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Evaluating a quantum-classical quantum Monte Carlo algorithm with Matchgate shadows
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Solving the electronic structure problem of molecules and solids to high accuracy is a major challenge
in quantum chemistry and condensed matter physics. The rapid emergence and development of quantum
computers offer a promising route to systematically tackle this problem. Recent work by [Huggins et al.,
Nature (London) 603, 416 (2022)] proposed a hybrid quantum-classical quantum Monte Carlo (QC-QMC)
algorithm using Clifford shadows to determine the ground state of a Fermionic Hamiltonian. This approach
displayed inherent noise resilience and the potential for improved accuracy compared to its purely classical
counterpart. Nevertheless, the use of Clifford shadows introduces an exponentially scaling postprocessing cost.
In this work, we investigate an improved QC-QMC scheme utilizing the recently developed Matchgate shadows
technique [Commun. Math. Phys. 404, 629 (2023)], which removes the aforementioned exponential bottleneck.
We observe from experiments on quantum hardware that the use of Matchgate shadows in QC-QMC is inherently
noise robust. We show that this noise resilience has a more subtle origin than in the case of Clifford shadows.
Nevertheless, we find that classical postprocessing, while asymptotically efficient, requires hours of runtime
on thousands of classical CPUs for even the smallest chemical systems, presenting a major challenge to the
scalability of the algorithm.
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I. INTRODUCTION

The ability to accurately solve the Schrödinger equation for
interacting electrons will help tackle a multitude of problems
in physics, chemistry and materials science, relevant to ap-
plications ranging from drug discovery [1] to the design of
functional materials [2,3]. In the past century, multiple efforts
have been devoted to solving the Schrödinger equation on
classical computers, either by using suitable approximations
and mean-field theories [4] or by employing nearly exact
methods such as full configuration interaction (FCI) [5] and
quantum Monte Carlo (QMC) [6,7]. However, known algo-
rithms for FCI scale exponentially on classical computers,
while scalable solutions using QMC often suffer from the
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sign problem [8] and other numerical instabilities. In essence,
highly entangled many-body wave functions of interacting
electrons are hard to represent and optimize on classical com-
puters.

The advent of quantum computers offers a promising route
to tackle the interacting electron problem, either through
quantum [9] or hybrid quantum-classical algorithms [10,11].
One popular algorithm to compute Fermionic ground states
is the variational quantum eigensolver (VQE) and its vari-
ants [12–15], where a parameterized quantum circuit is used
to generate the wave function, and its optimization is off-
loaded to classical hardware. Nevertheless, current noisy
intermediate-scale quantum (NISQ) hardware is limited by the
depth of quantum circuits that it can implement. Moreover,
VQE faces optimization challenges resulting from ansatz or
noise-induced barren plateaus in energy landscapes [16], as
well as large measurement overheads.

Recently Huggins et al. [17] proposed a hybrid quantum-
classical algorithm for quantum Monte Carlo (QC-QMC) and
applied it to study the dissociation of diatomic molecules
on Google’s Sycamore quantum processor. The Monte Carlo
algorithm is driven by sampling from a trial state |�T 〉 pre-
pared on the quantum computer, with the aim of producing
smaller bias and better accuracy than its purely classical
counterpart. The algorithm uses classical shadows [18] with
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random Clifford circuits to avoid iterative communication
between classical and quantum hardware, which is desirable
on near-term quantum devices as it minimizes latency from
quantum-classical communication. Surprisingly, an inherent
noise resilience was observed [17], spurring both academic
and industrial interest in the technique [19–25]. Nevertheless,
currently known techniques for classically postprocessing the
Clifford shadows scale exponentially with system size, pro-
viding a barrier to achieving quantum advantage.

The inefficiencies of Clifford shadows for QC-QMC were
recently addressed in Ref. [26] by replacing the Clifford
circuits with Matchgate circuits [27]. To the best of our knowl-
edge, the proposal has not yet been experimentally evaluated
in the literature (although we note recent numerical investiga-
tions probing the statistical properties of Matchgate shadows
applied to chemical systems [25,28]). In particular, it is un-
clear whether the Matchgate shadows approach exhibits the
noise resilience that underpinned the success of the original
(unscalable) Clifford shadows approach [17], as the theoret-
ical justification for the noise resilience of Clifford shadows
does not immediately extend to the Matchgate case. In addi-
tion, while the proposal is formally efficient, its practicality
for studying realistic systems has yet to be established.

In this work, we numerically and experimentally study
the QC-QMC algorithm, incorporating Matchgate shadows.
In particular, we probe the noise resilience of the algo-
rithm on quantum hardware. We observe and theoretically
characterize the persistence of the noise resilience that was
observed for Clifford shadows, uncovering a more subtle mi-
croscopic origin. We also developed improvements to existing
robust classical shadow protocols [29–31] that can mitigate
state preparation noise, and may be of independent inter-
est. The Matchgate shadows approach reduces the classical
postprocessing cost from exponential to formally polynomial.
However, its use in QC-QMC has high-degree polynomial
scaling in the system size, resulting from computing the local
energy of each QMC walker. The algorithm also has large
constant factors resulting from the number of samples used
in the classical shadow postprocessing, as well as the number
of QMC walkers and the number of QMC time steps. These
final two factors are properties of the QMC algorithm itself,
rather than aspects of the quantum algorithm. We observe
hours of postprocessing runtime for even the smallest chem-
ical systems, using thousands of CPUs. This fundamentally
challenges the scalability of the approach. We thus validate
the persistence of one of the major strengths of QC-QMC, as
well as highlight the challenges that must be overcome if the
technique is to provide practical quantum advantage.

The rest of the paper is organized as follows. In Sec. II,
we discuss how QC-QMC is performed and the basics of
classical shadows, which serve as prerequisites for subsequent
discussions. In Sec. III, we first discuss prior work on noise
robust classical shadows [29,32] (and their recently developed
Matchgate variants [30,31]) and give an extension to these
methods that mitigate state preparation noise in QC-QMC.
Second, we experimentally and analytically confirm the nat-
ural noise resilience of the Matchgate shadow protocol as
used in QC-QMC. Finally, we apply QC-QMC to simulate
the dissociation of hydrogen, and the ground state energy of a
solid-state spin defect system, on different quantum hardware

systems. These calculations reach agreement with the refer-
ence values even in the absence of error mitigation. In Sec. IV,
we discuss the merits and shortcomings of QC-QMC and how
it is related to other quantum-classical hybrid algorithms and
purely classical QMC methods. Finally, Sec. V concludes our
work with a summary.

II. PRELIMINARIES

The workflow of the QC-QMC method is shown in Fig. 1,
where the computation on quantum and classical hardware
is partitioned by classical shadows. In this section, we first
provide a brief overview of the auxiliary-field quantum
Monte Carlo (AFQMC) algorithm [33] used in the QC-QMC
method. Then we introduce the classical shadows formalism
and discuss its use in QC-QMC. Readers familiar with this
background material can skip to the summary of our results in
Sec. III.

A. Auxiliary-field quantum Monte Carlo

Within the electronic structure community, QMC refers
to a family of methods that bypass the explicit optimization
of the many-body wave function in an exponentially large
Hilbert space. Specifically, probabilistic sampling is applied
in a subspace of the full Hilbert space, resulting in a poly-
nomial scaling of the memory required for the evaluation of
the ground state energy of a given system. The auxiliary-field
quantum Monte Carlo (AFQMC) method is one example of
projector QMC methods where a stochastic imaginary time
evolution of the wave function is carried out by propagating
samples on a manifold of nonorthogonal Slater determinants.
Each sample {|φl〉} is usually called a “walker.” The ground
state energy is estimated as

E =
∑

l wl eiθl E loc
l∑

l wl eiθl
, E loc

l = 〈�T |H |φl〉
〈�T |φl〉 , (1)

where E loc
l is the local energy of each walker, wl and θl are its

weight and phase, H is the electronic structure Hamiltonian,
and |�T 〉 is a trial state defined as an approximation to the
true ground state. The walker wave function and its weight
and phase are updated every time step according to functions
of 〈�T |φi〉

〈�T |φ j〉 that perform the imaginary time evolution, see Ap-
pendix A for details.

For a generic Hamiltonian, however, similar to other pro-
jector QMC methods, AFQMC suffers from the sign problem,
or more precisely, the phase problem where the phases θl of
the walkers are evenly distributed in [0, 2π ) [33,34]. It leads
to the ground state energy estimator, i.e., Eq. (1) (computed
from the ensemble average of all the walkers) experiencing
an exponentially fast decay of the signal-to-noise ratio and a
large statistical error. To remedy the phase problem, a com-
mon solution is the so-called phaseless approximation (ph)
[33], where θl = 0 is enforced by a modified update rule, thus
constraining the evolution of the walkers, see Appendix A for
details. Such an approximation, while controlling the phase
problem, introduces a bias to the estimated ground state en-
ergy. The magnitude of the bias is largely determined by how
well the trial state |�T 〉 represents the exact ground state. On
classical computers, |�T 〉 is usually chosen as either a single

043063-2



EVALUATING A QUANTUM-CLASSICAL QUANTUM MONTE … PHYSICAL REVIEW RESEARCH 6, 043063 (2024)

FIG. 1. Workflow for the hybrid quantum-classical quantum Monte Carlo (QC-QMC) algorithm. (a) An equal superposition of the all-zero
state |0〉, and the quantum trial state |�T 〉 is prepared on a quantum computer, followed by the twirling of random unitary circuits UQ and
measurements. (b) The measurement outcomes {|bi〉} and the random circuit unitary UQ—which together constitute the information required
to reconstruct classical shadows—are communicated to the classical computers. (c) The QMC procedure is carried out on a classical computer,
where the walker states |φi〉 evolve on the potential energy surface from the initial state |�I〉 towards the target ground state |�g〉.

Slater determinant, e.g., the Hartree-Fock state, or a linear
combination of Slater determinants, to ensure a polynomial
scaling in computational time [35].

The insight of Ref. [17] is that on a quantum computer, one
may efficiently compute overlaps between Slater determinant
walker states and a much wider range of trial states, e.g., the
unitary coupled cluster (UCC) state [10,36]. We refer to im-
plementing AFQMC in this way as QC-AFQMC. Such states
are potentially “closer” to the target ground state than those
adopted as classical trials, and could lead to more accurate
ground state energy estimations. It is currently unclear what
are the best AFQMC trial states that can be prepared on a
quantum computer, in low circuit depth. This is a similar issue
to that of choosing a well-motivated and implementable ansatz
circuit in VQE. We will discuss this problem in Sec. IV, and
assume for now that a suitable AFQMC trial state can be
efficiently prepared on a quantum computer. Then, the central
issue for the QC-AFQMC scheme lies in how to evaluate the
overlap amplitude 〈�T |φ〉 for each walker, at each time step.
Efforts in the literature have branched out in two directions:
Xu and Li [19] designed circuits based on the Hadamard test
[37] to efficiently compute the overlap between the walker
states and the trial state. On the other hand, Huggins et al.
[17] computed the amplitude by using the classical shadows
technique applied to |�T 〉. The former approach suffers a
significant overhead in quantum computation due to the large
number of walkers typically used in AFQMC. In addition, it
requires iterative communication between the classical and
quantum hardware, since |�T 〉 is queried at every time step
during the time evolution. We therefore followed the approach
of Huggins et al. in this work, and we provide a detailed
scaling comparison of the two approaches in Sec. IV.

Finally, as originally pointed out by Ref. [17] and then re-
emphasized by Refs. [38,39], the overlap amplitudes 〈�T |φ〉
decay exponentially with system size in typical systems. This
decay suggests that to reduce the relative errors of overlap am-
plitudes within acceptable thresholds, an exponentially large
number of measurement shots would be necessary, resulting
in the QC-QMC approach becoming nonscalable. This is
supported by benchmarks on a transverse-field Ising model
with varying sizes and measurement shots (on a noiseless
simulator) using a Green’s function Monte Carlo method
[38,39] (as the QMC component). This issue is expected to
plague both classical and quantum-assisted quantum Monte
Carlo algorithms, and can be seen as a manifestation of the

general Quantum Merlin-Arthur hardness of electronic struc-
ture calculations [17]. Nevertheless, Ref. [39] explored
strategies for postponing or alleviating this exponential bot-
tleneck, including using more sophisticated walker wave
functions (e.g. beyond a single Slater determinant) in QMC. It
is an open question as to whether these strategies can be made
compatible with classical shadows QC-QMC (note that these
overlaps could alternatively be measured using the Hadamard
test). If the vanishing overlaps issue can be mitigated in suffi-
ciently large system sizes (e.g., ∼100 orbitals), then it may be
possible to achieve practical quantum advantage over classical
QMC methods (and potentially other classical quantum chem-
istry algorithms) for systems of interest [17]. In this study, we
only consider small molecular systems which are not at the
scale where the exponentially vanishing overlaps become a
concern, opting to focus solely on the practical implementa-
tion challenges of QC-QMC. We leave investigating methods
for testing and mitigating vanishing overlaps for future work.

