) + σ2eI. (2.33)

Polygenic scores

We consider a vector of mean centered polygenic scores, computed in the test panel. If

the causal effects were known, then the contribution of the S causal sites included in the

polygenic score would be

Z =
S∑
ℓ

βℓXℓ. (2.34)

We continue now to condition on the effects of selection. Doing so, Z is a vector of random

variables with the randomness coming from Xℓ,D +Xℓ,B , neutral variation in the test panel

genotypes due to drift and binomial sampling, respectively. Therefore, the vector of expected

polygenic scores for the N individuals in the test panel is

E [Z | η] =
S∑
ℓ

βℓE [Xℓ | η]

=
S∑
ℓ

βℓXℓ,S

= ηVAAX .

(2.35)

Here the expected polygenic scores depend on the strength of selection on the phenotype,

the ancestral additive genetic variance, and the extent to which each individual in the test
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panel inherits from the selection event.

Polygenic score association tests

We want to test the hypothesis that the polygenic scores are associated with some test

vector, T , more than is expected due to drift alone. We do not necessarily assume that T is

equal to AX , the axis along which selection has actually perturbed the polygenic scores.

To test for association of polygenic scores with the test vector, we consider the linear

model

Z = qT + ε (2.36)

where ε is i.i.d. Normal across individuals. A more powerful test is available by modeling

the correlation structure among individuals, but the simpler i.i.d. model is sufficient for our

purposes (see Section 2.8.7). We assume that the test vector, T , is scaled to have a variance

of one, so the slope is given by

q =
1

N
Z⊤T, (2.37)

and its conditional expectation by,

E [q | η] = 1

N
E [Z | η]⊤ T

=
1

N
ηVAA

⊤
XT

(2.38)

Under the null model, η = 0, so E[q] = 0, reflecting the fact that genetic drift is directionless

(though we may also have E [q] = 0 if the test vector is not aligned with the axis along

which selection has perturbed the polygenic scores, i.e., if A⊤
XT = 0). We compare this null

hypothesis to an alternative in which η ̸= 0 (assuming also that A⊤
XT ̸= 0), reflecting the
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possibility that the polygenic score may have either a positive or negative association with

the test vector. We refer to this as a “polygenic score association test”.

We also re-frame this test as a statement about the association between the effect sizes

and a set of genotype contrasts, rℓ = 1
NX⊤

ℓ T , which measure the association between the

test vector and the genotypes at each site59. Similar to the decomposition of the test panel

genotypes above, we can decompose the genotype contrasts as

rℓ = rℓ,D + rℓ,S + rℓ,B , (2.39)

which capture contributions from drift, selection, and sampling, respectively. Writing β and

r for the vectors of effect sizes and genotype contrasts across loci, we can write the test

statistic as

q = β⊤r. (2.40)

2.8.2 Expectation of marginal effects

Conditional on the GWAS panel genotypes and the genetic and environmental compo-

nents of the phenotype, the marginal association at site ℓ is given by

β̂ℓ | Gℓ, u, e =
y⊤Gℓ

G⊤
ℓ Gℓ

(2.41)

= βℓ +
u⊤−ℓGℓ

G⊤
ℓ Gℓ

+
e⊤Gℓ

G⊤
ℓ Gℓ

(2.42)

(Equation 2.7). Now, taking the expectation over the randomness due to drift and sampling

in the GWAS panel genotypes and the total genetic effect, and over the random component
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of the environmental effect on the phenotype, the expected effect size estimate at site ℓ is

E
[
β̂ℓ | η, c

]
= βℓ + E

[
u⊤−ℓGℓ

G⊤
ℓ Gℓ

| η

]
+ E

[
e⊤Gℓ

G⊤
ℓ Gℓ

| c

]
(2.43)

= βℓ + E
[
u⊤−ℓ | η

]
E

[
Gℓ

G⊤
ℓ Gℓ

| η

]
+ E

[
e⊤ | c

]
E

[
Gℓ

G⊤
ℓ Gℓ

| η

]
(2.44)

= βℓ + u⊤S,−ℓE

[
Gℓ

G⊤
ℓ Gℓ

| η

]
+ c⊤E

[
Gℓ

G⊤
ℓ Gℓ

| η

]
(2.45)

≈ βℓ + u⊤S,−ℓ
E [Gℓ | η]

E
[
G⊤
ℓ Gℓ | η

] + c⊤
E [Gℓ | η]

E
[
G⊤
ℓ Gℓ | η

] (2.46)

≈ βℓ + u⊤S,−ℓ

Gℓ,S

4aℓ(1− aℓ)(1 + FG)
+ c⊤

Gℓ,S

4aℓ(1− aℓ)(1 + FG)
(2.47)

≈ βℓ + ηA⊤
GVA,−ℓ

ηβℓAG

2(1 + FG)
+ c⊤

ηAG

2(1 + FG)
(2.48)

≈ βℓ +
η2βℓVA,−ℓ

2(1 + FG)
+

ηc⊤AG

2(1 + FG)
(2.49)

≈ βℓ

(
1 +

1

2

η2VA,−ℓ

1 + FG

)
+

1

2

ηc⊤AG

1 + FG
(2.50)

where 1+FG = 1+ 1
M

∑M
m=1 fmm is the average level of self relatedness in the GWAS panel.

The approximation at line 2.46 comes from approximating the expectation of the ratio as

the ratio of expectations. There is an additional approximation in line 2.47 that comes from

assuming that E
[
G⊤
ℓ Gℓ | η

]
= 4aℓ(1− aℓ)(1+ η2β2ℓ aℓ(1− aℓ)+FG) ≈ 4aℓ(1− aℓ)(1+FG),

consistent with our assumption that the effects of selection are small at the level of individual

loci, relative to the effects of drift and sampling.

Therefore, consistent with results from67, the expected marginal effect estimate for a

given site is expected to be equal to the causal effect if the null holds (i.e. if η = 0).

In contrast, under our alternative model, the focal site and the genetic background have

a positive empirical covariance as they are both influenced by selection. As a result, the

expected marginal effect is biased away from zero (i.e., further in the direction of the causal
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effect), and may be biased in either direction depending on whether the environmental

confounder is positively or negatively associated with the axis along which selection has

perturbed the focal allele. For the following analyses concerning bias in the distribution of

polygenic scores and in polygenic score association tests (see Section 2.8.3 and 2.8.4) we

assume that the above biases in marginal effect estimates induced by selection are small

relative to those induced by shared drift between the GWAS and test panels92,54,86,93,59.

2.8.3 The expected polygenic scores

Given the marginal effect estimates, the vector of N polygenic scores in the test panel is

given by,

Ẑ⊤ | G,X, u, e =
S∑

ℓ=1

β̂ℓX
⊤
ℓ (2.51)

=
S∑

ℓ=1

βℓXℓ +
S∑

ℓ=1

u⊤−ℓGℓ

G⊤
ℓ Gℓ

X⊤
ℓ +

e⊤Gℓ

G⊤
ℓ Gℓ

X⊤
ℓ . (2.52)

We are interested in the expected polygenic scores in settings where both genetic and envi-

ronmental confounders exist. We can write this expectation as

E
[
Ẑ⊤ | η, c

]
=

S∑
ℓ=1

E [βℓXℓ | η] +
S∑

ℓ=1

E

[
u⊤−ℓGℓ

G⊤
ℓ Gℓ

X⊤
ℓ | η

]
+

S∑
ℓ=1

E

[
e⊤Gℓ

G⊤
ℓ Gℓ

X⊤
ℓ | η, c

]
.

(2.53)

The first sum is the expected “true” polygenic scores given the non-neutral effects on the test

panel genotypes (
S∑

ℓ=1
E [βℓXℓ | η] =

S∑
ℓ=1

βℓXℓ,S = E[Z]⊤ = ηVAAX) while the second sum

captures contributions to the polygenic scores due to associations between the genotypes

at individual focal sites and the genetic component of the phenotype from all other sites

(u−ℓ =
∑

ℓ′ ̸=ℓ βℓ′Gℓ′). The third captures contributions due to associations between the

genotypes and the environmental component. We consider each of the second two in turn,
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beginning with the environment, which is more straightforward.

For each site ℓ, we can write

E

[
e⊤Gℓ

G⊤
ℓ Gℓ

X⊤
ℓ | η, c

]
≈ E

[
e⊤Gℓ,D

(Gℓ,D +Gℓ,B)
⊤(Gℓ,D +Gℓ,B)

X⊤
ℓ,D | c

]
(2.54)

≈ E
[
e⊤ | c

]
E

[
Gℓ,DX⊤

ℓ,D

(Gℓ,D +Gℓ,B)
⊤(Gℓ,D +Gℓ,B)

]
(2.55)

≈ c⊤

M
E

[
GℓX

⊤
ℓ

(Gℓ,D+Gℓ,B)⊤(Gℓ,D+Gℓ,B)/M

]
(2.56)

≈ c⊤

M
E

[
Gℓ,DX⊤

ℓ,D

(Gℓ,D+Gℓ,B)⊤(Gℓ,D+Gℓ,B)/M

]
=

1

M
c⊤F̃GX (2.57)

≈ c⊤

M

E
[
Gℓ,DX⊤

ℓ,D

]
E
[
(Gℓ,D+Gℓ,B)⊤(Gℓ,D+Gℓ,B)/M

] = 1

M

c⊤FGX(
1 + FG

) . (2.58)

The approximation in line 2.54 arises from assuming that Gℓ,S and Xℓ,S are small compared

to Gℓ,D and Xℓ,D, and can therefore be ignored (see 2.8.2). Alternately, 2.54 is exact under

the null that η = 0. In line 2.58, we make a ratio of expectations approximation. F̃GX is

the expected kinship matrix computed on standardized genotypes, which is approximately

equal to FGX

(1+FG)
, with the approximation being better if FG is small. Summing across sites,

we have

S∑
ℓ=1

E

[
e⊤Gℓ

G⊤
ℓ Gℓ

X⊤
ℓ | η, c

]
≈ S

M
c⊤F̃GX . (2.59)

where S is the number of causal sites.

For the contributions to the polygenic score arising from associations between genotypes
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and the genetic component of the phenotype, we have

E

[
u⊤−ℓGℓ

G⊤
ℓ Gℓ

X⊤
ℓ | η

]
≈ E

[
u⊤−ℓGℓ,D

(Gℓ,D +Gℓ,B)
⊤(Gℓ,D +Gℓ,B)

X⊤
ℓ,D | η

]
(2.60)

≈ E
[
u⊤−ℓ | η

]
E

[
Gℓ,DX⊤

ℓ,D

(Gℓ,D +Gℓ,B)
⊤(Gℓ,D +Gℓ,B)

]
(2.61)

≈
u⊤S,−ℓ

M
E

[
Gℓ,DX⊤

ℓ,D

(Gℓ,D+Gℓ,B)⊤(Gℓ,D+Gℓ,B)/M

]
(2.62)

≈
u⊤S,−ℓ

M
E

[
Gℓ,DX⊤

ℓ,D

(Gℓ,D+Gℓ,B)⊤(Gℓ,D+Gℓ,B)/M

]
=

1

M
u⊤S,−ℓF̃GX (2.63)

≈
u⊤S,−ℓ

M

E
[
Gℓ,DX⊤

ℓ,D

]
E
[
(Gℓ,D+Gℓ,B)⊤(Gℓ,D+Gℓ,B)/M

] = 1

M

u⊤S,−ℓFGX(
1 + FG

) , (2.64)

where uS,−ℓ =
∑

ℓ′ ̸=ℓ βℓ′GS,ℓ′ = uS − βℓGℓ,S . All sites in our model are unlinked, allowing

us to treat u−ℓ as independent from Gℓ.

Summing across sites, we have

S∑
ℓ=1

E

[
u⊤−ℓGℓ

G⊤
ℓ Gℓ

X⊤
ℓ

]
≈ 1

M

S∑
ℓ=1

u⊤S,−ℓF̃GX (2.65)

≈ 1

M

S∑
ℓ=1

(
u⊤S − βℓG

⊤
ℓ,S

)
F̃GX (2.66)

≈ 1

M

(
Su⊤S − u⊤S

)
F̃GX (2.67)

≈ S − 1

M
u⊤S F̃GX (2.68)

≈ S

M
u⊤S F̃GX . (2.69)

Putting genetic and environmental contributions together, the expected polygenic scores are
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approximately

E
[
Ẑ⊤
]
=

S∑
ℓ=1

E [βℓXℓ] +
S∑

ℓ=1

E

[
u⊤Gℓ

G⊤
ℓ Gℓ

X⊤
ℓ

]
+

S∑
ℓ=1

E

[
e⊤Gℓ

G⊤
ℓ Gℓ

X⊤
ℓ

]
(2.70)

≈ E [Z]⊤ +
S

M

(
u⊤S + c⊤

)
F̃GX , (2.71)

where we have made the conditioning implicit in our notation for the sake of consistency

with main text. We continue in this vein for the rest of this Section: all expectations from

here on should be interpreted as conditional on η and c.

2.8.4 Polygenic score association test bias using marginal effects

The expected value of our test statistic, q̂, follows straightforwardly from the expected

values of the polygenic scores. We have

E [q̂] =
1

N
E
[
Ẑ⊤
]
T (2.72)

≈ E [q] +
S

NM

(
µ⊤S + c⊤

)
F̃GXT = E [q] +

S

NM

(
µ⊤S + c⊤

)
F̃Gr. (2.73)

The bias in q̂ is therefore approximately equal to

E [q̂ − q] ≈ E[q̂]− E [q] (2.74)

≈ S

NM

(
µ⊤S + c⊤

)
F̃GXT =

S

NM

(
µ⊤S + c⊤

)
F̃Gr (2.75)
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where

F̃Gr = E

[
Gℓ,Dr⊤ℓ,D

(Gℓ,D+Gℓ,B)⊤(Gℓ,D+Gℓ,B)/M

]
(2.76)

= F̃GXT (2.77)

≈
WGFpopTpop

1 + FG
. (2.78)

Here line 2.78 shows how the axis captured by F̃Gr in the GWAS panel is related to

the underlying populations in our model, and to the pattern of population structure among

them. The vector Tpop = W⊤
XT has length K and captures the axis of the test in terms

of the underlying populations, while FpopTpop similarly has length K, and captures the

extent to which genetic drift along the path to each population is associated with the axis of

population structure identified by the test vector. FpopTpop therefore describes the axis of

confounding in terms of populations. Multiplying this vector by WG then rotates this axis

into the individual space of the GWAS panel to give F̃Gr.

2.8.5 Expectation of polygenic scores while controlling for F̃Gr

Now, controlling for F̃Gr, the marginal effects are

β̂′ℓ | Gℓ, u, e = βℓ +
u⊤−ℓPGℓ

G⊤
ℓ PGℓ

+
e⊤PGℓ

G⊤
ℓ PGℓ

(2.79)

where P =

(
I− 1

∥F̃Gr∥
F̃GrF̃

⊤
Gr

)
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Thus, conditional on the variables in the GWAS panel, the polygenic scores are

Z⊤ | G, u, e =
S∑

ℓ=1

β̂′ℓX
⊤
ℓ (2.80)

=
S∑

ℓ=1

βℓXℓ +
S∑

ℓ=1

u⊤PGℓ

G⊤
ℓ PGℓ

X⊤
ℓ +

S∑
ℓ=1

e⊤PGℓ

G⊤
ℓ PGℓ

X⊤
ℓ (2.81)

so the expected polygenic scores can be written as

E
[
Z⊤
]
=

S∑
ℓ=1

E [βℓXℓ] +
S∑

ℓ=1

E

[
u⊤PGℓ

G⊤
ℓ PGℓ

X⊤
ℓ

]
+

S∑
ℓ=1

E

[
e⊤PGℓ

G⊤
ℓ PGℓ

X⊤
ℓ

]
. (2.82)

Following the same steps as above (see 2.54, 2.60, and 2.65), we take the expectation of

each of the above terms separately. The first term is again the expected “true” polygenic

scores (
S∑

ℓ=1
E [βℓXℓ] =

S∑
ℓ=1

βℓXℓ,S = E[Z]⊤). Then we consider the association between the

environment and the residual genotypes,

E

[
e⊤PGℓ

G⊤
ℓ PGℓ

X⊤
ℓ

]
≈ c⊤

M
PE

[
Gℓ,DX⊤

ℓ,D

(Gℓ,D+Gℓ,B)⊤P(Gℓ,D+Gℓ,B)/M

]
(2.83)

≈ c⊤

M
PF̃GX (2.84)

≈ c⊤

M

(
F̃GX − 1

∥F̃Gr∥
F̃GrF̃

⊤
GrF̃GX

)
(2.85)

≈ c⊤

M
F̃
⊥F̃Gr
GX (2.86)

where we make an additional approximation by ignoring the P in the denominator, which is

reasonable so long as F̃Gr explains only a small fraction of the variance in the GWAS panel

genotypes. Summing of the S causal sites in the polygenic score,

S∑
ℓ=1

E

[
e⊤PGℓ

G⊤
ℓ PGℓ

Xℓ

]
≈ S

M
c⊤F̃⊥F̃Gr

GX (2.87)
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Turning to the contribution to the polygenic score arising from the association between

focal site and the residual genetic background, the expectation is

E

[
u⊤−ℓPGℓ

G⊤
ℓ PGℓ

X⊤
ℓ

]
≈

u⊤S,−ℓ

M
PE

[
Gℓ,DX⊤

ℓ,D

(Gℓ,D+Gℓ,B)⊤P(Gℓ,D+Gℓ,B)/M

]
(2.88)

≈
u⊤S,−ℓ

M

(
F̃GX − 1

∥F̃Gr∥
F̃GrF̃

⊤
GrF̃GX

)
(2.89)

≈
u⊤S,−ℓ

M
F̃
⊥F̃Gr
GX (2.90)

where we again make the approximation of ignoring P in the denominator. Summing across

the S sites,

S∑
ℓ=1

E

[
u⊤PGℓ

G⊤
ℓ PGℓ

Xℓ

]
≈ 1

M

S∑
ℓ=1

u⊤S,−ℓF̃
⊥F̃Gr
GX (2.91)

≈ S

M
u⊤S F̃

⊥F̃Gr
GX (2.92)

Putting the true polygenic scores and the residual genetic and environmental contributions

together, the expected polygenic scores after controlling for F̃Gr are approximately,

E
[
Ẑ
]
≈ E [Z] +

S

M

(
µ⊤S + c⊤

)
F̃
⊥F̃Gr
GX . (2.93)
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2.8.6 Polygenic score association test bias controlling for F̃Gr

Following from the distribution of polygenic scores after controlling for F̃Gr, the expected

association test statistic is,

E [q̂] ≈ E [q] +
S

M

(
µ⊤S + c⊤

)
F̃
⊥F̃Gr
GX T (2.94)

≈ E [q] +
S

M

(
µ⊤S + c⊤

)(
F̃GX − 1

∥F̃Gr∥
F̃GrF̃

⊤
GrF̃GX

)
T (2.95)

≈ E [q] +
S

M

(
µ⊤S + c⊤

)(
F̃Gr −

1

∥F̃Gr∥
F̃GrF̃

⊤
GrF̃Gr

)
(2.96)

≈ E [q] +
S

M

(
µ⊤S + c⊤

)(
F̃Gr − F̃Gr

)
(2.97)

≈ E [q] (2.98)

such that the expected bias is

E [q̂ − q] ≈ 0. (2.99)

Here we highlight a reasonable assumption we make regarding our ability to detect true

signal when controlling for F̃Gr. As discussed in the main text, including F̃Gr as a covariate

removes any correlation between β̂ and r under the null hypothesis where η = 0. Notably,

under the alternative hypothesis, our ability to detect signal is preserved as we use variation

along other axes in the GWAS panel to estimate effect sizes which in turn can still be

correlated with rS in the test panel. We therefore rely on the assumption that for site ℓ

there is enough remaining variation in Gℓ after regressing out F̃Gr to estimate β̂ℓ. If all

variation in Gℓ lies along F̃Gr, y⊤PGℓ ≈ 0 and we will be unable to estimate β̂ℓ. For

example, if F̃Gr represented individuals on opposite sides of a population split this would

only apply to sites with fixed differences. This is unlikely to be a concern in practice as

FST is low in human populations94 and most variants will not be perfectly correlated with
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a single axis of structure. Therefore, it is reasonable to assume that it will still be possible

to accurately estimate βℓ, albeit with slightly larger standard error.

