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We demonstrate a surprising connection between pure steady-state entanglement and relaxation time
scales in an extremely broad class of Markovian open systems, where two (possibly many-body) systems,
A and B, interact locally with a common dissipative environment. This setup also encompasses a broad
class of adaptive quantum dynamics based on continuous measurement and feedback. As steady-state
entanglement increases, there is generically an emergent strong symmetry that leads to a dynamical slow-
down. Using this, we can prove rigorous bounds on relaxation times set by steady-state entanglement. We
also find that this time must necessarily diverge for maximal entanglement. To test our bound, we consider
the dynamics of a random ensemble of local Lindbladians that support pure steady states, finding that the
bound does an excellent job of predicting how the dissipative gap varies with the amount of entanglement.
Our work provides general insights into how dynamics and entanglement are connected in open systems
and has specific relevance to quantum reservoir engineering.
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I. INTRODUCTION

An exciting and powerful recent direction in quan-
tum many-body physics is the realization that dynamical
properties can be directly related to ground-state entangle-
ment features. For example, pioneering work by Hastings
has shown that the ground states of finite-range gapped
one-dimensional (1D) Hamiltonians obey an entanglement
area law [1]. Under certain conditions, this result can
be extended to longer-range interactions [2,3] and higher
dimensions [4–10], (for a review, see Ref. [11]). By under-
standing aspects of the energy spectrum of a many-body-
system, one can obtain extremely nontrivial information
about the structure of entanglement in its ground state.

In this work, we show that nontrivial connections
between steady-state bipartite entanglement and dynamical
properties can also be established in open quantum systems
supporting pure steady states. Focusing on many-body
Markovian dissipative systems [described by a Gorini-
Kossakowski-Sudarshan-Lindblad (GKSL)–Lindblad mas-
ter equation [12,13]] satisfying only weak locality
constraints, we show that systems with pure maximally
entangled steady states necessarily exhibit dynamical
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isolation: there is an emergent strong symmetry that makes
it impossible to prepare the entangled steady state in
finite time. This phenomenon implies a vanishing of the
dissipative gap.

Further, for systems with nonmaximal steady-state
entanglement, we prove an inequality that sets a lower
bound on the preparation time of the steady state. This
bound shows that the time required to reach the steady
state grows exponentially in the Renyi-2 entanglement
entropy of the steady state. The general setup that we con-
sider [see Fig. 1] also directly constrains a broad class of
measurement and feedback protocols, the unconditional
dynamics of which result in steady-state entanglement.
We thus establish a fundamental trade-off between steady-
state entanglement generation and relaxation times for an
extremely wide class of nonunitary dynamics. Note that
previous work on open systems has established relations
between steady-state correlations and the dissipative gap
[14–16]; however, unlike our work, these results only
apply in the thermodynamic limit and do not connect
bipartite entanglement and relaxation times.

Our result has strong implications for the general tech-
niques of reservoir engineering and autonomous feedback
[17,18]. Such approaches are ubiquitous in quantum infor-
mation processing and involve employing tailored dissi-
pative processes to prepare and stabilize useful quantum
steady states. Perhaps the most common kind of target
states here are those with long-range entanglement (see,
e.g., Refs. [19–37]). While extremely powerful, reservoir
engineering is only practically effective if the relevant
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FIG. 1. (a) A schematic showing two arbitrary systems, A and
B, interacting dissipatively via local couplings to a common
Markovian reservoir, along with arbitrary intrasystem (ĤA, ĤB)
as well as intersystem (ĤAB) Hamiltonian interactions. We focus
on cases in which the dynamics lead to pure steady states with
finite entanglement. (b) The above dynamics are equivalent to
a generic adaptive measurement setup: a continuous collective
measurement is made of A and B and the result I(t) is used to
drive both systems. (c) Our key result is that the relaxation rate
to the steady state is bounded above by 1 − E2, where E2 is the
scaled steady-state entanglement [cf. Eq. (17)]. (1 − E2) is zero
for maximally entangled states, indicating that the dissipative gap
must close in such cases.

relaxation rates are sufficiently fast (otherwise, intrinsic
uncontrolled dissipative processes will corrupt the even-
tual steady state). Our fundamental entanglement-time
trade-off directly applies to this setting. Previous work has
phenomenologically seen evidence of such a trade-off in
a variety of different schemes; i.e., the preparation time
would diverge as the steady state was engineered to have
maximal entanglement [29,30,36]. In the simplest spe-
cific case of two qubits, this trade-off could be connected
to an effective conservation of angular momentum that
emerged in the maximum-entanglement limit [30]. Our
results establish the origin of this trade-off in the most gen-
eral many-body setting and have far-reaching implications
on the design of optimal entanglement-stabilization pro-
tocols. Note that for two qubits, studies have shown how
to evade dynamical slow-down by using additional energy
levels [26,30]. Such an approach effectively changes the
local Hilbert-space dimensions (and thus the maximum
possible amount of entanglement) and thus a version of
our bound still applies.

One might worry that while our work sets an upper
bound on time scales for dissipative remote entanglement
stabilization, this bound might be extremely loose and have
little relevance to typical systems. To address this, we first
solve a seemingly complex inverse problem: given a spe-
cific many-body entangled pure state of interest, how do
we reverse engineer a local dissipative process that will
stabilize it? We provide a very general construction that
solves this challenge and use it to construct a set of local
random Lindbladians that all stabilize a given target state.
Using this ensemble of random Lindbladians, we show
that the dissipative gap scales with entanglement entropy
exactly as predicted by our bound. Moreover, we show
analytically that the relaxation of a Haar-random initial
state follows the same scaling as predicted by the bound.
Our general reverse engineering of local dissipation com-
patible with a target entangled state could have a variety of
other interesting applications [38].

One potential application of recent interest is the design
of open quantum systems that are able to simulate finite-
temperature states of many-body systems (often called
quantum Gibbs samplers) [38–41]. Our technique could
be used to prepare the purified thermofield double (TFD)
state, which allows one to probe finite-temperature proper-
ties. Another possible use is given in Ref. [42], where our
technique would be able to prepare an entangled state for
optimal multiparameter metrology.

This paper is organized as follows. In Sec. II, we estab-
lish our general setup, while in Sec. III we provide a
rigorous statement of our main results. In Sec. IV, we
show how to reverse engineer a class of local dissipative
dynamics that all stabilize a given target entangled state.
We combine this with random matrix theory to show that
typical relaxation times scale with entanglement entropy
exactly as predicted by our bound. In Sec. V, we show
that the spectra of random Lindbladians exhibit a bulk gap
along with isolated midgap state(s), which are responsible
for all of the slow dynamics.

II. SETUP AND DEFINITIONS

A. Maximally entangled states

We work throughout with systems having a tensor-
product Hilbert space H = HA ⊗ HB (with dimHA,B =
NA,B < ∞) and we will be interested in pure states with
entanglement between subsystems A and B. Unless other-
wise stated, we will assume that NA = NB ≡ N . Any state
|ψ〉 ∈ H admits a Schmidt decomposition

|ψ〉 =
min(NA,NB)∑

i=1

√
pi|i〉A ⊗ |i〉B, (1)

where the Schmidt coefficients
√

pi are taken to be
real and positive without loss of generality through-
out. A maximally entangled state for our bipartition is
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any state with uniform Schmidt coefficients, i.e.,
√

pi =
[min(NA, NB)]−1/2 ∀i.

The bipartite entanglement of |ψ〉 can be characterized
by the Renyi-α entropy between subsystems A and B:

S(α)(|ψ〉) = 1
1 − α

log
∑

i

pαi . (2)

For a maximally entangled state |ψ〉max (letting NA =
NB = N ), this gives

S(α)(|ψ〉max) = log N . (3)

B. Open Markovian dynamics and time scales

Our overarching goal is to connect steady-state entan-
glement to dynamics. We will focus exclusively on sys-
tems the open-system dynamics of which are described
by a Markovian master equation in GKSL) form [12,13].
Letting ρ̂ be the density matrix of the system, we have

∂tρ̂ = −i[Ĥ , ρ̂] +
M∑
μ=1

D[L̂μ]ρ̂ ≡ L̂ρ̂, (4)

D[L̂μ]ρ̂ ≡ L̂μρ̂L̂†
μ−

1
2

{
L̂†
μL̂μ, ρ̂

}
, (5)

where the Hermitian operator Ĥ is the Hamiltonian and
the M jump operators L̂μ parametrize the nonunitary evo-
lution. We will refer to the superoperator L̂ as the Lind-
bladian. As we discuss below, we consider situations in
which subsystems A and B are physically separated and
only interact via local couplings to common dissipative
environments. As a result, we require all jump operators
to have the form

L̂μ = Âμ ⊗ 1 + 1 ⊗ B̂μ. (6)

Every Lindbladian will have at least one steady-state solu-
tion ρ̂ss, defined by L̂ρ̂ss = 0. Our interest here is in
systems that have a pure steady state; the goal is to con-
nect the entanglement of the steady state to dynamical time
scales. We say that L̂ has a maximally entangled steady
state if there exists a state |ψ〉 such that S(α)(|ψ〉) = log N
and L̂(|ψ〉〈ψ |) = 0. A steady state is unique if and only if
every initial condition tends toward the steady state in the
long-time limit.

In most cases, we will be interested in systems in
which L̂ is diagonalizable and can be written as L̂ =∑N 4−1

α=0 λα|rα〉〉〈〈lα|. (Here and throughout, the double-
bracket notation |ρ̂〉〉 represents a vectorized density
matrix.) The complete set of dissipative rates is given by
the real parts of the eigenvalues {λα}. We will work with

the convention that 0 = λ0 ≥ Reλ1 ≥ · · · ≥ ReλN 4−1 [43].
We define the dissipative gap

� = −Reλ1. (7)

C. Locality in bipartite Lindbladians

When proving an area law for the ground states of
gapped 1D systems, one has to first imbue the Hamilto-
nian with a meaningful notion of locality. Similarly, we
must identify a relevant notion of locality in our open-
system dynamics. To that end, we assume that subsystems
A and B are physically separated and only interact via local
couplings to common extended Markovian reservoirs (see
Fig. 1). For example, one might consider groups of qubits
decaying into a common waveguide or groups of atoms
interacting with a common cavity mode. The locality of
this setup means that before eliminating the environment
to generate our master equation, its interaction with the
system will be described by a Hamiltonian of the form

Ĥint =
M ′∑
μ=1

R̂A,μ ⊗ ˆ̃Aμ ⊗ 1 + R̂B,μ ⊗ 1 ⊗ ˆ̃Bμ + H.c., (8)

where μ indexes interactions with the reservoir(s) and R̂A,μ

and R̂B,μ are reservoir operators localized near either the

A or the B subsystem, respectively. Correspondingly, ˆ̃Aμ
( ˆ̃Bμ) are subsystem A (B) operators. Note crucially that
A and B only interact via their common coupling to the
environment.

Assuming now that the reservoir(s) is Markovian,
we can eliminate it in the usual manner (see, e.g.,
Refs. [44,45]) to generate a GKSL master equation for
the dynamics of A + B with the constrained form of Eqs.
(4)–(6) (for more details, see Appendix F). In particular,
each jump operator L̂μ is the sum of an A and a B oper-
ator as given in Eq. (6), where Âμ and B̂μ are local A, B

operators that depend on ˆ̃Aμ and ˆ̃Bμ as well as reservoir
properties. Even with this constraint, we have an extremely
general problem. We can still have arbitrary local dissipa-
tive processes (i.e., set either Âμ or B̂μ to 0), as well as
all forms of correlated Markovian dissipation relevant to
physically separated systems. Moreover, we place no con-
straints on the Hamiltonian Ĥ in Eq. (4) (as there could be
arbitrary bath-induced Hamiltonian interactions between A
and B).

