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Abstract
Many complex systems—from the Internet to social, biological, and communication networks—are thought to exhibit scale-free 
structure. However, prevailing explanations require that networks grow over time, an assumption that fails in some real-world 
settings. Here, we explain how scale-free structure can emerge without growth through network self-organization. Beginning with an 
arbitrary network, we allow connections to detach from random nodes and then reconnect under a mixture of preferential and 
random attachment. While the numbers of nodes and edges remain fixed, the degree distribution evolves toward a power-law with an 
exponent γ = 1 + 1

p that depends only on the proportion p of preferential (rather than random) attachment. Applying our model to 
several real networks, we infer p directly from data and predict the relationship between network size and degree heterogeneity. 
Together, these results establish how scale-free structure can arise in networks of constant size and density, with broad implications 
for the structure and function of complex systems.
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Significance Statement

Scale-free structure is foundational to our understanding of complex networks. Yet, while most explanations require networks to con-
stantly grow, many real-world systems—from the wiring of the brain to protein interactions and ecological relationships—fluctuate 
around a constant size. This raises a clear question: How can scale-free structure emerge without growth? Here, we propose a minimal 
model in which the numbers of nodes and edges remain constant, but scale-free structure arises through the self-organization of con-
nections. Despite its simplicity, the model quantitatively describes an array of real-world networks, demonstrating how scale-free 
structure can emerge in systems of constant size and density.

Introduction
Scale-free structure is a hallmark feature of many complex net-
works, with the probability of a node having k links (or degree k) 
following a power law k−γ. First studied in networks of scientific ci-
tations (1, 2), scale-free structure has now been reported across a 
wide array of complex systems, from social networks [of romantic 
relationships (3), scientific collaborations (4), and online friend-
ships (5)]; to biological networks [of connections in the brain (6), 
metabolic interactions (7), and food webs (8, 9)]; to the online 
and physical wiring of the Internet (10–13); to language (14), trans-
portation (15), and communication networks (16). Although em-
pirically measuring power laws in real networks poses 
important technical challenges (17, 18), the study of scale-free 
structure continues to provide deep insights into the nature of 
complex systems (19–28).

Existing explanations for scale-free structure primarily rely on 
two mechanisms: preferential attachment (such that well- 
connected nodes are more likely to gain new connections) and 
growth (wherein nodes are constantly added to the network) (2, 
21). While alternatives have been proposed to preferential attach-
ment [such as random attachment to edges (29), random copying 
of neighbors (30), and deterministic attachment rules (31)], the de-
pendence on growth remains widespread. In many real-world 
contexts, however, constant growth is unrealistic. For example, 
the number of neurons in the brain does not grow without bound 
(32), and just as animals are added to a population and words are 
added to a language, others die out. In these systems, network size 
and density fluctuate around steady-state values, and structural 
properties emerge without growth through the self-organization 
of nodes and edges. Thus, understanding whether, and how, 
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scale-free structure emerges without growth remains a central 
open question.

Emergent scale-free structure in real 
networks
To understand the importance of network self-organization, we 
begin by empirically demonstrating that many real-world sys-
tems can maintain scale-free structure even without growth. In 
some complex systems—including many biological and language 
networks—topological properties (such as scale-free structure) 
arise without constant growth. For example, in a network of 
host–pathogen relationships between plant and animal species 
(33), we find that the degree distribution P(k) exhibits power-law 
scaling (Fig. 1A); and we observe similar scale-free structure in 
the transitions between words in the English language (Fig. 1B) 
(26). By contrast, if we randomize the connections between nodes, 
then the degrees drop off super-exponentially as a Poisson distri-
bution, and the scale-free structure vanishes (Fig. 1A).

