
Ecology Letters. 2023;26:1029–1049.	﻿�     |  1029wileyonlinelibrary.com/journal/ele

INTRODUCTION

Vector-borne parasites are common, important biologi-
cal enemies of humans, animals and plants, transmitted 
by one living organism to another. Despite the recent 
gains in reducing the overall global burden for para-
sites like malaria (Ashepet et al., 2021; Bhatt et al., 2015; 
Gething et al., 2010), vector-borne diseases still account 
for 17% of all infectious diseases and cause 700,000 
deaths in humans annually (WHO, 2020). Livestock and 
crop systems are also plagued by vector-borne diseases, 

which place serious constraints on agricultural produc-
tion globally (Döring,  2017; Garros et al.,  2017), and 
vector-borne diseases can be devastating in wildlife 
populations, particularly when introduced to new areas. 
Collectively, tens of billions of dollars are spent every 
year on control, medical interventions and mitigating 
loss of productivity (Aguirre, 2017; George et al., 2015; 
Stuchin et al., 2016; Warner, 1968; Weaver et al., 2018).

The dependence of many pathogens on ectothermic 
arthropod vectors for transmission means that vector-
borne diseases are highly sensitive to variation in the 
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research areas that will ground the effects of humidity on the thermal biology of 
pathogen transmission in a theoretical and empirical framework to improve spatial 
and temporal prediction of vector-borne pathogen transmission.
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environment. Arthropod vectors experience a complex 
suite of environmental factors, both abiotic (e.g., tem-
perature, rainfall, humidity, salinity) and biotic (e.g., 
biological enemies, inter- and intraspecific interactions 
and variation in habitat quality). These factors vary in 
their relative effects on organismal fitness, can synergize 
(Huxley et al., 2021, 2022; Kleynhans & Terblanche, 2011; 
Liu & Gaines,  2022), and exert their effects at different 
spatial scales (Cohen et al., 2016) with important conse-
quences for the abundance and distribution of arthropod 
vectors (Evans et al., 2019; Ryan et al., 2015), vector pop-
ulation dynamics (Murdock et al.,  2017) and pathogen 
transmission (Huber et al.,  2018; Mordecai et al.,  2013; 
Mordecai et al.,  2017; Murdock et al.,  2016; Murdock, 
Blanford, Hughes, et al., 2014a; Ngonghala et al., 2021; 
Samuel et al., 2011; Shocket, Vergara, et al., 2018b; Tesla 
et al., 2018; Wimberly et al., 2020).

In vector ecology, there has been a strong empha-
sis on studying the effects of temperature on mosquito-
borne pathogen transmission (reviewed in Mordecai 
et al., 2019). In addition to temperature, water availability 
is another critical abiotic variable influencing ectotherm 
biology, and both play important roles determining the 
distribution and abundance of ectotherms (Chown & 
Nicolson, 2004; Deutsch et al., 2008; González-Tokman 
et al., 2020; Kearney & Porter, 2009; Lenhart et al., 2015; 
Roura-Pascual et al.,  2011; Rozen-Rechels et al.,  2019; 
Steiner et al.,  2008; van Klink et al.,  2020) and spe-
cies richness (Beck et al.,  2017; Calatayud et al.,  2016; 
Cardoso et al.,  2020; Hamann et al.,  2021; Jamieson 
et al.,  2012; Pilotto et al.,  2020). Body temperature has 
important effects on the rates of enzymatic processes as 
well as the structural integrity of cellular membranes and 
proteins (Angilletta,  2009), while all cellular processes 
rely on water as a solvent for biochemical reactions and 
for trafficking nutrients into, within, and out of cells 
(Chaplin, 2006; Chown & Nicolson, 2004). Temperature 
also affects the amount of desiccation stress an organism 
experiences due to the fundamental relationship between 
ambient temperature and the amount of water the sur-
rounding air can hold (Lawrence,  2005; Romps,  2021). 
Other fields at the climate-health interface have explored 
the effects of wet heat vs dry heat on the energy budgets 
of endotherms in the context of human heat stress and cli-
mate change (Buzan & Huber, 2020). We anticipate that 
variation in relative humidity is also an important force 
shaping the thermal performance of ectotherms, including 
mosquitoes. Whereas metabolic theory has been well de-
veloped and widely applied in ecology to understand tem-
perature effects (Brown et al., 2004; Corkrey et al., 2016; 
Dell et al., 2011) we currently lack a similar framework 
for understanding how humidity and temperature inter-
act to influence mosquitoes and their pathogens.

In this Perspectives, we explore the effects of humidity 
on the thermal performance of mosquito-borne pathogen 
transmission. We begin by summarizing what is currently 
known about how temperature and humidity affects 

mosquito fitness, population dynamics and pathogen 
transmission, whilst highlighting current knowledge gaps. 
We present a conceptual framework for understanding 
the interaction between temperature and humidity and 
how it shapes the range of temperatures across which 
mosquitoes persist and achieve high transmission poten-
tial. We then discuss how failing to account for these inter-
actions across climate variables hinders efforts to forecast 
transmission dynamics and to respond to epidemics of 
mosquito-borne infections. We end by outlining future 
research areas that will ground the effects of humidity on 
thermal performance of pathogen transmission in a the-
oretical and empirical basis to improve spatial and tem-
poral prediction of vector-borne pathogen transmission. 
Such a framework will inform multiple fields (thermal, 
disease and landscape ecology and epidemiology) and a 
diversity of vector-borne disease systems (human, wild-
life, domestic animals and plants).

TH E EFFECTS OF TEM PERATU RE  
ON MOSQU ITO POPU LATION 
DY NA M ICS A N D PATHOGEN  
TRA NSM ISSION

Numerous studies have demonstrated that mosquito-
borne pathogen transmission is both seasonally and geo-
graphically limited at various spatial scales by variation 
in ambient temperature (e.g., malaria (Ryan et al., 2015; 
Siraj et al., 2014; Villena et al., 2022), Zika (Ryan, Carlson, 
et al., 2020a; Siraj et al., 2018; Tesla et al., 2018), chikun-
gunya (Johansson et al.,  2014) and dengue (Mordecai 
et al., 2017)). The effects of temperature on ectotherm per-
formance, including mosquito vectors, are typically non-
linear, with performance steadily increasing from zero at a 
minimum critical temperature (CTmin) up to an optimum 
temperature (Topt), followed by a steep decline towards the 
critical thermal maximum (CTmax) (Figure 1). The CTmin 
and CTmax represent the operational limits for trait perfor-
mance because temperatures that exceed their range are not 
permissive for ectotherm development, survival or repro-
duction (Brown et al., 2004; Corkrey et al., 2016; Deutsch 
et al., 2008; Hoffmann et al., 2013; Sinclair et al., 2016). 
These thermal limits in ectotherm performance are consist-
ent with the metabolic theory of ecology, which posits that 
organismal physiological and enzymatic rates will increase 
predictably with temperature because of increased effi-
ciency of biochemical reactions (Huey & Kingsolver, 2019) 
up to Topt. The steep decline in performance above the 
Topt is attributed to the declining efficiency of metabolic 
processes due to decreases in protein stability as tempera-
tures increase, eventually resulting in organismal death at 
the Tmax. Collectively, this information gives us a Thermal 
Performance Curve (TPC), which can be used to infer eco-
logical and evolutionary outcomes.

