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Abstract
Collective action and group formation are fundamental behaviors among both organisms cooperating to maximize their fitness and 
people forming socioeconomic organizations. Researchers have extensively explored social interaction structures via game theory and 
homophilic linkages, such as kin selection and scalar stress, to understand emergent cooperation in complex systems. However, we 
still lack a general theory capable of predicting how agents benefit from heterogeneous preferences, joint information, or skill 
complementarities in statistical environments. Here, we derive general statistical dynamics for the origin of cooperation based on the 
management of resources and pooled information. Specifically, we show how groups that optimally combine complementary agent 
knowledge about resources in statistical environments maximize their growth rate. We show that these advantages are quantified by 
the information synergy embedded in the conditional probability of environmental states given agents’ signals, such that groups with 
a greater diversity of signals maximize their collective information. It follows that, when constraints are placed on group formation, 
agents must intelligently select with whom they cooperate to maximize the synergy available to their own signal. Our results show 
how the general properties of information underlie the optimal collective formation and dynamics of groups of heterogeneous agents 
across social and biological phenomena.
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that more synergy, defined as information complementarity vs. a goal, results in the faster average growth of group resources. 
This introduces a principle of maximum synergy, which we show can be attained by learning over time and drives selective group 
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time in response to dynamical environments.
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Introduction
Collective behavior is a general feature of biological and social sys-
tems. It mediates the survival and evolution of populations under 
resource constraints, competition, or predation in natural sys-
tems (1) and the formation and persistence of social organizations 
in human societies (2). Much past work has modeled collective dy-
namics using homogeneous interaction rules, common to all 
agents, which are often phenomenological. While these models 
have produced diverse insights, they typically lack a theoretical 
foundation to explain how specific social behavior emerges 
among individual agents with heterogeneous information and be-
havior. Thus, significant knowledge gaps remain in most realistic 
situations, where agents with distinct but potentially complemen-
tary traits act collectively to maximize their joint growth (fitness, 
wealth) in knowable but stochastic environments.

Some examples help to illustrate the present situation. Game 
theorists and ecologists have considered many different coopera-
tive interaction schemes (3) and explored evolutionary stable be-

havior (4), particularly on networks (5–7), where optimal behavior 

is identifiable under given interaction rules. Elaborating these 
schemes by introducing higher order interactions has broadened 

our understanding of more complex social networks (8–11), and 
their dynamical phase stability under varying interaction strengths 

(12). Researchers have also studied, both theoretically and in the la-

boratory, how memory of previous interactions influences agents’ 
preferences for future encounters (13–16), the spread of social crises 

across distance (17), and the formation and scaling properties of so-
cial collectives (18, 19), such as cities (20, 21).

In addition to interaction rules and associated payoffs, collect-
ive dynamics is predicated on maximum principles, which specify 
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agents’ preferences in view of a goal and thus render their behav-
ior intelligent (optimal). For example, inclusive fitness theory, 
which assumes a reproductive benefit to cooperation because of 
shared genes (22, 23) has been studied in mixing populations 
and over networks (24) where it predicts population benefits to co-
operation through several forms of reciprocity (25). More recently, 
researchers have studied resource pooling in models of growth as 
a means to minimize environmental uncertainty and associated 
loss of fitness among agents experiencing independent fluctua-
tions with shared statistics (26, 27). Such approaches remain lim-
ited by the association between collective behavior and (genetic) 
homophily. Still, they can help to explain the existence of phase 
transitions in cooperation networks (12, 19), and specify agents’ 
plausible behavioral patterns (15), even if doubts remain about in-
clusive fitness’s predictive power (28).

Generally, however, most current quantitative frameworks fail 
to address collective dynamics when agents remain heteroge-
neous across skills, knowledge, and behavior (29–31). Developing 
more general approaches to collective behavior that include adap-
tation along with heterogeneity is a crucial step toward under-
standing how agents self-organize in more complex and 
dynamical environments, where specialization and the division 
of labor and knowledge become key.

Adaptive behavior requires agents to acquire and process infor-
mation over time (32, 33) in response to their environments and 
each other. In realistic situations, limited experience, specializa-
tion costs, and physical limitations of effort, energy, and time, 
all prevent agents from perfecting their knowledge of complex en-
vironments (34, 35). A natural way to mitigate these individual 
limitations is to pool knowledge across agents leading to the for-
mation of social organizations (36), and the division and coordin-
ation of labor in terms of their behavior (37). This is widely 
observed in human organizations and animal social behavior 
starting with the division of labor by age and sex.

By working jointly to predict characteristics of their environ-
ment (31) and gather resources, groups of agents can maximize 
their collective fitness even when each individual has very limited 
knowledge. In a setting where there are resource returns to suc-
cessful prediction and behavior, information of the state of a stat-
istical environment determines the fitness of the population (38, 
39), though there are questions about how such benefits emerge 
quantitatively (40). Here, we formalize the calculation of these so-
cial benefits in terms of the properties of information and show 
how maximizing knowledge complementarities (synergy) maxi-
mizes the long-term growth rate of collectives. Specifically, we de-
rive an expression for the additional payoff to cooperative 
behavior in terms of the joint information synergy about the 
agents’ dynamical environment.

The aggregation of dispersed, tacit information among a group 
of agents has long been proposed as the principal role of economic 
markets (41), operating through the price mechanism. In such set-
tings, a public price forms as the result of the allocations of traders 
with diverse knowledge, buying and selling an asset according to 
their beliefs (estimates) of its value. Several types of markets, 
both centralized (42–44) and decentralized (45–47), have been dis-
cussed as efficient aggregators of information in this sense, but 
fundamental objections have also been raised (48). Information, 
in the sense of this efficient markets hypothesis, usually reflects 
only average beliefs among traders (49). In contrast, our approach 
shows how dispersed knowledge can be combined in optimally 
predictive ways.