D. Connection to measurement-feedback dynamics

The general setup described by Eqs. (4) and (5) is also
directly relevant to describing dynamics where A and B
interact via locality-constrained continuous measurement
and feedforward (MFF) processes [46–48]. In particular,
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this constrained form describes the unconditional dynam-
ics arising from a MFF protocol where one measures
sums of A and B quantities and then uses the results to
apply local feedback control to each subsystem. To be
explicit, consider the unconditional dynamics generated
by making a weak continuous measurement of a Hermi-
tian observable M̂ and then using the measurement record
to drive another Hermitian quantity F̂ . In the limit where
delay can be neglected, the theory of weak continuous
measurement shows that the unconditional state (i.e., aver-
aged over all possible measurement outcomes) evolves
as [49]

∂tρ̂ = D[M̂ ]ρ̂ + D[F̂]ρ̂ − i[F̂ , {M̂ , ρ̂}]

= D[F̂ − iM̂ ]ρ̂ − i
2

[{F̂ , M̂ }, ρ̂]. (9)

As long as both M̂ and F̂ are sums of local operators, we
have a master equation that obeys the general form of Eqs.
(4)–(6). For example, we could take

M̂ = i
2
(Â − Â†+B̂ − B̂†), (10)

F̂ = 1
2
(Â + Â†+B̂ + B̂†). (11)

In this case, F̂ − iM̂ = Â + B̂, implying that the dissipator
in Eq. (9) has the required form of Eq. (6) (while the last
term in Eq. (9) is a Hamiltonian interaction that is always
allowed).

Given this connection, the entanglement-time bounds
that we prove below directly constrain locality-constrained
measurement-plus-feedback protocols. Moreover, we
stress that while we have formulated the measurement-
plus-feedback protocol without any additional Hamilto-
nian interactions, any Hamiltonian can always be added
in without any change to our results.

III. BOUND STATEMENT

A. Maximally entangled steady states cannot be
reached by Markovian dynamics

It is well known that dissipative dynamics having the
form of Eqs. (4)–(6) can be used to stabilize pure entan-
gled states. Examples include the dissipative stabilization
of bosonic two-mode squeezed states [50–52], qubit Bell
pairs [22,29,36], and even more exotic states of matter in
spin chains [32,36]. Our first result is to show that all such
protocols are highly constrained. If a Lindbladian L̂ of the
form given in Eqs. (4)–(6) has a pure maximally entan-
gled steady state |ψ〉 (i.e., L̂|ψ〉〈ψ | = 0), then this state
is necessarily dynamically isolated: the projector |ψ〉〈ψ |
becomes a conserved quantity, implying that the dissipa-
tive dynamics will never relax an arbitrary initial state into

this entangled state. This necessarily implies the existence
of multiple steady states and the closing of the dissipative
gap. Our result here holds irrespective of further details
(e.g., the Hilbert-space dimension, the number of jump
operators, the form of the Âμ and B̂μ operators, the form
of Ĥ , etc.).

To establish this result, note first that as |ψ〉 is a pure
steady state, we necessarily have [34]

[Ĥ , |ψ〉〈ψ |] = L̂μ|ψ〉 = 0, (12)

i.e., it is an eigenstate of the Hamiltonian and a dark state of
each jump operator. Within the quantum jumps interpreta-
tion of our master equation [49], the dark-state conditions
imply that if the system is in the state |ψ〉, there is zero
probability of a quantum jump evolving it into a different
state.

The fact that |ψ〉 is also maximally entangled leads to
a second, even stronger, constraint: there will also be zero
probability that a quantum jump from an arbitrary initial
state |φ〉 will produce a state with nonzero overlap with
|ψ〉. To see this explicitly, we define the unnormalized
“absorbing state” associated with each jump operator L̂μ
to be |ψ̃μ〉 ≡ L̂†

μ|ψ〉. The probability that a quantum jump
induced by L̂μ will result in some initial state |φ〉 having
overlap with |ψ〉 is then |〈ψ |L̂μ|φ〉|2 = |〈ψ̃μ|φ〉|2. Using
the fact that |ψ〉 is a dark state, we have

〈ψ̃μ|ψ̃μ〉 = 〈ψ |L̂μL̂†
μ|ψ〉 = 〈ψ |[L̂μ, L̂†

μ]|ψ〉
= 〈ψ |[Âμ, Â†

μ] ⊗ 1|ψ〉 + 〈ψ |1 ⊗ [B̂μ, B̂†
μ]|ψ〉.

(13)

Next, as |ψ〉 is also a maximally entangled state, an explicit
calculation shows that the above expression is propor-
tional to tr[Âμ, Â†

μ] + tr[B̂μ, B̂†
μ] = 0 when NA = NB (see

Appendix A). Hence, there is zero probability of a quan-
tum jump moving population into the entangled steady
state |ψ〉. The vanishing of |ψ̃μ〉 also implies that the “no-
jump” evolution described by Ĥeff = Ĥ − (i/2)

∑
μ L̂†

μL̂μ
will never increase the population of |ψ〉. We thus have
established our key result: the population of the maximally
entangled steady state |ψ〉 will never change in time and
hence, even given infinite time, dissipative preparation of
the steady state |ψ〉 is impossible.

We can also establish this result rigorously using the
notion of a strong symmetry of a Lindbladian [53]. In Eq.
(13), it is shown that for each jump operator, L̂†

μ|ψ〉 = 0.
Given that |ψ〉 is also a pure steady state, it immediately
follows that

[P̂, L̂μ] = [P̂, Ĥ ] = 0, (14)

where P̂ = |ψ〉〈ψ |. This implies that P̂ (the projector onto
|ψ〉) generates a strong symmetry of L̂ and describes a
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dynamically conserved charge. It thus separates the full
Hilbert space into two dynamically isolated subspaces,
namely, |ψ〉 and its orthogonal complement. It also tells
us that there must be steady-state degeneracy (i.e., at least
one steady state orthogonal to |ψ〉) and hence a vanishing
of the dissipative gap. Our result here generalizes the dis-
cussion of Ref. [30], which discusses this phenomenon in a
specific two-qubit Lindbladian, where the conserved quan-
tity reduces to total angular momentum. Our generalization
shows that this phenomenon occurs in an extremely broad
class of systems (including systems in the truly many-body
limit) and that the conserved quantity is the population of
the entangled steady state itself.

B. Universal time-entanglement trade-off

We now establish the second main result of this work:
a fundamental trade-off in our locality-constrained dis-
sipative dynamics between the amount of pure steady-
state entanglement and the time scales associated with
dissipative stabilization. We find that a rigorous bound
that implies increased steady-state entanglement leads to
longer relaxation times (with the time scale diverging for
maximal entanglement, as demonstrated above).

To formulate these ideas, we again consider a Lindbla-
dian L̂ of the form in Eqs. (4)–(6), which has a pure steady
state ρ̂ss ≡ |ψ〉〈ψ |. We now allow ρ̂ss to have an arbitrary
amount of entanglement. Consider the time evolution of
an arbitrary initial state under L̂, with the time-dependent
density matrix denoted as ρ̂t. We are interested in how this
state relaxes toward ρ̂ss and thus we consider the fidelity
F(t) between these states:

F(t) =
(

tr
√√

ρ̂ssρ̂t

√
ρ̂ss

)2

. (15)

Relaxation of an initial trivial state to the entangled steady
state corresponds to F(t) evolving from approximately 0 at
t = 0 to approximately 1 at some finite time t ∼ τrel.

To formulate our result, consider the product basis
defined by the Schmidt decomposition of our pure steady
state given in Eq. (1). To fix a single time scale for the
problem, we will nondimensionalize the jump operators by
pulling out an overall scale factor with units of frequency.
This allows us to differentiate the role that entanglement
plays in the dynamics from the more trivial role that the
overall magnitude of the Lindbladian plays. That is, we
will define |Âμ| ≡ √

κμ to be the magnitude of the largest
matrix element of Âμ in the Schmidt basis, so that we can
write each jump operator as

L̂μ = √
κμ

(
Âμ
|Âμ|

⊗ 1 + 1 ⊗ B̂μ
|Âμ|

)
≡ √

κμ
ˆ̃Lμ, (16)

where ˆ̃Lμ is unitless and κμ has the units of a rate. From
here, we define the average rate κ = 1/M

∑M
μ=1 κμ. We

will go on to show that this average rate κ appears naturally
in the models considered and sets an overall time scale.
Turning to the steady state ρ̂ss = |ψ〉〈ψ |, we use S(2)ss to
denote its Renyi-2 entanglement entropy [cf. Eq. (2)] and
define

√
pmin to be its smallest Schmidt coefficient.

Finally, we introduce the scaled entanglement E2, a mea-
sure for the steady-state entanglement based on S(2) that
varies from 0 (no entanglement) to 1 (maximal entangle-
ment):

E2 ≡ 1
1 − 1/N

(
1 − e−S(2)ss

)

= 1
1 − 1/N

⎛
⎝1 −

N∑
j =1

p2
j

⎞
⎠ . (17)

With these definitions in hand, we can state our key result:
the growth of the fidelity F(t) is rigorously bounded by
a rate, the value of which is directly proportional to the
entanglement deficit of the steady state. Assuming first that
pmin > 0, we have

|F(t)− F(0)| ≤ �maxt, (18a)

�max

Mκ
=

√
2 (N − 1) (pmin)

−1 (1 − E2) , (18b)

where N ≡ NA = NB. A full proof of this result is pre-
sented in Appendix A. We see that the growth of the
fidelity toward 1 is bounded by the rate �max, which in
turn decreases linearly with the scaled entanglement E2.
For a maximally entangled state (E2 = 1), �max vanishes,
thus recovering the result of Sec. III A: F(t) is time inde-
pendent in this case and no dynamical stabilization of the
entangled steady state is possible. For more general cases,
our result provides a lower bound on the relaxation time
τrel: τrel ≥ 1/�max ∝ 1/(1 − E2). At a heuristic level, for
E2 < 1 we do not have a perfect strong symmetry and
conserved quantity as in the maximal-entanglement case
[cf. Eq. (14)]. Nonetheless, there is an “almost” conserved
quantity that relaxes slowly, leading to very slow relax-
ation to the steady state. This is discussed in more detail in
Appendix C.

The bound in Eq. (18) is for the case in which the steady-
state reduced density matrix of each subsystem is full rank;
it clearly has no utility in the case in which pmin is zero or
extremely small. In these cases, an analogous, more useful,
bound can be derived that again constrains relaxation time
scales in terms of the steady-state entanglement deficit.
The bound still has the form of Eq. (18a) but the rate �max
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is replaced by �′
max (see Appendix A):

�′
max√

2(N 3 − N 2)
=

⎡
⎢⎣
⎛
⎝

M∑
μ=1

|Âμ|
⎞
⎠

2

+
⎛
⎝

M∑
μ=1

|B̂μ|
⎞
⎠

2
⎤
⎥⎦

× (1 − E2)
1/2 . (19)

The rate in this bound is still decreases monotonically with
increasing scaled entanglement E2 and vanishes as one
approaches maximal entanglement E2 = 1.

Finally, the bounds discussed here constrain the relax-
ation of any state toward the entangled pure steady state.
It thus sets a speed limit for even the optimal cases, where
one has a fast-relaxing state. It is interesting to instead ask
about the relaxation of a typical state toward the entan-
gled steady state. We can also derive a general bound
that applies to this situation. Consider that at some time
t we have a Haar-random pure state of our system, ρ̂t =
Û|φ0〉〈φ0|Û†, where Û is a Haar-random unitary and |φ0〉
is some arbitrary fixed state. We can then derive a rigorous
bound on the instantaneous change in the average fidelity
F(t) (see Appendix B):

∫

Haar
|∂tF| dÛ ≤ 2Mκ

N − 1
N 2 (pmin)

−1 (1 − E2) . (20)

We again find the same scaling with the scaled entangle-
ment but now with a smaller N -dependent prefactor.

