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Abstract
1.	 In an experimental setting, the composition of ecological communities can be 

manipulated directly. Starting from a pool of n species, it is possible to co-culture 
species in different combinations, ranging from monocultures, to pairs, and all 
the way up to the full species pool. Leveraging datasets with this experimental 
design, we advance methods to infer species interactions using density meas-
urements taken at a single time point across a variety of distinct community 
compositions.

2.	 First, we introduce a fast and robust algorithm to estimate parameters for simple 
statistical models describing these data, which can be combined with likelihood 
maximization approaches. Second, we derive from consumer–resource dynamics 
a family of statistical models with few parameters, which can be applied to study 
systems where only a small fraction of the potential community compositions 
have been observed. Third, we show how a Weighted Least Squares framework 
can be used to account for the fact that species abundances often display a 
strong relationship between means and variances.

3.	 To illustrate our approach, we analyse datasets spanning plant, bacteria and 
phytoplankton communities, as well as simulations, consistently recovering a 
good fit to the data and demonstrating the ability of our methods to predict 
equilibrium densities in out-of-sample communities.

4.	 By combining more robust model structures and fitting procedures along with 
a more flexible error model, we greatly extend the applicability of recently 
proposed methods to model community composition from experimental data, 
opening the door for the analysis of larger pools of species using sparser and 
noisier datasets than was previously possible.
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generalized linear model, generalized Lotka–Volterra model, species coexistence, species 
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1  |  INTRODUC TION

Efforts to relate empirical measurements of population growth to 
dynamical models can be traced back to the origins of ecology. For 
example, in his famous study proposing the logistic growth model, 
Verhulst (1838) presented the fitted time-series for the human popu-
lation growth of France and Belgium. Interest in contrasting empirical 
data with models for population dynamics has only grown through 
the years (Gilpin,  1973; Powell & Steele,  2012), with the develop-
ment of sophisticated approaches (Ellner et al.,  2002) accounting 
for different sources of errors (Carpenter et al., 1994; De Valpine & 
Hastings, 2002), and important applications such as forecasting pop-
ulation trajectories (Clark et al., 2001; Sugihara et al., 2012), model-
ling the evolution of disease epidemics (Du et al., 2017), and detecting 
chaos in natural systems (Perry et al., 2012; Sugihara & May, 1990).

Because of the intrinsic difficulty of manipulating natural systems, 
much of the literature on these issues has historically focused on in-
ferring the parameters of dynamical models from time-series obser-
vations (Downing et al., 2020; Ives et al., 2003; Vandermeer, 1969). 
With the advent of high-throughput laboratory techniques, how-
ever, a different approach has become viable. Instead of attempt-
ing to learn the parameters of a model by analysing the fluctuations 
of several interacting populations through time, it is possible to 
use steady-state abundances recorded for a variety of community 
compositions, each captured at a single time point, to infer model 
parameters (Ansari et al.,  2021; Fort,  2018; Maynard et al.,  2020; 
Voit et al., 2021; Xiao et al., 2017). For a species pool of interest, the 
initial species composition is manipulated in a series of experiments, 
and then the resulting set of final community compositions can be 
used to estimate the parameters of a statistical model. For example, 
to infer the interactions among n species, one could perform a se-
ries of experiments where species are grown in isolation, or in pairs, 
triplets or larger subsets (Dormann & Roxburgh,  2005; Friedman 
et al., 2017). Once any transient dynamics have elapsed, the densi-
ties of all surviving species are recorded. Provided that a sufficiently 
large and diverse set of sub-systems (i.e. distinct species composi-
tions) have been observed, it is possible to infer the parameters of 
a statistical model for species interactions from these static mea-
surements (Carrara et al., 2015; Maynard et al., 2020). Such statis-
tical models can be derived from corresponding dynamical models, 
thereby linking static estimates to models for population dynamics.

We build upon previous work (Carrara et al.,  2015; Maynard 
et al., 2020; Xiao et al., 2017) in which the density of each species is 
assumed to be linearly related to the densities of the other species in a 
community. This statistical structure arises naturally from the ubiqui-
tous generalized Lotka–Volterra (GLV) dynamical model (Lotka, 1920; 
Volterra, 1926)—although it is not necessary for dynamics to obey this 
simple model to yield a good fit to data (Maynard et al., 2020). While 
very easy to formulate, this type of statistical model is both difficult 
and computationally expensive to fit. Here, we extend the approach of 
Maynard et al. (2020) in three main ways to overcome issues that have 
limited the application of these methods. First, we introduce a fast 
iterative algorithm that finds parameters yielding a good fit to data. 