These results lead us to introduce the principle of maximum 
synergy, which maps the maximization of pooled resource growth 

rates into optimal social interaction structures. This work adds 
new dimensions to the study of collective dynamics by connecting 
the structure of groups to that of information in complex environ-
ments mediated by agents’ diverse subjective characteristics, 
such as their present knowledge and information acquired as 
the result of diverse experiences throughout their life course.

Theory of collective growth
We start by demonstrating how the benefits of collective action 
emerge from pooling information in synergistic situations. 
Synergy means the combination of behavior, knowledge, and 
skills that complement each other toward a goal. This concept is 
necessary for creating effective organizations that embody com-
plex information (31), but it is often not sufficiently formalized 
in common language, such as in discussions of innovation (50) 
or firm structure.

Here, we will refer to synergy as an explicit information- 
theoretic quantity that measures the additional predictive power 
that a group acquires upon pooling its agents’ information, rela-
tive to the knowledge of each individual separately. This quantity 
has been introduced some time ago in the context of studying cir-
cuits in information processing systems (51, 52), and has provided 
a framework for studying higher order neuron interactions in the 
brain (53), and causality and information in complex systems (54, 
55). As we will show, synergy results formally from the conditional 
dependence between the probability of predictive signals distrib-
uted in a population and events in a shared environment. The 
gain in predictive power from agents pooling information as col-
lectives allows them to obtain additional resources from a know-
able environment beyond what agents alone can do, thus boosting 
their fitness or productivity.

It follows that collectives that seek to maximize their resources 
over long times must combine the information from their agents’ 
individual models of the world in a way that accesses the most 
synergy. Groups that do not know a priori how to realize their syn-
ergies must discover how to do so, by adjusting their collective 
knowledge and interaction structure while observing outcomes 
of their environment in an iterative learning process. After devel-
oping the general framework for group formation and collective 
growth across group sizes, we demonstrate a model environment 
that exhibits synergy using logic gates. We will also demonstrate 
how synergy scales with the number of unique signals in a collect-
ive, and how specific combinations of signals affect the average 
growth of resources for the group.

Collective growth in synergistic environments
We consider a population of N agents, each with initial resources 
ri, i = 1, . . . , N that can be (re)invested into the set of outcomes of 
their environment to generate returns. Each agent has access to a 
private signal (their knowledge), s ∈ S, which is used to predict the 
state of the environment and make resource allocations to pos-
sible outcomes e ∈ E. This signal may represent several different 
processes such as sensory input or a lead retrieved from memory. 
With optimal parameterization of a model of the environment, 
P(E ∣ S), an agent’s optimal investment strategy leads to an average 
resource growth rate (over time) γ = I(E; S) (38), where I(E; S) is the 
mutual information between environmental states E and the 
agent’s signals S. (We are working in units of units time t = 1, for 
simplicity.) Agents with better models (and better statistical esti-
mations of P(E ∣ S)) thus experience higher average growth rates.

We now define the agent’s environment more explicitly, by a 
set of l distinct signals with unique statistics, S ≡ {S1, . . . , Sl} as 
P(E ∣ S), with marginals of events P(E) and signals P(S). The joint 
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information that the universe of signal, S, has on E is at least equal 
to each of the signals Sj, that is I(S; E) ≥ I(Sj; E), for all j. Generally, 
this inequality is strict if the conditional information I(S ∣ E) > I(S) 
(51, 52). We compute the total information by summing over the 
mutual information between each of the signals independently, 
subtracted by an interaction term across them,

I(E; S) =


j

I(E; Sj) − RP. (1) 

The coefficient of redundancy, RP, measures the strength of this 
conditional dependence across larger sets of signals (two, three, 
etc). It is defined in SI Appendix A

RP =
l

j>k=1

R(E; Sj; Sk) +
l

j>k>m=1

R(E; Sj; Sk; Sm)

+ · · · + R(E; S1; . . . ; Sl).

(2) 

The coefficient of redundancy can have a positive or negative val-
ue, indicating different conditional relationships between the sig-
nals and environmental states. When RP > 0, there is information 
between signals irrespective of environmental events. This means 
that signals are partially redundant, and consequently, there are 
diminished returns to pooling information as I(E; S) <


j I(E; Sj). 

Conversely, when R(E; S) = 0, the signals are statistically inde-
pendent, and the benefits of pooling information increase linearly 
with the information of each signal on the environment but there 
is no synergy. Finally, when R(E; S) < 0, there is conditional de-
pendence of the signals on the environment. This is called synergy 
and yields a superlinear benefit to pooling information in the 
number of agents, above and beyond the information contributed 
from each signal individually.

Group formation and collective decision-making
We have now defined individual resource growth rates as a quan-
tity of information and discussed how information can be aggre-
gated across different signals to express their synergy relative to 
states of the environment. Now we can explore how agents with 
different signals can pool information together as coordinated 
groups, and access the synergy in their environment through col-
lective decision-making.

Consider the undirected hypergraph H = (A, G) of vertices, A, 
and hyperedges G. We consider a discrete number of vertices, 
A = {a1, a2, . . . , aN}, where ai identifies agent i. The set of hyper-
edges, g ∈ G = {1, 2, . . . }, called groups, defines the number of co-
operating collectives. A hyperedge connects 1 ≤ Ng ≤ N agents. 
We assume that agents can only belong to a single group. 
Therefore, by construction, 


g Ng = N and the sum over all nodes 

of every hyperedge yields the number of agents in the population. 
There exist two extremes of cooperation. First, when a single hy-
peredge spans every node, meaning all agents pool information 
in a single group. In the limit of no cooperation, Ng = 1 for all g, 
and no agents pool information. In this case, the dynamics of 
the model are similar to previous work (38).

Let Sg be the set of unique signals held by the agents of a group g 
to be pooled, such that Sg ⊆ S. The number of cooperants is defined 
by the number of unique signals, |Sg| = kg, and is bounded by 
1 ≤ kg ≤ l. When kg = l and the group has a complete signal, the 
collective can make maximally informed decisions. Conversely, 
when kg < l, the signal is considered incomplete, and the collective 
can only interpret and act on a subset of signals. As we will see, 
the number of unique signals a collective can observe determines 
the amount of information they can access.

