
Axion baryogenesis puts a new spin on the Hubble tension
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We show that a rotating axion field that makes a transition from a matterlike equation of state to a
kinationlike equation of state around the epoch of recombination can significantly ameliorate the Hubble
tension, i.e., the discrepancy between the determinations of the present-day expansion rate H0 from
observations of the cosmic microwave background on one hand and type Ia supernovae on the other. We
consider a specific, UV-complete model of such a rotating axion and find that it can relax the Hubble
tension without exacerbating tensions in determinations of other cosmological parameters, in particular the
amplitude of matter fluctuations S8. We subsequently demonstrate how this rotating axion model can
also generate the baryon asymmetry of our Universe, by introducing a coupling of the axion field to
right-handed neutrinos. This baryogenesis model predicts heavy neutral leptons that are most naturally
within reach of future lepton colliders, but in finely tuned regions of parameter space may also be accessible
at the high-luminosity LHC and the beam dump experiment SHiP.
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I. INTRODUCTION

A rotating axion field in the early Universe has proven to
be a powerful tool in addressing the cosmological deficits of
the StandardModel (SM). Rotating axions provide a class of
mechanisms for baryogenesis, called axiogenesis [1–19],
broaden the parameter space for axion dark matter via the
kinetic misalignment mechanism [20–23], generate cosmic
perturbations [24], and open new windows onto the early
Universe through gravitational waves [22,25–29]. In these
models, a coherent axion field that is initially displaced
from the origin of field space has interactions with a
radiation bath that enable it to efficiently damp its initial
radial oscillations while retaining sizeable rotational energy.

These interactions can also mediate the (partial) transfer of
the axion’s initial angular momentum to a particle number
asymmetry in the radiation bath, enabling a range of natural
baryogenesis scenarios. The axion’s ensuing cosmological
evolution consists of coherent field rotations that transition
from a matterlike (ρ ∝ 1=a3, with a the scale factor of the
Universe) to a kinationlike (ρ ∝ 1=a6) equation of state,with
the details of the transition determined by the potential
within a given model. We refer to this axion evolution as a
whole as axion kination.
Another outstanding cosmological puzzle is posed

by the persistent tensions between high- and low-redshift
determinations of the Hubble constant H0. Most strik-
ingly, the most recent determination of H0 from Cepheid-
calibrated type-Ia supernovae [30] disagrees at the 5.7σ
level from the values preferred by best-fit ΛCDM (cold
dark matter) models to Planck data [31]. This discrepancy
is part of a broader pattern (see, e.g., Refs. [32–37]
for reviews), where indirect determinations of H0 from
ΛCDM fits to cosmological datasets consistently prefer

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 110, 083534 (2024)

2470-0010=2024=110(8)=083534(18) 083534-1 Published by the American Physical Society

https://orcid.org/0000-0002-8395-7056
https://orcid.org/0000-0002-3573-339X
https://orcid.org/0000-0002-0959-6360
https://ror.org/017zqws13
https://ror.org/01kg8sb98
https://ror.org/05vt9qd57
https://ror.org/01an3r305
https://ror.org/024mw5h28
https://ror.org/024mw5h28
https://ror.org/02chw6z69
https://ror.org/057zh3y96
https://ror.org/047426m28
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.083534&domain=pdf&date_stamp=2024-10-28
https://doi.org/10.1103/PhysRevD.110.083534
https://doi.org/10.1103/PhysRevD.110.083534
https://doi.org/10.1103/PhysRevD.110.083534
https://doi.org/10.1103/PhysRevD.110.083534
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


significantly lower values of H0 than do local distance-
ladder measurements.
In this paper, we construct a minimal model of axion

baryogenesis that allows the rotating axion to make the
transition to kination as late as the era of cosmic microwave
background (CMB) formation while still successfully
generating the baryon asymmetry of the Universe. We find
that the Hubble tension can be substantially mitigated when
a rotating axion field initially contributing ∼1% of the
matter density transitions from matter to kination near
recombination. We also find that, unlike many other early
Universe approaches to the Hubble tension, axion kination
has the advantage of easing the Hubble tension without
exacerbating tensions in other observables, as we discuss
further below.
In order for a rotating axion to contribute at the percent

level to the matter density of the Universe around recombi-
nation, its potential must be governed by relatively low
mass scales. This is easiest to accomplish if the axion is not
directly coupled to particles carrying SM charges, so that
quantum corrections to the potential of the radial direction
can be suppressed. We thus introduce SM-singlet right-
handed neutrino states in order to transfer the axion’s
Peccei-Quinn (PQ) charge to SM lepton number, which is
subsequently reprocessed into baryon number by electro-
weak sphaleron processes. We demonstrate here that
successful baryogenesis together with a low axion mat-
ter-to-kination transition scale ac yields sharp predictions
for the masses and interaction strengths of the right-handed
neutrinos, which result in a motivated parameter space that
is largely within future experimental reach.
The organization of this paper is as follows. We begin by

discussing the cosmology of rotating axions in Sec. II and
the requirements for realizing a CMB-scale transition. In
Sec. III we perform a fit to CMB, large-scale structure, and
supernova data and quantify the degree to which axion
kination can address the Hubble tension. In Sec. IV
we construct a minimal model of baryogenesis using
CMB-scale axion kination, and discuss the terrestrial
signatures that it predicts. Our conclusions are in Sec. V.
Further details about the cosmology of the model, the
evolution of axion perturbations, and the axion equation of
state are discussed in Appendixes A–D.

II. AXION KINATION AT THE CMB EPOCH

The axion of interest to us is a Nambu-Goldstone boson
that results from the spontaneous breaking of a globalUð1Þ
symmetry, which we call a Peccei-Quinn (PQ) symmetry.
Explicit breaking of this PQ symmetry in the early Universe
can induce rotations in the angular, i.e., axion, direction of
the field space [38]. This rotational motion can have a
major impact on the subsequent cosmological evolution
of the axion field. In particular, we consider the axion
cosmologies developed in Refs. [4,6,9,25,39], where a
complex field P ¼ 1=

ffiffiffi
2

p
reiθ=f initially rotates at a radial

displacement away from the minimum of the potential.
While the axion rotation redshifts toward the radial mini-
mum, the energy density of the axion field ρrot redshifts as
matter. Once the radial mode reaches the minimum of its
potential, the rotations continue and the energy density now
redshifts as kination.1

We now describe the evolution of the rotation in more
detail. The complex field P is assumed to take a large initial
field value after inflation, as in the Affleck-Dine mecha-
nism [38]. At large field values, higher-dimensional oper-
ators in P can be important for determining the field
evolution. We consider higher-dimensional operators that
violate the PQ symmetry and therefore give mass to the
axial component of P, thereby providing a kick to the
angular direction and initiating the rotations of P.
The initial axion rotation is generically elliptical, i.e., a

superposition of circular rotations and radial oscillations.
This is because gradients of the potential are nonvanishing
in both directions. Interactions of P with a thermal bath at
temperature T allow the coherent axion field to reach
thermal equilibrium, after which the radial oscillation mode
is dissipated. The circular rotation mode remains almost
intact as long as the charge density stored in the axion field
nPQ ¼ r2θ̇ is larger thanmPT2, wheremP is the mass of the
radial mode. This is because the free energy is minimized
when most of theUð1Þ charge is carried by the scalar field’s
coherent rotation rather than by particles in the bath [4,40]
(see also [41]). Thus, after thermalization, the rotation
becomes circular.
The PQ charge density associated with rotation,

nPQ ¼ r2θ̇, decreases as a−3 due to cosmic expansion. As
long as the radius of the circular rotation is larger than the
value of the radial mode at the minimum of the potential,
r ≫ vPQ, the radius of rotation then decreases with the
expansion of the Universe to ensure charge conservation.
From the equation of motion θ̇ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið∂V=∂rÞ=rp

, we can see
that if VðPÞ is nearly quadratic when r ≫ vPQ, θ̇ is simply
constant and given by mP. Since nPQ ∝ a−3, the radius
squared scales as r2 ∝ a−3, and the energy density
of the rotation decreases as nonrelativistic matter,
ρrot ∝ θ̇2r2 ∝ a−3. The radius eventually reaches the global
minimum of the potential, after which the radius is fixed
while the angular velocity decreases in proportion to a−3

based on nPQ ∝ a−3. The energy density of the rotation,
which is dominantly the kinetic energy ρrot ∝ θ̇2r2, then
decreases in proportion to a−6.
The exact time dependence of the axion evolution

depends in detail on the scalar field potential in a given

1If the axion is massive, then the kination phase will
ultimately end when the angular velocity is sufficiently close
to the axion mass. In this work, we assume that the axion is
either massless or sufficiently light that ρrot redshifts as kination
well past recombination.
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model. We consider here the “two-field” model studied
in [25]. The circular motion of the axion is described in this
model by the effective Lagrangian