Finally, the same physics that leads to the bounds in Eqs.
(18)–(20) can also be used to bound the mixing time of the
Lindbladian [54], a standard time-scale metric for dissi-
pative dynamics. This involves using inequalities between
quantum fidelity and the trace distance [55]. Explicitly, if
we define

tmix(ε) = inf{t > 0 | ∀ρ̂, dtr(eL̂tρ̂, ρ̂ss) ≤ ε}, (21)

where dtr is the trace distance, then we show (see
Appendix A) that

tmix(ε) ≥ 1 − ε

�max
= (1 − ε)Mκpmin√

2(N − 1)
(1 − E2)

−1, (22)

where �max is the rate introduced in Eq. (18).
Equations (18)–(20) and Eq. (22) are key results of this

work. They provide a unifying explanation for phenomena
seen in specific studies of a variety of different dissipative
systems, all of which have witnessed an extreme slow-
down of the dynamics as parameters have been tuned to
increase the entanglement of the dissipative steady state
[29,30,36]. Moreover, while they have been formulated
for the case in which both systems have the same Hilbert-
space dimension, NA = NB, they can be easily extended to
the case in which this is not true. In this more general case,

one can always map the problem to the case in which the
dimensions are equal but one system is completely decou-
pled from some of its levels. One could then directly apply
the bound given in Eq. (19). More importantly, such a setup
is, by definition, never close to being maximally entangled
by our definition (as it is not exploiting the full Hilbert
space; for more details, see Appendix A).

IV. MANY-BODY RANDOM LINDBLADIANS

While our entanglement-time bound in Eq. (18) is rigor-
ous, it only provides a lower bound on the relaxation times.
There is no a priori reason to assume that this bound is
tight or that it even qualitatively captures how the relax-
ation time scales vary in a typical system. For example,
it could be that the relaxation times diverge with increas-
ing entanglement in a manner that is much worse than the
predictions of our bound.

To address these issues, in this section we study relax-
ation times in an ensemble of random Lindbladians having
the form of Eqs. (4)–(6), all of which have a pure steady
state having some fixed value of the scaled entanglement
E2 [cf. Eq. (17)]. We can then ask about the statistics of
relaxation times in this ensemble and how they vary as we
change the steady-state entanglement.

A. Reverse engineering dissipative dynamics
compatible with a target entangled state

To proceed, we consider a system with fixed local
Hilbert-space dimension N for each subsystem and start by
picking a particular (perhaps randomly chosen) pure steady
state |ψ〉 specified by its Schmidt coefficients √pj [cf. Eq.
(1)]. These coefficients can be used to define a single sys-
tem operator 
̂, which is simply the square root of the
reduced steady-state density matrix for each subsystem:


̂ ≡
∑

i

√
pi|i〉〈i| =

√
ρ̂A =

√
ρ̂B, (23)

where the |i〉 are states in the Schmidt basis for the entan-
gled state |ψ〉 and ρ̂A = trB|ψ〉〈ψ |, ρ̂B = trA|ψ〉〈ψ |. In
what follows, we assume that all Schmidt coefficients are
nonzero, i.e., that 
̂ is full rank.

The next step is to construct dissipative dynamics of the
form of Eqs. (4)–(6) that have the chosen pure state |ψ〉 as
a steady state. We focus on the simple case in which there
is no Hamiltonian and thus the problem reduces to finding
one or more jump operators {L̂μ} such that L̂μ|ψ〉 = 0, and
where each jump operator is the sum of an operator acting
on just one subsystem: L̂μ = Âμ + B̂μ. Our approach is to
first pick arbitrary system-A operators Âμ for each jump
operator. The dark-state conditions then uniquely deter-
mine the form of the corresponding system-B operator in
each L̂μ. Letting Aμ, Bμ, and 
μ denote the N × N matrix
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representation of these operators in the Schmidt basis, we
have

(Âμ ⊗ 1 + 1 ⊗ B̂μ)|ψ〉 = 0 =⇒ Bμ = −
AT
μ


−1.
(24)

Our construction here provides an extremely general way
to construct a large number of dissipative dynamics that
will stabilize a particular chosen pure entangled steady
state. The construction guarantees that for a particular
jump operator, the operators Âμ and −B̂μ are isospec-
tral. As a result, the kernel of a single jump operator L̂μ
necessarily has a dimension ≥ N (see Appendix A). Hav-
ing a unique steady state will thus require at least two
jump operators (chosen so that the desired steady state |ψ〉
spans the intersection of their kernels). Alternatively, one
could remedy this problem by introducing an appropriate
Hamiltonian to the dynamics.

We note that the construction here (where B operators
can be viewed as the modular conjugation of A operators)
has a close connection to certain formulations of quan-
tum detailed balance (i.e., Kubo-Martin-Schwinger (KMS)
detailed balance [56,57] and hidden-time reversal symme-
try [58]), as well as to the theory of coherent quantum
absorbers [21,59]. The construction is also reminiscent of
the construction of the Petz recovery map [60] and for-
mal constructions of Hamiltonians that have thermofield
double states as their ground state [61].

B. Entanglement-time trade-offs and dissipative gap
scaling in random many-body dissipative dynamics

We now use our state-to-dynamics construction to assess
whether the general time-entanglement bound in Eq. (18)
tells us anything about typical relaxation times. For a given
chosen steady-state entanglement E2, we first construct an
ensemble of entangled pure states |ψα〉 all having the same
E2. For each state, we then use our construction to generate
a random Lindblad master equation having two jump oper-
ators that will stabilize this state. This involves first picking
two random N × N matrices, A1 and A2, and then using Eq.
(24) to pick the corresponding B matrices. These matri-
ces then define the jump operators L̂1 and L̂2. We draw
each A matrix from the complex random Ginibre ensem-
ble: each matrix element is a Gaussian random variable
with E[(Aμ)ij ] = 0 and E[(Aμ)∗ij (Aν)kl] = σ 2δμνδikδjl. As
we have no Hamiltonian contribution to our dynamics, the
variance σ 2 plays no role except setting an overall time
scale for the dynamics. That is to say, we can always
choose to set σ = 1 by absorbing it into κμ as defined
in Eq. (16). In this way, we can separate the dimension-
ful quantity κμ from the dimensionless slow-down due to
the entanglement entropy. Another way of putting this is
to observe that if we let L̂σ be a Lindbladian sampled
from the random ensemble where each matrix element of

A has variance σ , then L̂σ = σ 2L̂σ=1. Hence, if we nor-
malize the Lindbladian to fix a time scale, the factors of
σ 2 drop out and can therefore be set to unity without loss
of generality. Note that this is only true because there is
no Hamiltonian; otherwise, σ would control the strength of
the dissipative dynamics relative to the coherent dynamics.

In Fig. 2, we show results obtained by numerically
implementing this procedure for system sizes N ranging
from 4 to 10. We plot the dissipative gap [cf. Eq. (7)]
for each constructed random Lindbladian, as a function
of their steady-state entanglement E2. We stress that each
realization here involves both randomly constructing a
pure entangled steady state and dissipative dynamics that
will stabilize this state. The dissipative gap � character-
izes the slowest relaxation process in our system and hence
we might expect that � ∼ �max, where �max is the rate
appearing in our general bound Eq. (18). We see that there
is a striking linear scaling of the average dissipative gap
with E2, � ∝ 1 − E2. This is exactly the dependence pre-
dicted by our general bound for �max. While the prefactor
of the scaling does not match the system-size dependence
predicted by our bound, we see that the general trade-off
between entanglement and relaxation times in this class of
unstructured many-body Lindbladians is quantitatively in
agreement with Eq. (18).

Further, these results are not contingent on our use of the
complex Ginibre ensemble to construct our random dissi-
pators. As shown in Appendix B, constructions based on
other, physically motivated, random ensembles also show
analogous scaling.

Turning to the prefactor of the average dissipative gap
scaling with 1 − E2, the bound states that it cannot grow
faster than N 2. However, as shown in Fig. 2(b), we numer-
ically find that, for randomly sampled Lindbladians, it
appears to be independent of N . Further, we see that
the fluctuations of the dissipative gap about its average
decrease significantly even for modest increases in N .
At this point, we stress that this does not imply that the
bound is not tight, as it must account for all possible Lind-
bladians, whereas in Fig. 2, we consider only the more
constrained set of average or random Lindbladians. In
fact, in Sec. IV C, we will give a specific example of a
system that relaxes much more quickly than the Haar-
random examples but still satisfies the bound. To truly
prove whether or not the bound is tight requires either find-
ing a tighter bound or finding a model system that saturates
it, which we leave to future works.

However, we can analytically show that the Haar-
random case should have a prefactor that is independent
of system size. First, define the deviation from maximal
entanglement:

δE2 ≡ N − 1
N

(1 − E2) . (25)
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FIG. 2. (a) The dissipative gap of random Lindbladians sta-
bilizing a random pure state with a fixed entanglement δE2 [cf.
Eq. (25)], for varying system size, constructed using Eq. (24).
Recall that δE2 decreases monotonically with increasing entan-
glement and is zero for a maximally entangled state. Here, each
Aμ matrix that is used to construct our dissipators is sampled
from the Ginibre ensemble of random matrices with variance σ .
For each system size and entanglement value, we plot results for
100 random Lindbladians. Different values of N are offset hori-
zontally to avoid overlap. (b) The average and standard deviation
of data in (a) for a fixed system size and entanglement. The aver-
age gap is 2(M − 1)σ 2δE2 and is independent of system size.
The standard deviation also scales linearly with δE2 and falls off
as N increases.

Then, assume that we have M random dissipators con-
structed as above and that for a fixed E2 the Schmidt
coefficients pj are chosen randomly subject to normaliza-
tion

∑
j pj = 1 and E2 is fixed [cf. Eq. (17)]. To leading

order in δE2, one can show (see Appendix B) that

E

[∫

Haar
|∂tF| dU

]
= 2Mσ 2δE2, (26)

where E[•] is an average both over matrices Aμ as well as
the Schmidt coefficients pj . We now have a scaling of a
typical relaxation rate that is still proportional to (1 − E2)

but with an N -independent prefactor.
We expect that Eq. (26) will give a good estimate of

the dissipative gap �, except for the correction that M →
M − 1. The reason for this is that, due to the condition in
Eq. (24), a single jump operator generates N steady states
and so the dissipative gap is by definition zero when M =

1. Despite this, the dynamics can still increase the fidelity
to the chosen steady state; hence Eq. (26) is nonzero even
when M = 1. To account for this difference between the
dissipative gap and the rate of change of the fidelity, we
expect that the average dissipative gap scales as

E[�] = 2(M − 1)σ 2δE2. (27)

This is in good agreement with the behavior of the average
dissipative gap shown in Fig. 2.

Note that for the Lindbladians considered here, we find
that the dissipative gap accurately predicts long-time relax-
ation to the steady state. It is well known that there exist
examples where this correspondence can fail [62–64], e.g.,
in systems exhibiting so-called “skin effects” (see, e.g.,
Refs. [65–71]). Note that even for cases in which the dissi-
pative gap is not reflective of relaxation, our general bound
in Eq. (18) remains valid: it directly constrains the dynam-
ics of the fidelity F(t) (a physically observable quantity),
without any assumptions on how the dissipative gap is
related to the decay of observables.

C. Typical versus best-case relaxation rates

As noted above, it is unclear whether or not the bound
stated in Eq. (18) is tight, as the random systems sampled
from the given distribution seem to relax roughly N 2 times
more slowly than the fastest-possible rate predicted by the
bound. However, we stress that there is nothing contradic-
tory: the bound in Eq. (18) must account for all possible
Lindbladians subject to the locality constraint, whereas in
the random case, the systems are much less general.

For example, by adding back in more structure than
is present in the randomly sampled Lindbladians, we can
construct a model that, while not saturating the bound, does
have a prefactor that is O(N ), in between the one given in
the bound and the Haar-random case.

