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Dynamical transition in controllable
quantum neural networks with large depth

Bingzhi Zhang 1,2,7, Junyu Liu 3,4,5,6,7, Xiao-Chuan Wu5, Liang Jiang 3 &
Quntao Zhuang 1,2

Understanding the training dynamics of quantum neural networks is a fun-
damental task in quantum information science with wide impact in physics,
chemistry and machine learning. In this work, we show that the late-time
training dynamics of quantum neural networks with a quadratic loss function
can be described by the generalized Lotka-Volterra equations, leading to a
transcritical bifurcation transition in the dynamics.When the targeted value of
loss function crosses the minimum achievable value from above to below, the
dynamics evolve from a frozen-kernel dynamics to a frozen-error dynamics,
showing a duality between the quantum neural tangent kernel and the total
error. In both regions, the convergence towards the fixed point is exponential,
while at the critical point becomes polynomial. We provide a non-perturbative
analytical theory to explain the transition via a restrictedHaar ensemble at late
time, when the output state approaches the steady state. Via mapping the
Hessian to an effective Hamiltonian, we also identify a linearly vanishing gap at
the transition point. Compared with the linear loss function, we show that a
quadratic loss function within the frozen-error dynamics enables a speedup in
the training convergence. The theory findings are verified experimentally on
IBM quantum devices.

As a paradigm of near-term quantum computing, variational quantum
algorithms1–6 have been widely applied to chemistry1,7, optimization2,8,
quantumsimulation9,10, condensedmatterphysics11, communication12,13,
sensing14,15 and machine learning16–23. Adopting layers of gates and sto-
chastic gradient descent, they are regarded as ‘quantum neural net-
works’ (QNNs), analog to classical neural networks that are crucial to
machine learning. Concepts and methods related to variational quan-
tum algorithms are also beneficial for quantum error correction and
quantum control24,25, bridging near-term applications with the fault-
tolerant era.

Despite the progress in applications, theoretical understanding of
the trainingdynamics ofQNN is limited, hindering theoptimal designof
quantumarchitectures and the theoretical study of quantumadvantage

in such applications. Previous works adopt tools from quantum infor-
mation scrambling for empirical studyofQNNtraining26,27. Recently, the
Quantum Neural Tangent Kernel (QNTK) theory presents a potential
theoretical framework for an analytical understanding of variational
quantum algorithms, at least within certain limits28–32, revealing deep
connections to their classical machine learning counterparts33–43. How-
ever, the theory of QNTK relies on the assumption of sufficiently ran-
domquantumcircuit set-ups known as unitary k-designs44–47 that is only
true at random initialization, preventing the theory fromdescribing the
more important late-time training dynamics. Similar limitations also
exist for other theoretical works4,48–51.

In this work, we go beyond QNTK theory and identify a dynamical
transition in the training of QNNs with a quadratic loss function, when
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the target loss function value O0 cross the minimum achievable value
(ground state energy Omin). We show that the training dynamics of
deep QNNs is governed by the generalized Lotka-Volterra (LV) equa-
tions describing a competitive duality between the quantum neural
tangent kernel and the total error. The LV equations can be analytically
solved and the dynamics is determined by the value of a conserved
quantity. When the target value crosses Omin, the conserved quantity
changes sign and induces a transcritical bifurcation transition. As
depicted in Fig. 1, in the frozen-kernel dynamics where O0>Omin is in
the bulk of spectrum, the kernel is approaching a constant while the
error decays exponentially with training steps; At the critical point
when O0 =Omin exactly, both the kernel and the error decay poly-
nomially; In the frozen-error dynamics whenO0<Omin is unachievable,
the output from QNN still converges to the ground state leaving the
error approaching a constant Omin �O0, while the kernel experiences
an exponential decay. We provide a non-perturbative analytical theory
to explain the dynamical transition via a restricted Haar ensemble at
late time, when the QNN output state approaches the steady state. We
also identify a vanishing Hessian gap at the transition point, which
corresponds to Hamiltonian gap closing in the imaginary-time Schrö-
dinger equation interpretation. While our theory analyses assume the
large-depth limit, the dynamical transition is also numerically identi-
fied in QNNs with limited depths. Compared to the exponential decay
of linear loss function with a non-tunable exponent, we identify con-
vergence speed-up via tuning the quadratic loss function to be within
the frozen-error dynamics. The theory findings are experimentally
verified on IBM quantum devices. Our results imply that designing the
loss function properly is important to achieve fast convergence.

Results
We begin by first introducing the model of the QNN and the necessary
quantities. Then, we uncover the dynamical transition phenomena as a
bifurcation transition in LVmodel. The unitary ensemble theory is then
developed to support assumptions in obtaining the LV model. After-
wards, we characterize the transition with tools from statistical

physics. After finishing the theory, we provide numerical extensions
and discuss the potential training speed-up brought by our results.
Finally, we confirm the results in experiments.

Training dynamics of quantum neural networks
A D-depth QNN is composed of D layers of parameterized quantum
circuits, realizing a unitary transform ÛðθÞ on n qubits, with L varia-
tional parameters θ = (θ1, …, θL). The gate configuration of each layer
varies between different circuit ansatz (see Methods for examples).
When inputting a trivial state ∣0i�n, the final output state of the neural
network ∣ψðθÞ�= ÛðθÞ∣0i�n, from which one can measure a Hermitian
observable Ô leading to expectation value hÔi= hψðθÞjÔjψðθÞi. To
optimize the expectation of an observable Ô towards the target value
O0, a general choice of loss function is in a quadratic form,

LðθÞ= 1
2

hÔi � O0

� �2
� 1

2
ϵðθÞ2, ð1Þ

where the total error ϵðθÞ= hÔi �O0: Suppose observable Ô has pos-
sible values in the range of ½Omin,Omax�. Without further specification,
Omin and Omax refer to the minimum and maximum eigenvalue of Ô.
Now due to symmetry of maximum and minimum in optimization
problems, we assume O0<Omax is true.

