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Abstract
Background: The escalating negative impact of climate change on our envi-
ronment has the potential to result in significant morbidity of rhinologic
diseases.
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866 CLIMATE CHANGE, ENVIRONMENT, and RHINOLOGIC DISEASE

Methods: Evidence based review of examples of rhinologic diseases includ-
ing allergic and nonallergic rhinitis, chronic rhinosinusitis, and allergic fungal
rhinosinusitis was performed.
Results: The lower socioeconomic population, including historically oppressed
groups, will be disproportionately affected.
Conclusions: We need a systematic approach to improve healthcare database
infrastructure and funding to promote diverse scientific collaboration to address
these healthcare needs.

KEYWORDS
air pollution, allergic fungal rhinosinusitis, allergic rhinitis, chronic rhinosinusitis, climate
change, health disparities, nonallergic rhinitis

1 INTRODUCTION

There is growing evidence for climate change as a sig-
nificant driver of human diseases.1,2 Increased human
fossil fuel use in the last half-century produces CO2
and methane greenhouse gases. These gases absorb heat
and result in global warming of the earth’s surface. This
warming is accompanied by regional changes in precipi-
tation and increases in many types of weather extremes.
Mounting evidence suggests that this results in exacerba-
tion of human diseases, including cardiovascular, allergic,
infectious, and mental health diseases.1 These effects pref-
erentially impact the lower socioeconomic populations,
reflecting the fact that climate risks are a product of hazard,
exposure, vulnerability, and response (Figure 1). Themulti-
factorial character of climate-induced health risk is further
complicated by the multifactorial processes that link cli-
matic change to a health outcomes. Where some climate
impacts may have a relatively direct physical impact on
the body (e.g., outdoor heat exposure), others are medi-
ated by ecological processes (e.g., vector-borne disease),
and still others emerge from social or institutional medi-
ation (e.g., malnutrition). Distinguishing the mediating
processes can be important when projecting future health
impacts. Herein we explore the evidence for the impact of
climate change on several examples of rhinologic diseases
and the consequences on the demographics of the afflicted
population.

2 EFFECT ON ALLERGIC RHINITIS

2.1 Evidence

Over the past century, allergic disease has increased at an
astounding epidemic rate and is currently estimated to
affect from 10% to 30% of the world’s population.3–5 The
basis of allergic disease is thought to be due to under-
lying genetic predisposing factors that are modified by

environmental risk factors.5 These factors include genetic
mutational changes in the individual’s DNA, the heredi-
tary ability to carry disease to the next generation, race, sex,
and age. However, environmental factors are now appreci-
ated as significantmajor drivers of the accelerated increase
in the prevalence of allergic disease, which appear to be
independent of evolution of the natural genetic drift by
host factors.5 The hygiene hypothesis alone cannot explain
the recent exponential growth of allergic disease.3–5 Cli-
mate change and climate events have changed how indi-
viduals experience allergic rhinitis (AR). Spring has inched
earlier in the year leading to earlier and prolonged release
of tree pollens.6 Conversely, there has been a progressive
delay in the onset of fall and the associated first frost,
increasing the length of ragweed pollination.7 The pri-
mary carbon source for photosynthesis, atmospheric CO2,
has continued to increase providing more fuel for pollen
production from ragweed and timothy grass.8,9 Prolonged
growing seasons and increased fuel supply has resulted
in an overall increase in plant biomass, which serves as a
nutrient source for mold.10 As such, higher levels of mold
spores are present every fall and spring.10,11 Extremes in
weather conditions induced by global warming modify
pollination patterns and distribution resulting in growth
of allergic microbes (mold and fungus), and promotion of
allergic rhinitis and asthma exacerbations. Increases in air
pollution from weather events then further compounds
the exacerbation of allergenmediated respiratory diseases,
such as chronic rhinosinusitis (CRS).12
Although higher temperatures are, in general, asso-

ciated with higher pollen and aeroallergen counts, the
relationship between climate and these allergens is medi-
ated by other climate factors and ecological processes,
including effects of altered precipitation patterns and
changes in the geographic range of allergenic species.
Techniques for measuring pollen rely upon either parti-
cles settling on a surface or being impacted in a trap.13
Modern pollen counting techniques, introduced in the
1950s, have reliably shown a steady increase in pollen load
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and length of pollen season14 because temperatures have
climbed across the globe. But global warming has also
brought shifts in air movement and atmospheric proper-
ties. For example, higher humidity has been associated
with lower concentrations of some allergens such as tree
pollen, but increases in others such as mold spores.15–18
Warmer air is able to hold more moisture, but this leads
to lower relative humidity (defined as the amount of water
vapor in the air relative to what the air can hold) in many
regions.19 A regional change in these humidity condi-
tions, then, could have diverse impacts on allergens in the
environment.
The distribution of allergenic species has also been in