This algorithm can be used in conjunction with more rigorous—but 
less efficient—fitting approaches by providing a high-quality starting 
point for numerical likelihood optimization. We show that this hybrid 
approach is computationally very efficient and produces better results 
than current methods. Second, we derive simplified versions of the 
statistical model by exploiting the parallel between the model struc-
ture and Lotka–Volterra dynamics. These versions of the model re-
quire the estimation of fewer parameters, while still providing a good 
fit to data and retaining a clear ecological interpretation. Finally, we 
show that a more sophisticated error model for the observations re-
sults in a Weighted Least Squares (WLS) problem that can be solved 
efficiently. Extending the error structure offers more flexibility to fit 
empirical data, especially when the variance of experimental obser-
vations changes with the mean, as typically seen in ecological data 
(Grilli, 2020; Taylor, 1961). To illustrate these improvements, we exam-
ine four recently published datasets spanning communities of plants 
(Kuebbing et al., 2015), phytoplankton (Ghedini et al., 2022) and bac-
teria (Chu et al., 2021), as well as simulated data.

2  |  MATERIAL S AND METHODS

2.1  |  Experimental setup and data

Given a pool of n species, suppose we have performed a large set 
of experiments in which different combinations of species are co-
cultured for a suitably long time. At the end of each experiment 
(once transient dynamics have elapsed), we measure and record 
the biomass/density of each extant species. The experiments 
encompass a variety of initial compositions and initial densities, and 
are conducted with replication. Provided that our measurements, 
after any species extinctions, span a sufficient variety of sub-
communities, we can fit a simple statistical model to these empirical 
‘endpoints’, which may, in turn, be used to predict the densities of 
each species in any unobserved subset of species, and in particular 
whether the given subset will coexist.

To test our models, we use four recently published datasets that 
have a suitable experimental design. In particular, we consider two 
datasets from Kuebbing et al.  (2015), who selected two pools (na-
tives and non-natives) of four plants each, and grew them in 14 out of 
15 possible combinations of species. Similarly, Ghedini et al. (2022) 
considered five phytoplankton species, and grew them in monocul-
ture, in all possible pairs, and all together. Finally, we consider a sub-
set of the data from Chu et al.  (2021), consisting of four bacterial 
strains co-cultured along with Pseudomonas fluorescens in different 
combinations. A detailed description of each dataset is reported in 
Supporting Information S1.

2.2  |  A simple statistical framework

We start by summarizing the statistical framework presented in 
Maynard et al.  (2020), which we will extend below. The framework 
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assumes that we have measured densities for several of the possi-
ble communities of coexisting species we can form from a pool of n 
species. The approach rests on two main assumptions. First, we take 
each observed measurement to be a noisy realization of a ‘true’ value:

That is, the observed density of species i  when grown in community k, 
x̃
(k)

i
, is given by a ‘true’ value, x(k)

i
, modified by an error term, �(k)

i
. We can 

arrange our empirical data in a matrix X̃, with n columns (one for each 
species in the pool) and as many rows as the number of observed com-
munities. In particular, X̃ki = x̃

(k)

i
 if species i  is present in community k , 

and zero otherwise. Similarly, ℰki = �
(k)

i
 if species i  is in community k 

and zero otherwise. Then, we can rewrite Equation 1 in matrix form:

When several replicates are available, we assume that the den-
sity recorded for species i  in community k and replicate r follows 
x̃
(k,r)

i
= x

(k)

i
+ �

(k,r)

i
; that is, all replicate measurements of species i  in 

community k stem from the same true value (to recover the notation 
in Equation 2, we simply stack the replicates in matrix X̃ and the cor-
responding true means in matrix X). This assumption amounts to ruling 
out ‘true multi-stability’ in the underlying dynamics (Xiao et al., 2017)—
if a set of species coexists, we require that it always reaches the same 
attractor (be it an equilibrium, cycle or chaotic attractor). Notice, how-
ever, that this framework is compatible with the fact that experiments 
initialized with the same set of species may yield distinct sets of coexist-
ing species at the experimental endpoint. This could occur if stochastic 
dynamics or differences in initial densities drive two experimental sys-
tems to different attractors. Because this framework exclusively uses 
data gathered at the end of each experiment, it is completely blind to 
initial conditions; we only require that communities that reach the same 
final composition have also reached the same dynamical attractor.