Consider a Lindbladian L̂1 acting on a Hilbert space
with local dimension d, which has a steady-state Renyi-
2 entanglement entropy S(2)1 and a dissipative gap �1. We
can enlarge the Hilbert space in a trivial way by tensoring
together n copies of the same steady state, which evolve
under the Lindbladian

L̂ =
n∑

i=1

1⊗i−1 ⊗ L̂1 ⊗ 1⊗n−i. (28)

The steady-state entanglement entropy (taking a biparti-
tion that splits each copy) is now S(2)ss = nS(2)1 by additivity.
Thus, the deviation of the scaled entanglement from its
maximum value scales as

1 − E2 = N
N − 1

(
e−S(2)ss − 1

N

)
(29)
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= 1
1 − d−n

(
e−nS(2)1 − d−n

)
, (30)

which decays exponentially with n. It thus follows from
Eq. (26) that the instantaneous rate of change in fidelity
between a Haar-random state and the steady state is decay-
ing exponentially in the number of copies n. However, by
construction, the dissipative gap in this system is indepen-
dent of n, suggesting no slow-down with increasing system
size. This lack of slow-down is, however, consistent with
the larger prefactor in our more general bound in Eq. (18).

This example shows that a general bound must have a
prefactor that grows with N at least as O(N/ log(N )). The
large deviation between this example and the Haar-random
models can be attributed to the highly structured form of
the Lindbladian. Stated succinctly, the eigenvectors of the
Lindbladian are now very far from being related to Haar-
random states. All of the eigenvectors of Eq. (28) are com-
pletely unentangled between copies and so approximating
them with a Haar-random state is unsuccessful.

V. BEYOND THE SLOWEST RELAXATION RATE:
THE STRUCTURE OF THE LINDBLADIAN

SPECTRA

A. Bulk gap and midgap states

The results of Sec. IV show that for random unstruc-
tured dissipative dynamics that are locality-constrained
and which have a pure steady state, the scaling of the dis-
sipative gap with steady-state entanglement matches the
predictions of our general bounds in Eqs. (18) and (20).
In this section, we turn to another question: does increas-
ing steady-state entanglement only lead to the formation
of at most a handful of slow-relaxation modes or does
it imply that an extensive number of relaxation modes
become slow? This is a question about the full spectrum of
our Lindbladian and not just the dissipative gap. Through
numerical investigation, we find that the first scenario
holds: strong steady-state entanglement leads to the for-
mation of a unique slow mode, whereas the vast majority
of relaxation modes exhibit no slow-down. We find that
for a variety of different random Lindbladians, the spec-
trum of relaxation rates exhibit what we term a “bulk gap,”
where almost every mode has an O(κ) decay rate regard-
less of the slow-down associated with large steady-state
entanglement. However, there also always exists a single
isolated “midgap” state, which decays extremely slowly
and is responsible for all of the long-time slow dynamics.

To provide context for this result, we first recall known
results for the spectral properties of completely unstruc-
tured random Lindbladians (i.e., dynamics that do not
have the locality and purity constraints of our general set-
ting). Consider a general Lindbladian for a system with an

N -dimensional Hilbert space:

L̂ρ̂ =
N∑

μ,ν=1

Kμν

(
F̂μρ̂F̂†

ν−
1
2

{
F†
ν F̂μ, ρ̂

})
, (31)

where Kμν is the complex positive semidefinite N × N
“Kossakowski matrix.” We take K = NGG†/tr(GG†), with
the matrix G sampled from the complex Ginibre ensem-
ble (unit variance of matrix elements). The operators {F̂μ}
form an orthonormal traceless basis of SU(N ).

For this general setup, it can be shown that the average
dissipative gap scales as 1 − 2/N [72]. For large N , the
average gap becomes N independent, a scaling that will
match almost all relaxation modes in our more structured
dissipative problem. However, the additional constraints
that we impose in our general setup (entangled pure steady
state, local form of dissipators) lead to the formation of a
single extremely slow mode as entanglement is increased,
i.e., a “midgap state” [see Fig. 4(a)]. It is this single slow
mode that is responsible for the slow relaxation described
by our bounds. It is also interesting to note that the midgap
state(s) are purely a result of the entanglement and locality
constraints; they never show up in the completely random
Lindbladians considered in Ref. [72].

Heuristically, this behavior matches our general picture
[cf. Eq. (14)] that as steady-state entanglement increases,
we have the emergence of an almost-conserved quan-
tity, the projector onto the steady state. This separates the
Hilbert space into two subspaces. One naively expects fast
dynamics within each of these subspaces, with a single
slow rate corresponding to mixing between the subspaces
(for more details, see Appendix C). This picture matches
the results of our numerics. One can picture the steady
state and midgap state(s) as forming a quasistable slowly
relaxing “slow manifold,” whereas the rapidly decaying
modes above the bulk gap are an effective “fast manifold.”
One could imagine tracing out the rapidly decaying states
above the bulk gap to understand the slow dynamics within
the midgap states(s) (see, e.g., Ref. [73]). It is especially
interesting to note, though, that in this case the slow man-
ifold contains only a handful of modes, whereas the fast
manifold is growing exponentially with N .

B. Prethermalization and local relaxation

Given this hierarchy of relaxation rates, it is interest-
ing to ask what kind of observables relax slowly via the
midgap state and which relax quickly. Previous work on
specific nonrandom models suggests that observables local
to one subsystem tend to relax on fast O(κ) time scales,
whereas nonlocal intersystem correlations relax slowly
(see, e.g., Ref. [36]).

In order to study this, we want a system where we can
independently look at the relaxation rate of the full A-
B system, as well as trace out one subsystem and look
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FIG. 3. A schematic showing two systems, A and B, that are
coupled via a Markovian chiral (i.e., directional) waveguide,
thus realizing a cascaded quantum system. The A system is
“upstream” and its dynamics are unaffected by B (whereas B is
indeed affected by A).

at the spectra of the other subsystem, which controls
local observables. This can be achieved by constructing
a unidirectional or cascaded [74–76] quantum system fol-
lowing the so-called “coherent quantum absorber” (CQA)
approach [21] (see Fig. 3). Such a system still has the basic
structure of our generic setup, where dissipative interac-
tions between A and B are generated from local couplings
to a common bath. Now, however, these interactions are
directional: A influences B but not vice versa.

To achieve this directionality and still have the dynamics
stabilize a chosen pure entangled steady state, we choose
the matrices Aμ [cf. Eq. (24)] in each jump operator so that
they obey the constraint equation

Aμ = 
AT
μ


−1, (32)

where
 is defined via the steady state as per Eq. (23). This
condition corresponds to imposing an effective classical
detailed-balance condition (see Appendix D). We also add
a Hamiltonian to our system ĤCQA that combines with each
dissipator to enforce directionality (see Appendix D). Note
that, previously, we have used Eq. (24) to define a dissipa-
tor given an arbitrary matrix Aμ; now, Eq. (32) also gives a
constraint on which Aμ are allowed. Using both Eqs. (24)
and (32) also tells us that Aμ = −Bμ, thus determining the
form of each jump operator. Using this construction, we
find that the dynamics of system A are given by

trB[∂tρ̂] = trB

[
−i[ĤCQA, ρ̂] +

∑
μ

D[Âμ + B̂μ]ρ̂

]

= −i[ĤA, ρ̂A] +
∑
μ

D[Âμ]ρ̂A ≡ L̂Aρ̂A, (33)

where ρ̂A ≡ trBρ̂. It thus follows that every eigenvalue of
the system A Lindbladian L̂A is also an eigenvalue of the
full Lindbladian L̂. Moreover, all observables on the A
system relax according to the spectrum of L̂A, whereas cor-
relations between the two systems relax on a time scale
governed by the gap of L̂. Note that because of Eq. (32),
the Lindbladian L̂A necessarily satisfies classical detailed

FIG. 4. (a) The spectrum of a realization of a random Lindbla-
dian on a bipartite system, using the construction of Sec. IV A.
Each random complex jump operator is constructed by drawing
the matrix Aμ from the complex Ginibre ensemble with variance
σ ; this then determines Bμ via Eq. (24). (b) The spectrum of a
realization of a random Lindbladian constructed using the CQA
approach so that the interaction between A and B is necessar-
ily directional [see Fig. 3 and Eq. (32)]. The blue points show
the spectrum of the full Lindbladian L̂ and the orange points
of the Lindbladian L̂A describe system-A-only dynamics. When
looking at L̂A alone, there is no emergent slow mode and the
dissipative gap is large. In both (a) and (b), the local dimension
N = 5, there are M = 2 independent jump operators, and there is
a pure random steady state with fixed δE2 ≡ 10−3 [cf. Eq. (25)].
In both (a) and (b), the black dashed line shows 2(M − 1)σ 2δE2
[cf. Eq. (26)] and the steady state (λ0 = 0) is not shown.

balance [also known as Gelfand-Naimark-Segal (GNS)
detailed balance] [58,77].

In Fig. 4(b), we numerically sample a random distribu-
tion of Schmidt coefficients {pi} and constrain Aμ to obey
the detailed balance condition given in Eq. (32). We also
add the requisite Hamiltonian, making the system com-
pletely directional. Numerically, we observe that the full
Lindbladian acting on both A and B has a small dissipative
gap � ∼ κδE2, as predicted by the bound and consistent
with a random jump operator as in Fig. 4(a). However, if
we instead consider the spectrum of L̂A, the Lindbladian
of system A alone [cf. Fig. 3], the dissipative spectrum
exhibits a large dissipative gap � ∼ κ . This is in line with
the results of Ref. [77], which studies the spectral prop-
erties of random Lindbladians satisfying classical (GNS)
detailed balance. This separates the dynamics into two
regimes. The first is a “prethermal” regime characterized
by the O(κ) bulk gap; during this time, local observables
can relax to their steady-state values as evidenced by the
upstream system not experiencing slow-down. However,
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intersystem correlations and entanglement approach their
steady-state values on exponentially longer time scales,
characterized by the true dissipative gap (see Fig. 4). This
is in line with previously observed open-system dynamics
with highly entangled steady states (that are not necessarily
directional) (see, e.g., Ref. [36]).

C. Multiple slow modes

Our discussion of Lindbladian spectra has so far focused
on cases in which, apart from our constraints on locality
and having a pure entangled steady state, the dynamics
are essentially unstructured. The slow-down of dynamics
associated with increasing entanglement in this case can
be attributed to the emergence of a single slow mode. We
now ask how this situation is modified when our Lind-
bladian has some additional structure. We find regimes
where now multiple slow modes (midgap states) arise due
to increasing steady-state entanglement.

Consider the case in which we also have a notion of
spatial locality within both the A and B subsystems. For
example, consider two n-qubit spin chains denoted A and
B, with local XXZ Hamiltonians governed by the master
equation ∂tρ̂ = −i[ĤXXZ , ρ̂] + L̂diss, with

ĤXXZ =
∑

s=A,B

n−1∑
i=1

J
(
σ̂+

s,i σ̂
−
s,i+1 + H.c.

)

+
∑

s=A,B

sgn(s)
n−1∑
i=1

Jzσ̂
z
s,iσ̂

z
s,i+1, (34)

L̂diss = D[uσ̂−
A,1+vσ̂+

B,1] + D[uσ̂−
B,1+vσ̂+

A,1]. (35)

Here, we take sgn(A) = − sgn(B) = 1 and u2 + v2 = 1.
This models two spin chains being driven by two-mode
squeezed-vacuum light at their boundary and in the limit
Jz = 0 it has been considered as a method of entanglement
generation [22,31,32,36]. This system has a pure steady
state and thus is an example of the general class of dynam-
ics [cf. Eqs. (4)–(6)] that we consider. The steady state can
be found exactly (for related models, see Refs. [32,36]) and
is independent of J , Jz:

|ψ〉ss =
n⊗

i=1

[√
1 − v2|0〉A,i|0〉B,i + (−1)iv|1〉A,i|1〉B,i

]
.

(36)

It follows that the steady-state entanglement is controlled
by v.