L≃
1

2
F2ð∂μθ∂μθÞ

−
1

4
m2

PF
2

0
@ð1þ r2PÞþð1− r2PÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

�
2vPQ
F

�
4

s 1
A; ð1Þ

where F≡ ffiffiffi
2

p
rð1þ v4PQ=r

4Þ1=2 is the effective radial
mode, θ is the angular mode, mP is the mass of the radial
mode, vPQ is the Uð1Þ symmetry breaking scale, and
rP > 1 is the ratio of the masses of the “two fields” in
the UV model. When r ≫ vPQ, F > vPQ and the potential
of the effective radial mode is nearly quadratic for any rP. A
minimum of the potential develops at r ¼ ffiffiffiffiffi

rP
p

vPQ. This
potential satisfies the condition for the dynamics described
in the previous paragraph. The peculiar form of the
potential arises from integrating out the heavier of the
two fields. See Appendix A for a full discussion of the UV
completion of this effective Lagrangian. The UV comple-
tion is supersymmetric, which is important for ensuring that
the scalar potential considered in this model remains a
reliable description of the system over a wide range of
scales.
During the rotation, the kinetic terms for F are negli-

gible. This model has four free parameters: vPQ, rP, mP,
and the conserved PQ charge nPQ stored in the rotating
axion field, which is determined by the initial conditions.
The PQ charge controls the abundance of the axion field,
while the parameters vPQ and rP determine the value of F at
the minimum of the potential.
In order to generate the observed baryon asymmetry

from the axion rotation, the angular velocity θ̇ needs to be
sufficiently large. As we will see in Sec. IV, the angular
velocity that is observationally preferred for CMB-scale
axion kination is too small to account for the baryon
asymmetry of our Universe within a quadratic potential. We
will therefore add a quartic term to the potential in order to
explain the observed baryon asymmetry, as we discuss
below in Sec. IV. The effects of this additional contribution
to the potential are important at high temperatures when the
SM baryon asymmetry is generated but are negligible by
the CMB epoch. Thus, Eq. (1) remains the appropriate
action governing the effect of the rotating axion on the
CMB power spectrum.
Phenomenologically, this model’s impact on cosmologi-

cal observables can be characterized by three parameters:
the overall abundance of the axion fkinðacÞ, the scale factor
ac where the axion transitions from matter to kination, and
rP, which controls the equation of state. The fraction

fkinðaÞ≡ ρrotðaÞ
ρmðaÞþρrðaÞþρrotðaÞ refers to the ratio of the energy

density in the rotating axion field ρrot to the sum of matter

ðρmÞ, radiation ðρrÞ, and rotation energy densities. The
scale factor ac denotes the scale factor when fkinðaÞ is
maximized and controls the timing of the matter-kination
transition. Meanwhile the shape parameter rP determines
how rapidly the rotating field transitions from a matterlike
(w ¼ 0) to a kinationlike (w ¼ 1) equation of state, as
shown in the solid curves in Fig. 1, where different colors
represent different values of rP as indicated. The corre-
sponding adiabatic sound speed-squared c2s is shown by the
dashed curves. As seen in Fig. 1, while rP can vary from
unity to infinity, the corresponding variation of the curve
wðaÞ is limited. A combination of all four model param-
eters determines ac, which together with nPQ then deter-
mines fkinðacÞ. The homogeneous cosmology of this
two-field model, including the derivation of the function
wðaÞ, and the associated Boltzmann equations describing
the evolution of axion perturbations are described in detail
in Appendixes B and C.
We show the evolution of density perturbations in the

two-field model for two values of comoving wave number
(k ¼ 0.1=Mpc and k ¼ 1=Mpc) in Fig. 2. Here we choose a
representative rP ¼ 1.1, and choose fkinðacÞ and ac
according to the best-fit values of cosmic parameters given
in Table I below. The axion equation of state is super-
imposed for reference (dotted line). The kination perturba-
tions follow those of CDM while w ≈ 0, and they begin to
oscillate rapidly when the variation of w with scale factor
becomes appreciable. Note that for the indicated value of ac
the onset of kination oscillations occurs after the end of the
baryon drag epoch.
As we will see in Sec. III, an axion transitioning from

matter to kination during the CMB epoch yields a good fit
to observations when the energy stored in the rotating axion
is Oð1%Þ of the total energy around the time of recombi-
nation, more precisely fkin ≃ 0.01 at T ¼ Tc ≃ 0.3 eV.
For such a low-scale transition, we need m2

Pv
2
PQjTc

≃
ð0.13 eVÞ4. The perturbativity of the complex-field

FIG. 1. The equation of state parameter w (solid curves) and the
adiabatic sound speed-squared c2s (dashed curves) of the rotating
axion as a function of the scale factor a, where a ¼ a1=3 when w
is equal to that of radiation w ¼ 1=3. Here rP > 1 parametrizes
the shape of the potential.
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potential requires mP < vPQ, giving

mP ≲ 0.13 eV: ð2Þ

With such a small energy scale, such an axion is most
readily thermalized within a dark sector that is sequestered
from both the SM and the supersymmetry-breaking sector,
so that the supersymmetry-breaking mass term mP is
naturally suppressed relative to SM scales. The thermal-
ization required to dissipate the radial oscillations must
then proceed via a decoupled dark sector bath. We require

such thermalization to occur before coherent radial axion
oscillations dominate the dark sector, in order to avoid
scenarios with an unacceptably large dark radiation energy
density. At the time of thermalization, the energy density of
the rotation is of the same order as that of the dark radiation,
but the rotating axion will come to dominate over the dark
radiation bath during the period where it redshifts as matter.
Thus, by recombination the contribution of the dark
radiation to the energy density of the Universe is generi-
cally negligible. We also comment that the requirement that
m2

Pv
2
PQ ≃ ð0.13 eVÞ4 picks out an energy scale substan-

tially below the QCD scale. Thus, this rotating axion cannot
be identified with the QCD axion, or, in other words, it
cannot solve the strong CP problem.

III. FIT TO DATA

In order to establish the impact of CMB-scale kination
on cosmological observables, we implement the axion
kination cosmology and the associated perturbation equa-
tions in CLASS [42]. In addition to studying how the
rotating axion affects the Hubble parameter H0, we also
consider its impact on S8 ≡ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
, where σ8 is the

root-mean-square amplitude of matter fluctuations at the
scale 8 Mpc=h and Ωm is the fraction of the critical density
constituted by matter. Low-redshift and high-redshift
observations of S8 also exhibit a persistent discrepancy,
albeit less significant than discrepancies in measurements
of H0. A wide range of weak gravitational lensing mea-
surements and galaxy cluster surveys, reviewed in [34],
favor values of S8 that are ∼2 − 3σ lower than the values
preferred by Planck. Measurements of S8 that have
appeared after this review have, however, tended toward
somewhat higher values of S8. Both weak lensing mea-
surements [43] and determinations using quasars [44]

FIG. 2. Evolution of the Newtonian gauge density perturbation δ with scale factor for two different modes, k ¼ 0.1=Mpc (left) and
k ¼ 1=Mpc (right), in units of the primordial curvature perturbation ϕ. Cosmic parameters are chosen according to the best-fit values
when fitting to the data setDH, given in Table I. We show the kinaton perturbations in red, along with photons (blue), baryons (orange),
and cold DM (green). Vertical dashed lines indicate aeq and ac. We additionally show the kinaton equation of state in the dotted black
line. Here we fix rP ¼ 1.1.

TABLE I. Parameters of the best-fit model forΛCDMand axion
kination resulting from fits to the datasetsD andDH. The different
criteria to measure model success—AIC and difference of the
maximum a posteriori QDMAP—are defined in Eqs. (3) and (4).