flux, due to regional changes in temperature and pre-
cipitation. Hardiness zones, defined as regions where
temperature sensitive plant species thrive, have shifted
dramatically from 1990 to 2015.20 NorthAmerican climates
have become hospitable for known allergenic species like
oak and hickory, at the expense of less allergenic pine
and fir.21 In regions where precipitation has increased,
and/or are prone to extreme weather events, mold has
thrived. Hurricane Katrina served as a prime example
of weather-related changes to spore production. Spore
counts increased while hospitals reported a rise in cold
and allergy symptoms, which providers suggested was
related to increased mold exposure.22,23 As is the case in
many health impacts of extreme events, this phenomenon
reflects an interaction of a climate hazard with ecologi-
cal processes that play out in the built environment. The
health risk, then, is a product of the climate hazard, the
ecologically mediated exposure to the allergen, and the
vulnerability of people on account of their background
health conditions and housing quality. The example also
highlights the importance of the health system response
as a risk mediator, as the ability of providers to infer mold
exposure offered a path to address the source of the health
risk (Figure 1).

2.2 Summary and recommendations

The prevalence of AR has progressively increased through-
out the world. This trend has been seen in Finland (0.6%
prevalence to 8.88%), Sweden (21% to 31%), United King-
dom (5.8 to 19.9%), Northern Europe (19.7% to 24.7%), Italy
(16.2% to 37.4%), South Korea (13.5% to 17.1%), and West-
ern Australia (21.9% to 46.7%).24–32 As would be expected,
as the prevalence of AR has increased, so too has the
incidence of allergic asthma.33 Asthma hospitalizations
similarly correlate with both pollen load and climate
events such as floods and fires.33 These data highlight
the fact that no corner of the world is exempt from the
effects of climate change on allergic disease. This fur-
ther emphasizes that we, as health care providers, have

both the opportunity and an obligation to urgently raise
public awareness of the negative impact of climate change
on upper airway health.

3 EFFECT ON NONALLERGIC
RHINITIS

3.1 Evidence

About 200 million people worldwide, or approximately
3% of the global population, are estimated to suffer from
nonallergic rhinitis (NAR).34,35 NAR encompasses a broad
range of nasal inflammatory conditions that are inde-
pendent of typical infectious and allergic mechanisms.
Environmental NAR is characterized by nasal hyperreac-
tivity to various environmental triggers, including cold air,
tobacco smoke, and chemical products.34,36–38
The hallmark symptoms of NAR are nasal conges-

tion, rhinorrhea, and various pain syndromes, including
headaches and atypical facial pain, which are thought
to occur through shared neurologic pathways of the
sphenopalatine ganglion.39 As an example of the impact
on climate change on NAR related symptoms, results from
a recent study of ∼10,000 chronic pain sufferers from
the United Kingdom demonstrated a direct and signif-
icant association between prevalence of pain with low
atmospheric pressure, high humidity, high precipitation
rate, and stronger wind.40 NAR reduces quality-of-life
(QOL) measures, including sleep, mood, and attention.36
A comparison in QOL measures between NAR and AR
demonstrates equally significant impairment, with greater
degrees of nasal stuffiness and rhinorrhea, fatigue, and
diminished sleep quality for NAR.41 A majority of NAR
patients further remain dissatisfied with the treatment of
their symptoms, highlighting the lack of effective treat-
ment options.41 Pathophysiologic studies suggest thatNAR
symptoms occur through the activation of exaggerated
autonomic reflexes by environmental exposures, such as
shifts in temperature, pressure, and humidity.42,43 This
neurogenic response is supported by the presence of noci-
ceptive neurons in nasalmucosa and increased cholinergic
activity of the nasal glands.36 Air pollutants, such as ozone
and particulate matter, also contribute as independent
triggers to NAR exacerbations and result in histopatho-
logicmetaplasia in the nasal epithelium.42,44,45 Conversely,
reduction in exposures to environmental irritants can sub-
jectively and objectively improve NAR symptoms.46 Thus,
despite the heterogeneity of NAR, there appears to be
a consistent correlation between ozone and particulate
matter sensitivitywithmanifestation of symptoms ofNAR.
NAR, then, is a case in which physical atmospheric con-

ditions can have a direct influence on symptoms: climate
conditions impact patient health without any requisite
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868 CLIMATE CHANGE, ENVIRONMENT, and RHINOLOGIC DISEASE