2.8.7 Modeling the correlation structure among test panel individuals

In Section 2.4, we test for the association between polygenic scores and the test vector

using the linear model,

Z = qT + ε (2.100)

where ε is i.i.d Normal across individuals. If T is scaled to have a variance of 1, the slope is

given by,

q =
1

N
Z⊤T (2.101)

which we use as our test statistic of interest.

However, a more powerful test is available by modeling the correlation structure among

individuals in the test panel. Under our genotypic model the expected pattern of covariance

of genotypes at site among individuals in the test panel is,

V ar (Xℓ) = E[XℓX
⊤
ℓ ] = 4aℓ (1− aℓ)

(
F∗
XX

)
, (2.102)

where F∗
XX = FXX + BX . FXX contains the within panel relatedness coefficients and

BX is a diagonal matrix with entries specifying the amount of additional variance for each

individual due to sampling.

Now, because the polygenic scores are sums across a large number of sites, under the

null model the distribution of standardized polygenic scores is approximately multivariate
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Normal

Z√
2VA

∼ MVN
(
0,F∗

XX

)
(2.103)

where VA = 2
∑S

ℓ β2ℓ aℓ(1− aℓ) is the additive genetic variance of the polygenic scores in the

original ancestral population.

To test for evidence of an association, we compare this null model to an alternative in

which polygenic scores are associated with T ,

Z√
2VA

∼ MVN
(
Tγ,F∗

XX

)
, (2.104)

where γ is the slope. Here we assume that T is mean centered and scaled such that F
∗−1

2
XX T

has a variance of one. With this scaling, the generalized least squares estimate of γ is

given by γ̂ = T⊤F∗−1
XXZ/(N

√
2VA), where the F∗−1

XX term accounts for the evolutionary non-

independence of the individuals in the panel. Under the null hypothesis, γ̂ ∼ N
(
0, 1

N

)
.

To remove this dependence on the sample size, we let the test statistic be qx =
√
Nγ̂, so

that

qx =
Z⊤F∗−1

XXT
√
2NVA

(2.105)

=
1√

2NVA

S∑
ℓ=1

βℓX
⊤
ℓ F∗−1

XXT (2.106)

=
1√

2NVA
βrx. (2.107)

Under the null qx ∼ N (0, 1). This test statistic is related to Berg and Coop’s QX statis-

tic59,71 in a straight-forward way. For a test of selection along a single axis of ancestry

variation, QX = q2x. More generally, the QX statistic combines multiple tests along different

axes of ancestry variation, accounting for non-independence among axes and providing the
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appropriate multiple testing penalty.

As discussed above, qx is proportional to the generalized least squares estimate of γ

whereas q in the main text is proportional to the ordinary least squares estimate. Therefore,

qx accounts for covariance and heteroscedasticity in test panel genotypes caused by within

test panel population structure. This results in a more powerful test, in precisely the same

way that linear mixed models increase the power of association tests in GWAS by accounting

for covariance in the phenotypes due to genetic relatedness.

To apply our correction procedure while accounting for the non-independence among test

panel individuals, we can compute rx,ℓ = X⊤
ℓ F̂∗−1

XXT and plug rx into Equation 3.2 in the

main text instead of rℓ. This version of F̂Gr can again be included as a covariate in the

GWAS and those corrected effect sizes, in conjunction with rx can then be used to compute

qx. Overall, we would expect this procedure to result in slightly stronger protection against

stratification bias, as the rx,ℓ will have a slightly lower variance than the rℓ, and thus lead

to a more accurate estimated F̂Gr, though we have not systematically investigated this.
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CHAPTER 3

CONTROLLING FOR STRATIFICATION BIAS IN PRACTICE

3.1 Introduction

One promise of polygenic scores is that they allow for phenotypic prediction from geno-

type data alone. To fulfill this promise, we expect consistent predictions that are robust to

choice of effect size estimate. As discussed in Chapter 2, bias in polygenic score predictions

is a function of the relationship between GWAS and target samples. If confounding is well

controlled for in the GWAS, for example by PCs or LMMs (see Chapter 1), then we do not

expect relationships between polygenic scores and ancestry gradients in the test panel to

change as a function of the ancestry composition of the GWAS panel.

Empirically, two recent studies, Refoyo-Martínez et al. (2021)87 and Kerminen et al.

(2019)53, found that patterns in polygenic scores differences were not robust to choice of

effect estimates. Kerminen et al. tested three different height polygenic scores, each with ef-

fect sizes estimated in a GWAS panel with a different genetic distance from the target panel

of Finnish individuals, and predicted three significantly different values for the difference

in height between the eastern and western Finish subgroups. Additionally, they observed

geographic structure in polygenic scores for five other traits, two of which predicted im-

plausibly large differences in phenotypes between eastern and western subgroups. Similarly,

Refoyo-Martínez et al. used effect sizes from seven different height GWASs to compute mean

polygenic scores for populations in the 1kGP. They observed not only significant variation in

the magnitude of polygenic score differences between populations but also variation in the

direction of differences. Because both studies use the same set of test panel individuals, the

observed inconsistencies must come from the effect size estimates.

Ancestry stratification is not the only explanation for the above observations. For exam-

ple, the most extreme geographic clustering, usually seen in smaller meta-analysis GWASs,
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might reflect true biological differences and larger biobank GWASs are over correcting for

ancestry and regressing out real signals. Although if this were the case, we would expect to

see consistent predictions across different meta-analyses, which is not the case87. Alterna-

tively, the difference in signals could be driven by population specific variants that are or

are not included in GWASs done in different ancestries. Population specific effect sizes (i.e

G × G or G × E in the GWAS panel) could also generate a similar pattern. While none

of these explanations can be explicitly ruled out, most complex traits are highly polygenic

and the difference in signal is unlikely to be driven by a small number of population specific

variants. Moreover, there is little evidence for widespread heterogeneity in effect sizes across

ancestry backgrounds95,96.

There is evidence that ancestry stratification is partially responsible for the observed in-

consistencies. Stratification bias is a phenomenon that affects effect size estimates genome-

wide, not just trait-associated ones. Kerminen et al. found that constructing polygenic

scores from non-associated SNPs (p > 0.5) also produced an east/west difference in Finland,

a pattern that is not expected if the signal were driven by real biological differences, but is

consistent with uncorrected ancestry stratification. Refoyo-Martínez et al. also showed that

effect sizes from different cohorts are differentially correlated with the top 20 PC loadings

from the test panel. Sohail et al. (2019)72 makes the same observation comparing effect sizes

estimated in GIANT to those estimated in the UKBB. Both studies observe larger correla-

tions with effect sizes from smaller, more diverse meta-analyses (GIANT and PAGE) than

they do in larger, more homogeneous biobanks (BBJ and UKBB). Again, these observations

are consistent with cohort-specific uncorrected stratification bias generating relationships

between top PCs and all effect size estimates.

Outside of the aforementioned results, other studies have found that polygenic scores ex-

hibit geographic clustering49,50,51,97 even after strict control for stratification. Again, while

these observations could be due to real biological differences across the geographic region,
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it is also expected if effect sizes suffer from residual ancestry-based stratification. In the

Mendelian randomization literature, several studies have found evidence for residual strati-

fication in effect size estimates98,38,40 and as discussed in Chapter 1, effect sizes estimated

using family data are typically smaller and result in lower heritability estimates40,41,42,

something we expect if population effect sizes suffer from uncorrected stratification bias.

In this Chapter we build on results from Chapter 2 to explore strategies for controlling for

stratification bias in polygenic score association tests in practice. In the previous Chapter,

we used a model-based approach to identify a single axis of ancestry variation in the GWAS

panels, F̃Gr, that needs to be controlled for to guarantee an unbiased test between polygenic

scores built in the test panel, Ẑ, and an ancestry gradient of interest, T . In this Chapter,

we first explore two different approaches to controlling for F̃Gr, estimating the axis directly

using the test panel contrasts or capturing it using sample principal components of the

GWAS panel. We then apply both approaches to a range of simulated scenarios. We find

that the utility of the direct approach depends on the error in our estimator, a function

of the overlap in structure between panels. On the other hand, the error in J sample PCs

depends only on the pattern of structure in the GWAS panel. In simulations where there is

no true genetic signal and complete overlap in structure, the direct estimator is able to equal

or outperform sample PCs. When the variation explained by the shared axis of structure

decreases, the direct estimator is very noisy and struggles to protect the test.

In real data, where we are trying to both reduce confounding and maximize power of

the polygenic score, we find sample PCs to always be the preferred approach. Because our

direct estimator only controls for structure along a single axis of variation in the GWAS

panel, confounding along other axes, while not contributing to bias in q̂, adds additional

noise and results in the ascertainment of SNPs that are less tightly coupled with causal

variants. The inclusion of top sample PCs controls for stratification along multiple axes,

resulting in more powerful polygenic scores. However, as previously discussed, one downside
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of the PCA approach is that there is no way to test if the number of PCs included was

sufficient to protect a polygenic score association test from stratification bias. Therefore, we

combine both approaches and use our direct estimator as a way to check what fraction of

the variation in ancestry along the axis identified by the direct estimator is captured by J

sample PCs. We then apply this approach to 30 different polygenic association tests across

four different GWAS panels and identify signals of polygenic score differentiation that are

well protected from confounding.

3.2 F̂Gr and sample PCs as estimators of F̃Gr

In the previous Chapter we defined the conditions under which including F̃Gr or the top

J population PCs as fixed covariates removes stratification bias and leads to an unbiased

association test. However, both F̃Gr and U are theoretical quantities that depend on the

population model, which we do not observe in practice. Instead, we must estimate these

quantities, F̂Gr and Û , with error, from sample genotype data.

3.2.1 Sample principal components

The sample PCs, Û , can be computed by taking the eigen decomposition of the empiri-

cal genetic covariance matrix, or the singular value decomposition of the genotype matrix.

Existing results from random matrix theory allow us to obtain some understanding of the

accuracy of Û as an estimator of U . Specifically, in many GWASs the number of individuals

in the GWAS panel, M , is roughly on the same order as the number of SNPs, L. In this

setting, the accuracy of the sample eigenvector Ûj depends on the corresponding population

eigenvalue (λj) and the ratio of the number of individuals to the number of SNPs in the

GWAS panel (M/L). As shown first by Patterson et al. (2006) in the context of genetics99

(see also Baik et al. (2005)100), PCA exhibits a phase change behavior in which a given

sample PC is only expected to align with the population PC if the corresponding population
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eigenvalue is greater than a threshold value of 1+
√

M
L . Below this threshold, the sample PC

is orthogonal to the population PC. It is worth noting that increasing the number of indi-

viduals in the GWAS panel, M , also changes the population eigenvalue such that population

PCs are generally more detectable with larger sample sizes.

However, even when the corresponding eigenvalue exceeds this threshold, the angle be-

tween the sample PC and the population PC may still be substantially less than one, particu-

larly if the relevant eigenvalue does not far exceed the detection threshold101,102. Specifically,

the squared correlation between the population PC and the sample PC is approximately

(
U⊤
j Ûj

)2
≈


1−M

L /(λj−1)2

1+M
L /(λj−1)

, λj > 1 +
√

M
L

0, λj ∈ [1, 1 +
√

M
L ]

(3.1)

(see Johnstone and Paul (2018)101 for details). Thus even in cases where F̃Gr is fully

captured by the top J population PCs, either of these two related phenomena may make it

difficult to accurately approximate F̃Gr as a linear combination of the top J sample PCs,

leading to a failure to fully account for stratification bias in polygenic score association tests.

3.2.2 Estimating F̃Gr directly using test panel genotypes

Given this limitation of PCA, it’s natural to ask whether other estimators of F̃Gr might

perform better. One choice, suggested by our theoretical results, is a direct estimator that

utilizes the relevant test panel genotype contrasts. Given the test panel genotype contrasts

(rℓ) and GWAS panel genotypes (Gℓ), we can obtain a direct estimator of F̃Gr as

F̂Gr =
1

L

L∑
ℓ=1

Gℓrℓ
G⊤
ℓ Gℓ/M

. (3.2)

Then, if F̂Gr is a sufficiently accurate estimator of F̃Gr, we should be able to render
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a given polygenic score association test unbiased by estimating marginal effects under the

model

y = Gℓβℓ + F̂Grω + ε, (3.3)

and ascertaining SNPs for inclusion in the polygenic scores via standard methods.

We can expect this method to be successful when the variance of the error component

of F̂Gr is small relative to the variance of the entries of F̃Gr. The variance of F̃Gr will be

greater when the amount of overlap in population structure between the two panels along

this specific axis is greater. We can think about the variance of the error component in

terms of a linear model that tries to predict the GWAS panel genotypes using the test panel

genotype contrasts. If we write G̃i· to denote the vectors of genotypes for GWAS individual i

and r̃ for the test panel genotype contrasts, each standardized by the variance in the GWAS

panel, then we can fit the linear model

G̃i· = r̃F̃Gr,i + e. (3.4)

The regression coefficient estimate from the fitted model is then the ith entry in our popula-

tion structure estimator, F̂Gr. The error in F̂Gr therefore behaves like the error in a typical

regression coefficient, and should be minimized when the number of SNPs included, L, is

large, and when the test panel sample size, N , is large, so that the r̃ are well estimated.

This approach proposes to use the test panel genotype data twice: once when controlling

for stratification in the GWAS panel, and a second time when testing for an association

between the polygenic scores and the test vector. One concern is that this procedure might

remove the signal we are trying to detect. In supplemental Section 3.8.1 we show that while

this is true for naive applications, the effect will be small so long as the number of SNPs

used to compute the correction is large relative to the number included in the polygenic score
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(i.e S ≪ L). Notably, controlling for sample PCs of the GWAS panel genotype matrix will

induce a similar effect if the sample PCs capture F̃Gr. We confirm via simulations (see Figure

3.18) that downward bias in q̂ when including F̂Gr or sample PCs is minimal when S ≪ L.

Further concern about downward biases in applications could likely be ameliorated via the

“leave one chromosome out” scheme commonly implemented in the context of linear mixed

models103,23 or via iterative approaches that first aim to ascertain SNPs using a genome-

wide estimate of F̂Gr before re-estimating effects using an estimate of F̂Gr computed from

sites not in strong LD with any of the ascertained sites.

3.3 Applications

In this Section, using theory and simulations, we consider a number of concrete examples

with varying degrees of alignment between the axis of stratification and the axis of population

structure relevant to the polygenic score association test, demonstrating how these biases

play out in practice, and how well PCs and F̂Gr capture bias in different circumstances.

3.3.1 Toy model

Stratification bias depends on F̃4(A,B;C,D)

We first consider a toy model with four populations (labeled A, B, C and D), which are

related to one another by an evenly balanced population phylogeny (Figure 3.1). The GWAS

panel is composed of an equal mixture of individuals from populations A and B, and we test

for a difference in mean polygenic score between populations C and D under two different

topologies, one where A and C are sister to one another (Figure 3.1A), and another where

A and B are sister (Figure 3.1C).

