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ABSTRACT

Designing materials with specific properties has been a long-time goal of the physics commu-

nity. Optical photons have recently emerged as a promising candidate for such metamaterials

due to their fast dynamics and available manipulation toolkit. In conjunction with carefully

engineered optical resonators, it is possible to precisely control the properties of individ-

ual photons through the resonator Hamiltonian. The only missing ingredient to photonic

materials is strong photon-photon interactions.

This thesis describes the characterization of cavity Rydberg polaritons and the emergence

of strong interactions in such a system. Electromagnetically induced transparency (EIT) is

used to create quasiparticles that inherit the properties of both photons and Rydberg atoms:

fast dynamics and trapping from the photons and long-range dipole-dipole interactions from

the Rydberg atoms. The emergent polaritonic properties are characterized and controlled

through the dark-state rotation angle and agree very well with theoretical predictions.

We then expand upon this understanding of polaritons by putting them inside a zero-

dimensional quantum dot. Confining the polaritons in such an object allows for strong

interparticle interactions to manifest. We observe these interactions through the temporal

auto-correlation intensity function g2(τ) and verify the dimensionality of the quantum dot

itself by measure the polariton Rabi oscillations.

With the experimental demonstration of strong photonic interactions, a complete under-

standing of Rydberg atoms and polaritons is needed to allow for better control of the system.

To this effect, the properties of Rydberg atoms are analytically and numerically understood

and the full formalism needed to describe resonator Rydberg polaritons is developed, along

with their interactions and various sources of decoherence. Furthermore, a renormalized

effective field theory for single mode cavities is developed and tested against full numerical

models, paving the way for the simulation of the physical phenomena of manybody states in

multi-mode cavities.
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Strongly interacting cavity polaritons can be utilized in quantum gate and repeater pro-

tocols for quantum information processing. Furthermore, combining the experimental and

theoretical work here with non-planar resonators presents a clear path to non-trivial topo-

logical synthetic materials and strongly correlated quantum states.
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CHAPTER 1

INTRODUCTION

Quantum mechanics changed how we view and understand the world. Introducing particle

and wave duality, it ushered in a new era of physics, predicting and explaining phenomena

such as superconductivity [1] and quantum phase transitions [2, 3], that are still cutting edge

research topics.

At the same time, quantum mechanics laid the foundation for efforts in creating new,

artificial phases of matter. The culmination of this experimental push was the demonstration

of the Bose-Einstein condensate (BEC) [4, 5], a many particle ground state matter wave.

The invention of the laser [6] has only added to the vast and unexplored areas of quantum

physics. The direct manipulation of the optical properties of materials through the electric

field of light [7] has paved the way for more exotic forms of photon manipulation such as

squeezed states of light [8] and entanglement between photons [9].

Control over photons has only grown over the past decades as the understanding of

optical resonators has advanced. Starting with the ability to engineer mode spacing and de-

generacies [10], more exotic resonator geometries allow us to imbue photons with mass [11],

creating a direct analogy to a quantum harmonic oscillator, and to introduce effective mag-

netic fields [12].

A direct result of this experimental effort has been the use of photons as building blocks of

“matter”, creating the field of synthentic photonic materials. Photons in optical cavities have

been observed to thermalize, creating a photonic BEC [13, 14] and have been proposed as a

platform to simulate glassy physics [15]. Other efforts have focused on emergent crystallinity

through long-range interactions [16, 17] and optomechanics [18]. Despite all this work,

photon-photon interactions have remained elusive and are the main obstacle to true photonic

materials.

A parallel effort in quantum simulation and synthetic materials is through the use of
1



ultracold atoms. Various tools exist for manipulating atoms, such as lattice trapping [19]

and tuning [20] and Feschbach resonances [21]. Furthermore, ultracold atoms exhibit strong

interactions, excellent coherence and high-fidelity readout [22–24]. Ions possess even stronger

interactions and are ripe for quantum computing; work in ion traps has demonstrated up to

six particle entanglement [25].

1.1 Synthetic materials with polaritons

Our group chose to take a combined approach, using the advantages of both cold atoms

and photons, while at the same time allowing for strong photon-photon interactions. Our

work on topological metamaterials utilizes a particle having the character of both matter

and light: the polariton. Polaritons have to behave as both of their constituent particles;

as a result, we have to access to all the tools available to manipulate ultracold atoms and

photons. Long-range interactions are imbued on these particles by coupling photons to

Rydberg-level excited atoms. Rydberg atoms, due to their single excited valence electron,

exhibit strong interactions that have already been demonstrated to be a perfect method of

creating quantum gates [26] and accessing novel phase transitions [27].

Rydberg polaritons, and their interactions, have been experimentally observed in free-

space [28–31]. These 1D free space systems are rich in physics, exhibiting exotic effects such

as different longitudinal and transverse (not necessarily real) masses [32] and bound photon

states [33].

Our system builds on such experimental efforts by combining Rydberg polaritons with

optical resonators. The resulting cavity Rydberg polariton has a photonic component that

has to obey any resonator symmetry and can only live in the supported modes. As a result,

we can easily chose to confine the particles down to 0D [34]: a single resonator mode restricts

transverse motion and slicing along the longitudinal axis reduces the last degree of freedom.

At the same time, we can choose to allow for multiple degenerate resonator modes; this

2



creates a manybody regime suitable for quantum fluids and fractional quantum Hall effects.

1.2 Overview of the thesis

This thesis is divided into a few parts to create a natural progression for the results presented.

Before the experiment is discussed, the various properties of Rydberg atoms are reviewed and

numerically modeled. Combining this with the full formalism of cavity Rydberg polaritons

allows us to understand, design and predict the relevant parameters and behavior of the sys-

tem. The experimental setup, along with the sample preparation, is then discussed. Finally,

I present our experimental results, consisting of two generations of optical resonators. The

first one allowed us to observe cavity Rydberg polaritons and understand their quantitative

behavior, limited by the polariton decoherence produced by stray electric fields. The second,

more well-designed and sophisticated, version proved fruitful for the observation of strong

interactions, paving the way for future work in manybody physics.

Chapter 2 introduces Rydberg atoms and all their properties that make them both great

and problematic to work with. Their wavefunctions and similarities to hydrogenic atoms are

introduced, since that lone outermost electron is the source of their infamy. Their large dipole

matrix elements and sensitivity to electric fields are discussed and numerically computed.

Then I introduce the long-range interactions of Rydberg atoms. While the off-resonant

dipole interaction is the relevant quantity throughout my experimental work, I also briefly

discuss the resonant C3 interactions and analytically compute it and its transition to the

off-resonant case.

Chapter 3 introduces cavity Rydberg polaritons. Starting with the photonic Hamiltonian,

I will proceed to show the Rydberg-dressed states and how they retain characteristics of both

of their constituents. Their polaritonic operators will be introduced and then interactions

will be formalized in both the weakly- and strongly-interacting regime. For the case of

strong interactions specifically, I will talk about a renormalized effective field theory. This

3



is of huge practical importance as it allows for extremely fast theoretical predictions and

can be easily extended to account for many modes and many particles without a significant

increase in computational time. Finally, I compute the effect of atomic motion on cavity

Rydberg polaritons and discuss the regimes where each of these decoherence channels might

be important.

Chapter 4 is about the experimental setup. It describes the vacuum system we have built

and the cavity design, along with the constraints and design parameters it had to satisfy.

After that, the various components of the laser setup are discussed. Finally, I go over the

necessary steps for preparing our atomic sample, such as trapping and cooling, transporting

and slicing.

Chapter 5 is a collection of our first experimental results dealing with cavity Rydberg

polaritons. I discuss what the expected cavity transmission should look like and why and then

go on to explain how we probed the behavior of the created polaritons and their dependence

on the various tuning knobs we can control. Next, I talk about our first major obstacle

regarding our quasiparticles: stray electric fields. I present our experimentally observed

broadening and provide a theoretical basis for it. Lastly, I briefly discuss two-mode EIT as

a gateway to future resonator designs and physics.

Chapter 6 presents the most exciting results of our experiment. By realizing a zero-

dimensional quantum dot, which means confining the polaritons transversely, by using a

single cavity mode, and longitudinally, by slicing the atomic cloud, and forcing them to

live within a single blockade volume, strong interactions between the quasiparticles can be

observed. Furthermore, I present data that confirms that the quantum dot is indeed a 0D

object; this is done by observing tunnelling between zero and one particles at increasing probe

powers. The section concludes by discussing the directions available for the experiment now

that strong interactions have been achieved.

Section 7 summarizes the thesis and provides an outlook for future experimental work.

4



The references follow.
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CHAPTER 2

RYDBERG ATOMS

The Rydberg series was discovered as an empirical explanation to the spectral lines of atomic

hydrogen and allowed for the binding energy to be written as [35]:

W = −Ry

n2
,

where Ry is a fitting parameter and n is an integer. Shortly after, the development of

the Bohr model [36] showed that Ry was in fact not just a fitting parameter but could be

computed from fundamental constants:

Ry = Z2mee
4

8ϵ20ℏ2
.

At the same time, n in the binding energy formula was understood as the principal quantum

number. Scaling laws in terms of n were derived from the Bohr model for various atomic

properties; these were later verified by the emerging quantum mechanics formalism [37].

The most striking property of Rydberg atoms is their large orbital radius, and corre-

spondingly large matrix elements; they both scale as n2. As a result of this single valence

electron orbiting the nucleus at such a large distance, Rydberg atoms exhibit a tremendous

response to electric fields and can support long-range dipole-dipole interactions even on a

µm scale. Table 2.1 reports the scaling of various properties for Rydberg atoms.

6



Binding energy W n−2

Orbital radius n2

Lifetime n3

Energy spacing n−3

Scalar polarizability n7

Interaction Coefficient C6 n11/2

Table 2.1: Scaling properties of Rydberg atoms [38].

2.1 Alkali metal Rydberg states

Alkali metal atoms are similar to hydrogen; a single valence electron orbits the nucleus

in a 1/r Coulomb potential. Unlike a hydrogen atom however, many more electrons also

orbit the core at shorter radii; as a result, the outermost electron typically sees a screened

nuclear charge. Low angular momentum states (l < 4) deviate even further from the simple

hydrogenic model: the valence electron orbit is highly elliptical and can penetrate the inner

electron shells. The valence electron is now exposed to the unscreened nuclear charge on one

side and the Coulomb repulsion of the inner electrons on the other side and experiences a

very different core potential at short distances. At the same time, the closed shell electrons

can polarized by the trip of the valence electron. These two effects combined increase the

binding energy of low l Rydberg states, relative to the corresponding hydrogenic states. The

alkali metal binding energy can be expressed as:

W = − Ry

(n− δnlj)
2
,

where δnlj is the quantum defect. We can now write an effective principal quantum number

n∗ = n− δnlj for alkali Rydberg states; this new principal quantum number simply replaces

n in the scaling laws presented in Table 2.1.

The values of the various quantum defects for Rb have been obtained through spectro-

7



scopic measurements [39, 40] and can be calculated through the formula:

δnlj = δ0 +
δ2

(n− δ0)2
+

δ4
(n− δ0)4

+ . . . , (2.1.1)

where δi depends on both l and j. The quantum defects are the largest for S Ryderg

states, as these states penetrate the core the most. As l increases, the quantum defects

get correspondingly smaller; any state with l ≥ 4 has zero quantum defect values and is

hydrogenic in the sense that it experiences a Coulombic core potential.

2.2 Rydberg wavefunctions

Schrödinger’s equation, in atomic units (a.u.) for the valence electron of a hydrogenic atom

is given by:

[
− 1

2µ
∇2 + V (r)

]
Ψ(r, θ, ϕ) = WΨ(r, θ, ϕ),

where µ is the reduced electron mass, V (r) is the core potential and r, θ, ϕ are spherical

coordinates. The wavefunction Ψ is separable since V (r) only has radial dependence and we

can write it as Ψ(r, θ, ϕ) = R(r)Y
ml
l (θ, ϕ). Yml

l (θ, ϕ) is a spherical harmonic that depends

only on the angular momentum of the Rydberg state and its projection along the quantization

axis ml. The above differential equation can now be rewritten just for the radial part of the

wavefunction:

[
− 1

2µ

(
d2

dr2
+

2

r

d

dr

)
+
l(l + 1)

2µr2
+ V (r)

]
R(r) = WR(r). (2.2.1)

8



2.2.1 Core model potential

As mentioned in Section 2.1, alkali metal Rydberg atoms typically experience an angular

momentum dependent core potential. This means that V (r) cannot be simply a 1/r potential

and has to be modified accordingly. Instead of a Coulomb potential, we will use a modified

core potential [41] that accounts for core penetration and closed shell electron polarization:

Vc(r) = −Znl(r)
r

− αc
2r4

(
1− e−( r

rc
)6
)
. (2.2.2)

The first term is a modified Coulomb potential that accounts for core penetration through

the radial charge Znl(r) defined as:

Znl(r) = 1 + (Z − 1)e−α1r − r(α3 + α4r)e
−α2r. (2.2.3)

The second term describes the effect of electron polarization; its strength is captured by

the core polarizablity αc, which increases with the number of electrons present in the core.

Values for the above parameters can be found in [41].

Additionally, the spin-orbit coupling potential Vso(r), which breaks the degeneracy of l

states has to be included [42]:

Vso(r) =
α2

2r3
L · S, (2.2.4)

where α is the fine structure constant and L ·S=j(j+1)−s(s+1)−l(l+1)
2 . We can now combine

these two potentials and write V (r) = Vc(r) + Vso(r) in Equation 2.2.1.

9



2.2.2 Numerical modeling

While analytical solutions for Rydberg wavefunctions exist, they tend to break down at

high n. A much better approach is to solve Equation 2.2.1, using the new form of the core

potential, numerically. This can be done using Numerov’s method [43, 44], which converts

the familiar radial wavefunction equation to the much simpler form d2

dx2
X(x) = g(x)X(x).

To simplify matters even further, the substitution x = ln(r) [45] is performed; this allows

for numerical solutions decaying to zero at large r to be stable near r = 0. To ensure that

the wavefunction does not diverge near the core, where the model potential is no longer

physically correct, the numerical integration is truncated at ri = 3
√
αc.

Figure 2.1 shows the numerically calculated 15S1/2 wavefunctions for both Rb and H.

The Rb wavefunction decays faster, as a result of the higher binding energy compared to H.

An alternative way of thinking about this is that the quantum defects due to the modified

core potential in Rb cause phase shifts in the wavefunction.
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Figure 2.1: Comparison of the Rb and H wavefunctions. The computed wavefunctions
of both Rb and H are shown for the 15S1/2 Rydberg state. The blue curve is Rb and the
red one is H.
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2.3 Dipole Matrix Elements

Matrix dipole elements can be addressed now that a reliable way of computing Rydberg

wavefunctions exists. The coupling between two Rydberg states |nlml⟩ and |n′l′m′
l⟩ is given

by the dipole matrix element ⟨n′l′m′
l|µ|nlml⟩, where µ is the electric dipole moment; we can

ignore the magnetic dipole coupling, since it is signifantly weaker. Being able to calculate

matrix dipole elements is very important as most of the Rydberg atom properties (lifetime,

polarizability, interactions) can be related to them.

The electric dipole moment operator is defined as µ⃗ = er⃗ · ê, where is ê is a unit vector

along the electric field polarization axis. The familiar dipole transitions are π and σ±;

moving to spherical coordinates allows us to work in this basis. The dipole operator can be

written as:

µ−1 =
1√
2
(µx − iµy),

µ0 = µz, (2.3.1)

µ+1 =
1√
2
(µx + iµy),

where the indices [-1,0,+1] correspond to [σ+,π,σ−]. These operators can be related to the

spherical harmonic functions by:

µq = er

√
4π

3
Y
q
l (θ, ϕ).

The calculation of dipole matrix elements can further be streamlined by separating them

into angular and radial only parts:
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⟨n′l′m′
l|µq|nlml⟩ = (−1)l−ml

 l 1 l′

−ml q m′
l

×

(−1)l
√

(2l + 1)(2l′ + 1)

 l 1 l′

0 0 0

 ⟨n′l′|er|nl⟩, (2.3.2)

where the brackets denote the Wigner-3j symbol, and ⟨n′l′|er|nl⟩ = e
∫ ro
ri

drr2Rnl(r)rRn′l′(r) [38,

46] is the radial matrix element, representing the spatial overlap of the dipole moment with

the two Rydberg wavefunctions.

With the addition of the spin-orbit coupling term Vso to the core potential, fine structure

becomes important and the degeneracy of the l states is broken and now j = l+ s is the new

“good” quantum number. Since the electric fields can only couple to the angular momentum

of the electron, and not its spin, we need to perform a transformation to an uncoupled basis

to allow for the computation of the dipole matrix element:

⟨n′l′j′m′
j |µq|nljmj⟩ = (−1)j−mj+s+j′+1

√
(2j + 1)(2j′ + 1)(2l + 1)(2l′ + 1)×j 1 j′

l′ s l


 j 1 j′

−mj q m′
j


 l 1 l′

0 0 0

 ⟨n′l′j′|er|nlj⟩, (2.3.3)

where the curly brackets indicate the Wigner-6j symbol.