Model ΛCDM Axion kination

Dataset D DH DHS D DH DHS

Ωbh2 0.0224 0.0226 0.0226 0.0223 0.0223 0.0224
Ωch2 0.1192 0.1180 0.1178 0.1192 0.1180 0.1180
H0 67.75 68.42 68.47 68.23 69.70 69.71
lnð1010AsÞ 3.049 3.0542 3.0540 3.051 3.060 3.054
ns 0.9680 0.9712 0.9715 0.9712 0.9682 0.9690
τreio 0.0590 0.0601 0.0604 0.0570 0.0609 0.0588
log10ðacÞ � � � � � � � � � −3.091 −3.058 −3.070
fkin � � � � � � � � � 0.005 0.0127 0.0118

σ8 0.8120 0.8085 0.8086 0.8157 0.8226 0.8194
Ωm 0.290 0.3016 0.291 0.3055 0.2915 0.2895
S8 0.825 0.811 0.796 0.823 0.809 0.805

Δχ2tot 0 0 0 −0.38 −8.04 −6.96
ΔAIC � � � � � � � � � 3.62 −4.04 −2.96
QDMAP � � � 5.7 � � � � � � 4.4 � � �
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exhibit reduced tension but still prefer values below
Planck’s best fit, at the 1.5σ level.
Measurements of S8 are particularly of interest in the

context of the Hubble tension, since models that address the
discrepancy in H0 by altering the early Universe sound
horizon typically predict higher values of S8, exacerbating
the tension [45,46]. In order to avoid conflicts with
observations of structure formation, models that aim to
address the Hubble tension are thus generally required to
invoke multiple ingredients active at different cosmological
epochs, e.g. [47–53], though see [54–59].
We perform a combined fit to several cosmological

datasets. We follow the procedure laid out in [60] in order
to facilitate comparison with other models, although we use
the updated SH0ES result [61]:
(1) Our baseline datasetD consists of (i) low- and high-l

temperature and polarization power spectra and lens-
ing from Planck [62]; (ii) the baryon acoustic oscil-
lation (BAO) measurements from BOSS DR12 [63],
MGS [64], and 6dFGS [65]; and (iii) the type Ia
supernovae apparent magnitudes from Pantheon [66].

(2) Combining the previous measurements with the
SH0ESmeasurement of the absolute supernova lumi-
nosity calibration that translates to H0 ¼ 73.04�
1.04 km=s=Mpc [61] gives a dataset that we denote
as DH.

(3) Finally, we impose weak lensing and galaxy cluster-
ingmeasurements of S8 ¼ 0.790þ0.018

−0.014 resulting from
the recent joint cosmic shear analysis of the Dark
Energy Survey (DES-Y3) and the Kilo-Degree Sur-
vey (KiDS-1000) [43]. We denote the combination
with the previous datasets DHS.

To find the best fit values of our cosmological param-
eters, we perform a Markov chain Monte Carlo analysis
using MontePython [67] and consider chains to be converged
if the Gelman-Rubin criterion [68] jR − 1j ≤ 0.01 is met.
We adopt flat priors for our cosmological parameters: the
ΛCDM parameter set fωb;ωc; H0; log10ð1010AsÞ; ns; τg,
to which we add the kinaton parameters ffkinðacÞ;
log10ðacÞ; rPg. Here, as usual, we define ωb;c ≡Ωb;ch2

and require fkinðacÞ < 1. For the minimization of the χ2

values, we employ simulated annealing (a method outlined
in [60]). Following best practices [69–71], we incorporate

SH0ES results as a prior on the absolute supernova
luminosity calibration.
We find that predictions of our two-field model strongly

depend on ac and fkin, but are insensitive to rP. This can be
seen in Fig. 3, which shows how the 2D reconstructed
posteriors for the other eight model parameters are insen-
sitive to rP as it varies over the range 1 < rP < 10, which
covers the physical variation of the equation-of-state curve
wðaÞ. Thus, for our main results we fix a reference value of
rP ¼ 1.1 and treat the other two model parameters (ac; fkin)
as free.
Our results from this eight-parameter fit are tabulated in

Table I. In addition to the overall Δχ2 relative to ΛCDM,
we present two statistical tests adopted from [60]. First, the
Akaike information criterion (AIC),

ΔAIC ¼ χ2min;kin − χ2min;ΛCDM þ 2ðNkin − NΛCDMÞ; ð3Þ

compares the two models’ fits with a penalty for the
number of parameters, indicated by Nkin (NΛCDM) in our
kination (ΛCDM) model. Second, the QDMAP tension,

QDMAP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2DþSH0ES − χ2D

q
; ð4Þ

quantifies the difference in the best-fit χ2 for fits with and
without SH0ES. We find that the presence of axion kination
improves the best-fit χ2 to the DH dataset by Δχ2 ¼ −8.04
(ΔAIC ¼ −4.04) compared to ΛCDM. It also presents a
meaningful but modest improvement in theQDMAP statistic,
decreasing the tension from 5.7σ to 4.4σ. This improve-
ment in ΔAIC indicates a “weak” preference for the axion
kination model over ΛCDM by the metric proposed in [60].
The preference for axion kination over ΛCDM is largely
driven by the SH0ES measurement, as indicated by the
positive value of ΔAIC we find from the fit to D alone.
While this preference is not strong, we nonetheless find it
notable: CMB-scale axion kination is a novel phenomeno-
logical ingredient that mitigates the Hubble tension without
inducing large shifts in other cosmic parameters, notably
S8, as well as providing a viable avenue for baryogenesis.
Posterior distributions for several quantities of interest

are shown in Fig. 4. We find that the data prefer a small but

FIG. 3. Contours of the 2D posterior distributions for rP versus the other eight model parameters resulting from fits to the D (green),
DH (orange), and DHS (blue) datasets. Allowing rp to vary makes no significant difference in posterior distributions for other model
parameters.
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nonzero fraction of energy in kination, with best-fit
fkin ¼ 1.3%, that transitions from matter to kination at a
scale factor ac after the baryon drag epoch. Thus, in the
best-fit cosmology, axion kination serves as a subcompo-
nent of CDM that subsequently redshifts away shortly after
baryon-photon decoupling is complete. This extra contri-
bution to the effective CDM abundance in the early
Universe yields a larger sound horizon given the same
late-time CDM density, and correspondingly, a larger
Hubble constant. The postrecombination shift from matter
to kination gives rise to a novel contribution to the early
integrated Sachs-Wolfe effect that, for the preferred values

of ac, primarily serves to adjust the height of the first
acoustic peak.
The addition of a cold-matter-like component through

much of recombination, without any additional contribu-
tions to the radiation density, alters the timing of matter-
radiation equality and gives rise to less radiation damping at
high l. This drives the notable shift to lower values of ns,
relative to the ΛCDM fit to DH, in order to provide less
primordial power on small scales. This effect is what allows
the axion kination model to raise the Hubble constant
without increasing ns to levels that induce tension with
other cosmological datasets. Meanwhile, the shift in ωb

FIG. 4. Contours of the 2D posterior distributions for ΛCDM (blue) and kination (orange) resulting from fits to the dataset DH.

RAYMOND T. CO et al. PHYS. REV. D 110, 083534 (2024)

083534-6



both compensates for ns-induced changes to the second
acoustic peak and helps to adjust the damping tail by
shifting the damping scale to larger l. The small shift in τ,
on the other hand, increases damping, and helps to fit the
amplitudes of peaks in the power spectrum in combination
with the changes in ωb and ns.
Adding kination to the fit allows us to increase H0 while

leaving ωc nearly fixed. Consequently, Ωm decreases at the
∼1σ level. This decrease in Ωm allows us to mitigate the
Hubble tension without further exacerbating the S8 tension.
We summarize the implications for Ωm, S8, and H0 in
Fig. 5, where we compare the predictions of axion kination
to those of ΛCDM.
We close our discussion of the fit to cosmological data by

placing CMB-scale axion kination in context with two other
classes of models that aim to address the Hubble tension.
Axion kination, with its unique equation of state, provides a
previously unexplored phenomenological ingredient for
addressing the Hubble tension: it increases the sound
horizon in the early Universe by adding a time-dependent
component to the effective cold matter density during
recombination. This is somewhat similar to the mechanism
invoked in decayingwarmDM solutions [72–74]. However,
unlike decaying warmDMmodels, axion kination results in
a sudden change in the effectivematter density, and does not
need to invoke a separate dark radiation fluid. Our results
show axion kination also offers a substantially better fit than
does decaying warm DM [73].

Axion kination involves a scalar field with a time-
varying equation of state and is similar in that regard to
models of early dark energy (EDE) [75–77]. While axion
kination does not accommodate as large a value for H0 as
EDE can provide, the best-fit EDE models must also
increase both the cold CDM density Ωch2 and the scale
index ns [78,79]. These increases significantly exacerbate
the S8 tension and may introduce new tensions with
measurements of Ly-α absorption spectra [80]. By contrast,
the best-fit axion kination solution marginally decreases S8
and prefers a value of ns only slightly larger than the Planck
result [31]. Thus, with the addition of a single new
constituent in the early Universe, following from a well-
defined and UV-complete Lagrangian theory, we are able to
significantly mitigate the Hubble tension without introduc-
ing further tension in measurements of S8. We now turn to
realizing baryogenesis within this scenario.