Meanwhile, other systems—particularly online social and com-
munication networks, scientific collaborations, and the Internet— 
are often viewed as growing by accumulating new nodes and 
edges over time (19). But by studying their temporal dynamics, 
we will see that even these networks can exhibit scale-free struc-
ture without growth. The dynamics of a network are defined by a 
sequence of connections (it, jt), ordered by the time t at which they 
occur. Letting these edges accumulate over time, we arrive at a 
single growing network. Alternatively, one can divide the connec-
tions into groups of equal size E, thus defining a sequence of inde-
pendent snapshots, each representing the structure of the 
network within a specific window of time (Fig. 1C). For clarity, 
we let N denote the total number of nodes in the entire sequence, 
while n reflects the number of nodes in a single snapshot (Fig. 1C). 
Consider, for example, the social network of friendships on Flickr 
(Fig. 1D–E) (34). Dividing the sequence of connections into groups 
of size E = 103, we can study the evolution of different network 
properties. In particular, we find that the Flickr network fluctuates 
around a constant size n (Fig. 1D). Yet even without growing, we 
see that the network maintains a clear power-law degree distribu-
tion (Fig. 1E), and we verify that this scale-free structure remains 
consistent over time (see Supplementary Material).

We can repeat the above procedure for any time-evolving net-
work, such as the links between pages on Wikipedia (Fig. 1F–G) 
(35). Across a number of different social, web, communication, 
and transportation networks (see Supplementary Material), 
we divide the dynamics into snapshots with E = 103 edges each, 
the largest number that can be applied to all systems. While 
some networks grow slowly in time (such as Wikipedia in 
Fig. 1F), all of the networks approach a steady-state size (see 
Supplementary Material). In fact, the snapshots are limited to 
n ≤ 2E by definition, and therefore cannot grow without bound. 
Even still, many of the networks exhibit scale-free structure 
(such as Flickr and Wikipedia in Fig. 1E,G). In what follows, we 
will develop a simple dynamical model capable of describing all 
of these networks.

Model of emergent scale-free networks
The above results demonstrate that scale-free structure can arise 
without growth in real networks. Yet most existing models of 
scale-free networks (such as the Barabási–Albert model in 
Fig. 2A) rely on the addition of nodes and edges over time (19, 
21). To address this gap, a large number of models have been 

proposed for scale-free networks without growth (36–47). For in-
stance, power-law degree distributions can result from the opti-
mization of network properties or by connecting nodes based on 
fitness (36, 37, 39, 43). In fact, one can reproduce any degree distri-
bution by designing replacement nodes with a desired connectiv-
ity profile (41, 42). However, these models rely on global design 
choices for the optimization, fitness, or connectivity functions, ra-
ther than explaining the self-organization of network structure.

Here we present a minimal model in which a fixed number of 
nodes and edges rewire to produce power-law degree distributions 
with a wide range of exponents γ ≥ 2. We begin with an arbitrary 
network of N nodes and E edges (for simplicity, we always begin 
with a random network). At each time step, one node is selected 
at random to lose all of its connections (Fig. 2C, center). Each of 
these connections then reattaches in one of two ways: (i) with 
probability p, it connects to a node via preferential attachment 
(that is, it attaches to node i with probability proportional to its de-
gree ki; Fig. 2C, top right), or (ii) with probability 1 − p, it connects to 
a random node (Fig. 2C, bottom right). In this way, the total num-
bers of nodes N and edges E remain constant, with the wiring be-
tween nodes simply rearranging over time. Notably, besides N and 
E, the model only contains a single parameter p, representing the 
proportion of preferential (rather than random) attachment.

Previous models have considered similar mixtures of preferen-
tial and random attachment in growing networks (48). Meanwhile, 
many investigations have studied networks that simultaneously 
add and delete nodes and edges; yet to produce scale-free struc-
ture, most of these models require addition to outpace deletion 
such that the network still grows on average (38, 40, 44, 46). 
Finally, there exist preferential attachment models that do not re-
quire growth (45, 47), but these only produce a limited range of 
power-law exponents γ ≤ 1 that do not apply to many real-world 
networks (Fig. 2B). But by combining node death, preferential at-
tachment, and random attachment, can realistic scale-free struc-
ture emerge without growth?