For simplicity, we consider a purely environmental phenotype (i.e. h2 = 0) with a

difference in mean between populations A and B is equal to ∆AB (Figure 3.1B). Following

52



Figure 3.1: Schematic of two different panel configurations. The effect of stratifi-
cation depends on the overlapping structure between the GWAS and test panels.
(A, C) Two different topologies used to create the GWAS and test panels. (B) Stratification
was modeled in the GWAS panel by drawing an individual’s phenotype y ∼ N(0, 1) and
adding ∆AB if they originated from population B. (D) When there is overlapping structure
between GWAS and test panels, there is an expected mean difference between polygenic
scores in populations C and D. Additionally, the bias in q̂ increases with the magnitude of
stratification in the GWAS. (E) However, when there is no overlapping structure between
panels, there is no expected difference in mean polygenic scores between C and D and q̂
remains unbiased regardless of the magnitude of stratification. (F, G) Including F̃Gr as a
covariate in the GWAS controls for stratification, eliminating bias in q̂ regardless of ∆AB or
the overlapping structure between GWAS and test panels.
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from Equation 2.7, the marginal effect size estimate for site ℓ is

β̂ℓ | Gℓ, e =
G⊤
ℓ e

G⊤
ℓ Gℓ

=
1

2

∆AB
(
p̂A,ℓ − p̂B,ℓ

)
G⊤
ℓ Gℓ/M

+
G⊤
ℓ ε

G⊤
ℓ Gℓ

(3.5)

where p̂A,ℓ and p̂B,ℓ are the observed sample allele frequencies for population A and B at

site ℓ (see also Equation 2.3 in the supplement of Robinson et al. (2015)67).

Then, using these effect sizes to test for a difference in mean polygenic score between

populations C and D, the bias in our association test statistic is,

E [q̂ − q] = ∆AB

S∑
ℓ=1

E
[
(p̂A,ℓ − p̂B,ℓ)(p̂C,ℓ − p̂D,ℓ)

G⊤
ℓ Gℓ/M

]
= ∆ABSF̃4(A,B;C,D)

(3.6)

where F̃4(A,B;C,D) is a version of Patterson’s F4 statistic104,105, standardized by the

genotypic variance in the GWAS panel, which measures the amount of genetic drift common

to populations A and B that is also shared by populations C and D. Writing the bias in terms

of this modified F4 statistic helps illustrate the role of cross panel population structure in

driving stratification bias in polygenic scores. The effect estimate at site ℓ is a linear function

of p̂A,ℓ − p̂B,ℓ, so the test will be biased if p̂A,ℓ − p̂B,ℓ is correlated with p̂C,ℓ − p̂D,ℓ. This

is true for the demographic model in Figure 3.1A, where shared drift on the internal branch

generates such a correlation, yielding a positive value for F̃4(A,B;C,D), but not for the

model in Figure 3.1C, where there is no shared internal branch and F̃4(A,B;C,D) = 0.

To test this prediction, we simulated 100 replicates of four populations related by this

topology. In the GWAS panel populations we simulated purely environmental phenotypes

with a difference in mean phenotype (as outlined above), conducted a GWAS, ascertained

SNPs, and then used these SNPs to construct polygenic scores and compute q̂ in the test
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panel. The results are consistent with our theoretical expectations: the test statistic is biased

for the topology with F̃4(A,B;C,D) > 0 (Figure 3.1D), but unbiased when F̃4(A,B;C,D) =

0 (Figure 3.1E).

Given the population model, F̃XG = 0 for the unconfounded topology, making F̃Gr a

vector of zeros. Therefore, re-running the GWAS including F̃Gr does not change the outcome

of the already unbiased test (Figure 3.1G). For the confounded topology, the structure in

F̃XG reflects the deepest split in the phylogeny and is aligned with T . F̃Gr is therefore

an indicator of which GWAS panel individuals are on which side of the deepest split and

including it as a covariate in the GWAS eliminates bias for the confounded topology (Figure

3.1F).

Quantifying error in estimators of F̃Gr

As we outlined above, in practice, F̃Gr cannot be observed directly, and must be estimated

with error from the data. To illustrate the impact of this estimation error on the performance

of both estimators in a simple, well understood case, we performed simulations using three

different versions of our toy model in which we vary the amount of overlap in population

structure between the test and GWAS panels. Specifically, given that F̃Gr is known in

this toy model, we can compute the error in either estimator as one minus the squared

correlation between F̃Gr and the corresponding estimator. We take all of these vectors to be

standardized, so this is simply

Error = 1−
(
x̂⊤F̃Gr

)2
(3.7)

where x̂ represents the appropriate estimator.

For each simulation, we estimated F̂Gr as in Equation 3.2, using L genome-wide SNPs

with a frequency of greater than 1% in both the test and GWAS panels. For PCA, we
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computed sample PCs via singular value decomposition of the genotype matrix using the

same set of SNPs that were used to compute F̂Gr, and we then take Û1 (i.e. the first sample

PC) as the PCA based estimator of F̃Gr
82. In all of these simulations, we hold the GWAS

and test panel sample sizes constant at N,M = 1, 000 and varied the number of SNPs (L) as

a way to vary the accuracy of the estimators. We simulated 100 replicates for each topology,

and plot the resulting averages across these replicates in Figure 3.2.

First, we simulated a scenario of complete overlap, in which there is a single population

split and individuals in both the GWAS and test panels are independently drawn as 50:50

mixtures of the two population on either side of the split (Figure 3.2A). When the GWAS

sample size (M) is on the same order as the number of SNPs (L), the direct estimator (F̂Gr)

has a smaller error than the first PC (Û1) (Figure 3.2B), and as a consequence reduces

the bias by a larger amount (Figure 3.2C). Intuitively, the direct estimator singles out the

relevant axis of population structure because we have identified it ourselves in the test panel,

whereas PCA has to find this axis “on its own” in the high dimension GWAS panel genotype

data, and thus pays an additional cost. In contrast, when M ≪ L, PCA no longer has to

pay this additional cost, and its performance improves to match that of the direct estimator.

We next simulated under the same toy model of partial overlap in population structure

between test and GWAS panels that we considered above (Figure 3.2D). This results in an

increase in the error of the direct estimator relative to the complete overlap case because the

genotype contrasts measured in the test panel are less informative about the relevant axis of

structure in the GWAS panel. In contrast, the error in Û1 is unchanged, as the amount of

structure in the GWAS panel is the same as in Figure 3.2A. Notably, in this case the direct

estimator still outperforms PCA when M/L ≈ 1, but PCA performs better as M/L decreases.

Finally, in Figure 3.2G we reduced the overlap in population structure even further, which

leads PCA to uniformly outperform the direct estimator. Intuitively, because the overlap in

population structure is so small, the direct estimator requires a very large number of SNPs to
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Figure 3.2: Error in estimators of F̃Gr depends on the number of SNPs used to
compute them.
(A) We simulated a population model with a single split and sampled an equal proportion of
individuals from each population to make a GWAS and test panel. (D,C) Here we simulated
population models with two splits and sampled individuals in the overlapping structure
configuration. (B, E, H) As F̃Gr is known for these population models, we computed the
error in Û1 and F̂Gr as estimators of F̃Gr using eq. 3.7. For both estimators, error decreased
as the number of SNPs increased. We hold the number of GWAS panel individuals constant
at M = 1, 000 so as L increases the ratio of M

L decreases. The error in Û1 does not depend
on the population model as the depth of the deepest split is constant across models. Error
in F̂Gr increases as overlap between panels decreases. (C, F, I) Bias in q̂ computed from
using the estimators as covariates in the GWAS follows from the error in the estimators
themselves.
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produce an accurate estimate. We also note that in general across all of these simulations,

while the magnitude of the reduction in bias closely tracks the error in the estimator of

population structure, the reduction is slightly larger than expected for Û1 (Figure 3.19).

3.3.2 Grid simulations

To further explore stratification bias in more complex scenarios, we conducted another set

of coalescent simulations under a symmetric two-way migration model on a six-by-six lattice

grid, building off of a framework developed by Zaidi and Mathieson (2020)47. We sampled

an equal number of individuals per deme to comprise both the GWAS and test panels,

with total sample sizes N,M = 1, 440. We then simulated several different distributions of

purely environmental phenotypes across the GWAS panel individuals. We considered three

different scenarios for the distribution of phenotypes. For each scenario, we estimated effect

sizes, ascertained associated sites, and tested for an association between polygenic score

and latitude, longitude, or membership in the single confounded deme, depending on the

example. In these simulations F̃Gr is unknown and so we compared F̂Gr and the top 10

sample PCs as estimators of F̃Gr, using the same set of L = 20, 000 SNPs that are found at

a frequency greater than 1% in both panels for both estimators.

For the first example, the confounder, c, is a linear function of an individual’s position

on the latitudinal axis (Figure 3.3A). When we estimated effect sizes with no correction

for population structure, the spatial distribution of the resulting polygenic scores reflected

the distribution of the environmental confounder. Consequently, an association test using

latitude as the test vector is biased. However, including F̂Gr or the top 10 sample PCs as

covariates in the GWAS model is sufficient to ensure that effect sizes that are unbiased with

respect to the latitudinal genotype contrasts in the test panel, so the resulting association

test is unbiased.

In the second example, we simulated confounding along the diagonal, resulting in uncor-
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Figure 3.3: Stratification bias in more complex demographic scenarios.
GWAS and test panel individuals were simulated using a stepping-stone model with con-
tinuous migration. In the GWAS panel, the phenotype is non-heritable and stratified along
either latitude (A), the diagonal (B), or in a single deme (C). When effect sizes were esti-
mated in a GWAS with no correction for stratification, polygenic scores constructed in the
test panel recapitulate the spatial distribution of the confounder (second column). Including
F̂Gr (test vector is latitude for A and B, belonging to * deme for C) in the GWAS model
eliminates bias in polygenic scores along the test axis (third column) which is also reflected
in the association test bias (fifth column). We also compare our approach to including the
top 10 PCs (fourth column) which successfully protects the test in A and B but remains
biased for C.
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rected polygenic scores that are correlated with both latitude and longitude in the test panel

and an association test that is biased along both axes (Figure 3.3B). When we computed F̂Gr

using latitude as the test vector, the resulting effect sizes are uncorrelated with latitudinal

genotype contrasts, but remain susceptible to bias along other axes (e.g. longitude). This

example highlights the targeted nature of this approach, as using effect sizes from a GWAS

including F̂Gr does not remove all bias, but does make the association test using those effect

sizes for the pre-specified test vector unbiased (when F̂Gr is well estimated). Including 10

sample PCs protects both the latitudinal and longitudinal association tests.

In the third example, we simulated an increased environmental effect in a single deme, a

scenario which induces a more complex spatial pattern in the uncorrected polygenic scores

(Figure 3.3C), and which previous work has shown to be difficult to correct for with standard

tools106,47. We then took the test vector to be an indicator for whether the test panel

individuals were sampled from the deme with the environmental effect, or not, and computed

F̂Gr using these contrasts. In this scenario, including F̂Gr as a covariate in the GWAS results

in an unbiased test statistic. In contrast, the top ten sample PCs did not.

Quantifying error in population structure estimators

Next, we wanted to better understand the role error in our population structure esti-

mators plays in these simulations. In contrast to the four population toy model, it is not

straightforward to compute F̃Gr given our underlying demographic model, particularly for

the case of testing a single deme against all others. As a result, we cannot directly measure

the error in F̂Gr or sample PCs as estimators of F̃Gr. Instead we use the fact that under

this demographic model individuals within a deme are exchangeable, and therefore have the

same values of both F̃Gr and population PCs. This allows us to estimate the error in F̂Gr

by computing the fraction of the total variance in F̂Gr that can be attributed to variance of

individual values within demes and to variance of deme means across replicates (see 3.7.1).
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For the PCs the relationship between the order of the underlying population PCs and the

order of the sample PCs may differ across replicates due to the noisiness of the sample PCs,

so it is not obvious how to compute the variance of the deme means across replicates. We

therefore use only the within deme variances, so our estimates of the error for the PCs are

technically estimates of a lower bound on the error (see 3.7.1). However, we note that for

our estimation of the error in F̂Gr, we found that the variance within demes was by far the

larger contributor, so we expect this to be a relatively tight bound. We then vary the number

of SNPs used to compute our estimators of population structure from L = 20, 000 down to

L = 2, 000, and observe how differences in the estimated error of our population structure

estimators translate to differences in the amount of bias in the polygenic score association

test statistic.

In Figure 3.3A and Figure 3.3B, F̃Gr corresponds to latitude, so we expect it to be

captured by the top two population PCs107. For L = 20, 000 (the number of SNPs used in

Figure 3.3), we estimated the lower bound on the error in sample PCs 1 and 2 to be 0.011.

Across the range of L values we tested, the estimated bound was no greater than 0.053

(Figure 3.4A) and including 10 PCs consistently removes bias in q̂ (Figure 3.4B). Similarly,

we estimated the error in F̂Gr for latitude to be 0.012 when L = 20, 000 with a maximum

of 0.059 when L = 2, 000. Although these estimates are nearly identical to the values we

observe for the first two PCs, the bias in q̂ is slightly higher (Figure 3.4B). We observed a

similar result in the 4 population toy model (3.19), so this may be the same phenomenon,

or it may be that PCs 3-10 are capturing some of the residual latitudinal signal that is not

captured by the first two.

Next, we explored the role of error in our population structure estimators for the more

difficult single deme test/confounder case (Figure 3.3C). We again computed the error in

F̂Gr as we vary L, with estimates ranging from 0.04 to 0.18 as L decreases (Figure 3.4A).

For larger values of L, the error was small enough that confidence intervals on the bias
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Figure 3.4: Quantifying error in the estimates of F̂Gr and sample PCs for the
six-by-six stepping stone demographic model.
(A) Given the stepping stone demographic model used in Figure 3.3, individuals within a
deme are exchangeable and have the same F̃Gr and population PC value. Therefore, we
used variation within demes to estimate the error in F̂Gr and a lower bound for the error in
sample PCs for different values of L (we hold M = 1, 400). The dashed vertical line indicates
PC 35, the last population PC we expect to capture real structure. (B) When latitude is
the test vector, both sample PCs and F̂Gr are well estimated and bias in q̂ is reduced. (C)
When a single deme indicator variable is the test vector, higher PCs are needed to capture
F̃Gr. These sample PCs are not well estimated and residual bias remains when 35 PCs are
used for most values of L.
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overlapped zero, but this was not true when we reduced L so that the error was larger

(Figure 3.4C). Above, with L = 20, 000, we found that 10 PCs were not sufficient to remove

the bias. This could either be because F̃Gr is not captured by the top 10 population PCs

or it could be that F̃Gr can be captured by 10 population PCs, but the sample PCs are too

noisy as estimates of the population PCs. Given that there are 36 demes in our simulations

and that individuals within demes are exchangeable, only the top 35 population PCs capture

real population structure, while the rest correspond to sampling variance. As a result, if the

sample PCs are sufficiently well estimated, then only 35 should be required to remove the

bias. In practice, we find that using 35 PCs for larger values of L, the bias is closer to zero

than it is with 10 PCs, but the confidence intervals still do not always overlap zero, and

the bias is generally greater than it is when we use our direct estimator, F̂Gr (Figure 3.4C).

As expected, the performance with 35 sample PCs decreases further with an increase in the

error, but is always intermediate between 10 PCs and F̂Gr. All of this is consistent with

the observation that the error in the higher sample PCs (i.e. 11-35), is very high across the

range of L values we explored (Figure 3.4A).

PCs succeed by capturing structure relevant to the test, not the confounder

Finally, to the extent that the PCs did succeed in removing bias in our simulations, we

wanted to understand whether it was because they successfully captured the confounder or

because they captured the relevant axis of structure for the test (see Section 2.5.2). To this

end, for each of the three grid scenarios in the L = 20, 000 case, we computed the cumulative

proportion of variance in the confounder, c, that could be explained by the first J sample

PCs, for J up to 100 (Figure 3.5). We found that while the confounding axis was well

captured by sample PCs 1 and 2 for latitude (Figure 3.5A), it was not well captured by the

top 10, 35, or indeed 100 PCs, for the diagonal (Figure 3.5C) or single deme confounders

(Figure 3.5E). In contrast, if we take our estimator, F̂Gr, as a proxy for F̃Gr, we find that

63



the PCs explain a considerably higher fraction of the variance. For the first two cases, the

test axis is latitude, so this is unsurprising. However, this is true even for the single deme

case, and results from the fact that relatedness among adjacent demes leads to a smoothing

effect (Figure 3.20), which makes F̃Gr easier for the PCs to capture.

3.3.3 Example data analysis in UK Biobank

As an example of an application to real data, we estimated F̂Gr and quantified the error

for two polygenic score association tests using data from the UK Biobank43. Specifically, we

tested for an association between standing height and birth location in the UK along either

the north-south or east-west axis. First, we sampled individuals to comprise both the test

and GWAS panels. Given the subtlety of the structure along our chosen test axes, our goal in

constructing the test panel was primarily to have a large enough sample size that the genotype

contrasts along these axes would be well-estimated. To this end, we selected individuals who

chose “White British” in the UK Biobank’s ethnic identity questionnaire and cluster near

the centroid in genetic PCA space (i.e they are members of the “White British ancestry

subset” as defined by the UK Biobank43) to comprise the test panel (N = 399, 801). We

then used each individual’s place of birth in the UK, recorded in terms of northings and

eastings, to create our two test vectors. Our goal in constructing the GWAS panel was to

have a complex but partial overlap in population structure between GWAS and test panels,

as might be expected in practice if the GWAS and test panels are drawn from different

sources. To this end, we selected individuals who self-identified as “White” but were not

included in the “White British ancestry subset” to comprise the GWAS panel (M = 50, 136).