Mosquitoes, like other ectotherms, are highly sus-
ceptible to changes in ambient temperature, which 
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demonstrably affects their growth rate (Alto & 
Juliano,  2001; Delatte et al.,  2009; Evans, Newberry, 
& Murdock,  2018a; Huxley et al.,  2022; Monteiro 
et al., 2007; Paaijmans et al., 2013; Tun-Lin et al., 2000), 
reproduction (Carrington et al.,  2013; Miazgowicz 
et al., 2020), metabolic rate (Vorhees et al., 2013), lifespan 
(e.g., Alto & Juliano, 2001; Christofferson & Mores, 2016; 
Gunay et al., 2010; Miazgowicz et al., 2020), biting rate 
(Afrane et al.,  2005; Lardeux et al.,  2008; Miazgowicz 
et al.,  2020; Shapiro et al.,  2017), immunity (Adelman 
et al.,  2013; Ferreira et al.,  2020; Murdock et al.,  2012, 
2013; Murdock, Blanford, Luckhart, & Thomas, 2014b; 
Suwanchaichinda & Paskewitz, 1998), and ability to ac-
quire, carry and transmit pathogens (Johnson et al., 2015; 
Lambrechts et al.,  2011; Mordecai et al.,  2013, 2017; 
Murdock et al., 2016; Murdock, Blanford, Luckhart, & 
Thomas, 2014b; Paaijmans et al., 2012; Shocket et al., 2020; 
Shocket, Ryan, & Mordecai, 2018a; Tesla et al., 2018) in 
a non-linear, unimodal fashion. These temperature-trait 
relationships can vary in overall shape (e.g., symmetric or 

asymmetric non-linear relationships) due to differences 
in the temperatures that optimize and constrain various 
traits, which in combination will determine the predicted 
thermal minimum, maximum and optimum for mosquito 
fitness, intrinsic growth rates of mosquito populations, 
and pathogen transmission (Figure 1).

Process-based models, which traditionally have relied 
upon temperature relationships grounded in metabolic 
theory, have enhanced our ability to predict the effects of 
environmental drivers on spatial and temporal dynamics 
of vector-borne disease. Several key biological insights 
have resulted from this general approach. First, temper-
ate areas of the world that currently experience relatively 
cool temperatures are expected to increase in thermal 
suitability for many mosquito-borne diseases with fu-
ture climate warming (Ryan et al., 2015; Ryan, Carlson, 
et al., 2020a; Siraj et al., 2014; Tesla et al., 2018), and, in 
temperate regions, mosquito-borne pathogens can invade 
or spread during the summer in seasonally varying en-
vironments (Huber et al., 2018; Ngonghala et al., 2021). 

F I G U R E  1   (a) Similar to other ectothermic organisms, the life history traits of mosquitoes and the pathogens they transmit typically 
exhibit non-linear relationships with environmental temperature, where trait performance is constrained by both cool and warm temperatures 
and optimized at some intermediate temperature. Further, the effect of temperature on these individual traits can vary qualitatively and 
quantitatively, resulting in different temperature ranges across which trait performance can occur, temperatures that maximize trait 
performance, and the overall shape of the temperature-trait relationship (e.g., symmetric vs. asymmetric). As a result, predicting the effects 
of temperature on mosquito fitness, population growth rates or pathogen transmission is complex. (b) Mathematical models of vector-borne 
pathogen transmission that incorporate these temperature-trait relationships generally predict transmission to also follow a non-linear 
relationship and to peak at some intermediate temperature, as depicted here with the temperature-dependent relative reproductive number R0 
as a conceptual example. This model incorporates the effects of temperature on traits that drive mosquito population dynamics (e.g., per capita 
mosquito development rate (MDR), the probability of egg to adult survival (pEA) and the per capita number of eggs females produce per day 
(EFD)), host-vector contact rates (the per capita daily biting rate of female mosquitoes (a)) and the number of mosquitoes alive and infectious 
(transmission (b) and infection (c) probabilities, the extrinsic incubation period (1/EIR) and the per capita mosquito mortality rate (μ)). Where 
the predicted thermal minimum (Tmin), maximum (Tmax) and optimum (Topt) for transmission occur will be dependent upon the relative effect 
of each trait, the nature of the temperature-trait relationship, and how these factors combine to shape the transmission process. Adapted from 
Mordecai et al. (2017).
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Secondly, areas that are currently permissive (near the 
Topt) or warmer than the Topt for transmission are ex-
pected to experience a decline in thermal suitability with 
future warming (Murdock et al., 2016; Ryan et al., 2015; 
Ryan, Lippi, & Zermoglio, 2020b). Third, because mos-
quito and pathogen species can have different qualitative 
and quantitative relationships with temperature (resulting 
in different CTmin, CTmax and Topt) (Johnson et al., 2015; 
Miazgowicz et al.,  2020; Mordecai et al.,  2013, 2017, 
2019; Shapiro et al., 2017; Shocket et al., 2020; Shocket, 
Ryan, & Mordecai,  2018a; Tesla et al.,  2018; Villena 
et al.,  2022), shifts in thermal suitability with climate 
and land-use change could also alter the prevalence and 
magnitude of mosquito-borne diseases in a given area 
(Tesla et al., 2018), such as sub-Saharan Africa (Mordecai 
et al., 2020). Fourth, small variations in ambient tempera-
ture at fine-spatial scales can contribute to high hetero-
geneity in predicted suitability for pathogen transmission 
across various environments (Afrane et al., 2005; Cator 
et al., 2013; Evans et al., 2019; Murdock et al., 2017; Okech 
et al.,  2004; Paaijmans & Thomas,  2011; Pincebourde 
et al.,  2016; Thomas et al.,  2018; Verhulst et al.,  2020; 
Wimberly et al., 2020), which can have important rami-
fications for predicting mosquito-borne pathogen trans-
mission and targeting interventions (Thomas et al., 2018; 
Wimberly et al.,  2020). Finally, disease intervention ef-
forts can also be directly or indirectly affected by variation 
in ambient temperature. Various insecticides (Akinwande 
et al., 2021; Glunt et al., 2014), entomopathogenic fungi 
(Darbro et al., 2011; Kikankie et al., 2010) and Wolbachia 
transinfections (Foo et al., 2019; Gu et al., 2022; Murdock, 
Blanford, Hughes, et al., 2014a; Ross et al., 2017, 2019, 
2020; Ulrich et al., 2016) are thermally sensitive, indicat-
ing that the efficacy and cost of these interventions could 
vary seasonally, across geographic regions and with future 
climate and land-use change (Parham & Hughes, 2015).