Hyperfine interactions can further break the degeneracy of the j states, coupling the total

angular momentum of the electron, j, to that of the nucleus, i. In the case of Rydberg atoms,

any hyperfine splittings are exceedingly small [47] and the fine-structure basis is typically

more than sufficient for the purposes of modeling Rydberg properties.
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2.3.1 Exciting from the P-state

Up until now, I have detailed the procedure to calculate Rydberg state matrix elements

by using a modified core potential. There is one more matrix element that has not been

covered so far and is as important for the work presented here: the matrix element for

the |5P3/2⟩ → |nS,D⟩ transition. This dipole matrix element controls the Rabi frequency

Ω = − µ⃗·E⃗
ℏ of the Rydberg transition, determining, or even limiting, experimental sequence

times and even controlling our Rydberg polaritons through the dark-state rotation angle

(Section 3.3). As such, it is necessary to have a way to predict the coupling strength of the

P-state to any Rydberg state. This can be done by using a core potential and energy of

5P3/4 state that allows for the construction of the 5P wavefunction and the calculation of

transition radial matrix elements. These elements can be written as [48]:

⟨5P3/2|er|nlj⟩ = Cl(n
∗)−3/2, (2.3.4)

where Cl is a coefficient dependent on l, with the values CS = 4.502 ea0 and CD = 8.457

ea0 for the Rydberg S and D states respectively.

2.4 Rydberg atoms in electric fields

A DC electric field E along the z-axis (as defined by the field) will cause the Rydberg states

to mix, resulting in energy level shifts relative to the energy levels of a bare atom. This effect

is called the Stark shift. This new Eẑ term is effectively an electric dipole π transition and

creates new eigenstates from the original Rydberg levels. To compute this effect, we have to

extend the bare energy hamiltonian [45]:
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HStark = Hatom + Eẑ

and compute its eigenvalues. The added electric field term produces off-diagonal couplings

between all the states under the selection rule δmj = 0. When the eigenvalues of HStark are

plotted for all values of E for a set of Rydberg states with a given |mj |, the resulting energy

level diagram is called a Stark map.

Figure 2.2 shows a Stark map centered around the 100S state for |mj |=1/2. The closest

set of states to 100S is the hydrogenic manifold of the n = 97 level, showing the effect of

quantum defects on the energy levels of the Rydberg atoms. These high angular momentum

states are degenerate at zero field, leading to a first-order linear Stark shift. The lower l

states exhibit stronger mixing and avoided crossings can be seen.

2.4.1 Scalar polarizability

At low fields (dependent on the Rydberg level) the Stark effect does not shift the energy of

the atoms appreciably, acting as a second-order perturbation. This quadratic energy shift

can be expressed as [45]:

δW = −1

2
α0E

2, (2.4.1)

where α0 is the static polarizability. This quantity can be related to the Rydberg dipole

matrix elements through second-order perturbation theory:
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Figure 2.2: Stark map of the 100S Rydberg state. The Stark map is computed by
diagonalizing HStark and plotting its eigenvalues for different values of the electric field.
The 100S Rydberg state (red) can be seen mixing due to the Stark effect, until it has so
heavily hybrizided with P states that it loses most of its character. The closest state to
100S is the l > 4 manifold for n = 97; this is a direct result of the quantum defects. The
98D state has a very small positive energy shift, until it starts mixing more strongly with F
states, at which point its energy shift becomes negative.

α0 =
∑

nlj ̸=n′l′j′

|⟨n′l′j′mj |µ0|nljmj⟩|2

Wn′l′j′ −Wnlj
. (2.4.2)

From this expression, the rapid scaling of polarizability with principal quantum number

becomes evident: α0 ∝ µ2

W = (n∗)4/(n∗)−3 = (n∗)7. This makes Rydberg atoms extremely

sensitive to electric fields, a physical result of their large orbital radius as discussed at the

start of the chapter.
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Comparison of the theoretically computed polarizabilites with experimental data ob-

tained by fitting the low-field energy shift of Rydberg atoms yield very good agreement [49].

Furthermore, an empirical scaling of the form α0 = β1n
∗6 + β2n

∗7 has been discovered [49].

Rydberg S states have a consistenly positive polarizability, resulting in red Stark shifts. On

the other hand, the behavior of D states is more complicated: their polarizability starts off

positive at low fields until eventually an avoided crossing with the hydrogenic manifold of F

states is encountered (shown in Figure 2.2) and the energy shifts become negative.

2.5 Rydberg interactions

Rydberg atoms have strong, long-range dipole-dipole interactions making them a suitable

platform for manybody physics and quantum information processing. These interactions are

highly-tunable: their strength, sign and angular dependence can all be precisely controlled.

2.5.1 Dipole-Dipole Interactions

Let us consider a pair of atoms, both in Rydberg state |r⟩, separated by a distance R⃗. The

dipole-dipole interaction (in atomic units) of this system can be written as [50]:

V (R⃗) =
µ⃗1 · µ⃗2
R3

− 3

(
µ⃗1 · R⃗

)(
µ⃗2 · R⃗

)
R5

,

where µ⃗i is the dipole moment of the atoms associated with each available state they can

couple to. In the simple case where both dipoles are aligned along the quantization axis (z-

axis for notational convenience), the above expression for the dipole-dipole coupling becomes:

V (R) =
µ1−µ2+ + µ1+µ2− − 2µ1zµ2z

R3
, (2.5.1)
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µiq is the dipole moment operator of atom i for the q dipole transition. For on-axis dipole

alignment, the total angular momentum M = mj1 +mj2 of the pair state is conserved.

The dipole-dipole interactions manifest by coupling the initial two Rydberg states to all

other available states. As such, it is more convenient to move the system from an atomic to

a pair state basis. For two Rydberg atoms in state |rr⟩, the dipole-dipole interaction V (R)

couples them to pair state |r′r′′⟩. The energy separation of the pair states is:

δW = W|r′⟩ +W|r′′⟩ − 2W|r⟩.

The energy shift resulting from this interaction (shown in Figure 2.3) can be calculated by

diagonalizing the interaction Hamiltonian [51, 52]:

Hint =

 0 V (R)

V (R) δW

 . (2.5.2)

The spatial dependence of the resulting eigenvalues can be shown in two distinct regimes:

1. Short range (V (R) ≫ δW )

∆W = ±V (R) = ±C3

R3
. (2.5.3)

This is the resonant dipole-dipole regime, indicated by the 1
R3 spatial dependence that

static dipoles exhibit. The strength of the interaction scales as C3 ∝ µ2 ∝ n∗4.

2. Long range (V (R) ≪ δW )
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Figure 2.3: 60S60S interaction potential. 60S60S pair state (red curve) energy as a
function of distance, calculated using all pair states with δW < 25 GHz. The biggest
contribution is from 60P59P pair state, which is repelled by the coupling. The shift from
resonant to off-resonant dipole dipole interactions happens at about 2 µm for this pair state.

∆W = −V (R)2

δW
= −C6

R6
. (2.5.4)

This is the van der Waals, or off-resonant dipole-dipole, regime. The sign of the

interaction is controlled by the sign of δW and the strength of the interaction scales

as C6 ∝ µ2

δW ∝ n∗4

n∗−3 ∝ n∗11.

2.5.2 Angular dependence of interactions

Typically, the dipoles producing the Rydberg-Rydberg interactions will not be aligned with

the quantization axis and so the simple expression of Equation 2.5.1 for the interactions

cannot be used. Instead, the relevant expression is the more generalized version of the
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dipole-dipole coupling [53], which is a function of both R and θ:

V (R, θ) =
µ1−µ2+ + µ1+µ2− + (1− 3 cos2 θ)µ1zµ2z

R3

+
3 sin2 θ(µ1+µ2+ + µ1+µ2− + µ1−µ2+ + µ1−µ2−)

2R3
(2.5.5)

+
3 sin 2θ(µ1zµ2+ + µ1zµ2− + µ1+µ2z + µ1−µ2z)

2
√
2R3

.

For dipoles not aligned along the quantization axis, the interactions no longer conserve the

total angular momentum of the pair state, mixing states of different M .

Due to their spherical orbital shape, S-states have a very small angular variation and so

this effect can be neglected during our experiments.

2.6 Summary

In this chapter I presented the simple scaling laws of Rydberg atoms for properties such as

transition frequencies and scalar polarizability in terms of the principal quantum number.

A core model potential was introduced that allows for the numerical calculation of Rydberg

state wavefunctions and consequently their electric dipole matrix elements. These dipole

moments are the most interesting property of Rydberg atoms: they lead to both large polar-

izabilities and produce very strong interactions. The dipole-dipole interactions of Rydberg

atoms can be divided into two spatial regimes: (i) short range, where the dipole-dipole in-

teraction dominates the energy spacing of the pair states and has a 1/R3 dependence and

(ii) long range, the regime where van der Waals interactions dominate, scaling as −C6
R6 .
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CHAPTER 3

THEORY OF INTERACTING CAVITY RYDBERG

POLARITONS

3.1 Introduction

Current efforts to produce and explore the properties of synthetic quantum materials take

numerous forms, from ultracold atoms [54] to superconducting circuits [55–57] and electronic

heterostructures [58, 59] and superlattices [60]. Cold atom techniques allow for precise con-

trol through lattice tuning [20] and Feshbach resonances [21, 61]. Superconducting quantum

circuits present an opportunity to create materials from strongly interacting microwave pho-

tons, as they exhibit excellent coherence [62], strong interactions [63], and have recently been

shown to be compatible with low disorder lattices [64], low loss lattice gauge fields [65], and

interaction and dissipation driven phase transitions [66].

In parallel, there is now growing interest in creating materials from optical photons.

Non-interacting photons have been Bose-condensed in a resonator using a dye as a ther-

malization medium [13]; photons have been made to interact weakly and subsequently Bose

condense by coupling them to interacting excitons [59]. To explore strongly interacting

photonic materials, it has previously been proposed to marry Rydberg electromagnetically

induced transparency (EIT) tools developed to induce free-space photons to interact [28, 33,

67, 68] with multimode optical resonators [69] to control the properties of individual pho-

tons [11], thereby introducing a real mass for 2D photons, and effective magnetic fields [12],

in conjunction with Rydberg mediated interactions. It was recently experimentally demon-

strated that individual cavity photons do indeed hybridize with Rydberg excitations to form

“cavity Rydberg polaritons,” quasiparticles [70–72] that collide with one another with high

probability [34].

Formal modeling of these complex systems is incomplete. The properties of interacting
20



free-space Rydberg polaritons have been explored in the dispersive regime [73], as well as

the resonant regime for Van der Waals [30, 74] and dipolar interactions [75]. Effective

models of strongly interacting two-level cavity polaritons have been developed [76], along

with blockade “bubble” approximations that qualitatively reflect the physics of three-level

polaritons [77], but to date no effective theories of three-level cavity Rydberg polaritons

exist which quantitatively reproduce the observed strong interactions, as a consequence of

the intricate renormalization of the two-polariton wavefunction once the polaritons overlap

in space.

In this chapter, I will formalize and extend the theory developed in [34, 69]. The starting

point is formally defining the various Hamiltonians that are relevant to Rydberg polari-

tons in a resonator and deriving the polaritonic creation operators and interaction form.

The development of a single-mode renormalized effective theory is motivated and realized

and has excellent agreement with full numerics employed in previous works. A discussion

on momentum-space interactions follows; an extension of how familiar position dependent

Rydberg-Rydberg interactions change in the fourier plane. Finally, the impact of atomic

motion on polariton coherence is explored.

More specifically, cavity Rydberg polaritons at large separations are described by the

Hamiltonian Hpol ∼ cos2 θd
2 Hphot + sin4 θd

2 Hint, where Hphot is the Hamiltonian describ-

ing the bare cavity-photon dynamics, determined through the resonator geometry; and Hint

is the Hamiltonian describing the Rydberg-Rydberg interactions. The polaritons thus in-

herit properties from both photonic and atomic constituents, with the proportion of each

contribution determined by the dark state rotation angle θd [78], providing an interaction

tuning knob akin to an atomic Feshbach resonance [61]. The limitations of this model are

examined, providing quantitative refinements to various aspects of it.
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3.1.1 Chapter Overview

In section 3.2 we begin with the Floquet Hamiltonian for non-interacting resonator pho-

tons [11] and formally couple these photons to an ensemble of Rydberg-dressed three-level

atoms residing in a waist of the resonator [69]. In section 3.3 we explore the physics of an

individual photon in the resonator, discovering one long lived dark polariton (with renormal-

ized mass relative to the bare photon) and two short-lived bright polaritons. In section 3.4

we generalize to the case of two dark polaritons in the resonator, derive the form of the low-

energy polariton-polariton interaction potential, investigate scattering into bright-polariton

manifolds as well as the regime of validity of the two polariton picture in the face of in-

teractions and loss, focusing in section 3.5 on collisional loss of polaritons by dark→bright

scattering. Once the interaction energy becomes larger than the dark/bright splitting the

simple polaritonic picture breaks down, so in section 3.6 we explore the maximally chal-

lenging case of two dark polaritons in single mode optical resonator, developing a properly

renormalized effective theory of interacting polaritons (with first principles calculable param-

eters) that we benchmark against a complete, but numerically intensive, microscopic theory.

We find excellent agreement in experimentally relevant parameter regimes, pointing the way

to a fully renormalized effective field theory of multimode cavity Rydberg polaritons. In sec-

tion 3.7 we demonstrate that a properly situated Rydberg-dressed atomic ensemble produces

interactions between polaritons that are local in momentum-space. In section 3.8 we relax

the assumption of stationary atoms and investigate the effect of atomic motion on polariton

coherence in both single- and multi- mode regimes. Finally, in section 3.9 we conclude with

a discussion of applications of cavity Rydberg polaritons to quantum information processing

and strongly-correlated matter.

22



Table of Results

Polariton Projected Hamiltonian Eqn. 3.4.2 Page 35

Renormalized Theory 3.6.1, 3.6.2, 3.6.3 43

Role of Atomic Motion 3.8.1 47

Doppler Decoherence 3.8.3 50

Crossmode Thermalization 3.8.4 50

3.2 Coupling the Photons to an Atomic Ensemble

Here we explore how the coupling to an ensemble of three-level atoms impacts the physics of

non-interacting 2D photons in multi-mode resonators. We find the emergence of long lived

“dark” polaritons, with dynamics similar to those of a resonator photon but renormalized

mass and harmonic trapping. Off-resonant, nonadiabatic couplings to “bright” polaritons

limit the lifetime of the dark polaritons. We operate in the limit that the light-matter

coupling energy scale is much larger than the energy scale of the photonic dynamics within

the resonator, making the polaritonic quasiparticles a nearly “good” basis for describing the

physics, with corrections that we derive.

The second quantized Hamiltonian for photons within a single longitudinal manifold of

a resonator is given by [11]:

Hphot =

∫
dx a†(x)hphota(x),

where a†(x) creates a photon at transverse location x and hphot is the single particle Hamilto-

nian for a photon within the resonator, typically given by hphot(x) = Π2

2mphot
+1

2mphotω
2
trap|x|2−

iκ2 . Here x runs over the plane transverse to the resonator axis, κ parametrizes the (mode

independent) resonator loss, and Π ≡ iℏ∇− eA is the mechanical momentum; the parame-
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ters of this photonic “Floquet” Hamiltonian are determined by resonator geometry: mirror

locations and curvatures, plus the twist of the resonator out of a single plane [11, 12].

We now insert a Rydberg-dressed atomic ensemble into the resonator as a tool to mediate

interactions between the photons. To this end, the lower (S→P) transition of this ensemble is

coupled to the quantized resonator field, while the upper (P→Rydberg) transition is coupled

to a strong coherent field (see Fig. 3.1a). Before exploring the resulting photon-photon

interactions, we must first understand how the Rydberg-dressed atoms impact the linear

dynamics of individual photons. The light-matter coupling induced by the introduction of

the atomic ensemble takes the form (in the frame rotating with the resonator- and Rydberg-

dressing fields):

Hat =

∫
dx2dz {ϕ†r(x, z)ϕr(x, z)

(
δ2 − i

γr
2

)
+ϕ

†
e(x, z)ϕe(x, z)

(
δe − i

γe
2

)
(3.2.1)

+ϕ
†
r(x, z)ϕe(x, z)

Ω

2
(x, z) + h.c.

ϕ
†
e(x, z)a(x)

G(x, z)

2
+ h.c.}.