B. Classical shadows

As mentioned in the previous subsection, the need to
evaluate 〈�T |φ〉 for all walkers at each time step is a key con-
sideration for the practicality of the algorithm. In Ref. [17],
it was shown that the measurements required in QC-AFQMC
can be recast into the following framework. Let ρ denote the
density matrix of an n-qubit quantum state that we know how
to prepare, and {Oi} denote a collection of M observables
whose expectation values, i.e., tr(Oiρ) we wish to estimate.
Classical shadow tomography [18] provides a way to estimate
these quantities with a cost that only scales logarithmically
with M. Specifically, it estimates each tr(Oiρ) up to some
error ε by the following procedure: i) choose a distribution
D of unitary transformations; ii) sample random unitaries
U ∈ D from the chosen distribution and iii) measure the state
UρU † in the computational basis {|b〉} (we refer to the tensor
products of {|0〉, |1〉} of each qubit as the computational basis,
i.e., {|b〉}b∈{0,1}n ) to obtain the measurement outcome |b〉〈b|.
Consider the state U †|b〉〈b|U ; in expectation, the mapping
from ρ to U †|b〉〈b|U defines a quantum channel,

M(ρ) := E
U∼D

[U †|b̂〉〈b̂|U ]

= E
U∼D

∑
b∈{0,1}n

〈b|UρU †|b〉U †|b〉〈b|U, (2)

043063-3



BENCHEN HUANG et al. PHYSICAL REVIEW RESEARCH 6, 043063 (2024)

where E denotes the operation of averaging, and the hat rep-
resents a statistical estimator.

In the classical shadows framework, we require M to be
invertible, which is true if and only if the collection of mea-
surement operators defined by drawing U ∈ D and measuring
in the computational basis is tomographically complete. As-
suming that these conditions are satisfied, we can apply M−1

to both sides of above equation, yielding

ρ = E
U∼D

[ρ̂] = M−1

(
E

U∼D
[U †|b̂〉〈b̂|U ]

)
= E

U∼D
[M−1(U †|b̂〉〈b̂|U )]. (3)

We call the collection {M−1(U †|b̂〉〈b̂|U )} the classical shad-
ows of ρ. These shadows can be used to estimate the
expectation values tr(Oiρ),

〈Oi〉 = E
U∼D

tr[OiM−1(U †|b̂〉〈b̂|U )], (4)

each within error ε with probability at least 1 − δ, with a
number of samples that scales as:

Nsample = O
(

log(M/δ)

ε2
max

1<i<M
Var[ôi]

)
. (5)

In the above equation, we define ôi as an estimator of tr(Oiρ)
and Var[ôi] represents the variance of estimator ôi, which
could be bounded by the shadow norm of Oi [18]. Importantly
for QC-AFQMC, Nsample only scales logarithmically with the
number of target observables M.1

Formally, the condition that the measurement channel is
invertible is sufficient for performing the classical shadows
protocol. In practice, it is desirable that the protocol is effi-
cient both in terms of quantum and classical resources. This
means that there should be an efficient procedure to sam-
ple unitaries U from D and implement them on a quantum
computer, and in addition the variance of the estimates ôi is
polynomial in system size. Moreover, it should be efficient to
compute the expectation values with respect to the shadows,
tr[OiM−1(U †|b̂〉〈b̂|U )], on a classical computer.

In QC-AFQMC, the overlap amplitude 〈�T |φ〉 is not a
physical observable. Nevertheless, it can be measured within
the framework of classical shadows by rewriting it as [17]

〈�T |φ〉 = 2tr(|φ〉〈0|ρ)

= 2 E
U∼D

tr[|φ〉〈0|M−1(U †|b̂〉〈b̂|U )], (6)

where ρ is the density matrix corresponding to the state
1√
2
(|0〉 + |�T 〉) and |0〉 = |0〉⊗n. Here |φ〉〈0| plays the role

of the operator O.
Reference [17] used random Clifford circuits to per-

form classical shadows, where the overlap amplitude is

1We note that the scaling in Eq. (5) was rigorously proven in
Ref. [18] using a median-of-means estimator. Refs. [27,40] discussed
when a mean estimator would suffice for Clifford and Matchgate
shadows, respectively. We observed numerically that a mean estima-
tor suffices for shadows in our small system QC-QMC experiments.

postprocessed as

〈�T |φ〉 = 2 f −1 E
U∼Cl(2n )

[〈0|U †|b̂〉〈b̂|U |φ〉]. (7)

In the above equation, f = (2n + 1)−1 is the only (nontriv-
ial) eigenvalue of M, since the Clifford group has only one
nontrivial irreducible representation (irrep). The first term
〈0|U †|b〉 can be efficiently computed using the Gottesman-
Knill theorem [41], but the second term 〈b|U |φ〉, in general,
cannot be efficiently estimated due to |φ〉 being a random
Slater determinant. As noted in Ref. [17], the method of
Ref. [42] could be used to efficiently estimate this quantity
up to an additive error. Nevertheless, the f −1 prefactor expo-
nentially amplifies this error, eliminating the efficiency of the
proposed scheme.

Another interesting observation of Ref. [17] is that the eval-
uation of overlap ratios, which drives the AFQMC algorithm,
is resilient to quantum hardware noise. This phenomenon
can be understood by first noting that noise will change the
prefactor f to a modified prefactor f̃ (as explained in detail in
Sec. III A). This prefactor cancels out when taking the ratio,
recovering the noiseless result without requiring any addi-
tional error mitigation. We refer to this as having an inherent
noise resilience.

References [26,27,43,44] investigated the replacement of
the random Clifford ensemble with a random Matchgate
ensemble (in some cases restricting to Clifford Matchgates
and/or number conserving Matchgates). The Matchgate cir-
cuit is the qubit representation of the Fermionic Gaussian
transformation assuming the Jordan-Wigner (JW) transfor-
mation [45] is used. We therefore adopt the JW mapping
throughout this work. Unlike the Clifford group, the Match-
gate group has (n + 1) (even) irreps, see Appendix D for
details. We focus on the results of Ref. [26], which

(i) proved the equivalence between the continuous and
discrete Matchgate ensembles for classical shadows;

(ii) explicitly showed how to efficiently compute the over-
lap between trial states and Slater determinant states using
Matchgate shadows, including bounding the worst case vari-
ance in the estimate.

We refer the interested reader to Ref. [[26], Sec. III D] for
a more detailed comparison between these recent works. The
results of Ref. [26] overcame the postprocessing limitations
of Clifford shadows, showing that overlap amplitude can be
computed as

〈�T |φ〉 = 2
n∑

l=0

f −1
2l E

Q∼B(2n)
tr[|φ〉〈0|	2l (U

†
Q|b̂〉〈b̂|UQ)], (8)

where the random Matchgate circuits UQ are prepared by
sampling random signed permutation matrices Q [Q ∈ B(2n),
where B represents the Borel group]. In Eq. (8), 	2l is the
projector associated with the lth even irrep, and its eigenvalue
f2l is

f2l =
(

2n
2l

)−1(
n
l

)
. (9)

Importantly, Eq. (8) can be efficiently solved using the ma-
trix Pfaffian, with a scaling of O((n − ζ/2)4) by polynomial
interpolation [26], where ζ denotes the number of electrons.
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As such, the exponential postprocessing bottleneck present in
the Clifford shadows approach is eliminated through the use
of Matchgate shadows.

Inherent noise resilience, analogous to that observed for
overlap ratios computed via Clifford shadows, has not yet
been established for overlap ratios computed via Matchgate
shadows. One sufficient but not necessary condition, (fol-
lowing from the Clifford case), would be f̃2l = α f2l , l ∈
{0, 1, . . . , n}, where α is a proportionality constant. In
Sec. III B 2, we investigate the noise resilience of overlap
ratios computed via Matchgate shadows. While our exper-
imental results do not display a universal proportionality
constant between each f̃2l and f2l , we nevertheless find that
the computed ratios are inherently robust to noise, and provide
justification for this observation.

III. RESULTS

In this section, we present our results, divided into three
parts. We first introduce prior work on noise robust classical
shadows, and provide an improvement that mitigates state
preparation noise in QC-AFQMC. Second, we experimentally
test for noise resilience of both overlap amplitudes and ratios
of overlap amplitudes, evaluated via the Matchgate shadow
technique. Notably, we observe that the ratios are resilient
to the effects of noise (as was previously observed for Clif-
ford shadows [17]). We provide a theoretical explanation for
the observed noise resilience and its limitations, which has
more subtle origins than in the Clifford case. Third, we
apply the QC-AFQMC algorithm to compute (i) the dissoci-
ation curve of the hydrogen molecule on a superconducting
qubit quantum computer; and (ii) the ground state of a nega-
tively charged nitrogen-vacancy (NV) center in diamond on a
trapped ion quantum computer.

We use the following notation in this section: we denote
overlap amplitudes obtained from noiseless shadows with an
ordinary bracket, 〈�T |φ〉, quantities subject to quantum noise

with a tilde bracket, ˜〈�T |φ〉, and we use a tilde plus subscript
r to denote quantities obtained from a robust shadow protocol,
˜〈�T |φ〉r .

A. Robust Matchgate shadow protocol

References [29,32] developed a “robust shadow protocol”,
showing that when the quantum noise is gate-independent,
time-stationary, and Markovian (GTM), and the state prepa-
ration of ρ is perfect, a noise-free expectation value can be
obtained. The protocol works by replacing the eigenvalue(s)
f of M with modified value(s) f̃ that compensates for the
effect of noise. The robust scheme uses additional shadow-like
circuits to estimate the value(s) of f̃ . It can be viewed as
passive error mitigation, as the updates are made purely in
the classical postprocessing of the shadow expectation value.
The framework was originally applied to global and local
Clifford shadows. Recently, two separate works extended the
robust shadow protocol to the Matchgate setting [30,31].
The latter of these works observed a close connection between
the circuit used for the robust Matchgate shadow protocol and
prior work on Matchgate randomized benchmarking [46]. We

will closely follow this approach, presenting derivations for
completeness in Appendix E.

The robust Matchgate shadows protocol [31] estimates
{ f̃2l} using the following steps: (i) prepare the all-zero state
|0〉 on a quantum computer; (ii) sample Q ∈ B(2n) and apply
the Matchgate circuit UQ to |0〉; and (iii) measure in the com-
putational basis and collect measurement outcomes |b〉. The
expressions used to calculate { f̃2l} from these measurement
outcomes are given in Appendix E. The sample complex-
ity is asymptotically equivalent to that used in the noiseless
case [31].

The established robust shadow scheme focuses on noise in
the shadow unitary [UQ in Fig. 1(a)] and does not mitigate any
noise occurring during state preparation [VT in Fig. 1(a)]. We
extend the method to (partly) account for noise that occurs
during the state preparation unitary. In QC-AFQMC, we eval-
uate the overlap amplitudes by measuring classical shadows
of an equal superposition state 1√

2
(|�T 〉 + |0〉). This state

is prepared via a circuit that first generates a superposition
of the Hartree-Fock state with |0〉 state, and then applies a
unitary VT , such that VT |�HF〉 = |�T 〉 and VT |0〉 = |0〉 [47].
As discussed above, to estimate the values of { f̃2l} required in
the robust Matchgate protocol, we apply a Matchgate shadow
circuit to the initial state |0〉. We can partially account for the
noise in the state preparation circuit in the following way. We
minimally alter the QC-AFQMC circuit in Fig. 1(a), such that
it measures { f̃2l}, by removing the initial Hadamard gate. In
a noiseless setting, this modified version of VT would still
result in ρ = |0〉〈0|, as required. In the noisy setting, we can
treat the noise as originating in the Matchgate circuit, which
is then mitigated by the robust protocol. While we do not yet
have a full mathematical characterization of the noise models
that can be mitigated by our enhanced robust Matchgate shad-
ows technique, we demonstrate the efficacy of this approach
through numerical simulations and experiments on quantum
hardware, presented in the following section.

B. Noise resilience of overlap amplitudes and their ratios

As discussed previously, all of the key quantities used in
the AFQMC algorithm, e.g., the local energy, can be ex-
pressed as linear combinations of the ratio of overlaps 〈�T |φi〉

〈�T |φ j〉 .
Hence we can view the propagation in imaginary time as being
driven by these overlap ratios. We can estimate the individual
overlaps from Matchgate shadows. In this section, we ex-
perimentally probe the impact of noise on both the overlap
amplitudes, and their ratios, by measuring these quantities
via Matchgate shadows implemented on the IBM Hanoi su-
perconducting qubit quantum computer. As a test system, we
consider the hydrogen molecule in its minimal STO-3G basis,
mapped to four qubits via the Jordan-Wigner transform. We
use a trial state of the form |�T 〉 = α|1100〉 + β|0011〉, which
is a linear combination of the Hartree-Fock configuration and
double excited state, respectively.

1. Evaluating the overlap amplitudes

We compute the overlaps 〈�T |φi〉 between the trial state
and 16 randomly sampled Slater determinants, using Eq. (8),
as a function of the number of Matchgate shadows used. We
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FIG. 2. The mean absolute error (MAE) of overlap amplitudes
〈�T |φi〉 and overlap ratios 〈�T |φi〉

〈�T |φ j 〉 with respect to the number of
Matchgate circuits, varying from 40 to 10 000. A total of 16 000
Matchgate shadow circuits are used in this experiment, each using
1024 measurement shots [48]. The raw experimental results (“Exp.”)
and noiseless simulation (“Noiseless”) are plotted in orange cir-
cles and blue crosses, respectively. For the two robust protocols
(“RShadow” and “RShadow (SP)”), we allocated another 16,000
Matchgate circuits for each to determine the coefficients f̃2l , thus
doubling the measurement cost.

consider both noisy Matchgate shadows, and those corrected
using the robust Matchgate shadow protocol introduced in
Sec. III A.

In Fig. 2 (upper panel), we show the mean absolute error
(MAE) of the noisy and noise-robust overlaps, with respect
to the ideal noiseless value. We observe that the noisy results
differ significantly from the true values, and their accuracy
is limited by the effects of noise. The two robust shadow
approaches (accounting for state preparation error (SP) and
not accounting for it) mitigate the impact of hardware noise.
In particular, compensating for the effects of state prepa-
ration noise results in a much smaller deviation from the
ideal noiseless values than the standard robust approach. This
observation signifies the importance of considering the state
preparation noise when using robust shadows on quantum
hardware.

