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Abstract. Given uncertainties in physical theory and numerical climate simulations, the historical temperature
record is often used as a source of empirical information about climate change. Many historical trend analyses
appear to de-emphasize physical and statistical assumptions: examples include regression models that treat time
rather than radiative forcing as the relevant covariate, and time series methods that account for internal variability
in nonparametric rather than parametric ways. However, given a limited data record and the presence of internal
variability, estimating radiatively forced temperature trends in the historical record necessarily requires some
assumptions. Ostensibly empirical methods can also involve an inherent conflict in assumptions: they require
data records that are short enough for naive trend models to be applicable, but long enough for long-timescale
internal variability to be accounted for. In the context of global mean temperatures, empirical methods that
appear to de-emphasize assumptions can therefore produce misleading inferences, because the trend over the
twentieth century is complex and the scale of temporal correlation is long relative to the length of the data
record. We illustrate here how a simple but physically motivated trend model can provide better-fitting and more
broadly applicable trend estimates and can allow for a wider array of questions to be addressed. In particular,
the model allows one to distinguish, within a single statistical framework, between uncertainties in the shorter-
term vs. longer-term response to radiative forcing, with implications not only on historical trends but also on
uncertainties in future projections. We also investigate the consequence on inferred uncertainties of the choice of
a statistical description of internal variability. While nonparametric methods may seem to avoid making explicit
assumptions, we demonstrate how even misspecified parametric statistical methods, if attuned to the important
characteristics of internal variability, can result in more accurate uncertainty statements about trends.

1 Introduction

The physical basis of climate change is understood through
a combination of theory, numerical simulations and analy-
ses of historical data. Climate change is driven by radiative
forcing, a change in net radiation (downwelling minus up-
welling, often specified at the top of atmosphere) resulting
from an imposed perturbation of a climate in equilibrium,
for example by increasing the atmospheric concentration of
a greenhouse gas. The Earth’s response to forcing is complex
and not fully understood, in part due to physical uncertainties
in important feedbacks such as cloud responses (see the as-
sessment reports of the Intergovernmental Panel on Climate
Change (IPCC), e.g., IPCC, 2013).

Given the physical uncertainties inherent in all climate
simulations, the observed temperature record since the late
nineteenth century is often used as a source of empirical in-
formation about the Earth’s systematic response to forcing.
(Figure 1 shows one estimate of annually averaged global
mean surface temperatures from the past 136 years, along
with estimates of radiative forcings from various constituents
during that period, with the data sources described in Sect. 2.)
Analysis of the observed temperature record is complicated,
however, by the short available record of direct measure-
ments, by uncertainties in the historical radiative forcings
themselves, and by the internal temperature variability that
exists even in the absence of forcing. Statistical methods are
therefore required to quantify the information in the histori-
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cal record about the response to forcing: given the data, what
do we know about how global temperatures have warmed in
response to forcing, how much warming can we expect in
plausible future forcing scenarios, and how do we expect un-
certainties to change as we continue to observe the Earth’s
temperatures?

It can be helpful to divide approaches to using the ob-
served temperature record to understand aspects of mean
climate change into two categories. One common approach
involves assuming a physical model of the system. (Here
the term “model” encompasses anything from a simple en-
ergy balance model to a very complicated atmosphere–ocean
general circulation model (GCM).) Analysis then may in-
volve estimating statistical parameters in order to best fit
the observed record. Estimated parameters have statisti-
cal uncertainty because of the finite observational record
and the internal variability inherent in the climate sys-
tem, even were the model a perfect representation of re-
ality. Analyses of observed temperatures using simple or
moderately complex physical models include Wigley et al.
(1997), Gregory et al. (2002), Knutti et al. (2002), For-
est et al. (2002), Forest et al. (2006), Gregory and Forster
(2008), Padilla et al. (2011), Aldrin et al. (2012), Otto et al.
(2013), Rypdal and Rypdal (2014), Masters (2014), Lewis
and Curry (2015), Zeng and Geil (2016) and many oth-
ers. Analyses using GCMs are summarized in IPCC (2013)
chap. 10, and references therein.

Another category of approaches involves analyses that
are more empirical and appear to de-emphasize assumptions
about the underlying physics generating the observed tem-
peratures. Many studies use regression models that treat time
rather than radiative forcing as the covariate. This practice
is often used, for example, to test for significant warming
(e.g., Bloomfield, 1992; Smith and Chen, 1996; Løvsletten
and Rypdal, 2016) or for changes in warming trends (e.g.,
Foster and Rahmstorf, 2011; Cahill et al., 2015; Rajaratnam
et al., 2015); in general, regressions in time are widespread
in the literature (see also IPCC, 2013, especially chap. 2 Box
2.2, and references therein).

In both categories, analyses require characterizing internal
variability for the purpose of quantifying uncertainty, a task
that also involves assumptions. A typical approach is to as-
sume a statistical model for the dependence structure of the
noise, such as assuming an autoregressive moving average
(ARMA) noise model with a small number of parameters,
which is fit to the residuals of whatever trend model is being
used. Some authors, however, argue for nonparametric (re-
sampling or subsampling) methods for time series rather than
parametric approaches (e.g., Gluhovsky, 2011; Rajaratnam
et al., 2015)1. The argument is again that these approaches

1In this work we consider a parametric method to be any that
makes explicit assumptions about the functional form of the prob-
ability distribution that the data come from, described with a finite
number of statistical parameters. In particular, for the purposes of

are advantageous because they are ostensibly objective and
require fewer assumptions.

However, methods that de-emphasize assumptions, be they
physical or statistical, can be problematic in the climate set-
ting. While regressions in time are simple to apply and do not
appear to make explicit assumptions about how temperatures
should respond to forcing, these models both limit what can
be learned from the data and can result in misleading infer-
ences. Regressions in time are sensitive to arbitrary choices
(such as the start and end date of the data analyzed), cannot
be expected to apply over even modestly long time frames
and cannot in general reliably separate forced trends from
internal variability. Furthermore, in accounting for internal
variability, nonparametric methods for time series often re-
quire long data records to work well, and can be seriously un-
calibrated in data-limited settings with strong temporal cor-
relation, such as the setting we are discussing.

In the following, we illustrate two primary points. First,
we show that targeted parametric mean models that incor-
porate even limited physical information can provide better-
fitting, more interpretable, and more illuminating descrip-
tions of the systematic response of interest compared to ap-
proaches that de-emphasize assumptions. Second, we show
that parametric models for residual (i.e., internal) variation
can provide for safer and more accurate uncertainty quantifi-
cations in this setting than do approaches that de-emphasize
assumptions, even if the parametric model is misspecified, as
long as the parametric modeling is done with particular at-
tention towards the representation of low-frequency internal
variability. We believe that the analysis that we present is in-
formative, even if not maximally so, and we attempt to high-
light both complications with our analysis as well as impor-
tant sources of information about global warming that are ig-
nored in our approach. Parts of our analysis share similarities
with others listed above, especially with Rypdal and Rypdal
(2014) and Zeng and Geil (2016). In distinction to previous
papers, here we are primarily interested in contrasting what
can be learned using physically motivated models vs. those
that de-emphasize assumptions, as well as in emphasizing the
role that accounting for internal variability plays in inferring
uncertainties in mean trends. Our goals are to indicate direc-
tions in which statisticians can incorporate explicit modeling
to positive effect and to highlight what we view are some of
the important sources of uncertainty and information in this
problem.

This article is organized as follows. In Sect. 2, we intro-
duce the data sources used in our analysis. In Sect. 3, we
provide some background on modeling the historical global
mean temperature record and contrast a simple, minimally
physically informed model with a more empirical approach.

this work, we consider the class of low-order ARMA models to be
a parametric class. We consider a nonparametric method to be one
that attempts to make fewer distributional assumptions about the
data and does not involve a parametrized statistical model.
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Figure 1. (a) Estimates of annually averaged global mean surface temperature anomalies (relative to a base period of 1951–1980) from the
years 1880 to 2015. (b) Estimates of (top-of-atmosphere) effective radiative forcings from different constituents over this time period (the
“other” category includes O3, H2O, black carbon, contrails, and land use changes). Right, temperature anomalies vs. net radiative forcings
(c), vs. anthropogenic forcings (d), and vs. natural forcings (e). Data sources are described in Sect. 2. Despite the correlation in the plots of
temperature vs. radiative forcing, temperatures will depend on the full past trajectory of radiative forcings in a potentially complex way, as
we discuss in Sect. 3.