Here ϕ†r(x, z) and ϕ
†
e(x, z) are the bosonic creation operators for atomic excitations at

3D location (x,z) in the Rydberg and excited (P) states respectively, from the “vacuum” of

ground state atoms. γr and γe are the FWHM of the Rydberg and excited states respectively.

δe is the detuning of an untrapped, zero-transverse-momentum resonator photon from the

atomic line and δ2 is the two-photon detuning from EIT resonance. Ω(x, z) is the laser

induced Rabi coupling between excited (P) and Rydberg states, while G(x, z) is the vacuum-

Rabi coupling strength between a resonator photon localized at transverse location x and a

collective atomic excitation localized at longitudinal location z, and therefore must reflect the

atom density. It does not reflect the transverse spatial structure of any particular resonator

24



(a) (b)

Figure 3.1: Resonator Rydberg polariton three-level system and setup schematic.
(a) The atomic ground state |g⟩ is coupled to the excited state |e⟩ through the cavity mode,
with detuning δe and collective coupling strength G. The control beam then excites the
atoms to the Rydberg state |r⟩, with Rabi frequency Ω and two-photon detuning δ2.The
horizontal displacement of the energy levels indicates a change in circular polarization. (b)
The four mirror resonator supports running wave modes and two waists, allowing for both
real and momentum space interactions. The primary (real space) atomic ensemble sits in
the lower waist, where it mediates photon-photon interactions by admixing in a Rydberg
state using the blue control field.

mode, as a†(x) creates a transversely localized photon. Indeed it may be written as G(x, z) ≈

dge

√
L

Lres

ρ(x)ℏωge
ϵ0

, where L is the length of the atomic ensemble along the resonator axis,

Lres is the length of the resonator itself, dge is the dipole moment of the atomic transition

coupled to the optical resonator, ωge is the angular frequency of this transition, and ρ(x) is

the number density of atoms at location x.

Here and throughout, we incorporate losses through non-Hermitian Hamiltonians rather

than through Lindbladian master equations. This allows us to identify the imaginary part

of one- and two- particle eigenstates with quasi-particle decay rates ([79] III.B.2).

In this section, we have shown the photonic and atomic Hamiltonians (Hphot and Hat

respectively) and defined the photonic and bosonic operators necessary to couple photons
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to an atomic ensemble. This is a general result that is valid for both single- and multi-

mode resonators, evident in the fact that all the operators and Rabi couplings are position

dependent, to reflect the different mode shapes and atomic distribution over them.

3.2.1 Resonator Degeneracies and Photon Localization

We generally treat photons as objects that can occupy a completely arbitrary spatial mode

in the 2D plane transverse to the resonator axis. In practice, resonator geometry can impose

additional symmetries on the allowed photon wave-functions, and limit the permissible degree

of photon localization. In what follows we explore the wave-function constraints imposed by

various resonator configurations.

It is convenient to begin by considering a general non-degenerate spherical mirror Fabry-

perot resonator [10], whose modes are enumerated with three indices l,m, n; the first index

l, is the longitudinal mode number, while m,n index the transverse mode:

The most extreme case is degeneracy of all the transverse modes of a resonator, ωlmn =

ωl, achieved in planar and concentric cavities [10] (note that we have re-indexed the longitu-

dinal modes of the concentric resonator). Planar resonators are constructed with flat mirrors

(radius of curvature → ∞) very close together, while concentric cavities consist of two mir-

rors separated by the sum of their radii of curvature. In both configurations the space of

allowed photon wave-functions is not constrained by any symmetries, and arbitrarily small

spots can be created at any point in 2D space (see Figure 3.2b).

The next most extreme case is families of degenerate modes that still require two indices to

enumerate, but with restrictions on the indices. An example of this is the confocal resonator:

two mirrors with radii of curvature R placed a distance R apart. Such a resonator exhibits

ωlmn = ωl,mod(m+n,2). The constraint that m+ n is either even or odd imposes a reflection

symmetry across the origin: the photon may be arbitrarily well localized in space at any

location, but must simultaneously exist at this mirror-image location (see Figure 3.2c).
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The next case is degenerate families that may be indexed with only a single parameter,

which may themselves be further broken down into two sub-categories: (1) families in which

the index takes on only a finite number of values; and (2) families in which the index takes

on a countably infinite number of values. A spherical mirror Fabry-Perot falls into the

first category; ωlmn = ωl,m+n; another example is an astigmatic resonator whose length is

tuned to enforce degeneracy such as ωlmn = ωl,m+2n [72] (see Figure 3.2d). The latter

category could be achieved in an astigmatic resonator tuned to confocality on only one axis:

ωlmn = ωl,m,mod(n,2), or in a non-planar resonator by imposing twist which is a rational

fraction of 2π, as in [12]:ωlmn = ωl,m,mod(n,3) (see Figure 3.2e). The reduced degeneracy

strongly constrains the wavefunctions which may be represented by the family, to the point

that the physical interpretation of these families is often quite unclear. Indeed, the twisted

resonator explored in [12] exhibits three-fold rotational symmetry, and quantum geometry,

meaning that has a minimum spot size; this system may be understood as a Landau level

on the surface of a cone, quite an exotic manifold indeed.

3.3 Polariton Basis

The atomic density distribution exists in three dimensions, while the manifold of nearly-

degenerate resonator modes to which the atoms couple is two-dimensional (here we assume

G≪ c
Lres

, ensuring that the atoms couple to only a single longitudinal manifold of the res-

onator). In order to develop a formalism of two-dimensional polaritons, we define longitudi-

nally delocalized, transversely localized collective atomic excitation operators (for klaser and

kcav the wave-vector magnitudes of the coupling-laser and resonator fields, respectively), nor-

malized to ensure a mode-independent bosonic commutation relation. To this end we choose

the minimal case of an atomic ensemble of uniform density, and a uniform coupling-field

that propagates counter to the resonator field:
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(a) (b) (c) (d) (e)

Figure 3.2: Resonator degeneracies and their effects on photon localization and
spot size. (a)Decomposition of an off-center Gaussian into 1D HG modes. A Gaussian at
any arbitrary location can be written as the sum of 1D HG modes, by taking the spatial
overlap of the Gaussian with each mode. The overlaps are shown in the plot, with even modes
represented as blue dots and odd modes as red dots. (b)Localization of a photon in a planar
or concentric cavity. When all resonator modes are degenerate, we can create a photon at any
location inside the resonator and of any spot size. This can be understood as a generalized
version of the decomposition in (a), but in general it is done in a two dimensional parameter
space. The red lines in the plot signify x = 0, y = 0, showing than an off-center spot has
been created. (c)In a confocal resonator, we have degeneracy within the even and odd mode
manifolds only. As such, a decomposition of any spot would include either the even (blue) or
odd modes (red dots) only. Any spot size at any location can still be created but now we pick
up reflections through the origin, resulting in a mirrored spot. (d)Superposition of TEM20
and TEM01. This is an example of a finite one parameter family. The resonator mirrors
and mirror positions are picked in such a way as to make these two modes energetically
degenerate. The result is interference between the two modes, resulting in a new mode
shape [72]. (e) Threefold symmetry in a resonator. In a countably infinite single parameter
family of degenerate modes where every third LG mode is degenerate (LGl,LGl+3,LGl+6,...),
a localized spot can be created at any point but must satisfy a threefold rotational symmetry,
resulting in three copies, each of which cannot be smaller than the LG0 waist size of the
resonator [12].

ϕ
†
e(x) ≡

√
1

L

∫ L
2

−L
2

dz ϕ
†
e(x, z)e

−ikcavz

ϕ
†
r(x) ≡

√
1

L

∫ L
2

−L
2

dz ϕ
†
r(x, z)e

i(klaser−kcav)z.

We can now rewrite the atomic Hamiltonian in the single-longitudinal-mode-projected

manifold as:
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Hat =

∫
dx2 [W †(x)][hat][W (x)]

where [W †] ≡ (a†(x) ϕ†e(x) ϕ
†
r(x))

and [hat] =


0 G

2 0

G
2 δe − iγe2

Ω
2

0 Ω
2 δ2 − iγr2

 .

Here G ≈ dge

√
L

Lres

ρℏωge
ϵ0

, where L is the length of the atomic ensemble along the resonator

axis. Note that [hat] has no position dependence, because we are assuming no atomic motion

(covered in section 3.8), no inhomogeneous electric fields, and that the coupling field is large

enough transversely that variations in the control-field Rabi frequency Ω are negligible. In

the basis where [hat] is diagonal, the resulting creation operators are the generators of three

varieties of polaritons: one dark (with little to no excited state participation, depending on

κ and γr), sandwiched between two bright (with large excited state participation). In the

simplest case of no detunings or cavity loss, we can express the polaritonic creation operators

in the atomic basis as follows:

d† =
Ω√

G2 + Ω2
a†(x)− G√

G2 + Ω2
ϕ
†
r(x),

b
†
± =

1√
2
(

G√
G2 + Ω2

a†(x)± ϕ
†
e(x) +

Ω√
G2 + Ω2

ϕ
†
r(x)).

We are primarily concerned with the long-lived and strongly interacting dark polaritons, but

will include off-resonant couplings to the bright polaritons to accurately model dark-polariton

lifetime.

More formally, we diagonalize [hat] =
∑
µmµ̃mϵm, where m is an element of [d,b−,b+],

meaning [dark, lower bright, upper bright], ϵm is the energy of (ket) µm and (bra) µ̃m and
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the µm, µ̃l satisfy the generalized orthogonality condition (due to the non-hermicity of hat):

µ̃l � µm = δlm. Note that because of the non-hermicity of hat, µ̃m ̸= µ
†
m.

The resulting polariton creation and annihilation operators are thus:

χ
†
j(x) = [W †] · µj ,

χj(x) = µ̃j · [W ].

For notational convenience only have we named the polariton creation/annihilation operators

“χ†j(x)” and “χj(x)”; these operators are not precisely Hermitian conjugates of one another,

but are instead defined to preserve the bosonic commutation relations: [χj(x), χ
†
k(x

′)] =

δjkδ(x− x′). We may now write Hat as:

Hat =
∑
m

∫
dx χ

†
m(x)χm(x)ϵm.

The last step in writing Htot in the polariton basis is to decompose a†(x), a(x) into polariton

field operators:

a†(x) =
∑
j

cjχ
†
j(x),

a(x) =
∑
j

c̃jχj(x),

where the cj , c̃j are elements of the inverse µ, µ̃ matrices: cj ≡ µ−1
cav,j , c̃j ≡ µ̃−1

cav,j and the

index “cav” denotes the photonic slot of µ−1, µ̃−1. Htot can now be written as:
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Htot =
∑
ij

∫
dx cic̃jχ

†
i (x)h

ij
tot(x)χj(x),

where hijtot(x) ≡ δijϵi + hphot(x).

We will operate in the limit that the difference of the eigenvalues of hat (the “dark”-

“bright” splitting) is much larger than the spectrum of hphot, making the [d, b+, b−] basis

that diagonalizes the atomic Hamiltonian a near-diagonal basis for the multimode system.

This is equivalent to the statement that a particle oscillating in the trap is more accurately

described as a polariton rather than a photon if the light-matter coupling is much greater than

the transverse optical mode spacing. To first order in hphot/ϵ, the Hamiltonian projected

into the dark polariton manifold is:

H
pol
tot =

∫
dx cdc̃dχ

†
d(x)(ϵd + hphot(x))χd(x).

For γr = δ2 = 0: ϵd = 0 and cdc̃d = Ω2

Ω2+G2 = cos2 θd
2 , where θd is the dark state rotation

angle [78]. We then have:

H
pol
tot = cos2

θd
2

∫
dx χ

†
d(x)

[
Π2

2mphot
+

1

2
mphotω

2
trap|x|2 −

iκ

2

]
χd(x). (3.3.1)

Thus, we see that to lowest order in ratio of the photonic dynamics energy scale to the

atomic coupling energy scale ω2
trap

Ω2+G2 , the atoms simply slow down all photonic dynamics

and loss by a factor of cos2 θd
2 . The dominant correction to this story is a second-order

resonator (hphot) -induced dark→bright coupling, producing an effective Hamiltonian [79]

(in the above limits):
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δHtot ≈
∑

j∈[b−,b+]

∫
dx
Hphotχ

†
j(x)χj(x)Hphot

ϵj − ϵd

To compute this effect for a dark-polariton in an eigenstate with energy E = Ω2

G2+Ω2 δ ≪
√
Ω2 +G2,where δ is the two-photon detuning from EIT resonance, we take the first eigen-

value of hat by solving the equation det (hat − λ1) = 0 and Taylor expanding to first order

in λ and then to second order in δ and κ. The correction is largely imaginary (assuming for

simplicity that δe = 0, g,Ω ≫ γe):

δΓpol ≡ −i⟨δHtot⟩ ≈ 2
Ω2δ2

Ω2 +G2
γe = 2

E2

Ω2
γe. (3.3.2)

Thus we see that loss is suppressed by the control field.

Additional contributions to polariton loss arise from inhomogeneous broadening of the

Rydberg manifold, e.g. atomic motion and electric field gradients (to which Rydberg atoms

are susceptible due to their large DC polarizability [80]). Such processes generate a lad-

der of couplings from the collective Rydberg state, that shares the spatial configuration of

the resonator mode, into collective states orthogonal to it (which therefore are bright). We

explore how (random) atomic motion induces polariton decoherence in Sec 3.8; for inhomo-

geneous E-fields, the coupling rate to the bright manifold is γb ≈ αEδE, where α is the DC

polarizability of the Rydberg state, E is the DC electric field at the atomic sample, and δE

is the field-variation across it. The resultant broadening of the dark manifold is then (in the

limit Ω ≫ γe) [72]:

δΓpol ∼ γe
γ2b sin

2 θd
2

Ω2
. (3.3.3)
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It is instructive to compare this result with the loss induced by detuning a resonator mode

out of the EIT window (Eqn. 3.3.2). Both channels are quadratically suppressed, but the

suppression factor is different, emphasizing the distinction between the underlying physical

processes: detuning from the EIT window couples to bright polariton manifolds that live in

the resonator and are thus suppressed by both the light-matter-coupling- and control- fields,

while inhomogeneous broadening couples to non-resonator bright polariton manifolds that

“see” only the control- field.

Having formalized the notion of a resonator polariton, it is instructive to note some

differences between resonator and free-space polaritons. Cavities provide a true 2D system

(for a single longitudinal mode and in the limit of small sample length L), where the single

particle dispersion is controlled through the resonator geometry [81]. On the other hand, free

space polaritons exhibit more rigid dispersion relations. They possess different longitudinal

and transverse masses, and the transverse mass may even be complex [32].

To summarize, we have derived the polaritonic creation and annihilation operators and

reformulated the polaritonic Hamiltonian in second quantized form for arbitrary multi-mode

resonators. With the introduction of the dark state rotation angle, we have a way to quantify

the character and behaviour of the quasi-particles. Finally, we have derived a second order

correction to the dark polariton lifetime arising from dark to bright polariton coupling and

inhomogeneous Stark shifts; both processes result in additional polariton decoherence and

are quadratically suppressed.

3.4 Polariton-polariton Interactions

The interaction between Rydberg atoms will result in an interaction between polaritons,

much as in the 1D free-space situation [28–31]. In the limit that the interaction length-scale

is comparable to the mode-waist of the resonator, there can be a substantial renormalization

of the collective atomic excitation which we investigate in Sec 3.6. For now, we assume
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sufficiently weak interactions that photonic- and collective-atomic- components of the po-

lariton wave-function share the same spatial structure; note that these interactions can still

dominate over kinetic and potential energies, as well as particle decay rates, so this need not

be a “weakly interacting” polaritonic gas in the traditional (mean-field) sense.

The bare 3D interaction between two Rydberg atoms takes the form V (x−x′) = cr(θ)C6

|x−x′|6

[40], where cr(θ) is the angular dependence of the interaction. S-Rydberg atoms have radially

symmetric wavefunctions and so cr(θ) ≈ cr ≡ 1. In the second quantized picture, for a thin

atomic cloud (thickness L≪ d, where d is the cavity analog of the blockade radius [68]; this

restriction is needed to ensure the polariton separation is well defined in the 2D plane) the

2D-projected interaction takes the form (with Ṽ (x) = V (x; z = 0)):

Hint =
1

2

∫∫
dx dx′ϕ†r(x)ϕ

†
r(x

′)Ṽ (x− x′)ϕr(x′)ϕr(x).

ϕ
†
r(x) may be written in the polariton basis in analogy to the way a†(x) was written in the

polariton basis in the preceding section:

Hint =
1

2

∑
ijkl∈[d,b−,b+]

didj d̃kd̃l

∫∫
dx dx′ χ†i (x)χ

†
j(x

′)Ṽ (x− x′)χk(x
′)χl(x). (3.4.1)

Here di, d̃j are matrix elements of the inverse µ, µ̃ matrices: dj ≡ µ−1
ryd,j , d̃j ≡ µ̃−1

ryd,j and

the index “ryd” denotes the Rydberg slot of µ−1, µ̃−1. In the absence of Rydberg loss and

2-photon detuning, dd = sin θd
2 .