A QNN goes through training to minimize the loss function. In
each training step, every variational parameter is updated by the gra-
dient descent

δθ‘ðtÞ � θ‘ðt + 1Þ � θ‘ðtÞ= � η
∂LðθÞ
∂θ‘

= � ηϵðθÞ∂ϵðθÞ
∂θ‘

, ð2Þ

where η is the fixed learning rate and t is the discrete number of time
steps in the training. With the update of parameters θ, quantities
depending on θ also acquire new values in each training step. For
simplicity of notion, we denote their dependence on t explicitly
omittingθ, e.g. ϵ(t)≡ ϵ(θ(t)). To study the convergence,we separate the
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Fig. 1 | Illustration of setup andmain results of this work.We study the training
dynamics of quantum neural networks with loss functionLðθÞ= ðhÔi �O0Þ

2
=2, and

identify a dynamical transition. We derive a first-principle generalized Lotka-

Volterra model to characterize it, and also provide interpretations from random
unitary ensemble and Schrödinger equation.
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error into twoparts, ϵ(t)≡ ε(t) +R consists of a constant remaining term
R= limt!1 ϵðtÞ and a vanishing residual error ε(t). When η≪ 1 is small,
the total error is updated as

δϵðtÞ ’
X
‘

∂ϵðθÞ
∂θ‘

δθ‘ +
1
2

X
‘1 , ‘2

∂2ϵðθÞ
∂θ‘1∂θ‘2

δθ‘1δθ‘2 ð3Þ

= � ηϵðtÞKðtÞ+ 1
2
η2ϵðtÞ2μðtÞ, ð4Þ

where the QNTK K and dQNTK μ are defined as29

KðtÞ �
X
‘

∂ϵðθÞ
∂θ‘

� �2
�����
θ=θðtÞ

, ð5Þ

μðtÞ �
X
‘1 , ‘2

∂2ϵðθÞ
∂θ‘1∂θ‘2

∂ϵðθÞ
∂θ‘1

∂ϵðθÞ
∂θ‘2

�����
θ=θðtÞ

: ð6Þ

In thedynamics of ϵ(t), asη≪ 1, we focus on thefirstorder ofη in Eq. (4)
as

δϵðtÞ= � ηϵðtÞKðtÞ+Oðη2Þ: ð7Þ

To characterize the dynamics of ϵ(t), it is necessary and sufficient to
understand the dynamics of QNTK K(t). Towards this end, we derive a
first-order difference equation for QNTK K(t) as (see details in
Supplementary Note 1)

δKðtÞ= � 2ηϵðtÞμðtÞ+Oðη2Þ: ð8Þ

Combining Eq. (7) and Eq. (8), we aim to develop the dynamical model
in training QNNs.

Dynamical transition
Ourmajor finding is that when the circuit is deep and controllable, the
QNN dynamics exhibit a dynamical transition at Omin (and Omax

similarly) as we depict in Fig. 2, where a QNNwith random Pauli ansatz
(RPA) is utilized to optimize the XXZmodel Hamiltonian (seeMethods
for details of the circuit and observable).

Frozen-kernel dynamics: When O0>Omin, the total error decays
exponentially and theenergy converges towardsO0, as shown inFig. 2a1.
This is triggeredby the frozenQNTKas shown inFig. 2a2. Each individual
random sample (gray) has slightly different value of frozenQNTKdue to
initialization, while all possess the exponential convergence. Our theory
prediction (red dashed) agrees with the actual average (blue solid) for
both the ensemble averagedQNTKK and the error, while deviations due
to early time dynamics can be seen (see Methods for details).

Critical point: When targeting right at the GS energy O0 =Omin,
both the total error and QNTK decay as 1/t, independent of system
dimension d. As shown in Fig. 2b2, the QNTK ensemble average (blue
solid) agrees very well with the theory prediction shown as the red
dashed line. Due to initial timediscrepancy inQNTK that is beyond our
late time theory, the actual error dynamics has a constant deviation
from the theory prediction (red dashed), however still has the 1/t late
time scaling, as shown in Fig. 2b1.

Frozen-error dynamics: When targeting below the GS energy
O0<Omin, the total error converges to a constant R =Omin � O0 >0
exponentially, as shown in Fig. 2c1. The inset shows the exponential
convergence via the residual error ε = ϵ − R. In this case, the QNTK also
decays exponentially with the training steps, as shown in Fig. 2c2.
Deviation between the theory (red dashed) and numerical results (blue
solid) can be seen due to early time dynamics beyond our theory.

Generalized Lotka-Volterra model: bifurcation
In this section, we reveal the nature of the transition as a transcritical
bifurcation of an effective nonlinear dynamical equation. With large
depthD≫ 1 and full control, QNNs are commonlymodeled as a random
unitary4,29,51. However, at late time, the convergence of QNN training
imposes constraints on the QNN unitary. As we will detail in ‘Unitary
ensemble theory’ section, assuming that the late-time QNN is typical
among randomensembleofunitariesunder theconvergence constraint,
we can show that the relative dQNTK—the ratio of dQNTK and QNTK

λðtÞ=μðtÞ=KðtÞ ð9Þ

Fig. 2 | Dynamics in QNN in the example of XXZ model. The top and bottom
panels show the dynamics of total error ϵ(t) andQNTKK(t) with respect to the three
cases O0‘Omin. Blue solid curves represent numerical ensemble average result.
Red dashed curves in panels represent theoretical predictions on the dynamics of

total error in Eqs. (14)–(16) (from left to right). Grey solid lines show the dynamics
for each random sample. The inset in (c1) shows the exponential decay of residual
error ε(t).Here randomPauli ansatz (RPA) consists of L= 768 variational parameters
(D = L for RPA) on n = 8 qubits, and the parameter in XXZ model is J = 2.
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converges towards a constant dependent on the number of para-
meters L and Hilbert space dimension of the system d = 2n. Under the
assumption that λ(t) = λ being a constant and taking the continuous
limit, Eqs. (7) and (8) lead to a coupled set of equations,

∂tϵðtÞ = � ηϵðtÞKðtÞ
∂tKðtÞ = � 2ηλϵðtÞKðtÞ

�
ð10Þ

to the leading order in η. This is the generalized Lotka-Volterra
equation developed in modeling nonlinear population dynamics of
species competing for some common resource52. The two ‘species’
represented by K and ϵ are in direct competition as the interaction
terms are negative. As Eqs. (10) have zero intrinsic birth/death rate,
there is no stable attractor where all species K(t) and ϵ(t) are
positive, as sketched in Fig. 1 bottom left, where 2λϵ and K are the x
and y axis. From Eqs. (10), we can identify the conserved quantity at
late time

