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4.1 The device. (a) False-colored optical image. Two transmons (red) are inductively
connected through a SQUID loop (purple, inset shows zoomed-in image). An
on-chip flux line is coupled to the SQUID to activate QQ sidebands through
parametric RF flux modulation at the proper DC flux position. Each transmon
is capacitively coupled to the readout resonator (blue). Single transmon pulses
are sent through the resonator input lines. QR sidebands are applied through
corresponding charge lines. (b) Circuit schematic diagram. . . . . . . . . . . . . 46

4.2 Circuit quantization results of HQ. Comparison of (a) ‘Algorithm chip’ and
(b) ‘AQEC chip” transmon frequencies and (c) ‘Algorithm chip’ and (d) ‘AQEC
chip’ cross-Kerr couplings between simulation and experiment. Q1 (red) and
Q2’s (blue) |g⟩ ↔ |e⟩ and |e⟩ ↔ |f⟩ frequencies from numerical calculation and
experiment are plotted as a function of Φext. Four inter-qutrit cross-Kerr coupling
strengths, J11, J21, J12 and J22 are calculated, and experiment data are marked
out on the Star code operating point (dashed line). . . . . . . . . . . . . . . . . 49

4.3 Experimentally realized QQ and QR sidebands. From top to bottom are sepa-
rately (a) QQ red sideband |ge⟩ ↔ |eg⟩, (b) QQ blue sideband |gg⟩ ↔ |ee⟩, (c)
QR blue sideband between QR1 and QR2 |g0⟩ ↔ |e1⟩, and (d) QR1 red sideband
|e0⟩ ↔ |g1⟩. Readout on Q1 (red) and Q2 (blue) are scaled between 0 (|g⟩) and
1 (|e⟩). Data points are connected for visual guidance. . . . . . . . . . . . . . . 55

4.4 Process tomography for Hadamard gates. The top and bottom panels show real
and imaginary components of the process matrix (χ) for (a) an ideal case, (b)
Q1, and (c) Q2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Chevron plots for the six two-qutrit red sidebands. All sidebands are paramet-
rically activated by modulating the coupler at the corresponding transition fre-
quencies. Pulses used for flux modulations have a rectangular shape with 5 ns
long rising and falling Gaussian-shaped edges. The x-axis represents the length
of the flat-top section. Both qutrits are simultaneously read out, and each data
point is an average of 1000 experiments. * Q1’s readout are not shown in the
|21⟩ ↔ |30⟩ and |22⟩ ↔ |31⟩ cases, as the readout on |3⟩ is not optimized. . . . . 61

4.6 Chevron plots for the four two-qutrit blue sidebands. Sidebands are all paramet-
rically activated through flux modulation of the coupler at relevant frequencies.
Pulses used for flux modulations have a rectangular shape with 5 ns long rising
and falling Gaussian-shaped edges, and the x-axis represents the length of the
flat-top section. Each experimental data is an average of 1000 measurements. . . 62

4.7 Coherent oscillations for all two-qutrit sidebands. On-resonance features from the
Chevron plots are selected and fitted to extract the sideband rates and π rotation
lengths (shown in Table. 4.5). Rectangular pulses with 5 ns long Gaussian edges
are used for flux modulations, and the x-axis represents the length of the flat-top
section. Each data point is an average of 1000 experiments. . . . . . . . . . . . . 63
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4.8 CPhase gate construction. (a) Partitioned energy level diagram. Flipping the
phase of a specific target state in the region (0) is performed through a 2π side-
band rotation (shown in red arrow). Flipping the other target states requires a
decomposition. The application of a Cθ(π, |mn⟩) follows the path marked with
brown arrows starting from |mn⟩. Here the numbers inside the yellow circle in-
dicate the total number of single-qutrit π pulses required. (b) An example of
circuit decomposition for the Cθ (π, |00⟩) gate. (c) Single-qutrit phase compensa-
tion calibration for a Cθ (π, |jk⟩) gate. . . . . . . . . . . . . . . . . . . . . . . . 65

4.9 Two-qutrit tomography of the state 1
3 (|0⟩+ |1⟩+ |2⟩)⊗2 after applying the CPhase

gate Cθ

(
8π
9 , |22⟩

)
. The top and bottom rows are experimental and ideal density

matrices, with the real and imaginary parts shown in the left and right columns. 66
4.10 Deutsch-Jozsa and Bernstein-Vazirani algorithms. (a) Quantum circuit for the

algorithms. In DJ algorithm, gates W1, W2 ∈ {I,X,X2, Z, Z2} are applied to
implement a constant or a balanced oracle. The final output state being in |00⟩ or
non |00⟩ distinguishes the two cases. (b) Experimental results for DJ algorithm.
The rows and columns represent gates applied to Q1 and Q2 respectively. The
average SPs are 75.5(3)% and 98.5(1)% for the constant (hatched boxes) and
balanced (plain boxes) oracles respectively beating the classical rate of 50%. (c)
Experimental results for BV algorithm. Each row corresponds to a specific oracle
with the mapping {I, Z, Z2} → {0, 1, 2}. The diagonal terms show the SPs for
all nine strings mapped to the basis states with an average of 78.3(3)%, which is
much larger than the classical SP of 33.3%. . . . . . . . . . . . . . . . . . . . . 68

4.11 Heatmap of the confusion matrix. 32 basis states are prepared and measured for
20,000 times. The numbers represent average assignment probabilities. . . . . . 70

4.12 Grover’s search algorithm for two-qutrits. (a) Quantum circuit. The oracles are
implemented by CPhase gates Cθ (π, |jk⟩). The diffusion operator amplifies the
detection probability of the marked state. (b) Experimental results. Detection
probabilities (corrected for measurement error) after one (top panel) and two
(bottom panel) rounds of amplitude amplification are obtained with 20,000 aver-
ages. All individual success rates are far beyond the corresponding classical SPs
of 11.1% and 22.2%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.13 Master equation simulation of two-qutrit Grover’s search with one and two stages
of amplitude amplification using experimentally measured parameters. These re-
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4.14 Programmable stabilization protocol. a General stabilization scheme. Two
qubits’ eigenstates {|A⟩ , |B⟩ , |C⟩ , |D⟩} are plotted in the energy level diagram.
When the energy relation ED + EA = EB + EC is satisfied, |A⟩ is stabilized.
Qubit-resonator interactions and resonator photon decay rate κ are shown in
blue and orange arrows. Qubit decay rate γ is assumed slowest and not plotted.
b Stabilization of entangled states |Ψθ⟩ = sin (θ/2) |gg⟩− cos (θ/2) |ee⟩ or |Φθ⟩ =
sin (θ/2) |ge⟩−cos (θ/2) |eg⟩. c A special case of b that stabilizes the odd and even
parity bell states |Φ−⟩ and |Ψ−⟩. Circulating arrows are color-coded to represent
red (exchange-like) and blue (two-photon-pumping) sidebands respectively. The
QQ and QR sideband rates are separate Ω and Wj , and the QR sideband is
detuned in frequency by Ω/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.15 Experimental stabilization of different Bell states. Experimental demon-
stration of |Ψ−⟩ (a, b) and |Φ−⟩ (c, d) stabilization with the initial state |gg⟩.
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matrices reconstructed with 5000 single shot measurements at 49 µs are plotted.
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{2.0, 0.47, 0.47, 0.33, 0.43} MHz for |Ψ−⟩ and {3.0, 0.36, 0.36, 0.33, 0.43} MHz for
|Φ−⟩. Qubit coherence time is chosen as {T q1

1 , T
q2
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ϕ , T

q2
ϕ } = {25, 12, 25, 25} µs.

Error bars (one standard deviation) are smaller than the marker size [24]. . . . . 84
4.16 Spectroscopy of universal Bell-state stabilization. |Ψθ⟩ (a) and |Φθ⟩ (b)

are separately stabilized with a measured fidelity above 78% among different
blending angle θ. The fidelities are measured after 40 µs of stabilization. No
external drives are applied for stabilizing |gg⟩. For |Φθ⟩ case, the fidelity dropped
to 0 near θ = π. The dotted lines indicate simulated fidelities for the odd and
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same as in Fig. 4.15. Error bars (one standard deviation) are smaller than the
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odd parity between [20 µs, 40 µs] and [60 µs, 85 µs]. Each experimental point is
measured with the two-qubit state tomography. Stabilization time is calculated
by fitting the parity signature to exponential decay after each switching event. . 86
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(a) Sweeping qubit dephasing time. The other simulation parameters are the same
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4.20 Stabilizing a one-dimensional set of entangled states. Blue and red lines represent
separately using the QQ blue and QQ red sideband in the rotating frame simula-
tion. Parameter used in the simulation: {Ω,W1,W2, κ1, κ2}/2π = {5.0, 0.5, 0.5, 0.3, 0.33}
MHz. Qubit coherence time are {T1, Tϕ} = {30, 30}µs. . . . . . . . . . . . . . . 91

4.21 Stabilizing a 2D set of entangled states. Steady states’ fidelity (a) and purity
(b) are simulated in the rotating frame and plotted. A1

Ω and δ
Ω are separately

two free variables that are swept to stabilize different states. Parameter used
in the simulation: {Ω,W1,W2, κ1, κ2}/2π = {5.0, 0.5, 0.5, 0.3, 0.33} MHz. Qubit
coherence time are{T1, Tϕ} = {30, 30}µs. . . . . . . . . . . . . . . . . . . . . . . 93

4.22 (a) Use both QR red sidebands to stabilize |Ψθ⟩. (b) Use opposite QR blue
sideband detunings to stabilize |Ψθ−π⟩. The QQ sideband rates and detunings
are separate Ω and δ, and the QR sideband is detuned in frequency by ∆+δ

2 , ∆−δ
2

in (a) and −∆+δ
2 , −∆−δ

2 in (b). Here ∆ =
√
Ω2 + δ2. . . . . . . . . . . . . . . . 95

5.1 Illustration of the autonomous error-correction scheme. The protocol
requires simultaneous application of two QQ blue sidebands (|ee⟩ ↔ |gg⟩ and
|ee⟩ ↔ |ff⟩), two QQ red sidebands (|ee⟩ ↔ |fg⟩ and |ee⟩ ↔ |gf⟩), and two QR
error correcting sidebands (|e0⟩ ↔ |f1⟩). All six drives are always-on. a Star code
logical word formation. All QQ sidebands have nominally equal rates W . The
two drives within a pair have opposite detunings from the on-resonance values.
This opens up the energy gaps of O(W ) between logical states and other states
{|S±⟩ , |T ⟩} (see Sec. 3.2 for full expression). With only QQ sidebands on, this
forms the “QQ echoed” qubit sharing the same logical states as the star code. b
The AQEC cycle for |L0⟩ (left) and |L1⟩ (right) when a single-photon-loss event
occurs. Logical state |L000⟩ (|L100⟩) loses a photon from transmon Q1 at a rate
2γ1 and becomes the error state |eg00⟩ (|ef00⟩). QR error correcting sidebands
(applied on-resonance) bring the state at rate Ω1 to |L010⟩ (|L110⟩) with one
photon populating R1. R1’s photon decays quickly (at a rate κ1) and recovers
the original logical state. AQEC cycle for Q2’s photon loss event is similar. . . . 100

5.2 The device. (a) False-colored optical image. Two transmons (red) are inductively
connected through a SQUID loop (purple, inset shows zoomed-in image). An
on-chip flux line is coupled to the SQUID for activating QQ sidebands through
parametric RF flux modulation at the proper DC flux position. Each transmon
is capacitively coupled to the readout resonator (blue). Single transmon pulses
are sent through the resonator input lines. QR sidebands are applied through
corresponding charge lines. (b) Circuit schematic diagram. . . . . . . . . . . . . 101
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5.3 Different parametric oscillations. Photon numbers in individual transmons
are measured as a function of time. a Error correcting QR sidebands |e0⟩ ↔ |f1⟩
applied separately at rates Ω1 = 0.49MHz and Ω2 = 0.59MHz to the transmon-
resonator pairs with |e⟩ as initial states. Effective transitions b |gf⟩ ↔ |fg⟩ and
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ABSTRACT

Large-scale quantum computers will inevitably need quantum error correction to protect in-

formation against decoherence. Traditional error correction typically requires many qubits,

along with high-efficiency error syndrome measurement and real-time feedback. Autonomous

quantum error correction instead uses steady-state bath engineering to perform the correc-

tion in a hardware-efficient manner. In this thesis, we develop a new autonomous quantum

error correction scheme, the Star Code, that actively corrects single-photon loss and pas-

sively suppresses low-frequency dephasing, and we demonstrate an important experimental

step towards its full implementation with transmons. Compared to uncorrected encod-

ing, improvements are experimentally witnessed for the logical zero, one, and superposition

states. Our results show the potential of implementing hardware-efficient autonomous quan-

tum error correction to enhance the reliability of a transmon-based quantum information

processor.
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CHAPTER 1

INTRODUCTION

Building a useful quantum computer has been one of the most exciting and fruitful challenges

since the first proposal as an analog Hamiltonian simulator in the 1980s [25]. Shortly after-

ward, digital quantum computers are proposed with various quantum algorithms compiled

into sequences of quantum gates implemented on qubits. Many successful qubit platforms

are realized. Superconducting qubits are promising candidates for future scalable quantum

computers: Straightforward fabrication, fast and high fidelity gate and readout, and scal-

able connection. Motivated by those advantages, this thesis focuses on experiments using

superconducting qubits.

1.1 Quantum Error Correction

Quantum error correction (QEC) is essential for performing long computations involving

many qubits, such as those required for Shor’s algorithm [82] or quantum chemistry al-

gorithms [4]. A fault-tolerant universal quantum computer requires both arbitrarily low

infidelities and universal control. QEC is a key approach to achieving fault tolerance. The

demonstration of QEC’s existence represents a major breakthrough in the development of

large-scale quantum computers [81]. Single-qubit error can be characterized by two types of

errors: X (bit-flip) and Z (phase-flip). Remarkably, error correction codes, such as Shor’s

code—the first of its kind—can correct these errors, even in the presence of quantum no-go

theorems like the no-cloning theorem. The threshold theorem [2] later established that ar-

bitrarily low logical error rates are possible with QEC, provided the physical error rate is

below a certain threshold.

Universal quantum computing requires only single- and two-qubit gates. A logical gate

that does not propagate errors is compatible with QEC and is referred to as "error-transparent."
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However, realizing a universal set of error-transparent gates is very challenging: According to

the Eastin-Knill no-go theorem [21], error-transparent universality cannot be achieved using

only simple transversal operations. Fortunately, magic state distillation [44] provides a fault-

tolerant method for implementing two-logical-qubit gates on another famous QEC code, the

surface code [43]. With the theoretical foundation for all key components of fault-tolerant

quantum computers established, the challenge now lies with experimental realization.

Errors accumulating in a quantum system can be thought of as entropy or heat entering

the system. Experimentally, two main approaches to QEC are measurement-based feed-

back error correction and reservoir-engineered autonomous error correction. Feedback-based

QEC can be viewed as creating a "Maxwell Demon" in the lab to keep the system cool.

These methods typically require many qubits and complex control hardware and have been

demonstrated to approach the fault-tolerance threshold [46, 1, 10, 22, 77, 23, 18, 42, 87, 78].

On the other hand, laser cooling effectively integrates measurement and feedback into

the internal level structure through carefully chosen laser drives. This concept has inspired

autonomous quantum error correction (AQEC), where, instead of using measurements and

gates, the system is "cooled" through an appropriate set of drives and couplings to engineered

thermal reservoirs [86]. Similar to laser cooling, AQEC can greatly simplify the required

quantum and classical hardware and control systems. Both autonomous and feedback-based

QEC are more challenging than simple cooling because they must ensure that the cooling

process preserves the logical manifold of the system.

1.2 Thesis Overview

In the remainder of this thesis, we will explore the journey of realizing Autonomous Quantum

Error Correction (AQEC) using transmons. Chapter 2 introduces the fundamental procedure

for designing and experimentally characterizing a quantum processor based on transmons.

Chapter 3 proposes a new AQEC codeword, the Star Code, with its performance predicted
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through analytical calculations and simulations. Chapter 4 discusses our inductively coupled

two-transmon processor. We characterize the device parameters and implement two experi-

ments toward AQEC: executing several qutrit algorithms that demonstrate universal control

of two qutrit subspaces with decent fidelity and programmable stabilization, showing robust

experimental control of engineered dissipation. Chapter 5 details our experimental realiza-

tion of the Star Code, the central goal of this thesis. We describe the system calibration

procedure and measure the logical encoding lifetimes with AQEC.
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CHAPTER 2

CIRCUIT QUANTUM ELECTRODYNAMICS

This chapter will begin by discussing circuit QED [32, 79, 8, 9], which describes the sys-

tem Hamiltonian parameters. Next, we will discuss some transmon couplers necessary for

realizing the multi-photon process in our experiments and, more importantly, for universal

quantum computing. Finally, we will present our experimental characterization steps, includ-

ing a compensated tomography method that reconstructs the density matrix of a transmon

system with ZZ couplings.

2.1 Circuit Quantization

Fig. 2.1 shows a typical superconducting circuit that consists of three basic elements: ca-

pacitor, inductor, and the Josephson junction. The red part is the superconducting LC

resonator, and the resonator’s Lagrangian is:

Lres =
1

2
(CrΦ̇r

2 − Φ2
r

Lr
) (2.1)

Here Φr is the node flux for the resonator. Applying the Legendre transformation, the

Hamiltonian is:

Hres =
1

2
(
Q2
r

Cr
+

Φ2
r

Lr
) (2.2)

Qr =
∂Lres

∂Φ̇r
(2.3)

[Φr, Qr] = iℏ (2.4)

Through second quantization, we get the resonator Hamiltonian (setting ℏ = 1):
4
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Figure 2.1: Circuit diagram for a SQUID coupling to an LC resonator.

Hres = ωra
†
rar (2.5)

ωr =

√
1

LrCr
(2.6)

ar =
1√
2Z

Φr + i

√
Z

2
Qr (2.7)

Z =

√
Lr
Cr

(2.8)

To introduce nonlinearity in the system, the resonator is capacitively coupled to the

blue part, a flux-tunable transmon qubit made of a superconducting quantum interference

device [34] (SQUID) shunted by a capacitor. The SQUID consists of two junctions forming

a loop threaded by external flux Φe. The Josephson junction is a dissipationless nonlinear

element made of two superconducting islands gapped by a tunnel barrier [36]. Defining the

phase difference between two superconducting islands as θ, the I − V response of a single

junction can be described as [3]:
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I(t) = I0 sin(θ(t)) (2.9)

V (t) =
Φ0

2π

∂θ(t)

∂t
(2.10)

The inductive energy across a single junction is:

∫
I(t)V (t)dt =

I0Φ0

2π

∫
sin(θ(t))

∂θ(t)

∂t
dt = −EJ cos θ(t) (2.11)

Here, EJ = I0Φ0
2π is the Josephson energy.

Back to Fig. 2.1, we assume both junctions have the same EJ and the superconducting

phase across each barrier are θ1 and θ2. The external flux Φe threaded the loop creates a

difference between θ1 and θ2:

θ2 − θ1 =
2πΦe

Φ0
+ 2πn, n ∈ N (2.12)

Relabeling the variables with node flux Φq, the Josephson energy for the SQUID (blue part)

is [45]:

−EJ (cos(
2πΦq

Φ0
− πΦe

Φ0
)) + cos(

2πΦq

Φ0
+
πΦe

Φ0
)) = −2EJ cos(

πΦe

Φ0
) cos

2πΦq

Φ0
(2.13)

The SQUID’s charging energy is the same as the resonator cases, and the full SQUID

Hamiltonian is:

HSQUID =
Q2
q

2Cq
− 2EJ cos(

πΦe

Φ0
) cos

2πΦq

Φ0
(2.14)

[Φq, Qq] = iℏ (2.15)

In Fig. 2.1, the SQUID is capacitively coupled to the resonator, and the system’s La-
6



grangian is:

L0 =
1

2
(CrΦ̇r

2
+ CqΦ̇q

2
+ Cqr(Φ̇r − Φ̇q)

2)

− Φ2
r

2Lr
+ 2EJ cos(

πΦe

Φ0
) cos

2πΦq

Φ0
(2.16)

Performing the Legendre transformation:

Qr =
∂L0

∂Φ̇r
(2.17)

Qq =
∂L0

∂Φ̇q
(2.18)

H0 = Φ̇rQr + Φ̇qQq − L0

=
Φ2
r

2Lr
− 2EJ cos(

πΦe

Φ0
) cos

2πΦq

Φ0

+
1

2

(Cq + Cqr)Q
2
r + (Cr + Cqr)Q

2
q + CqrQrQq

(Cr + Cqr)(Cq + Cqr)− C2
qr

(2.19)

At this point, we can use the dimensionless number operator n̂ = −Q
2e (e is the elementary

charge) and phase operator ϕ̂ = πΦ
Φ0

. Charge basis can be used to solve the spectrum of H0

analytically in a truncated version (truncated up to N):

n̂ =
N∑
i=1

|i⟩ ⟨i| (2.20)

cos ϕ̂ =
N∑
i=1

(|i+ 1⟩ ⟨i|+ |i⟩ ⟨i+ 1|) (2.21)

The spectrum is calculated through matrix diagonalization by plugging in the matrix repre-

sentation of all operators.

Assuming the coupling capacitance Cqr and the SQUID anharmonicity are small, we

can also perform perturbation calculations of the energy spectrum. The Hamiltonian is first
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separated into three parts: the capacitive term Hc, the linear inductive term Hl, and the

pure nonlinear term Hnl:

Hc =
1

2

(Cq + Cqr)Q
2
r + (Cr + Cqr)Q

2
q + CqrQrQq

(Cr + Cqr)(Cq + Cqr)− C2
qr

(2.22)

Hl =
Φ2
r

2Lr
+ EJ cos(

πΦe

Φ0
)(
2πΦq

Φ0
)2 (2.23)

Hnl = −2EJ cos(
πΦe

Φ0
)(cos(

2πΦq

Φ0
) +

1

2
(
2πΦq

Φ0
)2 − 1) (2.24)

We first diagonalize Hc +Hl. For expression simplicity, we define

Φ⃗T = (Φr,Φq) (2.25)

Q⃗T = (Qr, Qq) (2.26)

C =

Cr + Cqr −Cqr

−Cqr Cq + Cqr

 (2.27)

Ll =

Lr 0

0
Φ2
0

4π2Ej cos(
πΦe
Φ0

)

 (2.28)

(2.29)

Then we have:

Hc +Hl =
1

2
(Q⃗TC−1Q⃗+ Φ⃗TL−1

l Φ⃗) (2.30)

Using linear algebra, we can find a nonsingular matrix U such that U−1C−1U and

U−1L−1
l U are both diagonal matrices. In the new basis ˜⃗

Q = U−1Q⃗, ˜⃗
Φ = U−1Φ⃗, the

linear part is fully diagonalized, and second quantization is straightforward in the decou-

pled linear oscillator system. we reintroduce Hnl and replace the Φq with the annihilation

operator. Taylor expansion of the cosine function in Hnl can be kept to arbitrary order to
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perform the perturbation calculation.

Assuming the resonator and SQUID are dispersively coupled [79], we can relabel the

energy spectrum from bottom to top after matrix diagonalization. The first eigenstate

primarily associated with the SQUID or resonator corresponds to |0e⟩ or |1g⟩, respectively.

Here, |nm⟩ means the resonator-like mode is at state |n⟩, and the SQUID-like mode is at

state |m⟩. All higher eigenstates can be classified similarly.

2.2 Transmon Two-qubit Gate Implementation

Universal quantum computing requires access to a universal quantum gate set [67], which

includes both single-qubit and two-qubit gates. Specifically, combinations of single-qubit

rotations and CNOT gates are sufficient to achieve universal quantum computing. High-

fidelity (> 99.99%) and fast (< 20ns) single-qubit control [47] has been realized in the

transmon system [45] through advancement in transmon coherence and optimal-pulse con-

trol [64]. However, the two-qubit gate is still the bottleneck for the transmon system to scale

up. There are many directions toward two-qubit gate implementations, but the basic idea is

to engineer strong two-qubit interactions with the large on-off ratio in the system Hamilto-

nian while maintaining transmon coherence. Here, the on-off ratio refers to the ratio of gate

strength and the maximum stray interaction strength when the system is idle. Putting two

transmons close to each other (introducing a “stray” capacitive coupling) naturally provides

an always-on ZZ interaction. While the ZZ interactions can be easily converted to a Cphase

gate (therefore a CNOT gate) by waiting an appropriate time, such implementation has the

lowest on-off ratio. For the transmon system, one concern when designing a new two-qubit

gate is to suppress/cancel the stray ZZ interactions between qubits. The ratio of gate speed

over ZZ interactions quantifies the on-off ratio in this context.

Different two-qubit gate implementations are reviewed below. For convenience, Fig. 2.2

summarizes some popular two-qubit gate schemes.
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Figure 2.2: Different two-qubit gate implementations. (a) Cross-resonance gate. (b) Diabatic
gate. (c) Coupler mediated diabatic gate. (d) Parametric gate.

2.2.1 Cross-resonance gate

Cross-resonance gate (CR gate) [68, 15, 85, 58, 59] is a scalable, all-microwave two-qubit gate

scheme on two capacitively coupled qubits. The requirements of fixed-frequency only qubits

ensure great qubit coherence and robustness. We label the frequency and anharmonicity

of the two qubits (controlled qubit Qc, target qubit Qt) as {ωc, ωt} and {αc, αt}. The

capacitive coupling strength between the two qubits is g ≪ |ωc − ωt|. The cross-resonance

gate is realized through the cross-resonance effect: driving Qc at ωt will effectively drive Qt

with strength ϵ. When Qc is nonlinear, ϵ is dependent on the state of Qc, thus entangling

two qubits.

The system Hamiltonian is (See Fig. 2.3 with an external drive on Qt at frequency ωd,

strength Ω, phase ϕ):
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ωt
ωc

gωd=ωt

Figure 2.3: Circuit diagram for realizing the cross-resonance gate. A controlled qubit is
charge-driven at the target qubit frequency to activate an effective ZX interaction.

Hcr = ωca
†
cac + ωta

†
tat +

αc
2
a
†
ca

†
cacac +

αt
2
a
†
ta

†
tatat − g(a

†
c − ac)(a

†
t − at) +Hd (2.31)

Hd = Ωcos(ωdt+ ϕ)(a
†
c + ac) (2.32)

For simplicity, we follow Reference [85] to derive the first-order approximation of an ideal

CR gate rate: we label the dressed basis eigenstates of Hcr when Ω = 0 as |n,m⟩d. Here

{n,m} indicates the excitation number in Qc and Qt separately. Compared with eigenstate

|n,m⟩ in the uncoupled case (g = 0), the eigenenergy (E|n,m⟩d for dressed basis case, E|n,m⟩

for uncoupled case) is slightly different. With the first-order approximation, we ignore the

difference and approximate as ωd = ωt = E|0,1⟩d − E|0,0⟩d .