IV. BARYOGENESIS FROM
CMB-SCALE AXION KINATION

A CMB-scale axion model is dramatically different
from the typical QCD axion or axionlike particle because
the required decay constant ∼vPQ is at most the eV scale.
This very small decay constant means that the axion must
avoid having direct couplings to SM-charged particles in
order to remain consistent with experimental bounds.
Another issue for the axion kination cosmology is the
need to protect the potential of the radial direction against
large quantum contributions from SM superpartners. We
thus consider axion couplings to SM gauge singlets, which
makes an interaction through the right-handed neutrinos a
particularly promising possibility. Related work in this
direction for large axion decay constants can be found in
Refs. [6,8,9,11,14–16,19].
In what follows, we discuss a specific model as a proof

of principle. We consider the model at temperatures
above the electroweak scale, so that the complex field
P rather than the effective radial mode F is the natural
degree of freedom to consider. We consider an inverse-
seesaw-like coupling of P with a right-handed neutrino
N, so that the neutrino interactions in the Lagrangian are
given by

L ¼ 1

2
λPN2 þmNNN̄ þ yLHN þ H:c: ð5Þ

Here the complex field interacts with N, while N interacts
with the Standard Model Higgs H and left-handed lepton
doublet L. These interactions allow the axion’s PQ charge
to be partially transferred to a SM lepton asymmetry via
PN ↔ L†H� scattering. The transfer rate is given by

ΓN ≃
3ζð3Þ

64cB−Lπ3
λ2y2r2

T
; ð6Þ

FIG. 5. Contours of the posterior distributions for H0, Ωm, and
S8 for ΛCDM (blue) and with the addition of kination (orange),
for a fit to the dataset DH. Shaded purple and gray bands
represent respectively the SH0ES result forH0 [61] and the DES-
Y3 measurement of S8 ¼ 0.790þ0.018

−0.014 [43].
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where r is the background value of the radial degree of
freedom in P and the coefficient cB−L is 1225=3084;
1265=1662, or 145=132 in the cases where 1, 2, or 3
generations of N couple to LH, respectively. The deri-
vation of the transfer rate is discussed in Appendix D.
The lepton asymmetry then gets reprocessed into a
baryon asymmetry by electroweak sphaleron processes.
When the scattering rate of Eq. (6) is larger than the
Hubble rate before the electroweak phase transition at
TEW, the resulting baryon asymmetry is given by
its equilibrium value,2

YB ¼ cBθ̇T2

s
; ð7Þ

with s ¼ 2π2g�T3=45 the SM entropy density and cB a
coefficient governing the efficiency of charge transfer
that can be derived from the detailed balance relations
among SM chemical potentials. In the simple model
of Eq. (5), assuming equilibrium for strong and weak
sphalerons and all SM Yukawa processes, we find
cB ¼ 21=257; 42=277, and 7=33 for 1, 2, and 3 gener-
ations of N in the thermal bath, respectively. In deriving
these values, we also impose detailed balance relations
from the conservation of hypercharge as well as the
equilibrium of LiHNi and P�N†

i LiH interactions for each
generation of Ni coupled to Li and, for other generations
of Lj not coupled to any N, the conservation of B=3 − Lj.
The baryon asymmetry is fixed when the sphaleron

processes go out of equilibrium, for which we use the value
of TEW ¼ 130 GeV predicted in the SM [81]. To explain
the observed baryon asymmetry YB ≃ 8.6 × 10−11, the
required angular velocity is

θ̇ðTEWÞ ∼ 0.5 keVc−1B

�
TEW

130 GeV

�
; ð8Þ

which is valid for mN < 130 GeV, while we discuss the
case with mN > 130 GeV at the end of this section. Since
θ̇ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið∂V=∂rÞ=rp

but we require mP < eV, the quadratic
potential of Eq. (1) does not provide a large enough value of
θ̇ to account for the baryon asymmetry. Therefore we add a
quartic interaction, λrr4, to the potential in Eq. (A4), so that
θ̇ is enhanced at early times, especially at TEW, while the
late-time behavior converges to the equation of state
considered in the previous sections.
We now use Eq. (8) together with the equations

governing the homogeneous background evolution of the
axion field (see Appendix B) to determine the evolution of

θ̇ðTÞ as well as rðTÞ. When the quartic term dominates,
θ̇ðTÞ ∝ T. Then when the quadratic term dominates, θ̇ðTÞ
approaches a constant valuemP. The transition temperature
Tq between the quartic and quadratic regimes can be
derived from θ̇ðTEWÞðTq=TEWÞ ¼ mP as

Tq ≃ 25 MeVcB

�
mP

0.1 eV

�
: ð9Þ

This transition temperature is significantly larger than the
eV-scale temperatures probed by the CMB, and thus the
axion imprint on CMB anisotropies is well described by
the quadratic potential. We can then derive the field
evolution using the scalings r ∝ T3=2 and r ∝ T for
T < Tq and T > Tq, respectively. At T ¼ Tq, the quadratic
and quartic terms of the potential are equal. Using the value
vPQ required to address the Hubble tension discussed above
Eq. (2) and rðTqÞ ∝ vPQðTq=TcÞ3=2, we find the required
quartic coupling

λr ≃ 6 × 10−25c−3B

�
mP

0.1 eV

�
: ð10Þ

While this value is tiny, it is technically natural, since the
running of λr is proportional to λrλ

2.
We now examine various constraints on the model and

identify the viable parameter space. First, the consistency
condition for the asymmetry transfer rate to reach equilib-
rium requires that ΓN ≳H at TEW, resulting in a lower
bound on the product of λy as

λy≳ 3 × 10−11
�
cB−L
cB

�1
2

�
mP

0.1 eV

�1
2

: ð11Þ

Meanwhile, N is assumed to be in thermal equilibrium at
TEW through the interaction yLHN, which requires

y≳ 4 × 10−8: ð12Þ

We also need to ensure that N is in the bath at TEW as
assumed, which requires λrðTEWÞ < TEW and thus

λ≲ 10−4c−1=2B

�
mP

0.1 eV

�1
2

: ð13Þ

Since we work within a supersymmetric theory to
consistently generate the axion evolution, we accordingly
need to take into account the effects of the superpartners of
the neutrino and lepton fields. The radial mode receives a
two-loop quantum correction to the mass of order Δm2

P ∼
λ2y2m2

L̃
ln2ðmL̃=ΛÞ=ð8π2Þ2 with mL̃ the slepton mass.

Specifically, r receives a radiative mass correction from
the sneutrino Ñ, dm2

P=d ln μ ¼ λ2m2
Ñ
=8π2, whose mass

arises similarly from the loop correction of the slepton

2Even if the transfer of charge from the axion rotation to a
lepton asymmetry becomes efficient, most of the charge density
still remains stored in the axion rotation as long as the radius of
the rotation is larger than T [4,40] and the radial direction of P is
lighter than the sleptons [40].
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dm2
Ñ
=d ln μ ¼ y2m2

L̃
=4π2. Requiring that mP remain suffi-

ciently light then gives an upper bound on the product
of λy as

λy≲ 10−11ffiffiffiffiffiffi
δm

p
�

mP

0.1 eV

��
100 GeV

mL̃

��
6.9

lnðΛ=mL̃Þ
�
; ð14Þ

where we assume Λ ¼ 105 GeV, which is possible for low-
scale gauge mediated supersymmetry breaking.3 We intro-
duce δm to show how the constraint relaxes when a tuning is
allowed by m2

P ¼ δmΔm2
P. This model relies on supersym-

metry to control quantum corrections to the scalar potential.
Accordingly, the constraints on the model parameter
space, in particular the upper bound on mN , get stronger
as the slepton mass scale mL̃ is raised. Direct searches for
sleptons at the LHC are thus important for shaping the
overall parameter space of the model.4 Hereafter, we take
mL̃ ¼ 100 GeV, which is consistent with searches for
electroweak-produced superpartners provided neutral light-
est supersymmetric particles are similar in mass to charged
sleptons [86,87]; collider limits can also be weakened when
right- and left-handed sleptons are not mass degenerate.
LargermL̃ is viable in this model at the cost of introducing a
finer tuning δm.
Finally, we comment that in our discussion of the axion’s

cosmological evolution, we have been neglecting thermal
contributions to its mass. This is a good approximation
when θ̇ ≳ λT and