Now that we have defined how agents organize into groups of 
various sizes, we can discuss how agents pool their information 
to make collective decisions and grow their resources in dynamic 
environments. At every time step, a collective with access to all 
signal types observes a unique private signal s = {s1, . . . , sl} ∈ S. 
Each agent then allocates its resources ri on events according to 
collective g’s allocation matrix B(E ∣ s). As the event e is observed, 
the agent is rewarded with returns we to the fraction of resources 
invested in e, B(e ∣ s). In the limit of many sequential investments 
n, the average growth rate of resources converges to

γ =
1
n

log
rn

ri
≈


e,s
P(e, s) log [B(e ∣ s)we]. (3) 

The optimal investment in the large n limit is the conditional prob-
ability of the event given the signals, B(e ∣ s) = P(e ∣ s). When the re-
wards are “fair,” and we = 1/P(e), the optimal growth rate is given 
by the mutual information (56) defined in Eq. 1, γ = I(E; S).

The typical collective may not have a complete signal, and in-
stead may only observe and interpret a subset of all unique signals 
Sg. Their optimal allocation, given by P(E ∣ Sg), then has mutual in-
formation I(E; Sg) ≤ I(E; S), with equality only if the omitted signals 
are completely redundant with present signals. Unless there are 
redundant signals, an incomplete group is guaranteed to have 
suboptimal information and growth rate.

Agents a priori may also not have perfect knowledge and must 
invest using their best estimate of the true conditional probability, 
X(E ∣ Sg) ≠ P(E ∣ Sg). In this case, the collective’s average growth 
will be submaximal by the number of signals and lack of informa-
tion on signals and is described by

γg = I(E; Sg) − Esg (DKL[P(E ∣ sg)‖X(E ∣ sg)]), (4) 

where Esg is the expectation value over the states of the group’s 

signals, and DKL[P(E; sg)‖X(E; sg)] =


e P(e ∣ sg) log (P(e ∣ sg)/X(e ∣ 
sg)) ≥ 0 is the Kullback–Leibler divergence, an information meas-

ure expressing how similar the distributions are. This result 
shows that collectives with both a better model as reflected by 
the first term, a better characterization of the model and its vari-
ous synergies by the second, and a more complete signal, will ex-
perience higher growth rates. Furthermore, γg < γ unless g is the 

full set of signals, so it is typically valuable to add more signals 
to the group. This setup is illustrated in Fig. 1.

Maximum synergy principle and optimal growth
These results introduce important considerations for how col-
lective innovation and growth determine strategies for group 
formation. In theories of cooperation such as kin selection (57) 
and scalar stress (58), group formation is advantaged by member 
relatedness and disadvantaged by unfamiliarity. This is intuitive 
in many situations, as agents are more likely to cooperate when 
they are more certain others will reciprocate (59), and cooperat-
ing with similar agents may naturally minimize this uncertainty. 
Equation 4 counters this intuition by defining an explicit benefit 
to cooperating with dissimilar agents across heterogeneous, 
complementary skills, and information. Specifically, a group 
with more synergistic signals, as defined through the conditional 
dependence of their decisions on states of the environment, will 
experience higher growth. So, even if there are additional coord-
ination costs for more heterogeneous agents, there is now a pos-
sibility that cooperation will emerge as there are also greater 
informational benefits, formalizing intuitive ideas about the val-
ue of diversity (60).
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The beneficial contribution of synergy to the growth rate of re-
sources provides an important input to models of random multi-
plicative growth, such as those commonly used to study wealth 
dynamics and mathematical finance. In its simplest form, the sto-
chastic growth rate in such models is characterized by its first two 
temporal moments. The average over time, η, and the resource 
temporal SD (volatility), σ, combine under Itô integration to give 
the actual growth rate γ = η − σ2/2. Maximizing this growth rate 
(as a positive quantity) entails maximizing η and minimizing σ, 

which at the individual agent level can be achieved by 
(Bayesian) learning over time (38).

At the population level, it has been proposed that pooling re-
sources in groups would naturally emerge as a means to reduce 
σ, when growth rate fluctuations are independent across agents, 
and thus maximize γ (26, 61).

Our results introduce a different possibility of cooperation, 
through pooling information in structured groups, that maxi-
mizes η (and γ) through synergy effects. Thus, to maximize γ, 
agents should pool information with the most diverse set of col-
laborators possible to access the most mutual synergy, viz. the en-
vironment. This maximum synergy principle defines the benefit of 
intelligent collective behavior in complex environments where 
there are agent-level limitations to knowing the environment fully 
and where mechanisms of the division of labor and knowledge are 
favored. This principle is general and applies across levels of co-
operation, whether it be individuals matching skills to form 
groups or specialized groups organizing into more complex collec-
tives (40), all the way to large-scale societies.

Generally, these two strategies, information synergy vs. re-
source pooling under independence, are distinct modes of cooper-
ation over which groups can maximize γ, as demonstrated in 
Fig. 2.

As we will see later, the decision of whom to cooperate with is 
not trivial, as different combinations of signals may yield varying 
synergies. This means that under constraints to group size such as 
from cooperation costs per connection, groups satisfying the max-
imum synergy principle must intelligently select which signals 
and agents to integrate, and which to exclude as redundant.

Furthermore, collectives may not a priori know the optimal al-
location strategy that leverages the synergy available to their sig-
nals, meaning that intelligent collective behavior must itself be 
learned over time and by exploring the best possible matchings. 
We will now develop the dynamics of how a group maximizes 
its synergy given a set of signals.

Synergy maximization through Bayesian inference
Bayesian learning is the optimal strategy to incorporate new infor-
mation from observed events into the estimate of conditional 

BA

Fig. 1. Groups of agents with different signals grow resources based on the information between their signals and states of the environment. A) Groups, 
denoted by g, are composed of an arbitrary number of agents. Each agent belongs to only one group and can observe and contribute one signal to the 
group. A group contains kg unique signals. B) At each time step, (a) the group’s private channel outputs a signal s ∈ S with probability P(s). (b) Each 
member of the group observes their signal sj, and (c) the group consults their collective belief for the conditional outcome probability of the environment, 
X(E ∣ s). (d) The agents make proportional resource allocations on all possible outcomes B(E ∣ s). (f) and (e). The true event e ∈ E is observed in the 
environment with probability P(e), and (g) the agents receive payouts proportional to the marginal probability of e.