C =KðtÞ � 2λϵðtÞ= const: ð11Þ

Each trajectory of (2λϵ(t), K(t)) governed by Eqs. (10) is thus a straight
line quantified by the conserved quantity C. We verify the trajectory
from the conserved quantity of Eq. (11) in Fig. 3(b), where good
agreement between QNN dynamics (solid) and generalized LV
dynamics (dashed) can be identified. The conservation law in Eq. (11)
indicates that a classical Hamiltonian description of LV dynamics is
possible, via mapping the scaled error and kernel to the canonical
position and momentum (see Methods). Therefore, the position-
momentumduality in Hamiltonian formulation implies an error-kernel
duality between K and ϵ.

Thanks to the conserved quantity C, we can reduce the coupled
differential equations of the LV model in Eq. (10) to a single variable
differential equation with the kernel or the error alone, e.g.,

∂tKðtÞ=ηðC � KðtÞÞKðtÞ: ð12Þ

This is a canonical example of a transcritical bifurcation, with two fixed
points K = C and K = 053. To see this, we plot the RHS of Eq. (12) in
Fig. 3a.WhenC >0 (blue curve), via the sign of ∂tK, we can see that only
K = C (therefore ϵ = 0) is stable, corresponding to the frozen-kernel
dynamics. On the other hand, when C < 0 (green curve), K = 0
(therefore 2λϵ = −C >0) is the only stablefixed point, corresponding to
the frozen-error dynamics. Specifically, for C = 0 (red curve), the two
candidates collide and K = 0 (therefore ϵ = 0) becomes the bifurcation
point. As the fixed points collide and their stability exchange through

the bifurcation point (K, C) = (0, 0), the transition is identified as the
transcritical bifurcation.

Overall, we see that the twodynamics (and the criticalpoint) of the
QNN dynamics has a one-to-one correspondence to the two families of
fixed points (and their common fixed point) of the generalized LV
equation. The conserved quantity C = K(t) − 2λϵ(t) = (K(t)2 − 2ϵ(t)μ(t))/
K(t). Since K(t) > 0 at any finite time, the sign of constant is determined
by the dynamical index defined as

ζ = ϵðtÞμðtÞ=KðtÞ2: ð13Þ

If ζ ⋚ 1/2, we have C ⋛ 0, determining the bifurcation dynamics.
Indeed, the analytical closed-form solution (see Methods) to the

LV dynamics of Eqs. (10) supports the following theorem at the t ≫ 1
late time limit.

Theorem 1. Assuming relative dQNTK λ = μ(t)/K(t) being a constant at
late time, the QNN dynamics is governed by the generalized Lotka-
Volterra equation in Eq. (10) and possesses a bifurcation to two dif-
ferent branches of dynamics, depending on the value of a conserved
quantity C = K(t) − 2λϵ(t) = (1 − 2ζ)K(t) or equivalently the dynamical
index ζ = ϵ(t)μ(t)/K(t)2.
1. When ζ < 1/2 thus C > 0, we have the ‘frozen-kernel dynamics’

(c.f.29), where the QNTK K(t) = C is frozen and

ϵðtÞ / e�ηCt : ð14Þ

2. When ζ = 1/2 thusC =0, we have the ‘critical point’, where both the
QNTK and total error decay polynomially,

KðtÞ= 2λϵðtÞ= 1=ðηt + cÞ, ð15Þ

with c being a constant.
3. When ζ > 1/2 thus C < 0, we have the ‘frozen-error dynamics’,

where the total error ϵ(t) = R is frozen and both the kernel and the
residual error decay exponentially

KðtÞ=2λεðtÞ / e�2ηλRt : ð16Þ

The bifurcation can be connected to O0‘Omin intuitively. When
O0<Omin, it is clear thatR >0 andwe expect dynamical index ζ > 1/2 and
C < 0 so that it is the ‘frozen-error dynamics’. When O0>Omin, we know
the total error will decay to zero eventually, and therefore we can
correspond this branch to the ‘frozen-kernel dynamics’, where

Fig. 3 | Classical dynamics interpretation of total error and QNTK dynamics.
a The RHS of Eq. (12) shows a bifurcation. The gray region is nonphysical as K≥0. In
the physical region (K≥0), we have a single stable fixed point K = C when C > 0,
corresponding to the frozen-kernel dynamics (blue in b); and a single stable fixed
pointK =0whenC≤0, corresponding to the frozen error dynamics and critical point
(green and red inb) separately.bTrajectories of (2λ(∞)ϵ(t),K(t)) indynamicsofQNN

with different O0‘Omin, plotted in solid blue, red and green. Dashed curves show
the trajectory from Eq. (11). The logarithmic scale is taken to focus on the late-time
comparison. c The dynamics of corresponding λ(t) = μ(t)/K(t). The inset shows the
dynamics of ζ(t) = ϵ(t)μ(t)/K(t)2. The observable is XXZmodel with J = 2, andQNN is a
n = 6-qubit RPA with L = 192 parameters (for RPA D = L). The legend in b is also
shared with (c) and its inset.

Article https://doi.org/10.1038/s41467-024-53769-2

Nature Communications |         (2024) 15:9354 4

www.nature.com/naturecommunications


dynamical index ζ < 1/2 and C > 0. The case O0 =Omin is therefore the
critical point. In Fig. 3(c) inset, we indeed see the dynamical index
ζ → 0, 1/2, + ∞ when O0‘Omin. In our later theory analyses, we will
make this connection rigorous between O0‘Omin, the dynamical
index ζ ⋚ 1/2 and the bifurcation transition.

Unitary ensemble theory
In this section, we provide analytical results to resolve two missing
pieces of the LV model—the assumption that the relative dQNTK λ in
Eq. (9) is a constant at late time and the connection between the
dynamical index ζ⋚ 1/2 in Eq. (13) and theO0‘Omin cases. Our analyses
will rely on large depth D ≫ 1 (equivalently L ≫ 1), which allows us to
model each realization of the QNN ÛðθÞ as a sample from an ensemble
of unitaries and consider ensemble averaged values to represent the
typical case, ζ = ϵμ=K

2
, λ=μ=K . Note that we take the ratio between

averaged quantity via considering the sign of C. The ordering of
ensemble averages has negligible effects (see Supplementary Note 12).