TH E EFFECTS OF H U M IDITY 
ON MOSQU ITO FITN ESS, 
POPU LATION DY NA M ICS A N D 
PATHOGEN TRA NSM ISSION

Spatial and temporal variation in atmospheric mois-
ture has important implications for an organism's 
ability to hydroregulate (Box  1). Hydroregulation is 
defined as the suite of physiological and behavioural 
responses organisms utilize to regulate water bal-
ance and tolerate dehydrating environmental condi-
tions (Benoit,  2010; Chown et al.,  2011; Chown & 
Nicolson,  2004; Edney,  2012; Lucio et al.,  2013). The 
relationship between organismal fitness and optimal 
hydroregulation is complex, with significant costs to fit-
ness (e.g., decreased survival and reproduction) occur-
ring when organisms become dehydrated (Anderson & 
Andrade, 2017; Mitchell & Bergmann, 2016) or overhy-
drated (Chown & Nicolson, 2004). Insects have a suite 

Box 1  Different measurements of humidity.

In the most general sense, humidity is a measure of 
water vapour in the atmosphere, which is one im-
portant component defining an organism's risk of 
desiccation. In practice, humidity can be quantified 
in multiple ways. A fundamental characteristic is 
the vapour pressure, which is defined in meteorol-
ogy as the partial pressure of water vapour in the 
atmosphere. Vapour pressure affects the move-
ment of atmospheric moisture, which diffuses 
from higher to lower vapour pressures (Allen et 
al., 1998; Wexler & Greenspan, 1971). The satura-
tion vapour pressure is the maximum vapour pres-
sure of a completely saturated parcel of air and is 
a non-linear increasing function of temperature 
(Figure  1). The dew point temperature is defined 
as the temperature to which air would need to be 
cooled for the saturation vapour pressure to equal 
the actual vapour pressure and is related to the 
total amount of moisture in the air. Absolute hu-
midity is the mass of water vapour per unit volume 
of air, whereas relative humidity is the ratio of the 
actual water vapour pressure divided by saturation 
vapour pressure (at ambient temperature and pres-
sure) (Lawrence, 2005). The vapour pressure deficit 
is the difference between saturation vapour pres-
sure and the actual vapour pressure. Vapour pres-
sure deficit is a key term in the numerator of the 
Penman-Monteith equation (used for calculating 
evaporation and evapotranspiration, see Allen et 
al., 1998; Chiew et al., 1995). Thus, if other environ-
mental factors are constant, the rates of evaporative 
water loss from open water bodies and vegetated 
surfaces are expected to increase as a linear func-
tion of vapour pressure deficit.

Of these humidity measures, relative humidity is 
most commonly provided in meteorological data-
sets. Relative humidity is a unitless ratio in which 
the influence of temperature on the saturation va-
pour pressure has been removed, which has several 
important implications. Even if the total amount 
of water in the air is constant, relative humid-
ity will vary with temperature. This effect is most 
commonly observed in the diurnal cycle of humid-
ity, which reaches a minimum during the warmest 
time of day and a maximum at the coolest times 
of night. When comparing two observations with 
similar relative humidities but different tempera-
tures, the observation with the higher temperature 
will have a higher vapour pressure, saturation va-
pour pressure and vapour pressure deficit. Thus, 
the potential for evaporative water loss at a given 
relative humidity is inherently sensitive to changes 
in temperature (Figure 1).
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of adaptations to conserve water, like physiological 
changes in skin or cuticular permeability (Rajpurohit 
et al.,  2008; Wu & Wright,  2015), differential regula-
tion of urine and faeces production (Durant et al., 2021; 
Durant & Donini,  2019; Lajevardi et al.,  2021; 
Weihrauch et al., 2012), and behavioural changes in ac-
tivity (Kühnholz & Seeley, 1997; Ostwald et al., 2016). 
Insects also can mitigate water loss by regulating water 
intake via changes in water utilization, food sources and 
selection of specific habitats (Benoit, 2010; Bezerra Da 
Silva et al., 2019; Hagan et al., 2018)). Finally, insects 
can also produce water via metabolic processes (Chown 
et al., 2011; Jindra & Sehnal, 1990). Maintaining water 
balance is a particular challenge for blood-feeding (hae-
matophagic) vectors (Chappuis et al., 2013; Kleynhans 
& Terblanche,  2011), like mosquitoes (Edney,  2012), 
where the act of taking a blood meal results in overhy-
dration that requires specialized adaptations for the ex-
cretion of water, which, in turn, enhances susceptibility 
to desiccation overall (Benoit & Denlinger, 2010).

Instead of measuring humidity directly (Box 1), many 
studies use related variables, like seasonal precipitation 
or land cover to predict mosquito population dynamics 
or pathogen transmission (Abdelrazec & Gumel, 2017; 
Chandy et al., 2013; Chaves & Kitron, 2011; Johansson 
et al.,  2009; Nosrat et al.,  2021; Sang et al.,  2017; 
Soti et al.,  2012). Mosquito-borne diseases gener-
ally peak during, or following, periods of highest 
rainfall (Chowdhury et al.,  2018; Karim et al.,  2012; 
Magombedze et al.,  2018; McLaughlin et al.,  2019). 
Rainfall can matter as a standalone variable, since 
standing water is essential for mosquitoes' ontogenetic 
development. However, the effect of precipitation on 
mosquito population dynamics and disease transmis-
sion can operate through other factors that covary with 
precipitation, such as increased humidity and shifts in 
temperature that impact mosquito development rates, 
adult survival and reproduction, parasite development 
rates and mosquito-human contact rates. The relation-
ship between mosquitoes and precipitation is even more 
difficult to discern for mosquito species that develop 
in artificial, human watered containers, where com-
plex interactions can occur between amount of rainfall 
and access to piped water (Brown et al., 2014; Hayden 
et al., 2010; Lippi et al., 2018; Padmanabha et al., 2010; 
Schmidt et al.,  2011; Stewart Ibarra et al.,  2013). 
Similarly, measures of land cover such as the normal-
ized difference vegetation index (NDVI) have been used 
to account for areas too dry for widespread mosquito 
habitat (Ryan et al., 2015). Ultimately, the use of these 
proxy measures obscures our understanding of how rel-
ative humidity and other environmental variables affect 
transmission, which, in turn, constrains our ability to 
predict how mosquito-borne pathogens will respond to 
future climate and land-use change.