In the dressed basis, we use Rotating wave approximation (RWA) to keep the slow term

in Hd:
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Hd ≃
∑
i

Ωi |i, 1⟩d ⟨i, 0|d + h.c. (2.33)

Here Ωi is the state-dependent drive strength on Qt. When both qubits have no nonlin-

earity, Ωi = Ω ends up with no entanglement. In the dispersive coupling regime, we have

the following first-order approximation for the dressed basis [15]:

|0, 0⟩d = |0, 0⟩ (2.34)

|0, 1⟩d = |0, 1⟩ − g

ωc − ωt
|1, 0⟩ (2.35)

|1, 0⟩d = |1, 0⟩+ g

ωc − ωt
|0, 1⟩ (2.36)

|1, 1⟩d = |1, 1⟩ −
√
2g

ωc − ωt + αc
|2, 0⟩+

√
2g

ωc − ωt − αt
|0, 2⟩ (2.37)

We can perturbatively calculate the first two Ωi:

Ω0 = ⟨0, 1|dHd |0, 0⟩d = ⟨0, 1|dΩ(a
†
c + ac) |0, 0⟩d = − gΩ

ωc − ωt
(2.38)

Ω1 = ⟨1, 1|dHd |1, 0⟩d =
gΩ

ωc − ωt
− 2gΩ

ωc − ωt + αc
(2.39)

Restricted to the first two-level of both qubits, H ′
d can be expressed as [15, 85]:

H ′
d =

Ω0 − Ω1

2
ZX +

Ω0 + Ω1

2
IX (2.40)

The IX interactions can be canceled through extra single qubit rotations on Qt. The

coefficient in front of the ZX term is the CR gate rate, which is:
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Ω0 − Ω1

2
= − gΩ

ωc − ωt
+

gΩ

ωc − ωt + αc
=

−gΩαc
(ωc − ωt)(ωc − ωt + αc)

(2.41)

Notice that this is just a first-order approximation, and the actual CR gate rate deviates

from Eq. 2.41 needs higher-order corrections when the microwave drive strength Ω becomes

comparable to ωc−ωt. The linear approximation gives us a basic understanding of the rate:

For qubits with large anharmonicity, such as fluxonium [20], the cross-resonance effect might

be more significant and easy to achieve fast CR gate. For transmon, the anharmonicity is

relatively small, and the cross-resonance effect is most significant when |αc| ∼ |ωc − ωt|.

However, as we will discuss in Sec. 2.2.4, the static ZZ coupling between two transmons is
−2g2(αc+αt)

(ωt−ωc+αt)(ωc−ωt+αc)
. Therefore, the on-off ratio completely relies on increasing Ω and is

hard to improve by tuning the frequency spectrum.

2.2.2 Diabatic gate

More circuit complexity is considered to improve the on-off ratio and speed up the two-qubit

gate for better fidelity. One direction is to introduce a tunable qubit in the system. Suppose

a flux-tunable qubit is capacitively coupled to a fixed-frequency qubit (See Fig. 2.4)

We treat both transmons (Q1, Q2) as a two-level system of frequencies (ω1, ω2) for

simplicity. The system Hamiltonian is:

Hdb =
1

2
(ω1(Φe)σ

z
1 + ω2σ

z
2) + g(σ+1 σ

−
2 + h.c.) (2.42)

Here, ω1(Φe) is DC flux tunable and capacitively coupled to Q2 with coupling strength

13



ω2ω1

g

Φe

Figure 2.4: Circuit diagram for the realizing diabatic gate. A flux tunable qubit is capaci-
tively coupled to a fixed frequency qubit. Single photon swap happens at rate g when both
qubits have the same frequency.

g. By tuning ω1(Φe) = ω2, the rotating frame Hamiltonian becomes:

Hdb′ =
1

2
g(σ+1 σ

−
2 + σ−1 σ

+
2 ) (2.43)

which describes a photon swap between Q1 and Q2 at rate g. After leaving both qubits

on-resonance for π
g and biasing Q1 frequency away from Q2, an ISWAP gate is realized in

the two-qubit system. Typical circuit design can easily realize g > 50 MHz, which provides

a fast two-qubit gate. The on-off ratio for this scheme is around ω1−ω2
g , typically better than

the transmon cross-resonance gate case.

A third element, the tunable coupler, is added to the circuit to improve the gate fi-

delity [90, 83] through canceling the static ZZ interactions.

The system Hamiltonian is:

Hdbc =
∑

i=1,2,c

(ωia
†
iai + αia

†
ia

†
iaiai)

− g1(a
†
1 − a1)(a

†
c − ac)− g2(a

†
2 − a2)(a

†
c − ac)− g12(a

†
1 − a1)(a

†
2 − a2) (2.44)
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ωc

g2
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g12

Figure 2.5: Circuit diagram for realizing the high fidelity diabatic gate with ZZ cancellation.
The coupler frequency ωc is biased to a ZZ-free point for idling and biased to an “on” point
for a fast two-qubit gate.

Using the SW transformation with U = exp(A1 + A2) [90] to remove the coupler mode

(assuming coupler mode remains in its ground state):

A1 =
g1

ω1 − ωc
(a

†
1ac − a1a

†
c)−

g1
ω1 + ωc

(a
†
1a

†
c − a1ac) (2.45)

A2 =
g2

ω2 − ωc
(a

†
2ac − a2a

†
c)−

g2
ω2 + ωc

(a
†
2a

†
c − a2ac) (2.46)

and assuming gi ≪ ωj − ωc, we have (up to second order in the total photon excitation)

H ′
dbc = UHdbcU

† =
∑
i=1,2

(ω̃ia
†
iai + αia

†
ia

†
iaiai) + g̃(a

†
1a2 + a1a

†
2) (2.47)

ω̃i = ωi + g2i (
1

ωi − ωc
− 1

ωi + ωc
) (2.48)

g̃ = g12 +
g1g2
2

∑
j=1,2

(
1

ωj − ωc
− 1

ωj + ωc
) (2.49)

The effective ZZ coupling between two qubits is −2g̃2(α1+α2)
(ω1−ω2+α2)(ω1−ω2−α1)

∝ g̃2. When the

coupler mode frequency is biased between two qubits, it is possible to find out a DC flux

point (Idling point) for the coupler such that g̃ = 0. The gate scheme starts with the coupler
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at the (Idling point). ω1 and ωc are DC simultaneously DC biased to the operating points,

waiting for a full photon swap between Q1 and Q2, then bias back to the Idling point again.

This scheme allows a high-fidelity, fast, and scalable two-qubit gate approaching 99.9% [83]

after careful pulse control to suppress leakage error. One challenge is to achieve a decent

coherence for Q2, which usually has low T2.

2.2.3 Parametric modulation gate

The parametric modulation scheme aims to realize a fast two-qubit gate between fixed-

frequency qubits for better coherence [70, 13].

ω2ω1

g1

ωc

g2

Φc

g12

Figure 2.6: Circuit diagram for realizing the parametric gate.

The system Hamiltonian is:

Hpara =
∑
i=1,2

(ωia
†
iai + αia

†
ia

†
iaiai) + ωc(Φc)a

†
cac

− g1(a
†
1 − a1)(a

†
c − ac)− g2(a

†
2 − a2)(a

†
c − ac)− g12(a

†
1 − a1)(a

†
2 − a2) (2.50)

We modulate Φc with amplitude ϵ, modulation frequency ωd, around the DC flux point
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Φc0:

Φc = Φc0 + ϵ cos(ωdt) (2.51)

The coupler SQUID frequency-DC flux response (ωc ≃ ω0

√
| cos(πΦc

Φ0
)|) allows us to

expand ωc when ϵ is small [70]:

ωc ≃ ωc0 + ϵ
∂ωc(Φ)

∂Φ
|Φ=Φc0

cos(ωdt) +
ϵ2

2

∂2ωc(Φ)

∂Φ2
|Φ=Φc0

cos2(ωdt) (2.52)

Assuming ϵ is small, we perform the time-dependent SW transformation to do perturba-

tion expansion. For expression simplicity, we set g12 = 0 and discuss its contribution in the

next section. Suppose Hpara = H0 + V , here H0 is a diagonal matrix, and

V = −g1(a
†
1 − a1)(a

†
c − ac)− g2(a

†
2 − a2)(a

†
c − ac) (2.53)

contains only off-diagonal terms. The goal is to find a unitary U = exp(S(t)), with S(t) =

−S†(t), such that to the first order H ′
para = UHU† − iU(∂U∂t )

† is diagonal:

H ′
para ≃ H0 + V + i

∂S

∂t
+ [S,H0] + [S, V ] + i[S,

∂S

∂t
] +

1

2
[S, [S,H0]] (2.54)

0 = V + i
∂S

∂t
+ [S,H0] (2.55)

We choose the anti-hermitian operator S as [70] and approximate all transmons as two-

level systems:

S =
∑
i=1,2

(γ−i (t)σ+i σ
−
c + γ+i (t)σ+i σ

+
c − h.c.) (2.56)
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Here, σ±j , j = 1, 2, c are Pauli operators for different qubits. Eq. 2.54 is further simplified as:

H ′
para =

∑
i=1,2,c

˜ωi(t)σ
z
i + Ωr(t)(σ

−
1 σ

+
2 + h.c.) + Ωb(t)(σ

−
1 σ

−
2 + h.c.) (2.57)

When ωd ≃ ω1 − ω2, Ωr(t) becomes time independent [70]:

Ωr = ϵ
g1g2
4

∂ωc(Φc0)

∂Φ
(

1

(ω1 − ωc)(ω2 − ωc)
+

1

(ω1 + ωc)(ω2 + ωc)
) (2.58)

And the QQ red sideband (beam-splitter-like) interactions are turned on between Q1 and

Q2.

When ωd ≃ ω1 + ω2, Ωb(t) becomes time independent [70]:

Ωb = ϵ
g1g2
4

∂ωc(Φc0)

∂Φ
(

1

(ωc − ω1)(ω2 + ωc)
+

1

(ω1 + ωc)(ωc − ω2)
) (2.59)

And the QQ blue sideband (squeezing-like) interactions are turned on between Q1 and Q2.

The parametric gate sideband rate is determined by the product of the following elements:

modulation amplitude, coupling strength, coupler frequency sensitivity, and frequency con-

figuration. The effective ZZ coupling −2g̃2(α1+α2)
(ω1−ω2+α2)(ω1−ω2−α1)

is the same as the Diabatic gate

case. Canceling the start ZZ interactions in the parametric modulation case is more compli-

cated: when the parametric drive is off, zero ZZ means g̃ = 0. When the parametric drive is

on, the AC-stark shift effect introduces “dynamical ZZ” between two qubits. Depending on

the two-qubit gate type, the dynamical ZZ can speed up the gate (CZ gate) or reduce gate

fidelity (iSWAP, bSWAP) and requires additional cancellation steps [29].

2.2.4 Stray ZZ interactions

Stray ZZ interactions are among the dominant coherent errors limiting the fidelity of two-

qubit gates. Achieving zero ZZ interactions is crucial for any high-fidelity two-qubit gate
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scheme. We begin by considering the scenario depicted in Fig. 2.2: two transmon qubits

capacitively coupled with an interaction strength g. The static ZZ coupling strength (up to

second-order perturbation theory) is given by

Jzz =
−2g2(α1 + α2)

(ω2 − ω1 + α2)(ω1 − ω2 + α1)
, (2.60)

where ω2 > ω1 and ω1 is tunable. Notice that as ω1 is tuned across ω2 + α2, the sign of

Jzz rapidly changes from negative to positive. Therefore, it is possible to achieve Jzz = 0

near the transmon straddling regime.

An alternative approach involves replacing one transmon with an element with positive

anharmonicity, such as a flux qubit (capacitively-shunted) or fluxonium. In this case, achiev-

ing a zero ZZ point does not require the system to be in the straddling regime, which can

help avoid frequency crowding.

Introducing a third element, either a qubit functioning as a coupler or a linear element

such as a shared resonator, often simplifies the process of canceling ZZ interactions. For a

system comprising two transmons and one coupler, the conditions for zero ZZ interactions

are outlined in Ref. [65]:

1. By tuning the coupler frequency, the only zero ZZ point occurs when the coupler

frequency lies between the frequencies of the two transmons, provided the transmons

are not in the straddling regime.

2. When the two transmons are in the straddling regime, it is possible to find a config-

uration of frequencies and coupling strengths such that the only zero ZZ point occurs

when the coupler frequency is beyond both transmon frequencies.

To further increase the number of zero ZZ points, Ref. [65] also introduces a fourth mode.

In this configuration, the entire region between two zero ZZ points exhibits suppressed stray

ZZ interactions, thereby tolerating calibration errors more effectively.
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Instead of increasing circuit complexity, additional drives can also be used to cancel stray

ZZ interactions through the AC Stark shift [62, 35]. Ref. [35] illustrates this approach clearly:

achieving zero ZZ can be realized by independently addressing the energy of the |ee⟩ state.

Sideband interactions such as |ee⟩ ↔ |gf⟩ or |ee⟩ ↔ |fg⟩ couple |ee⟩ to a state outside of the

logical basis, providing a mechanism to tune |ee⟩ independently. By adjusting the coupling

strength through external drive controls, it is possible to fully cancel ZZ interactions.

2.3 Transmon state tomography

In this section, we discuss the implementation of qubit state tomography, a useful experi-

mental characterization used in all the following experiments discussed in this thesis. We

generalize the tomography technique to compensate for the static ZZ interactions [75].

We consider a two-transmon device for simplicity. The system density matrix ρ can be

represented as:

ρ =
1

22

3∑
i1,i2=0

ni1,i2σi1 ⊗ σi2 (2.61)

Here, the real coefficient ni1,i2 represents the expectation value of the multi-qubit Pauli

operator σi1 ⊗σi2 . Here, σi, i = 0, 1, 2, 3 represents the identity and Pauli matrices. Once all

ni1,i2 values are known, ρ can be directly written out. To measure ni1,i2 , after preparing ρ,

people typically apply single qubit rotations {σi} to both qubits before measurement. With

enough single-shot numbers, each ni1,i2 can be experimentally approximated as ñi using

measurement statistics. The reconstructed density matrix ρm can be calculated in different

methods:

Direct-inversion: The tomography reconstructed density matrix is written as: ρm =

1
22
∑3

i1,i2=0 ñi1,i2σi1 ⊗ σi2 . However, measurement errors in experiments almost always lead

to an unphysical ρm in this case.
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Maximum-Likelihood Estimation: A physical density matrix can be represented as ρmle =

ΛTΛ/tr(ΛTΛ), where Λ is a complex upper triangular matrix, and tr(.) is the matrix trace

operator. We define the following cost function:

L
42∑
i=1

(⟨ψi| ρmle |ψi⟩ − ñi)
2

⟨ψi| ρmle |ψi⟩
(2.62)

Here, |ψi⟩ ⟨ψi| forms the 42 tomography measurement basis. In the experiments, one might

choose more projectors (62 in our case) that form an over-complete basis. The MLE recon-

structed density matrix is calculated by minimizing the cost function L.

However, in certain experiments, the stray interactions between transmons, such as the

residual ZZ coupling, are too strong to be fully canceled. This makes it more challenging to

calibrate independent qubit rotations [52]. The inability to perform independent single-qubit

rotations appears to hinder the standard MLE tomography. Here, instead of engineering the

universal single qubit rotation set for tomography, we can compensate for the stray ZZ

directly in the tomography operation [75].

For expression simplicity, we assume that the system Hamiltonian is expressed as:

H = H0 +Hc +Hd (2.63)

H0 =
∑
i

ωiσ
i
z (2.64)

Hc =
∑
n,m

Jnm |nm⟩ ⟨nm| (2.65)

Here σiz is the ith qubit pauli operator, |nm⟩ represents the two-qubit state being at |n⟩⊗|m⟩,

and Jnm is the coupling strength. When only considering the static ZZ interactions with

strength J, Hc = J11 |11⟩ ⟨11|. Hd contains all driving terms that represent the tomography

rotations.

Fig. 2.7(a) shows our compensated tomography steps: We still apply the tomography
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Figure 2.7: ZZ compensated tomography scheme and its application on a two-qubit system.
(a) Tomography steps flow chart. The central idea is to use the system Hamiltonian to
update the ideal tomography counts and perform MLE accordingly. (b) Comparison of
simulated fidelities for a two-qubit system with ZZ coupling. Dashed lines: Standard MLE
tomography. Solid lines: ZZ compensated tomography scheme. Three representative states
(see text for description) — a product (blue), an entangled (brown), and a mixed (magenta)
are chosen to show the effectiveness of ZZ compensated tomography.

rotations in the standard MLE:

Hd =
2∑

i=1

Bi(t) sin(ωit− ϕi)σ
i
x (2.66)

Bi(t) and ϕi are separately the drive amplitude and phases on ith qubit, and a set of 32

rotations are chosen to cover the Bloch sphere cardinal points in the absence of Hc. We still

follow the same experimental pulses and collect the tomography counts n⃗ (with 62 elements)

in the presence ofHc. The evolution operators for the 32 pre-rotations Uj(t0, t) are calculated

as:

Uj(t0, t) = T e
−i

∫ t

t0

(
H0 +Hc +Hd(t

′)
)
dt′

(2.67)

where t0 is the beginning of the pulse being applied and T represents the time-ordering
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operator. We modify the 62 projectors |ψi⟩ ⟨ψi| by calculating:

∣∣∣ξ̃i〉 = Uj(t0, t) |nm⟩ , n,m = 0, 1 (2.68)

The modified MLE cost function is:

L =
62∑
i=1

(〈
ξ̃i

∣∣∣ ρmle

∣∣∣ξ̃i〉− ñi

)2〈
ξ̃i

∣∣∣ ρmle

∣∣∣ξ̃i〉 (2.69)

The initial guess ρguess(n⃗) can be obtained from standard MLE and then updated iter-

atively using the modified basis. Fig. 2.7(b) plots the simulated fidelity of the tomographic

reconstruction for three randomly chosen initial states — (1) a product state (purple lines):∣∣ψp〉 = (|g⟩ + |e⟩)⊗2/2, (2) an entangled state (brown lines): |ψe⟩ = (|gg⟩ + |ee⟩)/
√
2, and

(3) a mixed state (magenta lines): 0.8
∣∣ψp〉 〈ψp∣∣ + 0.2 |ψe⟩ ⟨ψe| as a function of cross-Kerr

coupling strength Jzz. The dashed lines show that the states are not correctly reproduced for

non-zero Jzz when regular tomography is used, whereas solid lines show that compensated

tomography completely recovers the correct state.
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CHAPTER 3

THE STAR CODE THEORY

The random interactions with the environment limit the performance of quantum comput-

ers. Random errors can be viewed as the entropy entering the system from an external

heat source. Quantum error correction is necessary to remove the entropy continuously and

cool the system without knowing the logical states. For large-scale quantum computers,

topological codes such as surface code [27, 84] are promising candidates to achieve fault

tolerance. However, the precision feedback control, large physical qubit number overhead,

quantum processor’s clock time[5], and decoding with classical computers are challenging

for experimental implementation. Autonomous Quantum Error Correction offers a com-

pelling complementary solution for near-term algorithms and as a building block for future

topological codes.

This chapter discusses our theoretical proposal for realizing Autonomous Quantum Error

Correction in a pure transmon system. We begin with the original proposal, the Very

Small Logical Qubit (VSLQ) [37], and discuss its theoretical performance and experimental

challenges. Then, we propose a new error correction code, the Star Code, that avoids the

higher-order interaction requirements. We discuss the Star code performance, including the

logical state coherence and single logical gate implementation. We further list the necessary

experimental requirements to realize this code that inspires our experimental demonstrations.

3.1 The Very Small Logical Qubit

Consider a system of two transmon-two resonators (Q1Q2R1R2). The VSLQ encodes a

single logical qubit out of two transmons using the first three levels {|g⟩ , |e⟩ , |f⟩} of each

transmon. The logical “zero” and “one” are defined as |L0⟩ = (|g⟩ − |f⟩) (|g⟩ − |f⟩) /2 and

Parts of this chapter have been published in Ref. [49]
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|L1⟩ = (|g⟩+ |f⟩) (|g⟩+ |f⟩) /2 respectively. VSLQ aims to correct single-photon loss errors

(Transmon decay rate γ) and suppresses low-frequency dephasing errors, the two dominant

error sources in the transmon system. To suppress low-frequency dephasing noise, we use

Floquet engineering to create an energy gap W between the logical and error states. This

energy gap echoes all the noise with an energy spectrum lower than W . To correct single-

photon loss, we engineer an active decay channel |e⟩ → |f⟩ for both tansmons with the

help of coupled lossy resonators (decay rate κ). Restricting the system’s Hilbert space to

3×3×2×2 (Q1Q2R1R2) for simplicity, the rotating frame VSLQ Hamiltonian Hvslq is [37]:

Hvslq = HP +HR +HPR (3.1)

HP = −WX̃1X̃2 +
α

2
(|e⟩ ⟨e| ⊗ I2 + I2 ⊗ |e⟩ ⟨e|)⊗ I9 (3.2)

HR = Ω(aq1ar1 + aq2ar2 + h.c.) +
α

2
(a

†
r1ar1 + a

†
r2ar2) (3.3)

HPR = W (a
†
r1ar1 + a

†
r2ar2) (3.4)

Here, aqi and ari are separately the i-th transmon and resonator’s annihilation operator.

X̃i = (aqiaqi + h.c.)/2, W is the transmon sideband rate, Ω is the transmon-resonator

sideband rate, α is the transmon anharmonicity (assumed to be the same for both transmons)

and In is the identity matrix of dimension n × n. Hvslq is separated into three parts:

Hp contains all the two transmon sidebands to create the logical space. When projected

to the lowest three levels for each transmon, −WX̃1X̃2 describes simultaneously applied

two sideband interactions |gf⟩ ↔ |fg⟩ and |gg⟩ ↔ |ff⟩ of the same rate W . The other

term in HP comes from the rotating frame transformation with the transformation unitary

Uvslq = exp
[
i
∑

j=1,2

(
ωqj +

α
2

)
a
†
qjaqjt

]
, and ωqj is Qj ’s frequency. HR describes the two-

photon pumping process |e0⟩ ↔ |f1⟩ between each QR pair at rate Ω. HPR describes the

frequency detunings W for |e0⟩ ↔ |f1⟩ to maximize the transfer rate from error state to
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Figure 3.1: VSLQ energy diagram. For simplicity, the two QQ interactions |gf⟩ ↔ |fg⟩ and
|gg⟩ ↔ |ff⟩ are assumed to be both W . And the QR interactions are assumed to be both
Ω.

logical state.

Assuming W ≫ Ω, the QR sideband interactions can be treated as perturbations. |L0⟩

and |L1⟩ are the eigenstates of HP with energy −W , and the other states are at least

O(W ) away from the logical manifold, and specifically the single-photon loss error states

{|E00⟩ , |E10⟩ , |E01⟩ , |E11⟩} = { |e⟩(|g⟩±|f⟩)√
2

,
(|g⟩±|f⟩)|e⟩√

2
} have 0 energy.

The error correction cycle works as follows (take |L0⟩ as an example): Suppose Q1 lost

one photon and the system becomes the error state |E00⟩ =
|e⟩(|g⟩−|f⟩)√

2
. Under the QR1

interactions, the oscillation |E0000⟩ ↔ |L010⟩ will be activated. Since R1 is very lossy,

the photon excitation in the resonator will decay quickly, leading to the final steady state

|L000⟩, which is exactly the original logical state. A similar process also applies for |L1⟩:

|E1000⟩ ↔ |L110⟩ → |L100⟩ and for correcting single-photon loss error happened at Q2. In

total, the operation of VSLQ requires four always-on drives: |gf⟩ ↔ |fg⟩, |gg⟩ ↔ |ff⟩, and

two |e0⟩ ↔ |f1⟩ between each QR pairs. The VSLQ energy diagram in the rotating frame

is shown in Fig. 3.1.

One important thing to notice in Fig. 3.1 is that the photon decayed from Ri is energy-

independent of the logical state. This is extremely important to protect the logical superpo-

sition states, and any small energy deference will lead to a direct logical dephasing channel.

Fig. 3.2 shows one possible device and its circuit diagram to realize the two 4-photon
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Figure 3.2: VSLQ device. (a) Device optical false-colored picture. The red and green
elements are the transmons and readout resonators. The inset shows a scanning electron
micrograph of the coupler loop (purple) and the two Josephson junctions for the qubits
forming the main loop (red). The magnetic fluxes threading the main and coupler loop are
denoted by Φ1 and Φ2, respectively. (b) Equivalent circuit diagram.

processes between transmons. Two transmons (Shown in red) share the same ground and are

inductively coupled through a bridged-SQUID loop. This forms two flux loops with threaded

external flux Φ1 (red, the main loop) and Φ2 (purple, the coupler loop). Each transmon is

capacitively coupled to a lossy resonator (Shown in green), which is also used as the readout.

The two transmons share the same ground and are inductively coupled through a SQUID

loop. The circuit Hamiltonian for the transmon and coupler part is [53]:

H1 =
∑
i=1,2

(
ωqia

†
qiaqi +

αi
2
a
†
qia

†
qiaqiaqi

)
− EJc cos(θq1 − θq2 + 2π

Φ1

Φ0
) + EJc cos(θq1 − θq2 + 2π

Φ1 + Φ2

Φ0
) (3.5)

Here, we label the external flux threading the main loop (red) and coupler loop (purple)

as Φ1 and Φ2. The coupler junctions are assumed to be identical, and the Josephson energy

is labeled EJc. To realize a pure 4-photon process, the VSLQ codewords operate at:
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Φ1 =

Φ0

4
− ε sin(ωdt)

Φ2 = −Φ0

2
+ 2ε sin(ωdt)

(3.6)

Plug Eq. 3.6 into Eq. 3.5, we have:

H1 =
∑
i=1,2

(
ωqia

†
qiaqi +

αi
2
a
†
qia

†
qiaqiaqi

)
− 4εEJc sin(ωdt) cos(θq1 − θq2) (3.7)

Under the leading order of the S-W transformation, the phase difference θq1−θq2 between

two transmon nodes can be approximated as:

θq1 − θq2 =
1

2

(
4

√
2Ec1

EJ1
a
†
q1e

i(ωq1+α1/2)t − 4

√
2Ec2

EJ2
a
†
q2e

i(ωq2+α2/2)t

)
(3.8)

Plug Eq. 3.8 into Eq. 3.7, keep the fourth-order term in the cos interactions, we can

activate the 4-photon process by choosing different flux modulation frequencies ωd and keep

the time-independent terms:


ωd = 2ωq1 + 2ωq2 + α1 + α2 : −εEJc

√
Ec1Ec2

EJ1EJ2
(a

†
q1a

†
q1a

†
q2a

†
q2 + h.c.)

ωd = 2ωq1 − 2ωq2 + α1 − α2 : −εEJc
√
Ec1Ec2

EJ1EJ2
(a

†
q1a

†
q1aq2aq2 + h.c.)

(3.9)

Eq. 3.9 indicates that one can realize the two sidebands |gf⟩ ↔ |fg⟩ and |gg⟩ ↔ |ff⟩

directly with this special “VSLQ” coupler. More importantly, the sideband rates for both

processes are linearly proportional to the modulation amplitude ε, which will theoretically

provide very fast 4-photon interactions.

However, the following three problems prevented the device from experimentally realizing

the VSLQ code:
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First, there is a strong stray ZZ coupling between two transmons. Q1’s frequency depends

on the Q2’s state, and a minimum ZZ of 8.5 MHz (dependent on the actual design param-

eters) is measured in our experiments. The VSLQ logical state will have T2 ∼ 1/ZZ after

AQEC, which is much worse than the bare transmon coherence. In Fig. 3.2(b), we neglect

the stray capacitance between two transmon capacitive pads. The stray capacitance dom-

inantly comes from the SQUID coupler junctions, which means additional circuit elements

are necessary to suppress/mitigate the ZZ.