Second, following Maynard et al.  (2020), we assume the true 
species' densities in a given community are linearly related to each 
other. For any species i  in community k, we can express these den-
sities by writing:

where �i is the density that species i  would attain when grown in isolation, 
and the coefficients � ij model the effects of the other species in commu-
nity k on the density of species i . Importantly, � ij depends only on the 
identities of the species, and not on the community we are modelling—
this assumption amounts to ruling out higher-order interactions or other 
nonlinearities that would make the per-capita effect of species j on spe-
cies i  dependent on the state of the system. Rearranging, we obtain:

with Bii = 1∕�i and Bij = � ij ∕�i. Naturally, systems with sufficiently 
strong higher-order effects (or highly nonlinear systems) would be in-
compatible with this assumption. Indeed, Maynard et al. (2020) used 
simulations to show that, while the framework is generally quite ro-
bust to model misspecification, strong higher-order interactions result 
in poor fit and poor inference of true parameters. Conversely, good fit 
to the data would suggest the absence of strong higher-order interac-
tions or nonlinearities.

Because Xkj = 0 whenever species j is not present in community 
k, we can define the sub-matrix B(k) obtained by retaining only the 
rows and columns of B corresponding to species that are present in 
community k. We similarly take X(k) to be a vector containing only 
the densities of the species in k, and 1(k) to be a vector of ones with 
as many elements as X(k). Then the model can be written in matrix 
form as B(k)X(k) = 1(k) for each community k.

Suppose that we have estimated a matrix B and we want to make 
a prediction about a set of species k, such as whether these species 
can coexist. We solve the corresponding equation for X(k),

with two possible outcomes: (a) all the components in X(k) are positive, 
in which case we predict that the species can coexist with densities 
X(k) or (b) some of the components in X(k) are negative, which we inter-
pret as the impossibility of coexistence of this combination of species 
(Maynard et al., 2020).

Arguably, the simplest version of this statistical model is ob-
tained by assuming that errors are independent, identically dis-
tributed random values sampled from a normal distribution, such 
that X̃ki ∼ 

(

Xki, �
2
)

 whenever species i  is in community k. Then, 
fitting the model requires minimizing the sum of squared deviations 
between the observed data and model predictions (Ordinary Least 
Squares, OLS).

This suggests a straightforward method to fit the model: pro-
pose a matrix B, compute the predicted densities for all species 
in all observed communities using Equation 3, and search for the 
matrix B that minimizes the deviations between the observed data 
X̃ and the predicted X. Unfortunately, this method is quite ineffi-
cient and computationally very expensive, as it requires inverting a 
sub-matrix of B for each observed community, and there may be up 
to 2n − 1 unique community compositions that can be built from a 
pool of n species. Moreover, the problem of minimizing deviations is 
markedly non-convex—starting from different initial estimates, we 
are likely to converge to different (and thus in general sub-optimal) 
solutions.

To circumvent this problem, Maynard et al.  (2020) proposed a 
simple analytical approach (dubbed the ‘naïve method’) to find a 
rough estimate of B from observed data; this initial estimate of B can 
then be used as a starting point for more sophisticated fitting rou-
tines. However, as discussed in their study, this method suffers from 
a number of issues (detailed in Supporting Information S3). In partic-
ular, the statistical model assumes that observations are noisy, while 
the naïve method assumes that they have been observed precisely 

(1)x̃
(k)

i
= x

(k)

i
+ �

(k)

i
.

(2)X̃ = X + ℰ.

Xki = �i −
∑

j≠ i

� ijXkj,

∑

j≠i

� ij

�i
Xkj+

1

�i
Xki=1

∑

j

BijXkj=1,

(3)X(k) =
(

B(k)
)−1

1(k),
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and that instead Equation 3 only holds approximately. In practice, 
this means that this approach does not provide the maximum like-
lihood estimate for B when the data are noisy. One of the goals of 
the present work is to build an iterative algorithm that is not only 
computationally efficient, but that also improves upon the naïve 
estimate for B by yielding a superior starting point for subsequent 
parameter search.

