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We study the properties of 2+1d conformal field theories (CFTs) in a background magnetic field. Using
generalized particle-vortex duality, we argue that in many cases of interest the theory becomes gapped, which
allows us to make a number of predictions for the magnetic response, background monopole operators, and
more. Explicit calculations at large N for Wilson-Fisher and Gross-Neveu CFTs support our claim, and yield
the spectrum of background (defect) monopole operators. Finally, we point out that other possibilities exist:
certain CFTs can become metallic in a magnetic field. Such a scenario occurs, for example, with a Dirac fermion
coupled to a Chern-Simons gauge field, where a non-Fermi liquid is argued to emerge.
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I. INTRODUCTION

The application of an external magnetic field can give rise
to entirely distinct states of quantum matter. For example,
an electron gas in two dimensions (2DEG) is a conventional
metal, while a strong magnetic field can transform it into a
gapped topological state with emergent anyons and robust
edge states, or a Wigner crystal. But, what if the initial state is
not as simple as a regular metal? Here, we study this question
in the context of an important family of gapless quantum
states: conformal field theories. These quantum critical states
can describe a quantum phase transition such as the insulator-
to-superfluid transition in the celebrated XY model, or a stable
phase of matter such as a Dirac semimetal, or more interest-
ingly quantum electrodynamics (QED) with massless Dirac
fermions, as could arise in frustrated quantum magnets. In this
context, the general question we address can be formulated as
follows: What is the landscape of phases that can be obtained
by deforming 2+1d CFTs with a magnetic field B? One may
expect that a CFT placed in a magnetic field always develops
a gap. This is indeed what happens in free theories, where the
magnetic field produces Landau levels. We will argue below,
using S duality, that this is a generic possibility for interacting
CFTs as well. However, we also find examples of CFTs where
a magnetic field produces dramatically different phases, in-
cluding metals and non-Fermi liquids. Figure 1 illustrates part
of this landscape.

Mapping out the phases accessible from a CFT by turn-
ing on a magnetic field has interesting parallels with those
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obtained instead by turning on a chemical potential μ. In this
case, the generic expectation is that the CFT enters a super-
fluid phase [1–4]. This issue was recently revisited in the study
of local operators of large charge Q [5–7]. Indeed, the state-
operator correspondence of CFTs provides a map between the
spectrum of states on the sphere and local operators of the
CFT—large charge operators therefore map to finite-density
phases on the sphere in the thermodynamic limit. Effective
field theories (EFTs) for these phases then allow for controlled
descriptions of sectors of otherwise strongly coupled CFTs.
More generally, certain aspects of the spectra of CFTs become
tractable at large quantum numbers, including large charge
Q [5–8], large spin J [9–11], and large scaling dimension
� [12–14], even in the absence of an underlying control
parameter in the CFT such as large-N or weak coupling. Our
analysis folds into this line of research, but with an unusual
twist: the large number here is the background magnetic flux
QB = ∫

S2
F
4π

∈ 1
2Z piercing the sphere, so that these states do

not map to local operators of the CFT but rather a class of
defect operators called background monopoles [3,15]. While
somewhat less familiar, these are also part of the universal
data characterizing 2+1d CFTs with a U(1) symmetry. Their
two-point functions have power-law decay, whose exponent
� labels their scaling dimension. At large QB, we will see that
dimensional analysis (and the assumption that the CFT has a
finite magnetic susceptibility) implies that the dimension of
the lightest background monopole scales as � ∼ Q3/2

B . Fur-
thermore, the assumption that the phase is gapped leads to an
effective action that predicts a series of corrections in integer
powers of 1/QB: � ∼ Q3/2

B + Q1/2
B + O(Q−1/2

B ). This is in
contrast to the regular large-charge expansion [5,6,16], where
gapless IR fluctuations typically lead to an O(Q0) piece.

The rest of this paper can be summarized as follows: in
Sec. II, we consider CFTs that become gapped when placed
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FIG. 1. Landscape of phases that emerge from deforming a 2+1d
CFT with a magnetic field B. CFTs leading to gapped phases can be
distinguished by their Wilsonian coefficients in the EFT (4).

in a magnetic field. The gap allows one to integrate out matter
to obtain a local, gauge-invariant effective action for the back-
ground field Aμ, whose Wilsonian coefficients characterize
the CFT in this phase. For example, these coefficients include
the uniform magnetic susceptibility of the CFT, as well as its
finite-wavevector corrections. In Sec. III, we give an argument
for the genericity of the gapped phase by passing to the vortex
dual (or S dual) description: If the S-dual CFT becomes a
superfluid when subjected to a chemical potential, then the
original CFT will be in a Higgs phase when placed in a back-
ground magnetic field. This argument assumes certain gauge
fluctuations are suppressed, and therefore it applies only to
weakly coupled CFTs, but we expect it to be indicative of
fairly generic behavior. Section IV is devoted to a detailed
analysis of background monopole scaling dimensions in large-
N CFTs. We confirm the absence of an O(Q0

B) term in all
the models studied. Finally, in Sec. V we identify scenar-
ios where a magnetic field converts a CFT into a metal or
even a non-Fermi-liquid. This strongly correlated behavior at
low energies arises even though the original CFT is weakly
coupled. Another alternative to gapped phases is provided by
holographic CFTs, which are expected to become extremal
black holes when placed in a magnetic field.

CFTs placed in a magnetic field have of course been
studied in the past, in particular, in the context of weakly
coupled [17–23] or holographic [24,25] theories. However, to
our knowledge, they have not been approached from the per-
spective of the effective description that emerges in a magnetic
field.

II. CFT IN AN EXTERNAL MAGNETIC FIELD

A. CFT in flat spacetime

Let us first begin by considering a CFT in flat space with
a global U(1) symmetry, and corresponding conserved cur-
rent density operator Jμ. In this subsection, we shall further
assume that the CFT preserves parity; the case of parity-
violating CFTs will be discussed in Secs. II B and V. We now
add an external uniform magnetic field B, which in 2+1d is
a real number that can take both signs. It is implemented by
coupling the theory to a background gauge field Aμ and adding
a relevant term to the action

∫
x AμJμ. Before discussing

the possible fates of the system, let us examine some basic

properties. The magnetic field will induce a nonzero energy
density in the system,

ε = 4
3χm|B|3/2. (1)

In the ground state at zero field, the energy density vanishes
by conformal invariance, and the power 3/2 follows since the
magnetic field has units of 1/(length)2. We note that a term
that is odd in B, |B|3/2sgnB, cannot be included since it is odd
under time reversal (and parity) whereas the energy density
of the CFT is even. The dimensionless coefficient χm is the
magnetic susceptibility of the CFT. It is a CFT-dependent
coefficient that quantifies to what extent the system responds
to an external magnetic field. It will grow with the number of
charged degrees of freedom. For instance, for N massless free
Dirac fermions or complex bosons coupled symmetrically to
a B field, χm will be linear in N . From the above equation,
we can obtain the magnetization by differentiating (1) with
respect to B,

M = dε

dB
= 2χm|B|1/2sgnB, (2)

so that the magnetization will change sign as B goes from
positive to negative. The susceptibility is the derivative of M
with respect to B, up to an overall power of B to make it a
dimensionless property of the CFT,