This set is a mixture of individuals who self-identified as “White British” but who did

not cluster close enough to the centroid in PC space to be included in the “White British

ancestry subset”, together with individuals who self-identified as “Irish” or as “Any other

white background”.
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Figure 3.5: Different patterns of confounding and F̂Gr are captured by different
GWAS panel sample PCs.
For the three possible combinations of confounding and polygenic score association tests in
Figure 3.3, we plot the variance in either the confounder or F̂Gr explained by cumulative
GWAS panel sample PCs, with the top 10 PCs highlighted in a darker color. As F̃Gr is
unknown for this model, we estimated the error in F̂Gr as 0.011 and 0.04 for latitude and
the single deme, respectively, and therefore assume it is a decent proxy for F̃Gr. In (A),
both the confounder and F̂Gr (and therefore F̃Gr) represent variation along latitude and are
well captured by the first two PCs. For (B) the confounder varies along the diagonal and
these individual deme level differences are not well captured by top sample PCs. In contrast,
the test vector is still latitude and F̂Gr is again well captured by PCs 1 and 2. Finally, in
(C), both the confounder and the test vector represent membership in a single deme and
therefore not as well captured by top sample PCs.
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For each test vector, we computed F̂Gr as in Equation 3.2 with different numbers of

SNPs (L = 1, 000 to L = 1, 000, 000) that are found at greater than 1% frequency in the

total sample of individuals who self-identified as “White". We then quantified the error in

estimates of F̂Gr by using a block jackknife across chromosomes to estimate the error for

each individual, and then averaging across all individuals (see Section 3.7.2). As expected,

error decreased as we increased the number of SNPs (Figure 3.6A) with 0.027 and 0.032

being the smallest error achieved for the east and north test vectors, respectively.

We then computed q̂ for standing height, estimating effect sizes and ascertaining SNPs

in the GWAS panel by taking at most one SNP per approximately independent LD block? ,

and only taking SNPs for which p < 10−5 (see Section 3.7.2). When no population structure

covariates were included in the GWAS, we found a highly significant positive value of q̂ for

the east-west axis (q̂ = 8.7, p = 3.1 × 10−18) and a highly significant negative value of q̂

for the north-south axis (q̂ = −5.4, p = 7.7 × 10−8). When we include F̂Gr, the value of q̂

drops significantly even when F̂Gr is poorly estimated (e.g. at L = 1, 000) and ultimately

changes sign so that when F̂Gr is estimated with L = 1, 000, 000, q̂ = −1.9 (p = 0.06) and

q̂ = 2.4 (p = 0.02) for east and north, respectively. If we take our significance threshold

to be α = 0.05 and apply a Bonferroni correction to account for the fact that we perform

two tests, then we would declare q̂ significantly different from zero if p < 0.05/2 = 0.025.

With these choices, the east-west test is not significant, while the north-south test is just

past the threshold. We also repeated this analysis while including only the top 40 sample

PCs of the GWAS panel genotype matrix (and not F̂Gr), as well as both 40 PCs and our

best estimated F̂Gr. While doing so changed the numerical value of q̂, in neither case is it

significantly different from the value we obtain when using only the best estimated F̂Gr, nor

is it significantly different from zero.

We also note that including the top 40 PCs significantly reduced the number of SNPs

reaching our p-value threshold for inclusion. When we use only F̂Gr to control for structure,
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we find 1694 and 1693 SNPs below the p-value threshold for east and north, respectively,

whereas when we only include 40 PCs we find 310 for both axes. Including both 40 PCs and

F̂Gr resulted in 306 and 310 SNPs below the threshold for east and north, respectively. We

expect that this is because, when we include only F̂Gr as a control for stratification, there

can still be considerable bias along other axes, which will still lead to inflated χ2 association

statistics, even if the bias along our chosen test axis is substantially reduced. This observation

suggests that using F̂Gr in isolation is not optimal for empirical applications as stratification

along other axes in the GWAS panel makes ascertaining causal SNPs (or tightly linked tagged

SNPs) difficult.

Additionally, the fact that there is little change between the value of q̂ when including

40 PCs vs. including 40 PCs plus F̂Gr suggests that these 40 PCs are doing an adequate

job at capturing F̃Gr. In the next Section, we return to this idea and present a procedure

for estimating the fraction of F̃Gr captured by J sample PCs in empirical data, providing a

means to check if the test of choice is susceptible to potential confounding in a given GWAS

panel when including a given number of sample PCs.

3.4 Testing for differences in polygenic scores in empirical data

In this Section, we fully turn our attention to empirical analyses with the goal of de-

veloping a procedure that allows researchers to estimate how well protected their polygenic

score association test is from stratification bias. First we introduce the statistic, Ĥ, the

average proportion of variance in individual GWAS panel genotypes that is explained by a

set of allele frequency contrasts, r . Under the null hypothesis of no overlapping structure,

E
[
Ĥ
]
≈ 1

L . If the null hypothesis is rejected, the test is susceptible to potential confound-

ing in the GWAS panel. For susceptible tests, we introduce R2
J/γ̂FGr

, an estimate of the

proportion of F̃Gr that is captured by J sample PCs with values closer to one indicating

better protection. For tests that either fail to reject the null hypothesis of no overlap or
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Figure 3.6: Quantifying error in F̂Gr for two polygenic score association tests in
the UK Biobank
(A) For a sample of N = 399, 801 individuals in the UK Biobank we used their birth location
as recorded in northing and easting coordinates as two separate test vectors and computed
F̂Gr for a distinct GWAS panel of M = 50, 136 individuals. We varied the number of
SNPs used to compute F̂Gr and, as expected, increasing the number of SNPs decreased
the estimated error in F̂Gr. (B) Using each estimate of F̂Gr as a covariate, we conducted
GWASs for standing height and ascertained sets of SNPs used to compute q̂ in the test panel
(confidence intervals are shown after applying a Bonferroni correction to account for the two
tests we perform). We compared these results to an “uncorrected” q̂ computed using effect
sizes estimated in a GWAS with no covariates included and two additional estimates of q̂,
one where 40 sample PCs were included in the GWAS and one where 40 sample PCs and
the estimate of F̂Gr for L = 1, 000, 000 were included.

68



have R2
J/γ̂FGr

values close to one, we have high confidence that q̂ is unbiased. We apply

our procedure to 30 sets of allele frequency contrasts using four different subsamples of the

UKBB as GWAS panels, each with varying degrees of overlap with the frequency contrasts.

For each contrast/GWAS panel pair we run a polygenic score association test for 17 different

phenotypes in the UK Biobank.

3.4.1 Datasets

Test Panels

Human Genome Diversity Project and Thousand Genomes Project

I downloaded high-coverage whole genome sequencing data108 from 4,094 diverse indi-

viduals from the harmonized Human Genome Diversity Project (HGDP) and the Thousand

Genome Project (1kGP). From these data, we constructed 15 different sets of allele frequency

contrasts (r).

First, we grouped individuals by the provided project meta project pop code that

corresponds to continental-level ancestry groups and selected only groups with at least 200

samples, yielding 5 groups: East Asia (eas), Non-Finish Europe (nfe), Africa (afr), South

Asia (sas), and America (amr). We then computed the allele frequency differences between

all pairs of groups, resulting in 10 different contrasts (see Figure 3.21A and Table 3.1 for a

map of samples and sample sizes, respectively).

Next, we selected five different test axes where stratification has been of concern in

previous studies of polygenic adaption. We note that all of the following examples studied

associations with polygenic scores for height, but here we test every contrast for association

with polygenic scores for all 17 traits (including height). Additionally, while the motivation

behind choosing these axes stem from previous inquiries, we do not use the exact same test

panel datasets so our study should not be considered an attempt to replicate any previous

study but rather an inquiry into stratification along similar ancestry gradients.
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First we consider the test vectors of latitude in Europe and longitude in Eurasia. As

discussed in Chapter 1, Berg et al. (2019)36 and Sohail et al. (2019)72 found reduced signal

for polygenic selection along both latitude in Europe and longitude in Eurasia after stricter

control for population stratification. Here we aim to re-test these axes, along with longitude

in Europe and latitude in Eurasia. To this end, we first constructed a Eurasian panel by

selecting individuals with "fin", "nfe", "eas", "sas" project meta project pop codes, and

used latitude and longitude as test vectors to generate two sets of allele frequency contrasts

(see Figure 3.21B and table 3.1). Next, we constructed a European panel by selecting

only individuals with "nfe" as their project meta project pop code, and similarly used

latitude and longitude as test vectors to generate another pair of frequency contrasts (see

Figure 3.21C and table 3.1).

Finally, we consider the test axis from Chen et al. (2020)73. As discussed in Chap-

ter 1, this study found evidence of polygenic adaptation for decreased height in Sardinian

individuals compared to mainland Europeans using evolutionary diverged GWAS and test

panels. Here we aim to test for polygenic score divergence along the same ancestry gradi-

ent and generate r by computing the allele frequency difference between individuals with

the project meta project pop code “nfe” and project meta project subpop code “sdi”,

corresponding to individuals from Sardinia. (see Figure 3.21D and table 3.1).

Single Density Scores

Single density score (SDS), introduced by Field et al. (2016)34, is a method to infer

recent changes in allele frequency. SDS is motivated by the fact that recent selection distorts

underlying genealogies, making terminal branches shorter and resulting in longer genomic

distances between singleton mutations. This distance is then used as a site-level summary

statistic whose value reflects the amount of allele frequency change in the past 2,000 - 3,000

years. SDS values can be combined with GWAS summary statistics to test for recent selection

on a trait (tSDS) by testing for a significant correlation between effect size estimates and SDS
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values. One interpretation of a significant correlation is recent selection acting on the trait in

question to increase the frequency of trait-increasing alleles. In the original SDS paper, Field

et al. (2016) used tSDS to conclude that height, alongside 15 other phenotypes, has been

under selection in the ancestors of modern British individuals. However, Berg et al. (2019)36

and Sohail et al. (2019)72 concluded that the height signal was overestimated, likely due to

population stratification in the original GWAS effect size estimates, suggesting that, similar

to tests of polygenic score difference, tSDS analysis is susceptible to stratification bias. Here,

we use the original SDS values, estimated in the UK10K panel109, as our vector of allele

frequency contrasts to re-evaluate SDS in light of our results. Additionally, we use SDS

values estimated by Luo et al. (2023)110 in the Han Chinese populations as an additional

set of allele frequency contrasts.

Ancient DNA contrasts

Le et al. (2022)6 use ancient DNA from 1,297 individuals from Holocene Europe to

identify loci with rapid frequency change across three major epochs of European history:

the Neolithic, Bronze Age, and Historical period. The authors start by splitting the total

sample into five groups corresponding to different time transects. They then model the

ancestry composition of each of the three target epochs as a mixture of the five groups.

The expected allele frequency for each epoch is therefore a weighted average of ancestral

allele frequencies. The authors detect loci under selection post-admixture by comparing

the expected allele frequency predicted by the demographic model to the observed allele

frequency in the actual samples. Alleles under positive selection should be observed at

higher allele frequencies than predicted by the neutral model. Similar to SDS, the authors

compare the correlation between selection statistics and GWAS effect size estimates (from

Biobank Japan) to detect selection in polygenic traits, finding a total of 39 traits under

selection across the three epochs. Here we use the difference between observed and expected

allele frequencies for the three epochs from Le et al. (2022) as three separate r vectors.
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British Isles country of birth

In order to construct a set of allele frequency contrasts that capture more subtle, sub-

continental ancestry gradients we used individuals from the UK Biobank who were not

members of any of the four GWAS panels (see below), and their country of birth to construct

10 sets of allele frequency contrasts. We first used the data field 21000 to select individuals

who self-identified as White and then used data field 1647 to get individuals who were born

in the British Isles and who recorded their country of birth as one of the following five

countries: England, Scotland, Northern Ireland, Republic of Ireland, or Wales (see table 3.2

for sample sizes). Finally, we calculated all pairwise allele frequency differences between the

five countries, resulting in 10 sets of r vectors representing within the British Isles country

of birth differences.

GWAS Panels

Our goal was to use the UK Biobank43 to construct four different GWAS panels with

different levels of genetic diversity while maintaining sufficient sample sizes to conduct well-

powered GWASs, allowing us to compare the results of the above polygenic score association

tests across a range of realistic scenarios. To this end, we used a sampling scheme developed

by Steiner et al. (unpublished) to create four panels of 100,000 individuals each.

To construct each panel, we first calculated the median PC 1 and PC 2 coordinates of

the entire biobank and then calculated the Euclidean distance between all individuals and

the median. Next we chose four sampling distances, 5ϵ, 10ϵ, 50ϵ, and 200ϵ, with ϵ = 1e−4,

and randomly sampled 100 thousand individuals with distances smaller than each of four

thresholds. Figure 3.7A shows the PC1 vs PC2 biplot for each of the four panels with the

colored dots representing the sampled individuals.
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3.4.2 Overlap between panels

In Chapter 2, we demonstrated that bias in polygenic score association tests is produced

when the vector of expected confounders aligns with the test vector of interest in a space

defined by FGX , the cross-panel kinship matrix (see Equation 2.12). Thus, for any set of

L allele frequency contrasts measured in the test panel, r, the susceptibility to confounding

will depend on the overlap in structure between r and the GWAS panel G. Here we outline

an empirical test for overlap in population structure and apply it to all 30 sets of allele

frequency contrasts.

First, suppose that r has been mean-centered and standardized such that it has V ar(r) =

1 and the columns of G have been standardized such that V ar(G·ℓ) = 1. To test for overlap

in structure between the allele frequency contrasts and the GWAS panel, we first define the

statistic,

H =
EM

[
Cov(r,Gi·)2

]
EM [V ar(Gi·)]

(3.8)

where the expectation is taken over individuals in the GWAS panel. H is therefore the

average proportion of genetic variance in the GWAS panel that lies along the test axis.

Next, we will propose an estimator of H, but first, we define the LD matrix, R, and its

eigen decomposition as

R =
1

M − 1
G⊤G = V⊤Λ2V (3.9)

where V⊤ is the L×M matrix containing the SNP loadings and the diagonal of Λ2 contains

the eigenvalues. We denote the rows of V as vk which record the loading of the L SNPs onto

the kth principal component. Each vk has V ar(vk) =
1
L .
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Then, we propose that,

Ĥ =
1

M(L− 1)2
r⊤G⊤Gr (3.10)

=
M − 1

M(L− 1)2
r⊤Rr. (3.11)

is an estimator of H, and note that if we define our population structure estimator as

F̂Gr =
1√
L−1

Gr, then H = M−1
M(L−1)

F̂⊤
GrF̂Gr, making Ĥ easy to calculate using our existing

methods.

Under the null hypothesis of no overlap in structure between panels ,we can write the

expectation of Ĥ

E[Ĥ|no overlap] =
M − 1

M(L− 1)2
E
[
r⊤Rr

]
(3.12)

=
M − 1

M(L− 1)2
E
[
r⊤VTΛ2Vr

]
(3.13)

=
M − 1

M(L− 1)2

∑
K

λ2kLE
[
(rℓvk,ℓ)

2
]

(3.14)

=
M − 1

M(L− 1)2

∑
K

λ2k (3.15)

=
(M − 1)L

M(L− 1)2
(3.16)

≈ 1

L
(3.17)

where λk is the kth eigenvalue of the LD matrix. Because r and vk are independent under

the null hypothesis, E
[
(rℓvk,ℓ)

2
]
= 1

L and the sum of the eigenvalues of the LD matrix is L.

Next, we can estimate the variance of Ĥ via a jackknife approach across B = 581 ap-

proximately independent LD blocks,

σ̂2H =
B − 1

B

B∑
i=1

Ĥ(−i) − 1

B

B∑
j=1

Ĥ(−j)

2

(3.18)
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and conduct a one-tailed hypothesis test for Ĥ > 1
L .

After applying the above procedure to all 30 sets of contrasts outlined in Section 3.4.1

and applying multiple testing correction for 120 tests (30 contrasts × 4 GWAS panels), we

found that 100/120 contrasts GWAS panel pairs had significant overlap. Figure 3.7B shows

Ĥ for all 30 sets of allele frequency contrasts in all four GWAS panels. The top row of Figure

3.7B has the results of the continental-level contrasts in the HGDP1kGP. Unsurprisingly, in-

creasing the sampling distance in the GWAS panel increases the average variance explained

by these contrasts, with the European-African ancestry contrasts explaining the largest av-

erage proportion of variance (0.0009 in the 200ϵ panel) of any contrast. In contrast to the

continental contrasts, the average proportion of variance explained for the within the British

Isles country of birth contrasts (third row in Figure 3.7B) only increases very slightly (or

not at all) with increasing sampling distance as variation along these axes is well captured

by the 5ϵ dataset that contains individuals with primarily white British ancestry.

The value of Ĥ for the aDNA Le et al. (2022) contrasts and the UK10K Field et al.

(2016) SDS contrasts, all of which are meant to capture allele frequency shifts within Europe,

does increase with sampling distance but at a smaller magnitude than the HGDP1kGP.

The European Neolithic and Historical period aDNA contrasts, in particular, explain less

variance than expected for the 5ϵ, 10ϵ, and 50ϵ panels. We are unsure what is causing these

observations. It is worth noting that, unlike the HGDP1kGP and British Isles contrasts, the

Le et al. contrasts are not allele frequency differences directly; instead, they are the difference

between observed and expected allele frequencies, where the allele frequencies themselves

were inferred via a maximum likelihood approach from read counts in ancient genomes.

It is unclear what, if anything, about this procedure would cause a smaller proportion of

average variance explained than we expect under the null. Further investigation is needed to

determine possible constraints on what types of contrasts can be used for our test. Finally,

the SDS values computed using individuals with Han Chinese ancestry have no overlap in the
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5ϵ and 10ϵ panels, but they explain a significant proportion of variance in 50ϵ and 200ϵ panels.

Increasing the sampling distance increases the proportion of East Asian ancestry included

in the GWAS panel and therefore the ability to capture the Han SDS axis of variation.

Our results indicate that for the 20 GWAS/contrast pairs where we were unable to reject

the null hypothesis of independent structure, the resulting polygenic score association tests

should be well protected from stratification bias. For tests where the null is rejected, it

is important to note that choosing a GWAS panel with a smaller Ĥ does not necessarily

lead to less bias in q̂ as the strength of potential confounders is unknown. It’s possible,

though perhaps unlikely, that panels where Ĥ is small could have more confounding along

the shared axis than panels where Ĥ is larger. So, while a smaller value of Ĥ should be

associated with less bias for a given amount of confounding, we generally know very little

about the pattern or strength of confounding and should avoid strong assumptions about

the relationship between the value of Ĥ and the bias of a given polygenic score association

test.