Several studies have demonstrated statistical associ-
ations between humidity and mosquito abundance, as 

well as vector-borne disease incidence and prevalence 
(Althouse et al.,  2015; Asigau & Parker,  2018; Azil 
et al., 2010; Buckner et al., 2011; Chen et al., 2010; Davis 
et al., 2018; Diallo et al., 2019; Evans et al., 2019; Jemal 
& Al-Thukair, 2018; Karim et al., 2012; Lega et al., 2017; 
Mayne, 1930; Santos-Vega et al., 2022). For example, the 
sizes of seasonal malaria epidemics in two cities in India ex-
hibit a clear association with relative humidity (Figure 2), 
with a higher correlation than for temperature or rainfall 
(Santos-Vega et al., 2016). A semi-mechanistic epidemi-
ological model that incorporates this effect of relative 
humidity on the transmission rate parameter accurately 
predicts the temporal dynamics of the disease, includ-
ing the multiyear cycles in the size of seasonal epidemics 
(Santos-Vega et al., 2016, 2022). Such predictions can in-
form mosquito control efforts and targeting prophylaxes. 
However, the underlying biology of the relationships that 
exist between humidity and these response variables are 
often assumed and based on a limited number of empir-
ical studies (summarized in Table 1). Experimental work 
has thus far shown generally positive effects of increased 
relative humidity on mosquito survival and desiccation 
tolerance, production and development of eggs and mos-
quito activity (up to 90% relative humidity). In contrast, 
biting rates exhibited increases when conditions are drier 
and the effect of humidity on vector competence is less 
clear (Table 1).

Despite the existing body of research, we still do not 
have a sufficient knowledge base for incorporating the ef-
fects of humidity into the current temperature-trait model-
ling framework. Results from observations studies cannot 
necessarily be extrapolated to new locations or into the 
future. Further, the effects of humidity on mosquito and 
pathogen fitness described by experimental / causation 
studies are of limited resolution, typically exploring a 
limited number of humidity levels and encompassing 
only a handful of mosquito species. The need to better 
incorporate humidity effects is not unique to vector-borne 
diseases, but parallels trends seen in the larger body of 
ecological work on the effects of climate variability and 
climate change on heat health in ectotherms (Gunderson 
& Stillman, 2015; van Heerwaarden & Sgrò, 2014). In the 
following section, we outline how variation in relative hu-
midity interacts with temperature to change the thermal 
performance of ectothermic vectors and, consequently, 
pathogen transmission.

CONSIDERING TH E COM BIN ED 
EFFECTS OF TEM PERATU RE A N D 
H U M IDITY ON TRA NSM ISSION

The optimal regulation of both body temperature and 
water balance is crucial for organismal performance and 
fitness (Bradshaw,  2003). Due to the fundamental rela-
tionship that exists between temperature and the amount 
of moisture the air can hold (Figure 3), variations in both 

 14610248, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.14228, W

iley O
nline L

ibrary on [08/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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relative humidity and temperature will alter the degree 
of moisture stress ectothermic organisms, like mosqui-
toes, experience. For a given amount of atmospheric 
moisture, warmer temperatures result in higher satura-
tion vapour pressures that reduce relative humidity and 
increase vapour pressure deficit (Figure  3). Depending 
on the ambient temperature, variation in relative humid-
ity can exacerbate or buffer the negative effects of higher 
temperature on mosquito fitness and pathogen transmis-
sion. The current manner in which thermal performance 
of vector-borne pathogen transmission is conceptualized 
and empirically measured does not explicitly account for 
these effects. Even when relative humidity is held con-
stant, increases in temperature will increase the vapour 
pressure deficit and the evaporative stress an adult mos-
quito experiences. Thus, it is currently unclear if the ther-
mal maximum of a given trait, which is typically an upper 
lethal limit (Chown & Nicolson,  2004), is really being 
driven by temperature effects on metabolic function or 
rather is a function of dehydration and water stress on 
the organism. Understanding the physiological mecha-
nisms underpinning mosquito responses to these abiotic 
constraints will be critical for predicting how transmis-
sion will shift with future anthropogenic change (Chown 
& Gaston, 2008; Deutsch et al., 2008; Dillon et al., 2010; 
Pörtner & Farrell, 2008).

We utilize a trait-based approach that leverages a 
widely used relative R0 model (Mordecai et al.,  2013, 
2017, 2019; Murdock et al.,  2017; Ryan, Lippi, & 
Zermoglio,  2020b; Shocket et al.,  2020; Shocket, Ryan, 
& Mordecai, 2018a; Tesla et al., 2018; Villena et al., 2022; 
Wimberly et al.,  2020) to present a framework that 

outlines the manner in which variation in relative humid-
ity could influence the thermal performance of vector-
borne pathogen transmission (Figures 4 and 5). Overall, 
we anticipate that variation in relative humidity could 
result in significant shifts in the qualitative shape of the 
temperature-trait relationship and cause these effects to 
vary with mosquito traits. Drawing from the literature 
on other ectotherms, insects and what little we do know 
for mosquitoes, we outline several hypotheses for how 
variation in relative humidity may affect the thermal per-
formance of mosquito and pathogen traits (Table 2). We 
anticipate variation in relative humidity will be import-
ant throughout the mosquito life cycle, with the largest 
effects at temperatures that approach the upper thermal 
limit (Tmax) for a given trait, with little to no effect of vari-
ation in relative humidity on the predicted thermal min-
imum (Tmin) (Table  2). This hypothesis is based on the 
observation that for a given change in relative humidity, 
the corresponding change in vapour pressure deficit and 
evaporative stress will be greater at higher temperatures 
(Figures 3 and 4). How variation in relative humidity af-
fects the predicted thermal optimum (Topt) of a given trait 
will be somewhat dependent on the specific trait as well as 
the magnitude of the effect at warmer temperatures.