χm = |B|1/2 dM

dB
= |B|1/2 d2ε

dB2
. (3)

Now, there are two basic possibilities for the CFT in a
magnetic field: (1) the system becomes gapped or (2) it re-
mains gapless. In the simplest cases of free CFTs, a gap will
appear. Indeed, for free Dirac fermions, dispersionless rela-
tivistic Landau levels (LLs) are formed: En = sgn(n)

√
2|nB|,

n = 0,±1,±2, . . . . One entirely fills the negative LLs, while
the n = 0 LL is half-filled. In order to excite the system, one
has to pay an energy cost |2B|1/2 to promote a fermion to the
n = 1 LL; we thus have a gapped theory. Nonetheless, the sys-
tem possesses an infinite degeneracy because of the different
ways of half-filling the n = 0 LL. We note that an exact degen-
eracy remains even when working on a finite sphere pierced
by a flux, since the Atiyah-Singer index theorem protects the
zero modes. Similarly, a free complex boson CFT perturbed
by a magnetic field will also possess a gap since the vacuum
has no boson, but adding a single boson will cost a minimal
energy ∝ |B|1/2. There is no ground-state degeneracy in the
bosonic case.

Before we analyze the justification for the gapped scenario
in more generality, let us now examine the implications of
having a field-induced gap.

B. Free-energy functional in gapped phases

All degrees of freedom can be integrated out to obtain a
generating functional log Z[Aμ, gμν]; assuming the phase is
gapped, this functional is local, with higher derivative terms
suppressed by the gap of the phase. Here, Aμ is a gen-
eral spacetime-dependent vector field, thus more general than
the gauge field that would give rise to a constant magnetic
field. See Ref. [26] for such a construction in the context of
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relativistic QH systems. Requiring the generating functional
to be gauge invariant and diffeomorphism invariant, as well as

invariant under Weyl transformations gμν (x) → �(x)2gμν (x),
one obtains (see Appendix A)

log Z[A, g] = ν

4π

∫
d3x εμνλAμ∂νAλ + 4

3
χm

∫
d3x

√
gF 3/2 + ζ

∫
d3x Fεμνλuμ∂νuλ

+ κ

8π

∫
d3x εμνλεαβγ Aμuα

(∇νuβ∇λuγ − Rαβ
μν

)+
∫

d3x
√

gF 3/2

[
c2

(R
F

+ (∂μF )2

2F 3

)

+ c3

(Rμν

F
+ 3

4

∂μF∂νF

F 3
− 1

2

∇μ∂νF

F 2

)
FμαF ν

α

F 2
+ c4

(∇μFμ
α

)2

F 3

]
+ O(∂3). (4)

Here we have defined F ≡
√

1
2 FμνFμν = √

B2 − E2 and the

unit vector uμ ≡ 1
2F εμνλFνλ. Rμν is the Ricci tensor of

the manifold, and R = Rμ
μ. The terms with ν, ζ , and κ

as coefficients are present only for parity-violating CFTs.
Given that we will expand around a constant magnetic field
F = B + δB(x), the appropriate derivative counting scheme
is to take F ∼ ∂0. Each term is a given order in derivatives
in this counting, from O(∂−1) to O(∂2), where the terms with
ζ and κ as coefficients have the same power counting. The
construction of the generating functional above is technically
similar to the construction of the effective action for confor-
mal superfluids written in terms of a fluctuating gauge field
[27], the difference lies in the interpretation: In the present
context the gauge field is not a fluctuating dynamical degree
of freedom, but rather a background field. For a homogeneous
magnetic field F = B = const and a flat metric gμν = δμν ,
one recovers Eq. (1).

This effective action controls the response functions of
the CFT in a magnetic field, assuming the resulting sys-
tem is gapped. The response will be universal, up to the
theory-dependent Wilsonian coefficients ν, χm, ζ , κ, c2,3,4,

etc., which characterize the CFT. For example, χm denotes
the magnetic susceptibility, and the O(∂2) coefficients c2,3,4

parametrize q2 corrections to the susceptibility at finite
wavevector q. The scale suppressing these corrections is the
magnetic field (or magnetic length), i.e., observables can be
computed in an expansion in q2/B. When the theory is placed
on a sphere, these O(q2/B) turn into 1/(BR2) = 1/QB correc-
tions to observables such as the free energy, see Eq. (6).

C. Sphere free energy and defect monopoles

Let us take F to be proportional to the volume form on
S2: Fθφ = B sin θ . First assuming invariance under reflection
symmetry, the free-energy density is

F = − 1

V β
log Z = c1B3/2 + 1

R2
B1/2(2c2 + c3) + · · · , (5)

with c1 ≡ 4
3χm. The energy of the ground state on the sphere

is 4πR2F , so that the dimension of the lightest operator of
magnetic charge QB = BR2 is

� = 4πR3F

= 4πc1(BR2)3/2 + 4π (2c2 + c3)(BR2)1/2 + · · ·
= 4πc1Q3/2

B + 4π (2c2 + c3)Q1/2
B + O

(
Q−1/2

B

)
. (6)

In particular, we note the absence of a (QB)0 term. In the
context of large (electric) charge Q expansion, a Q0 term
arises from phonon fluctuations if the CFT enters a superfluid
phase [5]. Here we have instead assumed that the system is
gapped, which leads to an expansion for �/Q3/2

B in integer
powers of 1/QB. We shall verify the vanishing of the Q0

B term
in specific CFTs in Sec. IV.

In CFTs that do not have reflection as a symmetry, one may
expect �/Q3/2

B to have an expansion in half-integer powers of
1/QB instead. One can check, however, that the contributions
from both ζ and κ terms above to the free energy vanish (this
also holds in the presence of a holonomy

∫
dτA0 ∈ 2πZ, as

long as κ ∈ Z). We leave the study of higher-derivative parity-
odd terms, and whether they contribute to the free energy, for
future work.

III. DUAL HIGGS MECHANISM

In the previous section, we assumed that a 3d CFT with
a U(1) symmetry placed in a magnetic field enters a gapped
phase, and derived consequences of this assumption. Here,
we will argue that this scenario is fairly generic, at least for
weakly coupled CFTs, using the action of SL(2,Z) on these
theories [28].

Consider a CFT of interest, CFT1, which will be placed
in a background magnetic field [29]. Its partition func-
tion can be written in terms of that of its S-dual partner,
CFT2 ≡ S(CFT1), as follows:

ZCFT1 [A] =
∫

Da ZCFT2 [a] e
i

2π

∫
adA . (7)

This equation in fact defines the action of S (or rather its
inverse). In this formulation of the original CFT1, the U(1)
current is carried by a dynamical gauge field a. Let us turn on a
constant background magnetic field εi j∂iA j . This will source a
chemical potential 〈∫ dτa0〉 
= 0 and relatedly a finite density
for the current of CFT2. Assuming the CFT is weakly coupled,
we can consider the dynamics of the “matter sector” in CFT2

and the dynamical gauge field a separately. CFT2 is placed at
finite density: we expect it to enter a superfluid phase. The
weak coupling to the dynamical gauge field will, however,
Higgs the full system, which is therefore gapped.