2. Noise resilience in the evaluation of overlap ratios

Using the results presented in the previous section for
{〈�T |φi〉}, we can compute the 120 possible ratios of overlaps
originating from the 16 Slater determinants sampled. In Fig. 2
(lower panel), we show the MAE of these overlap ratios with
respect to the ideal values (and verify in Fig. 9 in Appendix H
that this behavior holds for not only the MAE, but the errors

associated with each overlap ratio). We observe the following
behavior:

〈�T |φi〉
〈�T |φ j〉 ≈

˜〈�T |φi〉r

˜〈�T |φ j〉r

≈
˜〈�T |φi〉
˜〈�T |φ j〉

, (10)

when the number of shadow circuits exceeds 100. This is
an indication of noise resilience in evaluating the overlap
ratios, suggesting that the robust shadow protocol may not be
required for QC-AFQMC. We provide theoretical justification
for these observations below.

The first (approximate) equality in Eq. (10) will not hold
for all noise models, as the robust Matchgate shadow protocol
is only guaranteed to correct the effects of noise if its assump-
tions (GTM noise, noiseless state preparation) are satisfied.
Nevertheless, for cases where the robust Matchgate protocol
is able to correct the effects of noise the equality of the ratios
follows directly. In our experiments, we found that the robust
Matchgate protocol was able to correct the individual overlaps
up to a small residual error attributed to residual state prepa-
ration noise. This leads to the approximate equality between
the ratios.

The second (approximate) equality shows that the ratio
of any two uncorrected overlap amplitudes (which are them-
selves inaccurate, see Fig. 2 (upper panel)) yields the same
results as ratios of overlaps computed via the robust Match-
gate protocol. To understand this result, we first restate Eq. (8)
for computing the overlap in the absence of noise

〈�T |φ〉 = 2
n∑

l=0

f −1
2l E

Q∼B(2n)
tr[|φ〉〈0|	2l (U

†
Q|b̂〉〈b̂|UQ)].

We make use of the following theorem.
Theorem 1. For an n qubit state |φ〉 = ∑

i ci|i〉, which is a
linear combination of computational basis states |i〉 with fixed
Hamming weight ζ ,

P0,ζ [	2l (|φ〉〈0|)] = b2l |φ〉〈0|, (11)

with

b2l =
{

2ζ−n
(n−ζ

l− ζ

2

)
, if ζ

2 � l � n − ζ

2

0, otherwise
(12)

such that
∑n

l=0 b2l = 1. Here P0,ζ denotes the projector onto
the subspace spanned by the Hamming weight zero state |0〉
and computational basis states of Hamming weight ζ .

Proof. A full proof is given in Appendix D 4, and we
sketch a brief outline here. The operation 	2l (|φ〉〈0|) can be
re-expressed as 2−n

∑
jl
〈0|γ †

jl
|φ〉γ jl where γ jl are strings of 2l

Majorana operators (defined in Appendix D). The action of
the Majorana strings is to create “1’s” in the |0〉 state. Only
terms with ζ 1’s created contribute to the sum. Projecting
the resulting sum into the restricted subspace ensures the
“eigenoperator” property. The prefactor is given by counting
arguments for the number of Majorana strings that can yield
ζ 1’s for a given l value. �

The justification for restricting to the {0, ζ }-electron sub-
space is that ρ is an equal superposition of |0〉 and |�T 〉, and
therefore the trace of ρ with operators outside this subspace
will necessarily be zero. This will still hold approximately
true when ρ is reconstructed from a finite number of classical
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shadows. This operator only appears in the classical postpro-
cessing step and is therefore not affected by noise. Therefore
the noisy overlap amplitude can be expanded as

˜〈�T |φ〉 ≈ 2

(
n∑

l=0

f −1
2l b2l

)
E

Q∼B(2n)
[〈0|U †

Q| ˆ̃b〉〈 ˆ̃b|UQ|φ〉], (13)

where in deriving this equation, we have used tr(AM−1(B)) =
tr(M−1(A)B), where operators A, B are in the subspace where
M is invertible [26]. This expression can be compared to
Eq. (7) for Clifford shadows, noting the common feature of
the separation of the expression into a sum over the channel
index l , and the expectation over the shadow unitaries acting
on the walker state |φ〉. Equation (13) can also be understood
as the way that the Matchgate channel is twirling the noise
in each subspace, in a similar manner to that of the Clifford
shadows. In order to mitigate the effects of noise with the
robust Matchgate shadows approach, we could replace f −1

2l

with f̃ −1
2l

˜〈�T |φ〉r ≈ 2

(
n∑

l=0

f̃ −1
2l b2l

)
E

Q∼B(2n)
[〈0|U †

Q| ˆ̃b〉〈 ˆ̃b|UQ|φ〉]. (14)

If the noise satisfies GTM assumptions (and state preparation
is noise-free), Eq. 14 is able to correct the effect of noise that

manifests from the deviation of | ˆ̃b〉〈 ˆ̃b| from |b̂〉〈b̂|. If these
assumptions on the noise are not satisfied, robust Matchgate
shadows may not be able to perfectly recover the noiseless
value. We can now observe that regardless of whether the
robust procedure is used, the terms corresponding to the sum
over l in Eqs. (13) and (14) are both independent of |φ〉.
As such, when computing the ratios

˜〈�T |φi〉r

˜〈�T |φ j〉r

and
˜〈�T |φi〉
˜〈�T |φ j〉

, the

prefactor will cancel between the numerator and denomi-

nator, leaving behind a ratio of estimators E
Q∼B(2n)

[ . . . ] that

is identical for the robust case and the nonrobust case. As
such, if the ratio of overlaps evaluated via robust Matchgate
shadows is able to approximately recover the noiseless results
(as observed in our data), we conclude that the ratio of over-
laps evaluated via regular Matchgate shadows is also able to
approximately recover the noiseless value. This explains the
data shown in Fig. 2 (lower panel).

We emphasize that the cancellation of the prefactor found
here, i.e.,

∑n
l=0 f̃ −1

2l b2l , should not be mistaken with that of
the Clifford case, although they have a very similar form. This
prefactor of Matchgate shadows, as a sum, contains the noise
information of all (n + 1) even subspaces of the Matchgate
channel. From the Clifford case, one might naturally think that
the cancellation for the Matchgate shadow is due to f̃2l = α f2l

where α is independent of l . We verified that this is not the
case by experimentally determining f̃2l . We observed that αl

could differ by up to 20% for different l . These data are
recorded in Appendix H. Therefore this cancellation should be
credited to the structure of |φ〉〈0|, namely, being an eigenop-
erator of 	2l in the restricted subspace, as proven in Theorem
1. If another observable, without this property, were chosen,
any observed noise resilience would have an alternative origin.
For example, Ref. [28] shows a similar contractive property
in evaluating the ratios, but only for noise models that ensure

FIG. 3. The MAE of estimating overlap amplitudes and overlap
ratios with respect to the number of Matchgate shadow circuits for
the water molecule (8 qubits). These results were obtained through
numerical simulations under single-qubit asymmetric Pauli noise,
where the Pauli X , Z, and Y error rates are set to 1%, 3%, and 2%,
respectively.

〈0|ρnoise|φ〉 is zero, where ρnoise is the noise corrupted part of
the density matrix.

As discussed above, robust shadows have been shown
to correct for noise in the shadow circuit, assuming noise-
less state preparation [29], or state preparation affected by
global depolarizing noise [17,28]. In a realistic setting, the
state preparation step may suffer from more complicated
noise which may prevent the technique from recovering the
noiseless result. We performed numerical simulations to com-
pute overlap ratios for the water molecule in a (4e, 4o) active
space (8 qubits). We employed asymmetric Pauli errors as the
noise model in this simulation (including in the state prepa-
ration circuit), and we refer to Appendix H for more details.
The results, shown in Fig. 3 corroborate the analysis provided
above. Specifically, we observe from the upper panel that

when computing ˜〈�T |φi〉 the results differ significantly from

the noiseless value. In contrast, when computing ˜〈�T |φi〉r
using the robust Matchgate protocol (with compensation for
state preparation error) we are able to almost recover the
noise-free value. We attribute the deviation from the noise-
less value to the presence of some residual state preparation
error, which violates the assumptions of the robust shadow
protocol. In contrast, from the lower panel we observe that the
ratios of overlaps evaluated via the robust Matchgate shadow
protocol are no more accurate than those evaluated using
the regular Matchgate shadow protocol. Moreover, both of
these values deviate from the noiseless value by a small error
due to residual (uncorrectable) state preparation noise. In the
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case of coherent errors during state preparation, we effectively
prepare |�̃T 〉 = U |�T 〉 for some unitary U . As such, while we

would still observe that
˜〈�T |φi〉
˜〈�T |φ j〉

≈ ˜〈�T |φi〉r

˜〈�T |φ j〉r

, neither ratio would

likely recover the noiseless value.
Overall, the results of this subsection highlight a limitation

of the robust Matchgate protocol, and its use in QC-AFQMC.
Nevertheless, these results should be seen as an attractive
feature of QC-AFQMC, as they suggest that the algorithm,
driven by overlap ratios, is naturally resilient to the impact of
many types of noise.

C. Computing ground states with QC-AFQMC

Having established the inherent noise resilience of the
overlap ratios that drive the AFQMC algorithm, we demon-
strate that this property contributes to noise resilience in the
overall algorithm. We first compute the dissociation curve
of the four-qubit hydrogen molecule studied in the previous
subsections using the QC-AFQMC algorithm implemented on
the IBM Hanoi superconducting qubit quantum processor. We
then apply the QC-AFQMC algorithm to compute the ground
state of an NV center in diamond, using the Aria trapped ion
quantum processor from IonQ. In both settings, we emulate
practical applications of QC-AFQMC by assuming a trial state
generated by an imperfect VQE calculation. In both cases,
we use a tailored UCCSD ansatz, see Appendix H, which
was optimized until the energy was approximately 30–80
mHa higher than the FCI reference. We emphasize that these
quantum hardware calculations do not seek to demonstrate
any advantage over the classical QMC algorithm, as using
an unrestricted Hartree-Fock or a multi-Slater trial state in
classical AFQMC would also guarantee accurate ground state
energies for these small system sizes.

1. Hydrogen molecule dissociation

In Fig. 4 (upper panel), we show the ground state ener-
gies obtained from QC-AFQMC at five different molecular
geometries. If we target an error ε = 10−2 on any overlap,
with � 99.99% confidence, the rigorous sample complexity
bounds presented in Eq. (5) imply the need to use ∼1.1 × 105

shadow circuits (with one measurement shot per circuit). As
shown in Fig. 2, it was sufficient to use only 16 000 circuits
for each bond length, suggesting the bounds of Eq. (5) are
overly pessimistic for the small system studied here. Given
the noise resilience observed in evaluating the overlap ratios,
the use of robust shadows was not necessary. In our AFQMC
calculations, we used 4800 walkers for all numerical data
presented here to ensure a negligible variance, and a time step
�τ = 0.005 H.a.−1 resulting in a negligible Trotter error. We
chose the initial walker state to be the Hartree-Fock state,
for each of the five distances studied here. The calculation
was parallelized across 4800 CPU cores (1 core per AFQMC
walker), as discussed in more detail below.

In the interest of conserving computational resources, only
two of the five data points (solid points) were obtained using
the scalable Matchgate shadows approach outlined above.
The remaining three data points were obtained using an ex-
ponentially scaling approach used in Ref. [17] and detailed
in Appendix H 1 d, that is ultimately more efficient than the

FIG. 4. Estimations of the ground state energy of the hydrogen
molecule at five different bond distances (upper). The QC-AFQMC
calculation run on the IBM Hanoi quantum computer (solid and
hollow orange circles labeled “exp.”) converges within computa-
tional accuracy for all distances (see inset), with a difference of
∼10−4 H.a. from its simulated noiseless counterpart (blue crosses).
As discussed in the main text, filled circles denote results obtained
with the scalable Matchgate shadows approach, while the empty cir-
cles denote results obtained with the nonscalable approach outlined
in Appendix H 1 d. The quantum trial state is obtained from a noisy
VQE simulation (purple diamond). An imaginary time evolution
at 0.75 Å is plotted in the lower panel, where the auxiliary fields
sampled at each time step are synchronized between the raw noisy
experiment and noiseless reference.

scalable Matchgate approach for small system sizes. We ver-
ified that the two schemes give the same results for overlap
amplitudes. Thus the two Matchgate-obtained points are used
as a complete evaluation of the practicality of the algorithm,
while the remaining three points are only presented to confirm
the accuracy of the algorithm in the presence of hardware
noise.

We observe that all five QC-AFQMC calculations converge
to within computational accuracy of the FCI reference value,
even without the use of the robust shadow protocol. In Fig. 4
(lower panel), we show the variation in energy as a function
of imaginary time for the 0.75 Å geometry. There is little ob-
servable difference (∼0.1 mHa) between the noisy experiment
and its noiseless classical emulation.