3.4.3 Variance in F̂Gr explained by sample PCs

To protect a polygenic association test using set allele frequency contrasts, r, from strat-

ification bias, variation along F̃Gr must be controlled for in the GWAS panel. In Section

3.2, we discussed two approaches, estimating F̃Gr directly and including the estimate as

a covariate in the GWAS or including some number of sample PCs as covariates, and the

relationship between the two. However, even when F̃Gr is well estimated by F̂Gr, including

it as the sole control for population structure is sub-optimal as confounding along other axes

in the dataset may confound the ascertainment process, leading to a less powerful polygenic

score. In contrast, the inclusion of multiple PCs controls for stratification along multiple

axes of variation, but is not guaranteed to capture F̃Gr. One benefit of F̂Gr is that it is

possible to estimate the error directly using a block jackknife approach, something that is
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Figure 3.7: GWAS panel sampling scheme and proportion of variance explained.
(A) We constructed four GWAS panels of 100K individuals each from the UKBB following
the sampling scheme outlined by Steiner et al. (unpublished). Setting ϵ = 1e−4, we sampled
individuals within 5, 10, 50, and 200 ϵ from the median position on PC 1 and PC 2 using
Euclidean distance computed on PCs 1 and 2 as our distance metric (B) We computed Ĥ,
the proportion of variance explained by r in the given GWAS panel for all 30 sets of test
panel contrasts. The red line is the expectation of E[Ĥ] = 1

L under the null.
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difficult to do with sample PCs (though see Haag et al. (2024)111). Here, we outline a

procedure for using F̂Gr and the estimate of its error to determine if a set of external allele

frequency contrasts is protected by J sample PCs, thereby combining the benefits of both

approaches.

We start by writing our estimator F̂Gr as the sum of the true axis of structure F̃Gr and

some error,

F̂Gr =
√

γFGr
F̃Gr +

√
(1− γFGr

)eFGr
(3.19)

where V ar(F̃Gr) = 1 and eFGr
is a vector of random Normals with V ar

(
eFGr

)
= 1. The

accuracy of the estimator F̂Gr is therefore described by 0 < γFGr
< 1, with values closer to 1

corresponding to a more accurate estimate. Given our standardization and scaling, we have

V ar
(
F̂Gr

)
= γFGr

+ 1− γFGr
(3.20)

= 1, (3.21)

and the fraction of variance in F̃Gr that is explained by F̂Gr is

V ar(
√
γFGr

F̃Gr)

V ar(F̃Gr)
= γFGr

. (3.22)

As outlined in Section 3.7.2, we can estimate the error êFGr
via a block jackknife approach

and compute γ̂FGr
= 1 − êFGr

to determine what fraction of variance in our estimator

represents a true signal of population structure. In Figure 3.8, we plot the error in F̂Gr for

all contrasts in all GWAS panels against Ĥ, the average proportion of variance in the GWAS

panel explained by the contrast. In general, the larger the proportion of variance a contrast

explains, the more accurate the estimate of F̃Gr is.

Next, we turn to PCs. We assume the population PCs are scaled such that V ar(Ui) = 1
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Figure 3.8: The larger the average proportion of variance a contrast explains, the
more accurate the estimates of F̂Gr

For all sets of 30 allele frequency contrasts, we plot the average proportion of variance
explained (see 3.7) for each contrast/GWAS panel pairs against our block jackknife estimate
of the error in F̂Gr (see 3.7.2).

for all i. F̃Gr can be interpreted as a linear combination of the population PCs

F̃Gr =

min(M,L)∑
i=1

√
αiUi (3.23)

where √
αi = Cov

(
Ui, F̃Gr

)
, given our standardization. Our standardization also implies

that the proportion of variance in F̃Gr that is explained by Ui is equal to αi, and because

F̃Gr must lie within the span of the PCs and the Ui are orthogonal to one another, the total

variance explained is simply
∑min(M,L)

i αi = 1.

Generally, we might think that F̃Gr corresponds to a sufficiently important axis of pop-
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ulation structure in the GWAS panel that only some top J PCs are needed, i.e., that

F̃Gr =
J∑
i=1

√
αiUi (3.24)

for J ≪ min(M,L). This would imply that αi = 0 for all i > J , so that
∑J

i αi = 1, for

some J ≪ min(M,L).

Similar to our direct estimator, sample PCs need to be estimated from data. To this end,

we write

Ûi =
√
γiUi +

√
(1− γi)ei (3.25)

where again ei is a vector of random Normals with V ar (ei) = 1 and 0 < γi < 1, so that

V ar
(
Ûi

)
= γi + 1− γi (3.26)

= 1 (3.27)

and the fraction of variance in Ui that is explained by Ûi is

V ar(
√
γiUi)

V ar(Ui)
= γi. (3.28)

Now, suppose we fit a model in which we try to explain F̂Gr as a function of the top J

sample PCs,

F̂Gr =
J∑
i

βiÛi + ϵ. (3.29)
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For each i, we have

β̂i = Cov
(
F̂Gr, Ûi

)
(3.30)

=
√

γFGr
γiCov

(
F̃Gr, Ui

)
(3.31)

=
√

γFGr
γiαi, (3.32)

and given our standardization, the variance in F̂Gr explained by Ûi is β̂2i = γFGr
γiαi.

Notably, the step from 3.30 to 3.31 requires the assumption that ei and eFGr
are uncorrelated.

The Ûi are all orthogonal to one another, so the total variance in F̂Gr explained by the top

J PCs is

R2
J =

∑
i

β̂2i = γFGr

J∑
i

γiαi. (3.33)

If the top J PCs are all well estimated (i.e., γi ≈ 1 for i ≤ J) and are sufficient to explain

F̃Gr (i.e.,
∑J

i αi = 1), then

R2
J = γFGr

J∑
i

αi = γFGr
(3.34)

i.e., the fraction of variance in F̃Gr that can be explained by F̂Gr. Because the maximum

variance in F̂Gr that can be explained by J sample PCs is γFGr
, we can combine R2

J and our

estimate of the signal for each contrast γ̂FGr
to estimate the fraction of F̃Gr captured by the

J PCs.

In practice, we first compute F̂Gr and γ̂FGr
for all sets of contrasts in each GWAS panel

using SNPs on odd chromosomes, and we compute 40 sample PCs in each GWAS panel using

SNPs on even chromosomes. Using SNPs on opposite chromosomes allows us to compute

R2
J without double dipping and ensures that the residuals ei and eFGr

are uncorrelated. We

note that using only half the number of SNPs to estimate both F̂Gr and sample PCs will
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increase the error in each. For sample PCs, in particular, reducing
√

M
L may render some

population PCs undetectable or poorly estimated. When the full set of SNPs is used to

compute the PCs that get included in the GWAS, it is possible that a larger fraction of F̃Gr

will be captured, making our estimate a lower bound. In Figure 3.9A we show our results for

the HGDP1kGP latitude in Europe contrast in all four GWAS panels. The dashed red line

is our estimate of the signal in F̂Gr. When the sampling distance is 5ϵ, 40 PCs capture only

56% of the signal, but increasing the sampling distance increases both the signal and the

faction of signal that is captured by the top PCs. At 200ϵ, 98% of the signal is captured by

the top 40 PCs and a polygenic score association test in which 40 sample PCs are included

in the GWAS would be well protected from stratification bias.

To better summarize our data, we compute R2
J/γ̂FGr

: the fraction of signal explained by

J PCs. Figure 3.9B plots this ratio as a function of PCs for the same latitude in Europe

contrast. This visualization again suggests that this contrast is well protected by 40 PCs in

the 200ϵ panel, whereas all three other panels are susceptible to potential confounding along

F̃Gr, even with 40 PCs included. We compute R2
J/γ̂FGr

for all contrasts where we rejected the

null hypothesis of independent panels and plot the results in Figure 3.9C. In the HGDP1kGP

panel, all continental contrasts are well protected in the 200ϵ panel but are susceptible in

all other panels with ratios much less than one. The same is true for all latitude and

longitude contrasts in this dataset. However, the Sardinia vs. mainland Europe contrast is

not completely captured by 40 PCs in any panel. Unlike the HGDP1kGP contrasts, R2
J/γ̂FGr

is similar across panels for most of the country of birth within the British Isles contrasts,

reflecting the fact that the ancestry gradient represented by these subtle contrasts exists

mainly within the smallest sampling distance tested. In the aDNA panel, all three contrasts

are well captured by the 200ϵ sampling distance. For the Historical period contrasts, we

observe a ratio slightly greater than one for the 200ϵ panel (R2
40/γ̂FGr

= 1.02). This is the

only contrast/GWAS panel pair we observe this phenomenon for, and we are unsure what
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is causing this violation of our model. For the SDS contrasts, both the Han and UK10K

inferences are well protected by the top 40 PCs in the 200ϵ panel. It is perhaps surprising

that the UK10K contrasts, designed to capture recent selection in individuals of British

ancestry, are not as well protected in the narrow sampling distances. Counterintuitively,

using a more diverse panel with 40 PCs should protect these contrasts better than the more

homogeneous panels.

3.4.4 Polygenic score association test results from 17 phenotypes

In this Section, we use our 30 sets of allele frequency contrasts and four GWAS panels

to conduct polygenic score association tests for 17 different phenotypes in the UK Biobank

(see Table 3.3 for a complete list). For each phenotype/GWAS panel combination, we run

two GWASs: one including the top 40 sample PCs and one with no correction for popula-

tion structure. For all GWASs we included age, sex, and genotype measurement batch as

covariates and used the simple linear regression model in fastGWA27. We then selected the

minimum p-value per independent LD block (as defined by Berisa and Pickrell (2016)112)

with p < 1e−4 to compute q̂. We assess the significance of q̂ by estimating the standard

error via block jackknife and computing a p-value for the null hypothesis q = 0 (see Methods

3.7.2 and Berg et al. (2019)36).

First, we compare uncorrected q̂2 to q̂2 computed from a GWASs that included 40 sample

PCs across all sets of allele frequency contrasts (see Figure 3.10). When no PCs are included,

the larger the average variance explained by the contrasts in the GWAS panel (Ĥ), the larger

the inflation of q̂2. This result is consistent with our theory that increased overlap between

panels can lead to more bias in polygenic scores if the confounders align with the shared axis

of structure. When 40 PCs are included in the GWAS model, inflation is reduced, and the

relationship between Ĥ and q̂2 is weaker. The 5ϵ panel has the largest slope (0.67) at 40 PCs,

indicating that many of these tests are not fully protected from stratification, an observation
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Figure 3.9: The ratio of variance explained by sample PCs to signal in F̂Gr indicates
how well captured F̃Gr is by J PCs.
(A) For the HGDP1kGP latitude in Europe contrast, we computed F̂Gr for all four GWAS
panel sampling distances. We then compute the cumulative variance explained by each of
the top 40 PCs (R2

J ). For this contrast, increasing the sampling distance increases R2
J .

The maximum variance explained is γ̂FGr
, the signal in our estimate of F̂Gr. (B) To better

summarize our results, we compute R2
J/γ̂FGr

and plot this ratio for each GWAS panel as a
function of cumulative PCs. (C) R2

J/γ̂FGr
for all sets of non-independent contrast/GWAS

panel pairs.
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that is consistent with our previous results that, across the whole set of contrasts, R2
40/γ̂FGr

is generally smallest for the 5ϵ panel.

Next, we analyze the results of individual association tests, grouped by dataset. As

discussed in the previous Section, the ratio R2
40/γ̂FGr

is an estimate of the fraction of F̃Gr

captured by the top 40 PCs. Therefore, we plot the -log10(p-value) for each association test

as a function of this ratio for tests when the panels are not independent. For independent

contrasts/GWAS pairs, we still plot the -log10(p-value) and simply group contrasts together

on the x-axis. Association tests with a significant p-value and either in independent panels or

with a ratio close to one are signals that we are most confident represent real polygenic score

divergence, whereas significant tests with R2
40/γ̂FGr

<< 1 cannot be ruled out as false positive

results. We note that we don’t use a strict cutoff on R2
40/γ̂FGr

to distinguish true positives

from false positives but instead use R2
40/γ̂FGr

as a measure of confidence. Additionally, we

draw two different Bonferroni cutoffs: a more liberal one treating each contrast in a given

GWAS panel as a separate hypothesis and correcting for the 17 different phenotypes, and a

more conservative that corrects for all contrast/GWAS/phenotype combinations in a given

dataset. Throughout each dataset we draw attention to examples of signals where we have

high confidence and others where we suspect potential confounding, as well as highlighting

our results for previously studied cases of polygenic adaptation.

Human Genome Diversity Project and Thousand Genomes Project

We ran a total of 2,040 polygenic score association tests using the Human Genome Diver-

sity Project and Thousand Genomes Project combined dataset. Figure 3.11A summarizes

our results for all contrasts, phenotypes, and GWAS panels, when including 40 sample PCs

in the GWAS model. 17 association tests were significant (Table 3.4) at our more liberal

threshold, with 6 tests occurring in independent panels that should be protected from strat-

ification. Of the remaining 11 tests, only 3 tests have R2
40/γ̂FGr

> 0.8.
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Figure 3.10: Confounding increases with the proportion of variance explained.
Each panel plots both the uncorrected estimate of q̂2 and q̂2 corrected for 40 sample PCs
for all 30 sets of contrasts as a function of the average proportion of variance explained by
each contrast in the GWAS panel with that sampling distance.
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The most well-protected significant test (R2
40/γ̂FGr

= 0.99) is the difference in polygenic

scores for glucose levels between non-Finnish Europeans and American continental-level an-

cestry groups (Figure 3.11B). In Figure 3.11C we also highlight a putative false positive result

where there is a positive association between mean corpuscular volume polygenic scores and

longitude in Europe when the effect sizes were estimated in the 5ϵ GWAS panel. The value

of R2
40/γ̂FGr

was 0.60, indicating that this test was not well protected from stratification bias

by the included PCs. The uncorrected q̂ was significantly less than zero, similar to the cor-

rected test, suggesting that uncorrected stratification might be slightly downwardly biasing

this association. When we increase the sampling distance, the better protected the test is

(R2
40/γ̂FGr

= 0.9 and 0.99 for 50ϵ and 200ϵ, respectively) and there is no longer a signal of

divergence.

The strongest association, and the only one to pass the global threshold is the previously

discovered height polygenic score divergence between Sardinian and mainland non-Finnish

European individuals (see Figure 3.12). We see a lower polygenic score in Sardinians in all

of our analyses with a significant divergence in three of four of our GWAS panels (50ϵ is

not significant after multiple testing correction). In Figure 3.12, we show that the q̂ values

are similar across panels despite the direction of the difference, using the uncorrected effect

sizes, switching from 50ϵ to 200ϵ. The values of R2
40/γ̂FGr

range from 0.56 to 0.89 (see Figure

3.12B) so although none of the tests are fully protected from confounding, the fact that the

direction of confounding switches while q̂ (including 40 PCs) remains similar across panels

lends additional support. Follow-up analyses could verify the signal by including additional

PCs to increase R2
J/γ̂FGr

or by testing additional GWAS panels for a higher R2
40/γ̂FGr

for this

contrast.

The positive association between polygenic scores for height and latitude in Europe is

perhaps the most well-studied case of polygenic adaptation in humans. In 2019, both Berg et

al.36 and Sohial et al.72 demonstrated that the original signal was overestimated, likely due
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Figure 3.11: Polygenic association test results for 17 phenotypes in the HGDP
and 1kGP combined dataset.
(A) Manhattan plot for the results of association tests for 15 contrasts with effects sizes for 17
phenotypes estimated in four different GWAS panels. All GWASs included 40 sample PCs.
For the left panel, the x-axis is R2

40/γ̂FGr
with values closer to 1 indicating better protection

from potential confounders. The right panel contains the independent contrasts GWAS
pairs. The gray dotted line represents our more liberal significance threshold that treats each
contrast/GWAS panel pair as a separate hypothesis. The gold dotted line represents our
more conservative global threshold that corrects for all contrast/GWAS panel/phenotype
groupings in the dataset. (B) Glucose polygenic scores differences between non-Finnish
Europeans and American individuals across all four GWAS panels. There is strong statistical
support for lower glucose levels in non-Finnish Europeans. (C) The covariance between mean
corpuscular volume polygenic score differences and longitude in European samples. There is
a significant association in the 5ϵ panel where the test is not well protected from stratification
bias. 88



Figure 3.12: Evidence for decreased height polygenic scores in Sardinian individ-
uals compared to mainland Europeans.
(A) We computed the covariance between allele differences between Sardinia and mainland
Europe and GWAS effect sizes for height estimated in our four different GWAS panels. When
40 PCs are included in the GWAS, q ≈ −4 across all panels indicating that trait-associated
alleles are at lower frequency in Sardinia. However, none of the tests are fully protected
from potential confounders with the largest R2

40/γ̂FGr
equal to 0.87. (B) Each row shows the

distribution of height polygenic scores in each group without any control for structure (top
row) and with 40 PCs included (bottom row)
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to uncorrected stratification bias in the GIANT height effect sizes estimates. Both studies

find the association to be either very weak or completely absent, depending on the exact

methodology. Here, we test for association of height polygenic scores with latitude in non-

Finish European individuals in all four GWAS panels. We find that q̂ is positive in all four

panels, but the signal is non-significant after multiple testing correction (Figure 3.13). In the

200ϵ panel, where the test is best protected (R2
40/γ̂FGr

= 0.98), we find that q̂ = 1.9 (adjusted

p = 0.057). Our results support the conclusions from Berg et al. and Sohail et al. in that

we observe the same direction of signal, but no statistical support in this test panel dataset.