To answer this question, we can write down a master equation 
describing the evolution of the degree distribution Pt(k) from one 
time step t to the next. At each step, the detachment of a random 
node (Fig. 2C, center) yields an average decrease in probability of 
− 1

N Pt(k). On average, killing a node produces k̅ = 2E/N discon-
nected edges that must be reattached. With probability p, each 
edge attaches preferentially (Fig. 2C, top right), connecting to a 
node of degree k with probability k

2E; on average, this preferential 
attachment yields an increase in probability of k̅p k−1

2E Pt(k − 1) and 
a decrease of −k̅p k

2E Pt(k). Alternatively, with probability 1 − p, 
each disconnected edge reattaches randomly (Fig. 2C, bottom 
right), yielding an increase in probability of k̅(1 − p) 1

N Pt(k − 1) and 
a decrease of −k̅(1 − p) 1

N Pt(k). Combining these contributions and 
simplifying, we arrive at the master equation,

Pt+1(k) = Pt(k) +
1
N

[ − Pt(k) + p((k − 1)Pt(k − 1) − kPt(k))

+ k̅(1 − p)(Pt(k − 1) − Pt(k))].
(1) 

We are now prepared to study the evolution of the degree distribu-
tion. To compare against the real temporal networks (for which 

N ≳ E), we begin by randomly placing E = 103 edges among N = 2 × 
104 nodes, for an average degree k̅ = 0.1. Running the dynamics 
with equal amounts of preferential and random attachment 
(such that p = 0.5), we find that the master equation (Eq. 1) provides 
a close approximation to simulations (Fig. 2D). As the connections 
rearrange, the degree distribution, which is initially Poisson 
(Fig. 2D, left), quickly broadens (Fig. 2D, center). Eventually, the dis-
tribution develops a clear power law P(k) ∼ k−γ in the high-degree 
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limit k ≫ 1, with a realistic exponent γ = 3 (Fig. 2D, right). We there-
fore find that realistic scale-free structure emerges without growth 
from our simple dynamics (Fig. 2C).

This self-organization of scale-free structure leaves an imprint 
on network properties beyond just the degree distribution. 
Consider, for example, the size of the network n, which (for consist-
ency with the real networks) is defined as the number of nodes with 
at least one connection. As the dynamics unfold, edges tend to col-
lect around a small number of high-degree hubs, thus decreasing 
the size of the network n (Fig. 2E). These hubs comprise the heavy 
tail of the degree distribution. To quantify this heavy tail, rather 
than using the variance of the degrees (which diverges for power- 
law distributions with γ ≤ 3), we instead compute the heterogeneity 
1
2 〈|ki − kj|〉/〈k〉, which is normalized to lie between zero and one, 
where 〈·〉 represents an average over degrees k ≥ 1 and 〈|ki − kj|〉

measures the average absolute difference in degrees (26). As the 
network evolves, and scale-free structure emerges (Fig. 2D), we 
see that the degree heterogeneity increases (Fig. 2F). Notably, both 
the network size and degree heterogeneity approach steady-state 
values, with larger proportions p of preferential attachment yielding 
networks that are smaller (Fig. 2E), yet more heterogeneous (Fig. 2F).

Steady-state scale-free structure
Thus far, we have explored the network dynamics numerically 
(using the master equation) and through simulations. But the 
simplicity of our model gives us the opportunity to solve 
for the steady-state degree distribution analytically. Setting 
Pt(k) = Pt+1(k) = P(k), the master equation reduces to the recursion 
relation

P(k) =
p(k − 1) + k̅(1 − p)

1 + pk + k̅(1 − p)
P(k − 1). (2) 

In the thermodynamic limit N, E→∞ (holding fixed the average 

degree k̅ = 2E/N), one can then solve for the steady-state distribu-
tion

P(k) =
1
C

Γ k + k̅
1
p

− 1
  

Γ k + k̅
1
p

− 1
 

+ 1 +
1
p

  , (3) 

where C is the normalization constant and Γ(·) is Euler’s gamma 
function. In what follows, we normalize P(k) to run over positive 
degrees k ≥ 1, such that

C =
Γ

1
p

 

Γ 1 + k̅
1
p

− 1
  

Γ 1 +
1
p

 

Γ 1 +
1
p

+ k̅
1
p

− 1
   . (4) 