We further note that even when the state preparation suffers
from coherent errors, the QC-AFQMC algorithm is still able
to recover accurate ground state energies, providing the ef-
fective quantum trial state |�̃T 〉, reconstructed from the noisy
shadows, does not appreciably deviate from |�T 〉. This is a
result of the dissipative nature of the imaginary time process
emulated by AFQMC, which will drive any initial state to-
wards the ground state. This further enhances the inherent
noise resilience of the QC-AFQMC algorithm.
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We emphasize that even for the hydrogen molecule in
a minimal basis set, executing the QC-AFQMC algorithm
using Matchgate shadows requires a substantial amount of
resources, with classical computation dominating over the
quantum subroutine. It was necessary to perfectly parallelize
the classical AFQMC propagation, with one walker per CPU
core2 (this is only possible when not using population con-
trol3). For each walker, it took approximately 1 minute to
postprocess the shadows from 16 000 circuits in each time
step. As each step of the AFQMC algorithm must be per-
formed sequentially, it could take up to hours or even days
to complete the full evolution, see Appendix H for details.
This total runtime partly comes from the large number of
shadows, which plays the role of a prefactor and could be
further improved by implementing additional parallelization
among the shadows, for example, processing the shadows
corresponding to a single walker in parallel across a number
of cores, rather than sequentially on the same core. The total
runtime also stems from a scaling as high as O(n8) to evaluate
the local energy of each walker, which is discussed in detail
in Appendix B. This high cost presents a practical concern for
scaling this algorithm to larger systems of practical interest.

2. Nitrogen-vacancy center ground state

We applied the QC-AFQMC algorithm to study the elec-
tronic states of a point defect in a solid. We chose the NV
center in diamond, which is widely considered a promising
candidate for quantum sensing and has recently been applied
to imaging high-pressure phase transitions [49] and super-
conducting systems [50]. To obtain multireference states we
employed a quantum defect embedding theory (QDET) [51],
which allows us to derive an effective Hamiltonian Heff, by
defining an active space, see Appendix G for details. This
effective Hamiltonian is used as the starting point of the QC-
AFQMC calculation.

Although it has been shown [52] that a rather large ac-
tive space is needed to fully converge the computed neutral
excitation energies, here we only chose a minimum model
of (4e, 3o) to carry out the QC-AFQMC calculations, as a
proof of principle. The ground state has a 3A2 irrep due to
the C3v symmetry of the defect and its wave function can be
written as

|3A2〉 = 1√
2

(|a1a1exey〉 + |a1a1exey〉), (15)

where a1, e denotes the irrep of the single-particle orbital and
the bar symbol represents the spin-down channel. In Ref. [53],
a subset of the current authors investigated this system using
VQE and found that error mitigation techniques were neces-
sary to obtain an accurate ground state energy. Here, we use

2Intel Xeon Platinum Processor.
3In QMC, population control refers to a technique to retain sam-

pling efficiency by adjusting the walkers so that the algorithm
avoids spending a disproportionate amount of time keeping track of
walkers that contribute little to the energy estimate [33]. It makes
the algorithm more robust against sampling noise but necessitates
communication between all the walkers and therefore renders the
parallelization less effective.

FIG. 5. The QC-AFQMC calculation of an NV center in dia-
mond using a noiseless quantum simulator (blue crosses), and the
IonQ Aria quantum computer (orange circles). Converged results of
both have an error on the order of 0.1 mHa compared to classical
reference. The inset shows an atomistic model of the defect center.

the tailored UCCSD ansatz in Appendix H as the quantum
trial state for our QC-AFQMC calculations.

In QC-AFQMC, we used 4000 shadow circuits (with 100
shots each), 4800 walkers, and an imaginary time step of
�τ = 0.4 H.a.−1. As can be seen from Fig. 5, the results
obtained on quantum hardware (orange curve) agree with the
noiseless reference (blue curve), which is within our expecta-
tion, given the noise resilience discussed in Sec. III B 2. Both
curves converge to the classical reference FCI limit, which has
been renormalized to zero.

The computation was again fully parallelized, with one
walker per physical CPU core (4800 physical cores total). The
total runtime required for 400 time steps was approximately
1.5 hours.

IV. DISCUSSION

As we discussed in Sec. I, variational algorithms like VQE
have been the methods of choice for quantum chemistry
problems on near-term quantum computers. The QC-AFQMC
scheme discussed here is complementary to VQE. Specifi-
cally, QC-AFQMC could be viewed as an error mitigation
technique for VQE, where both the inaccuracy of the ansatz
used and the noise effects would in principle be corrected by
imaginary time evolution. In turn, the quantum trial state used
in the QC-AFQMC algorithm could come from VQE calcu-
lations (in a smaller active space, or for a reduced problem
size). However, one notable difference from the VQE ansatz
is that the quantum trial preparation circuit needs to satisfy
VT |0〉 = |0〉, if following the approach used in this work. This
additional constraint prevents the use of some popular ansatz
circuits in VQE, such as qubit coupled cluster [54], and circuit
simplification techniques [55]. For some ansatz circuits it
may be possible to circumvent this limitation by introducing
another ancilla qubit, and controlling the implementation of
the ansatz (which can often be done by controlling select
gates, rather than every gate), following the procedure in
Appendix E of Ref. [31].
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TABLE I. Comparison of different measurement schemes for QC-AFQMC.

Method for computing 〈�T |φ〉 Vacuum reference [19] Clifford shadows [17] Matchgate shadows [26]
Only offline QC access? ✗

√ √

Circuit sampling complexitya O
(

Mn4

ε2

)
O
( log(Mn4/δ)

ε2

)
O
( log(Mn4/δ)

ε2

√
nlogn

)
Circuit depth complexityb O(NT + n)

Noise-resilient overlap ratios ✗
√ √

{〈�T |φ〉} postprocessing complexity O(M ) O
( log(Mn4/δ)

ε2 Mexp(n)
)

O
( log(Mn4/δ)

ε2 Mn4.5logn
)

{〈�T |H |φ〉} postprocessing complexityc O(Mn4) O
( log(Mn4/δ)

ε2 Mexp(n)
)

O
( log(Mn4/δ)

ε2 Mn8.5logn
)

aM in the scaling should be interpreted as the total number of walker states involved in the algorithm. The logarithmic factor entering the
complexities for the shadow-based methods arises from the use of a median-of-means estimator, and is not present in the heuristic mean
estimator used in this work.
bO(NT ) represents the quantum trial state preparation circuit depth complexity. And the |φ〉 preparation, random Clifford, and Matchgate
circuit for the three schemes all scale as O(n) in depth.
cThe local energy numerator can be computed by decomposing it into a linear combination of O(n4) overlap amplitudes, due to the complexity
of the Hamiltonian. The number of shadow samples required also contributes to the postprocessing cost.

The possibility of achieving exponential quantum ad-
vantage in solving quantum chemistry problems remains
controversial [56]. This is arguably not the direct aim of
QC-AFQMC, given that phaseless-AFQMC is already a
polynomially scaling method. Instead, the motivation of ph-
QC-AFQMC is that the trial state used may provide energies
with smaller biases than the purely classical algorithm. A full
comparison requires an improved understanding of the advan-
tages offered by quantum trial states over classical trial states
and experimenting with larger systems, which we leave for
future investigations. As a proxy for this, we could compare
the cost of classical methods using state-of-the-art techniques
[57–60], such as multi-Slater trial states. Two popular imple-
mentations using Wick’s theorem have the following scaling
for evaluating the local energy, O(MXn3 + MXNc) [35] and
O(MXn4 + MNc) [61], where M, X, Nc are the number of
walkers, Cholesky vectors, and Slater determinants in the trial,
respectively. This can be compared against the complexities
of the quantum algorithm, which is summarized in Table. I
for the three different proposed approaches for measuring the
overlap amplitudes. We see that the classical algorithms are
more efficient in n than the classical shadows-based quantum
algorithms, which scale as O(n8.5log2n). Following this initial
posting of this paper, Ref. [62] proposed using algorithmic
differentiation to compute the local quantities, which may im-
prove the high polynomial scaling of classical postprocessing.
Integrating this approach with the quantum algorithm is an
important direction for future research. Faced with the steep
overhead of classical postprocessing, the quantum trial state
would need to lead to a much smaller bias than a classical
multi-Slater trial state with a large number of determinants to
be practically advantageous. It is currently an open question
as to what kind of quantum trial state is best suited for QC-
AFQMC. The only criterion adopted so far is the trial state
energy 〈�T |H |�T 〉, but there might exist other, better-suited
criteria.

While Matchgate classical shadows are formally efficient,
they introduce a large postprocessing cost. This presents a
practical challenge for scaling up the QC-AFQMC algorithm
to larger system sizes. To highlight this, in Fig. 6, we present
the classical runtime for postprocessing a single time step of
the QC-AFQMC algorithm, assuming parallelization with 1

CPU core per walker. Numerical results were obtained for
hydrogen and then extrapolated to larger system sizes using
the scaling of the QC-AFQMC algorithm. The results show
that our implementation of the algorithm is only realistic
up to eight spin-orbitals (water). Within each CPU, computa-
tion associated with postprocessing the results of each of the
shadow circuits can be further parallelized. While not inves-
tigated in this paper, parallelization between shadow circuits
can potentially speed up the classical runtime. For example,
using one million CPU cores [63] would drive the classical
postprocessing of benzene toward a realistic regime, of around
6 hours per time step. Nevertheless, for larger systems such
as FeMoco, further optimizations in the algorithm and/or
classical postprocessing are still required to become practical.

FIG. 6. Prediction of the runtime estimation of classical post-
processing for a single time step in the QC-AFQMC algorithm
performed on a single CPU core. These results were extrapolated
from the runtime of postprocessing results from hydrogen, based
on a scaling of classical postprocessing of O(n8.5 log2 n). We make
the optimistic assumptions that the error thresholds ε, δ in classical
shadows do not need to decrease as the system size increases. The
scaling is dominated by the local energy estimation. The system sizes
(plotted on the x axis with a log scale) are quantified using active
spaces, taken from the literature [54,65–68].
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Compared to the classical shadows approach, the Hadamard-
test based approach of Ref. [19] reduces the cost of classical
postprocessing. However, this comes at a price of an increased
number of quantum circuit repetitions (scaling linearly with
the number of walkers), leading to similar measurement bot-
tlenecks as observed for VQE methods [64]. In addition, this
approach requires iterative communication between quantum
and classical processors, which may be subject to latencies.
As such, despite the higher classical postprocessing costs of
the classical shadow based approach, we currently view it as
the more promising approach to QC-AFQMC.

Beyond consideration of computational efficiency, it is im-
portant to consider how noise affects the final energy estimate
from QC-AFQMC. We have investigated above the effects of
hardware noise on the evaluation of overlaps 〈�T |φi〉 and their
ratios 〈�T |φi〉

〈�T |φ j〉 , and we have found natural noise resilience for
the latter. While this noise resilience will not persist in all
settings (e.g., coherent state preparation noise, or noise that
violates the GTM assumptions), our results show that there
are no benefits to be gained from the robust classical shadows
schemes. Since the AFQMC algorithm is driven by overlap
ratios, it is important to understand how AFQMC performs
with unbiased estimates of overlap ratios, subject to shot noise
from finite measurement statistics. This question has recently
been addressed by Ref. [25], which observed that the error
in the AFQMC energy estimate can be upper bounded by
the 2-norm of the Hamiltonian matrix elements. Hence, we
can conclude that if the noise obeys the conditions specified
above, QC-AFQMC can still achieve accurate results, despite
the presence of noise.

Finally, it has been acknowledged [17] and highlighted
[38] that the overlap amplitudes 〈�T |φ〉 are expected to decay
exponentially with system size, as discussed in Sec. II A. In
the worst case scenario, this decay implies an exponentially
large number of measurements may still be required to control
the uncertainty in estimating these overlaps. Establishing the
practical viability of QC-AFQMC will require developing an
improved understanding of these challenges, and their possi-
ble solutions.

V. CONCLUSIONS

In this work, we carried out the first end-to-end experimen-
tal evaluation of the recently proposed Matchgate shadows
[26] powered QC-AFQMC algorithm for quantum chemistry
[17]. We observed that the algorithm is inherently noise
robust, which we find to be a consequence of the natural
noise resilience of evaluating overlap ratios via Matchgate
shadows. We provided a theoretical explanation for this ob-
served phenomenon, which also elucidates limitations in
recently proposed robust Matchgate shadow protocols. We
also developed improvements to those protocols which can
mitigate state preparation noise, and may be of independent
interest. Nevertheless, despite the tantalizing noise resilience
of the algorithm, our optimized practical implementations
have uncovered a number of challenges to the scalability
of the algorithm. Most prominently, while the Matchgate
shadows protocol is asymptotically efficient, its high-degree
polynomial scaling for evaluating the local energy neces-
sitates significant parallel compute resources for classical

postprocessing. We estimate that for larger molecules, we
would require significant amounts of classical postprocessing,
as shown in Fig. 6. As such, future work should focus on
developing new methods for efficiently computing the lo-
cal energy in QC-AFQMC, with lower postprocessing costs.
Many open questions remain about the best trial states to use
for QC-AFQMC, and how to ensure nonvanishing overlaps
between the trial state and walker states. The merits of QC-
AFQMC found in this work, together with these open research
questions, motivate the importance of further study of this
algorithm applied to larger system sizes, on real quantum
devices.

ACKNOWLEDGMENTS

We thank Senrui Chen, Steve Flammia, Liang Jiang, An-
drew Zhao, Kianna Wan, William Huggins, Siyuan Chen,
Yu Jin, Guan Wang, and Ji Liu for fruitful discussions. We
thank Eric Kessler and Alexander Dalzell for comments on
this manuscript. This work was in part supported by the Next
Generation Quantum Science and Engineering (Q-NEXT)
center that develops quantum science and engineering tech-
nologies. Q-NEXT is supported by the U.S. Department of
Energy, Office of Science, National Quantum Information
Science Research Centers. This research used resources of
the Oak Ridge Leadership Computing Facility at the Oak
Ridge National Laboratory, which is supported by the Office
of Science of the U.S. Department of Energy under Contract
No. DE-AC05-00OR22725. We thank the Amazon Braket
team for facilitating the access to IonQ quantum computers
through Amazon Web Service (AWS), and the access to HPC
services on AWS. We acknowledge the use of IBM Quantum
services for this work and to advanced services provided by
the IBM Quantum Researchers Program. The views expressed
are those of the authors and do not reflect the official policy or
position of IBM or the IBM Quantum team.