Originally reported in Berg et al. (2017)69, Berg et al. (2019) also investigated a signal of

decreasing height polygenic scores from east to west along the Eurasian continent. While the

original signal (detected using effect sizes estimated in GIANT) was strongly overestimated,

when using effect sizes from the UKBB the authors find a weakly significant signal in the

same direction. Here we also find a negative relationship between height polygenic scores

and longitude using 40 PCs as population structure correction, but the relationship is not

significant in any of the GWAS panel (Gigure 3.14), including in the 200ϵ where stratification

is well controlled for (R2
40/γ̂FGr

= 0.99).

British Isles country of birth

All 10 country of birth contrasts have significant overlap with all four GWAS panels with

the narrowest sampling distances capturing nearly as much variance as the most diverse

panels (see Figure 3.7). Additionally, R2
40/γ̂FGr

for each contrast is similar across sampling

distances with most values clustering around 0.8-0.85. Of the 680 polygenic score association

tests we conducted, we find no globally significant results and only 6 that pass our more

liberal threshold (see table 3.5 and Figure 3.15A). For all six tests, R2
40/γ̂FGr

ranges from

0.77 to 0.86 and none of the tests replicated in another GWAS panel. In Figure 3.15B and

3.15C, we plot two of the significant tests, polygenic score divergence for triglycerides and
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Figure 3.13: No significant relationship between height polygenic scores and lati-
tude in Non-Finnish European samples.
(A) Each column shows the covariance between latitude of samples from Europe and poly-
genic scores for height calculated from effect sizes estimated in each of the four GWAS panels
with different sampling distances. The 200ϵ panel is well protected from stratification and
indicates a positive, but non-significant relationship. (B) Each row shows the relationship
between latitude and the average height polygenic score per sub-population for uncorrected
polygenic scores (top row) and those that include 40 PCs (bottom row).

91



Figure 3.14: No significant relationship between height polygenic scores and lon-
gitude in Eurasian samples.
(A) We compute q̂ using longitude of Eurasian samples and polygenic scores for height. Each
column displays our results for both the uncorrected effect sizes (PCs = 0) and the effect
sizes corrected with 40 sample PCs across all 4 sampling distances in the GWAS panel. The
larger the sampling distance, the better protected the test is by 40 PCs (larger R2

40/γ̂FGr
), and

the larger the magnitude of confounding along the east-west axis. (B) We plot the average
height polygenic score for each subpopulation as a function of longitude with the dotted line
as the line of best fit.
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mean corpuscular hemoglobin concentration (MCHC) between individuals born in Scotland

and those born in Wales. The triglyceride polygenic score difference is significant in the 50ϵ

panel (adjusted p = 0.01), but not in any other panel. All panels have R2
40/γ̂FGr

≈ 0.77

but have varying magnitudes and directions of confounding. The uncorrected q̂ in the 50ϵ

panel also has a significant negative value and we hypothesize that residual confounding is

downwardly biasing the 40 PC q̂ in this panel. We observe a similar pattern with the 5ϵ

panel for MCHC polygenic score divergence with a significantly positive uncorrected q̂ and

q̂ when 40 PCs are included.

We note that all of our significant results are for three phenotypes (mean corpuscular

volume, MCHC, and triglycerides) that relate to blood. While this is a potentially interesting

result that might warrant further follow-up, we observe very limited statistical support for

any of our observations. None of the significant results were fully protected from stratification

bias, and none of them replicated across panels where the patterns of confounding varied.

Therefore, with our current analyses, we cannot rule out that these results are false positives

driven by residual stratification.

Ancient DNA contrasts

Next, we analyze the polygenic association test results for the three sets of contrasts from

Le et al. (2022). These contrasts are designed to capture selection post admixture for three

different epochs (European Neolithic, Bronze Age, and Historical). The original authors find

evidence for selection acting on 39 different traits across all three epochs using effect sizes

estimated in Biobank Japan. Of the 17 phenotypes we tested, all of which overlapped with

the 220 phenotypes they tested, we find no globally significant tests and only 3 tests that pass

our more liberal threshold. First, we see a marginally significant signal for selection on trait

increasing-alleles for mean corpuscular volume and selection on trait-decreasing alleles for

systolic blood pressure in the Historical period. Le et al. find no signal for mean corpuscular

93



Figure 3.15: Limited evidence for polygenic score divergence between countries of
birth in the British Isles.
(A) Manhattan plot for the results of association tests for 10 contrasts with effect sizes for 17
phenotypes estimated in four different GWAS panels plotted against R2

40/γ̂FGr
. All GWASs

included 40 sample PCs. (B) Polygenic score for triclycerides differences between individuals
born in Scotland and those born in Wales in all four panels. (C) Polygenic score differences
for mean corpuscular hemoglobin concentration for the same Scotland-Wales contrast.
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volume and but they do find evidence for selection on trait-increasing alleles for systolic

blood pressure for the same epoch. Additionally, we find evidence for selection on trait-

decreasing alleles for systolic blood pressure in the European Neolithic epoch whereas the

original authors do not see a signal.

There are a lot of differences between our study design and Le et al. (2022), including

differences in GWAS sample size, ascertainment process, p-value threshold, and ancestry of

the GWAS panel. Notably, the Biobank Japan GWAS has ∼ 80, 000 more (n = 179, 000)

samples and we may simply be underpowered to detect their observed selection signals. The

three selection signals we do detect occur in independent panels that should be immune

to stratification. However, none of the signals replicate across panels and are not globally

significant. Overall, more work is needed to directly replicate the study design of Le et al.

in the context of our approach to stratification.

Figure 3.16: No replication of selection signals in ancient DNA contrasts.
Manhattan plot for the results of association tests for 3 contrasts with effects sizes for 17
phenotypes estimated in four different GWAS panels plotted against R2

40/γ̂FGr
in the left

panel and by the contrast type in the right panel (independent contrasts/GWAS pairs).
Only 3 tests pass our liberal threshold, none of which were discovered (either in the same
direction or at all) in the original publication.
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Singleton Density Scores

Finally, we ran polygenic score association tests for all phenotypes using two sets of

singleton density scores, one estimated in a sample of individuals from the UK34 and one

estimated in a sample of individuals from the Han Chinese ancestry group110. We find six

significant associations at our lower threshold (see table 3.7 and Figure 3.17A), all of which

came from the UK10K contrasts. The strongest signal we find, and the only one to pass the

global threshold, is for height (Figure 3.17B) which is significantly positive in all but the

50ϵ GWAS panel. As discussed above, multiple studies, including the original Field et al.

(2016) publication, found a highly significant correlation between SDS values and GWAS

effect sizes for height-associated alleles. Berg et al. (2019) and Sohail et al. (2019). found

either a greatly attenuated signal or no signal at all depending on the GWAS panel used.

However, Howe et al. (2022) recovered a significant signal using effect sizes estimated in

a sibling GWAS, the gold standard for estimating direct effects immune from stratification

bias. In our analyses, we also observe the positive signal using effect sizes estimated in a

well protected GWAS panel where R2
40/γ̂FGr

= 0.97. We also observe a significant positive

relationship between SDS values and body weight effect sizes in the same well-protected

GWAS panel.

Outside of height and body weight, the other two signals we find are for increased basophil

percentage and decreased total protein levels, both in the 50ϵ with R2
40/γ̂FGr

= 0.9. In Figure

3.17 we plot q̂ for basophil percentage. By comparing q̂ from using no PCs across panels, it

appears that confounding increases in the same direction as the putative signal as sampling

distance increases from 5ϵ to 50ϵ, whereas at 200ϵ, where we have the best protection against

stratification, the confounding changes direction, and the signal is no longer significant.

Therefore we hypothesize that the signal for 50ϵ is being driven by confounding that is not

large enough to cause a false positive in 5ϵ or 10ϵ and is corrected for in 200ϵ. We observe a

similar phenomenon for total protein levels.
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Figure 3.17: Evidence for recent selection on height using singleton density scores.
(A) Manhattan plot for the results of association tests for 2 contrasts with effects sizes for
17 phenotypes estimated in four different GWAS panels plotted against R2

40/γ̂FGr
. The Han

contrasts were determined to be independent from the 5ϵ and 10ϵ panels. (B) We find strong
evidence for a positive association between SDS values and trait-increasing alleles for height
with a significant association in the best protected 200ϵ panels where R2

40/γ̂FGr
= 0.97. (C)

The association between trait-increasing alleles for basophil percentage and SDS values in
the 50ϵ panel is a putative false positive.
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3.5 Conclusion

In polygenic score association tests the goal is to test for a relationship between an

ancestry gradient in the prediction panel and the additive component of genetic variation

associated with a trait of interest. Therefore it is a concerning observation that different sets

of GWAS effect sizes for the same trait produce polygenic scores whose relationships vary

widely in both magnitude and direction with major ancestry gradients within the prediction

panel53,113,36,72. How much of this variation is driven by uncorrected effect sizes vs other

factors is still an open question and one that cannot be answered until stratification can be

ruled out.

In this Chapter we built on results from Chapter 2 to develop and test approaches to

control for stratification bias in practice, where population structure covariates must be

estimated from genetic data. We first focus on PCA, where, in order to sufficiently pro-

tect against stratification, the population PCs must capture F̃Gr (or the confounders), and

the sample PCs must be accurate estimates of the population PCs. In our simulations,

the GWAS panel sample size was orders of magnitude smaller than typical biobank scale

GWASs. Consequently, the error lower bound was large for all but the first few PCs and

the performance of the PCs as population structure estimates suffered. If we scaled up our

simulations, we would expect the performance of PCs to improve. Our simulation results

highlight the importance of investigating estimation error in PCs, as it is crucial to under-

stand how many PCs are detectable and how many are accurately estimated, especially when

working with real data. For example, one explanation for the residual stratification in the

GIANT height GWAS effect size estimates is that, in the meta-analysis study design, sample

PCs are estimated in each individual smaller cohort, and important axes of structure in the

combined dataset may have been poorly estimated. In general, polygenic scores built from

effect sizes estimated in a meta-analysis are more correlated with ancestry gradients within

the prediction panel, suggesting potential stratification bias113. Another area of possible
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concern is eQTL studies where sample sizes for individual cohorts are typically on the order

of hundreds rather than hundreds of thousands. Top PCs are usually included as stratifi-

cation control, and it is worth investigating how well estimated these PCs are for different

datasets. Our results here highlight the importance of developing tools to more robustly

estimate the error in population structure estimates.

One benefit of our direct approach is that it is straightforward to estimate error directly

using a block jackknife approach. In both our simulation studies and empirical analysis the

larger the variance explained by F̃Gr in the GWAS panel, the better the estimate of F̂Gr.

In our empirical analysis, the only contrasts where we had less than 10% error were for

continental-level contrasts in the most diverse GWAS panel. This is the precise situation

for which we expect PCs to also be successful in capturing the relevant axis of structure.

However, we can utilize even noisy estimates of F̂Gr to estimate how well protected the test

is by a given number of sample PCs by calculating R2
J/γ̂FGr

.

So, how well protected were our association tests by 40 sample PCs? First, we noticed

that the first 5-10 PCs explain a large proportion of the variance in F̃Gr with only marginal

increases including higher PCs. Some patterns are easily explainable, for example in the

200ϵ panel the first PC explains nearly all the variance for the non-Finish European/African

ancestry allele frequency differences. In contrast, the British Isles country of birth contrasts

require a few more PCs to reach a point of diminishing returns. Even with these contrasts,

which capture subtle structure within the biobank, it appears that including 10 PCs is not

very different than including 40 PCs in terms of protecting those specific contrasts. This was

surprising to me, as I expected higher PCs to contribute more for subtle axes of structure.

It is possible that a higher PC we did not calculate will significantly increase the percent of

variance explained (e.g PC 41 explains the remaining 20% of variance) but given what we

observe it seems more likely that the remaining variance is spread out along a lot of PCs

and may even be undetectable. The observation that the country of birth contrasts, which
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should have complete overlap with the GWAS panel, are not fully protected in any panel

suggests that perhaps, for these contrasts, other estimators of population structure might

be more useful. Notably, our framework is not limited to common variant PCs and could be

applied to any method that represents patterns of population structure in terms of a factor

model. For example, previous work has suggested that PCs of rare variants or local ancestry

assignments might successfully capture more subtle structure, and our framework could be

used to assess the extent to which this is true in any given case. More generally, as new

population structure estimates are developed we hope that our method will allow researchers

to test multiple estimators to find the optimal combination that best protects their contrast

of interest.

We also note that for all contrasts, besides the country of birth contrasts, R2
40/γ̂FGr

was

highest for the most diverse GWAS panel. Conventional wisdom suggests more homogeneous

GWAS reduce stratification. While homogeneous panels may reduce the scale of confound-

ing, which we see evidence for in Figure 3.10, they also seem to make it more difficult to

completely protect contrasts from stratification bias with common PCs. In this case we

have two opposing forces. Broader sampling tends to increase R2
J/γ̂FGr

while also increas-

ing confounding, potentially making the fraction of unexplained confounding larger, despite

a larger R2
40/γ̂FGr

. It is difficult to quantify this phenomenon without knowledge of spe-

cific confounders. Here we have taken the uncorrected q̂ as a proxy for confounding and

in future work we could develop a more sophisticated approach that uses effect sizes from

non-associated SNPs (frequency matched to associated SNPs) as a measure of confounding

along r in the test panel.

However, even using our naive proxy, computing both the uncorrected q̂, the q̂ including

40 PCs, and R2
40/γ̂FGr

we were able to use effect sizes estimated in multiple panels to generate

additional lines of support (or lack thereof) for observed signals. The strongest signal in any

of our datasets was for height polygenic score divergence between Sardinian and mainland
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Europeans. Despite the fact that this contrast was not completely protected in any GWAS

panel (R2
40/γ̂FGr

ranged from 0.56 to 0.87), the value of q̂ including 40 PCs was consistent,

even as the values of the uncorrected q̂ varied in direction across panels. This observation,

along with independent evidence from Chen et al. (2020)73, suggests that this signal is likely

driven by true divergence, even though stratification cannot be ruled out in our analysis.

This example demonstrates the utility of replicating polygenic score association tests using

effect sizes estimated in different GWAS panels where the relationship between ancestry and

environment varies, an idea I discuss in more depth in Chapter 4.

There is no one-size-fits-all solution to controlling for stratification bias in polygenic score

association tests in practice. In this Chapter, guided by solid theoretical results, we have

developed new tools to tackle this challenge. At first, I had hoped that including our direct

estimator F̂Gr in conjunction with PCA and/or LMMs in the GWAS model would provide

a guarantee that the test of interest was completely protected from residual bias. Upon

further investigation, and testing our approach in empirical data, we realized that for many

of our contrasts of interest, F̂Gr, was noisy and did not add much additional protection on

top of PCA. After a deeper exploration of the relationship between PCs, F̂Gr, and Ĥ, we

developed the R2
J/γ̂FGr

statistic as a way to quantify the amount of variance in the shared axis

of structure captured by population structure estimators. Our results demonstrate the need

for continued development of new population structure estimates and further emphasis on

quantification of uncertainty and bias in both population structure estimates and polygenic

scores.
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3.7 Materials and Methods

3.7.1 Simulations

Simulating genotypes

We used msprime 114 to simulate genotypes under different models with 100 replicates

per model. The first model, shown in Figure 3.1, has two population splits, 200 and 100

generations in past, for a total of 4 present-day populations. We fix the population size for all

present and past populations to 10,000 diploid individuals. We then sample 5,000 individuals

per population and create two configurations of GWAS and test panels (N,M = 10, 000)

based on the diagrams in Figure 3.1A and Figure 3.1C. For every model replicate we simulate

a large number of independent sites and down-sample to L = 10, 000 SNPs with MAF >

0.01 in both GWAS and test panels. We use these genotype simulations for Figure 3.1 and

Figure 3.18. When the populations in the GWAS and test panel are non-sister (i.e., Figure

3.1A) the average within panel FST 115 was 0.01, whereas in the configuration in Figure 3.1C

the average FST was 0.005.

For Figure 3.2 we use the same model setup but adjust the split times to 12/0, 12/4, and

12/10 generations in the past for population models A, B, and C, respectively. The average

FST for the overlapping structure scenario is approximately 0.0006. To reduce computational

burden, we scale down the sample size to 1,000 individuals per panel (500 per population).

We simulate large number of independent SNPs and down-sample to L sites (MAF > 0.01

in both panels) which we vary from 500 to 100,000.

For Figure 3.3 we use a model, modified from Zaidi and Mathieson 202047, that is a 6×6
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stepping stone model where structure extends infinitely far back with a symmetric migration

rate of m = 0.01. We fix the effective population size to 1,000 diploid individuals and sample

80 individuals per deme which we split equally into GWAS and test panels (N,M = 1, 440).

As above, we simulate large numbers of independent SNPs and down-sample to L = 20, 000

SNPs with MAF > 0.01 in both panels.

Simulating phenotypes

To study the effect of environmental stratification on association tests, we first simulated

non-genetic phenotypes for an individual i in the GWAS panel as yi ∼ N(0, 1). In our

discrete 4 population models we then generate a phenotypic difference between populations

by adding ∆AB to yi for individuals in population B. For Figure 3.1 we vary ∆AB from 0 to

0.1 standard deviations. In order to compare across models and values of M
L in Figure 3.2

we compute ∆AB as 5000
0.05×L .

In our grid simulations we generated three different phenotypic gradients where the largest

phenotypic shift is always equal to ∆. To generate a latitudinal gradient (Figure 3.3A), we

added ∆
5 to yi for individuals in row 1, 2∆5 for individuals in row 2, etc. For Figure 3.3B,

we generated a gradient along the diagonal by adding ∆
5 to the phenotype for individuals in

deme (1,1), 2∆5 for individuals in deme (2,2), etc. For Figure 3.3C we shifted the phenotype

of individuals in deme (1,4) by ∆. For all grid simulations in Figure 3.3 we set ∆ = 0.2. In

order to compare across values of L in Figure 3.4 we compute ∆ as 60
0.015

To study the effect of controlling for stratification in cases where there is a true signal

of association between polygenic scores and the test vector (Figure 3.18), we used our 4

population demographic model and followed the protocol outlined in Zaidi and Mathieson

(2020)47 to simulate a neutral trait with h2 = 0.3. We first randomly select 300 variants to be

causal and sample their effect sizes from βℓ ∼ N(0, σ2i [pℓ(1− pℓ)]
α), where σ2i is a frequency

independent scale of the variance in effect sizes, pℓ is allele frequency in the GWAS panel,
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and α is a scaling factor controlling the relationship between allele frequency and effect size.