λ≲ 4 × 10−9c−1B : ð15Þ

Although this axion baryogenesis scenario may still be
viable in the presence of a large thermal contribution to the
axion mass, a detailed analysis of this case is beyond the
scope of this work.
The constraints in Eqs. (11) and (14) give a lower bound

on mP:

mP≳0.8 eVδm

�
cB−L
cB

��
mL̃

100GeV

�
2
�
lnðΛ=mL̃Þ

6.9

�
2

: ð16Þ

This is in very mild tension with Eq. (2), which then
necessitates a tuning at the level of

δm ≲ 18%

�
cB
cB−L

��
100 GeV

mL̃

�
2
�

6.9
lnðΛ=mL̃Þ

�
2

: ð17Þ

The constraint on mP in Eq. (16) together with Eqs. (11)
and (15) give a lower bound on y:

y≳ 9 × 10−3
�
cBcB−Lδm

18%

�1
2

�
mL̃

100 GeV

��
lnðΛ=mL̃Þ

6.9

�
:

ð18Þ

Although y can be as large as unity, the allowed values of λ
and vPQ are too small to explain the SM neutrino masses
(mν ∼ λy2vPQm2

N=v
2), and an additional neutrino mass

mechanism needs to be invoked to explain the observed
magnitude of the neutrino mass splitting of Oð0.1Þ eV.
The relatively light sterile neutrinos mix with SM

neutrinos with a mixing angle of θν ¼ yvffiffi
2

p
mN

¼ Uν;N , where

ν ¼ ðe; μ; τÞ denotes the flavor index of the active neutrino.
This mixing gives rise to potentially observable signatures
in current and future accelerator-based experiments. We
determine these constraints by assuming for simplicity that
the sterile neutrinos mix dominantly with a single flavor of
SM neutrino,5 and show the resulting parameter space for
mixing with electron, muon, and tau neutrinos in the three
panels of Fig. 6. The purple sloped line segments at mN <
TEW ¼ 130 GeV are determined by Eq. (18) with both cB
and cB−L set for one generation of N. The segments at
mN > 130 GeV will be discussed at the end of this section.
The present constraints on these mixing angles for sterile

neutrino masses between 1 and 500 GeVare shown in dark
gray and include constraints from CHARM [88,89],
BELLE [90], NuTeV [91], CMS [92], and DELPHI [93]
experiments. The current bounds on the mixing angles from
indirect constraints and electroweak precision observables
(EWPO) are calculated with a Markov chain Monte Carlo
analysis following the prescription given in [94,95] with
input quantities updated to the current values tabulated
in [96,97]. We find the following 95% bounds on mixing
angles in the alignment limit: U2

e;N < 2 × 10−3, U2
μ;N <

3 × 10−4 and U2
τ;N < 7 × 10−3.6

In Fig. 6, we also show the projected exclusion sensitiv-
ities for searches at a future lepton collider (FCC-ee) [95].
This sensitivity results from a combination of displaced
vertex and Z-pole searches, which dominate the reach for
mN < mZ=2, as well as improvements to EWPO constraints

3The large log corrections can be avoided in Dirac gaugino
scenarios [82–85], which also mitigate electroweak fine-tuning.

4Note that mP also receives quantum corrections from the soft
mass of the Higgs. Since a large Higgsino mass requires a
comparable soft mass for the Higgs in order to obtain the
observed electroweak scale, avoiding fine-tuning also requires
the Higgsinos not to be too heavy. A detailed consideration of the
SM superpartner spectrum in this scenario is beyond the scope of
this work, but is an obvious topic for follow-up work.

5The assumption of single-flavor alignment is not fine-tuned
since our SM neutrino masses do not arise from active neutrinos
coupling to sterile neutrinos N. Radiative corrections away from
the alignment limit are small because of the small active neutrino
masses.

6Like Refs. [94,95], we find a ≃ 2σ preference for nonzero
U2

e;N andU2
τN . However here we only report the 95% upper bound

on the mixing angles.
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that control the sensitivity for mN > mZ=2. We also show
the projected sensitivity for displaced searches at CMS in
the HL-LHC run [98] and for SHiP (assuming 2 × 1020

POT) [99]. For a recent summary of constraints on sterile
neutrino mixing angles for a given mass, see [100].
As evident in the figure, the bulk of the natural parameter

space in this model of low-scale axion baryogenesis is
accessible at the FCC-ee, particularly through the improved
precision of EWPO. The lighter and more weakly coupled
right-handed neutrinos that are accessible at HL-LHC and
SHiP require a large amount of fine-tuning in the potential
for the radial mode.
The bounds in Fig. 6, including current and predicted

EWPO constraints, are computed under the assumption that
heavy neutral leptons are the only relevant beyond Standard

Model state; the slepton mass scale enters only through the
indicated levels of fine-tuning. To minimize fine-tuning in
the radial mode potential, however, the sleptons should also
be relatively light. Thus, the collider signatures, and in
particular the sensitivity of EWPOs, may be enhanced
depending on the specific implementation of the super-
symmetric extension of the SM.
We now comment on the consequences of relaxing some

of the assumptions in the previous discussion. If the
equilibrium condition imposed in Eq. (11) is not met,
the baryon asymmetry is suppressed by the “freeze-in”
factor ΓN=H with ΓN shown in Eq. (6), giving

YB ¼ cBθ̇T2

s
ΓN

H

����
T¼TEW

: ð19Þ

Then YB ∝ θ̇r2, which is simply the charge density and
therefore independent of the transition temperature Tq. This
implies that, once the energy density is fixed at recombi-
nation for the Hubble tension, there is no additional free
parameter that can open up parameter space beyond
Eq. (11). In other words, requiring YB in Eq. (19) to
reproduce the observed baryon asymmetry simply saturates
the inequality in Eq. (11).
Thus far, we have assumed mN < 130 GeV so that N

remains in the thermal bath at the electroweak phase
transition. In the opposite case, when N falls out of thermal
equilibrium at T ≃mN > TEW, the B − L asymmetry
freezes out and gets preserved through the electroweak
phase transition, resulting in a final baryon asymmetry
given by [101]

YB ¼ 28

79
YB−L ¼ 28

79

cB−Lθ̇T2

s

����
T¼mN

: ð20Þ

In the present model, cB−L is given below Eq. (6). When the
quartic potential dominates as we have assumed, θ̇ scales
linearly with temperature. Therefore, Eq. (20) is indepen-
dent of the temperature at which it is evaluated and gives a
similar result as Eq. (6). However, the equilibrium con-
dition in Eq. (11) now has to be imposed at the freeze-out
temperature T ¼ mN , which leads to the constraint

λy≳ 8 × 10−11
�

mP

0.1 eV

�1
2

�
mN

300 GeV

�1
2

; ð21Þ

which, together with the constraint from mass tuning in
Eq. (14), results in a lower bound on mP:

mP ≳ 5 eVδm

�
mL̃

100 GeV

�
2
�
lnðΛ=mL̃Þ

6.9

�
2
�

mN

300 GeV

�
:

ð22Þ

In order for mP to satisfy Eq. (2), there is a necessary
amount of tuning given by

FIG. 6. Constraints from mixing ofN with e, μ, and τ neutrinos.
The vertical purple line segments show the upper bound on
mN based on Eqs. (17) and (23) with slepton mass scale
mL̃ ¼ 100 GeV. The sloped purple segments show the lower
bound on the mixing angle derived from Eqs. (18) and (24). We
set cB and cB−L for one generation of N. Different purple lines
result from different amounts of fine-tuning δm, as labeled, in the
radial mode mass. Dark gray shaded regions show the existing
constraints on the parameter space. Dot-dashed lines show
projected 95% CL sensitivity at the FCC-ee (green), HL-LHC
(orange), and SHiP (blue). As can be seen, the most natural region
of the viable parameter space is accessible at the FCC-ee, while
the parameter space accessible to HL-LHC and SHiP involves a
higher degree of fine-tuning.
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δm ≲ 3%

�
300 GeV

mN

��
100 GeV

mL̃

�
2
�

6.9
lnðΛ=mL̃Þ

�
2

: ð23Þ

This sets the upper bound on mN (vertical purple segments
in Fig. 6) at mN > TEW ¼ 130 GeV, where a larger mN
requires a finer tuning. The constraint on mP in Eq. (22)
together with Eqs. (21) and (15) give a lower bound on y:

y≳ 8 × 10−3cB−L

�
δm
3%

�1
2

�
mL̃

100 GeV

�

×

�
lnðΛ=mL̃Þ

6.9

��
mN

300 GeV

�
: ð24Þ

This sets the sloped purple segments in Fig. 6 at mN >
TEW ¼ 130 GeV with cB−L set for one generation of N,
where a smaller y requires a finer tuning.