APPENDIX A: AUXILIARY-FIELD QUANTUM
MONTE CARLO

The auxiliary-field quantum Monte Carlo (AFQMC) algo-
rithm is a stochastic implementation of the imaginary time
evolution (ITE) process:

e−τ (H−E0 )|�I〉 = [e−�τ (H−E0 )]N |�I〉, �τ = τ

N
, (A1)

where E0 is some approximated ground state energy typically
from mean-field calculations. ITE projects out the excited
state components in the initial state |�I〉, and the true ground
state |�g〉 is ultimately obtained as long as |�I〉 is not or-
thogonal to it. In general, it is often as difficult to realize the
ITE in Eq. (A1) as solving the time-independent Schrödinger
equation. To remedy this challenge, the Hubbard-Stratonovich
transformation [69,70] can be employed, where the two-body
interaction in the following form is recast into one-body cou-
pled to an auxiliary field:

e
�τ
2 v2

γ =
∫

dxγ√
2π

e− x2
γ

2 e
√

�τxγ vγ , (A2)

where vγ is a matrix that represents a one-body interaction,
and xγ is the auxiliary field. To achieve that, the Hamiltonian,
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typically written in second quantized form, has to be rewritten
into a Cholesky decomposed format

H = H0 +
∑
i, j

hi ja
†
i a j + 1

2

∑
i, j,k,l

Vi jkl a
†
i a†

j alak

= H0 + v0 − 1

2

∑
γ

v2
γ , (A3)

where H0 is a constant, h,V are the one- and two-electron
integrals, v0 is the modified one-body interaction, vγ = iLγ ,
and Lγ is the Cholesky vector of the two-body interactions
satisfying

Lγ =
∑

pq

Lγ
pqa†

paq, Vi jkl =
∑

γ

Lγ

ikLγ ∗
l j . (A4)

Note that we have assumed a mean-field subtraction [33] in
the above Hamiltonian. With it, and the second-order Trotter
formula [71,72]: eA+B ≈ eA/2eBeA/2, the short-time propagator
can be approximated as

e−�τ (H−E0 ) ≈ e−�τ (H0−E0 )e− �τ
2 v0
∏
γ

e
�τ
2 v2

γ e− �τ
2 v0

=
∫

dxp(x)B(x) + O(�τ 2), (A5)

where we have defined

B(x) = e− �τ
2 v0
∏
γ

e
√

�τxγ vγ e− �τ
2 v0 . (A6)

The constant prefactor is usually left out and p(x) is the
multivariable standard normal distribution. After this transfor-
mation, we have only one-body terms left, and the original
interacting problem is now mapped onto an ensemble of
noninteracting problems coupled to a set of auxiliary fields.
The probability distribution p(x) in the above expression is
realized by an ensemble of walkers |φl〉, which are evolved as

|φ(i+1)〉 = B(x)|φ(i)〉, (A7)

where the superscript represents the time step. The walkers in
AFQMC are chosen as nonorthogonal Slater determinants and
stay in the manifold of Slater determinants S during evolution,
due to the Thouless theorem [73,74]. The ground state is then
estimated by a mixed energy estimator which is exact and can
lead to considerable simplifications in practice

E = 〈�T |He−N�τ (H−E0 )|φ(0)〉
〈�T |e−N�τ (H−E0 )|φ(0)〉 , (A8)

where |�T 〉, |φ(0)〉 are the trial state and initial Slater determi-
nant, respectively.

So far we have not imposed any constraints on the evolu-
tion of walkers, which is known as free-projection AFQMC.
The only potential systematic error comes from the Trotteriza-
tion error. However, free-projection AFQMC is prone to large
fluctuations in the estimated energy because of an asymptotic
instability in τ , also known as the phase problem. The phase
problem manifests as the phase θl of walkers evolves into the
whole [0, 2π ) range during the random walk (e.g., see Fig. 3
in Ref. [34] for visualization), and results in the denominator
in Eq. (1), i.e.,

∑
l wl eiθl approaching 0 exponentially quickly

with τ . This problem could be viewed as a generalization of
the sign problem, see Refs. [33,34] for a detailed discussion.

Importance sampling is a variance-reduction technique
widely used in QMC methods. It’s also employed to control
the phase problem in AFQMC. To do that, we first note that
the Eq. (A5) still holds up to a complex-valued shift x. There-
fore it can be modified as

p(x) → p(x − x), B(x) → B(x − x). (A9)

To find the best x, we first expand Eq. (A8) as

E ≈
∫ ∏N−1

k=0 dxk p(xk − xk )〈�T |H |φ(N )〉∫ ∏N−1
k=0 dxk p(xk − xk )〈�T |φ(N )〉

=
∫ ∏N−1

k=0 dxk p(xk )I (xk, xk, φ
(k) ) 〈�T |H |φ(N )〉

〈�T |φ(N )〉∫ ∏N−1
k=0 dxk p(xk )I (xk, xk, φ(k) )

, (A10)

where we have defined

|φ(N )〉 = B(xN−1 − xN−1) . . . B(x0 − x0)|φ(0)〉, (A11)

and an importance function

I (x, x, φ) = 〈�T |B(x − x)|φ〉
〈�T |φ〉 ex·x− x2

2 . (A12)

By choosing

xγ = −
√

�τ 〈vγ 〉, 〈vγ 〉 = 〈�T |vγ |φ〉
〈�T |φ〉 , (A13)

fluctuations in the importance function to first order in
√

�τ

is canceled [33], leading to a more stable random walk. The
dynamic shift, usually referred to as a force bias, modifies
the sampling of the auxiliary fields by shifting the center
of the Gaussian distribution p(x) according to the overlap
〈�T |φ〉. The importance function can therefore be further
approximated as I (x, x, φ) ≈ exp[−�τ (E loc − E0)], known
as the local energy formalism. Introducing the force bias into
the importance sampling would solve the instability if B(x)
were real, which could be true in special cases. For a general
phase problem, however, it does not lead to complete control
of the phase problem.

To further control the phase problem, the local energy in
the importance function has to be replaced by its real part,
leading to θl = 0 and wl > 0 in Eq. (1). A phaseless approxi-
mation is also adopted as

I (x, x, φl ) ≈ exp
[− �τ

(�E loc
l − E0

)]
× max

(
0, cos

[
arg

( 〈�T |B(x − x)|φl〉
〈�T |φl〉

)])
,

(A14)

where abrupt phase changes during the random walk are
now forbidden. The weight is updated as w

(k)
l ← w

(k−1)
l ×

I (x, x, φ
(k−1)
l ). Combining these techniques finally resolves

the phase problem, and the whole algorithm is usually referred
to as the phaseless AFQMC (ph-AFQMC). Note that the
phaseless approximation also introduces a bias to the mixed
energy estimator, which we seek to systematically improve by
using quantum computation in QC-AFQMC.
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The whole process of the AFQMC algorithm is summa-
rized in Algorithm 1, following the presentation in Ref. [19].

ALGORITHM 1. Auxiliary-field quantum Monte Carlo.

1: Input H, E0, |�T 〉, |�I 〉, number of walkers M,
number of time steps N , and step size �τ . (H
will be decomposed into L Cholesky vectors.)

2: for l = 1 to M do
3: |φ (0)

l 〉 ← |�I 〉, w
(0)
l ← 1 � Initialize the walker.

4: for k = 1 to N do
5: for γ = 1 to L do

6: xγ = −√
�τ

〈�T |v̂γ |φ(k−1)
l 〉

〈�T |φ(k−1)
l 〉

7: Sample x according to distribution p(x)
8: |φ (k)

l 〉 ← B(x − x)|φ (k−1)
l 〉. � Update the walker

9: E (k−1)
l ← 〈�T |H |φ(k−1)

l 〉
〈�T |φ(k−1)

l 〉 � Compute local energy

10: θ ← arg(
〈�T |φ(k)

l 〉
〈�T |φ(k−1)

l 〉 ) � Compute the phase

11: w
(k)
l ← w

(k−1)
l × I (x, x, φ

(k−1)
l ) � Update weight

12: E (N )
l ← 〈�T |H |φ(N )

l 〉
〈�T |φ(N )

l 〉 � Compute the local energy

13: Output the energy E ←
∑M

l w
(N )
l E (N )

l∑M
l w

(N )
l

APPENDIX B: LOCAL ENERGY EVALUATION
WITH CLASSICAL SHADOWS

The most time-consuming step in QC-AFQMC is the eval-
uation of the local energy. Here we discuss how this task is
performed in our implementation compatible with classical
shadows. We first note that the local energy numerator can
be rewritten as

〈�T |H |φ〉 = 〈�T |UφU †
φ HUφ|�0〉

=
∑

pr

〈�T |Uφ

∣∣�r
p

〉〈
�r

p

∣∣H̄ |�0〉

+
∑
pqsr

〈�T |Uφ|�rs
pq〉
〈
�rs

pq

∣∣H̄ |�0〉

=
∑

pr

〈�T

∣∣φr
p

〉〈
�r

p

∣∣H̄ |�0〉

+
∑
pqsr

〈�T

∣∣φrs
pq

〉〈
�rs

pq

∣∣H̄ |�0〉, (B1)

where H̄ = U †
φ HUφ represents the rotated Hamiltonian and

|�0〉, |�r
p〉(|�rs

pq〉) denotes the Hartree-Fock state and its
single (double) excited counterpart. We also have |φr

p〉 =
Uφ|�r

p〉. The second line in the above equation utilizes the
resolution of identity and the fact that Hamiltonian has only
up to two-body interactions.

The Hamiltonian rotation can be done with O(n5) op-
erations. In the above equation, the overlap amplitudes
〈�T |φr

p〉, 〈�T |φrs
pq〉 can be calculated with Matchgate shadows

each with complexity O(n4), as already discussed in the main

text. Each matrix element can be computed using the Slater-
Condon rules with complexity O(1). Due to the number of
possible excited Slater determinants, which scales as O(n4),
the scaling of the evaluation of the local energy for each
walker would therefore scale as O(n8 + n5 + n4) = O(n8)
using this approach.

We also note that there exist other ways to evaluate the
local energy with Matchgate shadows. Sec.V C of Ref. [26]
proposed an alternative way to evaluate the local energy using
the Grassmann algebra. In this approach, the Hamiltonian is
first rewritten into the Majorana formalism. Then the mixed
estimator of each Majorana operator 〈�T |γS|φ〉 can be es-
timated in a similar fashion to the overlap amplitude. This
approach leads to a scaling between O(n9), due to the relevant
matrices being noninvertible, making it slightly less favorable
than the previous approach.

APPENDIX C: CLASSICAL SHADOWS REVISITED

In this section, we will revisit classical shadows from a
group representation perspective, which will be useful when
we include noise effects. We closely follow the presentation
in Ref. [29].

We start by introducing the notations and conventions used
throughout these Appendixes. We consider a n-qubit system
with Hilbert space Hn. Its dimension is denoted by d ≡ 2n.
All the n-qubit operators (super-operators) live in a vector
space defined as L(Hn) (L(L(Hn))). For better clarity, we
make use of the Liouville representation of operators and
super-operators.

(1) Operators are notated using the double kets |A〉〉 =
1√

tr(A†A)
A for its length d2 vectorization for A ∈ L(Hn) and

〈〈B|A〉〉 := tr(B†A)√
tr(B†B)tr(A†A)

;

(2) Superoperators, written as cursive letters, are mapped
to d2 × d2 matrices: any E ∈ L(L(Hn)) can be specified by
its matrix elements Ei j := 〈〈Bi|E |Bj〉〉, where {|Bi〉〉} is an
orthonormal basis for L(L(Hn)).

For any unitary U , its corresponding channel is denoted by
U (·) := U (·)U †. For any |φ〉 ∈ Hn, |φ〉〉 is the vectorization of
|φ〉〈φ|. And hats indicate statistical estimators, e.g., ô denotes
an estimate for o = tr(Oρ).

Classical shadows are based on a simple measurement
primitive: for the quantum state ρ, apply a unitary U ran-
domly drawn from a distribution of unitaries D and measure
in the computational basis. This produces measurement out-
comes b ∈ {0, 1}⊗n with probability 〈b|UρU †|b〉. One then
inverts the unitary on the outcome |b〉 in postprocessing,
which amounts to storing a classical representation of U †|b〉.
The distribution D, from which the random unitaries U are
drawn, usually can be associated with a group G, e.g., random
Clifford unitaries and the Clifford group. M can be viewed as
a twirl of the measurement channel MZ , giving:

M := E
g∼G

U†
gMZUg, MZ =

∑
b∈{0,1}n

|b〉〉〈〈b|, (C1)

where g is an element in G, and the random unitaries U is
a unitary representation of G. Applying Schur’s lemma, and
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assuming no multiplicities in U lead to

M =
∑
λ∈RG

fλ	λ, fλ = tr(MZ	λ)

tr(	λ)
, (C2)

where RG are the irreducible representations (irreps) of G.
The super-operators 	λ ∈ L(L(Hn)) are orthogonal projec-
tors onto the irreducible subspaces �λ, and fλ is the eigenvalue
associated with each orthogonal projector.