The nature and magnitude of the effects of relative 
humidity and temperature variation on mosquito and 
pathogen traits important for transmission could differ 
depending on mosquito life stage. One way in which rela-
tive humidity and temperature interact to affect develop-
ing mosquitoes is through the evaporation rate of larval 
habitat, which is also determined by the size and surface 
area of the larval habitat and rate of water replenishment 

F I G U R E  2   Monthly malaria case data for Plasmodium falciparum shown (in purple) with a corresponding time series for relative humidity 
(RH, red) for two cities in India, Ahmedabad (a) and Surat (b). Total cases during the transmission season from August to November are shown 
as a function of mean RH in a critical time window preceding this season and including the monsoons from May to July for Ahmedabad (c) and 
March to July for Surat (d). Figure is taken from Santos-Vega et al. (2022) Nature Communications doi: 10.1038/s41467-022-28,145-7. Figure is 
reproduced under Creative Commons Attribution 4.0 International Licence.
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(Juliano & Stoffregen, 1994). A second type of interaction 
could involve altering some intrinsic factor of the larval 
environment such as surface tension, microbial growth or 
solute concentration (Juliano & Stoffregen, 1994; Pérez-
Díaz et al., 2012). Causal evidence from semi-field exper-
iments shows negative effects of high relative humidity at 

temperatures near or above the predicted thermal opti-
mum for Aedes albopictus (Mordecai et al., 2017; Murdock 
et al., 2017) on larval survival and the probability of adult 
emergence (Murdock et al., 2017). One possibility is that 
both temperature and water vapour in the atmosphere 
will affect the surface tension of aquatic larval habitats. 

TA B L E  1   Summary of the published literature that investigated the effects of relative humidity on mosquitoes, organized by life history 
trait, presented with a summary of the effect of RH.

Life history trait
Range explored 
(RH%) Effect of RH Mosquito species References

Longevity/Survival/ 
Desiccation tolerance

5–100 Increased RH significantly 
increased female longevity; 
tendency to survive longest 
at low temp—high humidity 
combinations and females to 
survive longer than males

Anopheles gambiae, An. 
stephensi, An. subpictus, 
An. culicifacies, 
An. pharoensis, An. 
arabiensis, An. funestus, 
Ae. aegypti, Ae. 
albopictus, Ae. togoi, 
Ae. paullusi, Culex 
pipiens, Eretmapodites 
chrysogaster

Alto et al. (2015), 
Bayoh (2001), Canyon 
et al. (2013), Costa 
et al. (2010), Gaaboub 
et al. (1971), Gray 
and Bradley (2005), 
Hylton (1969), Lega 
et al. (2017), Lewis (1933), 
Lomax (1968), 
Lyons et al. (2014), 
Mayne (1930), Mogi 
et al. (1996), Reiskind and 
Lounibos (2009) Schmidt 
et al. (2018) and Urbanski 
et al. (2010)

Egg production 34–95 Increased RH increased egg 
production; significantly 
lower numbers of eggs and 
delayed oviposition in dry 
conditions

An. pharoensis, Ae. aegypti, 
Ae. taeniorhynchus, Ae. 
vexans, Ae. trivittatus

Canyon et al. (1999, 2013), 
Costa et al. (2010), 
Gaaboub et al. (1971), 
Lega et al. (2017) 
and Mcgaughey and 
Knight (1967)

Activity/Behaviour 10–30, up to 100 Mosquito activity increases with 
increasing relative humidity 
to a point (~90%) and then 
precipitously declines, also 
has a general lower limit at 
~40%.

An. quadrimaculatus, An. 
earlei, An. walkeri, 
An. crucians, Ae. 
aegypti, Ae. sollicitans, 
Ae. cantator, Ae. 
vexans, Ae. trivittatus, 
Ae. canadensis, Ae. 
communis, Ae. sticticus, 
Ae. taeniorhynchus, Ae. 
vigilax, Cx. pipiens, Cx. 
fatigans, Cx. restuans, 
Cx. nigripalpus, Cx. 
sitiens, Coquillettidia 
perturbans, Psorophora 
confinnis, Uranotaenia 
sapphirina

Bidlingmayer (1974, 
1985), Dow and 
Gerrish (1970), Grimstad 
and DeFoliart (1975), 
Hagan et al. (2018), 
Johnson et al. (2020), 
Platt et al. (1957, 1958), 
Provost (1973), Rowley 
& Graham (1968), 
Rudolfs (1923, 1925), 
Thomson (1938), Witter 
et al. (2012) and Wright & 
Knight (1966)

Plasmodium infection 39–100 Mixed or unclear effects of 
humidity

An. stephensi, An. 
subpictus, An. 
culicifacies, An. 
fuliginosus, Cx 
quinquefasciatus, Cx. 
fatigans

Knowles and Basu (1943) and 
Mayne (1930)

Egg hatching Real-world RH 
data; 0–100

Adding RH data to a predictive 
model focused on egg 
hatching made the model 
more accurate. Egg hatching 
worse at lower humidities

Ae. aegypti Albernaz et al. (2009),  
Bar-Zeev (1957) and Lega 
et al. (2017)

Microclimate preference 
upon emergence

75, 86 Newly emerged adults with no 
access to water or sugar 
preferred cooler, more humid 
refugia.

An. gambiae, An. stephensi, 
Ae. aegypti and Cx. 
pipiens

Kessler and Guerin (2008)
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1036  |      HUMIDITY AND VECTOR-BORNE DISEASE

Warm temperatures and high humidity may cause larval 
habitats to have too little surface tension, while cool and 
dry larval environments may have too high surface ten-
sion (Pérez-Díaz et al., 2012; Singh & Micks, 1957), nega-
tively affecting the ability of larval mosquitoes to breath, 
access nutrients and emerge from the pupal stage. In all 
likelihood, both types of effect could be important in the 
field. Thus, the effects of relative humidity on the rate of 
evaporation relative to larval development or shifts in in-
trinsic conditions of larval habitats could have substan-
tial effects on the thermal performance curves for both 
mosquito development rate (MDR), the probability of 
egg to adult survival (pEA) and consequently the intrinsic 
growth rate of mosquito populations.