This system is clearly more structured than the com-
pletely random examples studied in the previous subsec-
tions. As such, one might expect that the Lindbladian
spectrum would be very different, with potentially many
more slow modes emerging when the steady state has high

FIG. 5. (a) Lindbladian spectra for the master equation for two
n = 3 qubit spin chains given by the XXZ Hamiltonian in Eq. (34)
and the local boundary dissipation in Eq. (35) for varying values
of the intrachain ZZ interaction Jz , with J = 1. Note that when-
ever Jz > 0 (and the Hamiltonian is no longer mappable to free
fermions), all but one of the midgap states move into the bulk
spectra. (b) Lindbladian spectra for the master equation for two
n = 3 qubit spin chains given by Ĥ = Ĥ‖ + Ĥ⊥ [cf. Eqs. (37) and
(38)] and the local boundary dissipation in Eq. (35) for varying
values of the interchain ZZ interaction Jz . Note that this Hamilto-
nian always supports ballistic dynamics and that the slow modes
are robust to interactions. In both (a) and (b), the steady-state
entanglement is fixed to be δE2 = 10−3 and the black dashed line
is at 2(M − 1)δE2. Different values of Jz are offset horizontally
to avoid overlap.

entanglement. Surprisingly, for generic parameters this is
not the case (see Fig. 5): one still obtains a single slow
mode.

However, for the special case in which Jz = 0, the sit-
uation is very different. For this parameter choice, the
local Hamiltonian given in Eq. (34) is equivalent to a
free-fermion Hamiltonian and we find the emergence of
multiple slow modes for strong entanglement (see Fig. 5).
Note that while the Hamiltonian alone can be mapped to
noninteracting particles, the full dissipative dynamics still
correspond to an interacting fermionic problem (for more
details, see Ref. [36]). As such, it is surprising at first
glance that the noninteracting nature of the Hamiltonian
alone leads to such differences in the dissipative spectrum.
Moreover, we observe numerically that the number of slow
modes is exactly equivalent to n, the number of qubits in
each chain, and hence is extensive in system size.

To see that the free-fermion dynamics are truly the
cause of having multiple slow modes, we can con-
sider a more complicated local Hamiltonian introduced
in Ref. [78], which exhibits both free-fermion sectors
of the Hilbert space, as well as diffusive sectors (see
Appendix E). Specifically, consider the master equation
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∂tρ̂ = −i[Ĥ , ρ̂] + L̂diss with L̂diss defined as in Eq. (35)
and Ĥ = Ĥ‖ + Ĥ⊥, with

Ĥ‖ = J
n−1∑
i=1

∑
s=A,B

σ̂+
s,i σ̂

−
s,i+1+H.c., (37)

Ĥ⊥ =
n∑

i=1

J
(
σ̂ x

A,iσ̂
x
B,i + σ̂

y
A,iσ̂

y
B,i

) + Jzσ̂
z
A,iσ̂

z
B,i. (38)

Here, Ĥ‖ is equivalent to the XXZ Hamiltonian in Eq.
(34) at the free-fermion point Jz = 0. Ĥ⊥ couples the two
chains together to form a two-rung ladder. Recall that a
direct Hamiltonian coupling between subsystems A and B
is allowed by our general locality constraint and does not
impact the validity of our time-entanglement bounds. One
can again show that the steady state is pure and is given by
Eq. (36). Moreover, by plotting the dissipative spectra, we
observe that there are still n slow modes separate from the
bulk spectra, just as in the completely free case (see Fig. 5).

VI. CONCLUSIONS

In this paper, we have established a set of relations
between pure steady-state entanglement and relaxation
dynamics for a class of many-body open quantum systems,
where two systems A and B have locality-constrained dis-
sipative interactions (i.e., all dissipators are sums of local
operators). We find that such a system can never have a
unique maximally entangled steady state. Further, we have
demonstrated that this result is a special case of a more
general bound, which says that the time to reach the steady
state is bounded below by how close that state is to being
maximally entangled.

We have further explored this bound in the context of
random Lindbladians satisfying our constraints, demon-
strating that our bound accurately predicts the scaling of
the dissipative gap with the steady-state entanglement. We
have also considered the Lindbladian spectra of such mod-
els, finding that for large entanglement, they generically
have a bulk gap accompanied by extremely slow midgap
state(s), the number of which we conjecture is related
to whether or not the Hamiltonian is mappable to free
fermions.

We believe that these results provide new insights into
dissipative entanglement generation. They are directly rel-
evant to quantum reservoir engineering schemes targeting
remote entanglement and they help to explain a number
of previous results that have observed a trade-off between
entanglement and preparation time in various specific sys-
tems. In future work, it would be interesting to explore
further whether such entanglement-time constraints also
apply to more general situations (e.g., extended many-
body systems where one could try to connect entanglement

and relaxation times for different choices of regions A
and B).
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APPENDIX A: BOUND PROOF

1. Trace relation of maximally entangled states

Here, we will prove the trace property of maximally
entangled states mentioned in the main text. Namely, if we
define

|ψ〉 = 1√
N

N∑
i=1

|i〉A ⊗ |i〉B, (A1)

then, for any local operator ÔA ⊗ 1, we can see that

〈ψ |ÔA ⊗ 1|ψ〉 = 1
N

∑
i,j

〈i|ÔA|j 〉 ⊗ 〈i|j 〉

= 1
N

∑
i

〈i|ÔA|i〉 = 1
N

trÔA. (A2)

By the symmetry of the state under A ↔ B, this also tells
us that the expectation value of any local B operator of the
form 1 ⊗ ÔB is also equivalent to its trace. Since for any
jump operator L̂ = Â ⊗ 1 + 1 ⊗ B̂ that is a sum of local
operators, its commutator with its adjoint is also a sum of
local operators,

[L̂, L̂†] = [Â, Â†] ⊗ 1 + 1 ⊗ [B̂, B̂†], (A3)

then the expectation value

〈ψ |[L̂, L̂†]|ψ〉 = 1
N

(
tr[Â, Â†] + tr[B̂, B̂†]

)
= 0, (A4)

as noted in the main text.

2. Proof of main bound

We can now move on to proving the main bound. Fol-
lowing a similar construction to Ref. [79], we will bound
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the fidelity to the steady state

F(t) =
(

tr
√√

ρ̂ssρ̂t

√
ρ̂ss

)2

. (A5)

Because we assume that the steady state is pure, this can
be simplified as

F(t) = tr(ρ̂tρ̂ss). (A6)

Now, we can bound the change in the fidelity by its
maximal derivative, i.e.,

|F(t)− F(0)| ≤ �maxt, (A7)

�max = max |∂tF(t)|, (A8)

and so we will now focus on bounding ∂tF(t). Letting L̂
be the Lindbladian and noting that ρ̂ss is time independent,

we can observe that

|∂tF(t)| = |tr(ρ̂ss∂tρ̂t)| = |tr(ρ̂ssL̂ρ̂t)|
= |tr(L̂†ρ̂ssρ̂t)|, (A9)

where we have used the definition of the adjoint Lind-
bladian to move it onto steady state (where the adjoint is
with respect to the Hilbert-Schmidt norm). The Cauchy-
Schwartz inequality gives

�max ≤ |tr(L̂†ρ̂ssρ̂t)| ≤
√

tr(L̂†ρ̂ss)2tr(ρ̂t)2

≤
√

tr(L̂†ρ̂ss)2. (A10)

Thus the rate �max is bounded by the Hilbert-Schmidt norm
of the adjoint Lindbladian acting on the steady state. We
can further simplify this as follows:

L̂†ρ̂ss = i[Ĥ , ρ̂ss] +
∑
μ

L̂†
μρ̂ssL̂μ − 1

2
{L̂†
μL̂μ, ρ̂ss}

=
∑
μ

L̂†
μρ̂ssL̂μ (A11)

=⇒ tr(L̂†ρ̂ss)
2 = tr

[∑
μ,ν

L̂†
μρ̂ssL̂μL̂†

νρ̂ssL̂ν

]

=
∑
μ,ν

|〈ψ |[L̂μ, L̂†
ν]|ψ〉|2, (A12)

where we have repeatedly used the fact that [Ĥ , ρ̂ss] = L̂μρ̂ss = 0. Next, we will expand out the jump operator in terms
of its matrix elements in the Schmidt basis:

L̂μ = Âμ ⊗ 1 + 1 ⊗ B̂μ

≡
N∑
ij

(Aμ)ij |i〉〈j | ⊗ 1 + 1 ⊗ (Bμ)ij |i〉〈j |. (A13)

To proceed, we will need to understand the relation between (Aμ)ij and (Bμ)ij , which is implied by L̂μ|ψ〉 = 0. We find
that, writing |ψ〉 in the Schmidt basis (and removing tensor-product signs for brevity),

0 =
N∑
ijkl

√
pl
[
(Aμ)ij |ik〉〈jk| + (Bμ)ij |ki〉〈kj |] |ll〉

=
N∑
ij

[√
pj (Aμ)ij + √

pi(Bμ)ji
] |ij 〉 (A14)

=⇒ (Aμ)ij = −√
pi(Bμ)ji

1√pj
. (A15)
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Recalling the definition of 
 in Eq. (23), this is equivalent to

Aμ = −
BT
μ


−1, (A16)

as stated in the main text [Eq. (24)]. Coming back to the bound, we can expand Eq. (A12) in terms of matrix elements as

�2
max ≤

∑
μ,ν

⎡
⎣

N∑
j ,k=1

(
Aμ)j ,k(Aν)∗j ,k + (Bμ)j ,k(Bν)∗j ,k

) (
pj − pk

)
⎤
⎦

2

(A17a)

=
∑
μ,ν

⎡
⎣

N∑
j ,k=1

(Aμ)j ,k(Aν)∗j ,k

(
pj − pk

)2

pk

⎤
⎦

2

≤
∑
μ,ν

⎡
⎣ |Aμ||Aν |

pmin

N∑
j ,k=1

(
pj − pk

)2

⎤
⎦

2

(A17b)

= 1
p2

min

(∑
μ

|Aμ|2
)2

⎡
⎣

N∑
j ,k=1

(
pj − pk

)2

⎤
⎦

2

= 2N 2

p2
min

(∑
μ

|Aμ|2
)2 (

e−S(2) − N−1
)2

. (A17c)

In Eq. (A17b), we have defined |Aμ| to be the largest matrix element of Aμ in the Schmidt basis and
√

pmin to be the
smallest Schmidt coefficient. Taking a square root of both sides gives

�max ≤
√

2N
pmin

(∑
μ

|Aμ|2
)(

e−S(2) − N−1
)

, (A18)

recovering the result from the main text.

3. Non-full-rank steady state

If 
 is not full rank, then p−1
min is ill defined. However, a similar bound can be derived for a state that is not full rank.

Beginning at Eq. (A17), we note that

�2
max ≤

∑
μ,ν

⎡
⎣

N∑
j ,k=1

(
Aμ)j ,k(Aν)∗j ,k + (Bμ)j ,k(Bν)∗j ,k

) (|ψj |2 − |ψk|2
)
⎤
⎦

2

≤
∑
μ,ν

(|Aμ||Aν | + |Bμ||Bν |
)2

⎡
⎣

N∑
j ,k=1

∣∣∣∣|ψj |2 − |ψk|2
∣∣∣∣

⎤
⎦

2

≤ N 2
∑
μ,ν

(|Aμ||Aν | + |Bμ||Bν |
)2

N∑
j ,k=1

(|ψj |2 − |ψk|2)2

= 2N 3
∑
μ,ν

(|Aμ||Aν | + |Bμ||Bν |
)2

(
e−S(2) − N−1

)
, (A19)

=⇒ �max ≤ 2N 3/2
√∑

μ,ν

(|Aμ||Aν | + |Bμ||Bν |
)2

(
e−S(2) − N−1

)1/2

≤ 2N 3/2

⎡
⎢⎣
⎛
⎝

M∑
μ=1

|Aμ|
⎞
⎠

2

+
⎛
⎝

M∑
μ=1

|Bμ|
⎞
⎠

2
⎤
⎥⎦ δE1/2

2 , (A20)

where we see that the bound depends only on the root of δE2, as opposed to linearly for the case of a full-rank system.
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4. Necessity of multiple jump operators

We now prove the result from the main text, that the
condition Eq. (24) implies that A and B are isospectral,
necessitating multiple jump operators (or a Hamiltonian
interaction) to obtain a unique steady state. Let us begin
by assuming that the matrix A is diagonalizable. The rela-
tion A = −
BT
−1 tells us that if A is diagonalizable via
A = P−1DP, then BT = −(P
)−1D(P
). Hence, B is also
diagonalizable as

B = (P
)T(−D)((P
)T)−1. (A21)

Thus, we can work in the (nonorthonormal) basis of
eigenvectors of A and B, so that

L̂ = D̂A ⊗ 1 − 1 ⊗ D̂B, (A22)

and therefore every vector of the form |ψ〉 = |i〉A ⊗ |i〉B is
in the kernel of L̂, where |i〉A,B are the eigenbases of A and
B, respectively.