Second, the flux line design must be optimized to avoid stray capacitive coupling to

the coupler [50, 56] and achieve pure flux modulation at high frequency. In our system,

the RF flux modulation frequency for the |gg⟩ ↔ |ff⟩ transition is around 15 GHz when

ωqi ∼ 4 GHz. The strength of the flux line’s stray capacitive coupling to the coupler gener-

ally increases quadratically as ωd increases. Therefore, optimizing the flux line geometry is

challenging and fab-sensitive, making the current device less ideal for experimental imple-

mentation.

Finally, the “VSLQ” point is parked at the coupler SQUID’s anti-sweet spot where both

transmons have the lowest T2. Although the dominant dephasing channel is low-frequency

and can be mitigated with echo techniques, characterizing a system with short T2 remains

experimentally challenging. It is crucial that the QQ sideband rate W is sufficiently large to

surpass the logical coherence overhead.

3.2 Split into Virtual Raman Processes: The Star Code

In Section. 3.1, we discuss the VSLQ codewords and its experimental challenges. Our AQEC

demonstration aims to generate a Floquet system such that the logical state manifold has

an energy gap with the error state manifold. Engineering the direct 4-photon QQ sidebands

is a mathematically simple solution, but there are more possible solutions: Each 4-photon

process can be split into two two-photon processes for simple experimental demonstration.
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Figure 3.3: Star code protocol. (a) An example of hardware layout. Two transmons are
individually coupled to two resonators dispersively. The dashed box between the two trans-
mons represents any tunable coupling element that can provide sufficiently strong QQ red
and blue sideband interactions. (b) Four QQ sideband mixing configurations in the logical
static frame. All sidebands are applied with an equal rate W and specific detuning choices
(±ν0/1) to construct the logical manifold.

This leads to our new AQEC code, the Star code [49].

Similar to the VSLQ code, the Star code encodes a single logical qubit using the first

three levels of two transmons. The logical manifold {|L0⟩ , |L1⟩} in the Star code is defined

as: |L0⟩ = (|gf⟩ − |fg⟩)/
√
2 and |L1⟩ = (|gg⟩ − |ff⟩)/

√
2. The Star code aims to correct

single-photon loss and suppress low-frequency dephasing. Up to an irrelevant relative phase

difference, these are the same codewords in VSLQ.

Following the labeling scheme in Section. 3.1, we consider a two-transmon-two-resonator

system shown in Fig. 3.3(a). The two transmon Q1 and Q2 have frequencies ωqj and an-

harmonicities αj , which interact with each other through a tunable coupling element [50].

Two lossy resonators R1 and R2 (frequency ωrj) are capacitively coupled to each transmon,

serving as lossy reservoirs and readouts. We assume both resonators are cold enough; only

the first two levels are included in our discussion.

The state for each QR pair is labeled as |q, n⟩ ∈ {|g⟩ , |e⟩ , |f⟩} ⊗ {|0⟩ , |1⟩}. We assume

that the external drives through the tunable coupling element can independently modulate
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two-photon QQ and QR sidebands. The lab frame Hamiltonian of the full system is

Hlab =
2∑

j=1

(
ωqja

†
qjaqj +

αj
2
a
†
qja

†
qjaqjaqj + ωrja

†
rjarj

)

+HQQ +
2∑

j=1

HQRj , (3.10)

HQQ =AQQ (t)
(
a
†
q1 + aq1

)(
a
†
q2 + aq2

)
, (3.11)

HQRj =AQRj (t)
(
a
†
qj + aqj

)(
a
†
rj + arj

)
, (3.12)

AQQ (t) =
W√
2
cos
((
ωq2 − ωq1 − α1 − ν0

)
t
)

+
W√
2
cos
((
ωq2 − ωq1 + α2 + ν0

)
t
)

+W cos
((
ωq1 + ωq2 − ν1

)
t
)

+
W

2
cos
((
ωq1 + ωq2 + α1 + α2 + ν1

)
t
)
, (3.13)

AQRj (t) =
Ωj√
2
cos
((
ωqj + ωrj + αj

)
t
)
. (3.14)

In Eq. 3.10, the QQ interactions HQQ contains 4 detuned two-photon processes: |ee⟩ ↔

{|gf⟩ , |fg⟩ , |gg⟩ , |ff⟩} with modulation amplitudes {W/
√
2,W/

√
2,W,W/2} and frequency

detunings {±ν0,±ν1}. The modulation amplitudes are chosen to achieve the same sideband

rate for 4 QQ interactions. The two QR sidebands generate the on-resonance transition

|e0⟩ ↔ |f1⟩ between each transmon-resonator pair. We keep W ≫ Ωj such that QR

sidebands are treated as system perturbation. The topology of all 4 QQ sidebands {|ee⟩} ↔

{|gf⟩ , |fg⟩ , |gg⟩ , |ff⟩} used in the Star Code is equivalent to a “four-pointed star” in a

two-qutrit level diagram (see Fig. 3.3(b)), which gives the Star Code its name [50].

We perform several rotating frame transformations and restrict the Hilbert space dimen-

sion to 3 × 3 × 2 × 2 (Q1Q2R1R2) for simplicity. We first define a series of transformation
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operators

U1(t) = exp

i ∑
j=1,2

(
ωqj +

αj
2

)
a
†
qjaqjt

 , (3.15)

U2(t) = exp

[
−iα1 + α2

2
Peet

]
, (3.16)

U3(t) = exp
[
iν0(Pgf + Pfg + Pge + Peg)t

]
, (3.17)

U4(t) = exp
[
iν1(Pgg + Pff + Pef + Pfe)t

]
, (3.18)

U5(t) = exp

i ∑
j=1,2

(ωrj +
αj
2
)a

†
rjarjt

 . (3.19)

Here we define projectors Pab = |ab⟩ ⟨ab| ⊗ I2 ⊗ I2, where I2 is a 2× 2 identity matrix.

There are two useful rotating frames for understanding the Star code: The logical static

frame Hstatic (with transformation unitary Ua = U5U2U1) and the fully rotated frame Hrot

(with transformation unitary Ub = U5U4U3U2U1). In the logical static frame, all logical

states are time-independent and take simple explicit forms, while in the fully rotated frame,

simulation is faster.

In the logical static frame Hstatic, if the two frequency detunings ν0 and ν1 are unequal,

there will be two time-independent zero-energy eigenstates {|L0⟩ , |L1⟩} that form the static

logical manifold. Applying rotating wave approximation (RWA) to HQRj , the full system
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Hamiltonian becomes

Hstatic = UaHlabU
†
a + iU̇aU

†
a

= H̃QQ + H̃QR1 + H̃QR2 −
∑
j=1,2

αj
2
a
†
rjarj

− α1
2
(Peg + Pef )−

α2
2
(Pge + Pfe), (3.20)

H̃QQ =
W

2

[
(|gf⟩ ⟨ee|+ |fg⟩ ⟨ee|)e−itν0

+(|gg⟩ ⟨ee|+ |ff⟩ ⟨ee|)e−itν1
]
+ h.c., (3.21)

H̃QR1 =
Ω1

2
(|eg⟩ ⟨fg|+ |ef⟩ ⟨ff |)⊗ |0⟩ ⟨1| ⊗ I2 + h.c., (3.22)

H̃QR2 =
Ω2

2
(|ge⟩ ⟨gf |+ |fe⟩ ⟨ff |)⊗ I2 ⊗ |0⟩ ⟨1|+ h.c.. (3.23)

In the fully rotated frame, the system Hamiltonian Hrot is given by

Hrot = UbHlabU
†
b + iU̇bU

†
b

= −α1
2
(Peg + Pef )−

α2
2
(Pge + Pfe)

− ν0(Pgf + Pfg + Pge + Peg)

− ν1(Pgg + Pff + Pef + Pfe)

+H ′
QQ −

∑
j=1,2

(
αj
2
a
†
rjarj + H̃QRj), (3.24)

H ′
QQ =

W

2
(|ee⟩ ⟨gf |+ |ee⟩ ⟨fg|

+ |ee⟩ ⟨gg|+ |ee⟩ ⟨ff |+ h.c.)⊗ I2 ⊗ I2. (3.25)

Assuming the following hierarchy of rates: W ≫ Ωj ∼ κj ≫ γj which are generic features

of AQEC schemes. AQEC performance is generally insensitive to the fluctuations in ωj and

κj . In the following discussion, we assume Ωj = Ω, κj = κ, γj = γ and ν0 = −ν1 = ν for

simplicity.
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Figure 3.4: Star Code energy diagram in the rotating frame. The green dashed box covers
the logical states and error states involved in the AQEC protocol, and the grey dashed box
includes the other stray eigenstates that have suppressed population transfer by the energy
gap. Error states from single-photon loss are restored to the parent logical states through
individual correction paths. The QR sidebands (rate Ω/2), the resonators’ photon decay
(rate κ), and the transmon T1 decay (rate γ) are shown in the blue, brown, and black arrows
respectively.

By treating QR sidebands as perturbations, the energy spectrum for Hrot is plotted in

Fig. 3.4. The eigenstates can be grouped into three sets: {|L0⟩ , |L1⟩}, {|eg⟩ , |ge⟩ , |ef⟩ , |fe⟩},

and {|T ⟩ , |S−⟩ , |S+⟩}. The first set forms the logical space with eigenenergies {−ν, ν}. The

second set contains the states originating from a single photon loss error. The third set

is comprised of stray eigenstates (not normalized for brevity) that are suppressed by the

frequency detuning choice ±ν,
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|T ⟩ = |gg⟩ − |gf⟩ − 2ν

W
|ee⟩ − |fg⟩+ |ff⟩ , (3.26)

|S±⟩ = |gg⟩+ W 2

W 2 + 2ν2 ± 2ν
√
W 2 + ν2

|gf⟩

−
2
(
∓ν +

√
W 2 + ν2

)
W

|ee⟩

+
W 2

W 2 + 2ν2 ± 2ν
√
W 2 + ν2

|fg⟩+ |ff⟩ . (3.27)

Under the assumption of ν ∼ W , the stray eigenstates maintain sufficient energy gap

from the logical states. The on-resonance QR sidebands continuously pump the error states

after single-photon loss to the target logical states, with an extra photon excitation appearing

in the corresponding resonator Rj . These excitations in the resonators decay quickly at a

rate κ and recover the logical state.

From another point of view, the four detuned QQ sidebands effectively introduce the

4-photon interactions |gf⟩ ⟨fg| and |gg⟩ ⟨ff | to the system, with |L0⟩ and |L1⟩ being sepa-

rately the dark state of each 4-photon sideband. Since all other states are separated from

the logical manifold by O (W ) energy differences, the four QQ sidebands induce a dynamical

decoupling effect suppressing dephasing from low-frequency phase noise. The other bright

states {|T ⟩ , |S−⟩ , |S+⟩} are separated from the codewords through the QQ sideband fre-

quency detuning {ν0, ν1}, so that passive error correction does not mix the error states with

them. Notice that the superposition state |Lx⟩ = (|L0⟩+ |L1⟩)/
√
2 in the frame of Eq. 3.24

will have a fast oscillating phase between logical basis. The energy shift to codewords comes

simply from rotating frame choices and has no physical consequence.

The Star Code also suppresses the no-jump error [61] as the always-on two-qubit Hamil-

tonian HQQ maintains the form of logical states. The suppression has the same scaling as

the suppression of 1/f dephasing noise, achieved through the dynamical decoupling effect.

35



3.3 Star Code Simulation

Next, we will discuss the theoretical lifetime improvement against single-photon loss error

for the Star Code. We approximate the lifetime improvement semi-classically and verify its

agreement using simulations. First, we consider the case of |L0⟩ and ignore the population

lost to the stray eigenstates under the QR sideband. The logical states’ refilling rate ΓR is

a two-step process: (a) the QR sidebands that resonantly bring error states to the parent

logical states and (b) the resonator photon decay process. Using Fermi’s golden rule and

assuming Lorentzian distribution of lossy resonators’ energy [41, 39], we have:

ΓR =
Ω2κ

κ2 + Ω2
. (3.28)

We further label the population of |L000⟩ and |eg00⟩ (also for |ge00⟩) at time t as PL(t)

and PE(t). Due to the choice of symmetric parameters, the population of error states |eg00⟩

and |ge00⟩ are also the same. Assuming the system started with |L000⟩ at time t = 0, we

can express the evolution using the following differential equations:



dPL(t)
dt = −2γPL(t) + 2ΓRPE(t),

dPE(t)
dt = γPL(t)− (γ + ΓR)PE(t),

PL(0) = 1,

PE(0) = 0.

(3.29)

The solution of PL(t) has two parts, a fast exponential decay term with a small weight
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and a dominant slow exponential decay term:



PL(t) =
−γ+ΓR+∆

2∆ exp (t(∆− 3γ − ΓR)/2)

+γ−ΓR+∆
2∆ exp (t(−∆− 3γ − ΓR)/2)

≈ (1− 2γ/ΓR) exp
(
− 2γ2t

ΓR+3γ

)
,

∆ =
√
γ2 + 6γΓR + Γ2R.

(3.30)

Assuming ΓR ≫ γ, the slow decay term shows quadratic lifetime improvement, compared

to the physical transmon decay rate γ.

Then we consider the stray eigenstates {|S−⟩ , |T ⟩ , |S+⟩}. As shown in Fig. 3.5, the

population transfer from the error states to the stray eigenstates is also a two-step process.

By keeping the closest two eigenstates |S−⟩ and |T ⟩ in terms of energy, the refilling rates
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{ΓS ,ΓT } are given by 

ΓS = κΩ2ks

4
(
−ν+

√
W 2+ν2

)2
+κ2+Ω2ks

,

ΓT =
κΩ2/

(
1+ ν2

W2

)
16ν2+4κ2+Ω2/

(
1+ ν2

W2

) ,
ks = (⟨S−| fg⟩)2.

(3.31)

Again, assuming the initial state is |L000⟩ and treating population to {|S−⟩ , |T ⟩} as an

uncorrectable logical coherence loss, we have the following equations of motion:



dPL(t)
dt = −2γPL(t) + 2ΓRPE(t),

dPE(t)
dt = γPL(t)− (γ + ΓR + ΓS + ΓT )PE(t),

PL(0) = 1,

PE(0) = 0.

(3.32)

Given ΓR ≫ γ,ΓS ,ΓT , the slow decay rate in PL(t) is

ΓL0 ∼ 2γ(γ + ΓS + ΓT )

3γ + ΓR + ΓS + ΓT
. (3.33)

The slow decay rate for |L1⟩ can be derived similarly

ΓL1 ∼ 2γ(3γ + ΓS + ΓT )

5γ + ΓR + ΓS + ΓT
. (3.34)

Note that, for the realistic parameter ranges considered in this work, ΓS and ΓT will be

much smaller than γ and contribute negligibly in determining the logical decay rates, which

still show quadratic improvement compared to bare transmons’ relaxation rates.

Using Eq. 3.31, 3.33 and 3.34, one can verify that larger QQ sideband rate W and

detunings ν will provide better energy isolation, leading to a higher logical states’ lifetime.

The ratio ΓL1/ΓL0 ∼ 3 indicates that the logical qubit has approximately 3 times faster
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decay rate than the excitation rate, as the average photon number of a |L1⟩ (error state) is

three times larger than that of a |L0⟩.

The dominant logical error channel is the double-photon loss event. Since ⟨L1| aq1aq1 |L0⟩ =

1/
√
2, double-photon loss flips |L0⟩ into |L1⟩ and vice versa. This shows that under photon-

loss only error, the slow exponential decay will bring |L0⟩ and |L1⟩ into each other. Therefore,

the depolarization rate ΓZ for the logical state is ΓZ = ΓL0 + ΓL1. For the transversal de-

phasing rate ΓX , extra protection comes from the code structure. When a double-photon

loss event happens on the same physical qubit (with 50% chance), the state obtains 50%

overlap with |Lx⟩. Therefore, for a quarter of the double-photon loss events, |Lx⟩ experi-

ences no coherence loss, and the lifetime for |Lx⟩ is TX = 4TZ/3. For both TZ and TX , the

lifetime improvement is quadratic given ΓS + ΓT ≪ γ.

We perform rotating-frame simulations to verify the lifetime improvements. Fig. 3.6

shows the simulated process fidelity for |Lx⟩, |L0⟩, and physical qubit decay. Operators used

for calculating the process fidelity for {|L0⟩ , |Lx⟩} are {|L0⟩ ⟨L0|−|L1⟩ ⟨L1| , |Lx⟩ ⟨Lx|}. The

logical lifetime is extracted by fitting the exponential decay constant of each logical state’s

process fidelity. Fig. 3.7(a) shows the lifetime of |Lx⟩ under different QQ sideband detuning
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Figure 3.7: Logical lifetime (TL) as a function of detunings and sideband rates. Sim-
ulations are performed up to 200 µs with T1 = 20 µs for both transmons. The logi-
cal TL are extracted by fitting the last 180 µs to an exponential decay profile. (a) 2D
scan of QQ sideband detunings ν0 and ν1. Other parameters used in the simulation:
{α1, α2,W,Ω, κ} = {−160,−260, 5, 1, 0.5}MHz. Optimal performance is obtained around
ν0 = −ν1 = ±W/

√
3. (b) 2D scan of QQ and QR sideband rates W and Ω. Parameters are

set to be ν0 = −ν1 = W/
√
3, and Ω = κ for best AQEC performance. Simulations show

significantly improved performance around Ω = W/10.

combinations. We neglect short timescale behavior when extracting logical states’ lifetimes.

There is a low coherence strip along the diagonal region. This happens when ν0 = ν1, as

{|L0⟩ , |L1⟩ , |gg⟩ + |ff⟩ − |gf⟩ − |fg⟩} become degenerate eigenstates with non-orthogonal

error states and violates the Knill-Laflamme condition. From Fig. 3.7(a), the maximum

lifetime improvement region appears around ν0 = −ν1 = ±W/
√
3. This can be intuitively

understood as {|S−⟩ , |L0⟩ , |T ⟩ , |L1⟩ , |S+⟩} are evenly separated in energy (Fig. 3.4), thus

providing close-to-optimal suppression of leakage to non-logical state population.

We fix the detuning relation ν0 = −ν1 = W/
√
3 and sweep W,Ω for |Lx⟩’s lifetime. The

results are plotted in Fig. 3.7(b). During the sweep, we choose κ = Ω, where refilling rate

ΓR are optimal, and error correction performance becomes insensitive to small changes in
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Figure 3.8: Logical lifetime improvement as a function of transmon T1 (considered iden-
tical for both transmons). Quadratic lifetime improvement (roughly linear improvement
in the lifetime ratio) under AQEC is clearly seen in the plot. Logical TL are extracted
by fitting traces to the exponential decay curve A exp(−t/TL) + C (with A and C being
free parameters), and the improvement ratio is TL/T1. Error bars (one standard devia-
tion) for TL are smaller than the marker size. Each simulation is run up to 800 µs, and
the short period is not included in the fitting. Other parameters used in the simulation are
{α1, α2,W, ν0, ν1,Ω, κ} = {−160,−260, 10, 5.77,−5.77, 0.71, 0.5}MHz. The analytic expres-
sion (solid lines) matches the simulation result. The depolarization lifetime of |L1⟩ is almost
the same as |L0⟩ in simulation. All simulated logical lifetimes here are above the break-even
point.

κ. In practice, W = 10MHz and Ω = 1MHz can be achieved in modern devices with some

optimization [12, 50, 54]. Since larger W is more difficult to achieve in the system, given

maximum W , optimal performance appears along the diagonals, where Ω is roughly an order

of magnitude smaller than W . Finally, we sweep T1 of the transmons and show the ratio of

logical to physical lifetime in Fig. 3.8. The quadratic improvement in logical states’ lifetime

is clearly visible, and the data matches the analytic expression pretty well.

We note that the logical lifetime limit from other error channels (e.g., 1/f noise-induced

dephasing and comparatively rare random photon addition due to finite temperature) in the

Star code protocol is the same as in the original VSLQ proposal [37] because the AQEC

process is the same except for a different Hamiltonian construction. The dephasing noise

is coupled to a single qutrit Z operator [39], and the expectation value for this operator is
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always 0 for all logical states. Therefore, the only impact of the dephasing noise comes from

the transition to other states. However, this transition requires finite energy because of the

always-onH
′
QQ. The suppression process becomes equivalent to sampling 1/f noise spectrum

at a higher frequency, the same as the dynamical decoupling effect in the VSLQ cases.

Another possible error channel is the leakage error. To prevent leakage to higher transmon

energy levels, the two transmons are chosen to have large but different anharmonicities

αj . This difference suppresses blue sideband transitions such as |gf⟩ ⟨eh| and red sideband

transitions such as |fe⟩ ⟨hg| that populates |h⟩ level. Practically, the leakage outside the

codespace is negligible for the range of parameters considered in simulations.

3.4 Coherence Limits from non-ideal Parameters

In this section, we will discuss the sensitivity of Star Code logical coherence to extra inter-

actions that appeared in the Hamiltonian.

The ZZ interactions between transmons (Q) and readout resonators (R) are needed to

distinguish the transmon state. While Star Code only requires the XX interactions between

QR, the presence of QR dispersive coupling χ helps calibrate the system. Figure 3.9 shows

the simulated lifetimes for logical states |L0⟩, |L1⟩, and |Lx⟩ in the presence of QR ZZ

coupling obtained from solving the master equation. The logical state lifetime is weakly

reduced in the low χ regime. This is because the photon decay from either resonator will

have different frequencies depending on the coupled transmon being in |g⟩ or |f⟩. Such a

resonator-induced dephasing does not introduce a logical dephasing error but only distorts

the form of |L0⟩ and |L1⟩. This noise has a Lorentzian spectrum that decays in frequency.

When the QQ sideband rate W is much larger than χ, the resonator-induced dephasing

is suppressed strongly as the 1/f dephasing noise. Therefore, in Fig. 3.9, the logical T1 is

insensitive to small χ.

Photon excitation in the readout resonators is detrimental to the Star Code. Suppose
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Figure 3.9: Simulated logical states’ lifetime with qubit-resonator dispersive coupling χ. Sim-
ulation parameters: {α1, α2,W, ν0, ν1,Ω, κ}= {−160,−260, 10, 5.77,−5.77, 0.71, 0.5} MHz,
T1 = 60 µs.

R1 excites a photon when the logical state is |L0⟩, the QR sideband |L010⟩ ↔ |eg00⟩ will be

activated and convert the logical state into the error state. This becomes a potential logical

error unless the error state is flipped back before the second photon loss from the error state

happens. In the real experiment, one should increase the readout frequency and thermalize

the sample better for fewer photon excitation events.

The ZZ interactions between two transmons dephase the logical superposition state.

Among all the ZZs between two qutrits, ZZff1 = E|ff⟩ − E|ef⟩ − (E|fg⟩ − E|eg⟩) and

ZZff2 = E|ff⟩−E|ef⟩− (E|gf⟩−E|ge⟩) will cause the logical state dephasing, as a random

phase between |L0⟩ and |L1⟩ will accumulate, which is proportional to the product of time

error is corrected and ZZffj . Longer transmon T1 and faster error correction rate (increasing

QR sideband rate Ω) help mitigate such dephasing channel, and the cancellation requires

a simultaneous cancellation of ZZff1 and ZZff2 when all QQ sidebands are on. This is

achievable by adding extra detuned drives, such as the scheme discussed in Ref. [66] and

Ref. [63].

The Star Code is insensitive to the small fluctuation in the QR sideband rate Ωj and

does not require Ω1 = Ω2 (used only for obtaining simpler analytic expressions in the main
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text). Fluctuations in both QQ sideband rate W and detunings νj are strongly suppressed

as long as they are not comparable to the energy gap (O(W )) between |L0⟩ and |L1⟩.

3.5 Goals for Experimental Demonstration

As a summary of the theoretical results of the Star Code, we list the necessary requirements

for the experimental AQEC demonstration:

(1) Two coupled anharmonic systems A and B (annihilation operators labeled as a and

b separately) that can simultaneously engineer both beam-splitter (a†b+ ab†) and squeezing

(ab+ a†b†) interactions.

(2) The ZZff1 and ZZff2 (See definitions in Section. 3.4) between A and B can be fully

canceled.

(3) Both A and B have no significant photon excitation or white-noise dephasing channel.

(4) Frequency-selective two-photon process that simultaneously adds photons to the lossy

resonator and its coupled anharmonic system.

(5) A and B both have good coherence (T1 and T2).

In our experiments, we decided to engineer an inductive tunable coupler between two

transmons. Other superconducting qubits, such as Fluxonium, are also possible candidates

for future study.
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CHAPTER 4

TOWARDS AUTONOMOUS QUANTUM ERROR

CORRECTION

This chapter will experimentally demonstrate a tunable coupler design between two trans-

mons that meets the requirements listed in Section. 3.5. In Section. 4.1, we will detail the

coupler design, circuit quantization, and characterization of various QQ and QR sidebands.

Section. 4.2 will explore how the decent transmon coherence and native two-qutrit interac-

tions enable the implementation of several two-qutrit quantum algorithms on this processor.

Finally, in Section. 4.3, we will demonstrate programmable stabilization using the QQ and

QR sidebands, showing that our Dissipative Floquet system is accurately modeled for a

sufficiently long time for AQEC demonstration.

We have two chips of similar design labeled ‘Algorithm’ and ‘AQEC’ for our experiments

with slightly different parameters. “Algorithm” is used for demonstrating two-qutrit algo-

rithm experiments discussed in Section. 4.2, and ‘AQEC’ is for stabilization and Star Code

experiments discussed in Section. 4.3 and Chapter 5. The circuit parameters for both chips

are explicitly listed in the tables.

4.1 Two inductively coupled transmons

Fig. 4.1 shows our device of two inductively coupled transmon [12, 48, 50]. The key com-

ponent is the inductive coupler based on the design in Ref. [55] that enables the realization

of fast parametric interactions. Two transmons Q1 and Q2 serve as the qutrits and share

a common path to ground. This path is interrupted by a Superconducting Quantum Inter-

ference Device (SQUID) loop. The SQUID functions as a tunable inductor with external

DC and RF magnetic fields threaded to activate the QQ sidebands. Each transmon is ca-

Parts of this section have been published in Ref. [50]
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Figure 4.1: The device. (a) False-colored optical image. Two transmons (red) are inductively
connected through a SQUID loop (purple, inset shows zoomed-in image). An on-chip flux line
is coupled to the SQUID to activate QQ sidebands through parametric RF flux modulation at
the proper DC flux position. Each transmon is capacitively coupled to the readout resonator
(blue). Single transmon pulses are sent through the resonator input lines. QR sidebands are
applied through corresponding charge lines. (b) Circuit schematic diagram.

pacitively coupled to a lossy resonator serving both as the readout and cold reservoir. QR

sidebands can be performed by sending a charge drive at the half transition frequency to the

transmon [88].
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Algorithm chip AQEC chip
Capacitance (fF) Junction Ej (GHz) Capacitance (fF) Junction Ej (GHz)

Cq1 178.0 Ej1 13.6 Cq1 165.9 Ej1 12.4
Cq2 131.0 Ej2 13.3 Cq2 123.4 Ej2 12.1
Cc 193.6 Ejc 1140.0 Cc 178.3 Ejc 1106.0
Cq12 2.0 Cq12 2.0

Table 4.1: Capacitances and Josephson energies used in the quantization. Capacitances are
extracted through finite-element simulations in ANSYS Q3D, and Josephson energies are
calculated from the room-temperature resistances of nominally identical test junctions on
the same chip.