Let us consider an example: the Wilson-Fisher CFT of
N complex bosons at large N . We couple the diagonal U(1)
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current to a background gauge field,

ZCFT1 [A] =
∫

Dφi ei
∫
L1[φ,A] ,

L1 =
N∑

i=1

|DAφi|2 − λ|φi|4 .

(8)

The S dual is a bosonic gauge theory (QED),

ZCFT2 [a] =
∫

Dφ̂iDb ei
∫
L2[φ̂,b,a] ,

L2 =
N∑

i=1

|Dbφ̂i|2 − λ|φ̂i|4 + 1

2π
adb ,

(9)

which is known to enter a superfluid phase in a background
chemical potential a0 
= 0 [3,30]. Introducing ZCFT2 in the
path integral (7), one expects to obtain instead a supercon-
ductor, which is gapped. In Sec. IV, we study the theory
(8) directly by computing the dimension of background
monopole operators at large flux, and find that their scaling di-
mension indeed behaves as (6) (with no Q0

B piece), as expected
for operators corresponding to gapped states. An analogous
analysis holds for the Gross-Neveu-Yukawa fixed point with
a large number of Dirac fermions; the large-flux expansion is
again in agreement with a gapped phase, see Sec. IV.

IV. DEFECT MONOPOLES IN FREE AND LARGE-N CFTS

We now obtain the defect monopole scaling dimensions by
studying the sphere free energies in several QFTs of interest
in a background magnetic field. First, we study the case of
noninteracting fermionic and bosonic theories, and in the next
subsection we consider interacting CFTs.

A. Free CFTs

Consider the free Dirac fermion CFT. The result, which
also applies to the leading-order large-N free energy in the
GN, QED, and QED-GN models [31], is exactly given by

Ff = −2
∞∑

�=QB

�

√
�2 − Q2

B. (10)

Note that this expression corresponds to the unregularized
free energy. We work directly with the unregularized free
energy, expand it for large QB, and then use Zeta-function
regularization [32–34] to regularize the ensuing sum. In the
large-QB limit, the free energy then becomes

Ff = −2
∞∑

�=0

(� + QB)
√

(� + QB)2 − Q2
B

= −2
3
2 ζ (−1/2)Q3/2

B − 5√
2
ζ (−3/2)Q1/2

B

− 7
√

2

16
ζ (−5/2)Q−1/2

B + O
(
Q−3/2

B

)
. (11)

The absence of a Q0
B term was discussed in Ref. [31], where

NFf is the leading-order result for the scaling dimension of
local quantum monopoles (not defects) in fermionic QED
where a U(1) gauge field couples to N Dirac fermions. Fur-
thermore, in the Dirac CFT, there are numerous degenerate

defect monopoles. Indeed, the magnetic flux through the
sphere leads to 2|QB|N zero modes, where N is the number
of two-component Dirac fermions. For the defect monopole to
be gauge invariant (under background gauge transformations),
one must fill half of the zero modes. A large degeneracy of
distinct defect monopoles thus appears as QB increases.

Now consider the free complex boson CFT. The (unregu-
larized) free energy corresponding to monopoles in this model
[35] is given by [36]

Fb = 2
∞∑

�=QB

(
� + 1

2

)√(
� + 1

2

)2

+ a2
QB

∣∣∣∣
a2

QB
=−Q2

B

. (12)

In the large-QB limit, Zeta regularization gives the following
form for the bosonic free energy:

Fb = 2
∞∑

�=0

(
� + QB + 1

2

)√(
� + QB + 1

2

)2

− Q2
B

= 2
3
2 ζ (−1/2, 1/2)Q3/2

B + 5√
2
ζ

(
−3

2
,

1

2

)
Q1/2

B

+ 7
√

2

16
ζ

(
−5

2
,

1

2

)
Q−1/2

B + O
(
Q−3/2

B

)
. (13)

Again, we find only half-integer powers of QB, in particular
no constant term, in agreement with our general analysis for
gapped states.

B. Interacting theories

In the limit of large but finite N , where N denotes either the
number of fermions or bosons, the monopole scaling dimen-
sion can be written as

�QB = N�
(0)
QB

+ �
(1)
QB

+ · · · (14)

One can then consider the large-charge expansion of this
expression. Thus, in the limit QB → ∞, we have

�(0) = α0Q3/2
B + β0Q1/2

B + γ0 + · · · (15)

�(1) = α1Q3/2
B + β1Q1/2

B + γ1 + · · · (16)

The parameter γ thus has a large-N expansion given by [37]

γ = Nγ0 + γ1 + 1

N
γ2 · · · (17)

The statement that γ is a universal constant is tantamount
to having all the γi coefficients vanish except for γ1. Since
the leading-order free energies for QED-GN, QED, and GN
are equivalent to the exact free-fermion free energy given
in Eq. (10), the result in Eq. (11) shows that γ0 = 0 for
these interacting fermionic theories. The interacting bosonic
theories O(N ) and CPN−1 also have equal leading-order free
energies, but they are not equivalent to the free-boson free
energy because of the different saddle-point parameters. This
parameter can be expanded in powers of QB, and a procedure
similar to Eqs. (12) and (13) follows, and also shows that no
Q0

B term is present [38].
Let us now turn to the computation of the defect dimen-

sions, and the resulting coefficients appearing in the expansion
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TABLE I. Anomalous dimensions of defect monopole operators in large-N for the GN and O(N ) models. The scaling dimension is
determined via N�

(0)
QB

+ �
(1)
QB

.

QB �
(1)
QB,GN �

(1)
QB,O(N ) QB �

(1)
QB,GN �

(1)
QB,O(N )

1/2 0.0704917(8) −0.0571528 7 3.36326(3) −2.6405897(22)
1 0.190017(2) −0.1517343 15/2 3.72800(3) −2.9262981(31)
3/2 0.343185(4) −0.2724039 8 4.10505(3) −3.221624(4)
2 0.523727(5) −0.4143773 17/2 4.49402(4) −3.526262(6)
5/2 0.728007(7) −0.5748376 9 4.89454(4) −3.839939(7)
3 0.953537(8) −0.7518602 19/2 5.30631(4) −4.162399(10)
7/2 1.19850(1) −0.9440208 10 5.72902(4) −4.493410(12)
4 1.46140(2) −1.1502101 21/2 6.16239(4) −4.832756(15)
9/2 1.74115(2) −1.3695321 11 6.60616(4) −5.180239(19)
5 2.03676(2) −1.6012435(4) 23/2 7.06011(5) −5.535671(24)
11/2 2.34743(2) −1.8447143(7) 12 7.52400(5) −5.898878(29)
6 2.67247(2) −2.0994022(11) 25/2 7.99763(5) −6.269699(35)
13/2 3.01126(3) −2.3648334(16) 13 8.48080(5) −6.64798(4)

for two particular interacting CFTs, GN and O(N). Reference
[31] obtained the large-N monopole anomalous dimension
for the fermionic models QED, QED-GN, and QED-Z2GN.
The same analysis can be performed for the case of GN by
removing the dynamical U(1) gauge field. As for the O(N)
model, the anomalous dimensions were obtained in Ref. [35].
The anomalous dimensions obtained are shown in Table I; an
explanation of their computation is given in Appendix B 2.