A

B

Fig. 2. Complementary strategies for increasing the long-term growth 
rate of resources from the environment in stochastic growth models. 
Pooling resources can reduce volatility through a hedging strategy, while 
pooling information creates synergy to increase average growth rates. 
The lines represent contours of constant average growth rates γ.
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probabilities, such as those of environmental states given agents’ 
signals (38). Agents can also learn the synergy embedded in their 
environment in groups by collectively weighing their conditional 
observations across their individual signals. A group wanting to 
maximize their synergy must then update their conditional rela-
tionship through a Bayesian inference process

Xn(e ∣ s) = AP(sn ∣ en)X(en) =
n

i=1

P(si ∣ ei)
P(si)

 

X(e), (5) 

where the normalization A = ( ∫ denP(sn ∣ en)X(en))−1. We take the 
prior probability, X(e1) = X(e), because we are assuming that the 
environment is stationary or at least slowly changing relative to 
groups’ learning rates.

Bayesian inference converges X(E ∣ S)→ P(E ∣ S) over time, de-
creasing the information divergence, and maximizing synergy 
and average growth. For groups with incomplete signals, the infor-
mation acquired through learning is still bounded by what is 
available in the incomplete signal space.

We have thus far defined collective growth in terms of informa-
tion synergy, and shown how agents can learn as a collective to in-
crease their growth rate over time. We will now illustrate these 
general results using a model based on logic circuits.

Modeling synergy with logic circuits
Logic circuits have been used extensively as models for synergistic 
interactions (40, 51, 52). This is because their outputs are pre-
dicted by combinations of inputs, much like events are predicted 
by combinations of signals. Among other logic circuits (like AND 
or OR), the XOR gate is unique in that information between inputs 
and outputs only exists as synergy across all inputs (62); no indi-
vidual input has mutual information with the output.

In the following, we will show how modifying the XOR gate re-
laxes this condition, such that information exists for any input 
and scales on average with the number of cooperating signals. 
Similar to Ref. (38), while this model will be used to study synergy 
in a simplified setting, the theory is defined for general dynamical 
environments.

The uniform XOR gate
Consider the space of statistically independent binary signals 
sj ∈ 0, 1, such that a sample set s has uniform probability 

P(s) = 2−l. We assign each input s a binary event, e ∈ 0, 1, using 
the generalized XOR rule, e = M2(s) ≡ [

l
j=1 sj](mod 2) with bino-

mial probability ps. From the sets of sampled signals, s, and bino-
mial coefficients p = {ps}, we can define this generalized XOR 
circuit as a joint distribution on signals and events as

P(E, S ∣ p) ≡ f (p, l) =
1
2l



s
(ps)M2(s)(1 − ps)1−M2(s)

. (6) 

This distribution is called the uniform XOR (UXOR). It performs a 
unique, l dimensional XOR gate on each input s with probability ps. 
When ps = 1 for all input permutations, this circuit behaves deter-
ministically like an XOR gate, and the complete group has 1 bit of 
information. In the limit of ps = 0.5, this no longer models a logic 
gate as the output is uncorrelated to the inputs. The truth table 
of this circuit is shown in Fig. 3A for an environment with two 
signals.

Information scaling in the UXOR environment
With this explicit choice of distribution, we can explore quantities 
of information that will define a group’s growth process. For sim-
plicity, we choose a uniform prior for the distribution of p, but in 
principle any prior distribution is admissible. The information 
available in the environment measures the maximum average 
growth rate a group with a complete signal can experience. 
When averaged over all configurations of p, the information is giv-
en by I(E; S) = log 2 − 1/2 ≈ 0.28 bits (SI Appendix C).

For groups with incomplete signals (when kg < l), we compute 
the information by marginalizing Eq. 6 over the λg = l − kg signals 
unavailable to the group. The procedure for marginalization is de-
fined in SI Appendix C, but in general, marginalization of one sig-
nal halves the size of the parameter space p that describes the 
distribution. The average information for an incomplete signal is 
approximately (SI Appendix D)

I(E; Sg ∣ p) ≈ 2−λg log 2 −
1
2

 

. (7) 

Average information scales exponentially, ∼ 2k, as more signals 
are included. The mutual information of the complete signal is in-
dependent of the number of signals, so the information of a single 
signal must converge to zero in the limit of large l.

The exponential scaling of the information with the number of 
cooperants is demonstrated in Fig. 3B, as lines on a logarithmic 
scale for environments of increasing l. The curves are computed 
by Monte Carlo sampling circuits for l signals by measuring the in-
formation after λ = l − k marginalizations.

Growth and group learning
Until now we have explored the mean behavior of this environ-
ment subject to a uniform prior. In general, collectives do not 
have perfect information on a single prior. In this case, their in-
accurate guess for the set of binomial coefficients is parameter-
ized by xg ≡ {xsg }, indexed by the signals available to the group 
sg ∈ Sg, and the collective’s likelihood model becomes 
X(e ∣ sg) = f (xg, kg). The information divergence term of Eq. 4 be-
comes the divergence between f (xg, kg) and f (pg, kg), where p has 
been projected into the subspace spanned by Sg, averaged over 
all signals Esg [DKL] = 〈psg log (psg/xsg ) + (1 − psg ) log [(1 − psg )/(1 − 
xsg )]〉 here angle brackets denote sample averages over the bino-
mial values. Subtracting the mutual information by this term 
yields the growth rate under imperfect, incomplete group infor-
mation.