If the interaction energy Ṽ is small compared to the splitting between dark- and bright-

polariton branches (Sec. 3.5 explores the couplings and loss that violate this condition),

the diagonal elements of Hint dominate, yielding a lowest-order polariton-projected effective

Hamiltonian:
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P̂d(Htot +Hint)P̂d = cos2
θd
2

(∫
dxχ

†
d[

Π2

2mp
+

1

2
mpω

2
t |x|2 −

iκ

2
]χd

)
+
1

2
sin4

θd
2

(∫∫
dxdx′n̂d(x)n̂d(x

′)Ṽ (x, x′)
)
, (3.4.2)

where P̂d is dark-polariton projection operator, and we have defined the dark polariton

number density operator n̂d(x) = χ
†
d(x)χd(x).

By tuning the dark-state rotation angle θd (via atomic density and control-field intensity)

it is possible to move from a weakly interacting gas of “nearly-photonic” polaritons (for

θd ≈ 0) to a strongly interacting gas of “nearly-Rydberg” polaritons (for θd = π) and

explore the correlations which then develop [69]. In this latter limit it is likely that the

interactions Ṽ become comparable to the dark-bright splitting, so the interaction potential

must be renormalized as explored in section 3.6.

Using the formalism developed in prior sections, we have now expressed the Rydberg

polariton interactions in the general context of an arbitrary multi-mode resonator. The new

polaritonic interaction term in the Hamiltonian assumes only that the sample is “thin” (in

the sense that all atoms are longitudinally within the Rydberg blockade volume) and depends

heavily on how Rydberg-like the polariton is, as expressed by the dark state rotation angle.

3.5 Interaction Driven Polariton Loss

The polariton-projected field theory of the preceding sections neglects loss from collisional

coupling to bright manifolds. To make the impact of these processes apparent we work

in the minimal model of a single-mode resonator (specifically the TEM00 mode), and sim-

plify from long-range to δ interactions. The interaction between dark polaritons is then

Ṽ (x, x′) = Ueff δ(x − x′), where Ueff is a phenomenological interaction strength. Such an

interaction couples the two dark polariton state |dd⟩ to a final two-polariton state |f⟩ with

Rabi frequency Ωdd→f = ⟨f |Ṽ |dd⟩. We consider two final states: (1) one each upper and
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lower bright polaritons (|b+b−⟩), which is energetically degenerate with |dd⟩, and (2) dark-

and (upper/lower) bright- polariton (|db⟩), which is off-resonant, but sufficiently spectrally

broad that its enhanced matrix element makes it important.

In a frame rotating with the cavity and control fields (δe = δ2 = 0), the dark polaritons

have zero energy and the upper/lower bright polariton branches are energetically shifted by

±
√
G2+Ω2

2 (Fig. 3.3). The process |dd⟩ → |b+b−⟩ is thus energy conserving, with collisional

Rabi coupling given by:

Ωdd→bb = ⟨b+b−|Ṽ |dd⟩ =
√
2 sin2

θd
2
cos2

θd
2
Ueff

=
1

2
√
2
sin2 θdUeff .

Because this is a resonant scattering, it induces a loss Γdd→bb =
Ω2
bb

Γbb
, where Γbb = 2γe2 is

the intrinsic loss of the bright polariton branches which are predominantly composed of the

lossy P-state. Plugging in, the loss rate is:

Γdd→bb =
sin4 θdU

2
eff

8γe
. (3.5.1)

This loss depends heavily on the interaction strength between the Rydberg atoms and the

dark state rotation angle. Making the particles more Rydberg-like creates stronger inter-

actions and increases the loss rate; similarly, using a higher principle quantum number

increases Ueff , further enhancing the loss.

We now investigate the second scattering process, |dd⟩ → |db⟩ (upper or lower bright

polariton). Following the same procedure, the collisional Rabi frequency is:
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(a) (b)

Figure 3.3: Interaction driven loss. (a) In the rotating frame, the dark polariton |d⟩
has zero energy. The upper and lower bright polariton branches (|b+⟩ and |b−⟩ respectively)
are separated in energy from the dark polariton by the coupling and control lasers, giving
a detuning of ±

√
G2+Ω2

2 . (b) Two dark polaritons that experience a contact interaction
Ueff can become a pair of bright polaritons |b+b−⟩ (upper diagram) or a dark and (upper-
or lower- branch) bright polariton |db±⟩ (lower diagram). Dark polaritons are depicted
by a straight black line while the wavy gray lines are bright polaritons. The form of the
additional dark polariton loss introduced by these scattering events are determined by how
“resonant” the processes are: the ∼energy conserving |dd⟩ → |b+b−⟩ process introduces a

loss of Γdd→bb =
sin4 θdU

2
eff

8γe
, while the |dd⟩ → |db±⟩ coupling is “off-resonant” and so its

additional loss Γdd→db = sin6 θd
2 sin2 θd

γe
G2U

2
eff is suppressed by the light-matter coupling

field.
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Ωdd→db = ⟨db|Ṽ |dd⟩ =
√
2 sin3

θd
2
cos

θd
2
Ueff .

Since this is an off-resonant process (final and initial state are detuned by ∆ =
√
G2+Ω2

2 ), the

resulting loss rate is Γdd→db =
Ω2
db

∆2 Γdb, with Γdb = γe
2 (we ignore resonator- and Rydberg-

loss, as bright-state loss is dominated by p-state loss in alkali metal atom Rydberg cQED

experiments [34]). Combining these effects/approximations yields:

Γdd→db = sin6
θd
2
sin2 θd

U2
eff

G2
γe. (3.5.2)

Once again, stronger interactions and a more Rydberg-like character for the polaritons in-

creases the loss from this process but due to the off-resonant nature of this process there is a

quadratic suppression from the light-matter coupling which separates the bright- and dark-

polaritons in energy.

We can compare the two loss processes:

Γdd→bb

Γdd→db
=

sin2 θd

8 sin6 θd
2

G2

γ2e
. (3.5.3)

In the limit G≫ Ω, γe (θd2 → π
2 ⇒ sin θd

2 → 1, sin θd → 0), the |dd⟩ → |db⟩ loss channel will

dominate, while in the opposite limit, interaction-driven loss is dominated by the ∼ energy

conserving process.

In this section, we explored dark→bright conversion through polariton-polariton scatter-

ing. For simplicity, we analyzed this physics in a single mode resonator with δ-interacting

polaritons (hard sphere approximation of long-range interactions) and showed that there are
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in fact two loss channels, with rates exhibiting similar functional forms, each dominating in

a region of parameter space.

3.6 Effective Theory for Interacting polaritons

The simple polariton-projected interacting theory introduced in section 3.4 is an accurate

description only for polaritons whose interaction energy is less than the EIT linewidth [72]

for all pairs of atoms comprising the polaritons. As two polaritons approach one another

and their wavepackets begin to spatially overlap, some terms in the interaction energy di-

verge; full numerics (see SI of [34] for details of the approach) reveal that the two-polariton

wavefunction is renormalized to suppress such overlap, at the cost of additional (finite) in-

teraction energy, and loss. Physically, at small separations and strong interactions, the pair

distribution of Rydberg excitations no longer follows the wavefunction of the cavity field.

We now explore the extreme limit of this physics: a single-mode optical resonator that is

moderately-to-strongly blockaded, to develop a low-dimensional effective model in the basis

of near-symmetric collective states that produces optical correlations in agreement with full

numerics.

The “brute force” numerical approach that we have previously employed accounts for

the three-level structure of each atom in the atomic-ensemble, and the interactions between

atoms. It accurately reproduces observed correlations [34] at the expense of a Hilbert space

which grows as Nm, where N is the number of atoms in the atomic ensemble and m the

number of polaritons in the system; and quickly becomes computationally intractable when

motional dynamics of the polaritons are included by allowing for multiple resonator modes.

The problem of an extremely large Hilbert space is exacerbated since many-body physics [69,

82] demands both multiple resonator modes and significantly more than two excitations,

which makes numerically computing the behavior of the system completely untenable without

a coarse-grained effective theory.
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(a) (b) (c) (d) (e)

Figure 3.4: Comparing the effective field theory to full numerics. Effective theory
renormalized interactions and couplings (blue line) and full numerical model (orange line)
are compared by looking at the temporal intensity autocorrelation function g2(τ = 0), which
characterizes the strength of interactions in the system. Common parameters are (unless
varied in the plot or mentioned otherwise): G = 2π × 6 MHz, Ω = 2π × 2.3 MHz, δe= 0
MHz, C6 = 2π × 56 THz µm6 (corresponding approximately to the interaction strength of
the 100S Rydberg state), Natom = 700, γe = 2π× 6 MHz, κ = 2π×1.6 MHz, γr = 2π× 0.15
MHz, δc = 0 MHz, cavity mode waist wc = 14 µm, transverse atomic sample radius rt = 40
µm, atomic sample length la = 3 µm, intracavity photon number ≪ 1. (a)g2(τ = 0) vs probe
laser detuning. Scanning the probe laser frequency affects both the detuning to the P-state
and the two-photon detuning to the Rydberg state. (b) g2(τ = 0) vs P-state detuning δe.
The detuning of the P-state δe is varied while keeping the two photon detuning δ2 zero. (c)
g2(τ = 0) vs light-matter coupling field strength G, g2(τ = 0) vs probe detuning δl (inset).
The light-matter coupling strength per atom g is varied from 2π × 0.07 MHz to 2π × 3
MHz. For the inset, we scan the probe frequency.(d) g2(τ = 0) vs control field strength Ω.
There is good agreement between the full numerics and the renormalized effective theory
except for a small region at about Ω = 2π × 1− 3 MHz. (e)g2(τ = 0) vs Rydberg-Rydberg
interaction coefficient C6. C6 is varied from 2π × 104 MHz µm6 to 2π × 1011 MHz µm6,
which corresponds to Rydberg states in the range n ∼ 48-193S. The upper limit on the
strength of the blockade is the cavity enhanced optical depth. Once C6 is large enough to
fully blockade the sample, the interaction strength, and therefore g2, saturate. A control
field of Ω = 2π×1 MHz was employed for this plot. The first-principles renormalized theory
accurately reproduces the blockade from weak- to strong- interactions.

To the extent that “polaritons” are well-defined collective excitations whose atomic spa-

tial structure reflects the cavity mode functions, it should be possible to develop an effective

theory whose Hilbert space size is independent of the atom number, making explorations of

multimode/many-body physics tractable. In this section we demonstrate, for a single optical

resonator mode, an approach to handle the suppression of short-range double-excitation of

the Rydberg-manifold, arriving at a coarse-grained effective theory including both dark and

bright polaritons whose parameters may be calculated from first principles.
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Consider two excitations, either atomic or photonic, in an atomic ensemble coupled to

a single-mode resonator. In the absence of interactions, we can explicitly write out the

collective states that couple to the resonator field: |CC⟩, |CE⟩, |CR⟩, |EE⟩, |ER⟩, |RR⟩.

These states represent two excitations as photons in the resonator, one photon and one

p-state excited atom, one photon and one Rydberg atom, two excited p-state atoms, one

p-state and one Rydberg atoms and two Rydberg atoms respectively. The Hamiltonian is

closed in this basis, and takes the form [83]:

H =



|CC⟩ |CE⟩ |CR⟩ |EE⟩ |ER⟩ |RR⟩

−iκ G√
2

0 0 0 0

G√
2

−iκ+γ̃e
2

Ω
2

G√
2

0 0

0 Ω
2 −iκ+γr

2 0 G
2 0

0 G√
2

0 −iγ̃e Ω√
2

0

0 0 G
2

Ω√
2

−i γ̃e+γr
2

Ω√
2

0 0 0 0 Ω√
2

−iγr


where γ̃e ≡ γe + 2iδe is a complex linewidth incorporating the P-state detuning. The above

basis and corresponding Hamiltonian no longer accurately describe the physics once the

Rydberg-Rydberg interactions become comparable to the dark-bright splitting: under such

conditions, the |RR⟩ is renormalized due to Zeno suppression of excitation of Rydberg-atom-

pairs at small separation. We posit that the model can be “fixed” by considering coupling

to a new collective “two-Rydberg” state |R̃R⟩, where the tilde signifies that the relative two-

Rydberg amplitudes are renormalized by interaction; furthermore, the coupling from |ER⟩

to |R̃R⟩ will no longer be Ω√
2
.

To ascertain the form of the state |R̃R⟩, we will examine the equations of motion in the

frequency domain under the non-Hermitian Hamiltonian in the bare-atomic basis within the

two- excitation manifold. We work in a frame that rotates with an energy 2Ωp, convenient
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for performing scattering experiments of pairs of photons injected by a probe at energy Ωp.

We assume that while the state |RR⟩ is renormalized by the interactions, the state |ER⟩

is not, and reflects the non-interacting polaritonic wave-functions of the preceding sections;

this is the central assumption of this section, and is validated by numerics. Corrections to

|ER⟩ would enlarge the Hilbert space and may be included as higher-order terms in the

effective theory.

Following notation from [34] SI L, the equation of motion for the amplitude of two Ryd-

berg excitations in atoms α and β, Cαβ
RR, is given by i2ΩpC

αβ
RR = i

(
U
αβ
RR + 2δ2 + iγr

)
C
αβ
RR+

iΩ
(
C
αβ
ER + C

αβ
RE

)
, where Uαβ

RR is the interaction between Rydberg-excited atoms α, β, δ2 is

the two-photon detuning, γr is the Rydberg state linewidth and we have assumed that the

control field Ω is uniform across the atomic ensemble. Here Cαβ
ER and C

αβ
RE are the ampli-

tudes to have P- and Rydberg- excitations in atoms α, β and β, α, respectively, and satisfy

C
αβ
ER = C

βα
RE . The assumption that |ER⟩ is not renormalized by the interactions is equiva-

lent to Cαβ
ER =

gαgβ∑
ν |gν |2

, where gχ is the vacuum-field light-matter coupling strength of atom

χ. Plugging this expression into the equation of motion for Cαβ
RR yields the un-normalized

two-Rydberg state amplitude: Cαβ
RR =

Ω
gαgβ∑
ν |gν |2(

Uαβ
RR+2δ̃r

) , where we defined the complex detuning

δ̃r = δ2 + iγr2 − Ωp. We can now write the normalized collective state |R̃R⟩, its effective

interaction energy Ũ and effective coupling Ω̃√
2

to |ER⟩ as:
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|R̃R⟩ =

∑
αβ

gαgβ

Uαβ
RR+2δ̃r

|RαRβ⟩√∑
µν |

gµgν
Uµν
RR+2δ̃r

|2
,

Ũ = ⟨R̃R|U |R̃R⟩

=

∑
αβ |

gαgβ

U
αβ
RR+2δ̃r

|2Uαβ
RR∑

µν |
gµgν

Uµν
RR+2δ̃r

|2
,

Ω̃√
2
= ⟨R̃R|

∑
j

Ω

2

(
σ
j
er + σ

j
re

)
|ER⟩

=

1√
2
Ω
∑

αβ
|gαgβ |2

Uαβ
RR+2δ̃r√∑

µν |
gµgν

U
µν
RR+2δ̃r

|2
√∑

µν |gµgν |2
.

(3.6.1)

(3.6.2)

(3.6.3)

In the extreme limit of strong interactions across all space Uαβ
RR ≫ δ̃r: Ũ =

∑
αβ

|gαgβ |
2

U
αβ
RR∑

µν
|gµgν |2

(Uµν
RR)

2

=

C6
w6
c

∫
dÃdÃ′e−2(r̃2+r̃

′2)d̃6∫
dÃdÃ′e−2(r̃2+r̃

′2)d̃12
≈ 1

120
C6
w6
c
, where wc is the mode waist; the pre-factor makes this inter-

action substantially weaker than one might naïvely anticipate- the interaction predominantly

arises from particles separated by ∼ 2.2wc, and not wc.

We next benchmark the validity of this effective theory against a full microscopic numer-

ical model [34]. As a figure of merit we have chosen the temporal intensity autocorrelation

function g2(τ), which compares the rate at which pairs of photons escape the resonator with

separation in time of τ to what would be expected for uncorrelated photons escaping at

the same average rate; in an experiment where our only access to the Rydberg physics is

through photons leaking from the resonator, g2(τ) characterizes the strength of polariton

interactions, with g2(τ = 0) ≪ 1 indicating strong interactions between intracavity photons.