We set α = −0.4 and σ2g = σ2i

200∑
ℓ=1

[2pℓ(1− pℓ)]
α+1 = 0.3.

To simulate a signal of true difference in polygenic score in the test panel, we calculate

the frequency difference pD,ℓ − pC,ℓ at all 300 causal sites in the test panel and flip the sign

of the effect sizes in the GWAS panel such that pD − pC > 0 and βℓ > 0 with probability

θ. θ therefore controls the strength of the association with θ = 0.5 representing no expected

association and θ = 1 representing the most extreme case where trait increasing alleles

are always at a higher frequency in population D. We use θ ranging from 0.5 − 0.62. We

then draw the environmental component of the phenotype ei,k ∼ N(0, 1− h2) and generate

an environmental confounder by adding ∆AB ∈ {−0.1, 0, 0.1} to ei,k for individuals in

population B.

Computing covariates

For each polygenic score association test we computed F̂Gr. We first construct T as

either population ID, latitude or the single deme of interest, depending on the simulation.

Given this test vector, we compute r = X⊤T using the plink2116 function --glm. Finally we

compute F̂Gr (see Equation 3.2) using --sscore in plink2, taking care to standardize by the

variance in the GWAS panel genotypes. Additionally we used plink2 --pca or --pca approx

to compute sample PCs from the GWAS panel genotype matrix.

GWAS

For each set of phenotypes, we carried out three separate marginal association GWASs

using the regression equations below,

1. y = βℓGℓ + ϵ

2. y = βℓGℓ + ωF̂Gr + ϵ
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3. y = βℓGℓ + ω1Û1 + ...+ ωjÛj + ϵ.

Additionally, we conducted a fourth GWAS, y = βℓGℓ+ωF̃Gr+ϵ, for the discrete 4 population

model where F̃Gr is known. All GWASs were done using the plink2116 function --glm.

We then ascertain S SNPs based on minimum p-value for inclusion in the polygenic score.

For Figure 3.1 and Figure 3.3 we set S = 300. In order to compare across values of M
L in

Figure 3.2 and Figure 3.4, we set S = 0.05× L and S = 0.015× L, respectively. For Figure

3.18 we use estimated effect sizes at the 300 causal sites rather than ascertaining based on

p-value.

Polygenic score association test

We construct polygenic scores for the individuals in the test panel as Ẑi =
∑S

ℓ=1 β̂ℓXℓ

where β̂ℓ is the estimated effect size and Xℓ is the mean-centered genotype value for the ℓth

variant.

For each replicate, we then compute the test statistic q̂ = 1
N Ẑ⊤T by multiplying the

vector of polygenic scores for individuals in the test panel by the test vector. Finally, we

compute the bias in q̂ across each set of 100 replicates as E [q̂ − q].

Estimating the error in our population structure estimators for the grid model

Direct estimator

Consider that the value of F̂Gr,ij , the entry of F̂Gr for the ith individual in the jth deme,

can be decomposed as

F̂Gr,ij =
(
F̂Gr,ij − F̂Gr,j

)
+
(
F̂Gr,j − F̃Gr,j

)
+ F̃Gr,j (3.35)

where F̂Gr,j = 1
mj

∑mj

i F̂Gr,ij is the empirical average of F̂Gr,ij within deme j (mj is the

number of individuals in deme j), and F̃Gr,j is the entry of the true population structure axis
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F̃Gr, for all individuals in deme j. Individuals within demes are exchangeable in our model,

so the deviations
(
F̂Gr,ij − F̂Gr,j

)
and

(
F̂Gr,j − F̃Gr,j

)
both represent sources of error in

our estimator. The fraction of variance in F̂Gr that is attributable to error is therefore

error =
Ej

[
V ari

(
F̂Gr,ij − F̂Gr,j

)]
+ V arj

(
F̂Gr,j − F̃Gr,j

)
V ar

(
F̂Gr

) . (3.36)

We can estimate Ej

[
V ari

(
F̂Gr,ij − F̂Gr,j

)]
as

1

H

H∑
h

1

J

J∑
j

1

mj − 1

mj∑
i

(
F̂Gr,ijh − F̂Gr,jh

)2
, (3.37)

where h indexes replicate simulations and H is the total number of replicates (H = 100 in

our case), J gives the total number of demes (36 in our case), mj is the number of individuals

in deme j, and

F̂Gr,jh =
1

mj

mj∑
i

F̂Gr,ijh (3.38)

is the empirical mean entry for deme j in replicate h.

To estimate the contribution of variance in the per-deme means, we compute the variance

across replicates for a given deme, and then take the average of these values across demes:

1

J

J∑
j

1

H − 1

H∑
h

F̂Gr,jh − 1

H

H∑
ℓ

F̂Gr,jℓ

2

. (3.39)

(here, the sums over ℓ and h are both sums over replicates–one for the mean, and one for

the variance–but we use different letters to avoid confusion).
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The denominator, in turn, can be estimated straightforwardly as

1

M − 1

M∑
i

F̂Gr,i −
1

M

M∑
ℓ

F̂Gr,ℓ

2

(3.40)

where we now use ℓ to index individuals within the mean calculation. Our estimate of the

error is then given by summing 3.37 and 3.39 and dividing by 3.40.

Principal components

To estimate the error in the sample PCs, we follow similar steps, except that it is not

obvious how to compute the variance of the per deme means, as the relationship between the

order of the underlying population PCs and the sample PCs may differ across replicates due

to the noisiness of the sample PCs. We therefore include only the variance among individuals

within demes in our estimate of the error, which makes it an estimate of a lower bound on

the error, rather than a direct estimate. The PCs are automatically standardized to have a

variance of 1, so that for the kth PC, a lower bound on the error is given by

errork > Ej

[
V ari

(
Ûijk − Ûjk

)]
, (3.41)

which we estimate as

1

H

H∑
h

1

J

J∑
j

1

mj − 1

mj∑
i

(
Ûijkh − 1

mj

mj∑
ℓ

Ûℓjkh

)2

. (3.42)

3.7.2 Empirical Analyses

Computing allele frequency vectors

Human Genome Diversity Project and Thousand Genomes project

We downloaded VCF files from the combined Human Genome Diversity Project and

Thousand Genomes Project dataset108 and then converted them to plink2 format after
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converting the coordinates to the hg19 genome build. As described in Section 3.4.1, we

constructed 15 sets of allele frequency contrasts. For each set of contrasts we kept SNPs

at greater than 1% MAF in both the test panel and the GWAS panel. For pairwise allele

frequency comparisons, we compute the within population allele frequencies and take the

difference. For continuous contrasts, we use plink2 --glm to regress the test vector on the

vector of genotypes.

Ancient DNA contrasts

Le et al. 20226 used a maximum likelihood approach to estimate the allele frequency in

five different discrete time periods of European history. Following their approach, we use

their MLE estimates and calculate three sets of allele frequency contrasts that capture the

difference between expected and observed allele frequencies post-admixture in 3 different

epochs. We compute the expected allele frequencies via a weighted average,

1. European Neolithic = 0.84 Anatolia Neolithic + 0.16 Mesolithic

2. Bronze Age = 0.52S Steppe + 0.48 European Neolithic

3. Historical = 0.15 European Neolithic + 0.85 Bronze Age

and then subtract the estimated allele frequency to get our contrasts. We restrict to SNPs

with greater than 1% MAF for each GWAS panel.

British Isles country of birth

We selected all individuals from the UKBB not belonging to any of our four GWAS panels

and whose country of birth was listed as Scotland, England, Northern Ireland, the Republic

of Ireland, or Wales (see table 3.2 for sample sizes). We then selected SNPs with greater

than 1% MAF in both the test panel and the GWAS panel and computed all pairwise allele

frequency differences for a set of 10 contrasts.

Singleton density scores
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We downloaded SDS values estimated from Field et al. (2016)34 and limited to SNPs

with SDS values and greater than 1% MAF in the GWAS panel. Additionally, we downloaded

SDS values from Luo et al. (2023)110 and converted the coordinates to the hg19 genome

build and took only the SNPs with greater than 1% MAF in the GWAS panel.

Estimating F̂Gr and it’s error

For each set of contrasts, we first LD prune the total set of SNPs using

--indep-pairwise 100kb 0.8. With these L SNPs we calculate F̂Gr = 1√
(L−1)

L∑
ℓ=1

G·ℓrℓ

using --sscore in plink2.

To get the proportion of overlap between contrasts and panels we compute

H =
M − 1

M(L− 1)
F̂⊤
GrF̂Gr (3.43)

where M = 100, 000 for all GWAS panels and L varies by contrast.

In empirical data F̃Gr is unknown so we estimated error in F̂Gr using a block jackknife,

using B = 581 independent LD blocks to get a rough estimate of the error for each individual,

and then averaging across all individuals in the GWAS panel to estimate the average error.

Specifically, we compute,

êFGr
=

1
M

∑M
i

B−1
B

∑B
j=1

(
F̂
(−j)
Gr − 1

B

∑B
i F̂

(−j)
Gr

)2
1

M−1

∑M
i

(
F̂Gr,i − 1

M

∑M
ℓ F̂Gr,ℓ

)2 (3.44)

where the numerator is the average block jackknife estimate of the standard error across

individuals, and the denominator is the total variance in our estimator. We then calculate

the signal in F̂Gr as γ̂FGr
= 1− êFGr

. When computing γ̂FGr
to calculate the ratio R2

J/γ̂FGr
,

we only use SNPs on odd chromosomes.
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PCA

For each GWAS panel we use a set of 147,604 SNPs selected by the UKBB43 to do

PCA using --pca approx in plink2. We extract 40 sample PCs which we later include as

covariates in our GWAS analyses. To compute R2
J/γ̂FGr

, we repeat PCA only using SNPs on

even chromosomes and then calculate the variance in F̂Gr (computed using odd chromosome

SNPs) explained by J = 1 to J = 40 PCs.

GWAS

We conducted two GWAS in each panel for each of the 17 phenotypes listed in table

3.3 using fastGWA27 --fastGWA-lr. In the first GWAS, we included age at recruitment

(21022), genetic sex (22001), and genotype measurement batch (22000) as covariates with

no additional control for population structure. In the second GWAS, we included the same

covariates and 40 sample PCs.

Polygenic score association tests

Next, we ascertained SNPs for inclusion in the polygenic score association test by selecting

the minimum p-value SNP per approximately independent LD block (1703 blocks as defined

by Berisa and Pickrell (2016)112) and included the SNP if the GWAS p-value was less than

10−4. We computed a raw polygenic score association test statistic as q̂raw = β̂⊤r. Finally,

we assessed the significance of q̂raw using a block jackknife approach to estimate the standard

error of q̂raw. Specifically, we estimated the variance of q̂raw attributable to neutral processes

as

σ̂2 =
B − 1

B

B∑
i=1

q̂
(−i)
raw − 1

B

B∑
ℓ=1

q̂
(−ℓ)
raw

2

, (3.45)
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where B is the total number of blocks, and q̂
(−i)
raw is the estimate of q̂raw obtained when

leaving block i out. Motivated by the observation in Berg et al (2019)36 Appendix 1 that

even weak linkage between SNPs can lead to evolutionary covariance causing a miscalibrated

null distribution, we combined groups of three neighboring blocks into larger blocks so that

in the end we have B = 581 non-overlapping block for calculating σ̂2. Similar to other

subsections in this method section, ℓ also indexes blocks, but we use a different letter to

avoid confusion between the two sums. Now, q̂raw ∼ N(0, σ̂2), which we used to compute a

two tailed p-value for each polygenic score association test. In figures, we plot a standardized

version

q̂std =
q̂raw
σ̂

(3.46)

which has a variance of 1, and we include Bonferroni corrected error bars of ±Φ−1
(
1− 0.025

17

)
=

±2.97, where Φ−1 is the inverse of the standard Normal CDF.

3.8 Extended results and supplemental figures

3.8.1 Downward bias with true signal

Expected bias

The direct estimator approach (i.e computing F̂Gr and including it as a covariate in

the GWAS) proposes to use the test panel genotype data twice: once when controlling for

stratification in the GWAS panel, and a second time when testing for an association between

the polygenic scores and the test vector. Shouldn’t this remove the signal we are trying to

detect? While the answer is yes, at least for naive applications, the effect will be small so

long as the number of SNPs that are used to compute the correction is large relative to the

number included in the polygenic score.
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To see why, we can rewrite the regression Equation 3.3 from the main text in terms of a

sum of the contribution from our focal site and all other sites as

y = Gℓβℓ +

(
L− 1

L
F̂Gr,−ℓ +

1

L

Gℓrℓ
G⊤
ℓ Gℓ/M

)
ω + e (3.47)

where F̂Gr,−ℓ is the estimate of F̃Gr that one would obtain using all sites other than site ℓ.

Thus, because our F̂Gr includes a contribution from the focal site, controlling for it induces

a slight bias in the estimated effect size, the sign of which depends on the sign of rℓ. If

rℓ is positive, β̂ℓ has a slight negative bias, whereas if rℓ is negative, the bias will be pos-

itive. Similar effects are noted elsewhere in the statistical genetics literature, for example

in correcting for PCs of gene expression data117, and in the use of linear mixed models in

GWAS103, where it has been termed “proximal contamination”. Assuming that the variance

of rℓ√
G⊤
ℓ
Gℓ/M

across sites included in the score is similar to those used to compute the correc-

tion, the product rℓβ̂ℓ will be biased toward 0 by a factor of approximately
(
1− 1

L

)
for each

site, owing to the fact that the focal site contributes approximately 1
L of our estimate F̂Gr.

Our test statistic is a sum over contributions of rℓβ̂ℓ from S independent sites, so including

F̂Gr as a covariate when estimating effect sizes induces a downward bias of approximately(
1− S

L

)
, i.e.

E [q̂ | q] ≈ q

(
1− S

L

)
. (3.48)

Notably, controlling for sample PCs of the GWAS panel genotype matrix will induce a

similar effect if the sample PCs capture F̃Gr. In either case, the downward bias should

be small so long as sites used to compute the polygenic score are only a small subset of

those used to estimate F̂Gr. While this picture is somewhat complicated by the existence

of linkage disequilibrium in real populations, for human population samples imputed to

common reference panels, the effective number of SNPs is typically on the order of at least
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half a million118, suggesting that even for a polygenic score that included, for example,

10,000 SNPs, the downward bias should be no more than 2%. An important caveat is that

some methods for computing polygenic scores allow for all or at least a substantial fraction of

all SNPs genome wide to make non-zero contributions to the polygenic score119,120. Further

concern about downward biases in applications could likely be ameliorated via the “leave one

chromosome out” scheme (we implement this approach in 3.4) commonly implemented in the

context of linear mixed models103,23 or via iterative approaches that first aim to ascertain

SNPs using a genome-wide estimate of F̂Gr before re-estimating effects using an estimate of

F̂Gr computed from sites not in strong LD with any of the ascertained sites. Understanding

the behavior of tests for polygenic score-ancestry associations in the context of these methods

will require careful attention to the methods’ assumptions.

Toy model simulations

Next, we wanted to confirm that including F̂Gr or Û1 does not regress out true signals

of polygenic score divergence, consistent with our theoretical argument above. To do this,

we modified our simulations of the confounded topology from Figure 3.1 by adding causal

loci to make the trait heritable, with h2 = 0.3, and sampled the sign of the effect for these

causal loci to generate a correlation between the effect and the frequency differences between

populations C and D. This procedure generates a positive test statistic and is conceptually

equivalent to adding a selection event on the internal branch in the population phylogeny.

When there was no environmental stratification (Figure 3.18, middle panel), genetic

stratification eventually created an upward bias in the uncorrected q̂, as the strength of

the divergence signal increased. Similarly, when we added environmental stratification in

the same direction as the genetic stratification (Figure 3.18, right panel) the upward bias

increased in magnitude. Finally, when we added environmental stratification in the opposite

direction (Figure 3.18, left panel), environmental and genetic stratification opposed one
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another and the observed bias depended on the strength of each. We then observe that in

all cases including F̃Gr, F̂Gr, or Û1 (here F̂Gr, and Û1 are well estimated) as a covariate in

the GWAS eliminates bias while still capturing the true association signal. This is expected

in all situations for F̃Gr and when S << L for F̂Gr and Û1.

3.8.2 Supplemental tables and figures
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Figure 3.18: Including F̃Gr, F̂Gr, or PC 1 as a covariate in the GWAS model
maintains power to detect true association signal.
GWAS and test panels were simulated in the overlapping structure configuration (see Figure
3.1A). Heritable phenotypes (h2 = 0.3) were simulated with a true difference in polygenic
scores by flipping the sign of a proportion of causal effects to align with allele frequency
contrasts, pD,ℓ − pC,ℓ, in the test panel. When stratification is in the same direction as the
true difference, q̂ is upwardly biased, as it is when there is no environmental stratification,
once genetic stratification is strong enough. When stratification is in the opposite direction,
environmental and genetic stratification are opposed and the direction of bias depends on
the strength of each. As expected, F̃Gr perfectly captures true association regardless of
the direction of stratification. Estimators of F̃Gr (i.e F̂Gr and PC 1) also capture true
association, consistent with out theoretical arguments that downward bias is minimal when
S << L.
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Figure 3.19: Error in estimates of F̃Gr predicts bias in q̂ across population models.
For all simulations in Figure 3.2 we compute the expected bias as E [Error]× E [q̂nc] where
q̂nc is the observed bias using effect sizes that were estimated with no correction. We then
compare this expected bias to the observed bias when using that estimator as a covariate in
the GWAS. The error in both F̂Gr and sample PC 1 is highly predictive of the observed bias,
though we observe that sample PC 1 exhibits a slight increase in bias reduction compared
to the expected.
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Figure 3.20: F̂Gr as observed in the GWAS panel.
For both of the test vectors used in the grid simulations we plotted the average F̂Gr per deme
across 100 replicates. For the latitudinal test vector, F̂Gr simply recapitulates latitude, which
is unsurprising given the symmetric migration model we use. For the single deme test vector,
F̂Gr largely reflects the distance to the focal test deme.