Directly fitting the anomalous dimensions in Table I yields

(
�

(1)
QB

)
GN = 0.180158(3)Q3/2

B + 0.01009(5)Q1/2
B

+ 0.0001(1) − 0.00033(6)Q−1/2
B ,(

�
(1)
QB

)
O(N ) = −0.140953(4)Q3/2

B − 0.0114(2)Q1/2
B

− 0.0003(4) + 0.0015(4)Q−1/2
B

− 0.0005(2)Q−1
B . (18)

The number of terms in the large-QB expansion is limited
by the number of anomalous dimensions and their precision.
Adding more terms to these fits makes the error bars on
subleading coefficients too large. The results show that γ1

vanishes within the uncertainty bounds, and they also suggest
γ = 0 in both models.

We employ a second fitting method to support the evidence
that γ1 = 0. This method aims to alleviate the fact that we are
working with a data set with limited values of QB. We first
fit �

(1)
QB

with only the two leading terms, α1Q3/2
B + β1Q1/2

B . A
set of coefficients are obtained by fitting many data sets where
smaller charges are progressively removed. A cubic fit is used
to model the tendency of the coefficients as the proportion of
larger charges gets higher, which gives

{
α1 = 0.1801586(4), β1 = 0.010087(4), GN

α1 = −0.140957(1), β1 = −0.01138(1), O(N )
.

(19)

The results for the coefficients are within the error bars of the
coefficients obtained with the first method. The two leading-
order fitted terms nicely reproduce the data as shown in Fig. 2.

Subtracting these two fitted terms from the anomalous di-
mensions, �

(1)
QB

− α1Q3/2
B − β1Q1/2

B , we obtain the quantities
shown in Fig. 3. As QB gets larger, this quantity tends to
0. Taking the value �

(1)
QB

− α1Q3/2
B − β1Q1/2

B for the largest
charge, we obtain the following estimates for γ :

γ1 =
{

0.00000(5), GN
0.00001(7). O(N ) . (20)

These numerical results suggest once again that the universal
constant in the large-QB and large-N expansions vanishes in
both GN and O(N ) models. In Ref. [31], another interacting
theory of interest was the QED-Z2GN theory. As we did, in
going from QED-GN to GN, we can consider QED-Z2GN in
the absence of a gauge field, which results in Z2GN. This
theory has an interaction term that favors fermion pairing
given by φ∗ψT

i iγ2ψi + H.c., where φ is a complex scalar and

FIG. 2. Anomalous dimensions of defect monopoles in GN and
O(N ) fitted with the large-QB expansion with powers Q3/2

B and Q1/2
B

with coefficients shown in Eq. (19).
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FIG. 3. Anomalous dimensions of monopoles in GN and O(N )
subtracted by Q3/2

B and Q1/2
B fitted terms with coefficients shown in

Eq. (19).

the gamma matrix γ2 is the Pauli matrix σy. The leading-order
monopole scaling dimension in QED-Z2GN is the same as
in QED. Furthermore, it was shown [31] that the anomalous
scaling dimension (the next-to-leading-order contribution) is
given by �

(1)
QED-Z2GN = �

(1)
QED + 2�

(1)
GN. Thus, in the absence

of the dynamical gauge field, we find �
(1)
Z2GN = 2�

(1)
GN. Hence,

the large-QB expansion for this theory (in the large-N limit)
can be simply obtained by multiplying the corresponding GN
results by a factor of two. As a result, the large-QB expansion
for the Z2GN theory is given by

�
(1)
Z2GN = 2αGN

1 Q3/2
B + 2βGN

1 Q1/2
B + O

(
Q−1/2

B

)
. (21)

Here αGN
1 and βGN

1 are the specific values for α1 and β1 in GN
theory obtained above. Since γ1 was numerically observed
(within uncertainty bounds) to vanish in GN, this implies that
it also vanishes in the large-QB expansion of Z2GN. Thus,
Z2GN represents another interacting theory where γ = 0 is
expected to hold.

C. Chiral Heisenberg Gross-Neveu CFT

Another GN CFT that received considerable attention in
the study of quantum phase transitions is the chiral Heisen-
berg Gross-Neveu (cHGN) model [39–41], δ ∼ −σ · �̄ φ�.
The interaction is magnetic-spin dependent with the Pauli
matrices σ acting on the magnetic spin (flavor) subspace. In
GN and QED-GN models where the fermionic interaction
is symmetric, monopoles are described at leading order in
1/N by the same state as in the free-fermion CFT. This is
not the case for magnetically charged monopoles in cHGN
and QED-cHGN, where the auxiliary field has a nonvanishing
expectation value. Even with this difference, it still remains
that γ = 0 at leading order in the cHGN model, leaving open
the possibility that γ may also vanish in this model. Obtaining
anomalous scaling dimensions of cHGN monopoles would
allow testing this possibility. Given the important role that
magnetic spin plays by breaking the degeneracy of monopoles
[42], inspecting how γ is affected by monopole magnetic
spin in both cHGN and QED-cHGN models could add an
interesting and enlightening twist in the study of large-charge
expansions.

D. Convexity of defect dimensions

It was conjectured [43] that the scaling dimensions of
the lightest operators charged under a global symmetry obey
convexity. While counterexamples have been found [44], con-
vexity is often observed and may serve as a useful reference
behavior. Generalizing this observation, we expect that con-
vexity will hold for the defect scaling dimensions in a large
class of theories,

�defect ((n1 + n2)n0) � �defect (n1n0) + �defect (n2n0), (22)

for a positive integer n0 of order 1. Here, n0, n1, n2 are in-
tegers, and in our notation �defect (2QB) ≡ �QB . Convexity
is justified for holographic theories [43] by the expecta-
tion that gravity must be the weakest force in UV complete
descriptions of quantum gravity, so that there should exist
self-repulsive (magnetically) charged matter [45]. We find that
convexity is obeyed for defect monopole operators in O(N)
and GN models.

V. ALTERNATIVES: METALS AND NON-FERMI LIQUIDS

We have argued that many CFTs become gapped when
placed in a magnetic field—we expect this scenario to be fairly
generic, in analogy with the large charge proposal of [5] that
many CFTs become superfluids when placed in a chemical
potential. However, similar to the superfluid proposal, there
are alternatives. In this section, we discuss several examples
of CFTs that do not become gapped when placed in a magnetic
field.

A. A Dirac fermion coupled to Chern-Simons

We consider a (two-component) Dirac fermion coupled to
a fluctuating gauge field with Chern-Simons level U(1)−k+ 1

2
,

S =
∫

d3x ψ̄ i /Daψ − k

4π

∫
ada + 1

2π

∫
Cda . (23)

This is QED3 with a single Dirac fermion and CS coupling
for the photon. Cμ is a background gauge field, coupled to
the U(1) current (magnetic flux) of the theory. The operators
charged under this global U(1) symmetry are monopoles or
instantons of aμ. When k � 1, the theory becomes weakly
coupled. This model was studied in the large charge context in
Ref. [46]. It can be shown to become a superfluid when a finite
density is generated by turning on a chemical potential for
the conserved charge, at least when k � 1. It is a relativistic
cousin of the well-known “anyon superfluid” [47].