In the high-degree limit k ≫ k̅/p, the above distribution falls off as 

a power law P(k) ∼ k−γ with scale-free exponent γ = 1 + 1
p (see 

Supplementary Material). We therefore find that the network dy-
namics produce a wide range of exponents γ ≥ 2 observed in real- 
world systems. Moreover, this scale-free structure depends only 
on the proportion p of preferential attachment (independent 

from the average degree k̅).
We confirm the analytic distribution (Eq. 3) and the power-law 

tail in simulations (Fig. 3A). For equal amounts of preferential and 
random attachment (p = 0.5), the model generates a scale-free ex-
ponent γ = 3 (Fig. 3A, center), as observed previously in Fig. 2D. For 
larger proportions p of preferential attachment, high-degree hubs 
become more prevalent, strengthening the heavy tail in P(k) and 
decreasing the exponent γ (Fig. 3A, right). Indeed, as p increases, 
the dynamics produce networks that are smaller (Fig. 3B) and 
more heterogeneous (Fig. 3C; see Supplementary Material for 

A B
C

D E F G

Fig. 1. Degree distributions of real networks. A) Degree distribution of host–pathogen relationships between plant and animal species (33) and for a 
random network with the same numbers of nodes and edges. B) Degree distribution for the network of transitions between nouns in Walt Whitman’s 
Leaves of Grass (26). C) Procedure for analyzing temporal network dynamics. We divide the sequence of edges into groups of equal size E, thus forming a 
series of network snapshots. Each snapshot contains n ≤ N nodes, where N is the total number of nodes in the dataset. D) Trajectory of system size n over 
time for the network of friendships on Flickr (34). E) Degree distribution of the Flickr network computed across all network snapshots. F–G) Trajectory of 
network size F) and degree distribution G) for the hyperlinks between pages on English Wikipedia (35). Dashed lines illustrate power laws.
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A B C

D E F

Fig. 2. Modeling the emergence of scale-free structure. A–B) Degree distributions for the Barabábasi–Albert A) and Park–Lai–Ye B) models of scale-free 
networks (see Supplementary Material for descriptions) (21, 45). C) Network dynamics in our model. Beginning with an arbitrary network (left), at each 
step in time a random node loses all of its connections (center). Each disconnected edge attaches to another node either preferentially (with probability p; 
top right) or randomly (with probability 1 − p; bottom right). D) Degree distributions for initially random networks (left), after two full network updates (that 
is, after 2N steps of the dynamics; center), and after ten network updates (right) with E = 103 edges, N = 2 × 104 nodes (for average degree ̅k = 0.1), and equal 
amounts of preferential and random attachment (p = 0.5). Solid lines depict predictions from the master equation (Eq. 1), and dashed line illustrates a 
power law for comparison. E–F) Trajectories of network size n E) and degree heterogeneity F) over the course of ten network updates (10N steps of the 
dynamics) for different values of p. Thick lines reflect individual simulations (beginning with random networks), and thin lines represent master equation 
predictions. Distributions in panels A, B, and D are computed over 100 simulations (see Supplementary Material).

A

B C D

Fig. 3. Analytic predictions in steady-state. A) Steady-state degree distributions for increasing proportions p of preferential attachment in networks with 
E = 103 edges and N = 2 × 104 nodes (for average degree k̅ = 0.1). Data points depict simulations (see Supplementary Material), solid lines reflect the 
analytic prediction in Eq. 3, and dashed lines illustrate power laws with the predicted exponents γ = 1 + 1

p. B–C) Network size n B) and degree heterogeneity 

C) as functions of p. D) Degree heterogeneity versus network size while sweeping over p. In panels B–D, data points are computed using simulations, 
dashed lines are calculated numerically using Eq. 3, and solid lines are analytic predictions in the limit of sparse connectivity k̅→ 0 (see Supplementary 
Material).
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analytic predictions). Our model thus predicts a specific inverse 
relationship between network size and heterogeneity (Fig. 3D), 
which we will be able to test in real networks. Together, these re-
sults establish analytically that our simple network dynamics give 
rise to scale-free structure with realistic exponents γ.

Modeling real networks
Ultimately, we would like to use our model to study real-world 
systems. To compare against static networks (such as those in 
Fig. 1A–B), we can set k̅ to match the average degree in the ob-
served system. This leaves one free parameter, the proportion p 
of preferential attachment, which we can fit to the degree distri-
bution of a given network (see Supplementary Material). For ex-
ample, the host–pathogen network is best described as arising 
entirely from preferential attachment (such that p = 1; Fig. 4A), 
while the transitions between words reflect 80% preferential at-
tachment (Fig. 4B). To analyze temporal networks (such as those 
in Fig. 1C–G, we fix the number of edges (here E = 103) and set 
the number of nodes in the model N to be the total number that 
appear in a given dataset. Fitting p to each degree distribution, 
we find the Flickr and Wikipedia networks are best described as 
arising from nearly equal amounts of preferential and random at-
tachment (such that p ≈ 0.5; Fig. 4C–D). In fact, despite only fitting 
one parameter, our simple model provides a surprisingly good de-
scription across a wide range of static and temporal networks (see 
Supplementary Material).