As the QNN is initialized randomly at the beginning, the unitary
ÛðθÞ being implemented can be regarded as typical ones satisfying
Haar random distribution4,29,51, regardless of the circuit ansatz. While
this is a good approximation at initial time, we notice that at late time,
the QNN ÛðθÞ is constrained in the sense that it maps the initial trivial
state (e.g. product of ∣0i) towards a single quantum state, regardless of
whether the quantum state is the unique optimum or not. Therefore,
the late-time dynamics are always restricted due to convergence,
which wemodel as the restricted Haar ensemble with a block-diagonal
form,

ERH = UjU =
1 0

0 V

� �� 	
, ð17Þ

where V is a unitary with dimension d − 1 following a sub-system Haar
random distribution (only 4-design is necessary). Here we have set the
basis of the first column and row to representmapping from the initial
state to the final converged state. At late time, QNN converges to a
restricted Haar ensemble determined by the converged state. When
the converged state is unique, framepotential44 of the ensemble canbe
evaluated by considering different training trajectories, which con-
firms the ansatz in Eq. (17), as shown in Fig. 1 and Supplementary
Note 7.

The ensemble average for a general traceless operator is chal-
lenging to analytically obtain. To gain insights to QNN training, we
consider a much simpler problem of state preparation, where
Ô= ∣Φi Φh ∣ is a projector. In this case, we are interested in target values
O0 near the maximum loss function Omax = 1. Under such restricted
Haar ensemble, we have the following lemma.

Lemma 2. When the circuit satisfies the restricted Haar random
(restricted 4-design) ensemble and D ≫ 1 (therefore L ≫ 1), in state
preparation tasks the relative dQNTK λ1 goes to an L, d dependent
constant.WhenO0<Omax, the dynamical index ζ1 =0;whenO0 =Omax,
the dynamical index ζ1 = 1=2; when O0>Omax, the dynamical index ζ
diverges to + ∞.

This lemma derives from Theorem 3 in the Method.
While our results are general, in our numerical study that verifies

the analytical results, we adopt the random Pauli ansatz (RPA)29 as an
example (see Methods). Due to symmetry between maximum and
minimum in optimization, this restricted Haar ensemble therefore
fully explains the branches of dynamics in Theorem 1 quantitatively
and the assumption that λ approaches a constant qualitatively. From
asymptotic analyses of the restrictedHaar ensemble in Supplementary
Note 12, we also have both λ, C ∝ L/d, thus the exponential decay in LV
has exponent ∝ ηLt/d. Indeed, in a computation, ηLt describes the
resource—when a number of parameters L is larger, one needs to

compute and update more parameters, while taking fewer steps t to
converge.

As we show in Methods, Haar ensemble fails to capture the ζ
dynamics nor the bifurcation transition. Only in the case of frozen-
kernel dynamics, as the kernel does not change much during the
dynamics, theHaar predictions roughly agreewith the actual kernel, as
shown in Fig. 2a2 (see Methods).

Schrödinger equation interpretation
Besides the LV dynamics, we can also connect the transition to the gap
closing of the Hessian, via interpreting the training dynamics around
the extremum as imaginary Schrodinger evolution as we detail below.
The gradient descent dynamics in Eq. (2) leads to the time evolution of
thequantumstate ∣ψðθÞ�, whereθ are the variational parameters. In the
late time limit, omitting the t dependence in our notation, we can
expand the shifts δθℓ around the extremum θ* to second order as

δθ ’ �ηMðθÞjθ =θ* θ� θ*
� �

, ð18Þ

where the first-order term vanishes due to convergence and the
Hessian matrix M(θ) is

M‘1‘2
ðθÞ= ∂2LðθÞ

∂θ‘1
∂θ‘2

 !
=
∂ϵðθÞ
∂θ‘1

∂ϵðθÞ
∂θ‘2

+ ϵðθÞ ∂2ϵðθÞ
∂θ‘1∂θ‘2

: ð19Þ

We can then model a difference equation for the unnormalized “dif-
ferential state” ∣ΨðθÞ� � ∣ψðθÞ�� ∣ψðθ*Þ

E
as

δ∣ΨðθÞ� = � ηH1ðθÞ∣ΨðθÞ�, ð20Þ

whereH∞(θ)∼M(θ) is similar to theHessianmatrix (see Supplementary
Note 2). The difference equation can be interpreted as an imaginary
time Schrödinger equation, and we identify a transition with gap
closing ofH∞ (equivalentlyM(θ)) driven byO0 at the infinite time limit.

To provide insight into the transition, we explore the behaviors of
the gap of Hessian matrix. We consider the Hessian eigenvalues at the
late time limit of t → ∞ and large circuit depth in Fig. 4. For frozen-
kernel dynamics ofOmin<O0<Omax, Hessianmatrix in Eq. (19) becomes
a rank-one matrix with only one nonzero eigenvalue as ϵ(θ) → 0 (see
blue in the inset), which equals the kernel and is verified by the orange
andblack curve inFig. 4.While for frozen-error dynamicswithO0<Omin

(or O0<Omax), due to non-vanishing ϵ(θ), the Hessian has multiple
nonzero eigenvalues (see green in the inset). Overall, gap closing is
observed at the critical point. Such a transition at a finite system size
resembles that for non-Hermitian dynamical systems54–56. More

Fig. 4 | Spectrum gap of the effective Hamiltonian in Schrödinger interpreta-
tion ofQNN in the example ofXXZmodel.The spectrumgapofHessianmatrix of
the effective Shrödinger dynamics in t → ∞ (black). The gapless transition point
corresponds to O0 =Omin,Omax (red triangles). The orange line represents the
QNTK lim

t!1
K . Inset shows theHessian spectrumof the largest 10 eigenvalues for the

three cases O0‘Omin marked by triangles. The RPA consists of D = 64 layers
(equivalently L = 64 parameters) on n = 2 qubits. The parameters in XXZ model
is J = 2.
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discussions on the statistical physics interpretation and the closing of
the gap under different number of parameters can be found in Sup-
plementary Note 2.