To remove the impact of the probe strength from g2(0), we consider a very weak probe; when

the intracavity photon number is ≪ 1, g2(0) is independent of probe strength. We compare
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g2(0) vs. probe detuning δl (Fig. 3.4a), g2(0) vs. p-state detuning δe (Fig. 3.4b), light-matter

coupling strength G (Fig. 3.4c), Rydberg control field strength Ω (Fig. 3.4d) and van der

Waals interaction coefficient C6 (Fig. 3.4e) between brute-force numerics of many individual

three-level atoms and the effective theory developed above. It is apparent that our approach

largely agrees with the full numerical model up to “noise” arising from randomness in the

atom locations. We expect that residual deviations can be parametrized as corrections to Ω̃

and Ũ due to coupling to bright-polariton manifolds, and a slight enlargement of the Hilbert

space to incorporate the additional states coupled to.

We note that there are qualitative differences between the physical behaviour of resonator

and free-space correlation functions, as demonstrated by our recent experimental work [34]

and [19, 28, 33]. In a single-mode resonator coupled to Rydbergs, we have observed an

effectively 0D environment by restricting the cloud thickness. This is equivalent to tunneling

in and out of a zero dimensional quantum dot. On the other hand, free-space systems

are intrinsically at least 1D; the photons can move longitudinally and avoid each other,

experiencing a true position-dependent interaction. This difference in system dimension

results in very different quantitative g2 behavior and parameter scaling.

To explore more complex condensed matter models like Laughlin droplets and crystalline

phases, multiple particles and resonator modes are needed. Any brute force analytical ap-

proach quickly runs into the obstacle of very large computation times due to the rapid in-

crease of the system’s Hilbert space. To circumvent this, we have developed a renormalized

single- mode resonator effective field theory that shows very good agreement with numerics

and can be extened to the many particle, multi-mode regime, allowing for computationally

tractable modeling of larger physical systems.
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3.7 Momentum-Space Interactions

A resonator which exhibits manifolds of nearly-degenerate modes may be understood as a

self-imaging cavity: a localized spot living within such a manifold is re-focused onto itself

after a full transit around the cavity. In-between, the localized spot undergoes diffraction,

equivalent to the time-of-flight expansion of a free atomic gas [84]. Indeed, what the optics

community calls a “fourier plane” is what a cold-atom experimentalist calls “momentum

space”: the momentum of the photon in the initial (“reference” or “image”) plane has been

mapped onto its position in the “fourier plane” [85]. We can formulate hphot for any plane

we choose to define as ”real space“. Placing a Rydberg-dressed atomic sample in that plane

will produce real-space (position dependent) interactions in the system; a sample in any

other place will result in interactions that are a mix between real- and momentum-space,

depending on the exact plane the atoms are placed. Accordingly, it should be possible to

realize interactions which are local in momentum-space by placing a Rydberg-dressed atomic-

ensemble that mediates these interactions in a fourier- or nearly-fourier- plane of the optical

resonator.

We explore this idea formally by extending the cavity Floquet Hamiltonian engineering

tools of our prior work [11] to the interacting regime. A thin gas of Rydberg-dressed atoms

placed in a plane separated from the “reference”/“image” plane by a ray-propagation matrix

M = ( a b
c d ) produces interactions of the form:

Hint =
1

2
sin4

θd
2

∫∫
dx dx′χ†d(x)χ

†
d(x

′)Ṽ
(
a(x− x′)− b

ℏk
(p̂− p̂′)

)
χd(x

′)χd(x). (3.7.1)

In the simple case of a delta-interacting gas of atoms (for overlapping polaritons whose

characteristic sizes exceed the blockade radius, an accurate but simplified model considers

the long-range interacting polaritons as hard spheres; overlapping pieces of the polaritonic
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wavefunction scatter) placed in such an intermediate plane (a distance z from the reference

plane), we employ this result to transform an expression where the dark polariton cre-

ation/destruction operators and interaction potential are written in the intermediate plane

to one where the interaction is transformed and all operators are written in the “reference”

plane:

Hint =
1

2
sin4

θd
2

∫∫
dx dx′ χ†d(x; z)χ

†
d(x

′; z)δ(x− x′)χd(x
′; z)χd(x; z)

=
1

2
sin4

θd
2

∫∫∫
dx dδ d∆ χ

†
d(x+ δ)χ

†
d(x− δ)ei

k
2z (δ

2−∆2)χd(x+∆)χd(x−∆).

The resulting polariton interaction is no longer purely local in real-space, and indeed can

“instantaneously” transport polaritons through space.

The most extreme example of such an interaction occurs if the mediating gas is placed

in a fourier plane of the system, a = 0, b = f

Hint =
1

2
sin4

θd
2

∫∫
dx dx′ χ†d(x)χ

†
d(x

′)Ṽ
(
− f

ℏk
(
p̂− p̂′

))
χd(x

′)χd(x),

an interaction that is local in momentum-space.

3.8 Impact of Atomic Motion

In this section we investigate the effects of atomic motion on the coherence properties of indi-

vidual Rydberg polaritons in both single- and multi-mode regimes. We relax the assumption,

employed to this point in the manuscript, that the atoms remain spatially fixed, and instead

allow them to move ballistically through space. The impact of this motion upon the P-state

is ignored because the P-state linewidth of an alkali-metal atom (∼ 2π× 6MHz) is typically
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much larger than any Doppler broadening effect at µK temperatures (∼ 2π×100kHz for Rb),

and furthermore, dark polaritons by construction spend very little time in the P-state (they

are “dark” to it). In what follows, we will assume the polariton is almost entirely Rydberg-like

(the typical experimental situation [34]; if this is not the case, all doppler-induced broaden-

ings and cross-couplings must be multiplied by a factor reflecting the Rydberg-participation

of a polariton sin2 θd
2 .

We incorporate atomic motion into the Hamiltonian in the bare-atom basis by allowing

each atom to have a time-dependent coupling-phase to the probe and control fields resulting

from its time-varying position:

H = ωcâ
†â|c⟩⟨c|+

∑
j

ωe|e⟩⟨e|+ ωr|r⟩⟨r|

+
∑
j

{[
Gj

(
xj + vjt

)
|e⟩⟨c|+ Ωj

(
xj + vjt

)
|r⟩⟨e|

]
+ h.c.

}
,

where xj and vj are the positions and velocities of the atoms, drawn from a normal distri-

bution reflecting the sample r.m.s. size and temperature. The effect of atomic motion, then,

is to mix the collective states that couple to the resonator modes with those that, in the

absence of atomic motion, do not couple to it. To see this formally, we write the Hamilto-

nian in the basis of the instantaneous collective eigenstates, resulting in a Hamiltonian of

the form:

H =
∑
m

Em(t)|m(t)⟩⟨m(t)|+ |ṙ(t)⟩⟨r(t)|, (3.8.1)

where |m(t)⟩, Em(t) are the instantaneous polaritonic eigenstates and their corresponding

energies, and |ṙ(t)⟩⟨r(t)| is an extra term introduced by this time-dependent change of basis,

47



capturing the effects of atomic motion in the instantaneous collective Rydberg state |r(t)⟩.

In what follows, we examine the form of this final term for the particular case of twisted

resonators which produce a Landau level for light [12, 82], so the mode functions are Laguerre-

Gauss Ψl(z ≡ x+iy) =

√
2l+1

πl! z
le−|z|2 , with angular momentum L = lℏ. For a polariton in a

mode with angular momentum lℏ, |r(t)⟩ = |rl(t)⟩, with |rl(t)⟩ =

∑
j e

ik⃗·(x⃗j+v⃗j t)Ψl

(
x⃗j+v⃗j t

wc

)
αl(t)

|j⟩,

where |j⟩ is the state where all atoms are in the ground state except for the jth which is in

the Rydberg state, and αl(t) =
√∑

j |Ψl

(
xj+vjt
wc

)
|2 is the normalization factor for mode l.

The time derivative d
dt |rl(t)⟩ is:

|ṙl(t)⟩ =

∑
j k⃗ · v⃗jeik⃗·r⃗Ψl

(
r⃗
wc

)
αl(t)

|j⟩

+ |rl(t)⟩
(
− α̇l(t)
αl(t)

)
(3.8.2)

+

∑
j
eik⃗·r⃗
wc

(
v⃗j · ∇⃗r⃗

)
Ψl

(
r⃗
wc

)
αl(t)

|j⟩,

where the index |j⟩ runs over all atoms in the sample, r⃗ = x⃗+ v⃗t, wc is the resonator mode

waist, k is the wavevector defined by the relative orientation of the cavity- and control- fields

and ∇⃗r⃗ refers to the gradient with respect to r⃗. These terms of H in the instantaneous

eigen-basis have three effects: mixing polaritons in modes of different angular momenta,

coupling to bright polariton manifolds orthogonal to the resonator field, and random shifts

of the energy of the mode in which the polariton resides. We now investigate the extent

to which each of the terms above induce each of these effects. We can rewrite eq. 3.8.2 as

|ṙl(t)⟩ = |T1⟩+ |T2⟩+ |T3⟩, where we have defined the following:
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|T1⟩ =

∑
j k⃗ · v⃗jeik⃗·r⃗jΨl

(
r⃗j
wc

)
αl(t)

|j⟩,

|T2⟩ = |rl(t)⟩
(
− α̇l(t)
αl(t)

)
,

|T3⟩ =

∑
j
eik⃗·r⃗
wc

(
v⃗j · ∇⃗r⃗

)
Ψl

(
r⃗
wc

)
αl(t)

|j⟩.

Even for a maximally degenerate concentric cavity, most collective Rydberg states that one

can generate (for example through atomic motion, above) are orthogonal to all resonator

modes, because their spatial form along the cavity axis does not match the cavity field (equiv-

alently, their longitudinal momentum is not that of a cavity photon). As a consequence,

most of the dynamics generated by coupling to |T1⟩, |T2⟩, and |T3⟩ consists of coupling to

bright polariton manifolds with no corresponding dark (resonator-like) mode. We bound

these effects by assuming, at zeroth order, that all of each coupling is to these bright mani-

folds. The strength of this coupling is thus the normalization of the corresponding |Ti⟩ and

in the case of |T1⟩:

⟨T1|T1⟩ =

∑
j k

2v2j |Ψl|2

α2l
,

⟨T1|T1⟩vt=0 = (kvth)
2

∑
j |Ψl|2

α2l
= (kvth)

2.

We can now write |T1⟩ = kvth
|T1⟩
kvth

= kvth|T̃1⟩, where |T̃i⟩ is the normalized state-vector

corresponding to state |Ti⟩. This corresponds to a Rabi-coupling of strength ∼ kvth to a

bright polaritonic state which is detuned by Ω, and a resulting dark→bright loss rate of:
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δΓT1 =
(kvth)

2(
Ω
2

)2 γe
2

=
2 (kvth)

2

Ω2
γe. (3.8.3)

A small fraction of |T1⟩ overlaps with other degenerate resonator modes, corresponding

to an atomic-motion-induced polaritonic motional diffusion:

⟨rm(t)|T1⟩ =

∑
p kvpΨ

∗
m

(
rp
wc

)
Ψl

(
rp
wc

)
√∑

µ |Ψl

(
rµ
wc

)
|2
∑

ν |Ψm

(
rν
wc

)
|2
.

The expected value of this term is zero since the average atomic velocity is zero: ⟨vp⟩t=0 = 0.

The r.m.s. coupling, however, is non-zero:

√
⟨|⟨rm|T1⟩|2⟩v.p. =

kvth√
N0

C ′
l→m, (3.8.4)

where N0 is the number of atoms in mode l =0 and C ′
l→m = Cl→m√√

lm
=

√
21−l−m (l+m)!

l!m!√
lm

is

a generalized the Doppler coupling matrix element between modes l and m, incorporating

the fact that higher angular momentum modes contain more atoms, and thus provide a

smoother atom distribution. We can expand this matrix element for large l ≈ m yielding

Cl→m ≈ e−(l−m)2/2l2
√
2

(πl)1/4
, indicating diffusion only into nearly-adjacent modes.

Last, the r.m.s. energy shift (inhomogeneous broadening) of the collective Rydberg state

induced by this term is given by:

√
⟨|⟨rl|T1⟩|2⟩v.p. =

kvth√
N0

√
21−2l(2l)!

l(l!)2
. (3.8.5)
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The second term of eq. 3.8.2 is:

|T2⟩ = |rl⟩
1

2wc

∑
n v⃗n · ∇⃗r⃗|Ψl|2

α2l
= |rl⟩

(
− α̇l
αl

)
.

Again, we examine how this term couples a dark polariton to the lossy manifold of bright

polaritons:

√
⟨T2|T2⟩ =

vth
2wc

Γ(l + 1
2)

l!
≈ vth

2
√
l + 1

3wc

. (3.8.6)

This broadening comes from the time-dependent probe field coupling that the atoms expe-

rience as they move within the mode; it is much smaller than kvth. From the functional

form of |T2⟩ we can also see that it does not couple modes of different angular momenta(
⟨rm|T2⟩ = δl,m

(
− α̇l

αl

))
.

The third term, similar to the first, produces both a broadening and a shift in the dark

polariton energy. We can see that this term couples to the bright collective manifold with

matrix element:

√
⟨T3|T3⟩ =

vth
wc

√
3l + 1. (3.8.7)

We can similarly evaluate how this term couples to other states in the dark collective-state

manifold:

⟨|⟨rm|T3⟩|2⟩vp =
v2th
w2
c

1

N0

(
C ′′
l→m

)2
, (3.8.8)
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where C ′′
l→m =

√
2−l−m(l+9l2+m+2lm+m2)Γ(l+m)

l!m!
√
lm

is the coupling element between modes of

the resonator that captures mode spatial overlaps, coupling induced by atomic motion and

increasing mode area. This cross-thermalization coupling element converges for large l ≈ m

to C ′′
l→m ≈

√
6√
π
l−

1
4 e−(l−m−11

6 )2/8l. The l dependence in both the broadening and energy

shift terms arises from the more rapid phase accrual of higher angular momentum modes.

The total broadening of a mode with angular momentum l is thus

Γ
Doppler
l ≈ 2

(kvth)
2

Ω2 γe

(
1 + 3l+1

(kwc)2

)
; the r.m.s. Rabi-coupling of mode l to mode m is |Ωlm| ≈

( 4π )
1
4

kvth√
N0l0

e−δl2/2l0

√
1 +

√
9l0

(kwc)2
, where 2δl ≡ l −m, 2l0 ≡ l +m. Noting that kwc ≈ 100

for typical experiments [34], approximating further yields: Γ
Doppler
l ≈ 2

(kvth)
2

Ω2 γe, |Ωlm| ≈

( 4π )
1
4

kvth√
N0l0

e−δl2/2l0 . In fact, summing over all final states, the net coupling out of mode l is

|Ωl| ≈ (16π)1/4 kvth√
N0

, independent of l.

To summarize, atomic motion results in homogeneous and inhomogeneous broadening

of the dark polaritons, along with state diffusion. All effects arise from recoil-induced dif-

ferential motion of the Rydberg-excited atom, expressed as ṙl(t): the first couples (eqn’s

3.8.3, 3.8.6, 3.8.7) the system to modes that decay into free space due to their spatial sym-

metry, while the second term (eqn’s 3.8.4, 3.8.8) quantifies thermalization of atomic degrees

of freedom into the polaritonic degrees of freedom as a result of atomic motion. The former

effect is suppressed by the detuning of the uncoupled (and therefore bright) modes from the

dark manifold, while the latter effect is suppressed because atomic motion is random, so it

is only the shot-noise in the motion of the ensemble comprising the polariton that leads to

polaritonic mode coupling.

Doppler decoherence fundamentally arises from the relative motion of the atoms com-

prising the matter-component of a polariton relative to the field comprising the photonic

component; as a consequence, the Doppler decoherence is sensitive to the canonical momen-

tum of the optical field, not its mechanical momentum [11]. This distinction is particularly

important in cavities whose near-degenerate manifolds represent a particle in a magnetic
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Doppler Decoherence Summary
Broadening Cross thermalization

T1 2
(kvth)

2

Ω2 γe ( 4π )
1
4

kvth√
N0l0

e−δl2/2l0

T2
3

2(3l+1)
(vth/wc)

2

Ω2 γe 0

T3 2(3l + 1)
(vth/wc)

2

Ω2 γe ( 4π )
1
4

vth
wc

√
N0l0

(9l0)
1
4 e−(δl−11

12 )
2/2l0

Table 3.1: Atomic motion induced homogeneous/inhomogeneous broadening, as well as
r.m.s. diffusion/cross-thermalization matrix elements. For broadening terms, the angu-
lar momentum of the state under consideration is l; for cross-thermalization we consider
nearby angular momentum states with mean l0 and separation 2δl. Computed broadening
and cross-thermalization terms are upper bounds on the respective processes. Note that
kwc ≈ 100 for typical experiments [34], so kvth terms dominate strongly over vth/wc terms
until l becomes large.

field, because although the Landau level is translationally invariant in a fundamental sense,

the choice of gauge arising from resonator twist means that polaritons further from the res-

onator axis are more susceptible to Doppler decoherence, apparent in the l-dependence of

the loss terms above.