F IGURE 1 The “risk propeller” applied to rhinologic
disease. The “risk propeller” frequently used in
Intergovernmental Panel on Climate Change reports, shown here
with a four-blade structure was first introduced by Simpson
et al.108 Risk is understood to be a product of interactions between
climate hazards, exposures related to factors that put people in
harm’s way, vulnerabilities that predispose people or groups to
adverse impacts, and responses that either mitigate or
inadvertently exacerbate the risk of negative outcomes.

ecological or socialmediation. At the same time, the poten-
tial for pollutants to serve as triggers for NAR indicates
that even in this case of direct climate influence on the
body, there are potentially significant influences of social
factors such as pollution exposure, with associated envi-
ronmental justice implications for who is most vulnerable
and faces greatest risk. Global warming is associated with
an increase in weather variability and weather extremes,47
which will have negative effects for NAR-susceptible indi-
viduals who have symptoms triggered by weather-related
pressure or humidity changes.19

3.2 Summary and recommendations

Thus, NAR may represent a sentinel event that predicts
weather-related events. Affected domains such as sleep,
emotion, and function directly impact on depression, pro-
ductivity, lost days of work, and restriction of functional
activity.48–50 If global warming continues to accelerate at
the present exponential rate, decline in QOL observed
with NAR has the potential to result in major negative
impact on our current population’s socioeconomic status
quo. Despite the negative impact of NAR on QOL, the
exact socioeconomic burden ofNAR is notwell studied and
varies across epidemiological studies due to the clinical
and geographic heterogeneity of disease. The global preva-
lence and QOL burden of NAR highlights the need to first
recognize NAR as a disease entity that requires attention
and investigation. This will require collaboration among
experts across multiple scientific disciplines in the United
States and worldwide to advance understanding of the

association betweenNARand climate change.As an exam-
ple of the power of collaboration, our European colleagues
have commendably moved to systematically study CRS
health outcomes by initiating establishment an interna-
tional outcome registry Chronic Rhinosinusitis Outcome
Registry (CHRINOSOR).51 If our European colleagues can
work to overcome logistical impediments to data collec-
tion from 10 independent countries, surely, we should be
able to emulate their efforts in the United States. Clearly
more research on the pathophysiology, epidemiology, and
socioeconomic impact of NAR itself is needed, in addition
to studying the effect of climate change on NAR.

4 EFFECT ON CHRONIC
RHINOSINUSITIS: EFFECT OF AIR
POLLUTION ON THE UPPER
RESPIRATORY TRACT

4.1 Evidence

CRS affects approximately 5% to 12% of the US popu-
lation or up to ∼ 40 million Americans.52–55 Exposure
to airborne pollutants including particulate matter (PM),
nitrogen dioxide (NO2), and ozone has been shown to con-
tribute to the development and/or exacerbation of several
commonupper respiratory tract diseases includingAR and
CRS.56–66 PM2.5 in the atmosphere is comprised of organic
compounds, metals, and products of combustion that are
2.5 microns in diameter or approximately 1/20th the diam-
eter of a human hair particle.67 Clinically, long-term air
pollution exposure has been found to be associated with
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the development of CRS in a powered case-control study
and a recent systematic review.68,69 In addition, air pollu-
tant exposure has been correlated with increased need for
revision sinus surgery.61,70 Furthermore, US veterans who
were exposed to pollutants on deployment overseas have
been identified to have a higher prevalence of CRS than
a similar cohort of nondeployed veterans.71–73 These find-
ings also extend globally to other continents. Urban areas
in Cologne, Germany, with above average air pollution
levels were associated with higher rates of CRS.74 Signif-
icant correlation between particulate matter exposure and
CRS prevalence was found by the South Korean National
Health and Nutritional Examination Survey75 and in a
rhinologic outpatient cohort in Xinxiang, China.76
Mechanistic studies have shown that PM results in