Dynamics of limited-depth QNN
We have so far focused on controllable QNNs with a universal gate set
and large depth. In particular, for a general observable Ô, reaching
Omin may require a circuit of exponential depth (in the number of
qubits)57. In addition, Lemma 2 requires the (restricted) 4-design that
involves a polynomial circuit depth. However, we point out that these
depth requirements may be only necessary for the theory derivations
and not necessary for the transition phenomenon. Indeed, it is an
interesting question whether the transition still exists when the circuit
is not controllable—either the ansatz is not universal58,59 or the depth is
limited. Here we provide some results to the limited depth region of
the QNNs under study. In this case, the circuit depth L is limited such
that the QNN’s minimum achievable value of the observable OminðLÞ
deviates from the ground state energy Omin. Such a scenario is often
referred to as underparameterization.

We first consider the relative dQNTK λ1 and dynamical index ζ1
versus the depth. In Lemma 2, we provide a justification of both
quantities being constants for QNNs with a large depth D to approach
the restricted 4-design. In Fig. 5, we present a numerical example for
the target O0 = 1 in state-preparation tasks. The relative sample fluc-
tuations, defined as the standard deviation compared to its mean,
decay in a power-law scaling with L, and thus vanish in the asymptotic
limit of L ≫ 1. The mean values λ1 / �L and ζ1 ! 1=2 are shown in
Methods. The decay of fluctuation suggests that the ensemble-average
results in Lemma 2 can represent the typical samples. Note that
changing the order of the ensemble average for λ∞ (see Eq. (9)) and ζ∞
(see Eq. (13)) has negligible effects (see Supplementary Note 12).
Similar results for other observables, e.g. XXZ model, are shown in
Supplementary Note 12. The speed of convergence roughly agrees
with the 4-design requirement of Lemma 2. However, we emphasize
that sample fluctuation being small is only a sufficient but not neces-
sary condition for the dynamical transition, as we show in the below
example.

To our surprise, in Fig. 6, we find that the dynamical transition
induced by the target valueO0 persists for a QNN with depth D = L = n
equaling the number of qubits, much less than what the theory
requires. The results align with the dynamics of the controllable QNN
presented in Fig. 2. We numerically find that the critical values for
limited-depth QNNs, denoted as OminðLÞ, can deviate from the true
ground state energyOmin of a given observable Ô. The critical value for
a QNN with L ≪ d will not only depend on depth due to limited
expressivity, but also fluctuates due to different initializations. We
suspect this may be caused by the training converging to different

local minimum traps49,60. The deviation of the critical point OminðLÞ
fromOmin indicates that the exponential depth for the convergence to
Omin is not necessary for the dynamical transition to persist. Moreover,
despite the examplebeing alsonotwithin the applicability of Lemma2,
the relative dQNTK λ still converges to a constant at late time as we
show in SI. However, large sample fluctuation persists in this example
due toD = L = n being shallow, violating the unitary design assumption
in Lemma 2. However, we point out that as long as λ has small time
fluctuation at late time, its dynamics still follows the generalized LV
equation discussed in Eq. (10). The above results indicate that the
depth requirement of the transition may be much less than that for
overparametrization61.

Speeding up the convergence
While the transition in training dynamics is interesting, the crucial
question in practical applications is about how to speed up the training
convergence of QNNs. Typically, two types of loss functions are
adopted in optimization problems, the quadratic loss function in
Eq. (1) that we have focused on, and the linear loss function

LðθÞ= hÔi: ð21Þ

While the linear loss function is widely used in variational quantum
eigensolver7,58, we note that unlike the versatile quadratic loss function
that has a tunable target value, a linear function does not allow pre-
paring excited states above the ground state energy nor can it be
utilized to data classification and regression. Moreover, for the case of
solving the ground state, we show that adopting the quadratic loss
function and choosing a target value well below the achievable mini-
mum can speed up the convergence compared to the linear loss
function case. Interestingly, ‘shooting for the star’ will allow a faster
convergence.

To begin with, we extend our theory framework to characterize
the training dynamics of deep controllable QNNs with a linear loss
function. To study its convergence, we further consider its residual
error εðθÞ= hÔi �Omin. Via a similar approach (see details in Supple-
mentary Note 8), we have the dynamical equations for the error ε(t) as

δεðtÞ= � ηKðtÞ+Oðη2Þ, ð22Þ

where K(t) is still the QNTK defined in Eq. (5). The dynamical equation
for QNTK K(t) becomes

δKðtÞ= � 2ημðtÞ+Oðη2Þ, ð23Þ

with μ(t) being dQNTK defined in Eq. (6). Onemay notice that the only
difference compared to Eqs. (7) and (8) is the missing of ϵ(t) = ε(t) on
RHS due to a linear loss.

In the late-time limit, the results in ‘Unitary ensemble theory’
section still applies to linear loss, and the relative dQNTK λ(t) ≡ μ(t)/
K(t) = λ converges to a constant, leading to

∂tεðtÞ = � ηKðtÞ,
∂tKðtÞ = � 2ηλKðtÞ:

�
ð24Þ

Unlike the generalized LVmodel in Eqs. (10) for the quadratic loss case,
here the dynamics of K(t) is self-determined, whereas the dynamics of
ε(t) = ϵ(t) is fully determined byK(t)—the kernel-error duality is broken.
Eqs. (24) can be directly solved as

2λϵðtÞ= 2λεðtÞ=KðtÞ / e�2ηλt : ð25Þ

Both ϵ(t) and K(t) decay exponentially at a fixed rate ∝ λ. In Fig. 7, we
present the numerical simulation results (black solid), and observe a
good agreement with the theory (black dashed) from Eq. (25).