In Sect. 4, we highlight insights that can be gained from the
more informed approach, with an emphasis on probing dif-
ferent aspects of uncertainty in trends. In Sect. 5, through
synthetic simulations, we compare the performance of var-
ious parametric and nonparametric methods of uncertainty
quantification in the presence of temporal correlation in set-
tings similar to that of the historical temperature record. In
Sect. 6, we give some concluding remarks.

2 Background and data

This analysis requires estimates of historical global mean
temperatures and radiative forcings. To the extent that we are
interested in how temperatures may evolve in the future (and
how uncertainty in the response to radiative forcing evolves
as more data are observed), we also need radiative forcings
associated with a plausible future scenario.

2.1 Temperature

We use the Land–Ocean Temperature Index from the NASA
Goddard Institute for Space Studies (GISS) (Hansen et al.,
2010) in our primary analysis. The index combines land and
sea surface temperature measurements to estimate annual av-
erage global mean surface temperature anomalies (relative
to a base period from 1951 to 1980), extending from the
year 1880 to the present (comprising 136 years in total). Any
dataset of global mean temperature anomalies represents an
estimate of that quantity and is subject to some uncertainty.
Sources of uncertainty include the spatial coverage of the net-
work of measurements, interpolation schemes used to esti-
mate temperatures at unobserved locations, methods used to
incorporate different sources of data (e.g., land- vs. satellite-
vs. surface buoy- vs. ship-based data), and instrumental er-
rors. Sources of uncertainty in the GISS dataset are discussed
in Hansen et al. (2010). NASA GISS has made some attempt
to provide pointwise uncertainty estimates for their data (e.g.,
Fig. 9a of Hansen et al., 2010), but it is important to realize
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that errors will be correlated in time. That said, uncertainties
in the global mean temperature record are relatively small
compared to the changes in temperatures observed over the
20th century.

To evaluate the effects of uncertainty in the temperature
record, we repeat a small portion of our analysis using the
HadCRUT4 global annual temperature ensemble (Morice
et al., 2012), designed for that purpose (Sect. 4.5). (Some
sources of uncertainty are, however, common to both data
sources; a brief comparison of these two sources, as well
as one from the National Oceanographic and Atmospheric
Administration (NOAA), can be found in IPCC, 2013,
Sect. 2.4.3.)

2.2 Radiative forcing

The primary driver of climate change during the historical
period is changing atmospheric CO2 concentrations; radia-
tive forcing due to these changes scales approximately with
the logarithm of the ratio of the CO2 concentration at any
given time to its preindustrial level (e.g., Arrhenius, 1896).
However, variations in other agents also have non-negligible
forcing effects that must be taken into account to interpret
the historical record (aerosols from human sources or vol-
canoes, other greenhouse gases, etc.). In this work, we ag-
gregate the effects of different forcing agents by using their
estimated effective radiative forcing, the radiative imbalance
after rapid atmospheric adjustments. These adjustments are
intended to partially compensate for differing efficacies of
forcing agents. In practice, effective forcings are often treated
as though they may be combined additively. For effective
radiative forcings from 1750 to 2011, we use the estimates
in IPCC (2013) Table AII.1.2 (Fig. 1 only shows the forcings
after 1880, but the full available record is used in our anal-
ysis). From 2011 to 2015, we use the global CO2 concen-
trations from NOAA and treat radiative forcing from other
sources as constant during this period.

While historical concentrations of CO2 are relatively well
known, since CO2 is well-mixed and long lived, those of
other forcing agents, such as tropospheric aerosols, are more
difficult to measure because they are spatially heterogenous
and short lived. Uncertainties in forcings associated with tro-
pospheric aerosols are important because aerosol effects can
be negatively confounded with greenhouse gas effects (see
Fig. 1, bottom left). Generally, uncertainties vary by con-
stituent, as does the extent to which the estimates are de-
rived from model output vs. observations; see IPCC (2013)
chap. 8. The focus of this paper is on the information content
of the observed temperature record assuming known forc-
ings, but we make a limited attempt to discuss the effect of
uncertainty in the forcings (Sect. 4.5).

For a plausible future radiative forcing scenario, we use
the extended Representative Concentration Pathway scenario
8.5 (RCP8.5) (Riahi et al., 2011; Meinshausen et al., 2011),
where the change in radiative forcing from the preindustrial

level is 8.5 W m−2 by the year 2100 and levels off at around
12 W m−2 in the year 2250. In our simulations, we slightly
increase (by about 0.07 W m−2) the radiative forcings from
the RCP8.5 scenario in the 21st century to match what we
take to be the historical value in 2015, and we assume that
natural forcings remain constant after 2015.

2.3 Ocean heat uptake

The analysis here focuses on information provided solely
by the global mean temperature record and assumed known
forcings. We do not use additional potential sources of em-
pirical information, including estimates of ocean heat up-
take (discussed in, e.g., Forest et al., 2002 and Knutti et al.,
2002). Many empirical analyses of the historical record do
incorporate information about ocean heat content (e.g., Gre-
gory et al., 2002; Otto et al., 2013; Masters, 2014, and Lewis
and Curry, 2015). We compare results with these studies in
Sect. A1 in the Appendix.

3 Modeling trends in the observed global mean
temperature record

Evaluating the systematic response of global mean surface
temperatures to forcing is complicated by the long timescales
for warming of the Earth system. Because the Earth’s cli-
mate takes time to equilibrate, the near-term (transient or
centennial-scale2) climate response will be less than the
long-term (equilibrium or millennial-scale) response. The
evaluation is also complicated by the fact that historical ra-
diative forcings are not constant but rather evolve in time
(e.g., atmospheric CO2 increases). The physical lags in re-
sponse imply that the Earth’s global mean temperature at any
given time depends on the past trajectory of radiative forc-
ings (because the climate does not instantly equilibrate to the
present forcing).

A common framework is to decompose observed temper-
atures into two components: a systematic component chang-
ing in response to past forcings and a residual component
representing sources of internal variability. That is, for global
mean temperatures T (t) at time t ,

T (t)|{F (t ′); t ′ ≤ t} = f (F (t ′); t ′ ≤ t)+ ε(t), (1)

where f is an unknown functional of {F (t ′); t ′ ≤ t}, the col-
lection of past radiative forcings associated with each forcing
agent, and ε(t) is a residual process that has mean zero and
is correlated in time. Here we emphasize in our notation that
the systematic response of interest is the response conditional
on a given forcing trajectory. The problem, then, is how to

2Since the term transient climate response has a specific defini-
tion in the literature (see the Appendix for a discussion), we use the
term centennial-scale response to describe the systematic response
of temperatures to forcings on the mixing timescale of the mixed
layer of the ocean but not of the deep ocean.
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estimate the systematic response f using the historical tem-
peratures and forcings.

3.1 Regression models in time

Estimating a model like Eq. (1) is intractable without addi-
tional assumptions. As discussed above, one approach is to
resort to physical models. But if instead a more empirical
analysis of the observed data is desired, it is common prac-
tice to consider a surrogate regression on time itself, as stated
in Sect. 1. The implicit assumption here is that, when viewed
as a function of time, the systematic response to historical ra-
diative forcings is approximately linear in time, at least over
the considered time frame:

f (F (t ′); t ′ ≤ t)≈ α+βt, t ∈ [t0, t1], (2)

where α and β are unknown parameters and the trend is con-
sidered over the interval [t0, t1]. The linear time trend ap-
proach arguably involves assumptions about the forcing his-
tory in addition to the systematic response f : that the forcing
itself evolves approximately linearly in time (else the approx-
imation would not be appropriate).

The linear time trend model is widely used, and the gen-
eral sense is that such a model offers a way of testing for
statistically significant changes in mean temperature with-
out having to make physical assumptions and without hav-
ing to believe that the true forced response is linear in time
(e.g., Bloomfield, 1992 and Løvsletten and Rypdal, 2016).
The IPCC, accounting for the apparent appeal of the linear
time trend model, states that it “is relatively simple, trans-
parent and easily comprehended, and is frequently used in
the published research assessed here,” (IPCC, 2013 chap. 2,
Box 2.2), but suggests that linearity in time can at best be
viewed as an approximation expected to hold over a rela-
tively short period of time. It is well understood that neither
the observed temperature record nor the forcing history ap-
pear to evolve linearly over the full range of the data record
(Fig. 1, left), and most users of the linear time trend approach
confine their analysis to only the past few decades.