We would now like to study what happens to this theory in
a background magnetic field

∂iCj − ∂ jCi = Bεi j . (24)

Since we are interested in the behavior of CFT operators with
large magnetic charge but vanishing U(1) charge, we also set
the average density for the global U(1) symmetry to zero,∫

d2x
(
∂ia j − ∂ jai

) =
∫

d2x bεi j = 0 . (25)
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The effective magnetic field b that the fermions feel therefore
vanishes. This is the crucial property that leads to a gap-
less phase at finite external magnetic field. The constrained
variable a0 has an equation of motion that implements flux
attachment

0 = ψ̄γ 0ψ + 1

2π
(kb − B) . (26)

We therefore have a “finite density” of fermions j0
ψ ≡

ψ̄γ 0ψ = 1
2π

B coupled to a dynamical gauge field. The radius
of the circular Fermi surface is

pF =
√

2|B|. (27)

Sending first k → ∞, the Fermi gas becomes decoupled from
the gauge field, and the system is gapless. This already offers
an alternative to the more common scenario considered earlier
that CFTs placed in a magnetic field become gapped.

A more interesting alternative arises by turning on a small
coupling 1/k: the model is then very similar to the Halperin-
Lee-Read [48] (or Nayak-Wilczek [49]) model of a non-Fermi
liquid (NFL), which is expected to be stable against supercon-
ductivity. Working in Coulomb gauge ∇iai = 0, one finds at
one-loop that a0 gets Debye screened by the Fermi surface,
and ai is Landau damped

〈aa〉(ω, q) ∼ 1

q2 + γ
|ω|
|q|

. (28)

Interaction corrections to this are then relevant, and one ex-
pects a fully fledged NFL. Perturbatively, the superconducting
instability seems to be absent because of the fact that ai cou-
ples with opposite signs to two opposing patches. We note that
this CFT evades the argument of Sec. III because its S-dual
CFT, a free Dirac fermion, does not become a superfluid at
finite density (instead, it becomes a Fermi gas).

1. Background monopoles at large flux

We now consider the large-flux limit of the background
monopoles when k → ∞. Working on the sphere, one obtains
a finite density of noninteracting fermions proportional to B.
This state maps to a large magnetic charge operator, with
dimension

� = #Q3/2
B + #Q1/2

B + O
(
Q−1/2

B

)
. (29)

The absence of an O(Q0) term for the free Fermi gas was
found in [50] by carefully constructing the lightest large-
charge operators. It actually simply follows from the stronger
statement that the density two-point function of a free Fermi
gas 〈 j0 j0〉(ω = 0, q) is analytic near q = 0. Indeed, as dis-
cussed in Sec. II B, finite-wavevector corrections to response
functions translate into 1/Q corrections to � (the units are
made up with the density for large charge, and magnetic field
for large magnetic charge). This argument further forbids any
power in (29) that is not half-integer, including logarithms.
Analyticity is, however, an artefact of the free Fermi gas; a
Fermi liquid should have nonanalytic corrections 〈 j0 j0〉(ω =
0, q) ∼ 1 + |q|α + · · · . These corrections are in fact subtle,

due to partial cancellations in fermion loops: while the naively
expected correction with α = d − 1 is absent [51], scaling
arguments that account for these cancellations suggest that the
leading correction should have α = d + 1 (as in superfluids)
[52]. This implies that Fermi liquids should have a constant
O(Q0) correction to the dimension � (with an additional log Q
in odd spatial dimensions), like for superfluids.

When the level k is instead large but finite, the finite-
density dynamics becomes strongly coupled, as discussed
above. Because we do expect nonanalyticities in the static
correlator 〈 j0 j0〉(ω = 0, q), the behavior of the scaling di-
mension should be more subtle than in Eq. (29); however, we
can only speculate on their form because 〈 j0 j0〉(ω = 0, q) is
not currently known for non-Fermi liquids.

B. Holographic CFTs

Holographic CFTs at N = ∞ with a U(1) symmetry al-
ready offer a counterexample to the large charge proposal
of [5]: The typical zero-temperature finite-density state is
an extremal Reissner-Nordstrom black hole rather than a
superfluid. Extremal black holes are distinguished from con-
ventional finite-density phases of matter by a number of
properties, including their finite zero-temperature entropy.

When placed in a background magnetic field, holographic
CFTs typically form extremal magnetic black holes, which
also feature a finite zero-temperature entropy [25]. These solu-
tions are simply the electric-magnetic duals Fμν → εμνλσ Fλσ

of usual charged black holes (in fact, a CFT whose bulk is
self-dual under electric-magnetic duality must have an iden-
tical spectrum of large charge and large magnetic charge
operators). These, therefore, provide a dramatic alternative to
the gapped phase that many CFTs realize in a magnetic field.
These states, as well as their generalization to extremal “dy-
onic” black holes carrying both magnetic and electric charge,
have a near-horizon description in terms of Jackiw-Teitelboim
gravity [53], an effective two-dimensional theory of gravity
that also enters in the low-energy description of the SYK
model. Quantum 1/N corrections to their equation of state
have been the subject of recent interest (see, e.g., Ref. [54]).

VI. CONCLUSIONS

Several open questions remain. First and foremost, can
one classify more completely the possible phases obtained by
applying a magnetic field to CFTs? In particular, the stability
of the putative non-Fermi liquid that arose from the gauged
Dirac fermion should be investigated as a function of the
Chern-Simons coupling. An analogous analysis is needed for
the extremal black holes generated in holographic CFTs.

An even larger set of possibilities arises by allowing for a
chemical potential μ in combination with a magnetic field B,
as the CFT equation of state can nontrivially depend on the
dimensionless combination μ2/B, or equivalently the filling
fraction ν = Q/QB. We expect many phases may be realized
as a function of filling for a given CFT, such as fractional
quantum Hall or Wigner crystal states. This would offer a
new interesting connection between quantum Hall and 2+1d
CFTs, beyond the well-known ones with 1+1d CFTs [55].
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In the context of the large charge expansion of CFTs, ratios
of large quantum numbers have already lead to interesting
possibilities along those lines [13,27,56].
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APPENDIX A: GENERATING FUNCTIONAL
FOR GAPPED PHASES

1. Formulation

In this Appendix, we construct the generating functional
log Z[Aμ, gμν] for CFTs that become gapped in a background
magnetic field. Because the phase is gapped, the partition
function is a local functional of background fields Aμ, gμν .
It must be invariant under gauge transformations and dif-
feomorphisms. We will also impose invariance under Weyl
transformations

gμν (x) → �(x)2gμν (x),

Aμ(x) → Aμ(x) .
(A1)

Note that |F | ≡ ( 1
2 FμνFαβgμαgνβ )1/2 has weight −2 under

Weyl transformations |F | → |F |�−2; one can therefore ef-
ficiently construct Weyl invariant terms by using the Weyl
invariant metric [16]