Once adults emerge from the larval environment, 
variation in relative humidity could potentially increase 
or decrease the predicted upper thermal limit for adult 
traits that are critical for mosquito population dynamics 
and transmission (Figure  4, Table  2). For example, de-
creases in relative humidity at warm temperatures could 
decrease mosquito survival (by increasing the per capita 
daily mortality rate (μ)) via increasing desiccation stress 
(Gaaboub et al., 1971; Lyons et al., 2014; Mayne, 1930). 
This, in turn, will decrease the temperatures at which 
mosquitoes can survive to become infected and to 

transmit vector-borne pathogens. Evidence from other 
insect systems (Chown and Nicolson (2004); Edney and 
Barrass (1962); Shelford (1918); Yu et al.  (2010)) would 
predict that decreases in relative humidity at warm tem-
peratures could also decrease the per capita daily biting 
rate (a) and production of eggs (EFD) by altering mos-
quito activity and blood feeding due to shifts in behaviour 
(e.g., utilization of specific habitats, times of day or times 
of season; Canyon et al.  (1999); Drakou et al.  (2020); 
Dow and Gerrish  (1970); Gaaboub et al.  (1971); 
Provost  (1973)) and physiological responses (e.g., de-
creased metabolic rate) to increase desiccation resistance 
or tolerance (Chown & Davis, 2003; Marron et al., 2003). 
However, the evidence that does exist for mosquitoes sug-
gests decreases in relative humidity can actually increase 
biting rates on hosts (e.g., Culex pipiens, Ae. aegypti, An. 
quadramaculatus; Hagan et al. (2018)). It remains unclear 
if this pattern would persist in the field for mosquito spe-
cies that utilize sugar sources for hydration and nutrition, 
because nectar-feeding mosquitoes can increase sugar 
feeding behaviour when environmental conditions are dry 
(Fikrig et al., 2020).

Finally, we also anticipate that the development of 
mosquito-borne pathogens and parasites, and potentially 
mosquito susceptibility to infection, should be affected by 
variation in relative humidity under different ambient tem-
perature conditions based on physiological acclimation re-
sponses (Beitz,  2006; Liu et al.,  2016). Aquaporin water 
channels allow organisms to rapidly move water (aquapo-
rins) or water and glycerol (aquaglyceroporins) across cel-
lular membranes to promote cellular function. Mosquitoes 
utilize aquaporins and aquaglyceroporins to minimize 
water loss in desiccating environments (Liu et al.,  2011) 
and to maintain glycerol concentrations to stabilize pro-
teins when mosquitoes are exposed to high heat (Deocaris 
et al., 2006; Diamant et al., 2001; Liu et al., 2016; Tatzel 
et al., 1996). The physiological responses of mosquitoes to 
optimally thermo- and hydroregulate under sub-optimal 
temperature and relative humidity environments could 
also have consequences for the energy available to devel-
oping pathogen (Liu et al., 2016).

IM PLICATIONS FOR 
U N DERSTA N DING PATHOGEN 
TRA NSM ISSION A N D CONTROL IN 
A CH A NGING WORLD

Understanding the respective effects of variation in tem-
perature and humidity, as well as any interaction between 
variables, will be critical for addressing how the regional 
and global distributions of mosquito vectors, and the sea-
sonality and intensity of vector-borne pathogen transmis-
sion, will shift in response to future climate and land-use 
change. Based on the importance of maintaining optimal 
temperature and water balance in other organisms, we 
also argue that variation in temperature, humidity and 

F I G U R E  3   The total amount of water the air can hold, 
expressed here as saturation vapour pressure (Es), increases 
exponentially with temperature and is estimated as a function of 
temperature using the Tetens equation. The actual amount of water 
in the air, expressed here as vapour pressure (Ea), can be derived 
from relative humidity (RH) as Ea = RH/100 * Es. The vapour 
pressure deficit (VPD) is the absolute difference between Es and 
Ea and is an important metric of atmospheric moisture because 
it has a near linear relationship with evaporative potential. Thus, 
as temperature warms, for a given decrease in RH, there will be a 
larger increase in VPD and the amount of water stress mosquitoes 
experience.
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      |  1037BROWN et al.

water availability are important selective determinants 
driving local adaptation of mosquitoes to various envi-
ronments as well as their capacity to respond to future 
environmental change. Finally, variation in temperature 
and humidity will also likely affect the efficacy, coverage 
and cost of disease control programs.

Human-mediated environmental change

Human-mediated climate change is resulting in wide-
spread and uneven changes in global temperature, humid-
ity and precipitation patterns and more frequent extreme 
weather events (IPCC,  2021). In addition to climate 
warming, regional changes in humidity and precipita-
tion will result in increased drought in some areas, while 
others become wetter (Konapala et al., 2020). If mosqui-
toes and their transmission cycles are more sensitive to 
humidity at higher temperatures, then future increases in 

wet vs. dry heat may have very different implications for 
mosquito populations and pathogen risk. Regional vari-
ation in temperature and relative humidity could have 
important implications for both the seasonal timing and 
peak of vector-borne disease (Santos-Vega et al.,  2016, 
2022) as well as pathogen persistence or emergence. For 
example, it has been suggested that future temperatures 
in tropical Africa will exceed the thermal optimum for 
malaria and result in reduced transmission (Mordecai 
et al.,  2020). However, these tropical regions are char-
acterized by humid heat, and malaria may persist if the 
maximum temperature for transmission increases at high 
humidity. Similarly, the potential for arboviruses to ex-
pand into warming temperate climates may be greater in 
regions with increasing humid heat vs. dry heat, which has 
not been considered in current mechanistic model projec-
tions of disease risk with various climate change scenarios 
[e.g., (Caldwell et al., 2021; Ryan, Carlson, et al., 2020a; 
Ryan, Lippi, & Zermoglio, 2020b)].