Fig. 5 | Late-time sample fluctuations. The standard deviations normalized by
mean for the relative dQNTK λ∞ (a) and dynamical index ζ∞ (b) are plotted versus
the number of parameters L. Red dashed lines represent power-law fitting results.
Here the RPA is applied on n = 5 qubits with different L parameters (via tuning
number of layers D). The observable is a state projector and the target value
is O0 = 1.
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With the linear-loss theory developed, we can now compare the
convergence speed between the different choices of loss functions in
solving the minimum value Omin and the corresponding ground state.
As indicated in Eq. (25), the linear loss function provides an expo-
nential convergence with the exponent 2ηλ being a constant (black).
For quadratic loss functions, at the critical point setting O0 =Omin, the
convergence is polynomial and exponent is zero (green lines in Fig. 7),
corresponding to a much slower convergence. However, recall that
with a quadratic loss function, one can set O0<Omin corresponding to
the frozen error dynamics, where the residual error ε(t) decays expo-
nentially with the exponent 2ηλR (see Eq. (16)). Here the residual R is
freely tunable by the target valueO0. Therefore, an appropriate choice
of O0 can provide a larger exponent and therefore faster convergence
towards the solution, and we verify it in Fig. 7 through different values
of O0 (red and blue curves). Indeed, setting the target to be unac-
hievablewill still converge theoutput to the ground state, although the
remaining error is frozen.

Experimental results
In this section, we consider the experimental-friendly hardware-effi-
cient ansatz (HEA) to experimentally verify our results on real IBM
quantum devices. Each layer of HEA consists of single qubit rotations
along Y and Z directions, and followed by CNOT gates on nearest
neighbors in a brickwall style7. Our experiments adopt the hardware
IBM Kolkata, an IBM Falcon r5.11 hardware with 27 qubits, via IBM
Qiskit62. The device has median T1 ∼ 98.97 us, median T2 ∼ 58.21us,
medianCNOT error ∼9.546 × 10−3,median SX error ∼ 2.374 × 10−4, and
median readout error ∼ 1.110 × 10−2. We randomly assign the initial
variational angles, distributing them within the range of [0, 2π), and
maintain consistency across all experiments. To suppress the impact
of error, we average the results over 12 independent experiments
conducted under the same setup for three distinct choices,
O0 = −10, −12, −14. In Fig. 8, the experimental data (solid) on IBM
Kolkata agree well with the noisy theorymodel (dashed) and indicate
the frozen-error dynamicswith constant error (green), the critical point
of polynomial decaying error (red) and the frozen-kernel dynamics of
exponential decaying error (blue). Individual training data and noisy
theory model are presented in Supplementary Note 10.

Fig. 7 | Dynamics in QNN in the example of XXZ model with different loss
functions. In a and b, we show the dynamics of residual error ε(t) (equals to total
error ϵ(t)) and QNTK K(t) optimized with linear loss function (black solid) and
quadratic loss functions with different O0. O0 = − 22 (green) corresponds to
O0 =Omin at critical point and O0 = −26, −30 (red and blue) correspond toO0<Omin

in frozen error dynamics. Black dashed line indicates the exponential decay rate of
the theoretical result in Eq. (25). Thin lines with light colors represent dynamics
with different initializations in each case, while the thick lines represent the
ensemble average. Here random Pauli ansatz (RPA) consists of L = 192 variational
parameters (D = L layers) on n = 6 qubits, and the parameter of XXZ model is J = 2.

Fig. 6 | Dynamics in limited-depth QNNs in the example of the XXZ model. All
notations share the same meaning as in Fig. 2. The critical point OminðLÞ for such
QNNs depends on L and has sample fluctuations. Here random Pauli ansatz (RPA)

consists of L = 6 variational parameters (D = L for RPA) on n = 6 qubits, and the
parameter in XXZ model is J = 2.

Fig. 8 | Dynamics of total error ϵ(t) on IBMquantumdevices, Kolkata. Solid and
dashed curves represent experimental and theoretical results. An n = 2 qubit D = 4-
layer hardware efficient ansatz (with L = 16 parameters) is utilized to optimize with
respect to XXZ model observable with J = 4. The shaded areas represent the fluc-
tuation (standard deviation) in the experimental data.
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Discussion
Our results go beyond the early-time Haar random ensemble widely
adopted in QNN study4,29,51 and reveal rich physics in the dynamical
transition controlled by the target loss function. The target-driven
transcritical bifurcation transition in the dynamics of QNN suggests a
different source to the transition without symmetry breaking. From
the Schrödinger equation interpretation, there may exist other unex-
plored sources that can induce dynamical transition, especially when
the QNN has limited depth and controllability. In practical applica-
tions, the dynamical transition guides us towards better design of loss
functions to speed up the training convergence.

Another intriguing question pertains to the differences between
classical and quantum machine learning within this formalism. In our
examples, the target O0 can be interpreted as a single piece of super-
vised data in a supervised machine learning task. Therefore, the
dynamical transition we have discovered could be seen as a simplified
version of a theory of data. Classical machine learning also extensively
explores dynamical transitions, whether in relation to learning rate
dynamics63,64 or the depth of classical neural networks43,65. It is an open
question whether some results similar to ours can be established for
classical machine learning, especially in the context of the large-width
regime of classical neural networks66. It is also an open problem how
our results can generalize to the multiple data case.

Finally, we clarify the difference of our results to some related
works. Firstly, while existing works28–31,33 on the quantum neural tan-
gent kernel provide a perturbative explanation of gradient descent
dynamics that fails to uncover the dynamical transition, our work
uncovers the dynamical transition and formulates non-perturbative
critical theories about the transition triggered by modifications in the
quantum data. Secondly, we have developed a non-perturbative,
phenomenological model using the generalized Lotka-Volterra equa-
tions to describe the dynamics as a transcritical bifurcation transition,
providing a first-principle explanation using the restricted Haar
ensemble. Thirdly, we provide an interpretation of the gradient des-
cent dynamics using Schrödinger’s equation in imaginary time, where
the Hessian spectra can be mapped to the effective Hamiltonian using
the language of physics, allowing us to study the effective spectral gap.
Finally, using correlated dynamics of the Haar ensemble, we offer a
more precise derivation of the statistics of the quantumneural tangent
kernel, going beyond ref. 29.