While the time trend model may be routine to apply, ap-
pear objective, and provide a good fit to the data, its use can
be precarious. A proper accounting of uncertainty in mean
temperature changes relies on distinguishing internal vari-
ability from systematic responses. The time trend model is
problematic in this respect. If the chosen time interval is
short, it can be difficult to distinguish between trends and
sources of internal variability that are correlated over longer
timescales than the chosen interval (implicitly recognized in,
e.g., Easterling and Wehner (2009) and Santer et al. (2011)
and explicitly discussed in a broader context in Wunsch,
1999). If the chosen interval is long and the systematic trend
is actually nonlinear in time, then assuming a linear model in
time will shift part of the systematic response to the residual
process and can therefore give the impression of excessive in-

ternal variability over long timescales (and hence excessive
uncertainty in trends).

Because the time trend model cannot be applied over long
time intervals for arbitrary forcing scenarios, it also does not
have a property that may be considered important for mak-
ing inferences: that we can learn more about the systematic
trend of interest by collecting more observations. There will
be only a finite amount of information about the system-
atic response within the interval [t0, t1] (this because sources
of internal variability will be positively correlated in time).
While this on its own does not invalidate the use of such a
model over some narrow time frame, it does mean that what
can be learned from the linear time trend model is necessar-
ily limited. More broadly, since the linear time trend model
does not map to a physical understanding of the relationship
between radiative forcing and global mean temperatures, ei-
ther during the time interval [t0, t1] or extending beyond it,
the questions that can be asked with this model are narrow.

Some argue that many of these problems may be overcome
by using a model that is nonlinear in time, such as a spline
or other nonparametric regression method. (The IPCC, for
example, appears to view nonparametric extensions as more
generically appropriate than the linear model.) Nonparamet-
ric regressions in time will appear to provide an even bet-
ter fit to the data than the linear trend model, but many of
the above arguments carry over to this setting. Such models
have limited interpretational value or ability to capture sys-
tematic (non-internal) trends, since they cannot generically
be expected to distinguish between the systematic trends of
interest and other, internal sources of long-timescale varia-
tion in the data. Collectively, these arguments suggest that
it is advisable to seek better motivated models if one is in-
terested in understanding the systematic response of global
temperatures to forcing.

3.2 A simple, physically based model for the
centennial-scale response to forcing

A typical approach is to use more complex models, includ-
ing full GCMs, to explain the systematic response of in-
terest. (Model output is also used in concert with observa-
tions in the context of “detection and attribution” studies; see,
e.g., chap. 10 of IPCC, 2013.) Some may object to this ap-
proach, however, out of a worry that the climate model has
already been tuned to match the observed historical temper-
ature trend or is otherwise conditioned on past temperature
observations (Knutti, 2008; Huybers, 2010; Mauritsen et al.,
2012). There is therefore value in a compromise approach be-
tween the linear time trend model and very complex numer-
ical simulations. In this work, we discuss a statistical model
that is easy to apply but that encodes some physical intu-
ition for the problem that makes the model interpretable and
hopefully applicable over longer time periods. The goal is to
show that even simple models incorporating limited physi-
cal information can provide more insight about temperature

www.adv-stat-clim-meteorol-oceanogr.net/3/33/2017/ Adv. Stat. Clim. Meteorol. Oceanogr., 3, 33–53, 2017



38 A. Poppick et al.: Estimating trends in the global mean temperature record

trends and their uncertainties given the observed data than
can regression models in time.

A commonly used, very simplified physical model for the
response to an instantaneous change in radiative forcing is
that temperatures approach their new equilibrium in expo-
nential decay. That is, writing Finst(t) for a step function that
changes at time t = 0,

f (Finst(t ′); t ′ < t)≈ µ0+ λ(1− ρt )1{t ≥ 0}, (3)

where λ is the change in equilibrium temperature, µ0 is the
mean temperature in the baseline state, and ρ controls the
rate at which the changes in temperatures approach λ, tak-
ing values between zero (instantaneous response time) and
1 (infinite response time). Equation (3) represents the re-
sponse function for a linear model of temperature change,
so is a natural first approximation for the evolution of tem-
perature in the case of small perturbations from steady state
(e.g., MacKay and Ko, 1997). In particular, Eq. (3) can be
interpreted as the solution to a simple energy balance model
that makes two assumptions: first, that the equilibrium tem-
perature change is linear in the forcing (i.e., that the linear
forcing feedback model holds) and, second, that the rate of
warming is approximately proportional to the heat uptake.
The model is overly simplified because the Earth shows re-
sponses at multiple timescales (e.g., Held et al., 2010; Olivié
et al., 2012; Geoffroy et al., 2013b) but can provide a rea-
sonable approximation for the response on timescales shorter
than those associated with full equilibration. In any case,
when convolved with a time-varying forcing trajectory, the
resulting model for the systematic response is an infinite
distributed lag model in the forcing trajectory with weights
decaying exponentially (e.g., Caldeira and Myhrvold, 2013;
Castruccio et al., 2014). Models based off of Eq. (3) have pre-
viously been considered for analyses of the observed global
mean temperature record (e.g., Rypdal and Rypdal, 2014;
Zeng and Geil, 2016).

We also use a model based off of Eq. (3) for the systematic
temperature response in the observed data:

f (F (t ′); t ′ ≤ t)≈ µ0+ λAh

(
ρA,

FA(t ′)
F2×

; t ′ ≤ t

)
+ λNh

(
ρN,

FN(t ′)
F2×

; t ′ ≤ t

)
, (4)

where

h(ρ,x(t ′); t ′ ≤ t)= (1− ρ)
∞∑
k=0

ρkx(t − k).

In model Eq. (4), λA and λN represent “sensitivities” to an-
thropogenic and natural forcings, FA and FN, respectively,
and have units of degrees Celsius temperature change per
forcing change F2× (the forcing associated with a doubling
of atmospheric CO2, approximately 3.7 W m−2). The param-

eter λA is similar to the equilibrium climate sensitivity3,
but will be estimated as somewhat lower than that quantity,
in part because the proposed model contains only a single
timescale of response to anthropogenic forcing (see the Ap-
pendix). Caldeira and Myhrvold (2013) and Castruccio et al.
(2014) used multiple timescales in modeling longer series
from GCM output, but we cannot distinguish these with only
136 years of data and given a smooth past trajectory of an-
thropogenic forcings. Response timescales to anthropogenic
and natural forcings are set by the parameters ρA and ρN
(taking values between zero and one). Model (4) should ap-
proximate temperature trends reasonably well up to centen-
nial timescales, but not at the millennial timescales at which
the deep ocean mixes.

Our approach differs from those in Rypdal and Rypdal
(2014) and Zeng and Geil (2016) in some important ways.
Zeng and Geil (2016) assumed that net radiative forcing is
a constant multiple of CO2 forcing, treat the ρ parameter
as known, and do not account for uncertainty due to inter-
nal variations that are correlated in time. Rypdal and Ryp-
dal (2014) suggested replacing the standard exponential de-
cay response used in model (4) with a power-law decay re-
sponse. The basis for this suggestion is an implicit assump-
tion that we do not make: that the same simplified model for
the climate’s systematic response to radiative forcing should
be used to model residual, internal variability as a response
to white noise forcing. More details on our uncertainty quan-
tification for model (4), including our model for internal vari-
ability, are given in Sect. 4.

In building model (4), we chose to separate natural and
anthropogenic forcings because they seem not strictly com-
parable (Fig. 1, right). First, there may be some evidence
that aerosol forcing from volcanic eruptions is less effica-
cious than CO2 forcing (Sokolov, 2006; Hansen et al., 2005;
Marvel et al., 2015). While we use estimates of effective ra-
diative forcing, which should compensate for efficacy, these
estimates do not include an adjustment for the volcanic forc-
ing. Moreover, the timescales of response associated with
these forcings may also be different, possibly because ocean
heat content responds differently to sudden and/or negative
changes in forcing (as produced by volcanic eruptions) com-
pared to more gradual and/or positive changes (as in con-
tinued anthropogenic emissions of CO2) (e.g., Gregory and
Forster, 2008; Padilla et al., 2011). We combine solar and
volcanic forcings out of convenience; the solar forcings do
change more rapidly than the anthropogenic forcings, and
in any case the magnitude of the changes in solar forcing
is small.