Alternatively, let us assume that A is not diagonalizable.
In this case, we can find a basis where it is in Jordan normal
form. Let us consider just a single Jordan block of the form

A =

⎛
⎜⎜⎜⎜⎝

λ 1 0 0 . . . 0
0 λ 1 0 . . . 0
...

...
...

. . . . . . 0
0 0 0 . . . λ 1
0 0 0 . . . 0 λ

,

⎞
⎟⎟⎟⎟⎠

(A23)

of dimension n × n. Now, we can rewrite this in the fol-
lowing way: A has a single eigenvector that we will denote
as |0〉, such that A|0〉 = λ|0〉. Then, we define that A|m〉 =
λ|m〉 + |m − 1〉 for m > 0. Now, since A and −BT are sim-
ilar matrices, they have an identical Jordan normal form.
Hence, we can define an identical basis for B such that
B|m〉 = −λ|m〉 − |m − 1〉 (for m > 0) and B|0〉 = λ|0〉.
Now, consider the set of states

|φn〉 =
n∑

m=0

|m〉 ⊗ |n − m〉. (A24)

We can observe that L̂|φn〉 is

L̂|φn〉 = (A ⊗ 1 + 1 ⊗ B)
n∑

m=0

|m〉 ⊗ |n − m〉

=
n∑

m=1

|m − 1〉 ⊗ |n − m〉 −
n−1∑
m=0

|m〉 ⊗ |n − m − 1〉

= 0. (A25)

Repeating this construction for each Jordan block implies
that the dimension of the kernel of L̂ is always at least

N . To lift this degeneracy of the Lindbladian, we need
(at least) two jump operators such that ker L̂1 ∩ ker L̂2 is
spanned by the steady state |ψ〉, or a Hamiltonian inter-
action such that the intersection of the eigenvectors of the
Hamiltonian and the kernel of L̂ is spanned by the steady
state |ψ〉.

In Appendix B, we will do this by choosing multiple
random jump operators.

5. Uneven Hilbert-space dimension

Throughout the main text, we mainly limit the discus-
sion to bipartite Hilbert spaces in which each subspace
has an identical Hilbert-space dimension. Now, we wish to
explore what happens when considering systems of uneven
dimension; without loss of generality, we will assume that
H = HA ⊗ HB and

dim(HA) ≡ NA < NB ≡ dim(HB). (A26)

Now, we can still define a pure steady state in terms of its
Schmidt coefficients:

|ψ〉 =
NA∑
i=1

√
pi|i〉A ⊗ |i〉B, (A27)

where the pi are real and positive. We define the remaining
(NB − NA)-dimensional subspace of HB as

H′
B = HB \ span{|i〉B|i = 1, . . . , NA}, (A28)

for which we will define the basis {|i〉B|i = NA +
1, . . . , NB}. A maximally entangled state is still defined by
a flat distribution of Schmidt coefficients, where pi = N−1

A .
Taking L̂ = Â ⊗ 1 + 1 ⊗ B̂ as before, we now calculate
|L̂†|ψ〉|2 when the B̂ is of larger rank than Â and |ψ〉 is
maximally entangled. We now find that

|L̂†|ψ〉|2 = 〈ψ |[L̂, L̂†]|ψ〉
= 〈ψ |[Â, Â†] ⊗ 1|ψ〉 + 〈ψ |1 ⊗ [B̂, B̂†]|ψ〉

= tr[Â, Â†] + 1
NA

NA∑
i=1

〈i|[B̂, B̂†]|i〉

= 1
NA

NA∑
i=1

NB∑
j =NA+1

|Bij |2 − |Bji|2. (A29)

The condition L̂|ψ〉 = 0 implies (see Fig. 6)

Bij =
⎧⎨
⎩

Aji
ψi

ψj
, i, j ≤ NA,

0, i > NA, j ≤ NA,
(A30)

040305-15



ANDREW POCKLINGTON and AASHISH A. CLERK PRX QUANTUM 5, 040305 (2024)

which allows us to reduce Eq. (A29) to simply

|L̂†|ψ〉|2 = 1
NA

NA∑
i=1

NB∑
j =NA+1

|Bij |2, (A31)

which can now be nonzero; i.e., it is possible to generate
a maximally entangled state if NB > NA, as has been noted
in the case of a qubit and qutrit in Ref. [30]. Let us define
the projection operator �̂ as

�̂ =
NB∑

j =NA+1

|j 〉〈j |. (A32)

Then, Eq. (A30) tells us that �̂B̂(1 − �̂) = 0. However,
we also know that to avoid slow-down, we require that
||(1 − �̂)B̂�̂|| �= 0, as otherwise we can just truncate the
Hilbert space and recover the bound for NA = NB. In fact,
we can rewrite the bound in this case as

�max ≤
√

2N
pmin

(∑
μ

|Aμ|2
)
δE2 +

∑
μ

||(1 − �̂)B̂μ�̂||22,

(A33)

where the norm ||Ô||2 is the operator norm, defined as
the largest singular value of Ô. The first term is simply
the standard one from before and the second is a mea-
sure of how much the dissipation is utilizing the extra
Hilbert space available. The use of an uneven Hilbert-
space dimension to circumvent slow-down was first con-
sidered in a qubit-qutrit system in Ref. [30]; however, it
should also work perfectly well in the many-body case.
This can be seen in Fig. 6, where we take NB = NA + 1
and take A from the random Ginbre ensemble. We then
take the elements of (1 −�)B� to be normally distributed
with zero mean and variance σB. Finally, we define the
projection superoperator:

P̂ =
NA∑

i,j =1

|ρij 〉〉〈〈ρij |, (A34)

ρ̂ij = |i〉〈i|A ⊗ |j 〉〈j |B. (A35)

(As before, the double-bracket notation |ρij 〉〉 signifies a
vectorized density matrix.) If L̂ is the Lindbladian act-
ing on the enlarged Hilbert space (NB > NA), then we can
define

L̂′ = P̂L̂P̂ , (A36)

which gives the effective dynamics in the subspace of
dimension N 4

A . If we look at the gap as a function of σ 2
B ,

we can see that when σB � δE2, then the gap is dominated

FIG. 6. (a) A depiction of the matrix elements of B when
there is an uneven Hilbert-space dimension, breaking B into four
blocks using the projector � [cf. Eq. (A32)]. (b) The dissipa-
tive gap for random Lindbladians averaged over 100 instances,
with δE2 fixed to be 10−3. The A matrix is sampled from the
random Ginibre ensemble with unit variance and the elements
in (1 −�)B� are sampled from a normal distribution with zero
mean and variance σ 2

B . the elements of (1 −�)B(1 −�) are
irrelevant and taken to be 0. The black dashed line gives the
expected scaling of σ 2

B + 2δE2 until the gap saturates to an O(1)
parameter for σ 2

B � 1.

by the entanglement-induced slow-down. However, when
σ 2

B � δS, the gap opens up linearly in σ 2
B , before saturating

at an O(1) value. Note that the projection P̂ is necessary,
as otherwise when σ 2

B � 1, the slow time scale would be
dominated by the time to get out of the extra B system
levels and we would not see the plateau at small σ 2

B .
An alternative interpretation is that systems on uneven

Hilbert-space dimension can be recast as effectively
being of equal dimension with non-full-rank steady-state
Schmidt coefficients. That is to say, again assuming NB >

NA, we can always define the operator

Ãμ = Aμ ⊕ 0NB−NA , (A37)

where by taking a direct sum with the 0 matrix, we essen-
tially just pad Aμ with zeroes so that it is of the same
dimension as Bμ. Next, we define the steady-state Schmidt
coefficients

ψ̃i =
{
ψi, i ≤ NA,
0, NA < i ≤ NB,

}
(A38)

and again choose Bμ as in Eq. (A30). Now, we have a new
master equation on an even Hilbert-space dimension with
identical dynamics. We have simply augmented the Hilbert
space with uncoupled extra levels on the A system. This
means that the steady-state reduced density matrix is not
full rank but the bound in Eq. (19) will still apply. Hence,
given a state on an uneven Hilbert space, we can also state
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that

�max ≤ 2N 3/2
B

⎡
⎢⎣
⎛
⎝

M∑
μ=1

|Aμ|
⎞
⎠

2

+
⎛
⎝

M∑
μ=1

|Bμ|
⎞
⎠

2
⎤
⎥⎦

×
(

e−S(2)ss − 1
NB

)1/2

. (A39)

In this case, e−S(2)ss ≥ N−1
A and so the gap will not close

even for a maximally entangled state, as shown in, e.g.,
Ref. [30].

6. Mixing time

Another relevant quantity in both classical or quantum
Markov chains is the mixing time [54], which can be
thought of as the smallest time after which any initial prob-
ability distribution (or density matrix, in the quantum case)
is within ε distance of the steady-state distribution. More
formally, we can define this as

tmix(ε) = inf{t > 0 | ∀ρ̂, dtr(eL̂tρ̂, ρ̂ss) ≤ ε}, (A40)

where dtr is the trace distance and ρ̂ss is the steady-state
density matrix. The bound as stated in Eq. (18) is in terms
of the quantum fidelity; however, this is related to the trace
distance by [55]

dtr(ρ̂, σ̂ ) ≥ 1 − F(ρ̂, σ̂ ), (A41)

as long as at least one of ρ̂ or σ̂ is a pure state. Thus, if we
now use that F(eL̂tρ̂, ρ̂ss) ≤ F(ρ̂, ρ̂ss)+ vt, then we find
that

ε ≥ dtr(eL̂tρ̂, ρ̂ss) ≥ 1 − F(eL̂tρ̂, ρ̂ss)

≥ 1 − F(ρ̂, ρ̂ss)− �maxt (A42)

=⇒ �maxt ≥ 1 − ε − F(ρ̂, ρ̂ss) (A43)

=⇒ tmix(ε) ≥ 1 − ε

�max
(A44)

where �max is bounded from above by Eq. (18) as derived
before. Hence, the mixing time is lower bounded by one
over the distance from the maximal entropy.

APPENDIX B: RANDOM LINDBLADIANS

1. Random jump operators

It is useful to consider how well the bound is saturated
on a class of random Lindbladians, as shown in the main
text. Let us define a distribution of Schmidt coefficients

{pi} subject to

∑
i

pi = 1, − log
∑

i

p2
i = S(2), (B1)

for some fixed value of the Renyi-2 entropy S(2). Now,
given this distribution, we define a set of random matri-
ces Aμ sampled from the complex Ginibre ensemble where
(Aμ)ij are independent identically distributed (IID) Gaus-
sian random variables with

E[(Aμ)ij ] = 0, E[(Aμ)∗ij (Aν)kl] = δikδjlδμνσ
2. (B2)

We will sample random jump operators from many ensem-
bles, including the complex Ginibre ensemble, random
Hermitian matrices, random symmetric matrices, and ran-
dom matrices that obey detailed balance. For concreteness,
let us define A drawn from the random Ginibre ensemble
above [Eq. (B2)]. Then, we define the random Hermitian
operator AH , the random symmetric operator AS, and the
random detailed-balance operator ADB as

AH = 1√
2
(A + A†), (B3a)

AS = 1√
2
(A + AT), (B3b)

ADB = 1√
2
(AS +
AT

S

−1). (B3c)

For all of these ensembles, we find that the dissipative gap
scales linearly with δE2 predicted by the bound. This is
shown in Fig. 7.