HGDP1kGP Test Panel
Group Code Sample Size
East Asia eas 825
Africa afr 1003
South Asia sas 790
Non-Finish Europe nfe 689
America amr 552
Eurasia eurasia 2224
Europe eur 510
Sardinia sdi 27

Table 3.1: Sample sizes for different groups in the combined HGDP 1kGP dataset.
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Figure 3.21: HGDP and 1kGP test panels
(A) Panel used to compute pairwise continental allele frequency differences. (B) Eurasian
panel. (C) Non-Finnish European panel. (C) Sardinian panel that includes all Sardinian
and non-Finnish Europeans.
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Within the British Isles Country of Birth Test Panel
Country Code Sample Size
England ENG 142278
Northern Ireland NI 1121
Republic of Ireland RoI 1803
Scotland SCT 14595
Wales WAL 8128

Table 3.2: Sample sizes for different countries of birth within the British Isles.

Phenotype Code
Standing Height 50
Alkaline Phosphate 30610
Aspartate Aminotransferase 30650
Basophill Percentage 30220
Body Weight 21002
Cholesterol 30690
Eosinophill Percentage 30210
Glucose 30740
HbA1c 30750
HDL 30760
LDL 30780
Mean Corpuscular Haemoglobin Concentration (MCHC) 30060
Mean Corpuscular Volume (MCV) 30040
Platelet Count 30080
Systolic Blood Pressure (SBP) 4080
Total Protein 30860
Triglycerides 30870

Table 3.3: UKBB phenotypes used for polygenic score association tests.
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Contrasts q̂ p-value Bonf. p-value GWAS Phenotype R2
40/γ̂FGr

eurasia-long 3.327 8.789e-04 1.494e-02 5 LDL NA
eur-long -3.315 9.150e-04 1.555e-02 5 MCV 0.600
sdi-eur -3.869 1.093e-04 1.859e-03 5 MCV 0.557
sdi-eur -3.578 3.463e-04 5.887e-03 5 Height 0.557
eas-nfe 3.52 4.315e-04 7.336e-03 5 LDL NA
eas-afr 3.117 1.827e-03 3.107e-02 5 Cholesterol NA
eas-afr 2.995 2.746e-03 4.668e-02 5 LDL NA
eas-amr 3.055 2.251e-03 3.827e-02 5 LDL NA
sas-amr -3.857 1.148e-04 1.952e-03 5 MCV NA
eurasia-long 3.286 1.017e-03 1.728e-02 10 Cholesterol 0.355
eurasia-long 3.659 2.533e-04 4.306e-03 10 LDL 0.355
sdi-eur -3.258 1.122e-03 1.908e-02 10 BodyWeight 0.706
sdi-eur -4.036 5.439e-05 9.246e-04 10 Height 0.706
eas-nfe 3.111 1.862e-03 3.165e-02 10 LDL 0.399
sdi-eur -3.281 1.033e-03 1.756e-02 50 MCV 0.817
sdi-eur -4.392 1.121e-05 1.905e-04 200 Height 0.871
nfe-amr -3.184 1.453e-03 2.470e-02 200 Glucose 0.992

Table 3.4: Significant polygenic score association tests in the HGDP1kGP panel.

Contrasts q̂ p-value Bonf. p-value GWAS Phenotype R2
40/γ̂FGr

ENG-SCT -3.04 2.340e-03 0.0398 5 MCV 0.855
NI-WAL 3.00 2.807e-03 0.0477 5 MCV 0.797
RoI-WAL 3.01 2.641e-03 0.0449 5 MCHC 0.836
SCT-WAL 3.40 6.713e-04 0.0114 5 MCV 0.765
SCT-WAL 3.15 1.613e-03 0.0274 5 MCHC 0.765
SCT-WAL -3.40 6.826e-04 0.0116 50 Triglycerides 0.767

Table 3.5: Significant polygenic score association tests using British Isles country
of birth contrasts.

Contrasts q̂ p-value Bonf. p-value GWAS Phenotype R2
40/γ̂FGr

Historical 3.05 2.229e-03 0.0388 5 MCV NA
European Neolithic -3.29 1.009e-03 0.0172 10 SBP NA
Historical -3.15 1.256e-03 0.02732 50 SBP NA

Table 3.6: Significant polygenic score association tests in the ancient DNA con-
trasts.
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Contrasts q̂ p-value Bonf. p-value GWAS Phenotype R2
40/γ̂FGr

UK10K 3.862 1.126e-04 1.914e-03 5 StandingHeight 0.574
UK10K 3.506 4.547e-04 7.731e-03 10 StandingHeight 0.773
UK10K -3.095 1.968e-03 3.346e-02 50 TotalProtein 0.905
UK10K 3.99 6.608e-05 1.123e-03 50 BasophillPercentage 0.905
UK10K 3.288 1.009e-03 1.715e-02 200 BodyWeight 0.968
UK10K 4.242 2.212e-05 3.761e-04 200 StandingHeight 0.968

Table 3.7: Significant polygenic score association tests using SDS constrasts.
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CHAPTER 4

CONCLUSION

The relationship between ancestry, genetics, and the environment is complicated. The

hope of polygenic scores is that they are able to separate out the direct genetic effects on

phenotypes of interest, allowing researchers to study the effect of genetics in the context of

different environments and across individuals of different ancestral backgrounds. Throughout

the past 15 years the field has repeatedly observed intriguing patterns in polygenic scores,

including an inferred decrease in polygenic scores for BMI over the past 10,000 years in

west Eurasia35, a positive relationship between polygenic scores for educational attainment

and enrollment in more advanced math classes among students of European ancestry in U.S

high schools121, and differences in the distribution in polygenic scores for type 2 diabetes

subtypes across ancestry groups122. The conclusions drawn from these studies, and others

like them, have significant consequences for the fields of evolutionary biology, social science,

and public health. Therefore, it is vitally important that we, as a field, have confidence in

the methodology behind these analyses.

Interpreting patterns in the distribution of polygenic scores is difficult on multiple levels,

especially if confounding cannot be ruled out. In this thesis, I analyze the procedure of

testing for differences in polygenic scores in the presence of confounding. In Chapter 2, we

first characterize patterns of stratification bias in the distribution of polygenic scores as a

function of the expected genetic similarity between GWAS and test panels. For any given

polygenic score association test axis, the amount of bias in the association test statistic

depends on the strength of stratification along exactly one axis of population structure in

the GWAS panel (F̃Gr). We show that including this singular vector as a covariate in the

GWAS model results in an unbiased test. Additionally, we analyze the standard approach

of including top principal components of the GWAS panel in the context of our model, and

show that including J population PCs as covariates in the GWAS model succeeds when they
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capture either F̃Gr or the expected confounders.

The results in Chapter 2 illustrate the importance of developing comprehensive and

precise models. Despite extensive work on correcting for population stratification in GWAS

study designs, relatively little work has been done on modeling the GWAS and polygenic

score procedures jointly. Our work clarifies what constitutes overlapping structure between

panels and why evolutionary diverged panels decrease the potential for confounding in the

distribution of polygenic scores. However, there are several elements of our model that differ

from reality, and it is worth highlighting what these are, and what their effects are. For

example, our model ignores linkage among sites and assumes that we use marginal effects,

rather than jointly estimated effects, to construct our polygenic scores. Firstly, linkage among

sites does not change the fundamental point that controlling for F̃Gr is sufficient to render

the effect size estimates uncorrelated with the test panel genotype contrasts under the null.

However, in practice, we would still prefer to estimate effects jointly, for at least two reasons.

The first is simply because doing so increases the accuracy of the polygenic scores, which will

increase our power. The second is because, in the presence of residual stratification, polygenic

scores constructed with jointly estimated effects should be less biased than those constructed

using marginal effects. This is because, when effect sizes are estimated marginally, each site

experiences the entirety of the stratification effect, and therefore gets a “full dose” of it. The

stratification effect is then being added into the polygenic score multiple times across SNPs.

This is why we find the bias in the polygenic score association test statistic to be proportional

to the number of loci included in the polygenic score. In contrast, if effects were estimated

jointly, the stratification effect will be spread out more evenly across sites, and so we would

expect the effect on the polygenic score to be less extreme, but not eliminated.

Additionally, our model assumes that all loci share the same underlying genetic related-

ness matrix. For simple demographic histories like that of our toy model, this is unlikely to

be an issue, but it could be an issue for more complex demographic histories experienced
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by real human populations, as mutations of different ages experience the demographic his-

tory differently. In practice, one solution to this problem would be to bin variants by allele

frequency or estimated age123 and compute different corrections for different frequency/age

bins, similar to the suggestion by Zaidi and Mathieson (2020)47 to use principal components

computed on rare variants to correct for stratification along axes of recent genetic divergence.

We also wish to emphasize that our results are relevant for a broader set of analyses than

those explicitly covered by our model. For example, with a slight shift in perspective, our

model is applicable to studies that use GWAS summary statistics together with coalescent

methods to test for signals of directional polygenic selection34,63,64,124. The key to this is to

recognize such methods use patterns of haplotype variation to estimate genotype contrasts

between the sampled present-day individuals and a set of unobserved ancestors, and then

ask whether these estimated genotype contrasts correlate with effect size estimates for a

trait of interest. Thus, within such an analysis, there also exists an F̃Gr that describes the

extent to which individuals in the GWAS panel are more closely related to the present-day

sample or the hypothetical ancestors. The SDS values we use in Chapter 3 are an example

of this type of analysis. For both the coalescent approaches, as well as methods relying

on direct comparison of polygenic scores, the evolutionary hypothesis being tested and the

degree of susceptibility to bias follow directly from the set of genotype contrasts used in the

test. Some prior work has suggested that certain coalescent methods of testing for polygenic

selection are more robust to stratification bias than others64,124, but our results show that,

in general, two different methods that test the same evolutionary hypothesis using the same

set of estimated effect sizes should have the same susceptibility to stratification bias. If there

are differences in robustness to stratification bias among methods, then it is likely coming

from either changing the evolutionary hypothesis being tested or from overall differences in

the statistical power of the methods.

Our model in Chapter 2 also raises interesting questions about polygenic score prediction
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overall. Specifically, our expression for the bias in the distribution of polygenic scores (see

Equation 2.9) indicates that it is proportional to the cross-panel GRM (FGX). Canonical

correlation analysis (CCA), similar to PCA, finds the linear combination of two separate

vectors that explains the maximum variance. In the genomics literature, CCA has been

used to integrate multiple types of -omics data125,126. For polygenic score analyses, if the

individual level GWAS panel data is available, developing a CCA based method that identifies

top axes of structure between datasets is a compelling approach to dealing with stratification

along multiple shared axes of variation. Specifically, one could imagine regressing out enough

canonical variables from both panels, such that Ĥ fails to reject the no overlapping structure

null hypothesis. However, conventional CCA is not effective when the number of SNPs is

much larger than the number of samples127 and is likely still limited in what axes of structure

are detectable in a similar to way to PCA (see Section 3.2.1). While there are significant

methodological challenges to overcome, I do think efforts to jointly analyze the structure

between GWAS and prediction panels may prove fruitful.

In Chapter 3, I turn my attention to controlling for stratification bias in polygenic score

association tests in practice. We compare our novel direct approach and the standard PCA

across a range of simulations and empirical examples. We then develop a multi-step proce-

dure that combines elements of both approaches to estimate how well protected by J sample

PCs a set of allele frequency contrasts is from confounding in a given GWAS panel. After

applying our approach to thirty sets of allele frequency contrasts for 17 different phenotypes

we find one globally significant signal, a positive relationship between height effect sizes and

UK10K SDS values, that is well protected from stratification bias.

Why did we not find more associations that we are confident in? It is important to note

some of the limitations of our study design. First, because we split the UK Biobank into

four panels of 100,000 individuals each, our sample size is quite a bit smaller than the most

commonly used biobanks. Additionally, in order to standardize our pipeline for each GWAS,
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we chose a lenient genome-wide significance threshold and took a simple minimum p-value

approach to ascertainment. Combined, these choices may mean we are simply under-powered

to detect more subtle signals of divergence. Additionally, we did find other significant signals

where the test was not fully protected by 40 PCs. These may or may not represent true

signals of divergence, but with our current combination of GWAS panels and PCs, we cannot

rule out residual stratification. Notably, the divergence in height polygenic scores between

Sardinian and mainland Europeans is a globally significant signal that was not fully protected

in our analysis but, combined with evidence from Chen et al. (2020), we believe is likely

driven by true divergence. Finally, it is also possible that there are few signals of polygenic

score divergence for the contrasts and phenotypes that we tested and and that increasing

power and/or more completely controlling for stratification would not change the number of

associations.

It is worth considering what an improved study design, one with no limitations on time

or data access, would look like. First, it would be ideal to have access to multiple diverse

biobanks with sample sizes in the multiple hundreds of thousands where the relationship

between ancestry and the environment differes. For example, we might expect that All of

US128, the UK Biobank43, Biobank Japan44, and FinnGen45, all of which have different

recruitment strategies, healthcare systems, and population structure, might have different

confounders along different ancestry gradients. Though it is worth noting that this is an

assumption that warrants further investigation. With multiple GWAS panels in hand, I

would then compute Ĥ for each contrast and identify GWAS panels where the contrast is

independent of the structure in the GWAS panel. I would then conduct a GWAS using state-

of-the-art LMM software (e.g FastGWAS27, BOLT23, REGENIE29) and polygenic score

construction software (e.g ldpred2119, Vilma120) that accounts for LD. Because I know that

the contrasts are immune to ancestry stratification in these GWAS panels, I could focus

on increasing the power of my polygenic score when choosing parameters and covariates for

126



these models. Next, I would select GWAS panels that have large Ĥ values and compute

R2
J/γ̂FGr

for a range of J PCs. Depending on the results, I might also try computing R2
J/γ̂FGr

for rare variant PCs and/or ancestry components. For GWAS panels where I could achieve a

high value of R2
40/γ̂FGr

, I would go forward with the same LMM and polygenic score methods,

including my selected population structure estimates as fixed effects in the GWAS. I would

then compare my results for the same contrast across all selected GWAS panels. I expect

that, if there is a true association signal, q̂ would be largest in GWAS panels with larger Ĥ

values. These panels will have more overlap in ancestry, which will increase the portability

of the polygenic scores an improve the power of our test. Observing a significant association

in both independent and overlapping panels where confounding is well controlled would be

compelling evidence that the signal is not being driven by residual stratification bias.

It is also worth noting some of the limitations of the above approach. First, it necessitates

having access to individual-level data and the same phenotypes across multiple datasets. One

future direction for this line of work could be to develop a summary statistic version that

utilizes ancestry-matched LD matrices and summary statistics to regress out r from effect

sizes in a way that does not remove signal. Additionally, we noticed that for two sets of

contrasts that we tested, the Historical and European Neolithic one from Le et al. (2022), Ĥ

was significantly smaller than expected under the null hypothesis. As discussed in Section

3.4.2, these contrasts differ in multiple aspects from our other sets of contrasts. We are unsure

which of those factors, if any, is causing them to behave differently. Future work could more

systematically explore limitations of our approach in terms of the type of contrasts, number

of SNPs, and number of individuals.

Finally, we note that even if we could guarantee that effect sizes were completely im-

mune to stratification, the interpretation of the results of polygenic score association tests

is not straightforward129. For example, these analyses use effect sizes estimated in one set

of genetic and environmental background, and there is no guarantee that the effects will be
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the same in other backgrounds. Effect size heterogeneity can cause many difficulties with

the interpretation of positive associations between polygenic scores and axes of population

structure (as several papers have noted129,130,131). Another difficulty with interpretation

arises from allelic turnover76 and differences in tagging across populations, as a given poly-

genic score will have less power to detect differences between populations that are genetically

more distant from the GWAS panel, and this can lead to a biased picture of how selection

has actually affected the trait across populations77. However, none of these phenomena are

expected to generate false signals of directional selection where none exist. This is because

the fact that the effect size might vary across populations has no impact on the correlation

between the effect size measured in only one of the populations and patterns of allele fre-

quency differentiation among populations. One subtle caveat to this claim is that certain

forms of directional interaction effects (e.g., directional dominance) could in principle create

correlations between the direction of recent allele frequency change on the lineage leading to

the GWAS panel individuals and the average effect as estimated under an additivity assump-

tion, and this would violate the null model. However, there is little evidence for substantial

interaction variance among common variants in human complex traits, so this is unlikely to

be an issue in practice.

Moving beyond the specific issue of associations between polygenic scores and popula-

tion structure axes, we note that GWAS can also be impacted by other forms of genetic

confounding beyond the simple associations between ancestry and genetic background that

we consider here, including dynastic effects, assortative mating, and stabilizing selection39.

This issue is especially pertinent in the context of commonly studied behavioral/social out-

come traits (e.gg, educational attainment, household income, intelligence, etc.) where there

is evidence of strong assortative mating132 and phenotype-biased migration83,49, and some

evidence of indirect effects37.

It is also is worth remembering that signals of polygenic score divergence, even if they are
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free from all types of confounding, do not necessarily map in a straightforward way to pheno-

typic divergence. Complex traits are influenced by both genetics and the environment, and

we need to take care in our interpretation of polygenic score differences, especially as these

types of analyses are ripe for misinterpretation and and misappropriation133. Therefore,

as a scientist, especially one who studies patterns of genetic differentiation among human

populations, it is important to me to clearly communicate what my results mean. Polygenic

scores offer exciting opportunities for advancements in human genetics and it is important

to continue improving their implementation while also being careful in our interpretation.
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