To illustrate the use of model (4), we fit it to different
segments of the observed global mean surface temperature
record and we compare it to the linear fits estimated over the

3The change in mean temperature associated with a doubling of
CO2 concentration, after a sufficiently long time that the climate
has reached a new equilibrium.
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Figure 2. Comparison of the fitted values for model (4) and the lin-
ear time trend model fitted to the global mean temperature record
over different time frames. (The fitted model Eq. 4 trends are ex-
tended back to 1880 regardless of the time frame used to fit the
model.) The linear model appears in agreement with model (4)
roughly after 1970, but not before. By contrast, model (4) produces
fairly stable estimates of the mean response during the 20th century,
although we note that the apparent fit to the data may be slightly
poorer in the earliest part of the record.

same time frames. Figure 2 shows the resulting fitted mod-
els using the data from 1970 to 2015, 1950 to 2015, and
1880 to 2015. The estimated trend from model (4) is rela-
tively insensitive to the time frame used. The estimated linear
time trends, on the other hand, differ markedly using differ-
ent time frames, and agree with model (4) only after around
1970, during the time period over which net radiative forc-
ing was evolving approximately linearly in time (see again
Fig. 1). The sensitivity of the inferred linear trend in global
mean temperature to the starting date has been previously
discussed (e.g., Liebmann et al., 2010). These results suggest
both that model (4) does indeed capture important aspects of
the underlying physical processes driving temperature trends
and that it therefore may be used to answer more interesting
questions than can the linear time trend model.

4 Trend and uncertainty: what can we learn from
applying our simple model to data?

In this section, we illustrate what can be learned by applying
the simple model (4) to observed temperatures. To do this,
we must introduce an additional model to capture internal
variability (ε(t) in the assumed true model Eq. 1). We then
use our full model to infer the parameters in model (4), to

evaluate their uncertainties given the data, and to explore the
implications for understanding temperature trends.

To diagnose features of internal variability, spectral analy-
sis is an intuitive framework, since the frequency properties
of internal variability are tied to uncertainties in trends: un-
certainty in smooth trends is more strongly affected by low-
frequency than high-frequency internal variability. Figure 3,
left, shows the raw periodogram associated with the residu-
als from model (4) and a smoothed estimate of the spectrum.
We also show the spectra associated with fitting the residu-
als to two models for the internal variability. Both are stan-
dard autoregressive-moving average (ARMA) models (Sup-
plement Sect. S3 includes a definition), allowing for depen-
dence between the noise at each time step with the noise for
past values. The two models we compare are an ARMA(4,1)
and an AR(1) model, which were chosen according to com-
mon information criteria used for selecting time series mod-
els: respectively, the small sample-corrected Akaike infor-
mation criterion (AICc) (Hurvich and Tsai, 1989) and the
Bayesian information criterion (BIC) (Schwarz, 1978). (See
Table S1 in the Supplement for the coefficient estimates, in-
novation standard deviations, and AICc and BIC associated
with these two models.) Both models appear to fit the data
reasonably well; the ARMA(4,1) model arguably overfits at
the higher frequencies, but the AR(1) model may be under-
estimating variability at the lowest frequencies. Since low-
frequency variability is most important to uncertainties in
smooth trends, we adopt the more conservative choice of us-
ing the ARMA(4,1) model. Figure 3, right, shows the nor-
mal quantile–quantile (Q–Q) plot for the sample innovations
from this model; there is evidence that the innovations are
somewhat more light-tailed than Gaussian, so standard er-
rors based on a Gaussian assumption should not be overopti-
mistic.

Using the fully parametric model, combining Eq. (4) and a
Gaussian ARMA(4,1) noise model, we proceed with uncer-
tainty quantification through a parametric bootstrap4. When
applied to our model of the historical temperature record, the
parametric bootstrap distribution shows, unsurprisingly, that
in a relatively short time series and given a smooth past tra-
jectory of forcings, it is difficult to distinguish between a cli-
mate with both a high sensitivity (large value of λ) and slow
response (large value of ρ) vs. one with a lower sensitivity
(smaller value of λ) but a faster response (smaller value of
ρ). The estimates λ̂A and ρ̂A are therefore strongly depen-
dent, with λ̂A increasing explosively as ρ̂A→ 1 (Fig. 4 shows
their bivariate parametric bootstrap distribution). The strong
nonlinear relationship between these two parameters, and the
high degree of skewness in the marginal distribution of λ̂A,

4A parametric bootstrap involves generating repeated, synthetic
simulations under the fitted statistical model and then refitting the
model to each simulated time series to obtain new estimates of
model parameters. The distribution of those estimates then gives
a measure of the uncertainty in the original estimates.
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Figure 3. (a) The raw periodogram of the residuals from model (4), a filtered periodogram (twice applying a moving average of width 5),
and the power spectra associated with fitted ARMA(4,1) and AR(1) models. The dashed lines are at ±2 standard errors associated with
the filtered periodogram. The ARMA(4,1) model appears to more realistically represent low-frequency variation in the residuals, which is
crucial for inferences about trends. (b) Normal quantile–quantile plot for the ARMA(4,1) sample innovations. There is some evidence that
the innovations are light-tailed compared to the normal distribution.
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Figure 4. Distribution of the parametric bootstrap estimates of λA
and ρA from model (4). It is difficult to distinguish between the rate
of response and the sensitivity using only global mean temperatures
from the recent past.

are the reasons that we rely on bootstrapping for uncertainty
quantification, as the typical appeals to asymptotic normality
are not viable in this setting.

In the following, we will represent uncertainties using the
simple bootstrap percentile method. The percentile method
is subject to criticism (e.g., Hall, 1988). We have found,
however, that adjusting the percentile method using a nested
bootstrap results in narrower confidence limits. For this rea-
son, we believe that the raw percentile-based intervals may
be conservative in this setting, so we choose to report the ap-
parently conservative intervals. Our point estimates are based
on a two-step procedure wherein model (4) is estimated via
least squares and the ARMA(4,1) model is estimated via

maximum likelihood on the residuals. While this procedure
may be somewhat suboptimal compared to jointly estimating
the mean and covariance structure, the two-step procedure is
substantially faster, which is important for carrying out the
nested bootstrap.

4.1 Uncertainties in the sensitivity parameters

When using the full 1880–2015 global mean surface tem-
perature record, the point estimate for the centennial-scale
sensitivity to anthropogenic forcing is λ̂A = 1.8 ◦C per dou-
bling, with ρ̂A = 0.80 (which implies mixing on decadal
timescales). The estimated sensitivity to natural forcing is
much smaller, λ̂N = 0.21 ◦C per doubling with ρ̂N = 0.58. In
this section, we discuss uncertainties in these estimates.

Using our statistical model, the historical data appear to
provide a lower bound for λA (assuming for now that the
forcings are known) but cannot rule out extremely large and
implausible values on the order of tens or hundreds of de-
grees per doubling (the 2.5–97.5th bootstrap percentile inter-
val is 1.5 to 690 ◦C per doubling). These very large values
are not supported by evidence from the paleoclimate record
(e.g., IPCC, 2013 chap. 5) and the approximation of the
linear forcing feedback model, on which Eq. (4) implicitly
relies, breaks down under high sensitivity (Bloch-Johnson
et al., 2015). The large upper bound should therefore be in-
terpreted only as a statement about the information in the his-
torical global mean temperature data under the strict assump-
tion that model (4) holds exactly. For the sensitivity to natu-
ral forcings, the data cannot rule out λN = 0 (the 2.5–97.5th
bootstrap percentile interval is −1.1 to 4.1 ◦C per doubling).
Table 1 gives some intervals at different percentiles for the
parameters λA and λN. (The parameters ρA and ρN are es-
sentially unconstrained by the data.)

The IPCC’s own 66 % “likely” interval for equilibrium
sensitivity is 1.5 to 4.5 ◦C per doubling, which subjectively
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Table 1. Parametric bootstrap percentile intervals for the sensitivi-
ties in model (4), λA and λN, to anthropogenic and natural sources,
respectively (in units ◦C per doubling). The data appear to provide a
lower bound for λA, but cannot rule out even implausibly large val-
ues; the very large values are associated with slow responses (see
Fig. 4). The data cannot rule out λN = 0, likely because there are
few prominent volcanic eruptions in the historical record analyzed
and the response to volcanic aerosols may be small.