increased epithelial permeability, airway hyperresponsive-
ness, oxidative stress, immune dysregulation, and epige-
netic changes.62–66 Throughout a series of experiments
using human sinonasal epithelial cells, a transition toward
a proinflammatory state has been identified upon expo-
sure to PM.57,58,66 A recently published study by Patel
et al.65 sought to identify associations between sinonasal
histopathology specimens and levels of air pollutants at
the patients’ place of residence. Within the CRS with
nasal polyposis (CRSwNP) cohort, increased inflamma-
tion, Charcot-Leyden crystals, and eosinophil aggregates
were associated with increased ozone exposure. In fact, for
each 1–part per billion (1-ppb) increase in ozone exposure,
there was an 81% increased likelihood of having eosinophil
aggregates.
Climate change has both direct and indirect impacts

on air pollutants (relevant for CRS and NAR). The chem-
ical reactions that lead to creation or destruction of
ozone and PM depend on both temperature and humidity,
some natural sources of ozone precursors are temper-
ature dependent, and changes in weather patterns can
change the transport of pollutants.77,78 However, the future
trajectories of these pollutants are expected to depend
more on environmental policies to reduce air pollution
or climate change, than the direct impacts of a chang-
ing climate. For example, scenarios with high emissions
of methane (i.e., little effort to reduce greenhouse gas
emissions) project rising ozone concentrations primarily
because of methane’s role as an ozone precursor, whereas
scenarios with methane mitigation project reduced ozone
levels.79 Exceptions could be regions where wildfires or
dust storms occur. Global warming is associated with
increased wildfire risk,80,81 and increased droughts82 in
many regions, which leads to an associated increase in
regional atmospheric concentrations of PM and other
pollutants.82,83 The US Environmental Protection Agency
is conducting research specifically to address this ques-
tion. In the Wildfire ASPIRE Study (Wildfire Advancing
Science Partnerships for Indoor Reductions of Smoke

Exposures), Missoula City-County Health Department in
Montana, University of Montana, and the Hoopa Valley
Tribe in California aim to compare indoor and outdoor
PM2.5 concentrations and develop strategies for reduc-
ing indoor pollutant in public buildings during wild-
land fire smoke events (https://www.epa.gov/air-research/
wildland-fire-research-health-effects-research). However,
these studies are ongoing and results pending.

4.2 Summary and recommendations

Although our government continues to debate policy on
ways to decrease greenhouse gases, declining air qual-
ity, increasing wildfires, and increasing droughts continue
to exacerbate CRS. Our academic societies in the United
States and the world need to come together in vocal unity
to highlight the importance for the need for research and
research funding. We need to better understand the basic
mechanisms involved in the pathogenesis of CRS that
evolve from climate change that are both independent of
and also interact with allergic mechanisms. The National
Institutes of Health (NIH) purports to have interest in
supporting CRS research. For example, the most recent
funding National Institute of Allergy and Infectious Dis-
eases (NIAID) newsletter purports a U19 mechanism that
has an interest in funding studies on CRS as a program-
matic priority in four out of six areas.84 However, these
four areas each pertain to CRS, as it is related to aller-
gic mechanisms. But if we set aside our biases stemming
from historical evolution of disease understanding, non-
allergic alternate immune mechanisms also need to be
considered. Interestingly, the specific program area where
studies of pollution on the immune response is listed, there
is an explicit absence CRS as a disease of interest: “The
impact of the microbiome and of pollution on immune
responses as they pertain to developing, preventing, and
managing asthma, allergic rhinitis, food allergy, and atopic
dermatitis.”84 This highlights the need for our government
funding agencies to recognize that CRS is a disease area
that requires additional and serious funding consideration
with a diverse programmatic perspective, irrespective of
whether traditionally appreciated allergic mechanisms are
proposed in the application.