We first consider the Hamiltonian of the two transmons:

HQ =−→n ⊺C−1
L

−→n − Ej1 cos (φc − φ1)− Ej2 cos (φ2 − φc)

− Ejc cos

(
π
Φext

Φ0

)
cos (φc), (4.1)

CL =


Cq1 + Cq12 −Cq12 0

−Cq12 Cq2 + Cq12 0

0 0 Cq1 + Cq2 + Cqc

 , (4.2)

−→n ⊺ =(n1, n2, nc) ,
[
nj , φj

]
= −i. (4.3)

Here −→n and −→φ are the charge and phase variables and can be found through the Legendre

transformation. Table 4.1 includes all coefficients used in the quantization. Then we extract

the linear part of HQ to obtain

H0 = −→n ⊺C−1
L

−→n +
Ej1

2
(φc − φ1)

2 +
Ej2

2
(φ2 − φc)

2

+
Ejc

2
cos

(
π
Φext

Φ0

)
φ2c . (4.4)

Next, we rewrite the charge and phase variables in the dressed basis with the unitary

transformation matrix U such that H0 is simultaneously diagonalized to find out the normal
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modes,

H0 =
∑

j=1,2,c

(
C̃j ñ

2
j + D̃jφ̃j

2
)
, (4.5)

−→̃
n = (ñ1, ñ2, ñc)

⊺ = U−1−→n , (4.6)

−→̃
φ = (φ̃1, φ̃2, φ̃c)

⊺ = U−1−→φ , (4.7)

U =


U11 U12 U1c

U21 U22 U2c

Uc1 Uc2 Ucc

 . (4.8)

In the dressed basis, the nonlinear part is reintroduced in the Hamiltonian to get

HQ =
∑

j=1,2,c

(
C̃j ñ

2
j

)

− Ej1 cos

 ∑
j=1,2,c

(
Ucjφ̃j − U1jφ̃j

)
− Ej2 cos

 ∑
j=1,2,c

(
U2jφ̃j − Ucjφ̃j

)
− Ejc cos

(
π
Φext

Φ0

)
cos

 ∑
j=1,2,c

Ucjφ̃j

, (4.9)

with

ñj =
i√
2

√√√√D̃j

C̃j

(
a
†
qj − aqj

)
, (4.10)

φ̃j =
1√
2

√√√√ C̃j

D̃j

(
a
†
qj + aqj

)
. (4.11)

We use the scQubits package [14] to quantize the Hamiltonian. The comparison between

numerical values and experimental data are shown in Fig. 4.2. When Φext is biased close
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Figure 4.2: Circuit quantization results of HQ. Comparison of (a) ‘Algorithm chip’ and (b)
‘AQEC chip” transmon frequencies and (c) ‘Algorithm chip’ and (d) ‘AQEC chip’ cross-Kerr
couplings between simulation and experiment. Q1 (red) and Q2’s (blue) |g⟩ ↔ |e⟩ and
|e⟩ ↔ |f⟩ frequencies from numerical calculation and experiment are plotted as a function of
Φext. Four inter-qutrit cross-Kerr coupling strengths, J11, J21, J12 and J22 are calculated,
and experiment data are marked out on the Star code operating point (dashed line).

to Φ0/2, deviation appeared in numerics. This comes from the asymmetry of SQUID junc-

tions’ resistances and parasitic SQUID loop inductance. This region of deviation is far from

the experimental bias point. Around the DC flux position where the experiments are im-

plemented (marked as the dashed line in Fig. 4.2 (c) and (d) ), there is a good agreement

between simulated and experimental values for both transmons’ frequencies and cross-Kerr

couplings. The transmon frequencies are insensitive to Φext when Φext is far away from π/2,

ensuring a good Ramsey time for both transmons.

Relevant coherence parameters and frequencies at the operating point (coupler DC flux

bias ΦDC = 0.185Φ0 for ‘Algorithm’ chip and ΦDC = 0.3795Φ0 for ‘AQEC’ chip) without

external drives are listed in Table 4.2 and Table 4.3. The ZZ coupling (dispersive shifts)
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ΦDC = 0 Algorithm chip AQEC chip
Transition T1 (µs) TR (µs) Techo (µs) T1 (µs) TR (µs) Techo (µs)
Q1 |e⟩ → |g⟩ - - - 31.6 28.4 26.6
Q2 |e⟩ → |g⟩ - - - 2.8 4.9 -

Algorithm chip (ΦDC = 0.185Φ0) AQEC chip (ΦDC = 0.3795Φ0)
Transition T1 (µs) TR (µs) Techo (µs) T1 (µs) TR (µs) Techo (µs)
Q1 |e⟩ → |g⟩ 47.9 4.5 - 24.3 15.2 24.6
Q2 |e⟩ → |g⟩ 35.1 3.2 - 9.1 9.8 14.3
Q1 |f⟩ → |e⟩ 21.7 2.0 - 27.1 16.7 29.3
Q2 |f⟩ → |e⟩ 3.9 2.4 - 26.7 20.1 34.3
R1 |1⟩ → |0⟩ 0.3 0.3
R2 |1⟩ → |0⟩ 0.3 0.3

Table 4.2: Device coherence parameters at different DC flux points. Q2 has lower coherence
at the zero flux point because of the presence of a two-level system (TLS).

between two-transmon energy levels are measured in the experiment through Ramsey fringe

frequency difference, and the cross-Kerr couplings J11, J21, J12, J22 are calculated from

those measurement results. We separately measure all 7 ZZs in the experiment through

Ramsey frequency difference. The four independent Jjk are inferred from the experimentally

measured seven cross-Kerr values: we choose the Jjk set that minimizes the Euclidean

distance between the seven experimental and the theoretical ZZ values calculated from

Eq. (4.12).
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Algorithm chip AQEC chip
Parameter Symbol Value/2π

Q1 ge frequency ωq1 3.3494GHz 3.2049GHz
Q2 ge frequency ωq2 3.8310GHz 3.6625GHz
Q1 anharmonicity α1 −115.2MHz −116.4MHz
Q2 anharmonicity α2 8MHz −159.6MHz
R1 frequency ωr1 4.9602GHz 4.9946GHz
R2 frequency ωr2 5.4225GHz 5.4505GHz

R1 dispersive shift χ1 - −180 kHz
R2 dispersive shift χ2 - −330 kHz(

E|ee⟩ − E|ge⟩
)
−
(
E|eg⟩ − E|gg⟩

)
ZZge −238 kHz −261 kHz(

E|fe⟩ − E|ee⟩
)
−
(
E|fg⟩ − E|eg⟩

)
ZZef1 −148 kHz −130 kHz(

E|ef⟩ − E|ee⟩
)
−
(
E|gf⟩ − E|ge⟩

)
ZZef2 −183 kHz −301 kHz(

E|ff⟩ − E|ef⟩
)
−
(
E|fg⟩ − E|eg⟩

)
ZZff1 −211 kHz −171 kHz(

E|ff⟩ − E|fe⟩
)
−
(
E|gf⟩ − E|ge⟩

)
ZZff2 −262 kHz −289 kHz(

E|ef⟩ − E|gf⟩
)
−
(
E|eg⟩ − E|gg⟩

)
ZZgf1 −402 kHz −619 kHz(

E|fe⟩ − E|fg⟩
)
−
(
E|ge⟩ − E|gg⟩

)
ZZgf2 −403 kHz −464 kHz

Coefficient of nq1nq2 J11 −304 kHz −312 kHz

Coefficient of n2q1nq2 J21 38 kHz 25 kHz

Coefficient of nq1n2q2 J12 −24 kHz −49 kHz

Coefficient of n2q1n
2
q2 J22 5 kHz 43 kHz

Table 4.3: Device frequencies in the absence of external drives. Jjk are inferred from the 7
ZZ values measured in the experiment.



ZZge = J11 + J12 + J21 + J22

ZZef1 = J11 + 3J12 + J21 + 3J22

ZZef2 = J11 + J12 + 3J21 + 3J22

ZZff1 = 2J11 + 6J12 + 4J21 + 12J22

ZZff2 = 2J11 + 4J12 + 6J21 + 12J22

ZZgf1 = 2J11 + 2J12 + 4J21 + 4J22

ZZgf2 = 2J11 + 4J12 + 2J21 + 4J22

(4.12)

51



When ΦDC is away from the anti-sweet spot, the transmon frequency is insensitive to the

external DC flux, which ensures a decent Ramsey time for both transmons. The static ZZ

strength between two transmons is suppressed around certain ΦDC labeled in the dashed

lines in Fig. 4.2 (b) and (d). When considering both transmons as qutrits, there are in total

7 different ZZ values. The corresponding minimum DC flux points are different but very

close for all 7 ZZs, ensuring the high-fidelity operation of the two-qutrit processor.

The ZZ suppression comes from interference of the Hamiltonian’s capacitive coupling

and inductive coupling terms. The residual ZZ comes from the transmons’ negative anhar-

monicity, although the absolute ZZ value is more than a magnitude smaller than without

the suppression (Φext = 0 vs. Φext = 0.3795Φ0). In fact, even when replacing the coupler

SQUID with an ideal tunable inductor, there is still a similar stray ZZ coupling between two

transmons. To reduce the minimum ZZ value, one can simultaneously reduce the coupling

capacitance Cq12 and increase coupler junction energy Ejc. One possible route to cancel

static ZZ is to couple two objects with anharmonicities of opposite signs, such as transmon-

fluxonium and transmon-CFSQ. Another possible solution is to add extra drives for ZZ

cancellation, which is further discussed in Chapter. 5.

After the circuit quantization, we then calculate the QQ sideband interaction rates

through flux parametric modulation. To understand the sideband rate, we follow the previ-

ous paper[55] and apply an adiabatic approximation to the Hamiltonian: The coupler mode

frequency remains high (> 15 GHz) above transmons’ frequencies (< 4 GHz) in the system.

Therefore the coupler can be assumed static at the ground state. The non-dynamical poten-

tial of the coupler mode is removed by minimizing the Hamiltonian. Transmons are treated

as duffing oscillators when calculating the effective sideband rate. Keeping up to 2nd order
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expansions, the Hamiltonian Had under adiabatic approximation is

Had = ωq1a
†
q1aq1 + ωq2a

†
q2aq2

+
α1
2
a
†
q1a

†
q1aq1aq1 +

α2
2
a
†
q2a

†
q2aq2aq2

+ g1 (t)
(
a
†
q1 + aq1

)(
a
†
q2 + aq2

)
+ g2

(
−a†q1 + aq1

)(
−a†q2 + aq2

)
, (4.13)

g1 (t) =

√
Ej1Ej2

2Ejc cos
(
π
Φext(t)
Φ0

)√ωq1ωq2, (4.14)

g2 =

√
Cq1Cq2

2Cq12

√
ωq1ωq2. (4.15)

Here g1 (t) and g2 are flux-tunable inductive coupling strength and constant capacitive cou-

pling strength. Plugging in the RF flux modulation πΦext(t)
Φ0

= ΦDC + ϵ cos (ωdt) into Sup-

plementary Eq. (4.14) and assuming ϵ≪ ΦDC, we obtain

g1 (t) =

√
Ej1Ej2

2Ejc

√
ωq1ωq2

1

cos (ΦDC + ϵ cos (ωdt))

=

√
Ej1Ej2

2Ejc

√
ωq1ωq2

(1 + ϵ sin (ωdt) tan (ΦDC))

cos (ΦDC)
. (4.16)

Therefore the QQ sideband rate becomes (suppose |ψ1⟩ and |ψ2⟩ are states connected by the

sideband)

√
Ej1Ej2

2Ejc

√
ωq1ωq2

ϵ tan (ΦDC)

cos (ΦDC)
A12, (4.17)

with

A12 = ⟨ψ1|
(
a
†
q1 + aq1

)(
a
†
q2 + aq2

)
|ψ2⟩ , (4.18)

and is proportional to the flux modulation rate. A12 is the state-dependent bosonic en-

hancement coefficient. Higher order corrections can be calculated using time-dependent
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Schrieffer–Wolff transformation[71], and for our inductive coupler, both QQ blue and red

sideband will have a similar interaction Hamiltonian under the same ϵ:

H̃red =ϵ

√
Ej1Ej2

2Ejc

√
ωq1ωq2

tan (ΦDC)

2 cos (ΦDC)
(t) a

†
q1aq2 + h.c. (4.19a)

H̃blue =ϵ

√
Ej1Ej2

2Ejc

√
ωq1ωq2

tan (ΦDC)

2 cos (ΦDC)
(t) aq1aq2 + h.c. (4.19b)

The QR red (ar1a
†
r2 + a

†
r1ar2) and blue (ar1ar2 + a

†
r1a

†
r2) sidebands can also be realized

through flux modulation. When the resonator is capacitively coupled to the qubit at strength

gqri and frequency difference ∆i = ωqi−ωri, the transmon level is dressed by the resonator:

a′qi = aqi +
gqri
∆i

ari (4.20)

Here a′qi is the transmon annihilation operator in the dressed basis. Replacing aqi with

a′qi in H̃TLS , and choose ωd = ωri ± ωqi, we can active QR red and blue sideband between

Q1R1 and between Q2R2. The QR sideband rate through flux modulation is:

ϵ
gqri
∆i

√
Ej1Ej2

2Ejc

√
ωq1ωq2

tan (φdc)

cos (φdc)
. (4.21)

In our system, the QR blue sideband frequencies are beyond the hardware limit (> 8GHz).

Therefore, we choose only to activate the QR red sideband through the flux line.

The QR blue sidebands have a different choice to activate [88]: The direct charge drives at

half of the transition frequency with amplitude ϵq can provide an effective QR blue sideband

rate:

16g3qriϵ
2
q/∆

4
i . (4.22)

This turns out to be easier to achieve in our experiments, as the drive frequency is halved

and within the Fast Arbitrary Waveform Generator (AWG) sampling rate.
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Figure 4.3: Experimentally realized QQ and QR sidebands. From top to bottom are sep-
arately (a) QQ red sideband |ge⟩ ↔ |eg⟩, (b) QQ blue sideband |gg⟩ ↔ |ee⟩, (c) QR blue
sideband between QR1 and QR2 |g0⟩ ↔ |e1⟩, and (d) QR1 red sideband |e0⟩ ↔ |g1⟩. Read-
out on Q1 (red) and Q2 (blue) are scaled between 0 (|g⟩) and 1 (|e⟩). Data points are
connected for visual guidance.

Fig. 4.3 demonstrates all realized QQ and QR sidebands needed for the various experi-

ments. Fast QQ red sidebands at 8.5MHz and modest QQ blue sidebands at 3.9MHz are

performed in the experiment through RF flux modulation of the inductive coupler. Both

readouts for QQ red sideband (with initial state |eg⟩) and QQ blue sideband (with initial

state |gg⟩) are shown in Fig. 4.3(a) and (b). The QR blue sidebands are generated through

the charge lines that are coupled to the qubit pads, shown in Fig. 4.3(c) with initial state

|g0⟩. The QR1 red sidebands are activated through the coupler flux modulation (the QR2

red sideband is not shown because of frequency collision.). The on-resonance readout trace
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for Q1 starting at |e0⟩ is plotted in Fig. 4.3(d).

4.2 Two-Qutrit Quantum Algorithms on a Programmable

Superconducting Processor

After demonstrating a fast parametric coupler between two transmons with decent coherence,

we move on to demonstrate a few quantum algorithms on our device [74]. Using the rich set of

native entangling gates to provide excellent connectivity between different two-qutrit states,

we demonstrate two-qutrit versions of Deutsch-Jozsa [19, 89], Bernstein-Vazirani [6, 89], and

Grover’s search [33] algorithms without using any auxiliary qutrit (ancilla) [72]. Deutsch-

Jozsa and Bernstein-Vazirani algorithms provide exponential and linear speed-ups, respec-

tively, over corresponding classical algorithms, whereas Grover’s search provides a quadratic

improvement. We perform two stages of Grover’s amplification with success probabilities

significantly larger than classically achievable values.

For expression simplicity, we label the lowest three energy levels (qutrit subspace) for

each transmon as {|0⟩ , |1⟩ , |2⟩} in this chapter.

Gate type On Q1 (ns) On Q2 (ns)
π/201 49.50 49.71
π/212 41.27 44.15
π01 94.98 95.41
π12 78.52 84.28
Z 0 0
H 141.88 147.90

Table 4.4: Total gate lengths for different single-qutrit operations. The Z gates are imple-
mented virtually.
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4.2.1 Single-qutrit Gate operation

The native operations accessible for a single qutrit are

R01 (ϕ, θ) =


cos θ

2 −e−iϕ sin (θ/2) 0

eiϕ sin θ
2 cos θ

2 0

0 0 1

 , (4.23a)

R12 (ϕ, θ) =


1 0 0

0 cos θ
2 −e−iϕ sin (θ/2)

0 eiϕ sin θ
2 cos θ

2

 , (4.23b)

Θ(x, y) =


1 0 0

0 eix 0

0 0 ei(x+y)

 , (4.23c)

Here, R01 (ϕ, θ) and R12 (ϕ, θ) are realized through sending a charge drives to the trans-

mon pad at |0⟩ ↔ |1⟩ and |1⟩ ↔ |2⟩ transitions respectively with appropriate lengths and

phases. The pure phase gate Θ(x, y) is realized virtually: For each qutrit, we record two

phase parameters θ01 and θ12 corresponding to the pulses applied to the |0⟩ ↔ |1⟩ and

|1⟩ ↔ |2⟩ transitions respectively. To apply the Θ(x, y) gate, we advance both θ01 and θ12

by x and y for all the subsequent pulses. The single-qutrit Z gate:

Z =


1 0 0

0 ω 0

0 0 ω2

 (4.24)

becomes a special case of the generic phase gate: Z = Θ
(
2π
3 ,

2π
3

)
. Since all phase updates

are performed in software, the Z gate (or a Θ(x, y) gate) has 100% fidelity.

Parts of this section have been published in Ref. [74]
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Figure 4.4: Process tomography for Hadamard gates. The top and bottom panels show real
and imaginary components of the process matrix (χ) for (a) an ideal case, (b) Q1, and (c)
Q2.

Eq. 4.23 forms a universal single-qutrit rotation set. For example, the H gate is decon-

structed as

H =
1√
3


1 1 1

1 ω ω2

1 ω2 ω

 = R12

(
0,
π

2

)
· R01 (0, β) ·Θ

(
π,
π

2

)
· R12

(
0,
π

2

)
·Θ(0, π) , (4.25)
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with β = 2 tan−1(
√
2) and ω = e

2π
3 i. Similarly, the bit-shift gate X is decomposed as

X =


0 0 1

1 0 0

0 1 0

 = R01(0, π) ·R12(0, π). (4.26)

Single-qutrit drives use roughly 5 MHz of Rabi rates with Gaussian-edge rectangular

pulses of 2σ tail lengths, whereas phase gates are realized by simply advancing the phases

of the appropriate subsequent pulses. The envelope shape h (t) is defined in Eq. (4.27) with

σ = 2.5 ns,

h (t) =



A0e
−(t−t0−2σ)2

2σ2 if t0 < t < t0 + 2σ,

A0 if t0 + 2σ < t < t1 − 2σ,

A0e
−(t1−2σ−t)2

2σ2 if t1 − 2σ < t < t1,

0 Otherwise,

(4.27)

where, 2σ is the Gaussian tail length, A0 is the amplitude, and t1 − t0 is the total pulse

length. The single-qutrit gates’ lengths used in our experiments are shown in Table. 4.4.

Equipped with the universal single-qutrit gate set, we perform single-qutrit process to-

mography to benchmark the gate fidelity. We use the following nine different initial states:

{|j⟩ , (|j⟩ + |k⟩)/
√
2, (|j⟩ + i |k⟩)/

√
2}, {j, k} ∈ {0, 1, 2} in the process tomography. We

obtain process fidelities of 98.96% (Q1) and 97.06% (Q2) for the H gate as shown in Fig. 4.4.

The same for the Z gates are 97.48% (Q1) and 96.76% (Q2). Even though the Z gates should

be nearly perfect, the process fidelities are limited by state preparation and measurement

(SPAM) errors. Further, it is expected that the process fidelity for the Z gate should be

larger than that of the H gate, which requires multiple physical pulses. The opposite ex-

perimental observation comes from different SPAM errors on different qutrit energy levels:

The relaxation time of level |2⟩ is significantly smaller than that of level |1⟩, leading to such
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deviations in experiments.

4.2.2 Two-qutrit Gate operation

Along with single-qutrit rotations, we experimentally implement the generalized controlled-

phase gate Cθ(θ, |mn⟩) = I−(1−eiθ) |mn⟩ to realize a universal two-qutrit computation [11].

Here, Cθ(θ, |mn⟩) represents a phase of θ accumulated on level |mn⟩, and I is an identity

matrix of 9 × 9. We utilize sideband interactions to implement the Cphase gate in the

two-qutrit subspace. The tune-up of these sidebands is very easy and similar to single-qubit

Rabi experiments. We use a Gaussian-flatten pulse shape for all flux modulation drives, with

5 ns ramping and descending time. We initialize the qutrits in relevant states and sweep

both frequency, and the flat length of the flux modulation drive Φext(t) to obtain a Chevron

pattern. We demonstrate Chevron patterns for the six red sidebands in Fig. 4.5 and for the

four blue sidebands in Fig. 4.6 at separately optimized pump amplitudes. The plots show

average photon numbers on the qutrits as a function of time and drive frequencies. The

resonance feature is selected at the drive frequency where the oscillation shows maximum

contrast, as represented by the red dashed lines. We plot the line cuts along these selected

frequencies for all the ten sidebands in Fig. 4.7 and use the traces to extract interaction rates

and gate times. Other four red sidebands within the computational space can be utilized to

implement iSWAP gates between relevant levels.

We have not used the blue sidebands for the algorithms due to lower rates. While

theoretically larger rates should be achievable, we start to observe readout saturation [50]

and distortions in the Chevron plots as visible in case of |01⟩ ↔ |12⟩ sideband (see Fig. 4.6).

This distortion is most likely caused by the flux line’s stray capacitive coupling to the coupler

SQUID. The unwanted capacitive coupling, particularly at high (blue sideband) frequencies,

results in asymmetrical parametric modulation [56, 50] of the SQUID loop. This effect can

be solved by optimizing flux line geometry, allowing stronger blue sideband rates.
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Figure 4.5: Chevron plots for the six two-qutrit red sidebands. All sidebands are para-
metrically activated by modulating the coupler at the corresponding transition frequencies.
Pulses used for flux modulations have a rectangular shape with 5 ns long rising and falling
Gaussian-shaped edges. The x-axis represents the length of the flat-top section. Both qutrits
are simultaneously read out, and each data point is an average of 1000 experiments.
* Q1’s readout are not shown in the |21⟩ ↔ |30⟩ and |22⟩ ↔ |31⟩ cases, as the readout on
|3⟩ is not optimized.
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Figure 4.6: Chevron plots for the four two-qutrit blue sidebands. Sidebands are all paramet-
rically activated through flux modulation of the coupler at relevant frequencies. Pulses used
for flux modulations have a rectangular shape with 5 ns long rising and falling Gaussian-
shaped edges, and the x-axis represents the length of the flat-top section. Each experimental
data is an average of 1000 measurements.
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Figure 4.7: Coherent oscillations for all two-qutrit sidebands. On-resonance features from
the Chevron plots are selected and fitted to extract the sideband rates and π rotation lengths
(shown in Table. 4.5). Rectangular pulses with 5 ns long Gaussian edges are used for flux
modulations, and the x-axis represents the length of the flat-top section. Each data point is
an average of 1000 experiments.
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Sideband Type Rate (MHz) π length (ns)
|10⟩ ↔ |01⟩ Red 20.1 30.2
|20⟩ ↔ |11⟩ Red 21.2 27.5
|02⟩ ↔ |11⟩ Red 20.3 29.7
|21⟩ ↔ |12⟩ Red 35.8 17.5
|21⟩ ↔ |30⟩ Red 19.3 29.9
|22⟩ ↔ |31⟩ Red 11.2 50.2
|00⟩ ↔ |11⟩ Blue 3.9 158.5
|10⟩ ↔ |21⟩ Blue 3.5 142.6
|01⟩ ↔ |12⟩ Blue 4.6 115.0
|11⟩ ↔ |22⟩ Blue 8.4 66.6

Table 4.5: Sideband rates and gate lengths for various interactions achieved with the device.
The π-pulse lengths include both the flat-top part and 5 ns rising and falling Gaussian tail
of the pulse. The distortion observed for the |01⟩ ↔ |12⟩ Chevron is most likely due to the
stray charge coupling of the flux line to the SQUID loop (see text for details).

We use the red sideband |21⟩ ↔ |30⟩ and |22⟩ ↔ |31⟩ to implement the Cphase gate:

these two QQ red sidebands bring the population out of the computational subspace. As

shown in Fig. 4.8(a), we utilize two native CPhase gates Cθ (θ, |21⟩) and Cθ (θ, |22⟩), which

can be realized by applying two π rotations to |21⟩ ↔ |30⟩ and |22⟩ ↔ |31⟩ transitions with

the phase of the second π pulse being advanced by π− θ compared to the the first one. The

optimized gate lengths are 55.9 ns and 94.0 ns for Cθ (θ, |21⟩) and Cθ (θ, |22⟩) respectively.

The CPhase gates on the states in the region (2), (4) and (6) (highlighted with yellow)

need to decompose where the number indicates the number of single-qutrit rotations required.

The decomposition starts from the target state, followed by the application of single-qutrit

rotations to arrive at one of the states in the region (0) (following brown arrows). After

applying the native CPhase gate, reverse single-qutrit rotations are administered, traversing

the same path back to the target state. Fig. 4.8(b) shows the circuit decomposition of

Cθ (π, |00⟩) as an example, which requires the maximum number of pulses. One can also use

combinations of red and blue sidebands to further reduce the total number of gates. Note

that, even though we have access to Cθ (π, |12⟩), we do not use it due to poorer fidelity
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. The top and bottom rows are experimental and ideal den-

sity matrices, with the real and imaginary parts shown in the left and right columns.

caused by a significantly lower lifetime of the |2⟩ and |3⟩ levels of Q2.

The calibration of the CPhase gates involves compensation for the additional phases

acquired during the gate operation [30]. In our coupler, both the AC stark shift and the rec-

tification effect from SQUID flux modulation can cause qutrit frequencies to change during

the gate, resulting in extra phases β(j)01 and β
(j)
12 for the |0⟩ ↔ |1⟩ and |1⟩ ↔ |2⟩ transitions

of the j-th qutrit. We use the circuit shown in Fig. 4.8(c) to extract these additional phases.