Methods
QNN ansatz and details of the tasks
The random Pauli ansatz (RPA) circuit is constructed as

ÛðθÞ=
YD
‘= 1

Ŵ ‘V̂ ‘ðθ‘Þ, ð26Þ

whereθ= (θ1,…,θL) are the variational parameters. ForRPA,D= L. Here
fŴ ‘g

L
‘= 1 2 UHaarðdÞ is a set of fixed Haar random unitaries with

dimension d = 2n, and V̂ ‘ is a n-qubit rotation gate defined to be

V̂ ‘ðθ‘Þ= e�iθ‘X̂ ‘=2, ð27Þ

where X̂ ‘ 2 fσ̂x , σ̂y, σ̂zg�n
is a random n-qubit Pauli operator non-

trivially supported on every qubit. Once a circuit is constructed,
fX̂ ‘, Ŵ ‘g

L
‘= 1 are fixed through the optimization. Note that our results

also hold for other typical universal ansatz of QNN, for instance,
hardware efficient ansatz (see ‘Experimental results’ and Supplemen-
tary Note 10).

In the main text, some of our main results are derived for general
observable Ô. To simplify our expressions, we often consider Ô to be
tracelss, for instance a spin Hamiltonian, which is not essential to our
conclusions. A general traceless operator can be expressed as random

mixture of Pauli strings (excluding identity)

Ô=
XN
i = 1

ciP̂i ð28Þ

with real coefficients ci 2 R and nontrivial Pauli
P̂i 2 fÎ, σ̂x , σ̂y, σ̂zg�n

=fÎ�ng. To obtain explicit expressions, we also
consider the XXZ model, described by

ÔXXZ = �
Xn
i = 1

σ̂x
i σ̂

x
i + 1 + σ̂

y
i σ̂

y
i+ 1 + J σ̂z

i σ̂
z
i + 1 + σ̂

z
i


 �� 
: ð29Þ

To help understanding the non-frozenQNTK phenomena,we also
consider a state preparation case with the observable Ô= ∣Φi Φh ∣,
where ∣Φi is the target state.

Hamiltonian description and analytical solution of the LV
dynamics
From the conservation law in Eq. (11), we can introduce the canonical
coordinates

P = logðKÞ, Q= logð2λϵÞ ð30Þ

and the associated Hamiltonian

HðQ,PÞ=ηðeQ � ePÞ � ηð2λϵ� KÞ, ð31Þ

fromwhich the LV equations inEq. (10) canbe equivalently rewritten as
the standard Hamiltonian equation generalizing ref. 67,

dQ
dt = ∂H

∂P = fQ,Hg,
dP
dt = � ∂H

∂Q = fP,Hg,

(
ð32Þ

where fA,Bg= ∂A
∂Q

∂B
∂P � ∂A

∂P
∂B
∂Q denotes the Poisson bracket. From the

position-momentum duality in Hamiltonian formulation, we identify
an error-kernel duality between eQ ∼ ϵ and its gradient eP = ∣∂ϵ/∂θ∣2.

We can obtain an analytical solution of Eq. (10) directly. When
C ≠ 0, we have

λϵðtÞ =C= �2+B1e
ηCt

� 
,

KðtÞ =C= 1� 2B�1
1 e�ηCt

h i
,

8<
: ð33Þ

where B1 is a constant fitting parameter as at an early time we do not
expect Eq. (10) to hold. When C = 0, Eq. (10) leads to polynomial decay
of both quantities

KðtÞ=2λϵðtÞ=2= 2ηt +B�1
2

� �
, ð34Þ

where B2 is again a fitting parameter as at an early time we do not
expect Eq. (10) to hold. Indeed, we observe the bifurcation, and the
convergence towards the fixed points is exponential for C ≶ 0 and
polynomial for C = 0.

Details of restricted Haar ensemble
Here we evaluate the average QNTK, relative dQNTK, and dynamical
index for the restricted Haar ensemble proposed in Eq. (17). We focus
on the state preparation task to enable analytical calculation. Aswe aim
to capture the late time dynamics with the state preparation task, we
will be interested in the dynamics when the output state ∣ψ0

�
has

fidelity hÔi= jhψ0jΦij2 =O0 � R� κ, with κ ∼ o(1) indicating late-time
where the observable is already close to its reachable target. Here the
constant remaining term R = O0 − 1 when O0 > 1 and zero otherwise.
Note that identity is the maximum reachable target value in state
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preparation. Under this ensemble, we have the following result (see
details in Supplementary Note 12)

Theorem3. For state projector observable Ô= ∣Φi Φh ∣, when the circuit
satisfies restricted Haar ensemble, the ensemble average of QNTK,
relative dQNTK, and dynamical index

K1 =
L
2d

O0 +R

 �

1�O0 � R

 �

, ð35Þ

ζ1 =
R

O0 +R� 1
1� 1

2ðO0 +RÞ
+
d
L

� �
, ð36Þ

λ1 =
L
4d

1� 2O0 � 2R

 �� O0 +R

2
, ð37Þ

at the L ≫ 1, d ≫ 1 limit, where the target loss function value O0≥0,
remaining constant R= minf1� O0, 0g.

Our results are verified numerically in Fig. 9 in state preparation
task, where we plot the above asymptotic equations as magenta
dashed lines and the full formula in SI as solid red lines. Note that
Lemma 2 does not require d ≫ 1, but merely D ≫ 1. Indeed, full
expressions inTheorem3can also bederived for anyfinited, justmuch
more lengthy.

Subplot (a) plots K1 versus O0. At late time, if the target O0 ≥ 1,
from O0 = 1 + R we directly have K1 =0; if O0 < 1, we have R = 0 and
K1 / O0ð1�O0Þ being a constant.

Subplot (b) shows the agreement of ζ1 versus L, when we fix
O0 = 1. As predicted by the theory of Eq. (36), as R = 0 in this case,

ζ1 = 1=2 when L ≫ 1. Indeed, we see convergence towards 1/2 as the
depth increases. We also verify the ζ1 versus O0 relation in the inset,
where ζ1 =0 forO0 < 1, 1/2 forO0 = 1 and diverges forO0 > 1. Note that
for a circuit with medium depth L ∼ poly(n), ζ1 = 1=2 +d=L would
slightly deviate from 1/2 forO0 = 1 (Fig. 9(b)). This indicates a ‘finite-size’
effect affecting the dynamical transition, whichwedefer to futurework.