5 EFFECTS ON ALLERGIC FUNGAL
RHINOSINUSITIS

5.1 Evidence

Allergic fungal rhinosinusitis (AFRS), a distinct subtype
of CRSwNP, is an example of a “poster child” disease
exacerbated by climate change. From an epidemiology
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standpoint, changes in the environment, including
increases in temperature and humidity, have the poten-
tial to directly affect prevalence and severity of AFRS.
Increases in molds, caused by heavier rainfall and
higher temperatures, can cause respiratory and asthma-
related conditions as well as allergic bronchopulmonary
aspergillosis, AFRS, and hypersensitivity pneumonitis.85
Climate change induced increases in both temperature
and precipitation extremes, then, could increase AFRS
risk. It is widely accepted that AFRS is more commonly
diagnosed in warm, humid environments within the
United States and around the world. Ferguson et al.86
reported higher incidence of AFRS along the Mississippi
basin and the south-central part of the United States. A
systematic review of AFRS studies across five continents
identified that cities with higher mean temperatures were
found to have higher prevalence of AFRS and that housing
humidity could be related to the development of AFRS.87
The distinction between housing humidity and ambient
humidity is important, as it points to the interactions
between climate conditions and the built environment.
These correlations suggest that environmental exposure
to fungi is important in the development of AFRS. The
correlation of exposure and increased environmental
fungal load in warmer climates is concerning in the
context of global warming associated with climate change.
Initial case control studies examining the correlation
of household mold exposure with prevalence of AFRS
found no statistically significant association of AFRS as
compared to the CRSwNP group.88 However, this was
a relatively small study (n = 31 vs. n = 39, respectively)
conducted at a single institution, and within a single geo-
graphic location. This highlights an opportunity and the
need for more studies at multiple institutions, at multiple
geographic sites throughout the United States and the
world. Because individual patients demonstrate unique
and varied levels of sensitivity to atmospheric allergens, it
will also be important to understand how environmental
mold growth patterns are changing over time.89
Factors affecting social determinants of health have a

significant impact on prevalence of AFRS. Using a North
Carolina state database, AFRS was found to be associ-
ated with those that self-identify as African American
race, lower socioeconomic status, and less access to pri-
mary care providers, as compared to other phenotypes of
CRSwNP and CRS without nasal polyposis (CRSsNP).90
Similarly, another retrospective review identified that their
AFRS cohort was younger at presentation with a higher
proportion of uninsured/Medicaid status and those identi-
fied as African Americans, as compared to other CRSwNP
and CRSsNP cohorts.91,92 Furthermore, markers of disease
severity within AFRS patient cohorts have been found to
be associated with lower income and rural housing.93

5.2 Summary and recommendations

The rates of AFRS diagnoses over time have not been
well documented or examined, which directly hinders our
ability to assess the impact of this disease on our health-
care system. This may be due to several reasons including
challenges withmeeting diagnostic criteria for AFRS. Phe-
notypic variability of clinical presentation and lack of a
specific International Classification of Diseases, 9th revi-
sion (ICD-9) or International Statistical Classification of
Diseases and RelatedHealth Problems, 10th revision (ICD-
10) code for AFRS contribute to diagnostic confusion.90
This can result in inconsistencies in disease definitions and
study methodologies between institutions and geographic
regions. For example, if pathologists are not directed to
review for specific histopathologic findings, this diagno-
sis may be missed. Other studies have utilized a strategy
of classifying patients as AFRS patients when only three
of five diagnostic criteria are met.90 Given the present lack
of consistency in diagnosis, it will be necessary to further
define the criteria for establishing a diagnosis of AFRS
in order to streamline and standardize future research
efforts.94 Recent studies have identified a significant num-
ber of patients with local nasal immunoglobulin E (IgE)
reactivity in the absence of systemic findings of hypersen-
sitivity, which raises additional questions about the need to
further clarify and refine diagnostic criteria.95 The current
lack of consensus presents an opportunity for rhinologists
to collaborate with our allergy and pulmonary medicine
colleagues to standardize diagnostic criteria and coding so
that meaningful data can be collected andmined for much
needed studies.

6 EFFECT ONHEATH DISPARITIES

6.1 Evidence

Historically vulnerable and oppressed populations are
at higher risk of harm from climate change, extreme
weather events, and pollution. The National Academies
of Science, Engineering and Medicine have focused on
the intersection of climate change and equity. In their
Environmental Health Matters Initiative, they stated that,
“Communities disadvantaged by a legacy of racial segrega-
tion and environmental injustice struggle with disparate
health outcomes, are vulnerable to the effects of climate
change. . . and lack sufficient resources to recover from and
rebuild for resilience against future events.”96
Efforts to investigate the intersection of climate change