2. Fidelity rate of change from a Haar-random state

The bound given in Eq. (18) says that no state can
approach the steady state at a rate faster than O(N 2)× δE2.
However, the numerics seem to imply that the dissipative
gap is actually O(1)× δE2. One might guess that this dis-
crepancy is a result of the fact that the dissipative gap is
the slowest-relaxing mode, whereas the bound applies to
the fastest. To obtain a prefactor closer to O(1), we can
consider bounding a Haar-random state as opposed to all
states. Recalling the formula from above [Eq. (A9)], we
know that

∂tF(t) = tr
(
ρ̂tL̂†ρ̂ss

)
. (B4)

Let ρ̂t = Û|0〉〈0|Û†, with Û integrated over the Haar mea-
sure. Since ∂tF(t) is linear in ρ̂t, we can just directly
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FIG. 7. (a) The dissipative gap of the random Lindbladians given a fixed steady-state entanglement E2, similar to Fig. 2. The different
colors correspond to drawing the matrix A from different distributions (see Eq. (B3)). For each distribution and entanglement value,
we sample 100 Lindbladians, with local dimension N = 10 and M = 2 jump operators. The black dashed line gives the scaling as
predicted in Eq. (27). (b) The average (solid lines) and standard deviation (dashed lines) of the points in (a) for a fixed value of
entanglement and distribution.

calculate that
∫

Haar
Û|0〉〈0|Û† dU = 1

N 2 (B5)

=⇒
∫

Haar
∂tF(t) dU = 1

N 2 tr
(
L̂†ρ̂ss

)
. (B6)

Now, we can calculate that

1
N 2 tr

(
L̂†ρ̂ss

)
= 1

N 2

∑
μ

〈ψ |[L̂μ, L̂†
μ]|ψ〉

= 1
N 2

∑
μ

N∑
j ,k=1

|(Aμ)j ,k|2
(
pj − pk

)2

pk
. (B7)

Now, at this point, we can see that this can be bounded in
a similar way as before by

∫

Haar
∂tF(t) dU ≤

(∑
μ

|Aμ|2
)

2
Npmin

δE2. (B8)

We can be more precise if we know something about
the distributions from which we sample Aμ and pj . Sup-
pose that (Aμ) is sampled from a random distribution with
variance

E
[|(Aμ)j ,k|2

] = σ 2. (B9)

Further, let us rewrite the Schmidt coefficients in the
following, physically motivated, form:

pi = e−βλi

∑N
j =1 e−βλj

, (B10)

where we have defined a new set of random variables
λi. Note that by writing it in this manner, the fact that

∑N
i=1 pi = 1 is inherently manifest. Moreover, we have a

single parameter β that can tune the steady-state entangle-
ment entropy. When β = 0, then pi = 1/N and the state is
maximally entangled. As β → ∞, the state becomes pure.
Moreover, δE2(β) is monotonic in β, so there is a unique
value of β to fix the entanglement. Next, observe that if
λi → λi − λ, then pi are invariant, so without loss of gen-
erality we can take

∑N
i=1 E[λi] = 0. Next, we will set a

scale for β by defining

1
N

N∑
i=1

E[λ2
i ] = 1. (B11)

We can always do this (for any distribution with a well-
defined second moment) by rescaling β. Finally, we will
define the variable χ2 = ∑N

i,j =1 E[λiλj ]. For example, if λi

are IID, then χ2 = N . To calculate the average of the rate
of change of the fidelity, it will be necessary to compute
the average

∑N
i=1 E[p−1

i ]. We can make progress by noting
that in the high-entanglement limit, the variance of the pi
is highly constrained by fixing the entropy. Hence, we can
compute this to leading order in δE2 (or equivalently, the
small β limit). Observe that

E[δE2] = E

⎡
⎢⎣

∑N
i=1 e−2βλi

(∑N
j =1 e−βλj

)2

⎤
⎥⎦

= β2

N

(
1 − χ2

N 2

)
+ O(β4N 2). (B12)

Now, δE2 is in fact fixed, so we can invert this to instead
be an equation for β:

β2

N

(
1 − χ2

N 2

)
= δE2 + O(δE2N 2)2. (B13)
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From here, we can now calculate, to leading order in β,

N∑
i=1

E[p−1
i ] =

N∑
i,j =1

E
[
e−β(λi−λj )

]

= N 2 + β2

2

∑
j ,k=1

E
[
(λi − λj )

2] + O(β4N 2)

= N 2 (1 + NδE2)+ O(N 2δE2)
2. (B14)

We can use this relation to observe that Eq. (B7) simplifies to

E

[∫

Haar
∂tF(t) dU

]
= E

⎡
⎣ 1

N 2

M∑
μ=1

N∑
j ,k=1

|(Aμ)j ,k|2
(
pj − pk

)2

pk

⎤
⎦

= Mσ 2

N 2 E

⎡
⎣

N∑
j ,k=1

(
pj − pk

)2

pk

⎤
⎦

= 2Mσ 2δE2 + O(δE2)
2, (B15)

where we have defined M to be the number of jump operators. Assuming that NδE2 � 1, we can drop the second term as
small and recover the result quoted in the main text. We can also calculate the variance that one would expect from such
a distribution. Here, we calculate

E

[∫

Haar
|∂tF(t)|2 dU

]
= E

⎡
⎣
∫

Haar

∣∣∣∣∣
∑
μ

|〈ψ |LμU|0〉|2
∣∣∣∣∣
2

dU

⎤
⎦ . (B16)

This now depends nonlinearly on ρ̂t, so we cannot simply replace the state with its average. However, we can still make
progress. We will suppress the integral over the Haar measure for brevity, giving

E
[|∂tF|2] = E

⎡
⎣
∣∣∣∣∣
∑
μ

|〈ψ |L̂μÛ|0〉|2
∣∣∣∣∣
2
⎤
⎦

= E

⎡
⎣

N∑
iα ,jα

m∑
μ,ν

(Aμ)j1k1(Aν)j2k2(Aμ)
∗
j3k3
(Aν)∗j4k4

Uk1j1
00 Uk2j2

00 (U
k3j3
00 )

∗(Uk4j4
00 )

∗ ∏
α

(√
pjα − pkα√pjα

)⎤
⎦

= σ 4
N∑

iα ,jα

m∑
μ,ν

(
δ13δ24 + δ14δ23δμν

)
E

[
Uk1j1

00 Uk2j2
00 (U

k3j3
00 )

∗(Uk4j4
00 )

∗ ∏
α

(√
pjα − pkα√pjα

)]

= σ 4
N∑

iα ,jα

(
M 2δ13δ24 + mδ14δ23

) (δ13δ24 + δ14δ23)

N 2(N 2 + 1)
E

[∏
α

(√
pjα − pkα√pjα

)]

= σ 4(M 2 + M )

N 2(N 2 + 1)

N∑
iα ,jα

(δ13δ24 + δ1234)E

[∏
α

(√
pjα − pkα√pjα

)]

= σ 4(M 2 + M )

N 2(N 2 + 1)
E

⎡
⎢⎣
⎛
⎝

N∑
jk

(pj − pk)
2

pj

⎞
⎠

2

+
N∑
jk

(pj − pk)
4

p2
j

⎤
⎥⎦ . (B17)
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To make progress, we will again assume that δE2 � N−2

and so we can again expand to leading order in δE2N 2. We
will also assume N � 1 and so we will only keep terms to
leading order in N−1 as well. This gives

E
[|∂tF|2] = σ 4(M 2 + M + O(N−2)) (δE2)

2

+ O(N 2δE2)
3. (B18)

This tells us that we would expect a variance of

V [|∂tF|] = E
[|∂tF|2] − |E [|∂tF|]|2

= σ 4M (δE2)
2 + O(δE2)

3

= 1
M

|E [|∂tF|]|2 + O(δE2)
3 (B19)

and so the distribution should get tighter as one adds more
and more jump operators. This scaling can be observed
in Fig. 8. However, we note that in Fig. 8 we are plot-
ting the dissipative gap and not the rate of change of the
fidelity. This is important because we know analytically
that the gap� = 0 if M = 1, given the fact that Â and B̂ are
isospectral (see Sec. A 4). However, a single jump opera-
tor is sufficient to change the fidelity to the steady state at
a nonzero rate for some states in the Hilbert space. Hence,
we expect that the average and variance of the gap should
be (setting σ = 1)

E[�] ∝ (M − 1)δE2, (B20)

V[�] ∝ (M − 1) (δE2)
2 . (B21)

Hence, in Fig. 8 we normalize by these values and observe
a collapse of both the average and the standard deviation
(the root of the variance) onto a single line.

APPENDIX C: MAXIMALLY ENTANGLED STATE
AS A STRONG SYMMETRY

Recall from Appendix A that if ρ̂ss is a maximally entan-
gled state, then ρ̂ssL̂μ = 0. However, because to be a steady
state requires L̂μρ̂ss = 0, this implies that the commuta-
tor of the steady state with each jump operator identically
vanishes. Additionally, any pure steady state must be a
Hamiltonian eigenstate as well, so all together this implies
that

[L̂μ, ρ̂ss] = [Ĥ , ρ̂ss] = 0. (C1)

However, this is simply the statement that ρ̂ss is a strong
symmetry of the dynamics [53]. This means that we can
interpret the steady-state density matrix as a symmetry
operator; i.e., it is a conserved charge. Because it is a pure
state, ρ̂ss = |ψ〉〈ψ |, the density matrix is itself simply a
projection operator onto the steady state |ψ〉 and so the

FIG. 8. (a) The dissipative gap of random Lindbladians, with
Aμ sampled from the complex Ginibre ensemble and local
dimension N = 10 for varying numbers of jump operators M .
There are 100 samples for each M and each value of entangle-
ment δE2. (b) The normalized average (solid lines) and standard
deviation (dashed lines) of the data in (a). The average is normal-
ized as E[�]/(m − 1) [cf. Eq. (B20)] and the standard deviation
as

√
E[�2] − E[�]2/m − 1 [cf. Eq. (B21)].

conserved charge generated by such a symmetry is simply
the population in the steady state. Hence, this is another
way to see that if an open system has a steady state that
is maximally entangled, then it is completely dynamically
isolated from the rest of the system.

Now, let us suppose that we perturb the Lindbladian
slightly away from this point, so that the steady state is
still pure but slightly less entangled. In this case we still
have that

L̂μρ̂ss = [Ĥ , ρ̂ss] = 0, (C2)

since it is by definition a pure steady state, but if it is not
maximally entangled, then generically ρ̂ssL̂μ �= 0. We can
quantify, then, how close this is to being a symmetry by
defining the error E :

E =
∑
μ

|[L̂μ, ρ̂ss]| =
∑
μ

〈ψ |[L̂μ, L̂†
μ]|ψ〉 = tr

(
L̂†ρ̂ss

)
,

(C3)
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where | · | denotes the Hilbert-Schmidt norm. However,
this is exactly the same term that shows up when calcu-
lating the rate of change of the fidelity, which we know
goes to zero as [cf. Eqs. (B7) and (B8)]

∑
μ

〈ψ |[L̂μ, L̂†
μ]|ψ〉 � N 2δE2, (C4)

and so we can think of this entanglement term both as
bounding how fast the fidelity to the steady state can
change as well as how close the Lindbladian is to having a
strong symmetry.