F I G U R E  4   (a) Thermal performance is often measured by placing mosquitoes in different life stages and infection stages across a range 
of constant temperatures at a set relative humidity (typically between 70–90% RH). However, despite holding relative humidity constant, as 
temperatures warm there will be a corresponding increase in the vapour pressure deficit (VPD) and the amount of water stress mosquitoes 
experience. Overlaying these relationships (from Figure 1) on a given temperature-trait relationship demonstrates that the sensitivity of trait 
performance to variation in relative humidity should be highest on the descending limb of this relationship. Es = saturation vapour pressure, 
which increases exponentially with temperature and is estimated as a function of temperature using the Tetens equation. Ea = vapour pressure, 
meaning the actual amount of water in the air and can be derived from relative humidity (RH) as Ea = RH/100 * Es. (B–D) represent the 
hypothetical responses of three temperature-trait relationships to variation in relative humidity. These shifts are predicted to both decrease 
the thermal optimum and maximum for some traits (e.g., (b) lifespan and (d) vector competence) or increase them for others (e.g., (c) per capita 
biting rate).
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Land-use change is another key human driver affecting 
mosquito-borne disease transmission (Baeza et al., 2017). 
For example, urban landscapes are one of the most rap-
idly growing land cover types across the globe (United 
Nations,  2019), with the proportion of people living in 
urban environment projected to increase from 55% to 68% 
between now and 2050. High environmental heterogene-
ity in urban areas creates substantial variation in the local 
microclimates mosquitoes experience, through differences 
in temperature, moisture and wind speed (Stewart & 
Oke, 2012). These differences are mediated by the extent 
of impervious surfaces, the distribution of vegetation and 
the three-dimensional structure created by buildings and 
trees. Together, these changes result in urban heat and dry 
islands (Heaviside et al.,  2017) with higher land surface 
(Yuan & Bauer, 2007) and near-surface air temperatures 
(Coseo & Larsen, 2014) and lower relative humidity (Hao 
et al., 2018; Heaviside et al., 2017; Lokoshchenko, 2017; 
Yang et al.,  2017) compared to more vegetated land-
scapes. This fine-scale variation in mosquito microclimate 
can have significant implications for multiple mosquito 
species (e.g., Aedes aegypti, Ae. albopictus, Anopheles ste-
phensi) that drive urban outbreaks of diseases (e.g., den-
gue, chikungunya, Zika and malaria) (Beebe et al., 2009; 
Heinisch et al., 2019; Li et al., 2014; Murdock et al., 2017; 

Stoddard et al., 2009; Takken & Lindsay, 2019; Thomas 
et al., 2016, 2017).

Small-scale variation in temperature and relative hu-
midity could also have important implications for the spa-
tial distribution of risk in urban environments (Figure 5). 
Recent studies that combine field experimentation with 
direct monitoring of urban microclimates and mosquito 
abundance demonstrate that fine-scale variation (e.g., 
individual neighbourhoods or city blocks) in both tem-
perature and relative humidity can have important im-
plications for mosquito life history, population dynamics 
and disease transmission within urban environments 
(Evans et al., 2019; Evans, Shiau, et al., 2018b; Murdock 
et al.,  2017; Wimberly et al.,  2020). Thus, neighbour-
hoods with a high proportion of impervious surfaces 
that experience mean temperatures near or exceeding the 
thermal optimum for transmission could experience even 
higher decreases in vectorial capacity than what models 
would predict from temperature alone, if drier conditions 
increase desiccation stress and reduce mosquito survival.

To generalize the effects of changing temperature and 
humidity across diverse locations and into the future, it 
will be necessary to develop a conceptual framework that 
incorporates the psychometrics of temperature and atmo-
spheric moisture with mosquito biology and the natural 
and built environments in which transmission occurs. 
Incorporating the effects of humidity into hierarchical 
models and assessment of mosquito population dynam-
ics and disease transmission will increase the precision of 
mapping environmental suitability, both globally and re-
gionally with human-mediated environmental change, as 
well as across heterogeneous human-modified landscapes.

Local adaptation and capacity to adapt 
in the future

There is growing interest in the factors driving adaptation 
of mosquitoes to local environmental conditions for provid-
ing insights into the long-term responses of mosquito species 
to future warming. Mosquito species are composed of an 
array of locally adapted populations across their respective 
ranges. Substantial genetic variation exists in mosquito spe-
cies (Fouet et al., 2017; Holt et al., 2002; Kang et al., 2021; 
Maffey et al., 2020; Pless et al., 2020; Yurchenko et al., 2020) 
and at fine-spatial scales (Ayala et al.,  2020; Carvajal 
et al., 2020; Gutiérrez et al., 2010; Jasper et al., 2019; Matowo 
et al., 2019), with significant consequences for transmission 
potential (Azar et al., 2017; Palmer et al., 2018; Vega-Rúa 
et al., 2020). This genetic variation can interact with local en-
vironmental conditions to impact the capacity of mosquito 
vectors to transmit human pathogens (e.g., dengue; Gloria-
Soria et al. (2017) and chikungunya; Zouache et al. (2014)). 
Yet, we still do not have a clear understanding of what envi-
ronmental factors are driving this differentiation.

The work that has been done in this area to date has 
largely focused on the effects of temperature variation 

TA B L E  2   Predictions for the interactive effects of relative 
humidity & temperature on different mosquito traits.

Trait Definition Tmin Topt Tmax

MDR Mosquito 
development 
rate (1/days)

No change ? evaporation ↓ with 
↑ RH = ↑ or no 
∆ in Tmax no 
evaporation 
with ↑ RH = ↓ 
Tmax

pEA Probability of 
egg to adult 
survival

No change ? evaporation ↓ with 
↑ RH = ↑ Tmax 
no evaporation 
with ↑ RH = ↓ 
Tmax

EFD Per capita no. of 
eggs produced 
daily per 
female (1/days)

No change ? RH ↑ = ↑ or ↓ Tmax

a Per capita female 
biting rate (1/
days)

No change ? RH ↑ = ↑ or ↓ Tmax

μ Per capita 
mosquito 
mortality rate 
(1/days)

No change ? RH ↑ = ↑ Tmax

bc Probability of 
becoming 
infectious

No change ? RH ↑ =? Tmax

EIR Extrinsic 
incubation rate 
(1/EIP or 1/
days)

No change ? RH ↑ = ↑ Tmax
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in driving local adaptation of current mosquito popula-
tions (Couper et al.,  2021; Sternberg & Thomas,  2014). 
However, research from the broader field of ectotherms 
[e.g., reviewed in Rozen-Rechels et al., 2019, vertebrates; 
Chown et al., 2011, insects] suggests that selection on ther-
mal response curves are constrained by other metabolic 
stressors, like desiccation stress, as temperatures warm. 
For example, a study on 94 Drosophila species from di-
verse climates found substantial variation in the upper 
thermal limits among species. Further, the species specific 
CTmax correlated positively with increasing temperature 
in dry environments, with species from hot and dry envi-
ronments exhibiting higher heat tolerance. However, this 
relationship completely disappeared for species inhabiting 
wet environments suggesting temperature as a selective 
force is less important when humidity is high (Kellermann 
et al.,  2012). A similar study in ectothermic vertebrates 
(400 lizards), found the thermal optimum to be more 
strongly related to ambient precipitation than to average 
temperature (Clusella-Trullas et al., 2011). Environmental 
mean temperature was only found to be predictive of the 
lower thermal limit (CTmin) (Clusella-Trullas et al., 2011).