γg = 〈psg log xsg + (1 − psg ) log (1 − xsg )〉 + log 2. (8) 

Fig. 3. The UXOR model provides an environment for exploring synergy 
across groups of arbitrary size. A) The UXOR circuit, demonstrated by the 
modified XOR symbol, and its truth table for l = 2. B) The information of a 
circuit of size l scales exponentially in cooperants, k.
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We have so far described growth rate dynamics under a stationary 
xg. To illustrate growth dynamics under group learning, we turn to 

the Latent Dirichlet Allocation (LDA) model. Through a categorical 
description of pairs of events and signals, agents experience aver-
age dynamics to xg in the limit of high sampling rate ω = n/t ≫ 1

xg(t) =
pgt/2κ + xg

1 + t/2κ
, (9) 

where κ defines the Bayesian update time. The details of LDA are 
given in Ref. (38) and provide parametric dynamics that converge 
to full information as a power law in time, in stationary 
environments.

To study resource dynamics in the UXOR environment, we si-
mulated agent investments in a Monte Carlo sampled environ-
ment. We randomly assigned N = 5,000 agent signals in an l = 4 
environment, then randomly assigned them to groups sized 
l ≤ Ng ≤ 11. This results in an ensemble of groups with cooperants 
1 ≤ kg ≤ 4. We reveal Bernoulli-sampled signals to the groups, 
whose agents collectively decide on which events to allocate re-
sources to. For each group, we track the resources of a representa-
tive agent, informed by the group, investing their individual 
resources through time. The full details of the setup are provided 
in the supplementary material.

Figure 4 illustrates the results of this simulation. In panels A 
and B, the Monte Carlo simulated means are shown as solid lines, 
with 95% CI shaded regions. Theoretical means are computed 
from the initial population configuration using Eq. 9, plotted as 
dashed lines, with hash-filled uncertainty regions. Simulated 
groups have randomly assigned members with uniformly as-
signed signals, where N = 2,000. The more unique signals a group 
can access, the more they can learn, and the more resources they 
acquire over time. A high signal-to-noise ratio when kg = 1, 2 
causes growth rates to be lower than the theoretical mean, and 
cumulatively results in fewer resources over time.

Constrained intelligent group formation
For the groups with kg < 4 (incomplete signals), there is a signifi-
cantly higher variance in both information and resources com-
pared to kg = 4. This is attributed to differences in synergy 
between groups with different combinations of signals of order 
k. This illustrates a general feature of the maximal synergy 
principle; that signal combinations with higher conditional 
dependence on the environment will have higher synergy and ex-
perience higher growth rates than other combinations. Figure 4
demonstrates the synergy effects across different combinations 
of signals. For each group of size k, the left, smaller dot indicates 
the amount of information each signal has averaged over the sig-
nals present. The right, larger dot indicates the total information 
the combination of signals has when pooled. The difference be-
tween the two dots gives the amount of synergy. We see, for ex-
ample, that even though signals 0 and 3 have less information 
than signal 2, both signals have higher synergy effects when 
pooled with 1 individually, as indicated by their crossover with 
the 1, 2 line. For a group aggregator, not only does this mean 
that signal choice is nontrivial but also that individual informa-
tion is not generally a good indicator of synergy benefits that 
can be realized when pooled.

As demonstrated by the bottom plots in Fig. 4C, through a suit-
able selection of p, we can also design special environments such 
as where either no synergy is present, or where there are uniform 
benefits of synergy across combinations of signals. The procedure 
for constructing environments with specific synergy profiles will 
be developed in future work.

These results point to the challenges of leveraging the full com-
plementarity of available signals in practice, toward satisfying the 
maximum synergy principle in organizations. For example, novel 
signal identification may result in disruptions of existing organ-
izational structures, which while ultimately optimal may not be 
realizable without some sacrifice of short-term efficiency or in-
creased costs. Maximizing long-term synergy and growth entails 
a tradeoff, since over shorter horizons exploitation of existing 
knowledge may be preferred both individually (63) and as organi-
zations adapt structurally to the specialties of its members (64), 
which may vary depending on the complexity of the environment 
(65). We have also shown that organizations that match the com-
plexity of their environment through appropriate personnel spe-
cialization and integration (minimizing the DKL with the 
environment) experience the fastest growth, in agreement with 
the analysis of empirical data (66).

Discussion
In this paper, we developed a novel mechanism of cooperation 
among heterogeneous agents that use shared information to 
grow resources in stochastic but knowable environments. We de-
rived the benefits of cooperation in terms of synergy gained by 
pooling information across agents’ unique signals and its conse-
quences for the growth rate of collectives. This motivates the prin-
ciple of maximum synergy, whereby a group’s aggregate growth is 
highest when it maximizes the synergy of its members relative to 
a statistical environment. We proposed this principle as a comple-
mentary avenue to cooperation resulting from the reduction of 
volatility through resource pooling in multiplicative growth mod-
els. We then showed that a group with no a priori knowledge of its 
potential synergy can learn it through Bayesian inference. We il-
lustrated these principles using a model of a high-dimensional 
probabilistic logic gate and showed that, on average, group syn-
ergy scales superlinearly with the number of unique signals in 
the group. We also illustrated the challenge faced by groups incur-
ring size-related costs to pick not just unique signals but also ad-
mit new group members as additional signals that maximize their 
potential collective synergy.

These results formalize several insights into the causes and 
benefits of cooperation. First, the formal properties of information 
allow us to consider how the limits to human effort and ability 
motivate group formation. Specialization through learning or 
adaptation is costly in terms of time and resources, motivating a 
division of labor to fully learn and maximize productivity across 
disparate but synergistic agents (36). This motivates the forma-
tion of heterogeneous cooperation networks (67, 68), where agents 
seek new connections that complement their particular signals 
and that vary conditionally on local environments. In this sense, 
collectively navigating complex fitness landscapes is naturally 
achieved by satisfying the maximum synergy principle. 
However, maximizing synergy can be a challenging and costly 
task for groups because it requires time, effort, and social re-
arrangement to learn the complementarities among a set of 
signals.