λ̂A = 1.8 λ̂N = 0.80
Percentile interval Lower Upper Lower Upper

5–95 (90 %) 1.5 3.0 −0.15 1.5
2.5–97.5 (95 %) 1.5 690 −1.1 4.1
0.5–99.5 (99 %) 1.4 790 −13 490

combines estimates from various sources using multiple lines
of evidence, including ensembles of models with different
physics, and accounts for other sources of uncertainty that
we have so far ignored, such as uncertainty in the forcings
themselves (see IPCC, 2013, Sect. 10.8.2 and Box 12.2). The
bulk of the distribution of our estimate is somewhat narrower
than the IPCC’s, likely because so far we have not accounted
for uncertainty in radiative forcings; however, the IPCC rules
out the very large and unphysical values in the right tail of
our intervals. We here stress again that since we are estimat-
ing the centennial-scale response, the estimates of the sen-
sitivity that we provide will tend to be lower than the equi-
librium sensitivity estimated in the IPCC’s interval (see the
Appendix, which also compares our estimates to other ob-
servationally based estimates of a sensitivity parameter). In-
dividual estimates of the equilibrium climate sensitivity and
associated uncertainty in the literature are discussed in IPCC
(2013) Sect. 10.8.2 (see also again the Appendix).

The main source of uncertainty in the upper bound for
λA is due to uncertainty in the “equilibration time” of the
climate associated with smoothly increasing anthropogenic
forcing, controlled by ρA. If we restrict ρA to, say, centen-
nial scales or smaller, then the uncertainty is substantially
decreased (see again Fig. 4). One may argue through other
lines of evidence and reasoning that extremely large values
of ρA and λA are implausible, but the statistical model is be-
ing used to quantify the information content of the historical
temperature record. The fact that additional sources of infor-
mation are needed to exclude unphysical values suggests that
even our minimally informed model may be overly empiri-
cal for some purposes. The inability of the data to rule out
λN = 0 is, on the other hand, probably due to the fact that
there are few prominent volcanic eruptions in the historical
record analyzed and that the response to volcanic aerosols
may be small for the reasons discussed above.

Year

Te
m

pe
ra

tu
re

 a
no

m
al

y 
(

C
)

°

1900 2000 2100 2200 2300

0
5

10
15

20
25

30

Figure 5. Projected mean temperature anomalies, and their un-
certainties, under the RCP8.5 scenario, based on estimates from
model (4) and assuming ARMA(4,1) noise. The black curve shows
the observed temperatures. Intervals are pointwise (2.5–97.5)th per-
centile intervals. Radiative forcing stabilizes in the year 2250, but
mean temperatures and especially their uncertainties continue to
increase. While uncertainties in the long-term response are quite
large, due largely to the inability to rule out implausible values of
λA, the historical and near-term response is much more certain.

4.2 Uncertainties in near- and long-term trends

The uncertainties in the sensitivity and rate of response pa-
rameters imply greater uncertainties in projected longer-term
future trends in global mean temperature than in the his-
torical and near-term projected trends. To illustrate this, we
examine the implied future trends under the hypothetical
(extended) RCP8.5 scenario, in which radiative forcing in-
creases and then stabilizes in the year 2150. We simulate
new time series using our estimates of model (4) and the
ARMA(4,1) noise model, given radiative forcings from this
scenario. The projected trend and associated pointwise un-
certainties are shown in Fig. 5.

Projected mean temperatures, and especially their associ-
ated uncertainties, continue to increase even after stabiliza-
tion of forcing. This is a consequence of the joint uncertainty
in λA and ρA, and in particular of the inability to rule out im-
plausible values of these parameters. If the goal, then, is to
provide a long-term projection of mean temperatures given
only the historical temperature record, these estimates will
unsurprisingly be quite uncertain (even assuming known past
and future forcings).

On the other hand, trends in the historical and near-term
response are much more certain. The observations strongly
suggest that mean temperatures increased in the 20th century;
for example, the (2.5–97.5)th percentile interval for the mean
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Table 2. Evaluation of how uncertainty in the sensitivity parameter,
λA, decreases as more data are observed, from simulations under the
RCP8.5 scenario of future radiative forcing with an assumed value
of λA = 1.8 ◦C per doubling. The middle column shows the (2.5–
97.5)th percentile intervals for λA from simulations under the fitted
model (4) and ARMA(4,1) noise. The rightmost column shows the
increase in mean temperatures from the preindustrial climate under
the fitted model at the year in question. Uncertainties in the upper
bound of λA decrease relatively slowly as more data are observed.

End year
(2.5–97.5)th percentile Change in mean

(◦C per doubling) from preindustrial (◦C)

2025 (1.5, 16) 1.3
2050 (1.6, 11) 2.2
2075 (1.6, 2.8) 3.1
2100 (1.7, 2.0) 3.9

response in the year 2000 (expressed compared to the 1951–
1980 average) is well above zero at (0.4,0.6) ◦C. (The 30 year
average of the data around the year 2000 gives an anomaly of
0.5 ◦C, in line with our estimate using model Eq. 4.) These
kinds of distinctions between the uncertainty in the near- and
longer-term mean responses are not easily made using a time
trend model.

4.3 Decreasing uncertainty in the sensitivity parameter
as more data are observed

We have shown that the short historical temperature record
alone produces fairly uncertain estimates of the sensitivity
parameter, λA in model (4) (Fig. 4, Table 1), and therefore
longer-term temperature trends (Fig. 5). We now examine
how these uncertainties decrease as the temperature record
increases (as in, e.g., Kelly and Kolstad, 1999; Ring and
Schlesinger, 2012; Padilla et al., 2011; Urban et al., 2014;
Myhre et al., 2015). To do this, we artificially extend the tem-
perature record by generating new synthetic time series us-
ing the mean and noise models estimated from the historical
data and forcings from the same RCP8.5 scenario described
above. We then re-estimate model (4) for each synthetic se-
ries, using successively longer synthetic datasets. The results
suggest that the data will not constrain the upper bound on
the sensitivity parameter until another ∼ 50 years, by which
time (under our estimated model and the RCP8.5 scenario)
temperatures will have already risen by about 3 ◦C from the
preindustrial climate. A summary of the evolution of uncer-
tainties is given in Table 2.

These estimates could be more strongly constrained by us-
ing additional physical information. As discussed previously,
the very high sensitivity estimates in the bootstrap distribu-
tion are cases where the estimated response time is unphysi-
cally long. Without external information about this timescale,
however, long data records are required to rule out the large
values of ρA and λA that the model entertains.

4.4 Is there evidence of long memory internal variability
in global mean temperatures?

One of the complicating factors in estimating trends in cli-
mate time series is the question of whether global mean tem-
peratures exhibit long memory. Long memory processes have
power spectra that behave like (2sin(ω/2))−2d as the fre-
quency ω→ 0, with d > 0 (i.e., infinite power at the fre-
quency zero). When d < 1 the process has finite total vari-
ance, as would be expected for a variable like global mean
temperature. For more details on long memory processes,
see Beran et al. (2013). By contrast, short-memory processes
(like the ARMA(4,1) model we assume), have finite power
at the origin. Many authors have suggested that internal tem-
perature variability is well-modeled by processes with long
memory but finite variance (e.g., Frankignoul and Hassel-
mann, 1977; Bloomfield, 1992; Smith and Chen, 1996; Gil-
Alana, 2005; Lennartz and Bunde, 2009; Fraedrich et al.,
2009; Rypdal and Rypdal, 2014; Løvsletten and Rypdal,
2016,). Some authors have moreover claimed that global
mean temperatures are well-modeled by a random walk (e.g.,
Gordon, 1991), as has at least one standard time series text-
book (Shumway and Stoffer, 2013), which would imply that
global mean temperatures do not have a finite variance over
time. In either case, if the Earth’s temperatures exhibited long
memory, it would be more difficult to estimate trends than
in the short memory case, since low-frequency variability
would then be more difficult to distinguish from trends.

The evidence for long memory, however, strongly depends
on the assumed trend model. Many of the aforementioned au-
thors draw their conclusions by assuming a linear time trend
model and applying that model to the temperature record on
durations of decades to over a century. (One notable excep-
tion is Rypdal and Rypdal, 2014, but they only compare long
memory noise models to AR(1) models.) As discussed pre-
viously, a linear trend model applied to a time series with
a nonlinear trend will imply excessive low-frequency noise.
Figure 6 shows the periodograms of the residual global mean
temperatures after removing either a linear time trend or a
trend of the form of Eq. (4). While the high-frequency be-
havior of the residuals is not much affected by the choice
of trend model, the low-frequency behavior is very much af-
fected. Apparent low-frequency variability is made more se-
vere by assuming that mean temperatures increase linearly in
time.