and rhinologic disease need a health equity approach
regardless of whether equity is the primary topic of
investigation. Megwalu et al.97 recently published a
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resource for otolaryngologists summarizing evidence-
based research frameworks and approaches for health
equity research in otolaryngology. Research in equity has
three phases: (1) detecting, (2) understanding, and (3)
reducing disparities.98 In otolaryngology, research has
focused primarily on detecting disparities and needs to
progress toward understanding the underlying mecha-
nisms and ameliorating disparities.99 Mechanisms help
elucidate the specific causal pathway between sociodemo-
graphic characteristics and disparities in health, health-
care utilization, or healthcare outcomes. For example,
housing or occupational health policies affecting patients’
home or work environments may be important mech-
anisms for mitigating environmental exposures. The
National Institute on Minority Health and Health Dis-
parities (NIMHD) research framework lists additional
categories for consideration in the study of health dispar-
ities and social determinants of health.100 Climate events
are anticipated to increase the risk of certain types of rhi-
nologic disease and disrupt healthcare access and care
continuity, and these effects are expected to be worse for
disadvantaged communities.
Health services research on disparities often utilizes

administrative datasets such as Medicare data or Health-
care Cost and Utilization Project data. However, CRS
is challenging to study in administrative datasets given
the poor reliability of administrative codes and lack of
consistent documentation of patient reported outcomes
data.101 The Cochrane Collaborative research organiza-
tion recommends standardized collection of sociodemo-
graphic characteristics and social determinants of health in
disparities research.102,103 Registries and single- or multi-
institutional cohort studies therefore play a critical role
in rhinologic research. For high-quality and generalizable
research related to climate change, we need large-scale
efforts to diversify of our registry cohorts to focus on
the underserved population and include social determi-
nants of health, geographic location, and climate pressures
such as flooding, drought, heat, and fires. Collaboration
between institutions and with community groups will be
helpful.

6.2 Summary and recommendations

Translational science and clinical trial efforts should
include equity in their scientific approach andmethods.104
For clinical trials, the Consolidated Standards of Reporting
Trials statement was updated in 2017 (CONSORT-Equity
2017) to improve reporting of randomized trials from an
equity standpoint.105 The standards improve the inclu-
siveness, interpretability, and generalizability of clinical
trials.

Inclusion of equity in any scientific approach is an
essential part of the research. Equity needs to be inte-
grated into the development of our scientific questions,
our methodological approaches, the composition of our
research teams and the patients and communities included
in our research. Ultimately these efforts would greatly ben-
efit from enhanced funding. Work is needed to define risk
factors and disparate exposure to climate pressures, and
urgent efforts to mitigate those effects.
As healthcare providers, we have worked diligently to

earn the public trust in our quest to mitigate disease-
induced morbidity, prevent untimely death, and improve
the QOL for our patients. However, healthcare industry
itself contributes ∼8.5% of total greenhouse gas emissions
in the United States.106 This is an alarming wake up call.
Therefore, to maintain public trust, we will also need
some deep introspection and support a collaborative and
actionable plan to reduce healthcare industry’s contri-
bution to greenhouse gas emission as proposed by the
National Academy of Medicine’s Action Collaborative on
Decarbonizing the US Health Sector.107

7 CONCLUSION

There is mounting evidence to suggest that climate
change mediated effects on our environment have the
potential to induce and exacerbate significant morbid-
ity of rhinologic diseases. This will disproportionately
affect the lower socioeconomic population and histori-
cally oppressed groups, and further worsen the healthcare
disparities already present. Thus, the hot get hotter, the
wet get wetter, the dry get dryer, and the poor get poorer
with respect to health. On a practical level, this will
impact the demographics and number of patients that we
can anticipate treating in our daily clinical practices. The
question now becomes: Are we ready? At first glance,
it seems as though we are not. To address the nega-
tive impact of climate change on rhinologic health, we
need improved infrastructure support of databases that
contain (but is not limited to) critical information regard-
ing: unambiguous and established rhinologic diagnoses,
social and environmental determinants of health, health
outcomes, and healthcare cost/utilization. This will com-
plement the much needed research support on elucidating
the pathophysiology of disease examples outlined above.
Major funding for focused research using diverse and
inclusive approaches on multiple levels is needed. This
includes diversity in the spectrum of scientific collabora-
tion between climate environmental, epidemiologic, basic
biological, and medical scientists. This also implies a need
for multi-institutional collaboration to study the diversely
afflicted population within multiple geographic locations.

 20426984, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/alr.23128, W

iley O
nline L

ibrary on [08/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



872 CLIMATE CHANGE, ENVIRONMENT, and RHINOLOGIC DISEASE

This call for engagement is not limited to academia, but
should also include biopharmaceutical andmedical device
industry, healthcare services industry, nonprofits, and the
federal government. The goal then will be to develop a
better understanding of the mechanisms of environmen-
tal effects of climate change on rhinologic health such
that we will be better prepared to mitigate these negative
outcomes.
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