Second, these results motivate analyses of how information 
and resource pooling strategies affect different levels of selection 
within an organizational hierarchy. Effective resource pooling re-
lies on uncorrelated fluctuations across participants, which is not 
possible when agents are making coordinated decisions across 
signals. We therefore expect information and resource pooling 
strategies to create tradeoffs in group formation, and apply to dif-
ferent environmental features and levels of selection.
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Groups lacking informational complementarities (because they 
are homogeneous) operating in very variable environments should 
pool resources to minimize volatility. This may apply to people in 
insurance pools, or independent economic sectors within a com-
mon population, such as a city or nation. Conversely, groups in 
complex environments made up of agents with complementary 
knowledge, such as within a firm or innovation ecology, should en-
gage in information pooling and skills specialization to maximize 
their collective production potential whenever the variability of 
the environment and costs of cooperation are sufficiently low.

Parsing out these modes of cooperation becomes more import-
ant when considering how groups respond to changing environ-
mental or social conditions. As new environmental conditions 
emerge, such as new industries or technologies, the distribution 
of synergy across different group configurations will also change, 
selecting for different group compositions and skill combinations. 
This has the interesting implication that new knowledge (science, 
technology, institutional change) should be disruptive of estab-
lished social and economic structures explicitly because it enables 
new synergies and faster growth. This also has implications for 
natural ecosystems (69) where changing environmental condi-
tions, such as via climate change, and adaptation may alter the 
relative fitness of their components and thereby their overall 
structure.

Third, the framework developed here describes a general ap-
proach to interaction dynamics in many fields. The conditional 
probabilities P(e ∣ s) capture the general structure of information be-
tween populations’ signals and actions, and their environment. 
Through synergy maximization, that information becomes en-
coded in how groups form and are structured, and which sets of co-
ordinated behaviors produce beneficial or detrimental outcomes 
across agents. By averaging over environments, we can produce a 
set of rules for (average) rewards associated with agents’ percep-
tions and actions. This shows how general conditional probabilities 
of choices and behaviors in given environments may underlie par-
ticular “games” and other phenomenological agent interaction 
rules (70).

In this sense, several interesting themes in the collective dynam-
ics of iterated games may be relatable to conditional probabilities 
and growth rates set by information. Two aspects of this general 

problem that we did not discuss here are the distribution of payoffs 
from collaborative action back to individual agents, and the (short- 
term) advantages of defection. The emergence of trust (71–74) 
among agents necessary for realizing long-term higher growth rates 
is likely costly and may benefit from an aggregator that can reduce 
the associated risk. This catalyst of long-term synergy can also be 
applied to models of interaction among risky innovators (75), where 
coordinators can actively influence selection by managing interfirm 
links and information access. In environments with conditionally 
dependent signals, agents may also learn to predict other agents’ 
behavior leading to the emergence of local trust clusters (76) with-
out the presence of an aggregator.

Thus, although the principle of maximum synergy is general, 
there are multiple obstacles to realizing it in practice. Pathways 
to explore latent synergies must overcome short-term costs of 
learning and discovery, coordination, social inclusion, and exclu-
sion, and promote the long-term bonds necessary to derive col-
lective benefits, which once created must also be distributed 
fairly. When the balance of these benefits and costs is positive 
and can scale up, synergy becomes naturally expressed in higher 
order interactions as is observed in generalized reciprocal cooper-
ation and the emergence of complex cultures as interdependent 
knowledge and behavior among many agents (25).

In summary, the formal properties of information, made expli-
cit over group structures and time, provide the theoretical basis 
for a broad class of agent interaction models found throughout 
the social and ecological sciences. This includes the formation 
of complex societies made up of diverse cooperating agents in sit-
uations where large-scale synergy becomes possible and can be 
maximized.
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Fig. 4. Groups learning an l = 4 environment using more unique signals acquire more resources and information, but combinations of signals have 
unique amounts of information. A) Temporal resource trajectories, grouped by number of unique signals in the corresponding group show that growth 
increases with the number of signals. B) Groups with more signals can gather more information from the environment. There is high variability when 
kg < l, as different combinations of signals access different amounts of information. C) Top For kg = 2, 3, the synergy benefits of a parameter configuration 
are given by the difference between the information when averaged (small dot) and pooled (large dot). Bottom Parameter values exist where no signal 
combinations hold synergy (left) and synergy is equivalent across signal combinations (right).

Kemp et al. | 7
D

ow
nloaded from

 https://academ
ic.oup.com

/pnasnexus/article/3/2/pgae072/7606554 by guest on 18 O
ctober 2024

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae070#supplementary-data


Funding
This work is supported by the Mansueto Institute for Urban 
Innovation, the Department of Physics at the University of 
Chicago, a National Science Foundation Graduate Research 
Fellowship (grant no. DGE-1746045 to J.T.K.), and the National 
Science Foundation, through the Center for the Physics of 
Biological Function (PHY-1734030), as well as the National 
Institutes of Health BRAIN initiative (R01EB026943) to A.G.K.

Author Contributions
J.T.K. conceived the research problem, ran the analysis, wrote the 
simulation code, generated figures from simulation data, and 
wrote and revised the manuscript. A.G.K. assisted with the ana-
lysis. L.M.A.B. conceived the research problem, wrote and revised 
the paper, and advised the project.

Preprints
This manuscript was posted on a preprint: https://doi.org/10. 
48550/arXiv.2307.01380.

Data Availability
The data underlying this article are available with DOI/accession 
number: 10.5281/zenodo.8347077.

References
1 Pennisi E. 2009. On the origin of cooperation. Science. 325(5945): 

1196–1199.
2 Stinchcombe A. 2013. Chapter 1: Social structure and organiza-

tions. In: Handbook of organizations (RLE: Organizations). 
Routledge. p. 142–193.

3 Sachs J, Mueller U, Wilcox T, Bull J. 2004. The evolution of cooper-
ation. Q Rev Biol. 79(1):135–160.

4 Hammerstein P, Selten R. 1994. Game theory and evolutionary 
biology. In: Handbook of game theory with economic applications. 
Vol. 2. Amsterdam, NL: Elsevier. p. 929–993.