The question of long memory cannot be definitively settled
using a dataset of only 136 observations, and other analyses
make use of longer climate model runs or the paleoclimate
record (e.g., Mann, 2011). Nevertheless, it should be clear
that the linear time trend model is especially problematic for
this purpose. In general, regression models in time, linear, or
otherwise, have a danger either of mistaking systematic trend
for apparent low-frequency variability (as just described), or
of mistaking low-frequency variability for systematic trend
(as would occur, for example, when using a nonparametric
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Figure 6. Raw periodograms of residuals from models (2) (dashed)
and (4) (solid) fit to the full data record. There is substantially
more low-frequency variability in the residuals from the linear trend
model than in the residuals from model (4). Misspecified mean
models will give a misleading impression of low-frequency vari-
ability, and therefore misleading uncertainties associated with the
mean trend.

regression with too small of a smoothing bandwidth). Ei-
ther can lead to misstated uncertainties, and therefore can be
problematic even if the claim is that the trend model is only
being used to test for significant warming and that the model
is not believed to be true.

4.5 Implications of uncertain inputs: radiative forcing
and temperatures

The analysis thus far has assumed that both radiative forc-
ings and temperatures are known exactly, but uncertainty in
the sensitivity and in trends also propagates from uncertainty
in these quantities. We therefore discuss at least roughly the
potential implications of imperfect knowledge of these in-
puts.

Of the two factors, uncertainty in radiative forcings, par-
ticularly from aerosols, is more consequential, especially for
the inferred lower bound of the sensitivity parameter from
model (4). The importance of radiative forcing uncertainty
for uncertainties in climate sensitivity has been widely noted
(e.g., Gregory and Forster, 2008; Padilla et al., 2011; Otto
et al., 2013; Masters, 2014; Lewis and Curry, 2015; Myhre
et al., 2015). The trajectory of net effective radiative forcing
from anthropogenic sources is poorly known; the IPCC states
that the difference in net effective radiative forcing from an-
thropogenic sources between the years 2011 and 1750 was
about 2.29 W m−2 with a 95 % confidence interval of 1.13
to 3.33 W m−2. We explore the implications of this uncer-
tainty by simply scaling the entire trajectory of net radia-
tive forcings from 1750 to the present such that the uncer-
tainty in 2011 is as stated. Adjusting aerosol forcings to the

high or low ends, respectively, produces sensitivity estimates
from Eq. (4) varying by over a factor of 2, from 1.2 to 3.7 ◦C
per doubling (vs. the original estimate 1.8 ◦C). The aerosol
uncertainty appears important; the value 1.2 ◦C per doubling
is lower than all of the bootstrap values of λA generated as-
suming known forcings (Fig. 4 and Table 1).

Uncertainties in the global mean surface temperature
record are comparatively less important. To partially address
this issue, we re-estimate model (4) using each of the 100
ensemble members of the HadCRUT4 global mean temper-
ature ensemble. The point estimates of λA range from 1.5
to 2.1 ◦C per doubling, with estimates of ρA ranging from
0.79 to 0.90. The point estimates of λN range from 0.71 to
20 ◦C degrees per doubling, with estimates of ρN ranging
from 0.86 to 0.996. The additional uncertainty induced by
observational uncertainty in the temperature record is smaller
than either the uncertainty induced by internal temperature
variability or the uncertainty in radiative forcings.

4.6 Bayesian methods

Some of the uncertainties discussed so far could be addressed
in a Bayesian framework (as in, e.g., Forest et al., 2002, 2006;
Padilla et al., 2011; Aldrin et al., 2012) although we do not
pursue that approach here. For example, the effects of uncer-
tainties in temperatures and radiative forcings could be mod-
eled hierarchically, and outside information could be used to
constrain long-timescale responses not informed by the data.
We have instead chosen here to focus on the information con-
tained in global mean temperature observations about trends
to illustrate some important sources of uncertainty in empir-
ical analyses even assuming known inputs.

5 Parametric vs. nonparametric uncertainty
quantification

In Sects. 3 and 4, we showed that analyses of the Earth’s sys-
tematic temperature response are better informed by making
physical assumptions than by an ostensibly more empirical
approach. In this section, we ask a similar question about
characterizing internal variability, in settings similar to that
discussed, where data are temporally correlated and limited
in length. We used a Gaussian ARMA(4,1) noise model in
Sect. 4; while we do not claim a physical motivation for this
model, the model does make relatively strong statistical as-
sumptions. Is it more robust to assume a low-order paramet-
ric model for the noise, as we have done, or to adopt a non-
parametric approach? The answer to this question depends
on the length of the data record and the nature of the internal
variability.

For the purposes of this illustration, we will use not the ac-
tual temperature record but rather some simple synthetic ex-
amples. We consider several artificial, trendless time series
(the true mean of the process is constant) with temporally
correlated noise, and evaluate the results of testing for a lin-
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ear time trend (i.e., fitting model Eq. 2 and testing against the
null hypothesis that β = 0) using different parametric (both
correctly specified and not) and nonparametric methods for
estimating uncertainties. The ordinary least-squares standard
errors, which assume uncorrelated noise, tend to be anti-
conservative (too small) and time series methods are sup-
posed to ameliorate this overconfidence, but may or may not
be successful in this regard depending on the context. The il-
lustrations are simple but our conclusions should be relevant
to actual data analysis and to more informed models.

We consider a few parametric approaches common in time
series analysis. The typical practice is to assume that the
noise follows a low-order model, such as an ARMA model.
Ideally, the noise model would be chosen (as in Sect. 4) in
consultation with diagnostic plots and an information crite-
rion like the AICc that balances model fit with the number
of statistical parameters. However, it is common practice to
automatically select a model either solely by minimizing the
AICc or another criterion, or just to assume a simple time se-
ries model, often the AR(1) model. Uncertainty in the trend
parameter(s) can then be estimated in several ways. Usu-
ally, this is done assuming asymptotic normality for maxi-
mum likelihood estimators, and a test might be carried out
using a t statistic. If asymptotic normality is not viable, as
for model (4), an alternative is to resort to using a parametric
bootstrap (again as we do in Sect. 4) and to perform the test
using bootstrap p values.

We also evaluate the perhaps most typical nonparametric
method for accounting for dependence in a time series, the
block bootstrap (Kunsch, 1989). Here, residuals are resam-
pled in blocks to generate bootstrap samples that retain much
of the dependence structure in the original data. A popular
variant is the circular block bootstrap (Politis and Romano,
1992), in which blocks can be overlapping and blocks start-
ing at the end of the time series wrap back to the beginning.
The block bootstrap has been a common method in the cli-
mate and atmospheric sciences for at least 2 decades (Wilks,
1997) and has been applied previously to test for time trends
(or changes thereof) in the global mean surface temperature
record. For example, Rajaratnam et al. (2015) argued that
the circular block bootstrap gives better uncertainty estimates
than does a parametric analysis in the setting of testing for a
trend in a 16-year segment of the global mean temperature
record.

While the block bootstrap works very well in some set-
tings, the procedure is not free of assumptions. Like other
variants of the nonparametric bootstrap, its justification is
based on an asymptotic argument; for the block bootstrap to
work well, the size of the block has to be small compared to
the overall length of the data but large compared to the scale
of the temporal correlation in the data. When the overall data
record is short and internal variability is substantially pos-
itively correlated in time, as for the historical global mean
temperature record, these dual assumptions may not both be

met and we should not expect the block bootstrap to perform
well.

In the following, we compare five methods (four paramet-
ric and one nonparametric) for generating nominal p values
testing for a significant linear time trend in trendless syn-
thetic data: (a) a t test assuming independent noise, (b) a t
test assuming Gaussian AR(1) noise, (c) bootstrap p values
from a parametric bootstrap assuming Gaussian AR(1) noise,
(d) a t test assuming Gaussian ARMA(p,q) noise with the
order chosen by minimizing AICc, and (e) bootstrap p values
from a circular block bootstrap. We generate synthetic data
from three different time series models, but in cases (b) and
(c), the assumed parametric model is always AR(1). (Table
S2 summarizes the models from which we simulate, which
were chosen in part to share a similar strength of correla-
tion with the observed global mean temperature record.) In
cases (a), (b), and (d), the t test degrees of freedom are ap-
proximated by n− 2 minus the number of parameters in the
noise model. The parametric models in cases (a) through (d)
are all estimated via maximum likelihood. In case (e), we es-
timate p values using a few different block lengths and show
the results most favorable to the block bootstrap.

After generating nominal p values, we evaluate the per-
formance of the different methods. Since the null hypothesis
is true in this artificial setting (the synthetic series are trend-
less), a correct p value would be uniformly distributed. Devi-
ations from the uniform distribution would then be a sign that
the procedure generating the nominal p value is uncalibrated.
We therefore use Q–Q plots to compare the distribution of
the simulated nominal p values with the theoretical uniform
distribution. Uncertainties are underestimated when the nom-
inal p value quantiles are smaller than the theoretical quan-
tiles (i.e., when the Q–Q plot is below the one-to-one line).
In this situation, inferences are anti-conservative and the tests
using the selected method will have type I error rates that are
larger than the nominal rate.