Subplot (c) shows the agreement of λ1 versus L, where the linear
relation is verified. As predicted by Eq. (37), this is the case regardless
ofO0 value.We also verify the dependence of λ1 on n (thus d = 2n) with
a fixed L in subplot (d), where we see as n increases, λ1 converges to a
constant only relying on O0.

Haar ensemble results
We also evaluate the Haar ensemble expectation values for reference,
which captures the early-time QNN dynamics. Under the Haar random
assumption, we find the following lemma.

Lemma4. For traceless operator Ô, when the initial circuit satisfiesHaar
random (4-design) and circuit L≫ 1 and d≫ 1, the ensemble averages of
QNTK, relative dQNTK and dynamical index have leading order

K0 = L
d tr Ô

2� �
2ðd � 1Þðd + 1Þ2

,

ζ0 = � 1
L

1 +
tr Ô

4� �
tr Ô

2� �2
2
64

3
75

ð38Þ

Restricted Haar ensemble average

Haar ensemble average

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9 | Ensemble average results under restricted Haar ensemble (top) and
Haar ensemble (bottom). In top panel, we plot a K1 versus O0 with L = 512 fixed,
b ζ1 versus L, λ1 versus (c) L and d n with L = 512 at late time in state preparation.
We set O0 = 1 for b and d, and O0 = 5 for c. Blue dots in top panels a–c represents
numerical results from late-time optimization of n = 5 qubit RPA. Red solid lines
represent exact ensemble averagewith restrictedHaar ensemble in Supplementary
Equations (256), (313), (279) in Supplementary Note 12. Magenta dashed lines
represent asymptotic ensemble average with restricted Haar ensemble in Eq. (35),
(36), (37)whichoverlapwith the exact results (red solid). The observable in all cases

is ∣Φi Φh ∣with ∣Φi being a fixedHaar random state. In the inset ofb, wefix L = 512. In
bottom panel, we plot (e) fluctuation SD½K0�=K0 versus L, (f) ζ0 versus L, λ0 versus
(g) L and (h) nwith L = 128 under random initialization. Green dots in bottompanel
from e–g represent numerical results from random initializations of n = 6 qubit
RPA. Brown solid lines represent the exact ensemble average with the Haar
ensemble in Supplementary Equations (241), (180), (120) in Supplementary Note 11.
Gray dashed lines represent asymptotic ensemble average with a restricted Haar
ensemble in Eqs. (45), (39), (40). The observable and target in e–h are XXZ model
with J = 2 and O0 =Omin. Orange solid line in e represents results from ref. 29.
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+
1
2

tr Ô
4� �

tr Ô
2� �2 � dO0

tr Ô
3� �

tr Ô
2� �2 � 3

d

2
64

3
75, ð39Þ

λ0 =
L tr Ô

3� �
4d tr Ô

2� � : ð40Þ

Note that for observables with non-zero trace, evaluation is also
possible, we present those lengthy formulae and the proofs in Sup-
plementary Note 11. Note that similar to Theorem 3, here the
requirement of d ≫ 1 is for simplification of formula only and the full
formula inSI applies to any finited. Meanwhile, it is important to notice
the dimension dependence of the trace terms.

Specifically, for the XXZ model we considered, when d ≫ 1, the
above Lemma 4 leads to

K0XXZ ’ 1 + J2
� � Ln

d
, ð41Þ

ζ0XXZ ’ � 1
L

1 +
3
d

� �
�O0

3Jð1� J2Þ
4ð1 + J2Þ2n

, ð42Þ

λ0XXZ ’ 3Jð1� J2ÞL
4ð1 + J2Þd

: ð43Þ

Weverified theHaar predictionon ζ0 and λ0 with random initialized
circuits in Fig. 9(f)–(h). Note that when L is large enough, ζ0XXZ scales
linearly with O0, while λ0XXZ converges to zero exponentially with n.

In the Haar case, we can also obtain the fluctuation properties.

Theorem 5. In the asymptotic limit of wide and deep QNN d, L≫ 1, we
have the ensemble average of QNTK standard deviation (4-design)

SD½K0�=
3L

4d6 d2tr Ô
2� �2

� 2d tr Ô
2� �

tr Ô
� �2

+ tr Ô
� �4� ��

+
L2

4d5 d tr Ô
4� �

� 4 tr Ô
3� �

tr Ô
� �h i!1=2

:

ð44Þ

Note that similar to Theorem 3 and Lemma 4, here the require-
ment of d ≫ 1 is for simplification of formula only and the full formula
in SI applies to any finite d.

For traceless operators, Eq. (44) can be further simplified and the
relative sample fluctuation of QNTK is

SD½K0�
K0

=
1ffiffiffi
L

p L
tr Ô

4� �
tr Ô

2� �2 + 3

0
B@

1
CA

1=2

: ð45Þ

This result refines ref. 29 with a more accurate ensemble averaging

technique and provides an additional term� trðÔ4Þ=trðÔ2Þ
2
. Therefore,

the samplefluctuationalsodependson theobservablebeingoptimized.
Specifically, for the XXZ model we considered, Eq. (45) becomes

SD½K0�
K0

’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
L

L
d
+ 1

� �s
: ð46Þ

When L ≫ d, the relative fluctuation SD½K0�=K0 � 1=
ffiffiffi
d

p
is constant.

However, as d = 2n is exponential while a realistic number of layers L is

polynomial in n, therefore d ≫ L is more common, where the relative
fluctuation SD½K0�=K0 �

ffiffiffiffiffiffiffi
1=L

p
decays with the depth, consistent with

ref. 29. We numerically evaluate the ensemble average in Fig. 9(e) and
find a good agreement between our full analytical formula (red solid,
Eq. (241) in SI) and the numerical results (blue circle). The asymptotic
result (magenta dashed, Eq. (46)) also captures the scaling correctly.
The results refine the calculation of ref. 29, which has a substantial
deviation when L and d are comparable.

Data availability
The data generated in this study have been deposited in Github
[https://github.com/bzGit06/QNN-dynamics].

Code availability
The theoretical results of the manuscript are reproducible from the
analytical formulas and derivations presented therein. Additional code
is available in Github [https://github.com/bzGit06/QNN-dynamics].
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