5 Shakarian P, Roos P, Johnson A. 2012. A review of evolutionary 
graph theory with applications to game theory. Biosystems. 
107(2):66–80.

6 Perc M, Gómez-Gardeñes J, Szolnoki A, Floría L, Moreno Y. 2013. 
Evolutionary dynamics of group interactions on structured pop-
ulations: a review. J R Soc Interface. 10(80):20120997.

7 Jackson M, Zenou Y. 2015. Games on networks. Amsterdam, NL: 
Elsevier. p. 95–1634.

8 Gómez-Gardeñes J, Reinares I, Arenas A, Floría L. 2012. Evolution 
of cooperation in multiplex networks. Sci Rep. 2:1–6.

9 Battiston F, et al. 2021. The physics of higher-order interactions in 
complex systems. Nat Phys. 17(10):1093–1098.

10 Alvarez-Rodriguez U, et al. 2021. Evolutionary dynamics of 
higher-order interactions in social networks. Nat Hum Behav. 

5(5):586–595.
11 Cencetti G, Battiston F, Lepri B, Karsai M. 2021. Temporal properties 

of higher-order interactions in social networks. Sci Rep. 11(1):7028.
12 Ferrazdearruda G, Tizzani M, Moreno Y. 2021. Phase transitions 

and stability of dynamical processes on hypergraphs. Commun 
Phys. 4(1):24.

13 McCabe K, Rassenti S, Smith V. 1996. Game theory and reci-
procity in some extensive form experimental games. Proc Natl 
Acad Sci U S A. 93(23):13421–13428.

14 Sachs J, Bull J. 2005. Experimental evolution of conflict mediation 

between genomes. Proc Natl Acad Sci U S A. 102(2):390–395.
15 Goyal S, Vega-Redondo F. 2005. Network formation and social co-

ordination. Games Econ Behav. 50(2):178–207.
16 Gracia-Lázaro C, et al. 2012. Heterogeneous networks do not pro-

mote cooperation when humans play a Prisoner’s Dilemma. Proc 

Natl Acad Sci U S A. 109(32):12922–12926.
17 Lee K, et al. 2011. Impact of the topology of global macroeconomic 

network on the spreading of economic crises. PLoS One. 6(3): 

e18443.
18 Rand RG, David D, Arbesman S, Christakis N. 2011. Dynamic so-

cial networks promote cooperation in experiments with humans. 

Proc Natl Acad Sci U S A. 108(48):19193–19198.
19 Castellano C, Marsili M, Vespignani A. 2000. Nonequilibrium 

phase transition in a model for social influence. Phys Rev Lett. 

85(16):3536–3539.
20 Bettencourt L. 2013. The origins of scaling in cities. Science. 

340(6139):1438–1441.
21 Schläpfer M, et al. 2014. The scaling of human interactions with 

city size. J R Soc Interface. 11(98):20130789.
22 Hamilton WD. 1963. The evolution of altruistic behavior. Am Nat. 

97(896):354–356.
23 Pepper J. 2000. Relatedness in trait group models of social evolu-

tion. J Theor Biol. 206(3):355–368.
24 Ohtsuki H, Hauert C, Lieberman E, Nowak M. 2006. A simple rule 

for the evolution of cooperation on graphs and social networks. 

Nature. 441(7092):502–505.
25 Queller D. 1985. Kinship, reciprocity and synergism in the evolu-

tion of social behaviour. Nature. 318(6044):366–367.
26 Peters O, Adamou A. 2022. The ergodicity solution of the cooper-

ation puzzle. Philos Trans Royal Soc A. 380(2227):20200425.
27 Lightner A, Pisor A, Hagen E. 2023. In need-based sharing, sharing 

is more important than need. Evol Hum Behav. 44(5):474–484.
28 Nowak M, Mcavoy A, Allen B, Wilson E. 2017. The general form of 

Hamilton’s rule makes no predictions and cannot be tested em-

pirically. Proc Natl Acad Sci U S A. 114(22):5665–5670.
29 Pepper J, Smuts B. 2002. A mechanism for the evolution of altru-

ism among nonkin: positive assortment through environmental 

feedback. Am Nat. 160(2):205–213.
30 Fletcher J, Doebeli M. 2006. How altruism evolves: assortment 

and synergy. J Evol Biol. 19(5):1389–1393.
31 Stinchcombe A. 1990. Information and organizations. Berkeley, CA: 

University of California Press.
32 Dooley K. 1997. A complex adaptive systems model of organiza-

tion change. Nonlinear Dynamics Psychol Life Sci. 1(1):69–97.
33 Frank S. 2012. Natural selection. V. How to read the fundamental 

equations of evolutionary change in terms of information theory. 

J Evol Biol. 25(12):2377–2396.
34 Miller G. 1956. The magical number seven, plus or minus two: 

some limits on our capacity for processing information. Psychol 

Rev. 63(2):81–97.
35 Sweller J. 1988. Cognitive load during problem solving: effects on 

learning. Cogn Sci. 12(2):257–285.
36 Hume D. 2003. A treatise of human nature. Chelmsford, MA: 

Courier Corporation.
37 Cooper G, West S. 2018. Division of labour and the evolution of 

extreme specialization. Nat Ecol Evol. 2(7):1161–1167.
38 Kemp J, Bettencourt L. 2023. Learning increases growth and re-

duces inequality in shared noisy environments. PNAS Nexus. 

2(4):pgad093.
39 Bettencourt L. 2019. Towards a statistical mechanics of cities. C R 

Phys. 20(4):308–318.

8 | PNAS Nexus, 2024, Vol. 3, No. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/3/2/pgae072/7606554 by guest on 18 O

ctober 2024

https://doi.org/10.48550/arXiv.2307.01380
https://doi.org/10.48550/arXiv.2307.01380
https://10.5281/zenodo.8347077


40 Bettencourt L. 2009. The rules of information aggregation and 
emergence of collective intelligent behavior. Top Cogn Sci. 1(4): 
598–620.