ĝμν ≡ gμν |F | , (A2)

to write down diffeomorphism invariant terms. The only such
term at zeroth order in derivatives is

c1

√
ĝ = c1

√
g|F |3/2 . (A3)

For parity-invariant theories, the next terms enter at second
order in derivatives and read

c2

√
ĝR̂ = c2

√
g|F |3/2

( R
|F | + 1

2|F |3 (∂μ|F |)2

)
,

(A4a)

c3

√
ĝR̂μνF̂μαF̂ ν

α = c3
√

g|F |3/2

[Rμν

|F | + 3

4

∂μ|F |∂ν |F |
|F |3

− 1

2

∇μ∂ν |F |
|F |2

]
FμαF ν

α

|F |2 , (A4b)

c4

√
ĝ(∇̂μF̂μα )2 = c4

√
g|F |3/2

(∇μFμ
α

)2

|F |3 . (A4c)

The Ricci tensor of a Weyl-transformed metric can be
found, e.g., in [57]. We have used the Bianchi identity to
remove one possible term (∇̂[μFνλ] )2. The additional term c4

compared to the large charge EFT [5] arises because Fμν is
a background field, which need not satisfy an equation of
motion.

2. CFTs without parity

When parity is not a symmetry, the generating functional
can also contain a Chern-Simons term, which counts as −1
derivative in our counting scheme,

ν

4π
εμνλAμ∂νAλ . (A5)

At the one-derivative level, there are additionally two terms
that are also gauge, diffeomorphism, and Weyl invariant
[26,58] :

ζ |F |εμνλuμ∂νuλ,
κ

8π
εμνλεαβγ Aμuα

(∇νuβ∇λuγ − Rαβ
μν

)
,

(A6)

where we defined uμ ≡ 1
2|F |ε

μνλFνλ to simplify notation. The
second term is only gauge and Weyl invariant up to a total
derivative, and has interesting physical properties. It captures
the “shift” of relativistic quantum Hall phases [26], and is
proportional to the Hall viscosity of the CFT in a magnetic
field. This term was studied in the large charge context of
relativistic superfluid EFTs in [46].

Collecting all terms so far, one finds the following generat-
ing functional for gapped phases of 2+1d CFTs with a U(1)
symmetry,

log Z[A, g] = ν

4π

∫
d3x εμνλAμ∂νAλ + 4

3
χM

∫
d3x

√
gF 3/2 + ζ

∫
d3x Fεμνλuμ∂νuλ

+ κ

8π

∫
d3x εμνλεαβγ Aμuα

(∇νuβ∇λuγ − Rαβ
μν

)+
∫

d3x
√

gF 3/2

[
c2

(R
F

+ (∂μF )2

2F 3

)

+ c3

(Rμν

F
+ 3

4

∂μF∂νF

F 3
− 1

2

∇μ∂νF

F 2

)
FμαF ν

α

F 2
+ c4

(∇μFμ
α

)2

F 3

]
+ O(∂3). (A7)

Each term in the expansion above is at a given order in the
derivative expansion, from O(∂−1) to O(∂2), where the terms

with ζ and κ as coefficients have the same power counting.
Parity-invariant CFTs will have ν, ζ , κ = 0.
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APPENDIX B: MONOPOLE SCALING DIMENSION
IN SPECIFIC MODELS

1. Formulation

The Euclidean action for GN is given by

SGN[AQB ] =
∫

d3r
√

g[−�̄( /DAQB + φ)�] + · · · . (B1)

Here, � = (ψ1, ψ2, . . . ψN )ᵀ, where each flavor is a two-
component Dirac fermion, and the covariant derivative with
the external gauge field acting on the fermions is given by

/DAQB = γ μ
(∇μ − iAQB

μ

)
. (B2)

A symmetric fermion mass 〈�̄�〉 
= 0 is condensed for a suf-
ficiently strong coupling. The effective action at the quantum
critical point (QCP) is

SGN
eff = −N ln det ( /D + φ). (B3)

The case of free fermions is obtained when we remove the
GN interaction, that is, by removing the contribution of the
auxiliary field φ. This allows one to obtain the effective action
used in the state-operator correspondence to study the defect
monopoles

Seff[AQB ] = −N ×
{

log det ( /DAQB + φ) GN

log det ( /DAQB ) Free fermions
.

(B4)

The Euclidean action for the O(N ) model is given by

SO(N )[AQB ] =
∫

d3r
√

g

[
|DAQB z|2 + R

8
|z|2

+ iλ

(
|z|2 − 2N

2g

)]
, (B5)

where z = (z1, z2, . . . zN )ᵀ and each flavor is a complex scalar
boson, R is the Ricci scalar (with R = 0 and R = 2 on R3

and R × S2 respectively), and the covariant derivative (with a
background gauge field) acting on the bosons is given by

DAQB = ∇μ − iAQB
μ . (B6)

At the quantum critical point (defined on the flat spacetime),
the effective action is given by

SO(N )
eff = N ln det{−D2 + iλ}. (B7)

On the R × S2 with the contribution of the Ricci scalar, this
becomes

Seff[AQB ]

= N ×
{

ln det
(−|DAQB |2 + 1

4 + iλ
)
, O(N ).

ln det
(−|DAQB |2 + 1

4

)
, free bosons,

(B8)

where the self-interaction is removed in the case of the free
boson.

2. Monopole scaling dimensions

The monopole scaling dimensions in the O(N) and GN
models can be deduced from the results in the literature. The
O(N) monopole scaling dimension was explicitly obtained in

Ref. [35]. In the case of the GN model, anomalous dimensions
of monopoles were obtained for the QED-GN model [31],
and we simply need to remove gauge fluctuations. In this
Appendix, we give a brief overview of the results needed to
obtain the points in Fig. 2.

In both cases, the anomalous dimension involves only the
contribution from the kernel of the auxiliary field decoupling
the interaction. Thus, the anomalous dimension can be written
generically as

�
(1)
QB

= 1

2

∫ ∞

−∞

dω

2π

∞∑
�=0

(2� + 1) ln

[
DQB

�
(ω)

D0
�
(ω)

]
. (B9)

The momentum-space coefficient is obtained by projecting the
real-space kernel on spherical harmonics

DQB
� (ω) = 4π

2� + 1

∫
r

eiωτ DQB (r, 0)
�∑

m=−�

Y ∗
�m(n̂)Y�m(ẑ)

=
∫

r
eiωτ DQB (r, 0)P�(x), (B10)

where we used the addition theorem. The real-space kernel
depends on the specific model,

DQB
(
r, r′) =

{
tr
[
G f

QB
(r, r′)G f †

QB
(r, r′)

]
GN

Gb
QB

(r, r′)Gb∗
QB

(r, r′) O(N )
. (B11)

Here, the Green’s functions obey the following equations of
motion:

i /DS2×R
AQB (r)G f

QB
(r, r′) = −δ(r − r′) (B12)(∣∣D(AQB )

μ (r)
∣∣2 − (

a2
QB

+ Q2
B + 1

4

))
Gb

QB
(r, r′) = −δ(r − r′),

(B13)

where we reformulated the O(N ) saddle point parameter as
〈λ〉 = a2

QB
+ Q2

B and used that 〈φ〉 = 0 in the case of GN. The
value of a2

QB
is determined by the saddle-point equation

∑
�=QB

⎛⎜⎝ � + 1/2√
(� + 1/2)2 + a2

QB

− 1

⎞⎟⎠ = QB. (B14)

The saddle-point equation is solved for values of the topolog-
ical charge up to QB = 13. Results for both models are shown
in Table II.

a. Zero topological charge

With a vanishing topological charge, the Green’s functions
in both models have a closed form

G f
0 (r, r′) = i

4π

γ · (e 1
2 (τ−τ ′ )n̂ − e− 1

2 (τ−τ ′ )n̂′)
23/2[cosh(τ − τ ′) − n̂ · n̂′]3/2 , (B15)

Gb
0(r, r′) = 1

4π

1√
2
√

cosh(τ − τ ′) − n̂ · n̂′ , (B16)
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TABLE II. Saddle-point results in GN and O(N ) with multiple values of QB.