APPENDIX D: MATCHGATE SHADOWS

In this section, we outline the basics of Matchgate shadows,
closely following the presentation in Ref. [26]. The Matchgate
unitaries are based on the Majorana formalism. For a system
of n orbitals, 2n Majorana operators can be defined as

γ2 j−1 = a j + a†
j , γ2 j = −i(a j − a†

j ), (D1)

for j ∈ [n] := {1, . . . , n}. These have qubit representation

γ2 j−1 = (
	

j−1
i=1 Zi

)
Xj, γ2 j = (

	
j−1
i=1 Zi

)
Yj, (D2)

under the Jordan-Wigner (JW) transformation [45], where
Xi,Yi, Zi are the Pauli operators on qubit i. For a subset of
indices S ⊆ [2n], we denote by γS the product of the Majorana
operators indexed by the elements in S in ascending order.
That is,

γS := γμ1 . . . γμ|S|, (D3)

for S = {μ1, . . . , μ|S|} ⊆ [2n] with μ1 < · · · < μk .

1. Fermionic Gaussian states

Matchgate circuits are qubit representations of fermionic
Gaussian unitaries under the JW transformation. The
fermionic Gaussian unitaries transform between valid sets of
Majorana operators {γ2 j−1, γ2 j}, j ∈ [n]. Fermionic Gaussian
states are the ground states and thermal states of noninteract-
ing fermionic Hamiltonians. An n-mode Gaussian state is any
state whose density operator � can be written as

� =
n∏

j=1

1

2
(I − iλ jγ2 j−1γ2 j ), (D4)

for some coefficients λ j ∈ [−1, 1]. If λ j ∈ {−1, 1} for all j ∈
[n], then � is a pure Gaussian state; otherwise, � is a mixed
state. For any computational basis state |b〉, for example, we
have

|b〉〈b| =
n∏

j=1

1

2
[I − i(−1)b j γ2 j−1γ2 j]. (D5)

A Gaussian state can also be defined by its two-point correla-
tions tr(�γμγν ), which is also known as its covariance matrix.
An n-qubit Gaussian state ρ has its covariance matrix defined
as:

(Cρ )μν := − i

2
tr([γμ, γν]ρ) (D6)

for μ, ν ∈ [2n], which is a 2n × 2n antisymmetric matrix.
For any computational basis state |b〉〈b| as an example, its

covariance matrix is

C|b〉 :=
n⊕

j=1

(
0 (−1)b j

(−1)b j+1 0

)
. (D7)

A Gaussian state which is also an eigenstate of the number
operator

∑n
j=1 a†

j a j is known as Slater determinant. Any ζ -
fermion Slater determinant |ϕ〉 can also be written as

|φ〉 = a′†
1 . . . a′†

ζ |0〉, a′†
j =

n∑
k=1

Vk ja
†
k = UV a†

jU
†

V , (D8)

for some n × n unitary matrix V . Hence a Slater determinant
can also be specified by the first ζ columns of V . Finally the
Majorana operators {γ ′}μ∈[2n] have the following relation:

γ ′
2 j−1 =

∑
k

[�(Vjk )γ2 j−1 − �(Vjk )γ2 j], (D9)

γ ′
2 j =

∑
k

[�(Vjk )γ2 j−1 + �(Vjk )γ2 j]. (D10)

So the fermionic Gaussian unitary UQ′ that implements this
transformation is given by the orthogonal matrix

Q′ =

⎛⎜⎝R11 . . . R1n
...

. . .
...

Rn1 . . . Rnn

⎞⎟⎠, Rjk :=
(�(Vjk ) −�(Vjk )

�(Vjk ) �(Vjk )

)
.

(D11)

2. Matchgate 3-design

The adjoint action of Fermionic Gaussian unitaries UQ on
the Majorana operators obeys

UQγμU †
Q =

∑
ν∈[2n]

Qνμγν, μ ∈ [2n], (D12)

where Q belongs to the orthogonal group O(2n). Matchgate
circuits form a continuous group Mn which is in one-to-one
correspondence with the orthogonal group O(2n), up to a
global phase:

Mn = {UQ : Q ∈ O(2n)}. (D13)

Ref. [26] considered two distributions: (i) “uniform” distri-
bution over Mn, where uniformity is more precisely given
by the normalized Haar measure μ on O(2n); (ii) uniform
distribution over the discrete Borel group B(2n), which is the
intersection of Mn and the n-qubit Clifford group Cln. The
second consists of 2n × 2n signed permutation matrices:

Mn ∩ Cln = {UQ : Q ∈ B(2n)}. (D14)

For j ∈ Z>0, we use E ( j)
Mn

and E ( j)
Mn∩Cln

to denote the j-fold
twirl channels corresponding to the distributions over Mn and
Mn ∩ Cln, respectively:

E ( j)
Mn

:=
∫

O(2n)
dμ(Q)U⊗ j

Q , (D15)

E ( j)
Mn∩Cln

:= 1

|B(2n)|
∑

Q∈B(2n)

U⊗ j
Q , (D16)

where we have used the fact that twofold Matchgate twirl
is hermitian [26]. Since the measurement channel M in the
classical shadows procedure and the variance of the estimates
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obtained from the classical shadows are determined by the
two- and threefold twirls, it is necessary to compare E ( j)

Mn
and

E ( j)
Mn∩Cln

up to j = 3.
Reference [26] proved that the j-fold twirl channels of

these two distributions are equivalent up to j = 3. Thus the
discrete ensemble of Clifford Matchgate circuits is a 3-design
for the continuous Haar-uniform distribution over all Match-
gate circuits, in the same way that the Clifford group is a
unitary 3-design [75]. Ref. [26] stated this result informally as
“The group of Clifford Matchgate circuits forms a Matchgate
3-design.” In the implemented Matchgate shadow protocol,
we adopt the latter since it requires less memory to store a
random signed permutation matrix compared to an orthogo-
nal matrix. An additional virtue of sampling in Mn ∩ Cln is
that Clifford circuits can be randomly compiled to convert
coherent errors into incoherent errors [76] (within the shadow
circuit), leading to better satisfaction of the GTM assumption
of noise. Our implementation of Matchgate circuits is given in
Appendix F.

3. Matchgate channel

The n-qubit Matchgate group Mn has (2n + 1) irreps, so
we can define correspondingly (2n + 1) subspaces

�k := span

{
γS : S ∈

(
[2n]

k

)}
, k ∈ {0, . . . , 2n}, (D17)

where
( [2n]

k

)
denotes the set of subsets of [2n] of cardinality

k. Therefore we have L(Hn) = ⊕2n
k=0�k . For fermionic simu-

lations, we usually deal with even operators so we only look
at the even subspaces �even = ⊕n

l=0�2l .
Now we can derive the details of the Matchgate channel,

which will serve as the basis for calculations involving noise
presented in the following section. As we discussed above, the
measurement channel for any shadow scheme can be derived
by specifying the twofold twirl E (2)

M(ρ) = tr1

⎡⎣ ∑
b∈{0,1}n

E (2)
Mn∩Cln

(|b〉〈b|⊗2)(ρ ⊗ I )

⎤⎦, (D18)

where tr1 denotes the partial trace over the first tensor com-
ponent. The twofold twirl for the Matchgate group has the
following form:

E (2)
Mn∩Cln

=
2n∑

k=0

∣∣ϒ (2)
k

〉〉〈〈
ϒ

(2)
k

∣∣, (D19)

∣∣ϒ (2)
k

〉〉 = (
2n
k

)−1/2 ∑
S∈
(

[2n]
k

) |γS〉〉|γS〉〉. (D20)

The standard derivation can be found in Sec. IV B in Ref. [26].
For our purpose, we will take a shortcut by assuming all the
projectors 	2l ∈ L(L(Hn)) are already known

	2l :=
∑

S∈
(

[2n]
2l

) |γS〉〉〈〈γS|, (D21)

where we have defined |γS〉〉 = γS/
√

2n, and 〈〈γS|γS′ 〉〉 = δSS′ .
We directly start from Eq. (C2), and the eigenvalues are hence

computed as

f2l = Tr[MZ	2l ]

Tr[	2l ]

=
∑

S∈
(

[2n]
2l

)∑
b∈{0,1}n |〈〈γS|b〉〉|2∑

S∈
(

[2n]
2l

)〈〈γS|γS〉〉

=
(

2n
2l

)−1 ∑
b∈{0,1}n

∑
T ∈
(

[n]
l

)
∣∣∣∣ (−i)|T |

√
2n

(−1)
∑

j∈T b j

∣∣∣∣2

=
(

2n
2l

)−1(
n
l

)
, (D22)

where we have used

|b〉〉 = 1√
2n

∑
T ∈
(

[n]
l

)(−i)|T |(−1)
∑

j∈T b j |γpairs(T )〉〉, (D23)

and pairs(T ) is defined as
⋃

j∈T {2 j − 1, 2 j}. We only con-
sider the even subspaces for fermionic simulations. Therefore
the Matchgate channel is

M =
n∑

l=0

(
2n
2l

)−1(
n
l

)
	2l . (D24)

With the above definitions and properties of fermionic
Gaussian transformation, we can finally discuss how to use the
Matchgate shadow to compute the desired overlap integrals.
The overlap can first be reconstructed as

〈�T |φ〉 = 2
n∑

l=0

(
2n
2l

)(
n
l

)−1

× E
Q∼B(2n)

tr[|φ〉〈0|	2l (U
†
Q|b̂〉〈b̂|UQ)], (D25)

where the trace involving 	2l correspond to the coefficient of
zl in the following polynomial [26]

q|φ〉,|b〉(z) = iζ/2

2n−ζ/2
pf[(C|0〉 + zW ∗Q′T QT C|b〉QQ′W †)|Sζ

].

The pf in the above equation denotes the matrix Pfaffian, and
M|S represents matrix M restricted to rows and columns in set
S. ζ is the particle number, C|0〉 denotes the covariance matrix
of the vacuum state, and Q′ is an orthogonal matrix defined
from the Slater determinant |ϕ〉 according to Eq. (D11). We
have also defined the W matrix

W =
ζ⊕

j=1

1√
2

(
1 −i
1 i

) n⊕
j=ζ+1

(
1 0
0 1

)
, (D26)

and Sζ := [2n]\{1, 3, . . . , 2ζ − 1}. All these coefficients can
be computed using polynomial interpolation in O((n −
ζ/2)4) time, where ζ is the number of electrons.

4. Noise resilience

In this subsection, we prove Theorem 1. This result serves
as the foundation of noise resilience observed in experiments
performed on quantum hardware.
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Theorem 1. For an n qubit state |φ〉 = ∑
i ci|i〉, which is a

linear combination of computational basis states |i〉 with fixed
Hamming weight ζ ,

P0,ζ [	2l (|φ〉〈0|)] = b2l |φ〉〈0|, (11)

with

b2l =
{

2ζ−n
(n−ζ

l− ζ

2

)
, if ζ

2 � l � n − ζ

2

0, otherwise
(12)

such that
∑n

l=0 b2l = 1. Here P0,ζ denotes the projector onto
the subspace spanned by the Hamming weight zero state |0〉
and computational basis states of Hamming weight ζ .

Proof. We expand

P0,ζ [	2l (|φ〉〈0|)] =
∑

i

ciP0,ζ [	2l (|i〉〈0|)]. (D27)

By the results of Lemma 1,

P0,ζ [	2l (|φ〉〈0|)] =
∑

i

cib2l |i〉〈0|

= b2l |φ〉〈0| (D28)

as required. �
The above result is proved using the following lemma. The

general proof idea is to write

	ζ (|i〉〈0|) = 2−n
∑

S∈
(

[2n]
2l

)〈0|γ †
S |i〉γS. (D29)

The action of the Majorana strings is to “create electrons”
in the |0〉 state. Terms in the sum evaluate to zero unless ζ

electrons are created. For small/large numbers of Majorana
operators in each string, insufficient electrons are created, and
the whole sum evaluates to zero. In the intermediate regime,
each Majorana string can be divided into two parts; a part
that creates ζ electrons in the correct positions, and a part
that contributes an ultimately unimportant phase and increases
the multiplicity of a given term. The more interesting part
is the part that creates the electrons, which acts as a projector
from an x-electron subspace to an x + ζ electron subspace.
The action of projecting into the subspace spanned by the
vacuum state and computational basis states with Hamming
weight ζ retains only terms that project from zero electrons to
ζ electrons. Combinatorics give the desired values of b2l .

Lemma 1. Given an n qubit computational basis state
|i〉 with even Hamming weight ζ , then P0,ζ [	2l (|i〉〈0|) =
b2l |i〉〈0| with

b2l =
{

2ζ−n
(n−ζ

l− ζ

2

)
, if ζ

2 � l � n − ζ

2

0, otherwise
, (D30)

where P0,ζ is the projection from onto the subspace spanned
by the vacuum state and computational basis states with Ham-
ming weight ζ .

Proof. First expand

	ζ (|i〉〈0|) = 2−n
∑

S∈
(

[2n]
2l

)〈0|γ †
S |i〉γS (D31)

using the definition of super-operators from Appendix C. The
set S contains the

(2n
2l

)
possible Majorana strings formed by

choosing 2l Majorana operators acting on n qubits. Recall the
qubit representation of Majorana operators under the Jordan-
Wigner transform

γ2 j−1 = (
	

j−1
i=1 Zi

)
Xj, γ2 j = (

	
j−1
i=1 Zi

)
Yj,

We refer to “connected” Majorana operators as pairs of
the form γkγk+1 = iZ k+1

2
for k odd. We refer to “uncon-

nected” Majorana operators as pairs of the form γiγ j such
that j �= i + 1 if i is odd. Unconnected Majorana operators
take the form γiγ j = pi, jOi �Z j−1

i+1 Oj where pi, j ∈ {±1,±i} and

O ∈ {X,Y }, and the notation �Zb
a := ⊗b

k=a Zk . Hence, observe
that connected Majorana operators act as the identity on
|0〉, while unconnected Majorana operators act as γiγ j |0〉 =
|0 . . . 01i0 . . . 01 j0 . . . 0〉 (up to a complex phase). Because
each unconnected pair increases the Hamming weight by 2,
we require γS to contain exactly ζ/2 unconnected pairs, and
all other pairs to be connected pairs. If this requirement is not
satisfied, 〈0|γ †

S |i〉 = 0.
First consider the case 2l < ζ . In this case, γS contains

2l < ζ Majorana operators, and it is impossible to form ζ/2
unconnected pairs. Hence, every term in the sum evaluates to
zero, and b2l = 0, as required.