Both common garden and experimental evolution 
studies, two standard approaches to measure local ad-
aptation and evolutionary potential of a particular spe-
cies, could be incorrectly attributing observed phenotypic 
responses to temperature selection when they could be 
responding to a combination of energetic effects and 
moisture stress. This impacts our ability to accurately 
characterize thermal response curves of mosquitoes, as 
well as their capacity to adapt to future environmental 
change. From our conceptual framework outlined above 
(Figure 5), we would predict that the current approach to 
studying local adaptation, steeped in metabolic theory of 
ecology, will be most predictive of mosquito population 
responses to future warming in regions of the world that 
currently exist below the species specific thermal optima 
(Topt). However, for mosquito populations that inhabit 
environments above their thermal optima, humidity will 
be an important determinant of their capacity to respond 
to future environmental change. For example, mosquito 
populations in warm and wet, humid environments may 
have less capacity to adapt to future climate change in a 
warming and drying environment than what would be pre-
dicted from evolutionary models that consider the effects 
of temperature alone. Conversely, mosquito populations 
that currently live in warm and dry environments may 
have a greater capacity to adapt to warming conditions if 
they exhibit higher heat tolerance than their counterparts 
inhabiting wetter areas of the geographic distribution.

Controlling mosquito populations and disease 
transmission

There have been several mechanistic modelling efforts to 
understand how regional and seasonal environmental 

variation will impact the relative reproductive number of 
a pathogen, the intensity of human transmission and the 
efficacy of key disease interventions (e.g., Zika; Ngonghala 
et al. (2021), schistosomiasis; Nguyen et al. (2021)). These 
studies have, again, focused largely on the effects of ambi-
ent temperature. However, seasonal and regional variation 
in humidity and precipitation could extend or shorten the 
transmission season and magnify or depress the intensity of 
epidemics as predicted from models incorporating the ef-
fects of temperature alone (Huber et al., 2018; Ngonghala 
et al.,  2021). For example, this is likely to be the case in 
seasonally dry environments where mosquito-borne dis-
ease transmission tends to be highest during or just after 
the rainy season and lowest during the hottest / driest parts 
of the season due to seasonal shifts in mosquito habitat, 
as well as the effects of temperature and humidity on mos-
quito and pathogen traits relevant for transmission.

How variation in humidity affects the efficacy of current 
and novel mosquito control interventions also needs to be 
considered. Many novel mosquito control technologies in-
volve the mass release of males that have been sterilized or 
genetically engineered to pass on traits that confer either se-
vere fitness costs (i.e., population suppression approaches; 
Alphey et al., 2010; Wilke & Marrelli, 2012; Wang et al., 2021) 
or enhanced resistance to human pathogens (i.e., population 
replacement approaches (Carballar-Lejarazú & James, 2017; 
Hegde & Hughes, 2017; Wilke & Marrelli, 2015)). For exam-
ple, the wMel strain of the symbiont Wolbachia can prevent 
dengue, chikungunya and Zika transmission in Ae. aegypti 
(Aliota, Peinado, et al., 2016a; Aliota, Walker, et al., 2016b; 
Moreira et al., 2009; Ye et al., 2015). Experimental work has 
determined that wMel infections are temperature sensitive, 
with high temperatures causing reductions in Wolbachia 
density (Foo et al., 2019; Gu et al., 2022; Ross et al., 2017, 
2019, 2020; Ulrich et al., 2016) and temperature variation af-
fects the host-pathogen interaction and the outcome of infec-
tion in Wolbachia-infected mosquitoes (Murdock, Blanford, 
Hughes, et al.,  2014a). Based on the relationship between 
temperature and water balance laid out in this paper, further 
experiments should examine whether Wolbachia infections 
are limited by temperature alone or by cellular water avail-
ability, and examine what role mosquito desiccation stress 
plays in limiting Wolbachia abundance within mosquitoes at 
varying temperature.

Furthermore, thermal performance differs between 
insecticide resistant vectors and their susceptible coun-
terparts, with important implications for assessing fitness 
costs associated with insecticide resistance (Akinwande 
et al., 2021). Thus, insecticide resistant mosquitoes may 
have to optimize temperature and water needs across 
environmental constraints differently and, therefore, be 
affected by changes in humidity, with potentially import-
ant consequences for population dynamics, mosquito-
pathogen interactions and transmission. Identifying these 
environmental constraints on efficacy and coverage will 
be critical for the successful implementation of current 
and future control programs (Parham & Hughes, 2015).
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CONCLUSIONS A N D FUTU RE  
DIRECTIONS

Sufficiently understanding the performance of insect vec-
tors within the natural environmental mosaics where they 
occur will require substantially more data on the spatial 
and temporal complexities in microclimate, behavioural 
responses to temperature and humidity change, plastic-
ity in thermal tolerance traits and the eco-physiological 
mechanisms of vector water balance, coupled with 

broader understanding of the general relationships be-
tween water and temperature described in this paper. 
We have collated these goals into a general framework 
incorporating humidity into research questions and 
temperature-dependent mechanistic models (Figure  5 & 
Box 2). We intend for the evidence and theory presented 
here to be signposts for future research, leading to a col-
lective broadening in our understanding of insect vectors 
and how their responses to climate variables will affect 
parasite transmission.

F I G U R E  5   Laboratory work with field derived mosquitoes can be conducted to estimate the effect of multiple environmental variables 
on mosquito fitness, population dynamics and pathogen transmission. For example, mosquitoes could be housed across a range of constant 
temperature (T) and relative humidity (RH) conditions that are reflective of monthly field conditions. From these experiments, one can 
estimate the effects of variation in these environmental variables on key larval traits (a: mosquito development rate (MDR) and the probability 
of egg to adult survival (pEA)), adult traits (b: per capita mortality rate (μ), per capita eggs laid per day (EFD) and per capita daily biting rate 
(a)) and parasite / pathogen traits (c: vector competence (bc) and the extrinsic incubation period (EIP)). (d) Bayesian hierarchical models can 
be used to develop T and RH response surfaces for each trait, which can either be incorporated in process-based modelling approaches to 
infer effects on seasonal and interannual variation in vector-borne pathogen transmission dynamics. (e) Bayesian models can also be used to 
generate a T and RH dependent, relative R0 model that can be used to predict environmental suitability for pathogen transmission at various 
spatial scales. A crucial detail for modelling approaches, based on the evidence presented in Box 2, is that the effects of T and RH will be 
interactive, not additive. (Inset on temporal dynamics in (D) is from Santos-Vega et al. (2022) Nature Communications; doi: 10.1038/s41467-022-
28,145-7. Figure is reproduced under Creative Commons Attribution 4.0 International Licence).
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