QB �
(0)
QB,GN �

(0)
QB,O(N ) a2

QB
QB �

(0)
QB,GN �

(0)
QB,O(N ) a2

QB

1/2 0.265096 0.124592 –0.449806 7 11.126163 5.023119 –51.766222
1 0.673153 0.311095 –1.397830 15/2 12.321948 5.561128 –59.213515
3/2 1.186434 0.544069 –2.845457 8 13.557721 6.117064 –67.160806
2 1.786901 0.815788 –4.792936 17/2 14.832227 6.690367 –75.608096
5/2 2.463451 1.121417 –7.240344 9 16.144324 7.280526 –84.555385
3 3.208372 1.457570 –10.187714 19/2 17.492965 7.887074 –94.002672
7/2 4.015906 1.821708 –13.635059 10 18.877186 8.509578 –103.949959
4 4.881539 2.211833 –17.582390 21/2 20.296094 9.147641 –114.397245
9/2 5.801615 2.626323 –22.029709 11 21.748862 9.800891 –125.344530
5 6.773088 3.063825 –26.977021 23/2 23.234719 10.468985 –136.791815
11/2 7.793375 3.523189 –32.424327 12 24.752943 11.151598 –148.739099
6 8.860246 4.003422 –38.371628 25/2 26.302859 11.848430 –161.186382
13/2 9.971750 4.503655 –44.818926 13 27.883833 12.559195 –174.133665

and the corresponding kernels are

D0
� (ω) = 1

16π2

∫
r

eiωτ P�(x)

⎧⎨⎩
2

22[cosh(τ )−cos(θ )]2 GN

1
2[cosh(τ )−cos(θ )] O(N )

=
{

(�2 + ω2)D�−1(ω) GN

D�(ω) O(N )
(B17)

where

D�(ω) =
∣∣∣∣∣ �
(

1+�+iω
2

)
4�
(

2+�+iω
2

) ∣∣∣∣∣
2

. (B18)

b. Bosonic

For nonzero topological charge, we turn to the spectral
decomposition. In the bosonic case, this is given by

Gb
QB

(r, r′) = (1 + x)QB

(4π )2QB
e−2iQB�

∞∑
�=QB

e−Eb
QB ,�|τ−τ ′|

2Eb
QB,�

(2� + 1)P(0,2QB )
�−QB

(x), (B19)

where x = n̂ · n̂′, e−2iQB� depends on n̂ and n̂′ and

Eb
QB,� =

√
(� + 1/2)2 + a2

QB
.

The kernel, after simplifications, becomes

DQB
� (ω) = 1

16π

∑
�′,�′′=QB+1

(2�′ + 1)(2�′′ + 1)
(
Eb

QB,�′ + Eb
QB,�′′

)
Eb

QB,�′Eb
QB,�′′

[
ω2 + (

Eb
QB,�′ + Eb

QB,�′′
)2]
⎛⎝� �′ �′′

0 −QB/2 QB/2
0 −QB/2 QB/2

⎞⎠, (B20)

where the last factor is a product of two three-J symbols⎛⎝�1 �2 �3

m1 m2 m3

m4 m5 m6

⎞⎠ ≡
(

�1 �2 �3

m1 m2 m3

)(
�1 �2 �3

m4 m5 m6

)
. (B21)

c. Fermionic

In the case of the fermionic theory, obtaining the kernel in a simplified form is much more involved given the spinor structure

G f
QB

(r, r′) = i

2

∞∑
�=QB

e−E f
QB ;�|τ−τ ′|

�−1∑
m=−�

[
S+

QB,�−1,m S−
QB,�,m

](
sgn(τ − τ ′)NQB,� +

(
0 1

−1 0

))⎡⎣(S+
QB,�−1,m

)†(
S−

QB,�,m

)†

⎤⎦, (B22)
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where

S±
QB,�′,m′ =

(±α±YQB,�′,m′

α∓YQB,�′,m′+1

)
, α± =

√
�′ + 1/2 ± (m′ + 1/2)

2�′ + 1
, (B23)

E f
QB,� =

√
�2 − Q2

B, (B24)

NQB,� = −1

�

(
QBτz + E f

QB,�τx
)
. (B25)

The fermionic Green’s function is thus a 2 × 2 matrix whose components are pairs of monopole harmonics

G f
QB

(r, r′) = (2 × 2 matrix) ∝
∞∑

�′=QB

�′∑
m′=−�′+1

YQB,�′+δ�′,m′+δm′ (n̂)Y ∗
QB,�′+̃δ�′,m′+̃δm′

(
n̂′), {

δ�′, δ̃�′ ∈ {−1, 0}
δm′, δ̃m′ ∈ {0, 1} . (B26)

In turn, the kernel momentum space coefficient takes the form

DQB
�

(ω) ∼
∫

x

∞∑
�′,�′′=QB

∑
m,m′,m′′

product of six harmonics. (B27)

By using the following identities:

Y ∗
QB,�,m(n̂) = (−1)QB+mY−QB,�,−m(n̂), (B28)

YQB,�,m(ẑ) = δQB,−m

√
2� + 1

4π
, (B29)

three harmonics are removed, and we are left with integrals of the following form:∫
dn̂YQB,�,m(n̂)YQ′

B,�′,m′ (n̂)YQ′′
B,�′′,m′′ (n̂) = (−1)�+�′+�′′

√
(2� + 1)(2�′ + 1)(2�′′ + 1)

4π

⎛⎝ � �′ �′′
QB Q′

B Q′′
B

m m′ m′′

⎞⎠. (B30)

The kernel coefficient obtained is

DQB
� (ω) = D

QB
� (ω) +

∞∑
�′,�′′=QB+1

(−1)�+�′+�′′(
E f

QB,�′ + E f
QB,�′′

)
8π
(
ω2 + (

E f
QB,�′ + E f

QB,�′′
)2)

×
⎛⎝⎡⎣⎛⎝� �′ − 1 �′′ − 1

0 −QB QB

0 QB −QB

⎞⎠+
⎛⎝� �′ �′′

0 −QB QB

0 QB −QB

⎞⎠⎤⎦2
(
Q2

B + E f
QB,�′E

f
QB,�′′ + �′�′′)