For 2l > 2n − ζ , observe that because the Hamming
weight of |i〉 is ζ , there are (n − ζ ) 0’s in |i〉. After placing a
connected Majorana pair on each of these 0 qubits, the remain-
ing number of Majorana operators to distribute onto the ζ 1’s
in |i〉 is given by 2l − 2(n − ζ ) > 2n − ζ − 2(n − ζ ) = ζ . It
is necessary to place greater than ζ Majorana operators on the
ζ qubits. As a result, at least two of the Majorana’s will form a
connected pair. This leaves fewer than ζ/2 unconnected pairs,
so 〈0|γ †

S |i〉 = 0. Hence, every term in the sum evaluates to
zero, and b2l = 0, as required.

Proving the result for ζ

2 � l � n − ζ

2 is more involved,
and proceeds via explicit calculation. As discussed above,
terms in the sum are only nonzero if γS contains exactly ζ/2
unconnected pairs. Denote the ζ qubits with value 1 in |i〉 as
[i] = [i1, . . . , iζ ], with iα < iβ if α < β. Denote the remaining
(n − ζ ) qubits with value 0 in |i〉 as [ j] = [ j1, . . . , jn−ζ ].
Observe that [i] ∩ [ j] = ∅.

The only nonzero terms in the sum correspond to strings
with ζ Majorana operators forming ζ/2 unconnected pairs on
[i] and (2l − ζ ) Majorana operators forming l − ζ

2 connected
pairs on [ j]. First consider the part of the string acting on [i].
The string γi1γi2 . . . γiζ can be written as a tensor product of
nonoverlapping (commuting) Pauli strings:

ζ−1⊗
k=1

k odd

pik ,ik+1 Oik �Z (ik+1−1)
(ik+1) Oik+1 . (D32)

Note that the qubits acted on by Z are not in the set [i]. Next,
consider the part of the string acting on [ j]. There are

(n−ζ

l− ζ

2

)
(paired) locations to place the connected pairs, denote any
such choice as [ j̄]. The ‘connected part’ of the string can be

written as
⊗l− ζ

2
k=1 ıZ j̄k , where here we have used ı = √−1 to

avoid confusion with the index i.
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Then explicitly compute the sum over these Majorana strings (qubits that are not explicitly acted on in the following
expressions are implicitly acted on with the identity operator):

	2l (|i〉〈0|) = 2−n
∑

S∈
(

[2n]
2l

)〈0|γ †
S |i〉γS

= 2−n
∑

[ j̄]∈( n−ζ

l− ζ
2
)

∑
Oi1 ∈
{

Xi1Yi1

}
Oi2 ∈
{

Xi2 ,Yi2

}
...

Oiζ ∈
{

Xiζ ,Yiζ

}
〈0|

⎛⎜⎝ ζ−1⊗
k=1

k odd

pik ,ik+1 Oik �Z (ik+1−1)
(ik+1) Oik+1

l− ζ

2⊗
η=1

ıZ j̄η

⎞⎟⎠
†

|i〉

⎛⎜⎝ ζ−1⊗
k=1

k odd

pik ,ik+1 Oik �Z (ik+1−1)
(ik+1) Oik+1

l− ζ

2⊗
η=1

ıZ j̄η

⎞⎟⎠

= 2−n
∑

[ j̄]∈( n−ζ

l− ζ
2
)

∑
Oi1 ∈
{

Xi1Yi1

}
Oi2 ∈
{

Xi2 ,Yi2

}
...

Oiζ ∈
{

Xiζ ,Yiζ

}

ζ−1⊗
k=1

k odd

l− ζ

2⊗
η=1

〈
0ik . . . 0ik+1 . . . 0 j̄η

∣∣Oik �Z (ik+1−1)
(ik+1) Oik+1 Z j̄η

∣∣1ik 0 . . . 01ik+1 0 . . . 0 j̄η

〉

× (
Oik �Z (ik+1−1)

(ik+1) Oik+1 Z j̄η

)

= 2−n

⎛⎜⎜⎜⎜⎜⎜⎝
ζ−1⊗
k=1

k odd

∑
Oik ∈
{

Xik Yik

}
Oik+1 ∈

{
Xik+1 ,Yik+1

}
〈
0ik 0ik+1

∣∣Oik Oik+1

∣∣1ik 1ik+1

〉
Oik �Z (ik+1−1)

(ik+1) Oik+1

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎝ ∑

[ j̄]∈( n−ζ

l− ζ
2
)

l− ζ

2⊗
η=1

Z j̄η

⎞⎟⎟⎠ (D33)

where in the first term of the final line we have swapped the order of the sum and tensor product, such that we are essentially
considering ζ/2 copies of states with Hamming weight two. Using the results of Lemma 2, the first term in the final line above
evaluates to

ζ−1⊗
k=1

k odd

22|1〉〈0|ik ⊗ |1〉〈0|ik+1 ⊗ �Z (ik+1−1)
(ik+1) = 2ζ |i〉[i]〈0|[i]

ζ−1⊗
k=1

k odd

�Z (ik+1−1)
(ik+1) , (D34)

where we use |x〉[i] to denote the qubits of computational basis state |x〉 corresponding to the set [i]. Hence, denoting |y| as the
Hamming weight of a computational basis state |y〉,

P0,ζ [	2l (|i〉〈0|)] = 2ζ−n
∑

[ j̄]∈( n−ζ

l− ζ
2
)

P0,ζ

⎡⎢⎣|i〉[i]〈0|[i]
ζ−1⊗
k=1

k odd

�Z (ik+1−1)
(ik+1)

l− ζ

2⊗
η=1

Z j̄η

⎤⎥⎦

= 2ζ−n
∑

[ j̄]∈( n−ζ

l− ζ
2
)

∑
|x|,|y|={0,ζ }

|x〉〈x|

⎛⎜⎝|i〉[i]〈0|[i]
ζ−1⊗
k=1

k odd

�Z (ik+1−1)
(ik+1)

l− ζ

2⊗
η=1

Z j̄η

⎞⎟⎠|y〉〈y|

= 2ζ−n
∑

[ j̄]∈( n−ζ

l− ζ
2
)

|i〉〈0|

= 2ζ−n

(
n − ζ

l − ζ

2

)
|i〉〈0|. (D35)

Thus for ζ

2 � l � n − ζ

2 , P0,ζ [	2l (|i〉〈0|)] = 2ζ−n
(n−ζ

l− ζ

2

)|i〉〈0|, as required. �

Lemma 2. The sum∑
Oi∈[XiYi]

Oj∈[Xj ,Yj ]

〈0i0 j |OiOj |1i1 j〉Oi �Z j−1
i+1 Oj (D36)

evaluates to
22|1〉〈0|i ⊗ |1〉〈0| j ⊗ �Z j−1

i+1 , (D37)

where �Zb
a := ⊗b

k=a Zk .
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Proof. Explicitly computing the terms in the sum yields

(XiXj − YiYj − ı(XiYj + YiXj )) �Z j−1
i+1 . (D38)

Using the decomposition X = (|0〉〈1| + |1〉〈0|) and Y =
(−ı|0〉〈1| + ı|1〉〈0|) yields

22|1〉〈0|i ⊗ |1〉〈0| j ⊗ �Z j−1
i+1 (D39)

as required. �

APPENDIX E: ROBUST MATCHGATE SHADOWS

In this section, we formulate the robust Matchgate shadow
protocol, providing an alternative derivation from those in
Refs. [30,31].

1. Robust shadow protocol

In this part, we review the robust shadow estimation [29],
which serves as a basis for robust Matchgate shadows. Equa-
tion (C2) is particularly useful when it comes to noise, where
the channel is modified by noise as

M̃ =
∑
λ∈RG

f̃λ	λ, f̃λ = tr(MZ�	λ)

tr(	λ)
, (E1)

where f̃λ is the noisy eigenvalue, � denotes the noise chan-
nel, and we have assumed the noise is gate-independent,
time-stationary, and Markovian (GTM) [29]. Within this as-
sumption, the noise-free expectation values of tr(Oiρ) could
be retrieved by inverting this noisy channel, if ρ is perfectly
prepared on quantum computers. To achieve that, { f̃λ} need to
be determined first, and different measurement schemes have
been designed for that according to the specific group G used.
Such a protocol is known as robust shadow estimation [29].

2. Noisy Matchgate channel

In this section, we provide derivations for the recently
introduced robust Matchgate shadows approach [30,31].
Our derivations closely follow previous work on Matchgate
randomized benchmarking [46], highlighting the close con-
nection between these two topics.

The robust shadow protocol assumes the quantum noise
satisfies the GTM assumption, in which case the measurement
channel is only modified in the eigenvalues associated with
each projector. The idea is therefore to determine those noisy
coefficients f̃λ and apply the noisy inverse channel M̃−1 when
computing the expectation values. For the noisy case, we can
generalize the derivation for eigenvalues in the noiseless case
into

f̃2l = Tr[MZ�	2l ]

Tr[	2l ]
=
(

2n
2l

)−1 ∑
S∈
(

[2n]
2l

) ∑
b∈{0,1}n

〈〈b|�|γS〉〉〈〈γS|b〉〉

=
(

2n
2l

)−1 ∑
b∈{0,1}n

∑
T ∈
(

[n]
l

)
∣∣∣∣ (−i)|T |

√
2n

(−1)
∑

j∈T b j

∣∣∣∣2〈〈γpairs(T )|�|γpairs(T )〉〉

=
(

2n
2l

)−1 ∑
T ∈
(

[n]
l

)〈〈γpairs(T )|�|γpairs(T )〉〉. (E2)

To get f̃2l , we need to determine 〈〈γpairs(T )|�|γpairs(T )〉〉, which
corresponds to the diagonal elements of the Liouville repre-
sentation of noise channel � in the |γS〉〉 basis.

Interestingly, a recent work on randomized benchmarking
[46] proposed an efficient way to characterize the noise in
the quantum hardware by defining and computing a set of
Majorana fidelities λk using random Matchgate circuits. Here
we reformulate some of their derivations using our established
conventions and get more insights into the interpretation and
connection between λk and f̃2l .

The protocol consists of multiple rounds with varying pa-
rameters k ∈ [2n] and circuit sequence lengths m. Due to our
focus on fermionic quantum simulations, we will only discuss
the case when k is even. Each round starts with the preparation
of the all-zero state |0〉. This is followed by m Matchgate
unitaries UQ1 , . . . ,UQm , chosen uniformly and independently

at random. Finally, all qubits are measured in the Z basis.
By averaging over many random sequences, we obtain an
estimate ĉ2l (m) of the weighted average

c2l (m) = 1

|B(2n)|m
∑

{Q}∈B(2n)

∑
b∈{0,1}n

α2l (b, Q)p(b|Q, m),

(E3)
where Q = Qm . . . Q1 and p(b|Q, m) represents the probabil-
ity of measurement outcome |b〉. A correlation function α2l

has also been defined as

α2l (b, Q) = tr[|b〉〈b|	2l
(
UQρ0U

†
Q

)
]. (E4)

We estimate p(b|Q, m) from the measurement outcomes
received from the quantum computer, whereas we com-
pute α2l (b, Q) analytically. Assuming the state preparation
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and measurement (SPAM) are perfect, we have

c2l (m) = 1

|B(2n)|m
∑

{Q}∈B(2n)

∑
b∈{0,1}n

α2l (b, Qm . . . Q1)〈〈b|�UQm . . . �UQ1 |0〉〉

= 1

|B(2n)|m
∑

{Q}∈B(2n)

∑
b∈{0,1}n

〈〈b ⊗ b|(	2l ⊗ �)U⊗2
Qm

(I ⊗ �)U⊗2
Qm−1

. . . (I ⊗ �)U⊗2
Q1

|0 ⊗ 0〉〉

=
∑

b∈{0,1}n

〈〈b⊗2|(	2l ⊗ �)

[
2n∑

k′=0

∣∣ϒ (2)
k′
〉〉〈〈

ϒ
(2)
k′
∣∣(I ⊗ �)

]m−1 2n∑
k′=0

∣∣ϒ (2)
k′
〉〉〈〈

ϒ
(2)
k′
∣∣0⊗2〉〉

=
∑

b∈{0,1}n

〈〈
b⊗2
∣∣(I ⊗ �)

∣∣ϒ (2)
k

〉〉[〈〈
ϒ

(2)
k

∣∣(I ⊗ �)
∣∣ϒ (2)

k

〉〉]m−1〈〈
ϒ

(2)
k

∣∣0⊗2
〉〉
. (E5)

Reference [46] defined the term 〈〈ϒ (2)
k |(I ⊗ �)|ϒ (2)

k 〉〉 as the
Majorana fidelities λ2l . We also note that the first term in
the last line is exactly what we have derived in Eq. (E2) if
we assume SPAM error-free. Therefore we choose m = 1 and
have

c2l (1) =
∑

b∈{0,1}n

〈〈
b⊗2
∣∣(I ⊗ �)

∣∣ϒ (2)
k

〉〉〈〈
ϒ

(2)
k

∣∣0⊗2〉〉
=
(

2n
2l

)−1 ∑
b∈{0,1}n

∑
S,S′∈( [2n]

2l )

〈〈b|γS〉〉〈〈b|�|γS〉〉〈〈γS′ |0〉〉2

= 1

2n

(
2n
2l

)−1(
n
l

) ∑
T ∈( [n]

l )

〈〈γpairs(T )|�|γpairs(T )〉〉

= 1

2n

(
n
l

)
f̃2l . (E6)

We now have established the relationship between c2l and f̃2l .
Therefore the noisy eigenvalues can be extracted either by
fitting c2l (m) or simply measuring c2l (1). For m other than
1, we have

c2l (m) = c2l (1)

⎡⎢⎢⎣(2n
2l

)−1 ∑
S∈
(

[2n]
2l

)〈〈γS|�|γS〉〉

⎤⎥⎥⎦
(m−1)

, (E7)

which provides a microscopic origin for λ2l .
In actual hardware experiments, SPAM error is unavoid-

able. For measurement error, it satisfies the GTM assumption
for noisy shadows and therefore it is not a concern. For state
preparation error, its effect is absorbed into the c2l (1) prefac-
tor [46] above, by replacing |0〉〉 with |̃0〉〉 in the first equality
of Eq. (E5). We further note that the state preparation error
in the shadow experiments, i.e., the noise effects in preparing
ρ can also be taken into account in the above framework, as
long as we could mimic as much as possible the state prepa-
ration circuit in determining f̃2l . This sets the motivation for
the revised robust Matchgate shadow protocol introduced in
Sec. III A. We note that if the state preparation noise channel
�′ commutes with the twirl M, i.e., �′ ◦ M = M ◦ �′, our
revised scheme would correct the state preparation error per-
fectly, assuming �′ satisfies the GTM assumption. However,
this condition may not be strictly satisfied in hardware.