5.1 Parametric vs. nonparametric methods under a
correctly specified noise model

We first compare the performance of the five methods for
generating nominal p values in the setting where the as-
sumed AR(1) model is correctly specified (Fig. 7). Unsur-
prisingly, pre-specified parametric time series methods give
reasonably calibrated inferences when the parametric model
is correctly specified (Fig. 7, rows 2 and 3), although maxi-
mum likelihood gives somewhat anti-conservative estimates
of uncertainty with small sample sizes. The anti-conservative
bias of the maximum likelihood estimator can be reduced
by instead using restricted maximum likelihood (REML)
(e.g., McGilchrist, 1989) (see Supplement S4), but we fo-
cus here on the performance of maximum likelihood because
it is more usually the procedure employed. It is also unsur-
prising that p values under assumed independence are quite
uncalibrated and anti-conservative in this setting (Fig. 7, top
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row) because standard errors are underestimated when posi-
tive temporal correlation is ignored.

It may, on the other hand, be surprising that automati-
cally chosen parametric methods and nonparametric meth-
ods (blind selection via AICc and the block bootstrap; Fig. 7,
rows 4 and 5) can perform even more poorly than assuming
independence if the sample size is very small. The AICc does
improve on the AIC (not shown) by attempting to account for
small sample biases, but still performs poorly in very small
samples. The (nonparametric) block bootstrap is the worst-
performing method at the smallest sample sizes while osten-
sibly based on the weakest assumptions. For either of these
methods to perform comparably to the pre-specified paramet-
ric methods, sample sizes must be quite large, indeed in this
illustration larger than the available global mean temperature
record. This should serve as a warning against using these
methods for time series of modest length.

In actual practice, it can be advantageous, as we already
discussed, to choose a noise model not automatically but in
consultation with diagnostics (such as by comparing theo-
retical spectral densities with the empirical periodogram). In
Sect. 4, we chose a noise model with consideration for the
model’s representation of low-frequency variability. In that
example, the chosen model did minimize the AICc, but gave
more conservative inferences than the AR(1) model (which
was chosen by BIC). The illustration above shows that this
behavior is not generically true and that for small sample
sizes it is dangerous to blindly select models by minimizing
an information criterion alone.

5.2 Parametric vs. nonparametric methods under a
misspecified model

The comparisons in the previous section were too favorable
to the pre-specified parametric methods because the order of
the specified noise model (an AR(1) model) was known to be
correct. Now we compare these methods when the assumed
noise model is misspecified. The performance of misspeci-
fied methods will depend in particular on how the misspec-
ified model represents low- vs. high-frequency variations in
the noise process. Models that underestimate low-frequency
variability will tend to be anti-conservative for estimating
uncertainties in smooth trends, whereas those that overes-
timate low-frequency variability will tend to be conserva-
tive. We therefore repeat the illustrations in the previous sec-
tion generating the synthetic time series from two different
noise models (but still using the pre-specified AR(1) model
to generate nominal p values). The two models are chosen so
that their best AR(1) approximations either under- or over-
represent low-frequency variability. Figure 8 shows the spec-
tra corresponding to these two noise models and the best
AR(1) approximation to each, and Figs. 9 and 10 showQ–Q
plots corresponding to how the various time series methods
perform in these two settings. See the supplement Table S2
for the model parameters and Sect. S2 for a comparison un-

der two additional models, including when the true model is
the ARMA(4,1) model we assume in our main analysis of the
global mean temperature record.

First, we consider an ARMA(1,1) process, whose best
AR(1) approximation over-represents low-frequency vari-
ability (Fig. 9). The results are similar to those when the
model was correctly specified, except that at the largest sam-
ple sizes the pre-specified parametric methods slightly over-
estimate uncertainties, for the reasons discussed above. As
before, both blind selection via AICc and the block bootstrap
perform well for large sample sizes but very poorly for the
smallest sample sizes.

Second, we consider a fractionally integrated AR(1) pro-
cess; because this is a long-memory process, the best
AR(1) approximation (and indeed any ARMA model) will
severely under-represent low-frequency variability (Fig. 10).
All of the methods struggle in this setting and produce
anti-conservative estimates, but the pre-specified paramet-
ric methods still typically perform better than the ostensibly
more flexible methods.

These results confirm that approaches to representing
noise that appear to weaken assumptions are not guaranteed
to outperform even misspecified parametric models. Mis-
specified parametric models are most dangerous when low-
frequency variability is under-represented, but methods like
the block bootstrap will also have the most trouble when low-
frequency variability is strong because very long blocks will
be required to adequately capture the scale of dependence
in the data. While it is crucial for the data analyst to scruti-
nize any assumed parametric model, we believe that in many
settings when the time series is not very long relative to the
scale of correlation, one will be better served by carefully
choosing a low-order parametric model rather than resorting
to nonparametric methods.

Note that this illustration uses synthetic simulations that
are relatively strongly correlated in time, a feature of the
global mean temperature record. Nonparametric methods can
work better than illustrated here in settings where correla-
tions are weaker. For example, local (rather than global) tem-
peratures, at least over land, tend to be more weakly cor-
related in time. In general, it is useful to evaluate the per-
formance of statistical methods with simulations that share
characteristics with the relevant real data.

6 Conclusions

We have sought to show here that targeted parametric mod-
eling of global mean temperature trends and internal vari-
ability can provide more informative and accurate analyses
of the global mean temperature record than can more em-
pirical methods. Since all analyses involve assumptions, it is
important to consider the role that assumptions play in result-
ing conclusions. In the setting of analyzing historical global
mean temperatures, where the data record is relatively short
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Figure 7. Quantile–quantile plots comparing the distribution of nominal p values to the theoretical uniform distribution. Simulations are
of mean zero, Gaussian AR(1) time series and p values correspond to a two-sided test for a linear time trend. The length of the time series
is given above each column. In the first row, the p values are from the OLS t test assuming independent noise; the second row is the t
test assuming AR(1) noise; the third row uses a parametric bootstrap (again assuming AR(1) noise); the fourth row uses a t test assuming
ARMA(p,q) noise with the order of the model selected by AICc; and the last row uses a circular block bootstrap with block size chosen to
be favorable to this method. The p values calculated assuming the correct parametric model appear approximately correct for modest sample
sizes and always outperform both blind selection by AICc and the block bootstrap. The latter two methods can be worse than assuming
independence when sample sizes are very small.
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Figure 8. The power spectra associated with the two models from which we generate synthetic time series in Sect. 5.2, along with spectra of
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illustrations of the performance of the various time series methods are shown in Figs. 9 and 10. The AR(1) model will tend to overestimate
low-frequency variability in the first case and underestimate it in the second.

and temporal correlation is relatively strong, ostensibly more
empirical methods can fail to distinguish between systematic
trends and internal variability, and can give seriously uncali-
brated estimates of uncertainty. While linear-in-time models

can be used for some purposes when applied to moderately
narrow time frames (and with careful uncertainty quantifica-
tion), the demonstrations shown here suggest that they do not
have an intrinsic advantage over more targeted analyses. Tar-
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Figure 9. Same as Fig. 7 but with simulations from an ARMA(1,1) model. The p values calculated by incorrectly assuming an AR(1) model
are increasingly conservative in larger sample sizes in this setting. Both blind selection via AICc and the block bootstrap are anti-conservative
for small sample sizes but improve as the sample size increases.
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Figure 10. Same as Fig. 7 but with simulations from a fractional AR(1) model. While none of the methods perform very well here, the
incorrectly specified parametric methods are better, especially in smaller samples.
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geted analyses can be used over longer time frames – allow-
ing for better estimates of both trends and noise characteris-
tics – and can address a broader range of questions within a
single framework.

The model we use in our analysis provides insights
about the information contained in the historical tempera-
ture record relevant to both shorter-term and longer-term
trend projections. The limited historical record of global
mean temperature can provide information about shorter-
term trends but unsurprisingly cannot constrain long-term
projections very well. The past 136 years of temperatures
simply do not alone contain the relevant information about
equilibration timescales that would be required to constrain
long-term projections, especially when aggregated to a sin-
gle global value. (Use of spatially disaggregated data may
provide additional information.) The distinction between un-
certainties in shorter-term and longer-term projections, itself
not easily made using a time trend model, serves to further
illustrate that while the historical data record is an important
source of information, it alone cannot be expected to answer
the most important questions about climate change without
bringing more scientific information to bear on the problem.