As we sweep over p, adjusting the ratio of preferential to ran-
dom attachment, the model predicts a specific tradeoff between 
the size of a network and its degree heterogeneity (Fig. 3D). 
Computing the average properties (over different snapshots) for 
each of the temporal networks, we find a similar inverse relation-
ship between network size and heterogeneity (Fig. 4E). If we in-
stead hold p fixed and sweep over the number of nodes N, the 
model also predicts the drop in degree heterogeneity observed in 
small networks (Fig. 4E, inset). Moreover, even at the level of indi-
vidual networks, we discover similar tradeoffs between size and 
heterogeneity across different snapshots (see Supplementary 
Material). We therefore find that our model not only captures 
the degree distributions observed in real-world systems (Fig. 4A– 
D; Supplementary Material), but it also predicts the relationships 
between different network properties (Fig. 4E).

Extensions and robustness
In designing the model (Fig. 2C), we sought the simplest dynamics 
that would self-organize to produce scale-free structure. Given 
this simplicity, there are a number of natural extensions one 
could explore. To investigate the impact of model extensions on 
the degree distribution P(k), we again consider the heterogeneity 
of degrees. In the original model (with the number of edges E 
held fixed), as we sweep over the proportion p of preferential at-
tachment and the number of nodes N (or, equivalently, the aver-
age degree k̅ = 2E/N), we arrive at a phase diagram for the 
network structure (Fig. 5A). As p and k̅ increase, the network dy-
namics produce degree distributions with heavier tails, thus in-
creasing the degree heterogeneity (Fig. 5A).

When performing preferential attachment, we note that these 
simple dynamics (Fig. 2C) rely on global information about the de-
grees of all the nodes in a network. In some scenarios, however, a 
node may only have access to local information about the degrees 
of nodes in its own neighborhood (for example, its neighbors and 
their neighbors; Fig. 5B) (49, 50). Restricting to local information, 

we find that the degree heterogeneity is significantly reduced for 
large p (when preferential attachment dominates) and small k̅ 
(when connections are sparse, and therefore local information be-
comes severely restrictive; Fig. 5C–D, top). By contrast, for k̅ ≳ 1, 
the networks are dense enough that local information is sufficient 
to generate heterogeneous degrees (Fig. 5C) and, indeed, scale-free 
structure (Fig. 5D, bottom).

Beyond global information, the original model also allows mul-
tiedges (where two nodes are connected by multiple edges; Fig. 5E, 
top) and self-loops (where a node connects to itself; Fig. 5E, bottom). 
If we disallow multiedges, the network dynamics still produce 
scale-free structure for all of parameter space besides p ≥ 0.9 
and k̅ ≫ 1 (when networks are both highly heterogeneous and 
dense; Fig. 5F, top). Similarly, if we disallow self-loops, the degree 
distribution is almost entirely unaffected (Fig. 5F, bottom). As a fi-
nal extension, when a node detaches from the network, rather 
than losing all of its connections, one could imagine that it only 
loses some fraction f (Fig. 5G). In the limit f = 0, the dynamics 
halt and the network becomes static. As f increases, so too does 
the degree heterogeneity, until at f = 1, we recover the original 
model (Fig. 5H). Indeed, as long as dying nodes lose a fraction f ≳ 
0.5 of their edges, the model still produces power-law degree dis-
tributions (Fig. 5I, bottom), which we confirm for different average 
degrees k̅ (see Supplementary Material). In combination, these re-
sults demonstrate specific ways that the network dynamics can 
be extended, restricted, and generalized, while still giving rise to 
scale-free structure.