Starting from the ground state, we apply the gate G1 = R01
(
0, π2

)
to both qutrits if cal-

ibrating β(j)01 , followed by Cθ (0, |jk⟩) and sweep the virtual phase Zθ = Θ(θ, 0) before the

last gate G2 = R01
(
π, π2

)
on Qj . By fitting the readout on Qj to C0+C1 sin

(
β
(j)
01 + θ

)
, one

can extract the extra phase β(j)01 acquired. A similar procedure is used to extract β(j)12 where

we use G1 = R12
(
0, π2

)
·R01 (0, π), G2 = R12

(
π, π2

)
, and Zθ = Θ(0, θ). Hence, each CPhase

gate has four virtual phases corresponding to two native transitions for each qutrit. As a

demonstration, we apply the CPhase gate Cθ

(
8π
9 , |22⟩

)
on the state 1

3 (|0⟩+ |1⟩+ |2⟩)⊗2

(with initial state fidelity of 87.7%). The final state (shown in Fig. 4.9) obtained after
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two-qutrit tomography [75] shows a fidelity of 82.4%, which is limited by the ZZ coupling

between transmons and SPAM error.

4.2.3 Deutsch-Jozsa algorithm

After demonstrating universal control of the two-qutrit quantum processor, we move on

to demonstrate some qutrit-version quantum algorithms. The Deutsch-Jozsa (DJ) algo-

rithm [19] is one of the earliest quantum algorithms showing an exponential advantage over

any classical algorithm. For an n-qutrit system, the task of the DJ algorithm is to distinguish

a function f : {0, 1, 2}n → {0, 1, 2}, which takes n-trits as an input and outputs one trit,

between two cases, a balanced or a constant function. The constant function always results

in the same output (0, 1, or 2) independent of the input, whereas the balanced function

outputs each of the three possibilities for exactly one-third of the possible inputs. Note

that implementing the different test functions is often termed as the oracle. A deterministic

classical algorithm needs 3n−1 + 1 queries (with at least two queries in the best case) to

distinguish the two cases, whereas the DJ algorithm needs only one and hence provides the

exponential speed-up.

Figure. 4.10(a) depicts our circuit implementation of the DJ algorithm. Two Hadamard

gates are simultaneously applied to both qutrits initialized to |0⟩ (ground state) to prepare

the state 1
3 (|0⟩+ |1⟩+ |2⟩)⊗2. The oracles (gray gates in Fig. 4.10(a)) are implemented

by applying gates (W ) to the qutrits chosen from the set S = {I,X,X2, Z, Z2}. For the

constant case, W1 and W2 are picked up from the subset Sc = {I,X,X2}, and the total

number of X gates modulo 3 specifies the constant output. For example, the gate X ⊗X2

would implement constant 0, whereas I ⊗X2 would be the case of constant 2. A balanced

oracle can be realized by choosing any combination of elements from the set S except for

those cases that result in a constant function.

We implement 16 different balanced functions whose equivalent classical functions are
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Figure 4.10: Deutsch-Jozsa and Bernstein-Vazirani algorithms. (a) Quantum circuit for the
algorithms. In DJ algorithm, gates W1, W2 ∈ {I,X,X2, Z, Z2} are applied to implement a
constant or a balanced oracle. The final output state being in |00⟩ or non |00⟩ distinguishes
the two cases. (b) Experimental results for DJ algorithm. The rows and columns represent
gates applied to Q1 and Q2 respectively. The average SPs are 75.5(3)% and 98.5(1)% for
the constant (hatched boxes) and balanced (plain boxes) oracles respectively beating the
classical rate of 50%. (c) Experimental results for BV algorithm. Each row corresponds to
a specific oracle with the mapping {I, Z, Z2} → {0, 1, 2}. The diagonal terms show the SPs
for all nine strings mapped to the basis states with an average of 78.3(3)%, which is much
larger than the classical SP of 33.3%.
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tabulated in Table 4.6. The balanced functions are implemented in our experiment as shown

in Fig. 4.10(a). We use A and B to represent the classical ternary values (0, 1,and 2) for

the two qutrits. The operators ⊕ and ⊙ correspond to addition and multiplication modulo

3, respectively.

Oracle Classical function Oracle Classical function
Z ⊗ I A ⊕ 0 I ⊗ Z 0 ⊕ B
Z ⊗X A ⊕ 1 X ⊗ Z 1 ⊕ B
Z ⊗X2 A ⊕ 2 X2 ⊗ Z 2 ⊕ B
Z2 ⊗ I (2 ⊙ A) ⊕ 0 I ⊗ Z2 0 ⊕ (2 ⊙ B)
Z2 ⊗X (2 ⊙ A) ⊕ 1 X ⊗ Z2 1 ⊕ (2 ⊙ B)
Z2 ⊗X2 (2 ⊙ A) ⊕ 2 X2 ⊗ Z2 2 ⊕ (2 ⊙ B)
Z ⊗ Z A ⊕ B Z ⊗ Z2 A ⊕ (2 ⊙ B)
Z2 ⊗ Z (2 ⊙ A) ⊕ B Z2 ⊗ Z2 (2 ⊙ A) ⊕ (2 ⊙ B)

Table 4.6: Equivalent classical functions (ternary valued) for the 16 balanced functions
implemented in the Deutsch-Jozsa algorithm.

Finally, two H† gates are applied before simultaneous readout. A final measured state

of |00⟩ indicates a constant function, whereas any other output implies a balanced function.

The theoretical success probability (SP) for each case is 100%, and the experimental results

are summarized in Fig. 4.10(b), where the hatched (unhatched) boxes represent constant

(balanced) cases. The average SPs for the three constant cases with outputs {0, 1, 2} are

separately 72.8(3)%, 76.5(3)% and 77.2(3)%, marked with horizontal, left and right hatching.

The numbers in parentheses represent the standard error of the mean obtained after 20,000

repetitions of each oracle. For the 16 balanced cases, the average SP is 98.5(1)%. The SPs

for all cases are well above the classical case, which would be 50% after a single query.

All experimental data are corrected for measurement error. Figure 4.11 shows the single-

shot assignment probability for the nine basis states of our two-qutrit processor. We refer

to this 2d array as the confusion matrix. Our readout fidelity is limited because there are

no parametric amplifiers on the output lines. To fairly demonstrate the performance of
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Figure 4.11: Heatmap of the confusion matrix. 32 basis states are prepared and measured
for 20,000 times. The numbers represent average assignment probabilities.

the qutrit algorithms with single-shot results, we apply the inverse of the confusion matrix

to the readout results to compensate for the measurement error. After correcting for the

measurement error, it is possible that some of the readout counts (number of times the system

found in a specific state) become negative, which happens due to drifts in the calibration

parameters.

This is corrected using Maximum-Likelihood-Estimation (MLE) with the assumption that

the minimum fluctuation of a measurement repeated N times should not be lower than
√
N

(assuming normal distribution). We define the following cost function to avoid non-physical

measurement counts:

fc(
−→p ,−→q ) =

9∑
j=1

(
pj − qj
qj

)2

, (4.28)

with the restriction pj ≥
√
N . Here −→q contains the experiment counts (1d array of 9 elements

corresponding to the basis states) after applying the inverse of the confusion matrix, and −→p

is the extracted counts after MLE.
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4.2.4 Bernstein-Vazirani algorithm

The Bernstein-Vazirani (BV) algorithm [6] for qutrits can be restated as follows: given an ora-

cle f (x, s) ≡
∑n

j=1 xjsj (mod 3) that performs inner product between two strings of ternar-

ies followed by modulo 3, the goal is to determine the unknown string s = {s1, s2, . . . , sn}

where the user has control over the input string x. The most efficient classical algorithm

will need n oracle queries to find all digits of s. BV algorithm, on the contrary, needs only

one query and the quantum circuit is identical to the case of DJ as shown in Fig. 4.10(a).

Oracles representing 9 different strings for our two-qutrit system are implemented by choos-

ing gates (W ) from the set {I, Z, Z2}⊗2 with the mapping {I, Z, Z2} → {0, 1, 2}. The final

state of the system after measurement directly reveals the unknown string with 100% the-

oretical success rate. Fig. 4.10(c) tabulates the experimental results where the vertical axis

represents gates applied to the qutrits corresponding to different unknown strings, and the

horizontal axis shows the measured probability for each state. The diagonal entries indicate

individual SPs for each input string mapped to the final state. The average SP for all 9 cases

is 78.3(3)%, which is far above the classical SP of 33.3% after one query.

4.2.5 Grover’s Search

Grover’s algorithm [33] provides a quadratic speed-up for searching an unstructured database.

For a database of size N , the algorithm can find the unique input that satisfies a certain

condition using O
(√

N
)

search queries, while a classical algorithm requires on average

N /2 repetitions. Several groups have recently realized Grover’s search on qubit-based plat-

forms [26, 72, 60, 91, 16]. For the two-qutrit case with N = 32 = 9, the classical SPs with

one and two rounds of search are 1
9 = 11.1% and 1

9 + 8
9 · 1

8 = 22.2% respectively. The

corresponding theoretical SPs for the original Grover’s search are 72.6% and 98.4%, and can

also be modified to achieve determinism [73, 51].

The quantum circuit for the two-qutrit Grover’s search is illustrated in Fig. 4.12(a) that
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Figure 4.12: Grover’s search algorithm for two-qutrits. (a) Quantum circuit. The oracles are
implemented by CPhase gates Cθ (π, |jk⟩). The diffusion operator amplifies the detection
probability of the marked state. (b) Experimental results. Detection probabilities (corrected
for measurement error) after one (top panel) and two (bottom panel) rounds of amplitude
amplification are obtained with 20,000 averages. All individual success rates are far beyond
the corresponding classical SPs of 11.1% and 22.2%.
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doesn’t use any auxiliary (ancilla) qutrit. It has four stages: initialization, oracle imple-

mentation, amplitude amplification, and measurement. Starting from the ground state, we

apply Hadamard gates on both qutrits to initialize the system to the equal superposition state

1
3 (|0⟩+ |1⟩+ |2⟩)⊗2. A CPhase gate Cθ (π, |jk⟩), that flips the phase of the target state |jk⟩,

is used to realize the oracle. Due to the structure of the Hilbert space and coherence param-

eters (see Table. 4.2), we have access to two native CPhase gates Cθ (π, |22⟩) and Cθ (π, |21⟩)

and all other CPhase gates are realized in conjunction with single-qutrit rotations. Amplitude

amplification of the marked state happens through Grover’s diffusion or reflection unitary,

which is constructed using a phase flip of the |22⟩ state sandwiched between Hadamard and

Z gates. Here, we utilized the decomposition Cθ (π, |00⟩) = (ZZ) ⊗ Cθ (π, |22⟩) ⊗ (Z†Z†).

Simultaneous measurements on the qutrits are performed after one and two iterations of

Grover’s search for each target state. During a similar search using three qubits (N = 8),

each oracle (and amplification) step requires eight CNOT gates (for a linear chain) [91],

resulting in an eight-fold rise in entangling operations compared to our efficient two-qutrit

implementation.

Figure 4.12(b) shows the experimentally obtained detection probabilities for the 9 differ-

ent marked states after single (top panel) and double (bottom panel) rounds of the Grover’s

iteration. Each row represents a probability distribution acquired with 20,000 repetitions and

after correcting for measurement error. The diagonal terms represent successful detection

rates with an average SP of 44.4(3)% after the first round, which increases to 49.6(3)% with

the second iteration. The performance degradation of target states closer to |00⟩ is caused

by the less-efficient implementations of the corresponding oracles, where more single-qutrit

rotations are required for the CPhase gate decomposition (see Section. 4.2.2). As promised

by the algorithm, experimental detection probabilities for the individual correct states in-

creased after the second iteration for all cases (except for |02⟩ and |12⟩, which we attribute

to the lower lifetime of Q2’s |2⟩ level).
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4.2.6 Error Analysis

Multiple error sources limit us from approaching the theoretical success rates for different

quantum algorithms. In order to extract contributions from different sources, we perform

master equation simulations in the lab frame for Grover’s search using the coherence and

cross-Kerr parameters obtained experimentally. We consider a 4×4 dimensional Hilbert space

describing the lowest four energy eigenstates of each transmon and insert three different

error channels, namely, relaxation, dephasing, and static ZZ progressively. We do not

include the inductive coupler in the simulation as it has a much higher resonance frequency

(> 15 GHz) during any operation and thus should not be excited. We compute the squared

statistical overlap (SSO) [72] between two sets of probability distribution p⃗ and p⃗′ defined

as
(∑8

j=0

√
pjp

′
j

)2
for each of the oracle implementation and then determine the mean

value from nine different oracle applications. We first verify that in the absence of any error

channel, our simulation produces probability distributions that are nearly identical with the

ideal values. Next, we include the three error channels one by one and recompute the SSOs

with respect to the ideal probability distribution with increased circuit depths. We tabulate

the drop in SSOs after one and two rounds of Grover’s search in Table. 4.7, which indicate

their individual error contributions to the algorithm. The average experimental SPs beat

the classical rates of 11.1% and 22.2% for the two rounds by more than a factor of 2, with

clear improvement in performance after the second iteration.

Two biggest error sources are the inter-qutrit dispersive coupling and the dephasing. The

Error channel After 1 round After 2 rounds
Relaxation (T1) 0.83% 11.89%
Dephasing (Tϕ) 2.70% 16.07%

Static ZZ 5.08% 13.38%

Table 4.7: Error budget for the two-qutrit Grover’s search algorithm. Drops in SSOs after
one and two rounds of amplitude amplification are shown due to different error channels.
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are in good agreement with the experimental outcomes shown in Fig. 4.12(b) in the main
text.
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inter-qutrit dispersive coupling includes both the static-ZZ values measured in Table. 4.3 and

the dynamic-ZZ terms induced during (parametric) gate operations. The ZZ interactions

introduce unwanted phase accumulations that reduce the performance of both single-qutrit

and CPhase gates. The dephasing noise is also a significant source of error. The deepest

circuit (2 stages of Grover’s search) implemented includes 17 single-qutrit and 4 two-qutrit

gates, with a total execution time of 2.11 µs. This time becomes comparable to the qutrit’s

Ramsey times (see Table 4.2) and strongly degrades the success rates. The third one is the

relaxation time, and its contribution is smaller than the dephasing error as our qutrits’ T1

are typically longer than T2. The fourth source is the leakage to non-computational levels.

However, we use Gaussian-filtered rectangular pulses with maximum single-qutrit rotations

rates being much smaller than the energy gaps, and thus errors due to leakage should not be

significant. While we have not explicitly measured the leakage to the participating levels for

the CPhase gates, from the continued contrast of the calibration curves (bottom two plots

in Fig. 4.7), we anticipate a negligible effect. Besides, in our simulation, we keep the first 4

levels for the transmon to always include the leakage error. In order to verify that we have

captured all the main sources of error, we compare the experimental results with simulated

outcomes as shown in Fig. 4.13. Those show a very good agreement with SSOs of 94.0% and

97.1% for one and two stages of amplitude amplification.

4.3 Programmable Autonomous stabilization

After demonstrating a universal unitary operation on a two-qutrit system, we move on to

engineer the dissipation process between each transmon-resonator pair. Inspired by laser

cooling, tailored dissipation can be used for stabilizing entanglement, a prior step towards

AQEC [86, 38, 57, 31, 50, 49] that achieve hardware efficiency in the experiment. By

coupling the qubit system to some cold reservoirs, one can engineer the Hamiltonian such

Parts of this section have been published in Ref. [48]
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that the population will flow directionally to the stabilized point in the Hilbert space, and

extra entropy is autonomously dumped into the cold reservoir during the process.

In this section, we realize an autonomous stabilization protocol with superconducting

circuits that allows selection from a broad class of states, including the maximally entan-

gled states. We use microwave-only drives with tunable parameters such as drive detunings

and strengths that allow fast programmable switching between Bell states of different par-

ities. The system is based on a two-transmon inductive coupler design (see Section. 4.1)

that allows fast parametric interactions between qubits without significantly compromising

their coherence. The readout resonators are also used as cold reservoirs, eliminating the

requirement for extra components. We perform stabilization spectroscopy and demonstrate

a fidelity over 78% for all stabilized states. For odd and even parity Bell pairs, we measured

84.6% and 82.5% stabilization fidelity and a stabilization time of 1.8 µs and 0.9 µs respec-

tively. The current stabilization protocol cannot realize AQEC and a larger code distance

between logical states is necessary [48, 50, 49] for demonstrating quantum error correction.

The structure of the section is as follows. First, we explain the Hamiltonian construction

of the stabilization protocol. Then, we discuss the experimental measurement of individual

stabilized states and demonstrate a dissipative switch of Bell state parity.

4.3.1 Stablization theory

We consider a system of two coupled qubit-resonator pairs {Q1, Q2} and {R1, R2}. The

lossy resonators serve as both cold baths and dispersive readouts for the qubits. We label

the ground and the first excited states of the qubits Q1/2 as |g⟩ and |e⟩, and of the resonators

R1/2 as |0⟩ and |1⟩, with the full system state being represented as |Q1Q2R1R2⟩. The system

Hamiltonian Hsys = HQQ+HQR1+HQR2 includes the dominant two-qubit interaction HQQ

and qubit-resonator interactions HQRj , j = {1, 2} acting as perturbations. We label the four

eigenstates of HQQ as {|A⟩ , |B⟩ , |C⟩ , |D⟩} with eigenenergies {EA < EB ≤ EC ≤ ED} so
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Figure 4.14: Programmable stabilization protocol. a General stabilization scheme.
Two qubits’ eigenstates {|A⟩ , |B⟩ , |C⟩ , |D⟩} are plotted in the energy level diagram. When
the energy relation ED + EA = EB + EC is satisfied, |A⟩ is stabilized. Qubit-resonator
interactions and resonator photon decay rate κ are shown in blue and orange arrows. Qubit
decay rate γ is assumed slowest and not plotted. b Stabilization of entangled states |Ψθ⟩ =
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is detuned in frequency by Ω/2.
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that |A⟩ is the target state to stabilize. Our stabilization scheme involves engineering a

one-way flow of population to |A⟩ connecting all intermediate eigenstates of the system.

We now derive the energy matching requirements for an efficient stabilization protocol in

our two-qubit-two-resonator system depicted in Figure 4.14(a). We control the form of the

target stabilized state |A⟩ by choosing different two-qubit interaction strengths and detunings

that control HQQ. We change the resonator photon energy in the rotating frame by detuning

the QR interactions. The dynamics of Hsys are captured by considering the following set

of eigenstates: {|A⟩ , |B⟩ , |C⟩ , |D⟩} ⊗ {|00⟩ , |10⟩ , |01⟩}. We neglect the resonator state |11⟩

as the probability of simultaneous population in both resonators {R1, R2} is extremely low

when resonator decay rate κ is much larger than the qubit decay rate γ (assumed identical).

The central column in Fig. 4.14(a) shows the eigenstates of HQQ with no photons in the

resonators. The left column represents the same states with one photon in the left (R1)

resonator and similarly for the right column is associated with the second resonator (R2).

We engineer the photon energies in R1 and R2 to be EB − EA and EC − EA respectively

through tuning the QR interactions HQRj . This condition puts two transitions |A01⟩ ↔

|C00⟩ and |A10⟩ ↔ |B00⟩ on resonance, shown in Fig. 4.14(a). If ⟨A01|HQR1 |C00⟩ and

⟨A10|HQR2 |B00⟩ are non-zero, two on-resonance oscillations between |C00⟩, |A01⟩ and

between |A10⟩, |B00⟩ will be created. Since both resonators are lossy, the oscillation will

quickly damp to |A00⟩. To complete the downward stabilization path, we need to also connect

|D00⟩ into the flow. We further require that the following terms are non-zero so that the

transfer path is not blocked: ⟨B01|HQR1 |D00⟩, ⟨C10|HQR2 |D00⟩. If all four interaction

strengths (shown in green double-headed arrows in Fig. 4.14(a)) are dominant over the qubit

decay rate, populations in |B⟩, |C⟩, and |D⟩ will flow to |A⟩. From Fermi’s golden rule, the

interaction strength between two states is quadratically suppressed by their energy gap and

maximized when on-resonance [41]. This imposes a simple energy-matching requirement for

efficient stabilization: ED+EA = EB +EC . Energy degeneracy within {|B⟩ , |C⟩ , |D⟩} will
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not affect the stabilization scheme, because it will not block the dissipative flow to |A00⟩ in

Fig. 4.14(a).

As an explicit demonstration, we first stabilize a continuous set of entangled states

|Ψθ⟩ = sin (θ/2) |gg⟩ − cos (θ/2) |ee⟩, illustrated in Fig. 4.14(b). Here, θ can be regarded

as a “blending angle" between the two even parity states |gg⟩ and |ee⟩. We introduce three

sideband [88] transitions into the system: qubit-qubit (QQ) blue sideband |gg⟩ ↔ |ee⟩ with

rate Ω and two qubit-resonator (QR) blue sidebands |g0⟩ ↔ |e1⟩ between Qj and Rj with

rate Wj . In this context, ‘sideband’ refers to a two-photon process where either a single

photon is exchanged at the frequency difference (known as the red sideband) or two pho-

tons are simultaneously driven at the frequency sum (referred to as the blue sideband). To

ensure that HQRj act as perturbations over HQQ, we adjust the drive strengths to satisfy

Ω ≫ Wj . We further detune the QQ, QR1, and QR2 blue sideband by δ, (∆ − δ)/2, and

(∆+δ)/2 in frequencies, with ∆ =
√
Ω2 + δ2. The detuning δ determines the blending angle

θ = tan−1
(
δ+∆
Ω

)
with a range of [0, π2 ). In the presence of these three drives, the rotating

frame Hamiltonian Hsys is

Hsys =
Ω

2

(
aq1aq2 + h.c.

)
+ δa

†
q1aq1

+
W1

2

(
aq1ar1 + h.c.

)
+
W2

2

(
aq2ar2 + h.c.

)
+

∆+ δ

2
a
†
r1ar1 +

∆− δ

2
a
†
r2ar2. (4.29)

Here aqj and arj are separately the j-th qubit’s and resonator’s annihilation operator. An-

harmonicity α is omitted from Equation (1) by treating both transmons as two-level systems.

The presence of anharmonicity effectively suppresses the higher energy levels’ population in

either transmon. Under the combined conditions Ω ≫ Wj ∼ κ ≫ γ and Wj = W , the

eigenstates with zero resonator photons are {|Ψθ00⟩ , |ge00⟩ , |eg00⟩ , |Ψπ−θ00⟩}, with cor-

responding eigenenergies {(δ −∆) /2, 0, δ, (δ +∆) /2}. Assuming the lossy resonator has a
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Lorentzian energy spectrum, the two-step refilling rate Γt from |eg00⟩ to |Ψθ00⟩ (|eg00⟩ ↔

|Ψθ01⟩, |Ψθ01⟩ → |Ψθ00⟩) is [41]

Γt =
W 2 cos2 (θ/2)κ

κ2 +W 2 cos2 (θ/2)
. (4.30)

The other two-step transitions |ge00⟩ → |Ψθ00⟩, |Ψθ−π00⟩ → |ge00⟩, and |Ψθ−π00⟩ → |eg00⟩

also have the same rate.

Then we calculate the steady state fidelity for |Ψθ00⟩. Suppose the steady state popula-

tion at the four basis states {|Ψθ⟩ , |ge⟩ , |eg⟩ , |Ψθ−π⟩} are separately {w, x, y, z}. We assume

the photon population in both resonators is transitional and ignore their contribution to the

steady-state fidelity. This means w + x + y + z = 1. The steady-state configuration should

balance the following two processes:

(a) two-step refilling process: |ge⟩ → |Ψθ⟩, |eg⟩ → |Ψθ⟩, |ge⟩ → |Ψθ⟩, and |ge⟩ → |Ψθ⟩.

All the transition rates are the same

Γt =
W 2 cos2 (θ/2)κ

κ2 +W 2 cos2 (θ/2)
(4.31)

(b) Single photon loss in each qubit. The following four transitions have the same rate

sin2 (θ/2) γ: |ge⟩ → |Ψθ⟩, |eg⟩ → |Ψθ⟩, |ge⟩ → |Ψθ−π⟩, and |eg⟩ → |Ψθ−π⟩. The reversed

four transitions have the same rate cos2 (θ/2) γ.
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Therefore, the steady-state population should satisfy the following equations



(
Γt + sin2 (θ/2) γ

)
(x+ y)− 2 cos2 (θ/2) γw = 0,(

Γt + sin2 (θ/2) γ
)
z + cos2 (θ/2) γw − (Γt + γ)x = 0,(

Γt + sin2 (θ/2) γ
)
z + cos2 (θ/2) γw − (Γt + γ)y = 0,

2 cos2 (θ/2) γ(x+ y)−
(
2Γt + 2 sin2 (θ/2) γ

)
z = 0,

w + x+ y + z = 1.

(4.32)

This gives the following populations



w =

(
Γt+γ sin2(θ/2)

Γt+γ

)2

,

x =
cos2(θ/2)γ

Γt+γ−cos2(θ/2)γ
w,

y = x,

z =
cos2(θ/2)γ

Γt+sin2(θ/2)γ
x.

(4.33)

And F∞ = w is the steady state fidelity.

Similarly, we can stabilize another set of entangled states with odd parity |Φθ⟩ = sin (θ/2) |ge⟩−

cos (θ/2) |eg⟩. We introduce three sideband interactions: QQ red |eg⟩ ↔ |ge⟩, QR1 red

|e0⟩ ↔ |g1⟩, and QR2 blue |g0⟩ ↔ |e1⟩ with rates {Ω,W3,W4} and frequency detunings

{δ, (∆ + δ)/2, (∆− δ)/2} respectively. Under this condition, four resonant interactions will

appear: |gg00⟩ ↔ |Φθ01⟩, |ee00⟩ ↔ |Φθ10⟩, |ee01⟩ ↔ |Φθ−π00⟩, and |gg10⟩ ↔ |Φθ−π00⟩.

The detuning similarly sets the blending angle θ = arctan
(
δ+∆
Ω

)
.

With the above construction, we create a stabilization protocol that can freely tune

the blending angles. As a special case, when QQ sideband detuning δ = 0, the blending

angle for both cases is θ = π
2 , which corresponds to the odd and even parity Bell states

|Φ−⟩ = (|ge⟩ − |eg⟩)/
√
2 and |Ψ−⟩ = (|gg⟩ − |ee⟩)/

√
2, shown in Fig. 4.14(c).
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In fact, this stabilization protocol can be generalized to stabilize an even larger group

of states, including both entangled and product states, as long as the energy matching

requirement ED+EA = EB +EC is satisfied when engineering HQQ. The following is a list

of tunable parameters to engineer HQQ: QQ sideband strength Ω, QQ sideband detunings

δ, single qubit Rabi drive strength, and single qubit Rabi drive detunings. Corresponding

stabilized state |A⟩ is determined from HQQ. Details about the stabilizable manifold are

discussed in Section. 4.3.4.

4.3.2 Stabilization Experiments

We perform the stabilization experiment in a system with two transmons capacitively coupled

to two lossy resonators (See Section. 4.1). Two transmons are inductively coupled through a

SQUID loop. All QQ sidebands and QR red sidebands are realized by modulating the SQUID

flux at corresponding transition frequencies. QR blue sidebands are achieved by sending a

charge drive to the transmon at half the transition frequencies. The experimentally measured

qubit coherence are T1 = 24.3 µs (9.1 µs), TRam = 15.2 µs (9.8 µs), Techo = 24.6 µs (14.3 µs)

for Q1(Q2), and the measured resonator decay rate κ/2π are {0.33, 0.43} MHz for R1 and

R2 respectively.