We believe that our discussion is illustrative of broader is-
sues that arise in applied statistical practice, and will have
particular relevance to problems involving trend estimation
in the presence of temporally correlated data and in rela-
tively data-limited settings, common in climate applications.
We suspect that many applied statisticians have personally
felt the tension between targeted modeling on the one hand
and more empirical analyses on the other. One lucid discus-
sion of the broader issues surrounding this tension can be
found in the discussion of model formulation in Cox and
Donnelly (2011). Empirical approaches have very success-
fully generated new insights and predictions in important ar-
eas, but there is a wide range of scientific problems where
these approaches do not perform well and where targeted,
domain-specific modeling is required. Statisticians can bring
important insights to scientific problems; a crucial role for
the statistician is to consider the modeling choices that will
be both the most illuminating and the most reliable given the
scientific questions and data at hand.

Data availability. The NASA GISS Land–Ocean Temperature in-
dex is updated periodically; the data we analyze were accessed on
the date 2016-02-03. The current version is available at http://data.
giss.nasa.gov/gistemp/. The HADCRUT4 data, used in Sect. 4.5,
is available at http://www.metoffice.gov.uk/hadobs/hadcrut4/data/
current/download.html.

Historical radiative forcings until 2011 are available in IPCC
(2013) Table AII.1.2. Forcings corresponding to the RCP 8.5 sce-
nario can be found at http://tntcat.iiasa.ac.at/RcpDb. NOAA CO2
concentrations are available at ftp://aftp.cmdl.noaa.gov/products/
trends/co2/co2_annmean_gl.txt.

Adv. Stat. Clim. Meteorol. Oceanogr., 3, 33–53, 2017 www.adv-stat-clim-meteorol-oceanogr.net/3/33/2017/

http://data.giss.nasa.gov/gistemp/
http://data.giss.nasa.gov/gistemp/
http://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/download.html
http://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/download.html
http://tntcat.iiasa.ac.at/RcpDb
ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_annmean_gl.txt
ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_annmean_gl.txt


A. Poppick et al.: Estimating trends in the global mean temperature record 49

Appendix A: Implications for the transient climate
response and equilibrium sensitivity

In this paper, we use the historical temperature record to es-
timate the trend model (4) that treats both the sensitivity pa-
rameter, λA, and the timescale of response parameter, ρA, as
unknown. In this section, we compare our results to those
from more commonly used methods of inferring the climate
response from projections in climate models and of using the
historical temperature record to estimate a climate sensitivity
parameter.

Model (4) is justifiable over the relatively short (cen-
tennial) timescales over which the linear forcing–feedback
model is applicable. The linear forcing–feedback model says
that the mean temperature response to an instantaneous forc-
ing F behaves like L1T (t)≈ F −Q(t), where 1T (t) is
the change in mean temperature at time t from the base-
line state, Q(t) is the heat uptake (in W m−2) at time t , and
L is a climate response parameter (with units W m−2 K−1).
(In the context of this model, our sensitivity parameter is
then λA = F2×/L.) Our method essentially infersQ(t) by as-
suming that it decays exponentially until reaching zero again
at equilibrium. The linear forcing–feedback model does not
hold for all time, however, in part because both feedbacks
and rates of warming vary spatially. In models, this typically
results in additional warming over the millennial timescales
on which the deep ocean mixes (e.g., Winton et al., 2010;
Armour et al., 2013; Rose et al., 2014 and others). Addition-
ally, climate feedbacks – and therefore climate sensitivity –
may be state dependent; this effect also typically amplifies
global mean temperature rise (Bloch-Johnson et al., 2015).
Collectively, this suggests that our sensitivity parameter λA
will be smaller than the equilibrium climate sensitivity that
measures the final, equilibrium temperature response.

We can compare the results of our model to reported re-
sults from GCMs by estimating the transient climate re-
sponse (TCR), a popular metric of the short-term temper-
ature response to forcing in climate models. The TCR is
defined as the change in mean temperature after 70 years
of a CO2 concentration scenario that increases by 1 % per
year (so doubles after 70 years). In a multi-model compar-
ison of these centennial-scale projections, IPCC (2013) re-
ports a 66 % “likely” interval for the TCR of 1.0 to 2.5 ◦C.
Our results from fitting model (4) to the historical data are
fairly consistent with this; our estimate of the TCR is 1.7 ◦C,
with the 2.5–97.5th bootstrap percentile interval of 1.2 to
1.9 ◦C. These intervals are not strictly comparable because
the IPCC’s subjectively combines information from multiple
lines of evidence. That said, our interval is shorter in part be-
cause it does not account for uncertainties in historical radia-
tive forcings from anthropogenic aerosols. If we repeat the
exercise of Sect. 4.5 (scaling the past radiative forcing tra-
jectory to approximate the upper and lower bounds for forc-
ing accounting for aerosol uncertainties), our central estimate

of the TCR would be about 1.2 ◦C if anthropogenic aerosols
were on the high end and about 3.4 ◦C if on the low end.

We can also compare our estimate of λA to prior estimates
of a sensitivity parameter that also use the historical tempera-
ture record. The most typical approach in the literature shares
some commonalities with our method, beginning with the
same linear forcing–feedback model that implicitly underlies
our analysis, but estimating a sensitivity parameter by using
an additional observational estimate of global heat uptake.
That is, studies use estimates of changes in forcing, F ′, heat
uptake Q′, and historical temperature change, 1T ′, between
a base and a final period to compute L̂= (F ′−Q′)/1T ′ and
therefore λ̂= F2×1T

′/(F ′−Q′). Studies using this method
include Gregory et al. (2002), Otto et al. (2013), Masters
(2014), and Lewis and Curry (2015). The resulting sensi-
tivity parameter estimate should be similar to our λA. Ta-
ble A1 shows the results from these analyses; the central es-
timates are indeed similar to our estimate of λA. The uncer-
tainty ranges given in these studies, however, also tend to be
slightly larger than the intervals we give for λA, again be-
cause these authors attempt to account for radiative forcing
uncertainty in their analysis.

A distinguishing feature of this other, common approach is
that it includes data about historical heat uptake, in addition
to temperature and radiative forcing data. Ocean heat con-
tent is an additional, albeit uncertain, source of information
that may improve estimates. On the other hand, since these
methods do not involve an explicit trend model and require
averaging the inputs over decadal or longer time spans, they
cannot use the historical temperature record to estimate inter-
nal temperature variability. Most studies therefore estimate
internal variability using climate model output, but climate
models do not perfectly realistically represent even present-
day variability in global annual mean temperature.

By contrast, an advantage of our approach is that it allows
one to use the historical data to understand internal variabil-
ity. Additionally, our approach allows one to answer ques-
tions about both historical trends and longer-term projections
in the framework of one statistical model, whereas the ap-
proaches discussed above do not allow one to infer trends in
increasing-in-time forcing scenarios. A disadvantage of our
approach is that, as discussed above, we rely on the histor-
ical global mean temperature record to estimate the “equili-
bration” timescales (ρA and ρN), but the data contain little
information about these quantities.

Regardless of the different advantages and disadvantages
just discussed, both approaches to using the historical tem-
perature record give similar results concerning the sensitivity
parameter, and uncertainties in this parameter remain high.
This demonstrates the limitations of the information con-
tent of the historical global mean temperature record alone
for estimating longer-term projections of mean temperature
changes. As noted in Sect. 6, spatially disaggregated data
may contain more information.

www.adv-stat-clim-meteorol-oceanogr.net/3/33/2017/ Adv. Stat. Clim. Meteorol. Oceanogr., 3, 33–53, 2017



50 A. Poppick et al.: Estimating trends in the global mean temperature record

Table A1. Comparison of estimates of a sensitivity parameter from studies that use observational data and a simple energy balance approach.
The large best (median) estimate from Gregory et al. (2002) is due to a very fat right tail in their analysis; the mode of their distribution is
2.1 ◦C per doubling. The estimates given in these studies are similar to our estimates of λA (which should be smaller than the equilibrium
sensitivity).

Study
Best estimate 90 % Interval

(◦C per doubling) (◦C per doubling)

Energy balance Gregory et al. (2002) 6.1 > 1.6
model using Otto et al. (2013) 2.0 1.2–3.9
temperatures, forcing Masters (2014) 2.0 1.2–5.2
and heat uptake Lewis and Curry (2015) 1.6 1.1–4.1

Trend model (4) this work 1.8 1.5–3.0
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