V. DISCUSSION

Cosmologies with rotating axions provide an appealing
approach to baryogenesis. They also provide a UV-
complete and natural realization of scalar fields with
nontrivial time-dependent equations of state. In this paper
we explore the consequences of realizing baryogenesis
with a rotating axion that makes a transition from kination
to matter during the epoch probed by the CMB.
On the phenomenological side, axion kination is a

qualitatively novel phenomenological mechanism for
addressing the Hubble tension: it provides a self-consistent
and UV-complete framework that allows for a time-
dependent contribution to the effective cold dark matter
density during recombination with (i) a sudden disappear-
ance with redshift and (ii) no corresponding time depend-
ence in an additional dark radiation species. We find that
allowing a percent level fraction of the energy density of the
Universe to be in the form of a rotating axion during
recombination reduces the Hubble tension by more than
one sigma. The presence of axion kination during recom-
bination does not allow for values of H0 as large as can be
realized in EDE (see Ref. [77] and references therein) or
stepped self-interacting DM-DR (dark radiation) models
[49,54–59], and as such does not provide as significant a
resolution to the Hubble tension. However, axion kination
presents a significantly better fit to the data than does
ΛCDM alone, and most importantly does so without
introducing sizeable shifts in either ns or ωc, thus avoiding
exacerbating or introducing tensions in other cosmological
datasets.
On the model side, placing the kination-to-matter tran-

sition during the CMB epoch means that the overall
abundance of the axion is tightly constrained, and cannot
exceed a few percent of the total energy density at
recombination. Requiring that this relatively small axion
energy density, and thus relatively small PQ charge density,
can successfully generate the observed baryon asymmetry

of the Universe then places several new demands on the
cosmic history of the axion. The initial axion field velocity
must be large, which we accomplish by adding additional
quartic terms to the axion potential that affect its evolution
at early times. To realize circular rotation, the radial mode
of the complex scalar must thermalize through scatterings
with a radiation bath [4]. For the transition from matter to
kination to occur postrecombination, this thermalization
most easily proceeds through dark fermions ψ that do not
interact with the SM. The energy density of these fermions
is generically negligible in comparison with that of the
rotating axion, but could constitute an interesting extension
of the signatures of this model in certain regions of
parameter space.
We transfer the axion PQ charge to SM lepton number

via right-handed neutrinos. Requiring a low-scale rotating
axion to successfully transfer a sufficiently large baryon
asymmetry to match observations imposes several con-
ditions on the mass and couplings of these sterile neutrinos,
singling out a distinctive region of parameter space. The
resulting relatively heavy and strongly coupled heavy
neutral leptons are motivated and achievable targets for
future lepton colliders, especially through their imprint on
electroweak precision observables.
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APPENDIX A: AXION ROTATIONS
IN THE TWO-FIELD MODEL

In this paper, we consider a supersymmetric two-field
axion model that realizes a rapid transition from a matter-
like to kinationlike equation of state, first introduced
in [25]. In this section we provide a quick review of the
physics of this two-field model and then briefly discuss the
phenomenological consequences of requiring this model to
mitigate the Hubble tension.
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The superpotential of the model is

W ¼ λXðPP̄ − v2PQÞ; ðA1Þ

where X is a Uð1Þ-neutral chiral field, P and P̄ are chiral
fields with opposite Uð1Þ charges, and λ and vPQ are
constants. The resulting supersymmetric potential is

V ¼ λ2jPP̄ − v2PQj2 þ λ2jXj2ðjPj2 þ jP̄j2Þ: ðA2Þ

The first term fixesP and P̄ on the moduli space PP̄ ¼ v2PQ,
and the second term fixes X at X ¼ 0. We may then
integrate out X and a linear combination of P and P̄ via
these two relations, leaving one complex scalar degree of
freedom. Without loss of generality, we choose P as a low-
energy degree of freedom. Its kinetic term is noncanonical,

−∂μP†
∂
μP − ∂μP̄†

∂
μP̄ → −

�
1þ v4PQ

jPj4
�
∂μP†

∂
μP: ðA3Þ

While P does not have a potential in the supersymmetric
limit, soft supersymmetry breaking mass terms m2

PjPj2 þ
m2

P̄jP̄j2 for P and P̄ give a nonzero potential,

VðPÞ ¼
�
1þm2

P̄

m2
P

v4PQ
jPj4

�
m2

PjPj2 ≡
�
1þ r2P

v4PQ
jPj4

�
m2

PjPj2;

ðA4Þ

where we introduce the parameter rP ≡mP̄=mP. The
equation of state of the axion rotation derived in the next
section will depend on rP, and thus it will ultimately govern
the exact transition from matterlike to kinationlike. The
effective Lagrangian is given by

Leff ¼ −
�
1þ v4PQ

jPj4
�
∂μP†

∂
μP −

�
1þ r2P

v4PQ
jPj4

�
m2

PjPj2:

ðA5Þ

The value of jPj at the minimum of the potential is given by
jPj ¼ ffiffiffiffiffi

rP
p

vPQ. We assume rP ≳ 1. For jPj ≫ vPQ, the
effective Lagrangian approaches that of a free massive
scalar with a canonical kinetic term.
Axion rotations may be initiated by the Affleck-Dine

mechanism [38]. In the early Universe, the coupling of P
with gravity generically introduces a potential for P that is
proportional to the total energy density of the Universe. The
dominant term is the term quadratic in P, which is called
the Hubble-induced mass:

VH ¼ cH2jPj2: ðA6Þ

If c < 0, then P is driven to a large field value ≫ vPQ. For
large field values of P, higher-order terms in P may be

important, and some of them may explicitly break the Uð1Þ
symmetry.
We first discuss the simplest case where the explicit

breaking is given by a single term in the superpotential of
the form

W ¼ Pnþ1

ðnþ 1ÞMn−2 ; ðA7Þ

where M is a cutoff scale. This superpotential gives rise to
both supersymmetric and supersymmetry-breaking contri-
butions to the potential,

V ¼ 1

M2n−4 jPj2n þ
�

A
Mn−2 P

nþ1 þ H:c:

�
; ðA8Þ

where A is a soft supersymmetry- and R-breaking param-
eter whose natural magnitude is mP. The first term
preserves the Uð1Þ symmetry, and stabilizes the radial
direction of P against the negative Hubble-induced mass
term, so that jPj follows an attractor solution

jPj ∼H
1

n−1M
n−2
n−1; ðA9Þ

for H ≫ mP [102,103]. Around H ∼mP, P no longer
follows the attractor solution and begins to oscillate around
the origin driven by the supersymmetry-breaking mass term
mP. At the same time, the second term in Eq. (A8), which
explicitly breaks theUð1Þ symmetry, kicks P in the angular
direction, and P rotates around the origin. One can show
that the potential gradients to the radial and angular
directions are of the same order when H ∼mP. This
guarantees that the energy densities of the radial and
angular modes are of the same order. Note that the explicit
Uð1Þ breaking term is proportional to supersymmetry and
R symmetry breaking, since the superpotential alone
preserves a linear combination of the Uð1Þ symmetry of
P and the R symmetry. The field value of jPj decreases in
proportion to a−3=2, and the higher-order Uð1Þ breaking
term becomes inefficient, so that P continues to rotate while
approximately preserving the angular momentum in field
space up to dilution by the cosmic expansion.
We note that, for the purpose of addressing the Hubble

tension discussed in Secs. II and III, we only need to utilize
the nearly quadratic potential and the simplest explicitUð1Þ
breaking described above. However, when discussing the
connection to the baryon asymmetry in Sec. IV, we assume
an additional quartic term that dominates at high temper-
atures in order to generate sufficient baryon asymmetry at
the electroweak phase transition. In supersymmetric theo-
ries, such a quartic term can be simply generated by a
superpotential term W ⊃ λ1=2r ZP2 with Z a chiral field.
When this extra quartic potential is present, the Affleck-