3  |  RESULTS

3.1  |  A fast, iterative algorithm to estimate 
parameters

We want to find the maximum likelihood estimate for the matrix B , 
that is, the choice of B minimizing the sum of squared deviations:

The computational bottleneck we face is that determining the pre-
dicted abundances x(k)

i
 from the matrix B (via Equation 3) for all com-

munity compositions is very expensive (requiring the inversion of many 
matrices). We therefore develop an algorithm in which this expensive 
calculation is performed only seldomly and at defined intervals, and 
optimization is carried out in between these steps without having to 
re-calculate the predicted x(k)

i
. To achieve this goal, we divide the pro-

cess of optimizing B into two steps: a prediction step (computation-
ally expensive), and a numerical optimization step (computationally 
cheaper). By alternating between the two steps, we quickly converge 
to a good draft matrix B.

To construct this algorithm, we derive two ‘auxiliary’ matrices 
that are useful for computation. Having arranged our data in the ma-
trix X̃ as detailed above, we take X̃ = X + ℰ (Equation 2), transpose 
each side and multiply by B. We obtain the sum of two new matrices:

In the remainder of this section, we use P and S simply as a conve-
nient means to build our algorithm—we discuss their ecological inter-
pretation in Supporting Information  S4. From Equation  4, we have 
B−1PT = XT and B−1ST = ℰ

T. Our sum of squared deviations is simply 
the squared Frobenius norm of ℰ, 

∑

ijℰ
2

ij
= ∥ℰ ∥2

F
= ∥ ℰ ∥, and from 

Equations 2 and 4, we can write:

Our goal is therefore to find a matrix B such that B−1PT is as close as 
possible to the observed data X̃T. However, neither B nor P are known, 
although P can be calculated from X and B, and hence from B. We there-
fore attempt to minimize the sum of squared deviations through an 
iterative algorithm reminiscent of the expectation–maximization ap-
proach (Moon, 1996):

1.	 Propose a candidate matrix B;
2.	 Consider B to be fixed, and use it to compute X via Equation 3 

(prediction step);
3.	 Compute PT = BXT;
4.	 Consider P to be fixed, and find an updated B−1 by numerically 

minimizing ∥ X̃T
− B−1PT ∥ (optimization step). Invert it to recover 

an updated B;
5.	 Repeat steps 2–4 until convergence.

In principle, this iterative algorithm depends on the proposal of 
the initial matrix; for our numerical experiments, we always start 
from the identity matrix (i.e. no interactions between species). 
Finally, we perform an additional numerical optimization to refine 
the results produced by this algorithm. The algorithm above may 
return values of Xki < 0, because the solution minimizing the sum 
of squared deviations does not need to contain only non-negative 
densities. Clearly, such solutions would be biologically unattain-
able, and qualitatively incompatible with the observed data. Thus, 
when numerically refining the solution, we only accept proposals 
that yield non-negative predictions for the observed densities.

While this algorithm is not guaranteed to find the maximum like-
lihood estimate of B, we observe that in practice, the combination 
of our iterative algorithm and the final numerical optimization step 
yields very good solutions. In all cases, we converge on a solution 
that is superior to the result using the naïve method. As shown in 
Figure 1 (and Supporting Information S8), the SSQ typically decays 
rapidly with the number of iterative steps, and the final numeri-
cal search provides an additional improvement. While for the data 
presented here the algorithm converges smoothly, in principle, one 
could observe the SSQ oscillating as the algorithm progresses. As 
for gradient descent and similar methods, this problem can be allevi-
ated by introducing a ‘momentum’ (Polyak, 1964; Qian, 1999): when 
updating matrix B in Step 4, one could take a weighted average of 
the matrix used to compute P (the current estimate of B), and the 
matrix that maximizes the likelihood given P (the new estimate of B). 
The addition of momentum would help achieve a smooth, monotonic 
decay of the SSQ, at the cost of having to take a larger number of 
steps before convergence.