3. Variance bound

The variance of c2l (m), defined in Eq. (E3), is important
to determine the efficiency of the robust protocol. A detailed
derivation can be found in Appendix of Ref. [31,46], assuming
no noise.

We numerically test the sampling complexity to determine
f̃2l , as shown in Fig. 7, and find that it scales closely to
O(n2.95). The complexity comes from bounding the variance
relative to fn, the smallest coefficient among all the eigenval-
ues in the n-qubit Matchgate channel.

APPENDIX F: IMPLEMENTATION OF
MATCHGATE SHADOWS

The Matchgate circuits are constructed using the open
source code, see Ref. [77], which requires O(n2) gates imple-
mented in O(n) depth. Note that the current implementation
assumes an even number of particles in the system studied. A
generalization into odd-particle cases can be addressed with
ancillary qubits, as discussed in Appendix A of Ref. [26].

FIG. 7. Sampling complexity for determining the Matchgate
channel coefficients (with 1% error threshold) scales closely to
O(n2.95) in the system size limit.
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TABLE II. IBM Q Hanoi hardware information, with data taken from IBM Quantum Platform [80].

Oct.1st Oct.2nd Oct.14th

physical qubits [1,2,3,5] [1,2,3,5] [6,7,10,12]
T1 [µs] [132, 139, 156, 159] [185, 114, 129, 130] [137, 101, 112, 227]
T2 [µs] [145, 266, 35, 199] [175, 164, 33, 198] [157, 252, 215, 262]
CNOT error rate (10−3) [3.25, 11.6, 4.71] [3.20, 8.26, 6.38] [7.58, 5.58, 6.30]
X error rate (10−4) [4.0, 1.3, 2.1, 1.8] [3.4, 1.8, 2.0, 2.2] [2.5, 2.2, 2.4, 1.8]
Readout error rate (10−2) [2.1, 1.7, 1.0, 0.07] [1.1, 1.2, 1.1, 0.08] [2.0, 1.2, 0.09, 1.6]

APPENDIX G: QUANTUM DEFECT
EMBEDDING THEORY

Quantum embedding theories [78] are frameworks to solve
the time-independent Schrödinger equation for a system of
electrons by separating the problem into the calculation of the
energy levels or density of an active space and those of the
remaining environment. Each part of the system is described
at the quantum-mechanical level, with the active space being
treated with a more accurate and computationally more ex-
pensive theoretical method than the environment.

Spin defects, e.g., NV center in diamond, are particular
suitable for an embedding description as they can be naturally
partitioned into the defect center and the host material. Re-
cently, a Green’s function-based quantum embedding theory
was proposed for the calculation of defect properties, denoted
as quantum defect embedding theory (QDET). We will pro-
vide a high-level description of this method in this section, and
we direct interested readers to Refs. [51,79] for more details.
QDET initiates from a mean-field electronic structure calcula-
tion, typically DFT, on a supercell (with hundreds/thousands
of atoms) representing the point-defect of interest hosted in
a pristine solid. Then an active space is defined by a sub-set
of single particle orbitals localized around the defect center,
whose excitations are described by an effective Hamiltonian
Heff. The effective potential entering Heff is evaluated by com-
puting the effect of the environment onto the active space
with many-body perturbation theory techniques [51]. The
Hamiltonian can be solved either using a full configuration
interaction (FCI) approach on classical computers, or using
quantum algorithms on quantum computers.

In essence, using QDET allows one to reduce the complex-
ity of evaluating many-body states of a small guest region
embedded in a large host system: the problem is reduced to
diagonalizing a many-body Hamiltonian simply defined on an
active space, where the number of degrees of freedom is much
smaller than that required to describe the entire supercell of
hundreds of atoms.

APPENDIX H: QUANTUM SIMULATION DETAILS

In this section, we provide detailed information on quan-
tum simulations performed in this work, on both quantum
hardware platforms and on simulators that can emulate the
effects of noise.

1. IBM Q experiments for hydrogen

We study the hydrogen molecule with five different bond
distances, ranging from 0.75 to 2.75 Å using the minimal

STO-3G basis set. Restricted HF orbitals are used as inputs
for subsequent VQE calculation on a noisy quantum simulator
(to obtain the quantum trial states) and QC-QMC calculation
on quantum hardware. We used 4 qubits on IBM Quantum
Hanoi superconducting qubit device, allocated based on the
Jordan-Wigner mapping of spin-orbitals to qubits.

a. Quantum trial state

As we introduced in the main text, the quantum trial
state adopted in the QC-QMC scheme has to satisfy two
requirements: (i) VT |�I〉 = |�T 〉 and (ii) VT |0〉 = |0〉. This
implies that the trial circuit should conserve the particle num-
ber of the initial states at least in the {0, ζ }-particle subspace.
We therefore chose the UCCSD ansatz. The issue with con-
ventional UCCSD ansatz is that the circuit is too deep, with
a O(n4) two-qubit gate count, and this is usually beyond the
capabilities of NISQ hardware. We, therefore, designed an
alternative circuit, shown in Fig. 8, that constructs effectively
a double excitation. Such a circuit assumes only linear con-
nectivity of the underlying hardware and does not require any
swap of the physical qubits. It is worth re-emphasizing that
this tailored UCCSD ansatz was chosen specifically for the
hydrogen molecule, to be sufficient for enabling our QC-QMC
experiments, and does not represent a universal solution. We
leave the important task for constructing a general and effi-
cient quantum trial state for future investigations.

b. Hardware information

The information of the physical qubits used on IBM Q
Hanoi device is recorded in Table II.

FIG. 8. Quantum circuit for the performing Matchgate shad-
ows of hydrogen. The first Hadamard and CNOT gate generates
an equal superposition of |0〉 and |�I 〉. They are followed by the
effective UCCSD ansatz, and the Matchgate circuit UQ for shadow
tomography.
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TABLE III. Data of the noisy eigenvalues of the four-qubit
Matchgate channel, with experiments performed on the IBM Q
Hanoi device on Oct 1st, 2nd and 14th. These noisy eigenvalues are
used for the robust shadow protocol considering the state preparation
error (SP). Specifically, shadows of hydrogen bond distance 0.75 Å
are collected on Oct 14th; shadows for 2.25 Å are obtained on Oct
1st while the shadows for the rest three are obtained on Oct 2nd.

IBM Q Hanoi Oct.1st Oct.2nd Oct.14th

physical qubits [1,2,3,5] [1,2,3,5] [6,7,10,12]
f̃0 1.0 1.0 1.0
f̃2 0.1083 0.1146 0.1030
f̃4 0.0629 0.0649 0.0565
f̃6 0.0961 0.1042 0.0940
f̃8 0.6461 0.7121 0.6417

c. Robust shadow experiments

The noise determination phase (to measure f̃2l ) and stan-
dard shadow experiments are performed employing 16 000

circuits each on the same set of physical qubits on the same
day, to ensure the noise condition stays the same. Note that the
original proposal of shadow tomography [18] assumes using
a single shot for each shadow circuit. For better use of the
quantum resources, we followed Ref. [48] and all the circuits
are executed with 1024 shots. The circuit used for determining
f̃2l only differs in the absence of the first Hadamard gate from
the Matchgate shadow circuits used to compute the overlap.
This construction ensures that the noise in preparing ρ for
QC-AFQMC algorithm is captured as much as possible in
computing f̃2l . The measured values of f̃2l are summarized
in Table III.

Having determined the values of f̃2l , one can proceed to
apply the robust Matchgate shadows procedure to overlaps,
and overlap ratios. In the main text, we plotted the mean
absolute error (MAE) of 120 overlap ratios with respect to
the number of Matchgate shadow circuits used, and observed
that the robust protocol was able to mitigate the effects of
noise. Here, we plot the MAE of 36 separate overlap ratios,
randomly chosen from the total of 120 tested in the main text,

FIG. 9. The mean absolute error (MAE) of 36 overlap ratios randomly selected from the tested 120 overlap ratios’ pool. For each overlap
ratio, noisy results from IBM Hanoi, w/wo the robust shadow correction (orange circle/green triangle) are all in good agreement with the
noiseless reference value (blue cross). This verifies the noise resilience discussed in the main text.
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FIG. 10. Quantum circuit for the performing Matchgate shad-
ows of NV center. The first Hadamard and CNOT gate generates
an equal superposition of |0〉 and |�I 〉. They are followed by the
effective UCCSD ansatz, and the Matchgate circuit UQ for shadow
tomography.

shown in Fig. 9. We can conclude that the noise resilience is
present for each trial, and is not an artifact of averaging.

d. Classical postprocessing

As discussed in the main text, in the interest of con-
serving computational resources, only two of the five data
points (solid points) in Fig. 4 were obtained using the scal-
able Matchgate shadows approach. The remaining three data
points were obtained using an exponentially scaling approach
used in Ref. [17] that is ultimately more efficient than the
scalable Matchgate approach for small system sizes. We ver-
ified that the two schemes give the same results for overlap
amplitudes. This exponentially scaling approach works by
first computing and tabulating the local quantities, i.e., over-
lap amplitudes, force bias and local energies, for all of the
canonical computational basis states (of which there are 4
for hydrogen). The local quantities of arbitrary walker states
can then be computed by decomposing the Slater determinant
into a linear combination of the four basis states of hydrogen,
and then taking the corresponding linear combination of the
tabulated data. For small molecules like hydrogen, this yields
a very efficient simulation. However, for larger molecules an
arbitrary Slater determinant would decompose into a number
of canonical computational basis states scaling superpolyno-
mially with n, rendering this method unscalable.

2. IonQ experiments for NV center

The effective Hamiltonian describing the strongly corre-
lated electronic states of the NV center is generated by QDET.

The detailed information of classical calculations is docu-
mented in Ref. [52]. The NV center in diamond is simulated
using four qubits on the IonQ Aria trapped ion quantum com-
puter.

a. Quantum trial state

Since the ground state of NV center is an equal superpo-
sition of two Slater determinants [53], we can generalize the
quantum trial state we used for the hydrogen molecule and
apply it to the NV case. The circuit is shown in Fig. 10.

b. Hardware information

The IonQ Aria device has an average of 99.97% single-
qubit gate fidelity and 98.6% two-qubit gate fidelity, with
all-to-all qubit connectivity. The average readout fidelity is
99.55%. Detailed information about the device can be found
on the IonQ website [81].

3. Noisy simulations of the water molecule

The water molecule is a more strongly correlated problem
than hydrogen, with more than one correlated pair of elec-
trons. We simulated it at equilibrium geometry with a (4e, 4o)
active space based on the restricted Hartree Fock canonical or-
bitals, following Ref. [54], using eight qubits on the Pennylane
quantum simulator [82] with various noise models. The eight
qubits are associated with each orbital according to ascending
order in energy with spin-up and down alternations.

a. Quantum trial state

Since the water molecule has a perfect pairing of electrons
in the ground state, we consider a parameterized quantum
circuit employing a four-qubit double-excitation gate UDE(θ ):

UDE(θ )|1100〉 = cos

(
θ

2

)
|1100〉 − sin

(
θ

2

)
|0011〉. (H1)

This gate is implemented between qubit indexed
[0, 1, 4, 5], [2, 3, 6, 7], [1, 2, 7, 4], [0, 3, 6, 5]. These
indices are chosen because they construct those Slater
determinants with the largest coefficients from a CASCI
calculation. This ansatz is then fed to a (noiseless) VQE
calculation to produce a wave function with an energy error
of approximately 10 mHa at the equilibrium geometry. This
quantum trial state is only used for demonstrating the noise
resilience in evaluating the overlap ratios using noise models,
as the full QC-QMC calculations for the water molecule
would be too costly to carry out.
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