41 Hayek F. 1945. The uses of knowledge in society. Am Econ Rev. 35: 
519–530.

42 Grossman S. 1976. On the efficiency of competitive stock markets 
when traders have diverse information. J Finance. 31(2):573–585.

43 Wilson R. 1977. Incentive efficiency of double auctions. Rev Econ 
Stud. 44(3):511–518.

44 Milgrom P. 1981. Rational expectations, information acquisition, 
and competitive bidding. Econometrica. 49(4):921–943.

45 Wolinsky A. 1990. Information revelation in a market with pair-
wise meetings. Econometrica. 58(1):1–23.

46 Blouin M, Serrano R. 2001. A decentralized market with common 
values uncertainty: non-steady states. Rev Econ Stud. 68(2): 
323–346.

47 Duffie D, Manso G. 2007. Information percolation in large mar-
kets. Am Econ Rev. 97(2):203–209.

48 Grossman SJ, Stiglitz JE. 1980. On the impossibility of informa-
tionally efficient markets. Am Econ Rev. 70(3):393–408.

49 Wolfers J, Zitzewitz E. 2004. Prediction markets. J Econ Perspect. 
18(2):107–126.

50 Fuller R. 1982. Synergetics: explorations in the geometry of thinking. 
San Francisco, CA: Estate of R. Buckminster Fuller.

51 Schneidman E, Bialek W, Berry M. 2003. Synergy, redundancy, 
and independence in population codes. J Neurosci. 23(37): 
11539–11553.

52 Bettencourt L, Stephens G, Ham M, Gross G. 2007. Functional 
structure of cortical neuronal networks grown in vitro. Phys Rev 
E. 75(2):021915.

53 Varley T, Pope M, Faskowitz J, Sporns O. 2023. Multivariate infor-
mation theory uncovers synergistic subsystems of the human 
cerebral cortex. Commun Biol. 6(1):451.

54 Mediano P, et al. 2022. Greater than the parts: a review of the in-
formation decomposition approach to causal emergence. Philos 
Trans R Soc A. 380(2227):20210246.

55 Varley T, Hoel E. 2022. Emergence as the conversion of informa-
tion: a unifying theory. Philos Trans R Soc A. 380(2227):20210150.

56 Kelly J. 1956. A new interpretation of information rate. Bell Syst 
Tech J. 35(4):917–926.

57 Eberhard M. 1975. The evolution of social behavior by kin selec-
tion. Q Rev Biol. 50(1):1–33.

58 Johnson G. 1982. Organizational structure and scalar stress. In: 
Theory and explanation in archaeology. p. 389–421.

59 Nowak M. 2006. Five rules for the evolution of cooperation. 

Science. 314(5805):1560–1563.
60 Page S. 2007. The difference: how the power of diversity creates better 

groups, firms, schools, and societies. Princeton, NJ: Princeton 

University Press.
61 Fant L, Mazzarisi O, Panizon E, Grilli J. 2022. Stable cooperation 

emerges in stochastic multiplicative growth, arXiv, 

arXiv:2202.02787, 202, preprint: not peer reviewed.
62 Jansma A. 2022. Higher-order in-and-outeractions reveal syn-

ergy and logical dependence beyond Shannon-information. 

arXiv, arXiv:2205.04440, preprint: not peer reviewed.
63 Levinthal DA. 1997. Adaptation on rugged landscapes. Manage 

Sci. 43(7):934–950.
64 March JG. 1991. Exploration and exploitation in organizational 

learning. Organ Sci. 2(1):71–87.
65 Wall F. 2016. Agent-based modeling in managerial science: an il-

lustrative survey and study. Rev Manag Sci. 10(1):135–193.
66 Lawrence PR, Lorsch JW. 1967. Differentiation and integration in 

complex organizations. Adm Sci Q. 12(1):1–47.
67 Szabó G, Fath G. 2007. Evolutionary games on graphs. Phys Rep. 

446(4–6):97–216.
68 Perc M, et al. 2017. Statistical physics of human cooperation. Phys 

Rep. 687:1–51.
69 Walther G. 2010. Community and ecosystem responses to recent 

climate change. Philos Trans R Soc B Biol Sci. 365(1549):2019–2024.
70 Autor D. 2014. Skills, education, and the rise of earnings inequal-

ity among the ‘other 99 percent’. Science. 344(6186):843–851.
71 Barrett S. 2016. Coordination vs. voluntarism and enforcement in 

sustaining international environmental cooperation. Proc Natl 

Acad Sci U S A. 113(51):14515–14522.
72 Kumar A, Capraro V, Perc M. 2020. The evolution of trust and 

trustworthiness. J R Soc Interface. 17(169):20200491.
73 Han TA, Lenaerts T, Santos FC, Pereira LM. 2022. Voluntary 

safety commitments provide an escape from over-regulation in 

AI development. Technol Soc. 68:101843.
74 Ogbo NB, Elragig A, Han TA. 2022. Evolution of coordination in 

pairwise and multi-player interactions via prior commitments. 

Adapt Behav. 30(3):257–277.
75 Cimpeanu T, Santos FC, Pereira LM, Lenaerts T, Han TA. 2022. 

Artificial intelligence development races in heterogeneous set-

tings. Sci Rep. 12(1):1723.
76 Santos FC, Pacheco JM, Skyrms B. 2011. Co-evolution of pre-play 

signaling and cooperation. J Theor Biol. 274(1):30–35.

Kemp et al. | 9
D

ow
nloaded from

 https://academ
ic.oup.com

/pnasnexus/article/3/2/pgae072/7606554 by guest on 18 O
ctober 2024


	Information synergy maximizes the growth rate of heterogeneous groups
	Introduction
	Theory of collective growth
	Collective growth in synergistic environments
	Group formation and collective decision-making

	Maximum synergy principle and optimal growth
	Synergy maximization through Bayesian inference


	Modeling synergy with logic circuits
	The uniform XOR gate
	Information scaling in the UXOR environment
	Growth and group learning
	Constrained intelligent group formation


	Discussion
	Acknowledgments
	Supplementary Material
	Funding
	Author Contributions
	Preprints
	Data Availability
	References