3.2  |  Simplified versions of the model

Fitting the n2 parameters of the interaction matrix B requires hav-
ing observed a sufficiently varied set of experimental community 
compositions. It is necessary to observe each of the n species in 
at least n distinct communities, and each pair of species coexist-
ing in at least one community (for a full derivation of these condi-
tions, see Supporting Information S2). These are very demanding 
requirements, and therefore many published datasets do not con-
tain a sufficient variety of communities to allow the identification 
of all parameters. These conditions grow more onerous with the 
number of species in the pool, making the approach impractical 
for species pools of even moderate size. To address this issue, we 

SSQ =
∑

k

∑

r

∑

i

(

x̃
(k,r)

i
−x

(k)

i

)2

.

(4)BX̃
T
= BXT + BℰT = PT + ST .

∥ℰT ∥ = ∥B−1ST ∥

= ∥ X̃
T
−B−1PT ∥.
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propose a nested set of simplified versions of the statistical model 
that use fewer parameters, but retain the basic model structure and 
a straightforward ecological interpretation. The data requirements 
are greatly reduced, scaling linearly, rather than quadratically with 
n (see Supporting Information S7 for detailed data requirements). 
These simpler models have the added benefit of being extremely 
efficient to fit from a computational standpoint (Supporting 
Information  S6), and useful for model selection, especially when 
one suspects that the full model with n2 parameters may be suscep-
tible to overfitting.

We follow a disciplined approach to develop these simpler mod-
els: we consider a version of the MacArthur's consumer–resource 
model (MacArthur, 1970) in which each species has access to its own 
private resources, and all species have access to a shared resource 
(Supporting Information S5). By progressively reducing the number 
of free parameters in the model, we obtain simpler structures for the 
matrix B (Table 1).

Given that the matrix B can be interpreted as detailing pairwise 
interactions (i.e. the effect of the density of species j on species 
i  ), the model B = D(d) + vwT corresponds to the following ecologi-
cal picture: each species interacts with conspecifics through their 
private resources (corresponding to the coefficients di) and with all 
species via the shared resource. Interactions arising from the shared 
resource are given by the product of a resource utilization vector 
w (i.e. attack rates), and a resource transformation vector v, where 
each species is characterized by its vi and wi values. The interpreta-
tion of the simpler models is similar: by considering equal transfor-
mation rates one makes vwT = vvT symmetric, and by assuming that 
all species also have the same attack rates, vwT = �11

T. Note that 
in all these simplified models, the intraspecific interactions (i.e. the 
diagonal elements of B) are modelled with great flexibility; the reduc-
tion in parameters is obtained by assuming that interspecific interac-
tions follow a simple pattern, defined by a few traits for all species.

In Figure 2, we show the fit of these four models when analysing 
the data reported in Ghedini et al. (2022).

For all datasets, we find the same qualitative results: the full 
model (n2 parameters, 25 parameters for the dataset of Ghedini 
et al.  (2022)) and the simplified model in which only two values 
per species determine all interspecific interactions (3n − 1 param-
eters, 14 for Ghedini et al.  (2022)) have very similar performance 
(Supporting Information S8), while any further simplification results 
in a marked loss of fit. These trends are evident when contrasting 
the total SSQ across models and datasets (Figure 3).

3.3  |  Allowing the variance to change 
with the mean

So far, we have assumed that errors are independent and identically 
distributed for all measurements. In many situations, however, 
this assumption would be quite unrealistic. For example, some 
species could systematically grow to much higher density than 
others—resulting in potentially larger absolute errors in their 
measurement—or measurements might be made on a small sub-plot 
or sample volume and then extrapolated to the whole plot or volume 
through multiplication. In such cases, the data would display marked 
heteroskedasticity (i.e. the variance would change with species 
density).

In Figure 4, we show that the variance scales with a power of the 
mean in the phytoplankton data from Ghedini et al. (2022). This is in 
fact the expected behaviour of many ecological systems, as posited 
by Taylor's law (Gaston & McArdle, 1994; Routledge & Swartz, 1991; 
Taylor, 1961).