3.9 Outlook

In this chapter we have presented a field theory of interacting cavity polaritons in the strongly

interacting regime, including a formal treatment of interaction and atomic-motion-induced

loss channels, and the development of a renormalized single-mode theory. We also demon-

strate that by varying the location of one or more Rydberg-dressed atomic ensembles within

the resonator, the interactions can be tuned continuously from local in position-space to

local in momentum-space.

A particular non-planar resonator configuration yields a degenerate set of Laguerre-

Gaussian eigenmodes which corresponds to a Landau level for photons [12]. Hybridizing

these modes with Rydberg atoms to introduce strong interactions between photons makes

this is a promising platform to study fractional quantum Hall physics [86–89]. Straightfor-
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wardly extending our current single-mode effective field theory to include multiple resonator

modes and particles, analogous to its free-space counterpart [73], allows us to model this

platform and make quantitative predictions for future experimental explorations of frac-

tional quantum Hall physics.

Furthermore, by combining a renormalized cavity-Rydberg-polariton field-theory with

recently demonstrated cavity Rydberg polariton Keldysh-techniques [90], we are now in a

position to accurately model the physics of cavity polariton crystals and Laughlin pud-

dles [69], plus quantitative analysis of photonic QIP and quantum repeater protocols [91,

92].
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CHAPTER 4

EXPERIMENTAL SETUP

Previous chapters have discussed the properties and interactions of both bare Rydberg atoms

and resonator Rydberg polaritons. In this chapter I will describe the experimental setup that

has allowed us to see such interactions and is suitable for exploring topological photonic quan-

tum many-body physics. Our experimental system has many constraints; this is due to the

intrinsic sensitivity of Rydberg atoms to stray electric fields which makes very precise control

of electric fields and gradients an absolute necessity. Furthermore, the design parameters

needed to create a resonator that exhibits non-trivial topology for photons and can support

strong polariton interactions further constricts the space of available non-planar cavities.

On the other hand, using cavity Rydberg polaritons has its advantages too. The dynamics

of our quasi-particles are governed by their photonic components and are therefore very fast.

Rydberg atoms are very long-lived (their linewidth is on the order of 100 kHz and still

improving) and interparticle effective interactions are on the order of MHz. Comparing

these numbers to atoms in an optical lattice which have typical lifetimes of seconds and

interactions in the 100 Hz range (S-wave scattering), we see that polariton dynamics happen

very fast compared to their lifetime, on the order of nanoseconds. This lifts some of the

restrictions on the minimum pressure needed in the vacuum chamber, simplifying its design.

Furthermore, any decoherence from atomic motion is fairly negligible, reducing any need for

evaporative cooling. This, again, lets us tolerate a higher vacuum pressure and also speeds

up the experimental sequence, since evaporative cooling is typically a very slow process on

the order of seconds.

This chapter consists of four parts: the vacuum system, cavity design and philosophy, the

laser system and sample preparation. The vacuum system describes the vacuum chamber

and any special constraints or conditions we had to take into account. The resonator design

section describes the cavity and the challenges and reasons that led to its current design.
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The laser system section will focus on the general laser setup: the magneto-optical trap,

cavity locks, transport lattice and the control laser. Then, I will discuss the procedure of

preparing the sample, including compressing, cooling, transporting and slicing.

4.1 The Vacuum system

Cold atom experiments typically require very low vacuum chamber pressures to ensure a

long sample lifetime. This is necessary because the lifetime of the atoms depends strongly

on background pressure and needs to be significantly larger than the inverse of the interaction

energy (neutral atom ground state S-wave scattering typically). This constraint is partially

alleviated for us since the long-range Rydberg-mediated interactions in our system are strong

enough that the relative lifetime-to-interaction energy requirement is easily satisfied. This

means we can effectively work with pressures on the order of nanoTorr, orders of magnitude

higher than typical BEC experiments [4].

The vacuum system setup is shown in Figure 4.1. The main chamber itself is an octagonal

square: two 8” windows on the large flat sides are used for the horizontal MOT beams and

to provide optical access for incoupling/outcoupling to the resonator, while another eight

openings are located on the circumference of the chamber, four of them are 4.5” in diameter

and the rest are 2.75”. All of the 2.75” flanges have been covered with windows and the

diagonal beams are passing through them. Two of the 4.5” flanges (top and bottom ones)

are also covered with windows and are used to allow for lattice transport of the atoms from

the MOT into the optical cavity and for general laser manipulation of the atoms. Finally,

the last two horizontal flanges are used for connections to the rest of the vacuum system,

including the turbo and ion pumps, ion gauge and various feedthroughs. It bears mentioning

that we still have allowed for some optical access through those ports by placing windows at

the far ends of the crosses connected to the chamber; while this severely limits the numerical

aperture it still sufficient for MOT and lattice loading imaging.
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The stringent requirements and complexity of our optical resonator (mounting, sufficient

physical distance from the MOT beams and coils, electric field control for intracavity Rydberg

atoms) forced us to design a custom flange that sits on top of the main chamber. It consists of

a large flange at the top, used for optical access and tubes of various sizes extending radially

outwards. The tubes are needed to connect the feedthroughs for the heating wires, cavity

piezo and in-vacuum electrodes that let us precisely control atomic and cavity parameters.

The custom flange also has some internal structure to aid in mounting the cavity inside the

chamber and to allow for good control of any excess cable length.

4.2 The Optical Resonator

4.2.1 Four-mirror Resonator

Traditional two-mirror cavities have been use for a long time and are very well understood.

Unfortunately, such resonators turned out to be impractical for us. Our need to have strong

interparticle interactions means that our atoms have to be located in a small waist to achieve

confinement within a single blockade volume; for the 100S Rydberg state this restriction

corresponds to ∼ 103 µm3. Achieving the necessary waist size in a two mirror cavity proved

to be impossible due to space constraints inside the vacuum chamber; the resonator would

have to either be really long or have very long focal length mirrors, which in turn would make

the cavity structure too tall and wide, blocking various beam paths inside the chamber.

The solution to this problem came in the form of a four-mirror cavity. A resonator with

four mirrors differs mainly from a two-mirror one due to the fact that the cavity modes

are running waves. The advantage of such a configuration is that a small waist suitable for

interactions can be achieved at a much shorter cavity length and with reasonable mirror focal

lengths. This is due to the bow tie geometry of the resonator; two of the mirrors are convex

and their defocus acts as diffractive expansion, allowing for a small waist while keeping the
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(a)
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Figure 4.1: Vacuum system Setup. (a) Picture of the vacuum system. The vacuum
chamber and an early iteration of a custom flange are visible. On the left, a connected
feedthrough is visible. The right side of the vacuum system is wrapped in aluminum foil due
to a recent bake. (b) The main chamber is an octagonal square: two 8” windows are located
on the flat, short side and eight flanges on the circumference of the chamber, four 4.5” and
four 2.75” flanges. The 8” windows and all four of the 2.75” windows are used for the MOT
beams and their retroflections (the MOT beams are modeled as the gray tubes that can be
seen in the CAD drawing). On the left and right side of the chamber we have electrical
connections through feedthroughs and pumping through the turbo and ion pumps. Due to
the complexity of the resonator, a custom flange was designed. It sits on the top flange of
the chamber, allows for the cavity to be mounted at the right height inside the chamber and
provides electrical access for the heating wire and piezo.
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cavity length fairly short so it can still fit inside the vacuum chamber.

After a lot of numerical modeling and experimentation, we designed a resonator (shown

in Figure 4.2a) with a 12.6 µm waist approximately 1 cm away from any surface. The

upper mirrors of this structure are convex with a 50 mm radius of curvature and the two

lower mirrors are concave with a 25 mm radius of curvature. A piezo was also attached

to one of the lower mirrors to allow for tunable length and cavity locking. Both upper

mirrors and the non-piezo lower mirror have a reflectivity of 99.9% at 780 nm and 1560

nm, coated by Layertec GmbH. The last mirror is coated by Advanced Thin Films, with

a reflectivity of >99.995%. All mirrors are AR coated and high transmission for 480 nm.

The theoretical finesse of the cavity (based on mirror coating specifications) is 2100 but due

to contamination of the mirrors during the assembly and alignment procedures, the actual

finesse is F = 1480(50). A free spectral range of 2204 MHz has been measured with an EOM

sideband and the polarization eigenmodes have a splitting of 3.6 MHz and are mostly linear.

4.2.2 Electric Field Suppression

As mentioned in Section 2.4, Rydberg atoms are very susceptible to electric fields and a good

deal of the cavity design focused on both passive and active control and suppression of the

electric fields throughout the atomic sample in the resonator. Passive suppression relies on

the fact that the atoms are as far away as possible from any surface that can support charges

and patch potentials; this includes the mirrors and the cavity structure itself. The resonator

used to achieve strong polariton interactions has a distance of about 1 cm between the

atoms and the closest surface to them, which is a factor of 10 more than previous iterations

of our experimental cavities and is a significant improvement on polariton decoherence [72].

Active control is achieved by the eight screw-head electrodes mounted on the cavity structure

around the atoms. On top of that, the cavity structure, which is two separate parts, can

also be set to a voltage of our choice. Overall, this gives us ten degrees of freedom to control
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(a) (b)

Figure 4.2: Cavity Structure. (a) The cavity structure is mounted inside the vacuum
chamber, right above the MOT coils. Two mirrors are clearly visible, one for the upper
and one for the lower waist. Various electrode and heating wires are also visible: they are
attached to multiple points on the cavity and then are carefully guided through the mounting
structure to feedthroughs. (b) Finite element analysis model of the cavity. A 3D CAD model
of the resonator is imported into a finite element analysis program to allow for electric field
modeling and control. The structure itself, all electrodes and their macor (ceramic) spacers,
the cavity length tuning piezo and MOT coils are all included in the modeling software. The
atom are modeled by a cube that is evenly spaced from both ends of the cavity structure. By
setting each invidual component to 1V while keeping everything else grounded and iterating
over all components of the system, a transfer matrix is created relating the various voltages
to electric fields and gradients at the atomic cloud’s location.
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eight independent electric fields and gradients, allowing for very precise control. To gain an

understanding of how exactly to control the fields, we performed finite element analysis on a

3D CAD drawing of the cavity, shown in Figure 4.2b This allowed us to compute a transfer

matrix, relating the voltage on each individual electrode we can control to an electric field or

gradient at the atom location. We then computed an optimal set of values for this transfer

matrix and experimentally observed the quadratic dependence of the EIT feature on the

electric fields to verify we have correctly minimized the electric field environment around the

atoms.

4.3 Laser Setup and Cavity Locking

4.3.1 Magneto-Optical Trap

The laser setup for the magneto-optical trap (MOT) is made of three lasers, the frequency

reference, MOT beam and repumper laser, and a tapered amplifier. The frequency reference

laser, also frequently referred to as the master laser, is a distributed feedback (DFB) diode

in a custom mount that allows for fast feedback. An enriched Rb-87 cell is used to lock the

laser to the F = 2 → F ′ = 2′/F = 2 → F ′ = 3′ crossover (shown in Figure 4.3), which is the

most dominant feature in a doppler-free resonance spectrum. Since we want our MOT to

use the 2 → 3′ atomic transition, we account for the frequency offset of the crossover locking

point. We then lock the MOT and repumper lasers to the master laser using beat note locks.

Two separate laser paths, which include both the MOT and repumper lasers, are used for

the MOT itself: the horizontal path and the diagonal one, which is further split into two

right before entering the chamber. Our path setup allows us to have the same intensity in

each separate MOT path by splitting the power early on according to the diameter of each

beam. Finally, the tapered amplifier is used to provide more power for the MOT beams; the

repumper needs no amplification as very little power is required for it to repump efficiently
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and keep the atoms in a closed transition loop.

4.3.2 Cavity Locking

The resonator needs to remain at a certain frequency to constantly match the ground to

excited state transition frequency of the atoms; this allows any photon in the resonator

to excite the atoms and become part of the polaritons we use. At the same time, Rydberg

polaritons have a very narrow linewidth and any intrinsic laser frequency noise can potentially

add to polariton decoherence. To solve both problems at the same time, we employ a transfer

cavity locking scheme with a ultra narrow probe laser. First, we lock the probe laser to an

ultrastable cavity from Stable Laser Systems (the cavity linewidth κ is 55 kHz and 41 kHz

at 780 nm and 960 nm respectively); the cavity has been designed with thermal control and

vibration isolation in mind. The probe laser is then fed through a fiber coupled electro-

optical modulator (EOM) from EOSPACE, which allows for the generation of sidebands,

before being coupled into the experimental cavity. The cavity can now be locked to the laser

sideband, and in turn to the stable external cavity, and the cavity resonant frequency can

be controlled by tuning the sideband frequency.
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Figure 4.3: MOT locking signal. This signal is obtained by demodulating the Doppler-
free spectrum of an enriched 87Rb cell. The largest feature is the F = 2 → F ′ = 2/F ′ = 3
crossover, located in frequency halfway between the F = 2 → F ′ = 2 and F = 2 → F ′ = 3
transitions. The MOT is locked to the zero crossing of the feature’s downward slope.
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4.3.3 Transport Lattice

A transport lattice is used to collect atoms after they have been prepared in the MOT and

to transport them to the lower waist of the resonator. We use a laser that is locked to

the ultrastable cavity through Pound-Drever-Hall and provides 700 mW of power at a red-

detuning of 4 nm from the Rb D2 line. The reason for the lock is twofold: as the laser

drifts, it can go through multiple photo-association lines [93, 94] resulting in severe atom

number loss, and DFB diodes, such as the one used for the lattice laser, are intrinsically

broad [95]; electronic narrowing through a lock is needed to avoid parametric heating of

the cloud [96]. The beam enters from the bottom of the chamber and is retroflected after

exiting the chamber through the top window. The frequency of the reflected lattice beam is

modulated before it enters the chamber. which creates a moving lattice that allows for atom

transport.

4.3.4 Control Laser

We use a second-harmonic generation (SHG) laser setup to excite Rb atoms to the Rydberg

state through a two-photon transition. Specifically, we use a TOPTICA TA-SHG-PRO 480

nm laser with a maximum of 480 mW of output power to excite the atoms. The setup

consists of a 960 nm laser outputting 1 W, that gets frequency doubled in a cavity to 480

nm and at the same time retains a fairly large tuning of about 1 nm. A very small fraction

of the 960 nm laser power gets picked off before the SHG stage and allows us to lock the

laser to the ultrastable cavity. To avoid any inhomogeneous broadening of the polaritons,

the waist of the control laser inside the resonator is ∼ 45 µm, much larger than the 13 µm

mode waist at 780 nm; that way the atoms experience the relatively flat and constant part

of the Gaussian intensity profile.
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4.4 Sample Preparation

As mentioned in the beginning of the chapter, Doppler broadening is fairly negligible for the

polaritons, and so we can tolerate fairly high temperatures of ∼ 10 µK. This allows us to

get away with a simple polarization gradient cooling (PGC) scheme with no need for any

compression or evaporative cooling. At the same time, it is important to mention that such

temperatures are the limiting factor in terms of probing time inside the cavity due to cloud

expansion.

We start preparing the atomic sample by trapping Rb released from getters in a MOT.

We use a standard six beam MOT configuration, with three of the beams being retroflected.

The MOT laser is red detuned by 23 MHz from the D2 2 → 3′ cycling transition, while the

repumper laser is on 1 → 2′ to recover any atoms that off-resonatly scatter from F ′ = 2 to

the ground state. The magnetic field of the trap is produced by in-vaccum anti-Helmholtz

coils.

To achieve a uniform atom number in the MOT, the experimental sequence is run until

the MOT atom number reaches its steady-state value. At this point, we turn off the magnetic

fields and ramp the detuning of the MOT laser to 200 MHz away from the 2 → 3′ transition;

this allows us to perform PGC [97–99]. It is necessary to have a zero magnetic field at the

atoms’ location and so three pairs of external bias coils are used to achieve good magnetic

field control. The MOT and repumper lasers are on for another 10 µs after the magnetic

field and laser detunings have arrived at their correct values. At this point, the cooling is

complete and the cloud temperature is ∼ 15 µK.