Conclusion
Understanding how scale-free structure arises from fine-scale 
mechanisms is central to the study of complex systems. 
However, existing mechanisms typically require constant growth, 
an assumption that fails in many real-world networks. Even in 
networks that are usually viewed as growing, we show that indi-
vidual snapshots (which cannot grow without bound by defin-
ition) can still exhibit scale-free structure (Fig. 1). Here, we 
propose a minimal model in which scale-free structure emerges 
naturally through the self-organization of nodes and edges. By al-
lowing nodes to detach from the network, and letting connections 
rearrange under a mixture of preferential and random attach-
ment, we show (both analytically and through simulations) that 
the degree distribution develops a power-law tail P(k) ∼ k−γ 

(Fig. 2). Moreover, the scale-free exponent (which takes the simple 
form γ = 1 + 1

p) only depends on the proportion p of preferential at-
tachment and captures a wide range of values γ ≥ 2 observed in 
real systems (Fig. 3). In fact, despite containing only one free par-
ameter, the model provides a surprisingly good description of 
many real-world networks (Fig. 4; Supplementary Material).

However, due to the simplicity of the model, it does not have 
the flexibility to incorporate all of the processes observed in real 
network dynamics. By design, the numbers of nodes and edges re-
main fixed, and so our model may not apply to growing networks 
for which snapshots are not available. Similarly, because our 
model is based on node death and edge rearrangement (Fig. 2C), 
we do not address the birth and death of edges studied previously 
(40). Finally, in its current form our model only includes undirect-
ed edges, and thus does not apply to directed networks.

Despite these limitations, the simplicity of our model also 
means that it can be easily extended to include additional features 
and mechanisms. For example, here we investigate the effects of 
local information, multiedges, self-loops, and fractional edge re-
moval (Fig. 5). Future work can build upon this progress to develop 
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A

E F G H I

B C D

Fig. 5. Extending the original model. A) Degree heterogeneity of the original model (Fig. 2C) while sweeping over the preferential attachment proportion p 
and average degree k̅ for networks with E = 103 edges. B) Constraining to local information, each node can preferentially attach only to its neighbors and 
their neighbors. C) Relative change in degree heterogeneity after restricting to local information while sweeping over p and k̅. D) Degree distributions for 
the original model (Eq. 3; solid lines) and with local information (data points) for parameters p and ̅k indicated in panel B. E) Multiedges and self-loops are 
allowed in the original model. F) Relative change in heterogeneity when disallowing multiedges (top) or self-loops (bottom). G) When a node detaches from 
the network, rather than removing all of its edges, one could remove only a fraction f. H) Relative change in heterogeneity with fractional edge removal 
while sweeping over p and f (for networks of average degree ̅k = 1). I) Degree distributions for the original model (Eq. 3; solid lines) and with fractional edge 
removal (data points) for parameters p and f indicated in panel H. In all panels, values are computed using simulated networks with E = 103 edges (see 
Supplementary Material).

A C E

DB

Fig. 4. Comparing real and model networks. A–B) Degree distributions for static networks of host–pathogen relationships A) and word transitions B) (26, 
33). Solid lines reflect analytic predictions of our model (Eq. 3) with k̅ = 2E/N set to match the average degree in each network and p fit to the observed 
degree distribution (see Supplementary Material). C–D) Degree distributions for temporal networks of friendships on Flickr C) and hyperlinks on English 
Wikipedia D) (34, 35) compared to analytic model predictions (solid lines) with E = 103, N set to the number of nodes in each dataset, and p fit to the 
observed degree distributions. E) Degree heterogeneity as a function of network size n across the temporal networks listed in the Supplementary Material, 
where each data point represents an average over snapshots. Lines reflect numeric model predictions while sweeping over p (with ̅k→ 0) or sweeping over 
the number of nodes N (with p = 0.5; inset).
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new models for the emergence of scale-free networks. Beyond 
node degrees, we note that power-law distributions also arise in 
many other contexts, from the strengths of connections in the 
brain and the frequencies of words in language to the populations 
of cities and the net worths of individuals (18, 51). Do these power 
laws rely on the constant growth of a system? Or, instead, can 
scale-free distributions arise through the self-organization of ex-
isting resources? The framework presented here may provide fun-
damental insights to these questions.

Supplementary Material
Supplementary material is available at PNAS Nexus online.
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