Dine mechanism utilizing the explicit Uð1Þ breaking in
Eq. (A7) is not efficient. This is because the potential
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gradient in the radial direction is much larger than that in
the angular direction. Consequently, the energy density of
the radial mode ρr dominates over that of the angular mode
ρPQ by a factor of ϵ, which is given by the ratio of the
potential gradients in the angular to the radial modes. This
large radial energy density can lead to an overproduction of
dark radiation when ρr is thermalized into a dark sector
thermal bath.
We now analyze the size of ϵ necessary to generate

sufficient YPQ in the context of Hubble tension and baryo-
genesis, while not over-producing dark radiation. To address
the Hubble tension, ρPQjrec ¼ m2

Pv
2
PQ should be around 1%

of the total energy density at a ¼ ac, ρtotðacÞ ∼ 0.026 eV4,
which also fixes the charge yield YPQ ¼ nPQ=sðTrecÞ. The
quartic coupling λr is then fixed from matching the
quadratic and quartic potential energy at the temperature
Tq given in Eq. (9), ρPQðTq=TrecÞ3 ¼ λrrðTqÞ4=4 with
rðTqÞ ¼ vPQ½g�SðTqÞT3

q=ðg�SðTrecÞT3
recÞ�1=2. Assuming an

initial radial field value of ri when the complex field starts
the rotation, the yield of the radial mode number density
Yr ¼ nr=s is computed by

ffiffiffiffi
λr

p
r3i =sðToscÞwithTosc obtained

from the oscillation condition 3HðToscÞ ∼
ffiffiffiffi
λr

p
ri. The tem-

perature TM at which ρr dominates is given by
mPYrsðTMÞ ¼ π2g�T4

M=30, while the radial field value at
this time is given by rM ≡ rðTMÞ ¼ vPQðTM=TrecÞ3=2. We
define ϵ as the radio of the angular and radial yields
ϵ ¼ YPQ=Yr. With all the relations listed above, we find

ri ≃ 2 × 1017 GeV
�
0.1 eV
mP

�1
2

�
10−6

ϵ

�2
3

�
21=257
cB

�1
2

;

rM ≃ 10 MeV

�
0.1 eV
mP

��
10−6

ϵ

�
2

; ðA10Þ

TM ≃ 400 eV

�
10−6

ϵ

�
: ðA11Þ

This demonstrates that there is viable parameter space
where ri < MPl for mP ≲ ðρPQjrecÞ1=4 ∼ 0.1 eV with
ϵ < 1. Finally, the thermalization of the complex field
can proceed via a Yukawa coupling with a dark fermion,
L ⊃ yPPψψ̄ . In order forψ ; ψ̄ to be in thermal equilibriumat
temperature T, yPrðTÞ ≲ T and consequently thermaliza-
tion processes have a maximum rate Γth ≃ 0.1y2PT ≲
0.1T3=r2ðTÞ. Ensuring that thermalization proceeds before
ρr dominates, we require ΓthðTMÞ ≥ HðTMÞ, and thus
0.1T3

M=r
2ðTMÞ ≥ HðTMÞ. This constraint turns out to be

less stringent than the combination of the aforementioned
constraints ri < MPl for mP ≲ eV.
However, if we had set ϵ ¼ mP=ð

ffiffiffiffi
λr

p
riÞ as would be the

case from Eq. (A8), we would find no consistency in the
parameters because the expected ϵ is too small to keep
mP ≲ eV. Note that suppression of ϵ, which is proportio-
nal to A ∼mP, stems from the R symmetry in the

superpotential (A7). Therefore, the issue of too small ϵ
can be remedied by allowing for additional R-symmetry
breaking, which then generates a stronger kick than the A
term in the potential. Specifically, we may assume a
superpotential

W ¼
ffiffiffiffi
λr

p
ZP2 þ Pñþ1

ðñþ 1ÞM̃ñ−2 þ
Pnþ1

ðnþ 1ÞMn−2 ; ðA12Þ

where the different powers of P result in R-symmetry
breaking. The potential of P is

L⊃ λrjPj4þVðM;nÞþVðM̃; ñÞþ
�

PñPn

M̃ñ−2Mn−2þH:c:

�
ðA13Þ

plus that in Eq. (A5), where VðM; nÞ is defined as the
potential terms in Eq. (A8) and VðM̃; ñÞ is the analogous
version. The first term in Eq. (A13) provides the quartic
potential, while the fourth term provides a stronger kick
than that in Eq. (A8). This extra assumption in the model
simply allows ϵ to become a free parameter and does not
interfere with the earlier discussions of the Hubble tension
and baryogenesis.

APPENDIX B: BOLTZMANN EQUATIONS
FOR A ROTATING AXION

In this section we provide a detailed derivation of the
equations governing the evolution of the homogeneous
rotating axion background as well as the perturbations for a
general axion potential VðrÞ. We are interested in cosmol-
ogies where a complex scalar field P ¼ 1=

ffiffiffi
2

p
reiθ under-

goes rapid rotations, θ̇ ≫ H, and study the perturbations of
this system at times when the angular mode θ is the
only light degree of freedom. In this regime, the potential
V ¼ VðrÞ is invariant under the Uð1Þ symmetry taking
P → eiαP, and the kinetic terms for the radial mode r
in the Lagrangian can be neglected. This means we will be
able to algebraically solve for both the background r0 and
the perturbation δr in terms of the dynamical degree of
freedom θ.
Since scalar fields do not support anisotropic stress (and

we neglect the small contribution from SM neutrinos), we
can derive the Boltzmann equations for kinaton perturba-
tions in either synchronous or conformal Newtonian gauge
using a metric of the general form

ds2 ¼ a2
�
−ð1þ 2AÞdη2 þ ð1þ 2DÞδijdxidxj

�
: ðB1Þ

We write θ in terms of background and perturbation as
θ≡ θ0 þ θ1. For a scalar with a canonical kinetic term
undergoing circular rotation in a potential VðrÞ, the
equations governing the background field evolution are
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∂r0Vðr0Þ ¼ r0
1

a2
θ020 ; ðB2Þ

ð∂η þ 3HÞ
�
1

a
r20θ

0
0

�
¼ 0; ðB3Þ

where a prime indicates a derivative with respect to
conformal time η andH≡ a0=a. The homogeneous energy
density ρ̄ and pressure P̄ are then

ρ̄¼ 1

2a2
r20θ

02
0 þVðr0Þ; P̄¼ 1

2a2
r20θ

02
0 −Vðr0Þ: ðB4Þ

The equation of state parameter is, using Eq. (B2),

w ¼ r0∂r0Vðr0Þ − 2V

r0∂r0Vðr0Þ þ 2V
: ðB5Þ

Equations (B2) and (B3) also let us relate the time evolution
of r0 to that of θ00, giving

r00

r0
¼ −3H

f
1þ 2f

; ðB6Þ

θ000
θ00

¼ −2H
1 − f
1þ 2f

; ðB7Þ

where the function f encapsulates the dependence on the
potential:

f ≡ 2∂r0Vðr0Þ
r0∂2r0Vðr0Þ − ∂r0Vðr0Þ

: ðB8Þ

Taking the time derivative of the equation of state,

w0 ¼ 3Hð1 − wÞ
�
w −

1

1þ 2f

�
; ðB9Þ

allows us to exchange f for w0.
Writing r ¼ r0 þ δr, θ ¼ θ0 þ δθ, the equation of

motion for r gives at leading order in perturbations

δr
r0

¼ f

�
θ1
θ00

− A

�
; ðB10Þ

where again all dependence on the potential enters through
f. Using Eqs. (B6), (B7), and (B10), we can express the
perturbations δρ and δP in terms of θ, the metric perturba-
tion A, and f:

δρ ¼ ρ̄

�
θ01
θ00

− A
�
ð1þ 2fÞð1þ wÞ; ðB11Þ

δP ¼ ρ̄

�
θ01
θ00

− A

�
ð1þ wÞ: ðB12Þ

We can then read off the speed of sound in this frame,

c2s ¼
δP
δρ

¼ 1

1þ 2f
¼ w −

w0

3Hð1þ wÞ ; ðB13Þ

which is identical to the adiabatic speed of sound. Note
that this is not the case for a canonical single scalar field.
The Boltzmann equation for δ≡ δρ=ρ is given in terms of
wðηÞ as

δ0 þ ð1þ wÞðΘþ 3D0Þ − w0

1þ w
δ ¼ 0: ðB14Þ

Similarly, the Boltzmann equation for Θ≡ ∂ivi ¼
−∂2i δθ=θ00 is given in terms of wðηÞ as

Θ0 þHð1−3wÞΘþ w0

1þw
Θ−

c2s
1þw

k2δþk2A¼0: ðB15Þ

Here as usual k indicates the comoving wave number
of the perturbation. Equations (B14) and (B15) are simply
the Boltzmann equations of a generic fluid with time-
dependent w.