A possible approach to dealing with the systematic heteroske-
dasticity observed in these datasets is to use WLS instead of OLS. 
To implement this approach, each squared residual is divided by 
the variance of the corresponding distribution, which is equivalent 
to measuring residuals as standard deviations of the standardized 
data. Here for simplicity we use the variance in the observed x̃(k,r)

i
 

to estimate the variance �(k)

i
2 (a more sophisticated approach would 

F I G U R E  1  Sum of squared deviations 
(shown in log-scale, y-axis) for the initial 
matrix B = I, at each successive iteration 
of the algorithm, and after the numerical 
maximization (colours). The data from 
Ghedini et al., (2022). Is used as an 
example. The dashed line marks the 
SSQ obtained using the naïve method of 
Maynard et al. (2020).
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call for the simultaneous estimation of means and variances, as in 
methods based on iteratively reweighted least squares). The WLS 
approach can be interpreted as reweighting the relative importance 
of errors made in our predictions, such that small errors made when 
estimating low species abundances are penalized as much as larger 

errors made when predicting higher species abundances. This is in 
contrast to OLS, where a 1% error in estimating the density of a 
species with high abundance contributes much more to the sum of 
squared deviations than the same proportional error for a species 
with low abundance.

Model
Number of 
parameters Interpretation

B arbitrary n2 Arbitrary interactions between the species

B = D(d) + vwT 3n − 1 Arbitrary intraspecific interactions; interspecific 
interactions Bij = viwj given by the product 
of the ‘resource transformation’ of species i  
(vi), and the ‘attack rate’ of species j (wj)

B = D(d) + vvT 2n Arbitrary intraspecific interactions; resource 
transformation is the same for all species

B = D(d) + �11
T n + 1 Arbitrary intraspecific interactions; resource 

transformation and attack rates are the 
same for all species

TA B L E  1  Simpler versions of the model 
derived by considering a MacArthur's 
consumer–resource model in which 
species have access to a private pool 
of resources as well as a shared pool of 
resources. See Supporting Information S5 
for a derivation

F I G U R E  2  (a) Observed species (colour) densities (x-axis) vs. predicted densities (y-axis) for the data from Ghedini et al. (2022), when 
fitting the four versions of the model (panels). Replicate measurements for each species/community are reported as semi-transparent points 
and the mean for each species/community combination as a solid point. (b) Observed species (colour, x-axis) densities (y-axis). Boxplots show 
the distribution of the species densities across replicates, with the median density reported as a solid coloured line; the mean density is 
represented by the coloured triangle. Predicted values for each species in each community are represented by black open symbols (one for 
each of the four versions of the model).

(a) (b)
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Since experimental replicates are necessary to estimate these 
variances, we must have replicates for all communities (as we do for 
all the datasets considered here) to implement the WLS approach in 
this straightforward manner.

In Figure  5 (and Supporting Information  S8), we compare 
these two error structures and find that we indeed observe 
a better fit for species with lower abundances when the WLS 
approach is used. This has important implications for the qual-
itative prediction of species' coexistence, because for a spe-
cies present at low abundance in a community, the numerical 
difference between a positive abundance and a negative abun-
dance (corresponding to a predicted lack of coexistence) could 
be quite small.

Finally, in Supporting Information  S9, we perform simulations 
in which observations are taken from distributions with known 
mean–variance relationship, and fit the data using OLS, WLS or a 
likelihood-based approach. In all cases, we find that WLS outper-
forms OLS, allowing us to fit the data well and recover with good 
confidence the parameters used to generate the data.

3.4  |  Predicting experiments out-of-sample

For the empirical datasets considered here, we always find good 
agreement between the observed and the fitted values when using 
the full model under either an OLS or WLS scheme. We also consider 
a leave-one-out (LOO) cross-validation approach, to verify that the 
models capture real features of the interactions between species 
in the communities, and are not simply over-fitting the data. For a 
dataset in which m experimental communities have been measured, 
we implement the LOO approach by designating one of the commu-
nities (along with any replicates) as out-of-sample (sometimes also 
called ‘out-of-fit’, as in Maynard et al. (2020)), and fitting our model 
on the remaining m − 1 communities. This process can be repeated 
for each of the m communities in turn, and we then compare the 
predicted species' abundances with their experimentally observed 
values, as shown in Figure 6 (and Supporting Information S8). While 
the quality of the predictions is necessarily worse, in almost all cases 
we would have correctly predicted the experimental outcome both 
qualitatively (i.e. possibility of coexistence) and quantitatively.