+
⎡⎣⎛⎝� �′ − 1 �′′

0 −QB QB

0 QB −QB

⎞⎠+
⎛⎝� �′ �′′ − 1

0 −QB QB

0 QB −QB

⎞⎠⎤⎦2
(
Q2

B + E f
QB,�′E

f
QB,�′′ − �′�′′)

−
⎡⎣⎛⎝� �′ �′′

0 −QB − 1 QB + 1
0 QB −QB

⎞⎠s+
�′+1s+

�′′+1 +
⎛⎝� �′ − 1 �′′ − 1

0 −QB − 1 QB + 1
0 QB −QB

⎞⎠s−
�′−1s−

�′′−1

⎤⎦(s−
�′ s−

�′′ + s+
�′ s+

�′′ )

+
⎛⎝� �′ − 1 �′′

0 −QB − 1 QB + 1
0 QB −QB

⎞⎠s−
�′−1s+

�′′+1(s−
�′′s+

�′ − s−
�′ s+

�′′ )

−
⎛⎝� �′ �′′

0 1 − QB QB − 1
0 QB −QB

⎞⎠s−
�′ s−

�′+1s−
�′′s−

�′′+1 −
⎛⎝� �′ − 1 �′′ − 1

0 1 − QB QB − 1
0 QB −QB

⎞⎠s+
�′−1s+

�′ s+
�′′−1s+

�′′

+
⎛⎝� �′ − 1 �′′

0 1 − QB QB − 1
0 QB −QB

⎞⎠s−
�′′s+

�′−1s+
�′ s−

�′′+1 −
⎛⎝� �′ − 1 �′′

0 1 − QB QB − 1
0 QB −QB

⎞⎠s−
�′ s+

�′−1s+
�′′s−

�′′+1

−
⎛⎝� �′ �′′

0 1 − QB QB − 1
0 QB −QB

⎞⎠s−
�′+1s+

�′ s+
�′′s−

�′′+1 +
⎛⎝� �′ �′′ − 1

0 −QB − 1 QB + 1
0 QB −QB

⎞⎠s−
�′′−1s−

�′′s+
�′ s+

�′+1
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−
⎛⎝� �′ − 1 �′′ − 1

0 1 − QB QB − 1
0 QB −QB

⎞⎠s−
�′ s−

�′′s+
�′−1s+

�′′−1 −
⎛⎝� �′ �′′ − 1

0 1 − QB QB − 1
0 QB −QB

⎞⎠s−
�′+1s−

�′′s+
�′ s+

�′′−1

−
⎛⎝� �′ �′′ − 1

0 −QB − 1 QB + 1
0 QB −QB

⎞⎠s−
�′ s−

�′′−1s+
�′+1s+

�′′ +
⎛⎝� �′ �′′ − 1

0 1 − QB QB − 1
0 QB −QB

⎞⎠s−
�′ s−

�′+1s+
�′′−1s+

�′′

)⎞⎠, (B31)

where s±
� = √

� ± QB and where D
QB
� (ω), the contribution when one of the two angular momentum has the minimal value QB,

is given by

D
QB
� (ω) =

∞∑
�′=QB+1

(−1)QB+�′+�EQB,�′

8π
(
E2

QB,�′ + ω2
)
⎛⎜⎝2QB

⎡⎢⎣−(s−
�′′
)2

⎛⎜⎝� �′ − 1 QB

0 QB −QB

0 −QB QB

⎞⎟⎠+ (
s+
�′′
)2

⎛⎜⎝� �′ QB

0 QB −QB

0 −QB QB

⎞⎟⎠
⎤⎥⎦

−
√

2QB

⎡⎢⎣s−
�′ s+

�′−1

⎛⎜⎝� �′ − 1 QB

0 QB −QB

0 1 − QB QB − 1

⎞⎟⎠+ s−
�′+1s+

�′

⎛⎜⎝� �′ QB

0 QB −QB

0 1 − QB QB − 1

⎞⎟⎠
⎤⎥⎦
⎞⎟⎠. (B32)

d. Regularizing the coefficient

The kernel momentum space coefficient DQB
� (ω) [see Eq. (B20) for O(N ) model and Eq. (B31) for GN model] is needed to

compute the monopole anomalous dimension (B9). Computing D�(ω) requires performing two infinite sums

DQB
� (ω) ≡

∞∑
�′,�′′

dQB
�,�′,�′′ (ω). (B33)

There is a double sum, but the argument vanishes unless �, �′, and �′′ satisfy the triangle equality. This constraint effectively
removes the divergence of one integral. The remaining effect can be considered by fixing � and studying the argument in the
sum at large �′,

lim
�′→∞

∞∑
�′′=QB+1

dQB
�,�′,�′′ (ω) = ξ =

{
1

2π
GN

0 O(N )
. (B34)

The constant contribution in this limit in the GN model leads to a divergence, which must be regularized,

ζ (0, QB + 1)ξ +
∞∑

�′=QB+1

⎡⎣−ξ

∞∑
�′′=QB+1

dQB
�,�′,�′′ (ω)

⎤⎦ ≡ ζ (0, QB + 1)ξ +
∞∑

�′=QB+1

d̃QB
�,�′ (ω). (B35)

Subleading terms in both cases scale as �′−2 and do not pose a problem for convergence.
To speed up the numerical computation, the summand d̃QB

�,�′ (ω) can be expanded analytically as inverse powers of �′,

d̃QB
�,�′ (ω) =

⎧⎪⎨⎪⎩−
(
�(�+1)−4Q2

B+2ω2
)

16π�′2 −
(

7[�(�+1)]2+�(�+1)
(

24Q2
B+8ω2−2

)
−8
(
−6Q2

Bω2+6Q4
B+ω4

))
256π�′4 + . . . GN

1
8π�′2 − 1

8π�′3 +
(
−6
(

a2
QB

)
−ω2+2�(�+1)+3

)
32π�′4 +

(
6
(

a2
QB

)
+ω2−2�(�+1)−1

)
16π�′5 + · · · O(N )

. (B36)

The numerical sum can then be stopped to a relatively low
cut-off �′

c, and the rest of the sum is handled analytically∑∞
�′=�′

c+1(�′)−p = ζ (p, �′
c + 1), and

∞∑
�′=QB+1

d̃QB
�,�′ (ω) ≈

�′
c∑

�′=QB+1

d̃QB
�,�′ (ω) +

∑
p=2

c(p)
� (ω)ζ (p, �′

c + 1),

(B37)

where the coefficients c(p)
� (ω) are read off from Eq. (B36).

We used �′
c = 150 and p = 15. This allows to obtain the

regularized DQB
� (ω) (B33), which is inserted in the monopole

anomalous dimension (B9) along with the zero-charge kernel
(B17). The remaining sum on � and integral on ω are com-
puted up to a relativistic cut-off

�(� + 1) + ω2 � L(L + 1). (B38)

For the GN model, we used L = 35 + Round(QB). For
the O(N ) model we use L = 30 along with a UV expan-
sion in �, ω to the obtain the region L ∈]30,∞[ as in
Ref. [38].
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