APPENDIX C: EQUATION OF STATE
IN THE TWO-FIELD MODEL

In this work we consider the “two-field” model of
axion kination introduced in [25], where the cosmolo-
gical epoch of interest is governed by the Lagrangian in
Eq. (A5). Here we determine the equation of state wðaÞ for
this model.
We define a new radial variable

F2 ¼ 2r2
�
1þ v4PQ

r4

�
≡ 2r2K ðC1Þ

so that the kinetic term is canonical up to terms proportional
to ∂μr, which can again be neglected in comparison to the
dominant contributions proportional to r∂μθ. In terms of the
effective radial degree of freedom F, the Lagrangian now
reads

L ≃
1

2
F2ð∂μθ∂μθÞ

−
1

4
m2

PF
2

0
@ð1þ r2PÞ þ ð1 − r2PÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
2vPQ
F

�
4

s 1
A:

Then the equation of state is given by Eq. (B5),
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w ¼
�2vPQ

F

�4ð1 − r2PÞ þ 2rP
�2vPQ

F

�2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�2vPQ
F

�4q
2ð1 − r2PÞ −

�2vPQ
F

�4ð1 − r2PÞ þ 2
�
1þ r2P − rP

�2vPQ
F

�2	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�2vPQ
F

�4q ; ðC2Þ

while f, defined in Eq. (B8), is given by

f¼
−
�
1−

�2vPQ
F

�4��
1−r2Pþð1þr2PÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

�2vPQ
F

�4q �
�2vPQ

F

�4ð1−r2PÞ
: ðC3Þ

Still, one needs to derive the evolution of F with scale
factor in order to obtain the evolution of the equation of
state. The evolution of F can be explicitly derived using
the equations of motion, where Eq. (B2) determines the
rotational speed θ̇ for a given effective radial coordinate F
and, based on Eq. (B3), the conserved Uð1Þ charge yield,
defined as the charge density divided by the entropy
density, can be expressed in terms of F as YPQ ≡
θ̇F2=ð2π2g�SðTÞT3=45Þ. These two equations give F as
a function of T for a fixed charge yield YPQ. It is
convenient to express F at an arbitrary temperature in
terms of its value at the minimum of the potential,
Fmin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðrP þ r−1P Þ

p
vPQ. For rP → 1, this minimum is

attained, i.e., F ¼ Fmin, at a specific temperature TS.
Equivalently, TS is the temperature at which wðTÞ ¼ 1

in the limit when rP approaches to unity from above. For
an arbitrary rP > 1, wðTÞ only approaches unity asymp-
totically, and likewise for F → Fmin. For convenience, we
define the temperature TS in this case by assuming that
F ≃Oð1ÞFmin when T ¼ TS. Specifying the precise Oð1Þ
factor F=Fmin used in the definition becomes somewhat
arbitrary for rP > 1; we define it so that TS reproduces
the expression for rP → 1 when rP is set to unity.
Following this prescription, we define the temperature
TS for any rP as

TS ≡
�

90

π2g�S

rPmPv2PQ
YPQ

�1
3

; ðC4Þ

where the dependence on rP is analytically derived by
using the prescriptions above and taking the rP ≫ 1 limit.
For implementation in CLASS, it is convenient to

express evolution of F in terms of the scale factor a. In
terms of aS, the scale factor at which T ¼ TS, entropy
conservation implies T=TS ¼ aS=a and the evolution of
FðaÞ can accordingly be written as

FðaÞ
Fmin

¼ 1

ð3χÞ14ð1þr2PÞ
1
2



χ

4
3þχð1þr2PÞ

�
1þ4r2P

�
aS
a

�
6

þr2P

�

þχ
2
3

�
ð1þr2PÞ4þ8r2P

�
aS
a

�
6

ð1þr2PÞð1−4r2Pþr4PÞ

þ16r4P

�
aS
a

�
12

ð1−r2Pþr4PÞ
��1

4

; ðC5Þ

where

χ≡ ð1þ r2PÞ6þ32r6P

�
aS
a

�
18

ð−2þ r2PÞð1þ r2PÞð−1þ2r2PÞ

þ12r2P

�
aS
a

�
6

ð1þ r2PÞ3ð1−4r2Pþ r4PÞþ24r4P

�
aS
a

�
12

× ð2−7r2Pþ18r4P−7r6Pþ2r8PÞ

þ24r5P

�
aS
a

�
9

ð−1þ r2PÞ


−48r6P

�
aS
a

�
18

þ72r4P

�
aS
a

�
12

× ð1þ r2PÞþ6ð1þ r2PÞ3

þ9r2P

�
aS
a

�
6

ð−5þ r2PÞð−1þ5r2PÞ
�1

2

: ðC6Þ

Now one can compute the equation of state wðaÞ from
Eq. (C2) using Eqs. (C5) and (C6). The results are shown
by the solid curves in Fig. 1 in the paper, where various
colors indicate different values of rP. For convenience of
comparison, we have shown curves with different rP
but equal values of the reference scale factor a1=3, where
w ¼ 1=3 when a ¼ a1=3. The function wðaÞ asymptotes to
the orange curve for rP ≫ 1.
The transition from matter to kination can thus be

characterized by several closely related but slightly distinct
reference scale factors: aS, a1=3, and the scale factor ac used
as a free parameter in our fits to data. In a radiation-
dominated universe, a1=3 coincides with ac. However,
around matter-radiation equality, a1=3 and ac are slightly
mismatched, depending on how ac compares to aeq.
Therefore, we treat aS as a free input parameter and
compute ac numerically.

APPENDIX D: TRANSFER RATE
OF PQ CHARGE TO L

In this appendix, we discuss the derivation of the transfer
rate of the PQ charge to the SM lepton asymmetry given in
Eq. (6). We focus on the model with the Lagrangian given
in Eq. (5). The lepton number-violating process is mediated
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by PN ↔ L†H� scattering, where the radial degree of
freedom in P is assumed to take a background value of r
since P rotates with a fixed radius. The corresponding
L-violating rate is then given by

ΓL ¼ 1

64π

y2λ2r2

mN
; ðD1Þ

where we assume thatmN is larger than the thermal mass of
H and L so that the L violation is dominated by the decay
and inverse decay of N.
We now compute the production rate of the N asym-

metry before computing that for B − L. This can be
obtained by computing the production rate of the N
asymmetry as a function of the chemical potentials in
the limit θ̇ ¼ 0, and then using detailed balance to restore
the dependence on θ̇. When θ̇ ¼ 0, the relevant interactions
are N ↔ LH and N̄ ↔ L†H� with the amplitude-squared
jMj2 ¼ y2λ2r2=8. The production rate of the N-number
asymmetry is given by

ṅN ¼
Z

dΠNdΠLdΠHð2πÞ4jMj2δ4ðpN −pL−pHÞ

× ½fNð1−fLÞð1þfHÞ−fLfHð1−fNÞ�þH:c:; ðD2Þ

where the phase space distribution factors can be approxi-
mated in terms of the chemical potentials as

½fNð1−fLÞð1þfHÞ−fLfHð1−fNÞ�≃
μN−μL−μH

T
e−E=T:

ðD3Þ

For nonzero θ̇, since the chemical potential of the rotating P
is θ̇, we may replace μN − μL − μH with μN − μL − μH þ θ̇
using detailed balance. In computing the production rate of
the N asymmetry, we are interested in the situation where
the initial asymmetries of N, L, and H are zero. The
production rate is then given by

ṅN ¼ mN θ̇

T2
ΓLnN;eq ¼ mN θ̇ΓL

3ζð3ÞT
2π2

; ðD4Þ

where the factor of three accounts for three generations of
N. Finally, the production rate of B − L is twice that of N
given that each PN ↔ L†H� interaction changes L by two
units. Here we include N number in the lepton number L
because the N asymmetry is eventually converted into the
SM when N decays to LH. To estimate the transfer rate ΓN ,
which is defined through ṅB−L ≡ ΓN × nB−L;eq, we need to
derive the equilibrium value of the B − L asymmetry
nB−L;eq in this model. Analogous to the derivation of cB
outlined below Eq. (7), we find the equilibrium value of
nB−L;eq ¼ cB−Lθ̇T2, with cB−L ¼ 1225=3084; 1265=1662;
145=132 for 1, 2, and 3 generations, respectively. The final
transfer rate is given in Eq. (6).
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