F I G U R E  3  Sum of squared deviations between observed and predicted densities for the four datasets considered, fitted using the four 
models in Table 1 in order of decreasing model complexity.
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4  |  DISCUSSION

In this study, we have further developed a simple, extensible frame-
work to infer species' interactions from experimental data where 

community composition has been manipulated, and showcased its 
potential by testing this approach on datasets spanning plant, phyto-
plankton and bacterial communities, as well as simulations. We have 
improved the computational performance of the fitting routines, 

F I G U R E  4  Mean (x-axis) vs. variance (y-
axis) for the data published by Ghedini et 
al. (2022). For each species (colours) and 
community combination, the mean and 
variance of the observed species densities 
are computed across replicates. Note 
that both axes have a logarithmic scale, 
and thus the strong linear trend displayed 
by the data corresponds to a power-law 
relationship between the mean and the 
variance.

FI G U R E 5 Observed (x-axis) vs. predicted (y-axis) species densities in all communities using the data by Ghedini et al. (2022), when fitting the 
simplified model B = D(d) + vwT and either minimizing the sum of squared deviations (Ordinary Least Squares [OLS]) or the sum of standardized 
squared deviations (Weighted Least Squares [WLS]). Replicate measurements for each species/community are reported as semi-transparent points; 
the mean for each species/community combination is reported as a solid point. In OLS, small (proportional) deviations of highly abundant species (e.g. 
Synechococcus sp., in green) are penalized more than larger (proportional) deviations of lower-abundance species (e.g. Tisochrysis lutea, in yellow). In 
contrast, when performing WLS each data point is standardized by its corresponding variance, levelling the importance of each measurement.
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derived simplified versions of the model and extended the error 
structure used to capture the variability in the data.

Previous studies have used a variety of approaches to model this 
type of experimental data, including bottom-up ‘assembly rules’, in 
which the focus is on observing all possible pairs of species and using 
the outcomes to predict coexistence of larger species assemblages 
(Dormann & Roxburgh,  2005; Friedman et al.,  2017); methods re-
lying on monocultures and LOO communities (Ansari et al.,  2021; 
Venturelli et al., 2018), using the extremes of very simple and highly 
speciose communities to infer pairwise interactions; and methods 
based on time-series that use fluctuations to estimate interaction 
strengths and the effects of environmental variables on ecological 
dynamics (Downing et al., 2020; Ives et al., 2003).

Our framework bridges the dynamical and statistical per-
spectives of these approaches. Importantly, though the models 
presented here are statistical in nature, they have a straightfor-
ward connection to the GLV dynamical model. By exploiting this 
parallel, we have derived a family of simplified models that put 

a premium on the ecological interpretability of the parameters. 
While an alternative approach to model regularization would be 
data-driven, machine learning methods (e.g. enforcing the sparsity 
or parsimony of B through a penalized regression), we have shown 
that ecologically motivated model constraints are a viable option. 
By clearly relating statistical and dynamical models, we retain the 
ability to probe other properties of these systems, for example in 
relation to invasibility, assembly and dynamical stability (Maynard 
et al., 2020).

Using our framework, we are able to obtain quantitative predic-
tions for coexistence and abundances of an arbitrary set of species 
both in- and out-of-sample, even for datasets that comprise just a 
fraction of the possible sub-communities that may be formed from 
a fixed pool of species. Here, our simpler models are used to fit the 
relatively sparse datasets when fitting the full model is impossible. 
As the number of combinations that can be formed from a set of 
n species grows exponentially with n, this ability to predict species 
abundances out-of-sample is critical for exploring larger systems. 

F I G U R E  6  As Figure 2, but showing only out-of-sample predictions. Each panel is obtained by excluding the corresponding data, 
fitting the model using the remaining data and then predicting the data reported in the panel out-of-sample. Results are presented for the 
model B = D(d) + vwT under either Ordinary Least Squares (OLS) or Weighted Least Squares (WLS). Note that in the panel displaying the 
measurements for the full community (A-T-D-S-Ti), Tisochrysis lutea is predicted at a negative abundance—Without having observed these 
data, our models would suggest a lack of coexistence.

(a) (b)
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Additionally, the good performance out-of-sample indicates that the 
models are capturing meaningful information about species interac-
tions, rather than merely over-fitting the data.