Figure 4.15 shows the time evolution of state fidelity for the odd and even parity Bell state

stabilization. To stabilize |Ψ−⟩, a Ω = 2π×2.0 MHz QQ blue sideband, W1 = W2 = 2π×0.47

MHz QR blue sidebands are simultaneously applied to the system. Both QR sidebands are

detuned by Ω/2 = 2π×1.0 MHz in frequency to implement the stabilization scheme depicted

in Fig. 4.14(c). For each stabilization experiment, we reconstruct the system density matrix

through two-qubit state tomography using 5000 repetitions of 9 different pre-rotations. The

stabilization fidelity measured at 49 µs (much longer than single qubit T1 and TRam) is

82.5%. To stabilize |Φ−⟩, a Ω = 2π×3.0 MHz QQ red sideband, W1 = W2 = 2π×0.36 MHz

QR1 red and QR2 blue sidebands are simultaneously applied to the system, with both QR
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Figure 4.15: Experimental stabilization of different Bell states. Experimental
demonstration of |Ψ−⟩ (a, b) and |Φ−⟩ (c, d) stabilization with the initial state |gg⟩.
Two-qubit state tomography is performed at each time point, and the reconstructed den-
sity matrix is used to calculate the target state fidelity. The density matrices recon-
structed with 5000 single shot measurements at 49 µs are plotted. Lab frame simulation
results are shown in dash lines, matching well in short and long time scales. Param-
eters used in simulation: {Ω,W1,W2,Γ1,Γ2}/2π = {2.0, 0.47, 0.47, 0.33, 0.43} MHz for
|Ψ−⟩ and {3.0, 0.36, 0.36, 0.33, 0.43} MHz for |Φ−⟩. Qubit coherence time is chosen as
{T q1

1 , T
q2
1 , T

q1
ϕ , T

q2
ϕ } = {25, 12, 25, 25} µs. Error bars (one standard deviation) are smaller

than the marker size [24].

sidebands detuned by Ω/2 = 2π × 1.5 MHz. The stabilization fidelity measured at 49 µs is

84.6%. The two-qubit state tomography data at 49 µs after ZZ coupling correction [76] are

shown for both stabilization cases. Fidelities are calculated as F = (tr
√√

ρσ
√
ρ)2, where

σ is the target state and ρ is the tomography reconstructed density matrix. Error bars

(one standard deviation) for all expectation values calculated from the Maximum Likelihood

Estimation(MLE) reconstructed density matrix use the Tomographer package [24].

Next, we introduce QQ sideband detunings δ and stabilize more general entangled states

|Ψθ⟩ and |Φθ⟩. We choose the same sideband strengths ({Ω,W1,W2}/2π = {2.0, 0.47, 0.47}

({3.0, 0.36, 0.36}) MHz for |Ψθ⟩(|Φθ⟩) case) and detune QR sideband frequencies accordingly

to maximize the stabilization fidelity measured at 40 µs. The experimentally measured
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Figure 4.16: Spectroscopy of universal Bell-state stabilization. |Ψθ⟩ (a) and |Φθ⟩ (b)
are separately stabilized with a measured fidelity above 78% among different blending angle
θ. The fidelities are measured after 40 µs of stabilization. No external drives are applied for
stabilizing |gg⟩. For |Φθ⟩ case, the fidelity dropped to 0 near θ = π. The dotted lines indicate
simulated fidelities for the odd and even parity Bell state stabilization. All parameters used
in the simulation are the same as in Fig. 4.15. Error bars (one standard deviation) are
smaller than the marker size [24].

state fidelity and state purity as a function of θ are shown in Fig. 4.16. Under the current

QR sideband color combination, |Φθ⟩ fails to stabilize near θ = 180◦. This is because

the interaction strength ⟨gg00|Hsys |Φθ01⟩ and ⟨ee00|Hsys |Φθ10⟩ are close to 0. Swapping

QR1 and QR2 sidebands’ color and detuning performs a transformation θ → θ − π in the

stabilized state. This ensures a high stabilization fidelity for arbitrary stabilization angles.

Details about changing sideband colors and detunings to ensure high fidelity are presented

in Section. 4.3.4.

The flexibility in our schemes and easy access to different sidebands in our device allow

a further demonstration — fast dissipative switching between stabilized states. Here, we

implement such an operation that can flip the parity of the stabilized Bell pair by changing

sideband combinations, shown in Fig. 4.14. To quantify the stabilized parity, we measure the
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Figure 4.17: Dissipative switching of Bell state parity. The initial state is |gg⟩, and
the switch status is set to even parity between [0 µs, 20 µs] and [40 µs, 60 µs], and to odd
parity between [20 µs, 40 µs] and [60 µs, 85 µs]. Each experimental point is measured with the
two-qubit state tomography. Stabilization time is calculated by fitting the parity signature
to exponential decay after each switching event.

system’s density matrix ρ and define the parity signature as 2(| ⟨ee |ρ| gg⟩ | − | ⟨ge |ρ| eg⟩ |)

describing the difference in relevant coherence parameters. The results are shown in Fig. 4.17.

The scaling factor is chosen such that the ideal even and odd Bell pairs have parity signatures

of ±1. Starting from the ground state |Q1Q2⟩ = |gg⟩, the stabilized state is set to even parity

Bell pair (|gg⟩ − |ee⟩)/
√
2, and we switch the parity every 20 µs. At 20 µs, the stabilized

state is switched to odd parity Bell pair (|ge⟩ − |eg⟩)/
√
2, and stabilization happens quickly

with a time constant τr = 1.8 µs. At 40 µs, the switching from odd to even parity results

in a faster stabilization with τb = 0.91 µs. The switching at 60 µs to odd Bell state shows a

similar τr of 2.20 µs. We leave the stabilization drives turned on for another 25 µs to prove

that the performance is not degraded after a few switching operations.

Further improvement of the stabilized state’s fidelity is possible by reducing the transition

ratio γ
Γt

and increasing QQ sideband rate Ω for a larger energy gap. Increasing qubit dephas-

ing time also improves stabilization fidelity. To speed up the stabilization, i.e., reduce time

constants, we need to increase the refilling rate Γt. Since QR sideband rate W is bounded

by the QQ sideband rate Ω to ensure the validity of the perturbative approximation, given

a fixed W , Γt is maximized when the resonator decay rate κ = W cos(θ/2). For the even

and odd parity Bell states, further increase in both resonators’ κ compared to our current
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Figure 4.18: Rotating frame simulation of even and odd parity bell states’ stabilization
fidelity: (a) Sweeping qubit dephasing time. The other simulation parameters are the same
as the experiments. (b) Sweeping the ratio between resonator decay rate κ and QR sideband
strengthW without qubit dephasing. (c) 2D sweep of κ and QQ sideband strength Ω without
qubit dephasing, setting W = κ. Infidelities are shown on the contours.

parameters would thus be beneficial.

4.3.3 Stabilization Robustness

We study the stabilization robustness for |Ψ−⟩ and |Φ−⟩ in this section. For other stabiliza-

tion angles, the discussion is similar. Fig. 4.18 shows the rotating frame simulation of steady-

state fidelity by sweeping different stabilization parameters. For the |Ψ−⟩ case, the Hamilto-

nian used in the simulation is Eq. (1) in the main text, and for the |Φ−⟩ case the Hamiltonian

is modified accordingly with a different sideband combinations (See Fig. 4.14(c)). We study

the state fidelity by varying parameters step-by-step towards the ideal case. First, we show
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that longer qubit dephasing time helps improve steady-state fidelity. In Fig. 4.18 (a), we

sweep qubit’s dephasing time (assuming the same for both qubits) while choosing the fol-

lowing parameters {Ω, W1
2 , W2

2 ,Γ1,Γ2}/2π in the simulation

|Ψ−⟩ case :{1.4, 0.35, 0.35, 0.30, 0.33}MHz,

|Φ−⟩ case :{3.0, 0.32, 0.32, 0.30, 0.33}MHz.

We set the following qubit decoherence time {T q1
1 , T

q2
1 } = {21, 9}µs. The steady state

fidelities rise above 80% quickly after Tϕ exceeds 10 µs. The fidelity for odd and even parity

bell pairs saturate at 87.3% and 85.0% with the parameters used in the simulation. This

demonstrates that steady-state fidelity increases as qubit dephasing time increases.

In Fig. 4.18(b), we ignore the qubit dephasing and only sweep resonator decay rate

κ. For simplicity, we assume QR sideband rates and resonator decay rate are the same:

W1 = W2 = W and κ1 = κ2 = κ. The fidelity peak for both parity pairs appears at

W = κ. This can be understood as the refilling rate Γt (Eq. (2) in the main text) achieves

the maximum at this point, therefore the steady-state fidelity (Eq. (3) in the main text) is

also maximized at this point.

Finally, we choose the maximum refilling rate set W = κ in Fig. 4.18(c) and sweep both

the QQ sidebands rate Ω and resonator decay rate κ. The infidelity of the steady states

is shown in contours. Larger Ω and κ suppresses the infidelity efficiently. This indicates

that our steady-state fidelity in the experiment is mainly limited by the sideband strengths.

By increasing the QQ sidebands rate to above 2π × 10MHz, in simulation, it is possible to

achieve stabilization fidelity above 98%.

We further investigate the impact of stray ZZ coupling between transmons on stabilization

fidelity. This analysis uses the even and odd parity Bell states |Φ−⟩ and |Ψ−⟩ as examples.

We choose the following parameters {Ω, W1
2 , W2

2 ,Γ1,Γ2}/2π in the simulation (the same as

the experimental measurements).
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Figure 4.19: Steady state stabilization fidelity under various stray ZZ interactions between
qubits. For |Ψ−⟩ (|Φ−⟩), we choose the QQ sideband detunings as δ = −ZZ(0) for maximum
stabilization fidelity.

|Ψ−⟩ case :{2.0, 0.47, 0.47, 0.33, 0.43}MHz,

|Φ−⟩ case :{3.0, 0.36, 0.36, 0.33, 0.43}MHz.

The Q1(Q2) coherence used in the simulation are {T1, Tϕ} = {25(12), 25(25)}µs. In

the presence of ZZ coupling η, the energy matching requirement EA + ED = EB + EC

is no longer satisfied. The mismatch in energy η reduces the two-step refilling rate Γ′t =

W 2 cos2(θ/2)κ
κ2+W 2 cos2(θ/2)+η2

.

Therefore, stabilization fidelity decreases as the strength of the ZZ coupling increases.

However, when the ZZ coupling strength is less than the QR sideband rate W , the refilling

rate remains relatively unaffected by changes in η. As shown in Fig. 4.19, the stabilization

fidelity does not significantly decrease for ZZ > −0.3 MHz. Notably, the static ZZ coupling

measured in our experiments is −0.261 MHz, which falls within this acceptable range.

4.3.4 Other stabilization combinations

Here we provide a list of states that can be stabilized with our protocol.
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Case 1: Any two-qubit product states.

∣∣ψϕ1,ϕ2〉 =(cos(ϕ1/2) |g⟩+ sin(ϕ1/2) |e⟩)⊗

(cos(ϕ2/2) |g⟩+ sin(ϕ2/2) |e⟩). (4.36)

This can be achieved by applying two detuned single qubit rabi drives on both Q1 and

Q2 with rate {A1, A2} and detunings {δ1, δ2}. The two-qubit rotating frame Hamiltonian

becomes

Hp =



0 A2/2 A1/2 0

A2/2 δ2 0 A1/2

A1/2 0 δ1 A2/2

0 A1/2 A2/2 δ1 + δ2


. (4.37)

It can be easily verified that the four eigenenergies {EA < EB < EC < ED} satisfy the

requirements EA+ED = EB+EC . Therefore, the lowest energy eigenstate can be efficiently

stabilized by detuning two QR sideband frequencies. This is also a direct extension of the

single-qubit stabilization scheme [55] to the two-qubit case.

Case 2: Dressed parity Bell states. The stabilized state set can be described by one

continuous variable θ1

∣∣ζθ1〉 =cos(θ1/2) |Ψ−⟩+ sin(θ1/2) |Φ−⟩ . (4.38)

In this case, we apply on-resonant QQ blue and single qubit rabi drive on Q1 with rate Ω

and A1 to dress the stabilized state’s parity. The two-qubit Hamiltonian Hb can be written

90



Dressing Angle θ1/2 
Fi

de
lit

y

0 25 50 75 100 125 150 175
0.3

0.5

0.7

0.9

Fidelity
Purity
Even case
Odd case
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Qubit coherence time are {T1, Tϕ} = {30, 30}µs.

as

Hb =



0 0 A1/2 Ω/2

0 0 0 A1/2

A1/2 0 0 0

Ω/2 A1/2 0 0


. (4.39)

One can verify that the four eigenenergies EA < EB , < EC < ED of Hb satisfy the

requirement EA + ED = EB + EC . By choosing QR sidebands detunings as EB − EA and

EC − EA, the eigenstate |A⟩ =
∣∣ζθ1〉 is stabilized, with the dressing angle being

θ1 = 2arctan

 2A1

Ω +
√

4A2
1 + Ω2

 . (4.40)

Similarly, we apply on-resonant QQ red sideband and single qubit rabi drive on Q1 with
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rate Ω and A1. The two-qubit Hamiltonian Hr is

Hr =



0 0 A1/2 0

0 0 Ω/2 A1/2

A1/2 Ω/2 0 0

0 A1/2 0 0


. (4.41)

The dressing angle θ1 under this case is

θ1 = π − 2 arctan

 2A1

Ω +
√

4A2
1 + Ω2

 . (4.42)

Steady-state fidelity is calculated through Qutip simulation for both cases, shown in

Fig. 4.20. By combining different QQ sideband colors, all dressing angles are stabilized with

the scheme, except the small band region around θ1 = π where the effective transition rates

provided by QR sidebands are close to 0.

Case 3: Rabi-dressed entangled states. This is a more general case where a two-dimensional

set of entangled states is stabilized. We simultaneously apply a single qubit rabi drive on Q1

with the rate A1 and detuned QQ blue sideband with rate Ω and detuning δ. The rotating

frame Hamiltonian is

Hg =



−δ/2 0 A1/2 Ω/2

0 δ/2 0 A1/2

A1/2 0 −δ/2 0

Ω/2 A1/2 0 δ/2


. (4.43)

The four eigenenergies of the Hamiltonian can also be grouped into two pairs sharing the same

sum. By appropriately choosing two QR sideband detunings, the lowest energy eigenstate is
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Figure 4.21: Stabilizing a 2D set of entangled states. Steady states’ fidelity (a) and purity
(b) are simulated in the rotating frame and plotted. A1

Ω and δ
Ω are separately two free

variables that are swept to stabilize different states. Parameter used in the simulation:
{Ω,W1,W2, κ1, κ2}/2π = {5.0, 0.5, 0.5, 0.3, 0.33} MHz. Qubit coherence time are{T1, Tϕ} =
{30, 30}µs.
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stabilized

∣∣ξδ,A1

〉
=E00 |gg⟩+ E01 |ge⟩+ E10 |eg⟩ − |ee⟩ ,

x =
√

4δ2A2
1 + 4A2

1Ω
2 + Ω4,

y =
√
δ2 + 2(2A2

1 + Ω2 + x),

E00 =
(δ − y)(δ2 + Ω2 + x+ δy)

2Ω(2A2
1 + Ω2 + x)

,

E01 =
A1(δ − y)

2A2
1 + Ω2 + x

,

E10 =− A1(δ
2 + Ω2 + x+ δy)

Ω(2A2
1 + Ω2 + x)

. (4.44)

For brevity, the stabilized state
∣∣ξδ,A1

〉
is not normalized. The form of the state is

determined by two independent variables δ
Ω and A1

Ω . We sweep these two variables and plot

the simulated fidelity and purity in Fig. 4.21. This a general map covering all stabilized

entangled states in the programmable operation: the vertical cut δ
Ω = 0 represents the blue

line in case 2 Dressed parity Bell states, the horizontal cut A1
Ω = 0 represents the stabilized

states shown in Fig. 1(b) in the main text, and the bottom left point ( δΩ ,
A1
Ω ) = (0, 0) is

the even parity bell state |Ψ−⟩. Using a modest sideband rate combination, most of the

states on the plot can be stabilized with fidelity over 90%. Correspondingly, changing the

QQ sideband color to red can stabilize another 2D set of entangled states, which are dual

to this case. All possible programmable stabilization operations can be chosen accordingly

through the map provided here. States with both E01 > 1 and E10 > 1 cannot be stabilized

under this case for instance.

Changing sideband colors and detuning frequency signs stabilize different states. This is

important for stabilizing |Ψθ⟩ and |Φθ⟩: at certain blending angles, the steady state fidelity

is low because of the low effective refilling rate Γt

As an explicit example, we consider the |Ψθ⟩ stabilization case. Instead of using two QR
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blue sidebands, we use two QR red sidebands with the same detuning and sideband rate.

The rotating frame Hamiltonian now becomes

Hcolor =
Ω

2

(
aq1aq2 + h.c.

)
+ δa

†
q1aq1

+
W1

2

(
a
†
q1ar1 + h.c.

)
+
W2

2

(
a
†
q2ar2 + h.c.

)
+

∆+ δ

2
a
†
r1ar1 +

∆− δ

2
a
†
r2ar2. (4.45)

Fig. 4.22 (a) shows the level diagram, where the QR red sidebands now connect |ge00⟩

to |Ψθ01⟩, which is different from the QR blue sidebands case where |ge00⟩ and |Ψθ10⟩ are

connected. The two-step refilling rate Γtc for |ge00⟩ → |Ψθ00⟩ is

Γtc =
W 2 sin2 (θ/2)κ

κ2 +W 2 sin2 (θ/2)
. (4.46)

The other three two-step transitions |eg00⟩ → |Ψθ00⟩, |Ψθ−π00⟩ → |ge00⟩, and |Ψθ−π00⟩ →

|eg00⟩ have the same refilling rate. Therefore, the steady-state fidelity for |Ψθ⟩ is

F∞ =

(
Γt + γ cos2 (θ/2)

Γt + γ

)2

. (4.47)

One can thus choosing the QR sideband color for higher F∞. When the F∞ drops signif-

icantly near θ = π for Φθ stabilization case, one can flip the QR sideband color for better

performance.

We can also keep the same QR sideband color while choosing opposite QR sideband
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detunings. The Hamiltonian becomes

Hopp =
Ω

2

(
aq1aq2 + h.c.

)
+ δa

†
q1aq1

+
W1

2

(
a
†
q1ar1 + h.c.

)
+
W2

2

(
a
†
q2ar2 + h.c.

)
− ∆+ δ

2
a
†
r1ar1 −

∆− δ

2
a
†
r2ar2. (4.48)

The level diagram is shown in Fig. 4.22 (b). All population flows to |Ψθ−π⟩, with the same

refilling rate and steady-state fidelity as the |Ψθ⟩ case.

4.3.5 Error Analysis

To accurately simulate the real system, we sequentially introduce several error channels.

After each addition, we calculate its contribution to infidelity by measuring the difference in

the steady-state fidelity. We use the states |Φ−⟩ and |Ψ−⟩ as examples, with results detailed

in Table 4.8.

Initially, in an ideal case, decoherence-free simulations are conducted within a Hamilto-

nian of dimension 2× 2× 2× 2 (two levels per resonator), resulting in infidelities of 1.71%

and 4.98% respectively. Subsequently, transmon T1 and Tϕ are incorporated into the system,

revealing that transmon decoherence accounts for the majority of the stabilization infidelity

observed in experiments. A higher transmon level is then added, extending the Hamiltonian

to a dimension of 3×3×2×2. The contribution of transmon ZZ coupling to the stabilization

infidelities is found to be less than 1%. Other error channels contribute minimally, such as

leakage to the |f⟩ state and inaccuracies in sideband frequency calibration. The discrepancy

between the theoretically predicted and experimentally measured state fidelities is primarily

attributed to the thermal excitation rate in the transmons when all sidebands are active.

An excitation rate of 0.9 ms in both transmons sufficiently explains these deviations in the

simulation.
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Stabilized state infidelity |Φ−⟩ |Ψ−⟩
Ideal implementation 1.71% 4.98%

Transmon T1 7.56% 5.25%
Transmon dephasing 3.14% 2.21%
|f⟩ state leakage ∼ 0.1% ∼ 0.1%
ZZ interactions 0.85% 0.98%

Thermal excitation∗ ∼ 2.0% ∼ 2.0%

QR frequency mismatch† < 0.18% < 0.57%

QQ frequency mismatch† < 0.1% < 0.1%
Total predicted fidelity ∼ 15.64% ∼ 16.19%
Experimental infidelity 15.4% 17.5%

Table 4.8: Infidelity channels for odd and even parity Bell states stabilization.
∗ The transmon excitation rate is approximately 0.9 ms, as inferred from the residual infi-
delities observed in the experiments.
† Frequency mismatch are assumed to be at most 20kHz.
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CHAPTER 5

AUTONOMOUS QUANTUM ERROR CORRECTION

Large-scale quantum computers will inevitably need quantum error correction to protect

information against decoherence. Traditional error correction typically requires many qubits,

along with high-efficiency error syndrome measurement and real-time feedback. Autonomous

quantum error correction instead uses steady-state bath engineering to perform the correction

in a hardware-efficient manner. In this section, we implement a new AQEC protocol, called

the Star code, that only requires easy-to-realize two-photon interactions. We develop a

coherence-preserving two-transmon coupler that can parametrically generate all interactions

needed for the protocol. With AQEC turned on, the logical states show higher coherence

times than the uncorrected case limited by stray ZZ coupling between transmons. The

structure of the Chapter is as follows. First, we explain the circuit implementation of the

Star code using the inductively coupled transmons. Then, we experimentally calibrate each

parametric process used in the code. Finally, we prepare the logical states and characterize

the coherence improvement.

5.1 Device implementation and sideband calibration

The Star code encodes a logical qubit using two orthogonal states in a nine-dimensional (two-

qutrit) Hilbert space as |L0⟩ = (|gf⟩−|fg⟩)/
√
2 (logical “zero"), and |L1⟩ = (|gg⟩−|ff⟩)/

√
2

(logical “one") where |g⟩ , |e⟩, and |f⟩ represent the lowest three energy levels of a transmon.

The error states after a single photon-loss (one transmon in |e⟩) are orthogonal to the logical

space and to each other. Further, both logical states have an equal expected photon number

so that the single-photon loss (transmon decay) does not reveal information about the state it

was emitted from. We engineer a parent Hamiltonian for the logical states through |gf⟩ ⟨fg|

and |gg⟩ ⟨ff | parametric processes. These processes are all implemented by driving through

99



a

b

| ⟩fg | ⟩gf| ⟩ee

| ⟩f f

gg

| ⟩L000

|eg00

| ⟩L010

Ω1

|
⟩

e0
|
⟩

f1

W W

-νr+νr

+νb

-νbW

W

⟩

𝜅1

2𝛾1

𝑊,νr/b≫Ωk~𝜅k≫𝛾k

| ⟩L100

|ef00

| ⟩L110

Ω1

|
⟩

e0
|
⟩

f1

⟩

𝜅1

2𝛾1

T

S_ 

S+ 

L0 gf  fg =( _ )/√2

L1 gg  ff =( _ )/√2
O(W)

| ⟩

Figure 5.1: Illustration of the autonomous error-correction scheme. The protocol
requires simultaneous application of two QQ blue sidebands (|ee⟩ ↔ |gg⟩ and |ee⟩ ↔ |ff⟩),
two QQ red sidebands (|ee⟩ ↔ |fg⟩ and |ee⟩ ↔ |gf⟩), and two QR error correcting sidebands
(|e0⟩ ↔ |f1⟩). All six drives are always-on. a Star code logical word formation. All
QQ sidebands have nominally equal rates W . The two drives within a pair have opposite
detunings from the on-resonance values. This opens up the energy gaps of O(W ) between
logical states and other states {|S±⟩ , |T ⟩} (see Sec. 3.2 for full expression). With only
QQ sidebands on, this forms the “QQ echoed” qubit sharing the same logical states as the
star code. b The AQEC cycle for |L0⟩ (left) and |L1⟩ (right) when a single-photon-loss
event occurs. Logical state |L000⟩ (|L100⟩) loses a photon from transmon Q1 at a rate 2γ1
and becomes the error state |eg00⟩ (|ef00⟩). QR error correcting sidebands (applied on-
resonance) bring the state at rate Ω1 to |L010⟩ (|L110⟩) with one photon populating R1.
R1’s photon decays quickly (at a rate κ1) and recovers the original logical state. AQEC
cycle for Q2’s photon loss event is similar.

|ee⟩ as an intermediate state, producing the star topology in Hilbert space that gives the

code its name (see Fig. 5.1a). An intermediate state allows these to be achieved using only 2-

photon drives (QQ sidebands). We use the convention of calling them QQ red (single-photon

exchange with low-frequency drives) and blue (two-photon pumping with high-frequency

drives) sidebands. Despite both sets of drives going through |ee⟩, the logical states can be

made dark with respect to |ee⟩ by detuning the |L0⟩ (|L1⟩) sidebands by ±νr (±νb) and

setting equal drive strength W .

The star code requires engineering a Hamiltonian H̃static, which consists of 4 QQ side-
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bands between two transmons and 2 QR blue sidebands between each QR pair:

H̃QR1 =
Ω1

2
a
†
r1 (|fg⟩ ⟨eg|+ |ff⟩ ⟨ef |)⊗ I4 + h.c., (5.1)

H̃QR2 =
Ω2

2
a
†
r2 (|gf⟩ ⟨ge|+ |ff⟩ ⟨fe|)⊗ I4 + h.c., (5.2)

H̃QQ =
W

2

(
|ee⟩ ⟨gf | e2πiνrt + ∥ee⟩ ⟨fg| e2πiνrt

+ |ee⟩ ⟨gg| e2πiνbt + |ee⟩ ⟨ff | e2πiνbt
)
+ h.c. (5.3)

H̃static =H̃QQ ⊗ I4 +
∑
j=1,2

H̃QRj +Hc. (5.4)

We label the full state as |Q1Q2R1R2⟩ and keep the lowest two levels for each resonator.

Here In is the n× n identity matrix.
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Figure 5.2: The device. (a) False-colored optical image. Two transmons (red) are inductively
connected through a SQUID loop (purple, inset shows zoomed-in image). An on-chip flux
line is coupled to the SQUID for activating QQ sidebands through parametric RF flux
modulation at the proper DC flux position. Each transmon is capacitively coupled to the
readout resonator (blue). Single transmon pulses are sent through the resonator input lines.
QR sidebands are applied through corresponding charge lines. (b) Circuit schematic diagram.
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We realize this protocol using the circuit shown in Fig. 5.2(a). The key component

is the inductive coupler based on the design in Ref. [55] that enables the realization of fast

parametric interactions. Two transmons Q1 and Q2 serve as the qutrits and share a common

path to ground. This path is interrupted by a Superconducting Quantum Interference Device

(SQUID) loop. The SQUID is a tunable inductor with external DC and RF magnetic fields

threaded to activate the QQ sidebands. Each transmon is capacitively coupled to a lossy

resonator serving as the readout and cold reservoir. QR sidebands can be performed by

sending a charge drive at the half transition frequency to the transmon [88]. Full circuit

quantization is shown in Fig. 5.2(b).

We first characterize the individual qubits and realize the required sidebands to create and

correct the logical states. We adjust the DC flux point to minimize the Cross-Kerr coupling

between transmons which can dephase the logical superposition states (See Sec. 3.4 for further

discussion). The measured Cross-Kerr couplings are all lower than 320 kHz while maintaining

Ramsey dephasing times TRge
= 15.2(9.8) µs with relaxation time T1ge = 24.3(9.1) µs, for

Q1(Q2) (See Table. 4.2).