The next stage in getting the atoms ready for the experiment is transporting them up to

the resonator. The distance between the MOT and lower cavity waist is 27 mm. While the

PGC process is running, the transport lattice is already on; when the cooling is done about

30% of the atoms have been loaded into the lattice. To now move the atoms, two acousto-

optical modulators (AOM) from IntraAction shift the frequency of the reflected lattice beam
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Figure 4.4: MOT loading and transport lattice. (a) Experimental data of the MOT
loading is plotted and fit. By collecting the fluorescence of the MOT at different times, the
MOT loading can be observed. The blue points are experimental data and the red curve is
a theoretical fit of the form R−e−γtR

γ , where R is the rate of atoms entering the trap and γ

is the inverse lifetime of the trapped atoms. Overall this model describes the rate of atoms
entering the trap minus the atoms lost due to collisions with background Rb atoms. The
fit gives a MOT loading time/lifetime of τ = 7.44 s. (b) The lattice is shown trasporting
atoms out of the MOT. After loading the MOT and cooling the atoms, the lattice has been
sufficiently loaded that it can be probed during transport. Due to the restricted access as
we move up higher than the MOT, the MOT was allowed to fall for 3 ms to allow for better
separation from the lattice. This image was created by capturing the fluorescence released
when a 780 nm beam was shined on the lattice and MOT.

before it enters back into the chamber; this frequency mismatch between the two beams

produces a moving lattice that transports the atoms. A frequency detuning of 10 MHz cor-

responds to an acceleration of 100g and a transport speed of 3.9 m/s. Figure 4.4b, obtained

through fluorescent imaging, shows atoms being transported out of the MOT towards the

cavity waist.

While the atoms are now in the cavity waist, the cloud’s length along the cavity axis

allows for multiple blockade volumes. As a result, stronger interactions (at the 100S Rydberg

level) can only be achieved by trimming down the longitudinal cloud size. This additional

confinement forces the atomic sample to exist within a single blockade volume, reducing
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interparticle distance and boosting the interaction strength. The slicing procedure is depicted

schematically in Figure 4.5. First, we shine a very large (500 µm waist) depump beam on

the cloud. This beam is meant to bring all the atoms down to the |F = 1⟩ ground state and

is resonant with the 2 → 2′ transition. The next step is to repump only a narrow slice of the

cloud. This is done by a repump beam along the vertical axis of the chamber (perpendicular

to the cavity axis). This beam is tuned to the 1 → 2′ transition and is on for 2 µs. To finalize

the slicing, a second depump beam with the spatial profile of a TEM10 mode is shined onto

the atoms; the node is located on the cavity waist and so atoms near the waist experience

no change in their state. After this final step, the atomic cloud has a thickness of 10 µm,

much thinner than the previously 35 µm thick unsliced cloud.

Figure 4.5: Cloud Slicing Sequence. (a) A large (500 µm waist) depump beam is shined
on the atoms and depumps them to the |F = 1⟩ ground state. This beam is on resonance
with the |F = 2⟩ → |F ′ = 2⟩ transition. (b) A long vertical repump beam is switched
on next, resonant with the |F = 1⟩ → |F ′ = 2⟩ transition. This beam is narrow in the
resonator axis to only repump atoms in the center of the cloud. (c) A TEM10 like slicing
beam is turned on, tuned to the |F = 2⟩ → |F ′ = 2⟩ transition. The node of the mode is
aligned with the center of the cloud and spatially coincides with the resonator waist. After
the slicing sequence, the cloud length is reduced to ∼ 10 µm. Gray atoms represent the
|F = 1⟩ groundstate and blue atoms represent the |F = 2⟩ groundstate.
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CHAPTER 5

CHARACTERIZATION OF CAVITY RYDBERG

POLARITONS

Rydberg polaritons have emerged as very interesting quasiparticles for nonlinear quantum

optics; they combine the tools available for cold atoms, such as lattice tuning [20] and

Feshbach resonances [21, 61] with the precise control we can exert over photons and their

Hamiltonians [11]. Such particles are a powerful tool for the study of quantum information

processing [80, 100] and synthetic materials [56, 101].

Until recently, the only experimental observation of Rydberg polaritons had been in free

space, where the polaritons have a longitudinal degree of of freedom [31, 75, 102]. Placing

Rydberg polaritons in a resonator allows for trapping [13], synthetic magnetic fields [11, 69]

and two-dimensional dynamics.

In this chapter I will go over our early experimental results that were obtained using our

first four-mirror resonator. This involves creating and observing cavity Rydberg polaritons,

exploring their dispersion and linewidth dependence on various experimental parameters.

Then we will see how electric fields broaden the polaritons and can limit how high of a

Rydberg state we can operate at, along with a brief discussion of how the situation can be

improved. Finally, a proof of concept for multi-mode EIT will be presented, which combined

with the right resonator geometry, can pave the way to manybody, multi-mode physics and

experiments.

I will redefine the dark-state rotation angle in this chapter, making it inconsistent with

the way it was defined in Section 3.3, but consistently so. While the polariton theory

community has traditionally used the definition employed before, for our experimental work

we have used
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tan θd =
G

Ω
. (5.0.1)

From now on, when I mention θd, it will always be calculated using the second definition.

5.1 Rydberg Polariton EIT

Dark polaritons have been formally defined in Section 3.3. Before we start digging into

the polariton behavior shown in the data, it might be instructive to look at what a cavity

transmission spectrum looks like in the simple case of single-mode cavity Rydberg polariton

EIT. This kind of spectrum is the backbone of our probing ability of the quasiparticles and

a lot of information is encoded in it.

Rydberg EIT is a three-level system and this remains the case in a resonator as well.

The three-level system produces three quasiparticles, the dark |d⟩ and two bright |b±⟩ po-

laritons. Similarly, when we probe the cavity to look at its transmission spectrum, we expect

to see three transmission peaks, corresponding to the three-level system and the three po-

laritons. Indeed, as is shown in Figure 5.1a, that is exactly the case. Three peaks, each

one corresponding to a quasiparticle, are visible and separated in frequency space. In the

case of no detunings, the dark polariton resonance is located at zero frequency, while the

bright polaritons are evenly spaced around the central peak, separated by the vacuum Rabi

splitting
√
G2 + Ω2. As explained previously, the dark polariton, being made up by the

ground state/resonator photon and Rydberg state, is significantly narrower than the bright

polaritons by an amount determined by the dark-state rotation angle (shown schematically

in Figure 5.1b), which contain a large amount of the spectrally broad P-state.
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(a) (b)

Figure 5.1: Cavity transmission spectrum and dark-state rotation angle. (a) The
cavity transmission spectrum as a function of probe detuning is shown as a fraction of the bare
cavity transmission. The three peaks are the dark |D⟩ and bright polaritons |B±. The dark
polariton, containing no lossy P-state, is much narrower spectrally than the bright polaritons.
Both bright polaritons are well separated from the central EIT peak by the vacuum Rabi
splitting

√
G2+Ω2

2 . (b) The dark-state rotation angle θd is set by the light couplings G and
Ω and can be used to describe the fraction of photonic and Rydberg components of the
polaritons.

5.2 Polariton Dispersion

As mentioned above, cavity transmission spectrum were the most important data sets the

first generation resonator produced. All of the polariton information is encoded in such

spectra: Rydberg and cavity linewidths, experimental beam Rabi frequencies, dependence

of polariton behavior on detunings. Furthermore, the main utility of polaritons depends

on their lifetime: single-photon nonlinearities require interactions larger than the inverse

lifetime [69] and many-body physics require long-lived polaritons for good resolution [103].

In this section, the slowing of polariton dynamics compared to bare cavity photons will be

explored and the linewidth dependence on experimental parameters will be expanded.

To observe the dispersion relation of the polaritons, we probe the system while varying

both probe detuning and cavity frequency. This is essentially a 2D version of Figure 5.1a
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and allows us to see how the behavior of the polaritons’ changes as their constituents change.

More specifically, Figure 5.2 shows the dispersion relation as a function of probe and cavity

detuning for three different dark-state rotation angles. As the polariton becomes more and

more Rydberg-like, it follows the cavity frequency less and becomes flatter, as is expected

from the first-order expression for the dark polariton energy [104]:

δd = δc cos
2 θd + δr sin

2 θd. (5.2.1)

At the same time, the cavity photon energy linearly follows the cavity frequency.

The dependence of the particles’ lifetime can also be extracted by fitting the transmission

spectra at each cavity detuning. To first order, the dark polariton linewidth is:

γd = κ cos2 θd + γr sin
2 θd. (5.2.2)

The physical origin of this expression is again the character of the polariton: it decoheres

partially as cavity photons leaking out of the resonator or Rydberg atoms decaying back down

to the P-state. Both the energy and the linewidth of the polariton as a function of dark-state

rotation angle are shown in Figure 5.3a. The data points are in excellent agreement with the

theoretical expressions above and the definiton of dark polaritons in Section 3.3, proving that

the first order approximations are valid for single-mode, non-interacting polariton physics.

Introducing interactions or multiple resonator modes allowing for transverse dynamics

can lead to a detuning away from EIT resonance; this is a decoherence channel that has not

been previously experimentally explored. In Figure 5.3b, the polariton linewidth is plotted

as a function of detuning from EIT resonance for the three dark-state rotation angles used

in Figure 5.2. The results agree very well with the theoretical prediction of the extended
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polariton decoherence [104]:

γd = κ cos2 θd + γr sin
2 θd + a (δc − δr)

2 , (5.2.3)

where a ≡ 4 Ω2G2

(G2+Ω2)3
γe is the strength of the quadratic term. From this expression, we can

calculate the amount of detuning ∆ needed to double γd:

∆ =
1

2

Ω2

γe

√
κγe
G2

1

cos2 θd
=

1

2

Ω2

γe

1√
OD

1

cos2 θd
, (5.2.4)

where OD = G2

κγe
is the resonator enhanced optical depth.

Figure 5.2: Cavity Rydberg polariton dispersion. Transmission spectra of the resonator
are taken at different cavity detunings for various control laser powers. From left to right,
Ω = 13.1(1),6.9(1),4.9(1) MHz and G = 12.3(2), 13.0(1), 14,7(1) MHz; this is equivalent to
θd(deg)=43,62,72. The insets depict the spectra along the vertical black lines. We can see
that from left to right. the dark polariton gets flatter and follows the cavity energy less and
less. This is a direct result of its increasingly more Rydberg-like character.
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(a) (b)

Figure 5.3: Dark polariton energy and linewidth. (a) Energy and linewidth of the dark
polariton vs dark-state rotation angle θ. The red circles, corresponding to the left axis, are
the dark polariton slope dδD

dδc
and the blue squares, corresponding to the right axis are the

dark polariton linewidth γD. The solid lines are theoretical predictions that use Ω from the
control laser calibration and G from fitting the EIT transmission spectra. (b) Dark polariton
linewidth dependence on the cavity detuning from EIT resonance. The colors correspond to
the dark state rotation angles from Figure 5.2: red, green and blue correspond to left, middle
and right respectively. The solid lines are the second-order prediction for the linewidth, with
values for G and γr obtaining from fitting the transmission spectrum at zero detuning.

5.3 Electric Field Decoherence

As mentioned in Section 2.4, Rydberg atoms are very sensitive to electric fields compared to

ground state atoms. Their large polarizability α is a direct result of their outermost electrons

orbiting the core at a very large radius and so it scales rapidly with the principal quantum

number, α ∝ n7. Inhomogeneous electric fields are particularly notorious for inducing large

polariton decoherence unless actively controlled; they are especially bad near surfaces due

to patch potentials and surface charges [105].

In the case of individual atoms, even a massive inhomogeneous field would not matter

much. At most, it would shift the Rydberg state by ∼ αE2, where E is the electric field at

the atom’s location, something easily compensated for by adjusting the laser detunings. In

the case of a collective excitation though, such as a cavity Rydberg polariton, each Rydberg
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atom comprising the polariton would see a different field and get Stark shifted by a different

amount. The end result is additional polariton broadening of the functional form

γb ∼ αEδE, where δE is the electric field gradient across the atomic cloud.

The first iteration of our resonator greatly suffered from this: not only did we not think

it important to passively or actively control electric fields near the atoms, the cloud was also

located very close (less than 1 mm) to a metal surface surrounding it. Consequently, we

very soon ran into really broad EIT peaks as the principal quantum increased, limiting how

high of a state we could go to and precluding us from observing any interactions between

the quasiparticles. Figure 5.4b shows the Rydberg linewidth vs polarizability, obtained by

fitting the EIT spectra, indicating a very rapid increase in the width of the dark polariton.

States with higher principle quantum numbers than the ones shown in the plot were so badly

broadened that we could not even probe them through EIT.

(a) (b)

Figure 5.4: Control field suppression of electric field decoherence. (a) Inhomoge-
neous broadening from background electric fields couples the dark polariton to a manifold
of states that do live in the resonator. As such, these states are bright polaritons and share
the fast decay of the P-state. The bright polariton manifold is detuned by Ω

2 from the dark
polariton and so this coupling is quadratically suppressed by the control field. (b) Decay
rate of the Rydberg atoms vs polarizability (equivalent to principal quantum number). The
quadratic suppression of the inhomogeneous electric field broadening is evident. The states
used are n = 40,48,52,56,58,60,62. Ω =7.8(5) MHz, G=12(2) MHz. The solid represents a
quadratic fit to the data.

There is one silver lining in this situation and that is how fast the decoherence scales with
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polarizability (which can be easily mapped to principal quantum number). From the earlier

expression for γb, one might expect a linear scaling of the polariton broadening with polar-

izability. As we can see in the data, the actual scaling during the experiment is quadratic.

To understand the source of this suppression, we can look at what happens physically when

the polaritons experience an inhomogeneous electric field. As the polaritons dephase, they

off-resonantly couple to a continuum of bright polariton states. These polaritons are not the

familiar bright polaritons (Equation 3.3.1) typically accompanying the dark polariton; they

are instead the type of bright polaritons defined near the end of Section 3.3. This manifold

of bright polaritons is a superposition of |e⟩ and |r⟩ states, has no coupling to the ground

state/resonator and is detuned by ±Ω
2 from the dark polariton in the rotating frame. This

effect is shown schematically in Figure 5.4a. For γb < γe,Ω, the control field quadratically

suppresses the polariton dephasing, that has the form A
γ2b
Ω2γe; numerical simulations and

data fitting show that A is of order unity. This is consistent with the theoretical prediction

of Equation 3.3.3, where the extra factor of sin2 θd signifies that the broadening refers to the

polaritons.

5.4 Multi-mode EIT

Strong interactions can fully blockade the waist of a single mode resonator, allowing the cre-

ation of only a single polariton; this is explored in Chapter 6. Exciting physical phenomena,

such as quantum crystals [69, 106–109] and fractional quantum Hall states [15, 89] are highly

correlated state systems; they require multiple interacting quasiparticles. As such, multiple

resonator modes are required to accommodate multiple strongly-interacting particles.

This version of the experimental cavity was designed with the TEM02 and TEM10 modes

nearly degenerate [110]. having a separation δc = 20 MHz. Tuning the resonator length al-

lows for easy switching between single-mode physics in the TEM00 mode and multi-mode

physics in the two-mode degenerate manifold, which is well separated from TEM00 in fre-
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quency. The Floquet formalism [11] we have developed is particularly useful here for mod-

eling and quantifying the behavior of massive photons in this degenerate resonator.

To show that we can have polariton EIT in both modes at the same time, we tune the

nearly degenerate manifold to have its modes evenly spaced around the atomic resonance.

We then inject light into both modes and collect the cavity output in a multi-mode fiber.

The experimental results are shown in Figure 5.5a. A cavity transmission spectrum has

been plotted for the two-mode cavity polariton EIT; at first glance we can see that the dark

polariton peaks are separated by much less than 20 MHz, an effect of the strong matter-light

coupling. To understand how large the polariton splitting should be, we can consider each

cavity mode separately; this is allowed because the atomic density is uniform across the

cavity waist for both modes and therefore the modes do not mix and produce transmission

spectra independently of each other. The splitting then will be suppressed by the dark state

rotation angle:

δd = δc cos
2 θd, (5.4.1)

plus higher order corrections in δC , as shown in Figure 5.5b.

5.5 Summary

In this chapter I have presented our early experimental results, which led to a great under-

standing of cavity Rydberg polaritons. The transmission spectrum of the cavity displays the

three peaks expected from the three-level system that comprises the polaritons and the peak

of interest, the dark polariton, is significantly narrower than the cavity linewidth, consistent

with only a fraction of the polariton being photonic. Furthermore, the energy and decoher-

ence of the polaritons shows the expected behavior with cavity and probe detunings and can
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(a) (b)

Figure 5.5: Multi-mode EIT. (a) Two-mode EIT cavity transmission spectrum. The
TEM02 and TEM10 modes are tuned to 10 MHz on either side of the EIT resonance. The two
dark polariton resonances (dashed lines) are separated δd = 2.3 MHz, a significantly smaller
separation than the bare modes themselves. This frequency pulling is due to the composite
character of the polariton, part photon and part Rydberg atom. The curve is a theoretical
fit to a model with two orthogonal collective states. Here we used Ω

G = tan θd = 0.39. (b).
Two-mode EIT dark polariton peak spacing as a function of Ω

G . Changing the control laser
power tunes the photonic component of the polaritons, affecting δd. The dashed line is a
theoretical first-order prediction, while the sold line is the fit to the data points.

be tuned through the dark state rotation angle.