Remarkably, we find that a model where interspecific interac-
tions are approximated by a simplified structure, while intraspecific 
interactions are modelled more freely, achieves a comparable level 
of accuracy to the full model for the datasets. These results suggest 
that interspecific interactions in these systems are not completely 
idiosyncratic, but rather are largely characterized by a lower-
dimensional structure. This observation agrees with the finding that 
simple rules govern the structure of interactions in microbial com-
munities (Friedman et al., 2017), as well as recent work suggesting 
that plant–plant competitive interactions are characterized by low 
dimensionality (Stouffer et al.,  2021). Similarly, these patterns are 
consistent with the success of a sparse-modelling approach demon-
strating that, when considering only a few focal species of plants, 
many heterospecific interactions can be captured by a generic in-
teraction term (Weiss-Lehman et al., 2022). Our results suggest that 
effective interspecific interactions sit in between extremely low 
dimensional (i.e. as in the model with identical interspecific inter-
actions, which has a poor performance across all datasets) and fully 
structured pairwise interactions (arbitrary B).

Naturally, to develop these simple models, we need to make cer-
tain strong assumptions about the community dynamics. Here we 
have ruled out ‘true-multi-stability’, in which a set of species can 
coexist at distinct configurations of abundances. We have also ne-
glected higher-order or highly nonlinear interactions, which would 
make the effect of species i  on j context dependent. While we would 
expect this framework to perform poorly when these assumptions 
are violated, the good agreement with experimental data suggests 
that departures from these strict assumptions are modest. However, 
relaxing these assumptions could further expand the applicability of 
these methods.

Another area that deserves further exploration is quantify-
ing uncertainty in the point estimates produced by this approach. 
While one could gauge these effects via bootstrapping of experi-
mental data, we instead advocate a fully Bayesian approach to un-
certainty quantification, for example as implemented by Maynard 
et al. (2020), because deriving a posterior distribution for the matrix 
B would also allow one to determine the probability of coexistence 
for a set of species, and better characterize the correlations between 
species abundances. Both bootstrapping and Markov chain Monte 
Carlo would require evaluating the predicted values for a set of pa-
rameters a large number of times. In this respect, the computational 
gains afforded by our simplified models could be key to making such 
approaches viable in future studies.

The main outstanding problem with our approach is the as-
sumption that dynamics have reached a steady state, and thus the 
observed community composition is the ‘true’ final composition for 
the system. Violations of this assumption can greatly complicate 
inference. Suppose, for example, that we have two species, A and 
B, and that A excludes B asymptotically. If we sample this system 

before the extinction of B, we force the model to find parameters 
consistent with the robust coexistence of A and B, thereby biasing 
the results considerably. This problem of ‘spurious coexistence’ is 
especially troublesome for microbial communities, where species' 
presence is frequently determined by sequencing. Sequencing-
based methods often detect some species at very low densities 
(Venturelli et al.,  2018), potentially spuriously, making it difficult 
to discriminate between coexistence of rare species and actual 
extinctions masked by ‘background noise’. A Bayesian approach 
could make it possible to simultaneously impute the ‘true’ final 
composition (i.e. which species are truly coexisting in the sample, 
taken as a latent parameter) as well as determine the distribution 
of parameters.

This general framework can be further extended in a number 
of directions. For example, one could introduce a more sophis-
ticated error model assuming that species abundances are cor-
related within communities (e.g. overestimating the density of a 
predator could be associated with an underestimate of the den-
sities of its prey). Similarly, we could assume more generally that 
observed densities x̃(k,r)

i
 are sampled from a particular distribution 

(e.g. Gamma or Inverse Gaussian), with mean x(k)
i

 and ancillary pa-
rameters controlling the shape of the distribution. In this case, 
instead of minimizing the sum of squared deviations, we would 
maximize the likelihood of the parameters for the chosen distri-
bution. Preliminary results shown in Supporting Information  S9 
demonstrate that indeed we are able to recover the parameters 
used to generate simulated data with specified error models. The 
ability to model the data using a variety of distributions would 
bring this framework one step closer to the flexibility that charac-
terizes Generalized Linear Models while maintaining the connec-
tion to ecological dynamics.

Overall, the methods presented here make it easier to contrast 
experimental data with simple models for population dynamics, re-
turning parameters that have clear ecological interpretation, and 
allowing us to test predictions in a straightforward manner. The 
type of ecological data examined here are appearing with increasing 
frequency in the ecological literature, and these methods provide a 
complementary (or alternative) approach to model-fitting via time-
series analysis. The minimal data needed to fit the simplified models 
and the fact that each experimental community can be measured 
just once (possibly destructively) make this framework especially ap-
pealing and cost-effective.
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