To calibrate the QR sidebands for selective photon pumping, we initialize the system in

|eg00⟩ and apply a continuous charge drive at frequency (ωr1 + ωq1 + α1)/2 to activate a

2-photon |e0⟩ ↔ |f1⟩ transition between Q1 and R1 at a rate of 0.49MHz. The system

achieves a steady state |fg00⟩ within 3 µs as shown by red points in Fig. 5.3(a). Similarly,

a 0.59MHz QR2 drive takes |ge00⟩ to |gf00⟩ in a similar time (blue points in Fig. 5.3(a)).

The decay of transmon reduces the final average photon number slightly below 2.

We achieve at least 20 MHz QQ red sidebands (|j, k⟩ ↔ |j + 1, k − 1⟩) and 5 MHz QQ

blue sidebands (|j, k⟩ ↔ |j + 1, k + 1⟩) separately at the operating point, demonstrating a

fast, coherence-preserved two-qutrit coupler with suppressed ZZ interaction. Blue sidebands

have a slower rate limited by stray signals from higher flux modulation frequencies (See

discussion in Sec. 5.3).
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Figure 5.3: Different parametric oscillations. Photon numbers in individual transmons
are measured as a function of time. a Error correcting QR sidebands |e0⟩ ↔ |f1⟩ applied
separately at rates Ω1 = 0.49MHz and Ω2 = 0.59MHz to the transmon-resonator pairs with
|e⟩ as initial states. Effective transitions b |gf⟩ ↔ |fg⟩ and c |gg⟩ ↔ |ff⟩ are measured
when all QQ and QR sidebands are simultaneously turned on. Extracted sideband rates and
detunings from simulation are Wr = 1.45 MHz, Wb = 1.25 MHz, νr = 0.8 MHz, νb = −0.9
MHz, Ω1 = Ω2 = 0.39 MHz. Other parameters are based on experimentally measured data
shown in Table. 4.3. Oscillation distortions qualitatively match the lab frame simulations
(dashed lines). Measurement errors are smaller than the marker size.

By driving all six sidebands, the core effective 4-photon processes, |fg⟩ ↔ |gf⟩ and

|gg⟩ ↔ |ff⟩ and the error-correcting QR drives can be realized simultaneously. In practice,

the QQ red and blue sideband rates (Wr = 1.45MHz and Wb = 1.25MHz) are slightly

different. When applying all sidebands, we choose a smaller W , because the coupler was

found to heat and shift the readout resonator when driven at larger rates making tomo-

graphic reconstruction inaccurate. We choose almost opposite detunings (νr = 0.8MHz,

νb = −0.9MHz) for larger energy separation of the eigenstates and better error correction

performance. Both QR sidebands are turned on at rates Ω1 = Ω2 = 0.39MHz. Fig. 5.3(b)

shows the evolution when the initial state is |fg⟩. The average photon number of Q1 (in
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red) and Q2 (in blue) are read out simultaneously, and the oscillation between 0 and 2 forms

an effective 4-photon red sideband. Note that this effective swap process is slightly different

from the direct |fg⟩ ↔ |gf⟩ transition as the population in |ee⟩ will appear intermediately

when the initial state has overlap with the eigenstates that have |ee⟩ component. Under this

condition, |ee⟩ is no longer the dark state when all six sidebands are on. Oscillation damping

originates from the detuning-induced slow interference and decoherence of the qutrit sub-

space, and this distortion is captured by the simulation as well. Similarly, by choosing the

initial state as |gg⟩, the effective four-photon blue sideband |gg⟩ ↔ |ff⟩ can be observed in

Fig. 5.3(c).

5.2 Error correction performance

The logical state initialization requires sequential application of multiple single-qutrit and

two-qutrit rotations. For |L0⟩ and |L1⟩, QQ red and blue sidebands are used to generate

entanglement, and for |Lx⟩ = (|L0⟩+ |L1⟩)/
√
2 = (|g⟩+ |f⟩)(|g⟩ − |f⟩)/2, only single qutrit

rotations are required. The preparation times for initial states are separately 313 ns, 142 ns,

and 282 ns for |L0⟩, |L1⟩ and |Lx⟩. The detailed preparation circuit is discussed in Sec. 5.4.

We perform full two-qutrit state tomography [7, 76] and obtain initial state fidelities of

88.1%, 89.1% and 88.7% for the three states respectively. The tomography sequences and

density matrix reconstruction are shown in Sec. 5.4.

We characterize the performance of the Star code by comparing three different cases —

free decay, QQ sideband spin-locking (4 QQ echo), and full AQEC. For free decay, we do

not apply any drive after the state preparation. For the 4 QQ echo case, we turn on the

QQ sidebands |ee⟩ ↔ {|gf⟩ , |fg⟩ , |gg⟩ , |ff⟩} with a similar rate-detuning configuration as

shown in Fig. 4.14a (Wr = 1.0MHz,Wb = 1.7MHz, νr = 1.5MHz, νb = 0.0MHz). This

case shows coherence improvement from spin-locking. The full AQEC (Wr = 1.45 MHz,

Wb = 1.25 MHz, νr = 0.8 MHz, νb = −0.9 MHz, Ω1 = Ω2 = 0.39 MHz) demonstrates
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Figure 5.4: Error population under different conditions. Black, blue, and green points
represent tomographic measurement results under free decay, 4 QQ echo, and full AQEC.
The y-axes represent the combined population of error states for initial states a |L0⟩, b |L1⟩,
and c |Lx⟩. Population accumulates at the error states in the free decay case, enhanced in
the 4 QQ echo case, and corrected with AQEC drive on. The experimental data is explained
with master equation simulations shown in solid lines. Error bars (one standard deviation)
are smaller than the marker size [24]. Detailed fitting parameters used for the solid lines are
shown in Sec. 5.8.

further improvement from photon-loss correction. We plot the density matrices of the logical

states after preparation and after 9 µs in Sec. 5.4 for reference.

To demonstrate that our protocol corrects single-photon loss error, in Fig. 5.4, we plot

the combined population of error states as a function of time for all three cases. The error

populations are computed through the expectation values of ε0 = |ge⟩ ⟨ge| + |eg⟩ ⟨eg| for

|L0⟩, ε1 = |ef⟩ ⟨ef | + |fe⟩ ⟨fe| for |L1⟩, and ε0 + ε1 for |Lx⟩ corresponding to the states

after single-photon loss. We extract the error population from the density matrices recon-

structed with full two-qutrit state tomography at each time point up to 27 µs using the

Maximum Likelihood Estimation (MLE) from 5000 repetitions of 81 different pre-rotation

measurements for each state. This is a direct demonstration of the AQEC’s effectiveness,

as it measures the error state population designed to correct by the protocol. Compared

to the free decay cases (black dots), turning on the AQEC clearly corrects photon loss and

suppresses the error rate below the free decay cases (green dots). The error rates for all three

logical states increase in the 4 QQ echo case (blue dots), as enhanced qutrit decay rates in

the presence of sideband can lead to extra photon loss.

In addition to correcting photon loss, it is also important to characterize how well
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the AQEC protocol preserves the coherence of the logical states. To quantify the coher-

ence, we plot the fidelity decay for each logical state. Fidelities are calculated as F =

(tr
√√

ρmρth
√
ρm)2, where ρth = |Li⟩ ⟨Li| , i = 0, 1, x depending on the compared logical

states, and ρm is the experimentally measured density matrix. All expectation values’ error

bars are calculated using the Tomographer package [24]. Fitting the data to the exponential

decays for |L0⟩ and |L1⟩ [69], the logical states’ coherence are improved from 17.9 µs (|L0⟩)

and 3.4 µs (|L1⟩) in the free decay cases, to 20.3 µs and 16.8 µs in the four QQ echo cases,

and up to 28.1 µs and 16.3 µs in the error correction cases (see Fig. 5.5(a), (b)). This demon-

strates a factor of 1.6 and 4.8 improvement in logical state coherence against the free decay

case. We believe the coherence limit of |L0⟩ and |L1⟩ is limited by QR sidebands not being

sufficiently small compared to the QQ sidebands, which causes leakage into the {|T ⟩ , |S±⟩}

states. |Lx⟩’s lifetime after error correction is on par with the free decay case. The uncom-

pensated ZZ coupling between transmons dephases the |Lx⟩ after error correction, but not

for |L0⟩ and |L1⟩. Therefore, we expect |Lx⟩’s coherence time should be worse than that for

|L0⟩ and |L1⟩. The fact that turning on QR sidebands does not significantly worsen the |Lx⟩

coherence shows that without photon loss error, QR sidebands do not introduce significant

dephasing error.

The large difference in free-decay coherence times between |L0⟩ and |L1⟩ originates from

the low-frequency dephasing noise on ΦDC through the flux line. It causes a shift in both

transmons’ frequencies in the same direction, which |L1⟩ is sensitive to but |L0⟩ is not. The

passive echo protection from the Star code drives suppresses this; consequently, in the 4 QQ

echo case both logical states have similar coherence time.

The AQEC performance is primarily limited by three factors in our experiment. The most

important fact is that the QQ sideband rates Wr and Wb are well below their ideal values.

Stronger drives would further suppress phase noise (lifetimes in the 4 QQ echo experiment

are well below 2T1, indicating room for improvement), and the increased energy separation
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Figure 5.5: Coherence improvement. Black, blue, and green circles are experimentally
measured state fidelities at a given time. The fidelities are extracted from the tomographic
reconstruction of states with 5000 repeated measurements. Error bars (one standard devi-
ation) are smaller than the marker size [24]. The improvement with AQEC turned on is
explained by the master equation simulation. a |L0⟩ and b |L1⟩ traces are fitted to the
exponential decay curve A exp(−t/τ) +C, and c |Lx⟩ traces are fitted to A exp(−t/τ). The
offset C is necessary since fidelity will achieve steady-state values. The error (one standard
deviation) for τ are obtained from the fitting. The large uncertainty comes from treating C
as a free variable in the fitting. The fast transition period (first 1.5 µs ∼ Ω−1

j in the AQEC
case is not included in the fitting∗ for a better representation of logical coherence.
∗First 10.5 µs data are used in |L1⟩’s free decay case for better fitting.

would also allow us to use stronger QR drives, correcting photon loss more quickly. Although

the coupler supports 9MHz QQ sidebands for short periods, whenWb goes beyond 5MHz the

readout resonator frequency starts to shift, introducing systematic measurement distortion

(See Sec. 5.3 for details). This problem worsens with all six tones applied and we stay well

below this limit to ensure reliable tomography results. The second limit is the ZZ coupling

between the transmons, an extra dephasing channel for superposition states (see Sec. 5.5 for

details). Our coupler is operated at the minimum ZZ flux bias of the coupler to minimize
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the effect. It could be further mitigated by stronger QR sidebands enabling faster error

correction, or through additional off-resonant QQ drive terms to dynamically cancel it. The

third limit comes from heating and physical coherence drop when sidebands are turned on.

The average photon number in the readout increases from < 0.01 (free decay and 4 QQ echo

cases) to 0.03 (AQEC case), which will actively convert a logical state to the error state under

the QR interactions and significantly reduces logical lifetime. Photon-excitation events in

the transmon are also non-correctable errors, but they should make smaller contributions

to logical coherence (see Sec. 5.8). Further improvement can thus come from two paths—

improving isolation between control signals or improving physical qubit coherence so that

weaker drives can be more effective. Other limits are in the order of milliseconds (see Sec. 5.8)

and do not affect our results considerably.

5.3 Chip design: Flux line optimization

In our device, we use the on-chip flux line to generate various two-qubit interactions through

parametric modulation. A typical parametric coupler design includes two qubits capacitively

or inductively coupled through a tunable coupler. Modulation of the coupler frequency and

the qubit-coupler coupling strength contribute to the two-qubit interaction strength. For

a capacitively coupled system [71, 17, 30, 80], coupler frequency modulation contributes

dominantly to the QQ sideband rate, and time-dependent Schrieffer-Wolff transformation

(SWT) proves that [71] the ratio of interaction strengths between bswap and iswap is ω1−ω2
ω1+ω2

(ωj is Qj ’s frequency). Therefore, a capacitive coupler provides a slower bswap than the

iswap. In contrast, an inductively coupled system [55, 12] modulates the coupling strength

between the qubit and coupler more effectively, and both iswap and bswap will have the

same zeroth-order terms in the SWT expansion, thus theoretically sharing the same rate

under same modulation amplitude. Previous experiments achieved fast iswap interactions,

but a similar bswap rate has not yet been demonstrated in either parametric coupler type.
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Figure 5.6: Chevron plots for fast QQ sidebands. The state of both transmons are simulta-
neously read out and shown as photon numbers. Top two figures show 9MHz |gg⟩ ↔ |ee⟩,
and bottom two demonstrate 21MHz |ee⟩ ↔ |gf⟩ oscillations.

We experimentally realize a comparable maximum rates of 9MHz bswap and 21MHz iswap

(shown in Fig. 5.6).

In the experiment, we notice that turning a strong bswap on will shift both resonators’

frequencies after a long time, resulting in the ‘saturation’ feature (Fig. 5.7). Such a readout

frequency shift is both sideband strength and duration dependent, and the shift persists

for a noticeable period after all sidebands are turned off. Distinguishing transmons’ states

through readout becomes difficult when this happens. A readout is possible when the shift

is reversed after waiting for a sufficiently long period but degrades readout fidelity due to

109



0 5 10 15 20
0.0

0.4

0.8

1.2
0.0

0.5

1.0

Fr
eq

ue
nc

y 
(G

H
z)

6.732

6.735

6.738

6.732

6.735

6.738

Time (μs)

Av
g.

 p
ho

to
n 

nu
m

be
r

Av
g.

 p
ho

to
n 

nu
m

be
r

Q1

Q2

Figure 5.7: Readout saturation feature for fast (rate 9MHz) QQ blue sideband |gg⟩ ↔ |ee⟩
in the long time scale. Top and bottom panel show readout signals from the first and second
resonators.

transmons’ relaxation. While case-dependent dynamic demarcation can distinguish states,

this method becomes complex and inaccurate. In our experiment, we decided to lower the

RF modulation amplitude and minimize the saturation region by optimizing the flux line

geometry.

One source for the readout saturation at the bswap drive frequency is the flux line’s stray

charge coupling to the SQUID [12]. The on-chip flux line can be considered an antenna. The

coupler is located in the near-field region, and the electrical field amplitude is proportional

to the flux modulation frequency. Since bswap’s drive frequencies are normally a magnitude

higher than that of the iswap operations, a much stronger stray-charge drive is observed

when the bswap drive is on.

We verify this fact using ANSYS HFSS simulation (see Fig. 5.8), where the electrical field

amplitude is observed to increase over an order of magnitude when the modulation frequency

is increased by a factor of 10. The stray charge drive limits the maximum power we can use

for the flux modulation, and we focus on geometrical optimization to improve the flux-to-

charge drive ratio. In order to do so, we maximize the mutual inductance between the SQUID

and the flux line by increasing the SQUID loop size and bringing the flux line closer to the

loop. The loop size in our experiment is limited by the SQUID’s hysteresis [28] set by the
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ratio Lloop
Ljc

, where Ljc is the inductance of each junction in the SQUID (assumed identical)

and Lloop is the SQUID loop inductance. When Lloop
Ljc

> 1, transmon frequencies become

hysteric as a function of ΦDC, and the region grows with the ratio. Dissipation appears

when modulating within the hysteric region and should be avoided in our experiment. This

property sets an upper bound for SQUID loop length.

(a)

(b)

RF flux modulation at 0.7 GHz 

RF flux modulation at 7 GHz 
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Figure 5.8: Distribution of electrical field’s amplitude (in log scale) when RF flux drive is
modulated at (a) 700 MHz and (b) 7 GHz obtained from HFSS simulation.

We use HFSS simulation to calculate flux threaded by the SQUID loop and vary the

geometry to maximize. Assuming the electrical field is geometry insensitive around the

SQUID, maximizing SQUID flux increases the ratio between the mutual inductive coupling

and stray capacitive coupling strength of the flux line. The original and optimized designs

are shown in Fig. 5.9. The simulation suggests a factor of 3.5 improvement in the ratio.

Being strongly coupled to the SQUID, the flux line is also a channel for transmons’

relaxation. In order to improve Purcell protection, we design a Stepped-Impedance band-stop
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Figure 5.9: SQUID design. (a) Old design without optimization. (b) Current design by
maximizing the mutual inductance between the flux line and SQUID. The Ta and Al areas
are colored as grey and blue separately, and the bare sapphire is colored white.

Purcell Filter (SIPF) as shown in Fig. 5.10, which strongly blocks transmon frequencies while

allowing the QQ red and blue sideband drives to pass (see Fig. 7.1 for the full measurement

setup).

5.4 Full Star Code calibration process

We need to calibrate the QQ and QR sideband frequencies to implement the Star code

when all sidebands are simultaneously on. The presence of external sidebands will change

both transmons’ frequencies through AC-stark shift and rectifying effect (RF modulation

under a nonlinear frequency-flux response). In the experiment, we systematically perform

the calibration, shown in Fig. 5.11.
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Figure 5.10: The stepped impedance Purcell filter (SIPF). (a) Optical image of our SIPF
chip made using Ta on sapphire. (b) Calculated SIPF insertion loss. Transmon transitions,
QQ red and blue sideband frequencies are marked in the plot.

In Fig. 5.11a, the static ZZ dispersive shift is characterized by measuring the Ramsey

fringe frequency difference depending on the other qubit’s state. In steps Fig. 5.11b and

Fig. 5.11c, we first turn on all 6 QQ and QR drives at their bare frequencies. All QQ

sideband rates are set to W when independently turned on. Two QQ red sidebands and

two QQ blue sidebands are pair-swept separately as the ‘red/blue pair’. The pair width

and center are the sidebands’ frequency difference and average. In each iteration step, we

update sequentially the red and blue pair centers, and the QR sideband frequencies. For

each pair, we sweep the center frequency as a function of time with all six sidebands on. We

use |gg⟩ (blue pair) and |fg⟩ (red pair) as the initial states. Reading out the average photon

number in both transmons, the 2D sweep plots show a fringed chevron pattern (shown in

Fig. 5.12). The pattern’s center line is the new pair center. The fringe rate represents the

actual sideband detunings νb/r and rate Wb/r, and the detunings can be updated by changing

pair width at this stage. After extracting both pairs’ new centers, the QR sidebands are

calibrated with |eg⟩ and |ge⟩ as the initial state when all drives are on. Populating |f⟩ with
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Figure 5.11: Gate circuits for the Star code calibration. (a) Pulse sequence for calibration of
ZZff1. Ramsey-like protocol is used for the partner transmon being in |g⟩ or |f⟩. The other
ZZs are calibrated similarly. (b) QQ blue and (c) QQ red sideband frequency calibration
sequence. QQ sideband pair frequencies are iteratively swept and updated based on the time-
domain pattern. (d) |L1⟩ preparation phase calibration sequence. The phase point that has
minimum |e⟩ population in the sweep is chosen as the calibrated ϕL1. The preparation
phase for |L0⟩ is calibrated similarly. (e) |Lx⟩ preparation phase calibration protocol. All√
X operators represent π/2 rotations.

the |e0⟩ ↔ |f1⟩ process is most efficient when QR sidebands are on resonance. Because of

none zero ZZff1 and ZZff2, the QR sidebands cannot be exactly on resonance for both

|Li⟩. In the experiment, we calibrate QR sidebands to be on resonance for the |L0⟩. For

|L1⟩, the error correction process will be slower but not dephase the state after correction.

After a few iterations, we get decent frequency calibrations of all six sidebands.

Logical state preparation includes both charge and flux drives with appropriate relative

phases. Fig. 5.11d is to calibrate |L0⟩ and |L1⟩’s preparation phase. For the logical state

|L0⟩, we first apply two πge pulses sequentially on Q1 and Q2 to prepare |ee⟩ through

charge lines. Afterwards a (π/2)|ee⟩↔|gf⟩ pulse with a phase offset ϕL0 and a π|ee⟩↔|fg⟩
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Figure 5.12: Simultaneous QQ sideband calibration. All six tones used in the Star code are
simultaneously turned on during the frequency-time sweep. The red (top two panels) and
blue (bottom two panels) QQ sideband pair frequencies are swept individually for calibration
in the presence of the other pair. Red dash lines in the plots represent the pairs’ center
frequency choices. (a) and (b) are Q1 and Q2’s average photon number when sweeping the
red pair with the initial state |fg⟩. (c) and (d) are Q1 and Q2’s average photon number
when sweeping the blue pair with the initial state |gg⟩.

pulse are applied through the flux line. To prepare |L1⟩, a (π/2)|gg⟩↔|ee⟩ pulse with some

phase ϕL1 followed by a π|ee⟩↔|ff⟩ are applied through the flux line. These steps generally

prepare (|gf⟩ − eiϕL0 |fg⟩)/
√
2 and (|gg⟩ − eiϕL1 |ff⟩)/

√
2. For non-zero {ϕL0, ϕL1}, |ee⟩ is

populated under the action of H̃static, and we use this feature to find the correct preparation

phases. We sweep the phase ϕL0(1) in the presence of all six tones and observe |e⟩ population

on both qutrits. The correct preparation phases are determined by values that minimize

|e⟩ population of both transmons during the first 8 µs of error correction, as presented in

Fig. 5.13.
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Figure 5.14: Phase calibration for |Lx⟩ preparation. Population of |g⟩ (top) and |f⟩ (bottom)
on Q1 (left) and Q2 (right) are measured after 8 µs, and the red star marks the calibrated
phase position.

Preparation of |Lx⟩ = (|L0⟩ + |L1⟩)/
√
2 does not require any sideband pulses as it is

a product state (|g⟩ − |f⟩) (|g⟩+ |f⟩) /2. We apply a (π/2)ge pulse with a specific phase,

followed by a πef pulse on both transmons. These pulses prepare the state

(
|g⟩+ eiϕLx1 |f⟩

)(
|g⟩+ eiϕLx2 |f⟩

)
/2, (5.5)

leaving two preparation phases ϕLx1 and ϕLx2 left for calibration. The correct phase com-

bination can be calibrated on the 2D ϕLx1-ϕLx2 phase sweep plot. Correct preparation

phases will keep equal populations of |g⟩ and |f⟩ for both transmons at any time after turn-

ing on all sidebands. In Fig. 5.11e, both transmons’ |g⟩ and |f⟩ populations are measured

8 µs after turning sidebands on. Fig. 5.14 shows the 2D phase sweep plot. This yields four
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phase coordinates {ϕLx1, ϕLx2} = {0, 180◦} ⊗ {0, 180◦}, and two of the four correspond to

(|L0⟩ ± |L1⟩)/
√
2. We distinguish the logical |Lx⟩ by taking two-qutrit state tomography

measurements after turning on the sidebands for 9 µs and choose the error-corrected case.

The calibration process for the 4 QQ echo case is the same, except the QR sidebands are off.

In the experiment, we pick the largest QQ sideband rate W that does not cause a signif-

icant heating effect and choose the other parameters {νr/b,Ω1/2} accordingly. As discussed

in Sec. 3.2, larger W means better AQEC performance. Given the maximum W fixed, the

optimal QQ red and blue sideband detunings {νr, νb} appear around νr = −νb = ±W/2 [49].

In the experiment, we select the optimal sideband detunings before calibration, then extract

the actual detunings (changed by AC stark shift) after the calibration {νr, νb} = {0.8,−0.9}

MHz. The AQEC performance is not sensitive to the detuning choice around the optimal

point in the simulation. We choose the QR sideband rate Ω that has around the best AQEC

performance in simulation given fixed W .

5.5 ZZ cancellation

Realizing AQEC requires error transparency to single photon loss error. This makes ZZ cou-

pling an extra logical dephasing channel as it does not commute with H̃star. In a two qutrit

system, there are in total 7 different ZZ frequency shifts coming from 4 cross-Kerr coupling

strengths J11, J21, J12, J22 (See Sec. 4.1). However, not all ZZ couplings are detrimental

to the Star code. The error transparency requires no phase accumulation between logical

states during the error correction process. This is equivalent to having the same energy for

the photon lost from one transmon, independent of the state of the partner transmon,

Eff − Eef = Efg − Eeg,

Eff − Efe = Egf − Ege.

(5.6)
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Here Ejk refers to the energy of the state |jk⟩. Eq. (5.6) are equivalent to ZZff2 = ZZff1 =

0 (see Sec. 4.1). When this is not the case, a random phase difference will accumulate between

logical states after the error correction, introducing dephasing to the logical superposition

states. The other ZZs are naturally error transparent in the logical manifold since |ee⟩ is

dark and will not affect the logical states’ coherence. To suppress the ZZ-induced logical

dephasing, we can increase the QR sideband rate Ωj , shortening the |e⟩ population time in

both qutrits and reducing the accumulated random logical phase. To eliminate this dephasing

channel, we need a coupler that has zero ZZff1 and ZZff2 when all external sidebands are

turned on. This can be potentially realized in our current coupler with dispersive shift

engineering. We consider a two-transmon system with static interaction that produces a set

of dispersive shifts for cancellation. The base Hamiltonian Hbase is

Hbase =
∑
n

(
ϵ1,n |n1⟩ ⟨n1|+ ϵ2,n |n2⟩ ⟨n2|

)
+
∑
nm

∆nm |n1m2⟩ ⟨n2m1| ,
(5.7)

where ϵ1/2,n are energies for single transmon levels, ∆nm is the static energy shift to the

state when transmon 1 has n photons and transmon 2 has m photons. For the ground state

ϵ1/2,0 and ∆00 are set to 0. We add to Hbase a QQ red sideband through the coupler,

HD = 2g sin (2πνt)
(
a
†
q1aq2 + aq1a

†
q2

)
. (5.8)

We assume the frequency detuning ν is far off-resonant so that ν ≫ g, and this will introduce

an energy shift Djk to all levels:

D
(R)
jk =

g2j(k + 1)

Ej,k − Ej−1,k+1 − ν
+

g2j(k + 1)

Ej,k − Ej−1,k+1 + ν

+
g2(j + 1)k

Ej,k − Ej+1,k−1 − ν
+

g2(j + 1)k

Ej,k − Ej+1,k−1 + ν
.

(5.9)
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For a detuned QQ blue sideband drive, one can find a similar expression for the energy shift,

D
(B)
jk =

g2(j + 1)(k + 1)

Ej,k − Ej+1,k+1 − ν
+

g2(j + 1)(k + 1)

Ej,k − Ej+1,k+1 + ν

+
g2jk

Ej,k − Ej−1,k−1 − ν
+

g2jk

Ej,k − Ej−1,k−1 + ν
.

(5.10)
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Figure 5.15: ZZ cancellation. Total ZZff1 (a) and ZZff2 (b) (in MHz) are shown in the
contour while sweeping amplitudes of two extra detuned external drives (|ef⟩ ↔ |gh⟩ and
|fe⟩ ↔ |hg⟩). Individual ZZ cancellation contour line (with value 0) is marked. One of the
four simultaneous cancellation points is highlighted in red circle.