The stray electric fields present in the cavity proved to be detrimental by severely limiting

the highest Rydberg state we could excite to and decohering any polaritons before they could

interact. At the same time, that allowed us to gain a much better understanding of how

the fields broaden the Rydberg atom and we developed a theoretical understanding of the

observed quadratic electric field broadening suppression that agrees with the theory presented

in Chapter 3.

Finally, a proof-of-concept multi-mode EIT spectrum was shown, which displayed fre-

quency pulling of the polariton resonances. This is again consistent with the polaritons being
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partially insensitive to resonator parameters due to their Rydberg constituents.

Combining the results of this chapter with interactions, which can be achieved by im-

proving on the electric field background and going to higher Rydberg levels, and multiple

degenerate resonator modes can allow for exotic phases of matter, such as Landau levels,

quantum fluids and crystallization.

77



CHAPTER 6

STRONG POLARITON INTERACTIONS INSIDE A

QUANTUM DOT

Recent efforts to overcome the technical challenges associated with producing strong photonic

interactions using atoms have branched into two directions. The first involves using free-

space Rydberg EIT [29, 111] to bypass the difficulties involved in manipulating atoms inside

optical cavities. The second focuses on coupling atoms to the near field of photonic crystal

cavities and waveguides [112–114]. The Rydberg EIT approach is particularly promising,

as the atomic ensemble can act as a super-atom; it possesses the nonlinear properties of

a single atom and the cross-section of the whole cloud. At the same time, such free-space

polaritons [19, 28, 33] are limited by their longitudinal degree of freedom.

In this chapter I will describe the creation of a 0D quantum dot (the polaritons are both

longitudinally and transversely confined) and the resulting strong polariton intereactions;

this is an approach that combines both resonators and Rydberg EIT, using the strengths

of each individual approach. The resonator enhances the light-matter coupling, allowing

for large optical depths per blockade volume (ODb) while relaxing the requirement of high

atomic densities. This is a very large advantage over other systems, since the optical depth

determines the number of scattering events during the polariton’s lifetime. At the same

time, Rydberg EIT provides very large, and well controlled, single atom nonlinearities.

The rest of the chapter is broken up into five sections: the preparation of the quantum

dot and creation of dark and bright polaritons, nonlinear spectrosctopy of the dot, strong

interactions between the polaritons, Rabi oscillations indicating that the quantum dot is

indeed zero-dimensional and finally an outlook discussing applications and further directions

for research.
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6.1 Creation of the Quantum Dot

An ensemble of ∼ 2500 atoms is loaded into the waist of single-mode optical resonator. The

cloud size is 35×41×35 µm3, the resonator waist is 12.6 µm × 14.1 µm and the peak atomic

density inside the resonator is 1011 cm−3. While the cloud remains unsliced longitudinally for

the spectroscopy measurements, it is reduced to a thickness of 10 µm along the cavity axis, as

described in Section 4.4, to allow for strong interactions to manifest. The strong light-matter

coupling now allows for the atoms and photons to hybridize, creating both dark and bright

polaritons; for our typical experimental parameters tan θd = 2.9. Rydberg interactions scale

very rapidly with principal quantum number (Section 2.5.1) and it is convenient for us to

work with the 100S state since the resonator has been designed so that interactions at the

Rydberg level make the blockade volume approximately the same size as the TEM00 mode

waist. Further confining the atoms to a region smaller than the blockade volume inside the

mode waist and the presence of only a single mode, which does not allow for transverse

degrees of freedom, ensures that the quantum dot is zero-dimensional and will exhibit strong

tunneling blockade (Figure 6.1a).

Spectroscopy, ring down and photon arrival times measurements for the autocorrela-

tion function are all performed using a eight channel photon time-tagger, with a very high

temporal resolution of 8ns on each channel (Figure 6.1b).

6.2 Spectroscopy of a polaritonic quantum dot

Once the atoms are prepared and loaded into the resonator, we probe the cavity and observe

its transmission spectrum. The familiar three-peak is present: a central narrow peak, which

corresponds to the dark polariton, and two wider peaks that are offset from zero frequency,

the bright polaritons. The separation of the bright polaritons from the central peak indicates

that we have indeed strong light-matter coupling, just like in Section 5.1.

79



|0

|2

|1

Г2 γD»
2

=       +α       +  α |ψ |0 |1 |22
2
1 0

γD

γD

γD

(a)

BS D1

D2

780 nm
“Probe”

480 nm
“Control”

(b)

Figure 6.1: Strong interactions in a 0D quantum dot. (a) The system exhibits the
properties of a 0D quantum dot, due to longitudinal cloud slicing and transverse confinement
through the resonator. The probe light is injected into the dot in the state |ψ⟩; it primarily
consists of zero photons, sometimes one and very rarely two. Each photon creates a dark
polariton when it enters the cavity and its strong interactions shift the resonance frequency
enough so that a second photon cannot enter. As a result, only single photons can leak out
of the resonator. (b) The atomic cloud is transported into the smaller, lower waist of the
resonator, where slicing occurs so that all atoms are within a single blockade volume. As 780
nm photons decay and leak out of the cavity, they are collected on single photon detectors
D1 and D2, after passing through a 50:50 beamsplitter cube. The detected photons allow us
to observer the strong repulsive interactions of the polaritons inside the resonator.

Even though the cloud is not sliced, the reduction in the electric field background and

the high Rydberg state are sufficient to see some interactions. We qualitatively expect

that injecting more photons into the resonator will result in more polaritons; even weak

interactions can result in broadening and dephasing of the Rydberg polaritons. Indeed that

is the case in Figure 6.2: as the probe power is increased, the EIT peak gets wider and

shorter. This is a clear signature that the repulsive interactions of the 100S polaritons are

not allowing additional photons to enter the quantum dot.

6.2.1 Electric fields in the quantum dot

As stated in Section 5.3, the uncontrolled electric fields dominated the Rydberg linewidth

and were enough to dephase the polaritons before any interactions could take place. Our

new resonator was designed with electric field considerations in mind: the atoms are located

almost a factor of ten farther away from any surface (12 mm vs 1.5 mm for the old design),

all dielectric surfaces are covered up as much as possible to reduce line of sight to the atoms
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Figure 6.2: Nonlinear spectroscopy of the quantum dot. The transmission of the
quantum dot is plotted relative to the bare cavity transmission as function of probe detuning
for increasing probe power. Since the atomic cloud is still unsliced, it is not fully blockaded
transversely or longitudinally; any interactions in the sample are weak. As a result, there’s a
smooth transition as the probe power increases and we can see the gradual broadening and
suppression of the EIT peak. On the other hand, the bright polaritons peak heights and
widths stay constant as a function of probe power. This is expected because their Rydberg
fraction is extremely small and so they are insensitive to dipole-dipole interactions.
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and protect them from trapped charges and a ten-electrode configuration (including the two

parts that make up the resonator itself) can very precisely control the electric fields and

gradients of the atoms. The DC electric field broadening of the Rydberg atoms is extracted

from the quantum dot’s transmission spectrum and compared to the broadening measured

in the previous iteration of the optical resonator. The improvement is clear: even the lowest

probed states in the original setup are as broad as the broadest Rydberg states in the new

setup. This new precise electric field background control is an essential ingredient for the

observed interactions explored in this chapter.

6.3 Observation of Polariton Interactions

Strong interactions inside the quantum dot can be probed through transport dynamics. In-

jecting a photon resonant with the dark polariton into the resonator creates a dark polariton.

The strong, long-range interactions of this first polariton now shift the resonant frequency

of the EIT transition and do not allow additional photons to enter since there is now a

frequency mismatch. The figure of merit, or even the smoking gun, for strong interactions

is the temporal intensity auto-correlation function g2(τ) (Section 3.6), where τ is the delay

time. A reduction near τ = 0 indicates that double occupancy of the quantum dot is being

prohibited due to interaction-driven loss.

To achieve such interactions, the cloud is sliced so that it is enclosed within a single

blockade volume; this ensures that at most one polariton can live in the quantum dot. This

leads to a very large suppression (g2(0) = 0.27, shown in Figure 6.4a) of tunneling through

the quantum dot for more than one quasiparticle; as long as one polariton is already inside

the resonator, it will shift the resonant energy by more its linewidth, precluding additional

photons from being injected while the first one still lives in the cavity. The experimental

data agrees very well with a master equation theory fit [34].
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Figure 6.3: Electric field broadening of the old and new cavities. The transmission
spectra of the resonator EIT allow us to extract the Rydberg linewidth resulting from electric
fields. The blue points correspond to the first generation cavity used for our experiments
and are identical to the data presented in Figure 5.4b. The red points represent the cavity
strcuture. As we can see, compared to the old cavity, the linewidth of the Rydberg atoms
not only does not increase with principal quantum number but actually decreases a little.
This is great evidence pointing that the new electrode setup and passive field control are
working and have been optimized correctly.
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Figure 6.4: Polariton blockade in a quantum dot. (a) Strong interactions between
polaritons are most clearly indicated by the presence of blockade, suppressing the transport
of particles at short timescales. When the cloud is sliced, we observe g2(0) = 0.27 (blue
curve), a suppression of five times compared to the long time scale behavior of the autocor-
relation function shown in the inset. The green band and green line are a master equation
fit [34] and minimum theoretical predicted value (Section 3.6) respectively. The unsliced
cloud can support multiple blockade volumes and so its g2 suppression (grey curve) at zero
time is much smaller. (b) Probing the two-polariton resonance results in photon bunching.
Experimentally, this is done by shifting the resonator resonance by -5 MHz, increasing the
control laser frequency by 5 MHz and probing 1 MHz red detuned from the single polari-
ton resonance. g2(0) is now much greater than 1, indicating that photon pairs now tunnel
through the quantum dot.

6.3.1 Weaker Interactions and Photon Bunching

To verify that the observed interactions really come from intracavity polariton interactions

and not some other effect we are not accounting for, a few sanity checks are performed. The

first is not slicing the cloud before looking at the g2 function. Since now the cloud can hold

approximately three blockade volumes longitudinally, we observe very weak suppression of

simultaneous photon tunneling through the quantum dot (shown in Figure 6.4a). Similarly,

for the 85S Rydberg state, which has a significantly smaller C6 than the 100S state, even a

properly sliced cloud only shows a nominal transport suppression; multiple blockade volumes

can be supported transversely in this case. Finally, we perform the opposite experiment of
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the one that produced blockade: we inject photons with a detuning that accounts for the

interaction-driven change in frequency. This results in preferential bunching of photons,

since they now prefer to tunnel in pairs (Figure 6.4b).

6.4 Rabi Oscillations and Dark Polariton Saturation

Having only a single resonator modes prevents the photons, and therefore the polaritons, from

having transverse dynamics and confines them to at most one dimension. The slicing by itself

though is not a guarantee that the polaritons are also longitudinally confined. To explore the

dimensionality of the quantum dot, it is probed by short pulses of higher intensity light than

the one used for the g2 measurements. We then observed the ring-up and subsequent ring-

down of the cavity. A one-dimensional system that allows for longituninal motion would not

be able to contain the excitation as it would travel away before it can removed. On the other

hand, in zero dimensions, the drive field would excite and then de-excite the system, since the

excitation is trapped and cannot just escape by moving away. Figure 6.5a shows the ring-up

and ring-down dynamics of the dark polaritons, exhibiting oscillations between zero and one

polaritons at the higher intensities. This is a very strong indication that the quantum dot

is supporting zero-dimensional strong interactions within the lifetime of a polariton.

Furthermore, we expect that at high probe intensities, the intracavity dark polariton

number should saturate due to interactions. At the same time, any bright polaritons that

are off-resonantly excited are linear in probe power, since they are non-interacting particles,

and can swamp the signal background. Luckily, they also decay fairly quickly, resulting in

a sharp dropoff in the signal of Figure 6.5a, followed by a slower exponential decay due to

the remaining dark polaritons. The steady-state dark polariton number can be extrapolated

from this slow decay to zero time. The measured saturation value of nd = .47, shown in

Figure 6.5b, is indicative of a damped 0D two-level system, while the strong saturation with

higher probe powers comes from the strong interactions in the system.
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Figure 6.5: Ring-up and ring-down dynamics of a quantum dot. (a) When the
quantum dot is probed with multiple photons, tunnelling of a single polariton in and out of
the dot is coherently stimulated until the dot reaches equilibrium. As the probe power is
increased, both the frequency of these oscillations and the transmitted power through the
dot increase. Bright polaritons are mostly responsible for this increase in transmission since
they do not feel the polaritonic interactions and therefore do no saturate at higher probe
strengths. The very fast ring-up (100 ns timescale) indicate off-resonant bright polariton
excitation dynamics, while the slow timescale (µs timescale) are a result of the tunnelling
between zero and one polaritons inside the dot. The sharp dropoff is due to the fast P-state
decay of the bright polaritons, leaving behind the much longer-lived dark polaritons. (b)
Using the slow exponential decay of the ring-down measurements, we can extrapolate the
zero-time number of dark polaritons inside the quantum dot for various probe powers. The
dark polariton number saturates to nd = 0.47(3) at the highest power, consistent with a
lossy zero-dimensionaly two-level emitter.

6.5 Summary

Throughout this chapter, I desscribed our efforts to make strongly-interacting cavity Ryd-

berg polaritons and presented evidence of such interactions. By creating a zero-dimensional

quantum dot, the particles were confined enough to be within a single blockade volume and

preclude more than a single polariton from tunnelling through the dot. The dimensionality

of the dot was also shown to produce the correct behavior when multiple photons were in-

jected into the resonator, resulting in damped oscillations and a saturating number of the

dark polaritons at higher probe powers.

Combining this system with higher atomic densities and resonator finesse can boost the
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ODB dramatically, paving the way for few-particle synthetic materials and other many-body

states [115–117], such as Laughlin puddles and multiple degenerate mode Landau levels. At

the same time, strong interactions indicate multiple collision events during the polaritons’

lifetime; this is a fundamental requirement for quantum gates [80, 118], making long-lived

cavity Rydberg polaritons a promising platform for photonic QIP [119, 120].
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CHAPTER 7

CONCLUSION AND OUTLOOK

In this thesis, Rydberg EIT has been employed inside an optical resonator to combine the

strong dipole-dipole interactions of Rydberg atoms with the rich dynamics of resonator

photons. The properties and interactions of Rydberg atoms were numerically modeled,

allowing for easy planning of experimental parameters. At the same time, a formal theory of

cavity Rydberg polaritons was developed, along with a numerical renormalized effective field

theory for strongly interacting polaritons. This theory agrees very well with full numerics and

is extremely timely and important; while it only describes strong interactions in the single-

mode regime, it can straightforwardly be extended to many particles and many resonator

modes, allowing for true manybody physics modeling.

Experiments were performed on a cold atomic ensemble in the waist of a running-wave

four-mirror resonator. The resulting polaritons behaved according to theory, showing prop-

erties of both their atomic and photonic constituents. In particular, their frequency follows

the cavity detuning but slowed down by a factor of cos2 θd, the photonic part of the polariton.

At the same time, both the energy and linewidth of the polariton can be controlled through

laser and cavity detunings. Multi-mode EIT was also demonstrated; a resonator designed

to have two modes nearly degenerate was used and frequency pulling of the dark polariton

resonances was evident in the data. At the same time, no interactions could happen due to

the high electric field background causing rapid polariton dephasing.

Once the electric field inside the resonator was controlled, through both passive and

active means, and slicing of the atomic cloud, to achieve smaller cloud sizes comparable to

the blockade radius of the sample, we managed to observe interactions. This was done by

carefully engineering a zero-dimensional quantum dot and recording photons leaking out of

the resonator and plotting their temporal correlation. Minimum values of the autocorrelation

function g2 = 0.27 were observed, indicating strong suppression of a second simultaneous
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excitation inside the resonator. At the same time, we explored Rabi oscillations and a

saturation of the dark poalriton number inside the dot, verifying that it is indeed of zero

dimensionality.

Combining our strong photonic interactions with more exotic cavities of multiple de-

generate modes and non-planar geometries will create the perfect platform to study frac-

tional quantum Hall systems, quantum fluids and emergent crystallization [69, 89, 103, 121,

122]. Cavity Rydberg polaritons are also ripe for applications in quantum information pro-

cessing [118–120] and quantum repeater protocols [92]. Finally, using strongly-interacting

polaritons allows for the exploration of dissipative manybody states [115] and their phase

diagrams [89]. At the same time, the fully renormalized effective field theory can be ex-

tended to multiple resonator modes and photons to allow for fast, numerical modeling of

strongly-correlated quantum states [12, 121], providing the theoretical background for all the

experimental realizations that we have unlocked access to through the strongly-interacting

cavity Rydberg polaritons.
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