When multiple external QQ sidebands are applied, the total dispersive shift to each

energy level is given by Djk =
∑
D

(R)
jk +

∑
D

(B)
jk , where the sum is over all external QQ

sidebands. Specifically for the Star code scheme, we can modulate two extra QQ sidebands
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near |ef⟩ ↔ |gh⟩ and |fe⟩ ↔ |hg⟩. This can introduce either positive or negative D12 and

D21 to the system, depending on the choices of frequency detuning. The required g for

complete ZZ cancellation can be less than 5MHz. Therefore, it is theoretically possible to

cancel ZZff1 and ZZff2 simultaneously under such two extra drives.

We choose the experiment sideband parameters {Wr,Wb, νr, νb} = {1.45, 1.25,−0.8, 0.9}

MHz and current total ZZ rate {ZZff1, ZZff2} = {−0.6,−2.2} MHz. We add two external

drives: |ef⟩ ↔ |gh⟩ and |fe⟩ ↔ |hg⟩ with frequency detunings {−2, 2} MHz and sweep the

drive strengths {ga, gb}. Here {ga, gb} is the coefficient g for HD (Eq. (5.8)). We calculated

the total ZZff1 and ZZff2 based on Eq. (5.9) and Eq. (5.10) and plot the 2D sweep results

in the following Fig. 5.15. The simultaneous ZZ cancellation points are highlighted in the

figure. Therefore it is always possible to fully cancel ZZff1 and ZZff2 with external drives.

We did not turn on the cancellation sidebands in the experiment, because our readout suffers

from frequency shift under strong flux modulation amplitude as discussed in Sec. 5.3.

5.6 State transfer rate

Logical lifetime is calculated analytically given the level diagram in Fig. 3.4. Assuming

only photon loss (dephasing is suppressed), there are two uncorrectable error channels: a

second photon loss before the error correction and the population trapped in the quasi-

stable state. All error correction is a two-step refilling process. For Q1’s photon loss error,

the refilling rate from |eg00⟩ to |L000⟩ and from |ef00⟩ to |L100⟩ are both ΓR1 =
Ω2
1κ1

Ω2
1+κ21

.

Due to the finite energy gap, the QR sideband also introduces a slow oscillation between

|eg00⟩ and {|S−10⟩, |T10⟩, |S+10⟩} (discussions for |ef00⟩ is similar). Once the photon

in the resonator decays, the population is trapped in |S−00⟩, |T00⟩, |S+00⟩, causing the

logical decoherence. The quasi-stable states’ refilling rate {ΓL0;R1
S− ,Γ

L0;R1
T ,Γ

L0;R1
S+ } are also

two-step refilling processes:
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Γ
L0;R1
S− =

κ1Ω
2
1(⟨S−||fg⟩)

2

κ21+Ω2
1(⟨S−||fg⟩)

2+4(x3+νr)
2 ,

Γ
L0;R1
T =

κ1Ω
2
1(⟨T ||fg⟩)

2

κ21+Ω2
1(⟨T ||fg⟩)

2+4(x2+νr)
2 ,

Γ
L0;R1
S+ =

κ1Ω
2
1(⟨S+||fg⟩)

2

κ21+Ω2
1(⟨S+||fg⟩)

2+4(x1+νr)
2 .

(5.11)

The refilling rate superscript means when |L0⟩ is the initial state, using R1 to correct

photon loss in Q1. The subscript shows the final state. The other three sets of refilling rates

{ΓL0;R2
S− ,Γ

L0;R2
T ,Γ

L0;R2
S+ }, {ΓL1;R1

S− ,Γ
L1;R1
T ,Γ

L1;R1
S+ }, {ΓL1;R2

S− ,Γ
L1;R2
T ,Γ

L1;R2
S+ } have a similar

expression.

The error correction performance benefits from larger ΓRj and smaller quasi-stable states’

refiling rates. ΓRj are increased with Ωj , which is bounded by Wr/b for perturbation validity.

Quasi-stable states’ refiling rates are suppressed with larger Wr/b and νr,b. From Eq. (5.11),

quasi-stable states’ refilling rates are quadratically reduced with a larger energy gap |xj+νr,b|.

Increasing Wr,b and νr,b generally helps increase the energy gaps |xj+νr,b|. And as a special

case, when νr = −νb = ν, Wr = Wb = W , {xj} is {−
√
W 2 + ν2, 0,

√
W 2 + ν2}. Clearly,

the energy gap is increased with larger W and ν.

With our experiment parameters

{Wr,Wb,Ω1,Ω2, κ1, κ2, νr, νb}

= {1.45, 1.25, 0.39, 0.39, 0.53, 0.48, 0.8,−0.9} MHz,

The quasi-stable states {|S±, |T ⟩⟩} have the following overlap with the basis {|fg⟩ , |gg⟩}:
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Transition label Description Rate (kHz)
ΓR1 Q1 decay error correction rate 186.2
ΓR2 Q2 decay error correction rate 190.9

Γ
L0;R1
S− |L0⟩ → |S−⟩ rate (Q1 decay) 8.0

Γ
L0;R1
T |L0⟩ → |T ⟩ rate (Q1 decay) 3.7

Γ
L0;R1
S+ |L0⟩ → |S+⟩ rate (Q1 decay) 0.1

Γ
L0;R2
S− |L0⟩ → |S−⟩ rate (Q2 decay) 7.4

Γ
L0;R2
T |L0⟩ → |T ⟩ rate (Q2 decay) 3.4

Γ
L0;R2
S+ |L0⟩ → |S+⟩ rate (Q2 decay) 1.0

Γ
L1;R1
S− |L1⟩ → |S−⟩ rate (Q1 decay) 0.1

Γ
L1;R1
T |L1⟩ → |T ⟩ rate (Q1 decay) 6.0

Γ
L1;R1
S+ |L1⟩ → |S+⟩ rate (Q1 decay) 10.7

Γ
L1;R2
S− |L1⟩ → |S−⟩ rate (Q2 decay) 0.1

Γ
L1;R2
T |L1⟩ → |T ⟩ rate (Q2 decay) 5.1

Γ
L1;R2
S+ |L1⟩ → |S+⟩ rate (Q2 decay) 10.0

Table 5.1: Calculated refilling process rate in our experiment. Logical refilling rate
{ΓR1,ΓR2} dominants over other logical error rate.

{(⟨S−| |fg⟩)2 , (⟨T | |fg⟩)2 , (⟨S+| |fg⟩)2}

= {0.294, 0.174, 0.032}, (5.12)

{(⟨S−| |gg⟩)2 , (⟨T | |gg⟩)2 , (⟨S+| |gg⟩)2}

= {0.023, 0.185, 0.293} (5.13)

All refilling process rates are shown in Table 5.1.

5.7 Two-qutrit tomography

Following the basis choice in Ref. [7], we apply 81 post rotations Sj from the tomography

rotation set S ⊗ S: S = {I, Rge
(
0, π2

)
, Rge

(π
2 ,

π
2

)
, Rge (0, π) , Ref

(
0, π2

)
,
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Figure 5.16: Single shot confusion matrix. Two-qutrit basis states are prepared and measured
5000 times.

Ref

(π
2 ,

π
2

)
, Ref

(
0, π2

)
Rge (0, π) , Ref

(π
2 ,

π
2

)
Rge (0, π) ,

Ref (0, π)Rge (0, π)}. Here I is the identity gate, and the rotations Rge and Ref are defined

as follows

Rge (ϕ, θ) =


cos θ

2 −e−iϕ sin θ
2 0

eiϕ sin θ
2 cos θ

2 0

0 0 1

 , (5.14)

Ref (ϕ, θ) =


1 0 0

0 cos θ
2 −e−iϕ sin θ

2

0 eiϕ sin θ
2 cos θ

2

 . (5.15)

Simultaneous single-shot readouts are collected after each of the 81 rotations. Fig. 5.16

shows the single shot confusion matrix of our readout. To compensate for the measurement

error, we applied the inverse of the confusion matrix to the readout result. Maximum-

Likelihood-Estimation (MLE) is used to reconstruct the physical density matrix ρm that
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Figure 5.17: Evolution of the logical states under different conditions. Panels from top to
bottom correspond to the logical state |L0⟩, |L1⟩ and |Lx⟩. The real part of the density
matrices are plotted as the imaginary components are small after phase rotation. The left
column shows the initial states. Improvements in the coherence can be seen for the echo
case when compared to free decay. With the full Star code protocol, further improvements
are observed.

minimizes the cost function fc,

fc(
−→p ,−→q ) =

81∑
j=1

∑
a,b=g,e,f

(
pj,|ab⟩ − qj,|ab⟩

qj,|ab⟩

)2

,

pj,|ab⟩ = ⟨ab|Sj · ρm |ab⟩ ,

qj,|ab⟩ = ⟨ab|Sj · ρexp |ab⟩ .

(5.16)

Here qj,|ab⟩ is the measured probability for |ab⟩ after the jth tomography rotation. For any

state tomography data, we repeat the same experiment 5000 times to approximate each

qj,|ab⟩. We first obtain ρexp from direct inversion of the experimental data and then perform
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MLE to find the physical density matrix ρm.

The tomographically reconstructed states after preparation and after 9 µs for the three

cases of free decay, 4 QQ echo, and AQEC are illustrated in Fig. 5.17.

5.8 Error analysis

10 20 30 40
Transmon T1

ge
 (μs)

10 20 30 40
Transmon T1

ge
 (μs)

101

102

103

Lo
gi

ca
l T

1 
(μ

s)

101

102

103

Lo
gi

ca
l T

1 
(μ

s)

Ly Lx 

L0 L1 

1.5 MHz
5 MHz
10 MHz

Figure 5.18: Theoretical logical lifetime in the rotating frame. The logical lifetime increases
as a function of physical T1. A larger QQ sideband rate also provides higher logical qubit
coherence. Parameter used for simulation are {W = 10, 5MHz,Ωj = 1.0MHz, νr = −νb =
W
2 }, {W = 1.5MHz,Ωj = 0.4MHz, νr = −νb = 0.85MHz} and κ = 0.5MHz.

All simulations are carried out in a Hamiltonian of dimension 3×3×2×2 (two levels for

each resonator). We first simulate the theoretical lifetime improvement with only photon-loss

error in the static frame (See Sec. 3.3), and the results are shown in Fig. 5.18. All simulated

data show improvements beyond the break-even point, even with only 10 µs T ge
1 and modest

rate requirements for QQ and QR sidebands. The logical coherence limits come from the

double photon-loss event and off-resonant population to other stray states from the spectrum

crowding (see Ref. [49]). A logical error happens when a second photon decays (from |e⟩

to |g⟩) before getting corrected. |Lx⟩ has a higher lifetime than
∣∣Lj〉 because it is partially

protected against double photon loss in a single transmon (See discussion in Sec. 3.3). Longer
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physical T ge
1 , larger Wr/b, and Ωj for a faster error correction rate help increase this limit.

To simulate the real system, several error channels are introduced in the static frame

H̃static — single photon decay T ge,j
1 and T ef,j

1 , single transmon dephasing T j
ϕ, single-photon

excitation T
↑
1 , resonator photon population nres and extra correlated dephasing T

|ff⟩
ϕ at

|ff⟩ level. Since only ZZff1 and ZZff2 have effects on the logical state, we model the ZZs

by directly adding energy shifts to |fe⟩ and |ef⟩, so that all logical basis still share the same

energy and remain static in the frame. In the presence of external drives, the parameters will

be different from the free decay case. We use experimentally measured ZZff1 and ZZff2

values in the simulation. The full master equation is solved in QuTip,

∂ρ(t)

∂t
= −i [Hfull, ρ(t)]

+ (
∑
j=1,2

(
1

T
ge,j
1

Dj [|g⟩ ⟨e|] +
1

T
ef,j
1

Dj [|e⟩ ⟨f |]

+
1

T
↑
1

Dj [|e⟩ ⟨g|] +
2

T
↑
1

Dj [|f⟩ ⟨e|]

+
1

T
j
ϕ

Dj [|e⟩ ⟨e|] +
4

T
j
ϕ

Dj [|f⟩ ⟨f |]

+ κjnresD[a
†
rj ] + (1 + nres)κjD[arj ])

+
1

T
|ff⟩
ϕ

D12[|ff⟩ ⟨ff |])ρ(t).

(5.17)
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Here we define

Hfull = H̃static +
∑
j=1,2

χjnqjnrj

+ (ZZff1 |fe⟩ ⟨fe|+ ZZff2 |ef⟩ ⟨ef |)⊗ I4, (5.18)

D[A]ρ = AρA† − 1

2

(
A†Aρ+ ρA†A

)
, (5.19)

D1[A] = D[A⊗ I3 ⊗ I4], (5.20)

D2[A] = D[I3 ⊗ A⊗ I4], (5.21)

D12[A] = D[A⊗ I4]. (5.22)

Since transmons’ anharmonicities are much larger than the transmon decay rate, each

level’s decay and dephasing are phase-independent. The system’s full density matrix ρ(t)

is calculated and used to extract the coherence time and correctable error rate. Table 5.2

includes all parameters used in the master equation simulation. The final simulation results

for the experimental comparison using fidelity metric are shown in Fig. 5.19. For each

separate case (free decay, 4 QQ echo, and AQEC), parameters are the same for all logical

states |L0⟩, |L1⟩, and |Lx⟩. T j
ϕ is increased in the 4 QQ Echo and AQEC cases because of

the echo suppression of 1/f noise.

Table 5.3 shows the lifetime limitations from different error channels in the AQEC case.

In the ideal implementation, we include only the single photon decay and QR couplings

χj in the simulation. The transmon photon excitation is enhanced when all sidebands

are turned on. However, excitation error on |Lx⟩ is partially correctable under three-level

approximation, and thus |Lx⟩ is more insensitive to it compared to
∣∣∣L0/1〉. Resonator

photon excitation happens from the heating effect when QR sidebands are on. Larger cavity

photon number nres will dephase all logical states and is one of the dominant error sources

in our system. With higher resonator frequencies or an extra coupler between transmon and
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marker size.

resonator, nres can be reduced under the same QR rate Ωj . The next two dominant error

channels are cross-Kerr of between the transmons and QR frequency mismatch. ZZff1 and

ZZff2 will dephase logical superposition states, as discussed in Sec. 3.4 (but has no effect on

individual logical states). QR frequency mismatch is unavoidable in the presence of ZZ. In

the experiment, we apply on-resonance |e0⟩ ↔ |f1⟩ drive for |L0⟩ (corresponding the partner

transmon being in |g⟩). Consequently, for |L1⟩ the QR sidebands become detuned by ZZff1

and ZZff2 (corresponding to the partner being in |f⟩) and effectively perform slower error

correction. The QQ sideband frequency mismatch comes from a modest upper bound of

the system’s frequency drift (around 10 kHz). This is not comparable to the W and has no

significant influence on the logical states. Other dephasing noise sources include 1/f noise,

white noise, and |ff⟩’s correlated dephasing. Among those three, the white noise affects

AQEC performance as it has a constant noise spectrum that cannot be suppressed through

the spin echo. Star code protocol is also insensitive to small sideband amplitude drifts. The
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phase between logical states is defined by different sideband pairs, and amplitude drifts have

to be comparable to W to change the logical states. Further, when all sidebands are on,

both transmons’ physical T1 are shortened, which slightly reduces the performance. Other

insignificant error sources include leakage to higher transmon energy levels (|αj | ≫ W ) and

population in the coupler mode (ωc ≫ ωj). Those are not considered in the simulation as

the transition frequency is far away.
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Simulation parameters Free decay 4 QQ echo AQEC
Q1 T

ge,1
1 (µs) 18.0 21.0 21.0

Q1 T
ef,1
1 (µs) 33.0 29.0 23.0

Q1 T
1
ϕ(µs)

† 15.0 23.0 23.0

Q1 T
↑
1 (µs) ∞ ∞ 600.0

Q2 T
ge,2
1 (µs)∗ 8.0 9.0 9.0

Q2 T
ef,2
1 (µs) 33.0 29.0 23.0

Q2 T
2
ϕ(µs)

† 15.0 23.0 23.0

Q2 T
↑
1 (µs) ∞ ∞ 600.0

T
|ff⟩
ϕ (µs) 4.4 80.0 80.0

κ1 (MHz) 0.53 0.53 0.53
κ2 (MHz) 0.48 0.48 0.48
χ1 (MHz) −0.2
χ2 (MHz) −0.2

nres 0.00 0.00 0.03
Wr (MHz) 1.00 1.45
Wb (MHz) 1.70 1.25
νr (MHz) 1.50 0.80
νb (MHz) 0.00 −0.90
Ω1 (MHz) 0.39
Ω2 (MHz) 0.39

ZZff1 (MHz) 0.6
ZZff2 (MHz) 2.2

Table 5.2: Parameters used in the master equation simulation. {Wr/b,Ωj , νr/b} are extracted
through Fig. 5.12 in simulation; ZZff1 and ZZff2 are experimentally measured through
|e0⟩ ↔ |f1⟩ on-resonance frequency difference when all sidebands on. All coherence numbers
{T1, Tϕ}, nres, and χj are free parameters chosen in the simulation to match the experimental
data. The other parameters listed are all obtained from measurements. Irrelevant parameters
in each case are not shown in the table and are not included in the simulation.
† Dephasing in the 4 QQ echo and AQEC cases are higher because of the QQ sideband
spin-echo improvement.
∗ Q2’s T

ge
1 is lower than Q1’s because of the TLSs around the transition frequency. Effects

to the codewords performance are minimal as the population on |e⟩ is corrected.
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Error channels limit |L0⟩ |L1⟩
∣∣Ly〉‡ |Lx⟩

Ideal implementation∗ 95 µs 95 µs 160 µs
Transmon photon excitation ∼ 360 µs 360 µs ∼ 3ms

nres dephasing† ∼ 55 µs ∼ 40 µs ∼ 40 µs
Other dephasing noise† ∼ 50 µs ∼ 35 µs ∼ 35 µs

Transmon ZZ dephasing ∞ ∼ 30 µs ∼ 30 µsQR frequency mismatch > 10ms ∼ 45 µs
QQ frequency mismatch > 10ms > 10ms ∼ 1.5ms

QQ rate mismatch > 10ms > 10ms ∼ 4ms
Reduced physical T1 ∼ 330 µs ∼ 330 µs ∼ 400 µs

Total predicted lifetime ∼ 18.2 µs ∼ 13.0 µs ∼ 10.0 µs ∼ 10.3 µs
Experimental lifetime 28.1± 10.0 µs 16.3± 2.6 µs 5.2± 2.0 µs

Table 5.3: Various decoherence channels for the logical qubit. Ideal implementation repre-
sents logical states’ lifetime with QR coupling and only T1 error. Each limit is extracted
using the simulation through lifetime difference after adding relevant error channels. The
average photon number in the resonator (nres) increases during external drives and dephases
transmons through photon shot noise. Other dephasing noise include 1/f noise, white noise,
correlated dephasing noise, and any other noise source. The total effect is represented with
T
j
ϕ in the simulation. ZZ between transmons introduces a large mismatch in QR frequency

for |L1⟩ and |Lx⟩, and the effect is combined with ZZ dephasing for |Lx⟩ case. The drifts
in sideband amplitudes frequencies are less than 5% and 20 kHz, and those limits are in the
order of ms.
∗ Ideal implementation includes QR couplings χj but no QQ ZZ couplings.
† nres and T j

ϕ are determined through simulation-experiment matching.
‡ ∣∣Ly〉’s lifetime is estimated through simulation, based on |Lx⟩’s experimental error chan-
nels.
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CHAPTER 6

OUTLOOK AND CONCLUSIONS

In summary, we have theoretically proposed a hardware-efficient AQEC code, the Star

code, and experimentally demonstrated all required interactions utilizing only two transmon-

resonator pairs and a linear coupler to perform the second-order transitions. Three levels per

transmon are used to store information, with the middle level capturing photon loss error,

and entropy is dumped to the resonator autonomously through the always-on cooling side-

bands. Inter-transmon parametric drives are applied to the coherence-preserving coupler for

separating the Star code logical space from other eigenstates. We demonstrated a clear low-

frequency dephasing suppression by turning on all QQ sidebands and a minor improvement

after turning on the additional error correction drives because of the presence of residual

ZZ coupling. The static ZZ is suppressed with the inductive coupler while engineering the

cancellation of the dynamical ZZ arising in the presence of all sidebands remains a topic of

future research (see Supplementary Note 6 for details). Our system is entirely constructed

from scalable components and fundamentally avoids the need for fast and accurate error de-

tection and feedback error correction pulses. The Star code can be a self-corrected building

block for the surface code [46, 92] to further correct higher-order errors when scaled up, and

can be a fault-tolerant qubit for the bosonic system.

In the future, engineering a ZZ-free coupler would remove the primary source of deco-

herence in this work. Error-transparent single-qubit and two-qubit gates have been proposed

theoretically to extend the Star code beyond single qubits [40]. The Star code can also be

implemented in other platforms with an anharmonic three-level structure.
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CHAPTER 7

WIRINGS AND FAB RECIPE

7.1 Wiring Diagrams

Fig. 7.1 shows the room and cryogenic temperature measurement chain for the Star Code

device. The device is mounted on the mixing chamber plate of the dilution fridge with

a 15 mK base temperature. A Tektronix 5014C AWG (1.2 GSa/s) is the master trigger

for all other equipment. The readout pulses are generated through two CW tones from RF

sources (PSG-E8257D), and modulated by AWG 5014C. The qubit input pulses are generated

through another 4-channel AWG (Keysight M8195 65 GSa/s, 16 GSa/s per channel). The

qubit and readout signals are combined and sent into the dilution fridge through lines In1 and

In2. Three DC sources (Yokogawa GS200) are used to bias the DC flux of the coupler and two

Josephson Parametric Amplifiers (JPA). The red and blue QQ RF flux drives and two direct

QR charge drives are synthesized through the same 4-channel AWG. Inside the fridge, at the

4K plate, all input lines have 20-dB attenuators. At the base plate, In1 and In2 lines have

10-dB attenuators, followed by a strong Eccosorb® providing 20-dB attenuation at 4GHz.

Charge1 and Charge2 lines have 20-dB attenuators, followed by strong Eccosorb providing

20-dB attenuation at 4GHz, and a bandpass filter with passband 3.9 − 4.8GHz. The DC

Flux line has a low pass filter (DC − 1.9MHz) and a weak Eccosorb (1-dB attenuation

at 4GHz). The red-frequency RF flux line passes through a weak Eccosorb first, followed

by a high pass filter (cut off at 200MHz) and a low pass filter (cut off at 2GHz). The

blue-frequency RF flux line passes through a weak Eccosorb first, followed by a high pass

filter (cut off at 6GHz). The two RF flux lines and the DC flux line are combined and pass

through a Step Impedance Purcell Filter (SIPF) with a stop band 2.5 − 5.5GHz. The two

output signals go through three circulators, then each amplified by a JPA with 15-dB gain,

followed by a low pass filter (cut off at 8GHz), two circulators, a DC block, and amplified
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Figure 7.1: Detailed cryogenic and room temperature measurement setup.

with one LNF High-Electron-Mobility Transistor (HEMT) amplifier. The output signals are

further amplified at room temperature, then demodulated, filtered with a low pass filter (DC

−250MHz), and amplified again using the SRS Preamplifier. The final signal is digitized

with Alazar ATS 9870 (1 GSa/s) and analyzed in a computer.

The other projects use the same wiring diagrams.

7.2 Fab Recipe

1. Base layer metal deposition:

(a) 2-inch 430 µm thick C-plane sapphire EFG wafers from CrysTec®.
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(b) Sapphire wafer annealing recipe: Starting with room temperature, ramp up to 700◦C

at a rate of 350◦C/hr; Hold at 700◦C for 15 min; Ramp up to 1000◦C at a rate of 300◦C/hr;

Hold at 1000◦C for 15 min; Ramp up to 1215◦C at a rate of 100◦C/hr; Hold at 1215◦C for

3 hrs; Ramp down 1200◦C at a rate of 100◦C/hr; Hold at 1200◦C for 1 hrs; Ramp up to

1215◦C at a rate of 50◦C/hr; Hold at 1215◦C for 2 hrs; Ramp down to 30◦C at a rate of

100◦C/hr;

(c) TAMI cleaning the wafer: Toluene, Acetone, Methanol, and IPA sonication for 3 min

per frequency. Rinse under DI water for 2 min, and spin dry.

(d) Acid cleaning the wafer: Dip in Nanostrip for 5 min, set the hot plate to 75◦C ( 40◦C),

rinse under DI water for 2 min, dip in H2SO4 for 5 min, spin dry.

(e) Load wafer into AJA ATC Orion 8 UHV Sputtering System, sputter 200 nm Tantalum

at 800◦C.

2. Base layer photolithography:

(a) TAMI clean for 5 min at different frequencies

(b) DI water rinse for 2 min, spin dry

(c) Bake at 115◦C for 2 min

(d) Spin coat AZ1518 at 3000 rpm, ramp=1000 rpm/s, 45 sec

(e) Soft bake at 95◦C for 1 min

(f) Heidelberg photolithography using 405 nm laser, dose= 190 mJ/cm2.

(g) Post bake at 115◦C for 2 min

(h) Develop in AZ 300 MIF for 1 min, DI water quench, rinse for 2 min, spin dry

(i) Oven bake at 120◦C for 10 min

(j) Put wafer in Oxygen Asher using recipe 7 for 11 min

(k) HF wet etch: use Teflon stubby, wafer feature side down; Dip in Transene Tantalum

etchant 1:1:1 for 20 sec, no agitation; Transfer into 2 Teflon beaker with DI water; Rinse

under DI water, transfer to glass DI water beaker’ Rinse under water, spin dry.
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(l) Leave wafer in 80◦C Remover PG overnight

3. E-beam lithography

(a) Take out the wafer from Remover PG, sonicate in Acetone and IPA for 5 min at

different frequencies; DI water rinse for 1 min, and spin dry.

(b) Vaccum bake without the wafer using recipe 10, vacuum bake with the wafer using

recipe 4

(c) Spin coat MMA EL 11 at 4500 rpm, ramp=500 rpm/s, 45 sec, bake at 180◦C for 5

min

(d) Spin coat PMMA A7 950 at 4500 rpm, ramp=500 rpm/s, 45 sec, bake at 180◦C for

5 min

(e) Deposit 10nm gold at a rate of 0.5 A/s

(f) E-beam lithography writing

(g) Gold etch for 35 sec, DI water quench, blow dry

(h) Develop in IPA:H2O solution=45:15 mL for 90 sec at 6◦C

(i) Quench in pure IPA immediately, blow dry for 1 min, load into Plassys

4. Junction deposition

(a) Ar ion milling at 3 different angles (±60◦, 0◦), 70 sec each

(b) Ti gettering

(c) First Al layer, 45nm, 0.3nm/s, angle=23◦

(d) Static Oxidation with O2-Ar mixture (15:85) for 30 min at 50 mbar.

(e) Ti gettering

(f) Second Al layer, 155nm, 0.3nm/s, angle=-23◦

(g) Static Oxidation with O2-Ar mixture (15:85) for 10 min at 10 mbar (surface passiva-

tion).

(h) Purge the Plassys chamber with N2, leave for 10 mins before taking the sample out.

5. Dicing and liftoff
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(a) Spin coat AZ1518 at 3000 rpm, ramp=1000 rpm/s, 45 sec.

(b) Soft bake at 95◦C for 1 min.

(c) Dice the wafer in Disco DAD 3240 dicing saw.

(d) UV light for 90 sec, peel off the chips, leave chip in 80 C◦ Remover PG for 4 hr.

(e) Acetone, IPA rinse for 5 min each, no sonication, N2 blow dry.
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