This interpretation also explains why there is exactly
one midgap state for a random Lindbladian. Let us suppose
that we have a Lindbladian L̂0 with a maximally entangled
steady state ρ̂0 = |ψmax〉〈ψmax|. Now, we know that this
implies that there is a strong symmetry in the dynamics and
therefore at least twofold degeneracy in the steady-state
manifold. Moreover, in the absence of any other symmetry
constraints, the degeneracy should be exactly two and it
should be split by a �bulk = O(1) bulk gap [72]. Now, let
us assume that there is a very closely related Lindbladian
L̂ = L̂0 + εL̂1 such that ε � �bulk the bulk gap and so
we can perform perturbation theory within the steady-state
manifold.

Now, we do not know exactly what the degenerate
steady state actually is but we do know exactly what the left
eigenvectors are, so instead we will do perturbation theory
in L̂†, which has the same eigenspectrum of L̂. Explicitly,
we know that L̂†

0ρ̂0 = L̂†
0(1 − ρ̂0) = 0.

Let us suppose that ρ̂ss is the unique steady-state solu-
tion of L̂ρ̂ss = 0. Then, ρ̂ss = ρ̂0 + ερ̂1 + O(ε2). There-
fore, ρ̂0 = ρ̂ss + O(ε) and, specifically, this means that the
left eigenvector of L̂—or, alternatively, the right eigen-
vector of L̂†—is ρ̂0 + O(ε) = ρ̂ss + O(ε). Hence, to first
order in ε, we can perturbatively calculate the steady-state
degeneracy splitting as the eigenvalues of

tr
[(

1 − ρ̂ss
ρ̂ss

)
L̂† ( 1 − ρ̂ss ρ̂ss

)]

= tr
[(

1

0

)
L̂† ( −ρ̂ss ρ̂ss

)]

=
( −� �

0 0

)
, (C5)

where � = tr(L̂†ρ̂ss). The eigenvalues of this matrix are
0, −�, so perturbatively one would expect a dissipative
gap that is equivalent to � = tr(L̂†ρ̂ss). However, this is
just exactly the error E defined in Eq. (C3); i.e., the dis-
sipative gap is equivalent to how close the system is to
having a strong symmetry.

APPENDIX D: DIRECTIONAL DYNAMICS

As mentioned in the main text, the form of the jump
operator given in Eq. (6) is the correct form for directional
dynamics [21,74–76]. To achieve directionality, such that
the dynamics in the A system are unaffected by those in the
B system, a Hamiltonian interaction is necessary. Generi-
cally, given a jump operator L̂ = Â ⊗ 1 + 1 ⊗ B̂, one can
always make this a unidirectional (chiral) process via the
Hamiltonian [21,76]

ĤAB = i
2

(
Â†⊗B̂ − Â ⊗ B̂†

)
. (D1)

More is needed, however, to ensure that the state we began
with is still the steady state of this new Lindbladian.

To make this possible, first we will need a local Hamil-
tonian ĤA on the A system such that

L̂Aρ̂A = −i[ĤA, ρ̂A] + D[Â]ρ̂A = 0, (D2)

ρ̂A ≡ trBρ̂ss. (D3)

This is equivalent to the condition that

(HA)nm = i
pm − pn

〈n|D[Â]ρ̂A|m〉, (D4)

which uniquely defines the matrix elements of HA in the
Schmidt basis. Note that this also gives another constraint,
that

〈n|D[Â]ρ̂A|n〉 = 0, (D5)

=⇒
∑

k

|Ank|2pk − |Akn|2pn = 0. (D6)

One way to satisfy this is to simply assume A = 
AT
−1,
which is what we have done throughout this paper.

With ĤA now defined, we can use the general CQA con-
struction in Ref. [21] to find the local Hamiltonian on B,
which is given by

HB = −1
2



(
HA − i

2
A†A

)T


−1 + H.c. (D7)

Then, we can define

ĤCQA = ĤA ⊗ 1 + 1 ⊗ ĤB + ĤAB, (D8)

L̂CQAρ̂ = D[Â ⊗ 1 + 1 ⊗ B̂]ρ̂ − i[ĤCQA, ρ̂], (D9)

which generates directional dynamics with the steady state
ρ̂ss as desired.
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APPENDIX E: FREE-FERMION SUBSPACES OF
AN INTERACTING HAMILTONIAN

In the main text, we consider the interacting two-
leg ladder Hamiltonian Ĥ = Ĥ‖ + Ĥ⊥, where Ĥ‖ is an
XX Hamiltonian running along the legs of the ladder
and Ĥ⊥ is an anisotropic XXZ Hamiltonian across the
rungs:

Ĥ‖ = J
n−1∑
i=1

∑
s=A,B

σ̂+
s,i σ̂

−
s,i+1+H.c., (E1a)

Ĥ⊥ =
n∑

i=1

J
(
σ̂ x

A,iσ̂
x
B,i + σ̂

y
A,iσ̂

y
B,i

) + Jzσ̂
z
A,iσ̂

z
B,i, (E1b)

This Hamiltonian has been introduced in Ref. [78], where
it has been shown that (see also Ref. [32]) the Hamiltonian
can be recast as particles hopping on a 1D chain, where
now each lattice site has local Hilbert-space dimension d =
4. Define the singlet and triplet states |S/T〉j as

|S/T〉j = 1√
2

(|0〉A,j |1〉B,j ∓ |1〉A,j |0〉B,j
)

. (E2)

Letting |0〉j ≡ |0〉A,j |0〉B,j and, similarly, |1〉j ≡ |1〉A,j |1〉B,j ,
then {|0〉, |1〉, |S〉, |T〉} span the local Hilbert space of the
single 1D chain.

Next, it is simple to observe that because the XXZ inter-
action conserves total angular momentum as well as total
Z angular momentum on each bond, then these four states
can also be used to form an eigenbasis of Ĥ⊥. It is also of
interest to note that the states

|�1〉 ≡ |S〉1 ⊗ |T〉2 ⊗ · · · ⊗ |S(T)〉n, (E3)

|�2〉 ≡ |T〉1 ⊗ |S〉2 ⊗ · · · ⊗ |T(S)〉n (E4)

are also zero-energy eigenstates of Ĥ‖ and so we will define
these to be the “vacua” of the Hamiltonian Ĥ .

From here, one can add “excitations” in the form of |0〉
or |1〉. This is because the Hamiltonian Ĥ‖ sends (cf. Eq. 2

in Ref. [78])

|0S〉 ↔ |S0〉, |0T〉 ↔ |T0〉, (E5a)

|1S〉 ↔ |S1〉, |1T〉 ↔ |T1〉, (E5b)

where ↔ represents mapping under Ĥ‖ modulo multiplica-
tive constants. Furthermore, Ĥ‖|00〉 = Ĥ‖|11〉 = 0 and so
any fixed number of |0〉 or |1〉 particles on top of the
vacuum can be mapped exactly to free fermions—each
individual species experiences a nearest-neighbor-hopping
Hamiltonian without scattering. The caveat here, and the
reason why the entire Hilbert space is not equivalent to
free fermions, is that the |0〉 particles and |1〉 particles can
scatter off of each other. That is, Ĥ‖ maps (cf. Eq. 3 in Ref.
[78])

|01〉 + |10〉 ↔ |TT〉 − |SS〉. (E6)

Hence, we can observe that for a given ground state
and a given particle species, there are

∑n
i=0

(n
i

) = 2n dif-
ferent states in the free-fermion subspace, giving over-
all a (2n+2 − 4)-dimensional Hilbert space. On the other
hand, the total Hilbert-space dimension is 22n, so the
free-fermion sector is exponentially large in n but still
exponentially small compared to the full space.

We now demonstrate that the state

|ψ〉ss =
n⊗

i=1

[√
1 − v2|0〉A,i|0〉B,i + (−1)iv|1〉A,i|1〉B,i

]

(E7)

is an eigenstate of Ĥ‖ + Ĥ⊥ and therefore a steady state of
the Liouvillian

L̂ρ̂ = −i[Ĥ‖+Ĥ⊥, ρ̂] + L̂dissρ̂, (E8)

with L̂diss as given in Eq. (35) in the main text. We have
already noted that Ĥ‖|ψ〉ss = 0, so it remains only to show
that Ĥ⊥|ψ〉ss = nJz|ψ〉ss. By direct computation, we can
observe that

Ĥ⊥|ψ〉ss =
[

n∑
i=1

J
(
σ̂ x

A,iσ̂
x
B,i + σ̂

y
A,iσ̂

y
B,i

) + Jzσ̂
z
A,iσ̂

z
B,i

]
n⊗

j =1

[√
1 − v2|0〉A,j |0〉B,j + (−1)j v|1〉A,j |1〉B,j

]

=
[

n∑
i=1

Jzσ̂
z
A,iσ̂

z
B,i

]
n⊗

j =1

[√
1 − v2|0〉A,j |0〉B,j + (−1)j v|1〉A,j |1〉B,j

]

=
[

n∑
i=1

Jz

]
n⊗

j =1

[√
1 − v2|0〉A,j |0〉B,j + (−1)j v|1〉A,j |1〉B,j

]
= nJz|ψ〉ss, (E9)

as desired.

040305-22



UNIVERSAL TIME-ENTANGLEMENT TRADE-OFF. . . PRX QUANTUM 5, 040305 (2024)

APPENDIX F: DERIVATION OF LOCAL
LINDBLAD MASTER EQUATIONS FROM

SYSTEM-BATH COUPLING

Here, we will derive how one obtains a Lindblad-style
master equation with jump operators respecting the locality
constraint [cf. Eq. (6)] starting from a system-bath cou-
pling of the form given in Eq. (8). We will follow the
general procedure of taking first the Born-Markov and then
rotating-wave approximations, as laid out in, e.g., Refs.
[44,45]. We will not thoroughly justify each approxima-
tion, as this has already been explained in great detail
elsewhere (for these details, we encourage the reader to
consult Refs. [44,45]). We begin by assuming that we
have a tripartite quantum system, with a Hilbert space
H = HR ⊗ HA ⊗ HB. Overall, these describe a reservoir
(HR), which will be traced out to give the open-system
dynamics, along with a bipartite system composed of HA,B.
The full Hamiltonian can be written in the form

Ĥ = ĤR + ĤS + ĤI , (F1)

with ĤR giving local dynamics of the reservoir, ĤS local
dynamics of the bipartite system, and ĤI giving their
(weak) interaction. We will assume that the local dynam-
ics ĤS can be further decomposed as ĤS = ĤA + ĤB, so
that there is no explicit interaction between subsystems not
mediated by the reservoir.

Now, let us define ˆ̃χ(t) to be the density matrix for the
entire system plus reservoir. It is governed by an equation
of motion,

∂t ˆ̃χ = −i[Ĥ , ˆ̃χ ]. (F2)

If we work in the interaction picture of the local dynam-
ics, we can define Û = exp

(
it
(

ĤR + ĤS

))
so that χ̂(t) =

Û ˆ̃χ(t)Û† simply obeys

∂tχ̂ = −i[ĤI (t), χ̂ ]. (F3)

From here, we can formally integrate the equation of
motion to find that

χ̂(t) = χ̂ (0)− i
∫ t

0
[ĤI (s), χ̂ (s)] ds. (F4)

At this point, we can define the system density matrix ρ̂
as the partial trace over the reservoir degrees of freedom:
ρ̂ = trRχ̂ . This gives an equation of motion

∂tρ̂ = −
∫ t

0
trB[ĤI (t), [ĤI (s), χ̂ (s)]] ds. (F5)

To this point, the equation is exact. However, to make
progress, we will make the Born-Markov approximation

that the full density matrix χ̂ (t) ≈ ρ̂(t)⊗ ρ̂R for all times:
i.e. the reservoir is always approximately in the same state
ρR, which we take to be static (diagonal in the eigenvec-
tors of ĤR; e.g., a thermal state). Next, we will assume
that the local time dynamics only depend on the state at
the given time, i.e., there is no memory effect. This allows
us to replace χ̂ (s) → χ̂ (t) in the integral, giving the new
equation of motion:

∂tρ̂ = −
∫ t

0
trB[ĤI (t), [ĤI (t − s), ρ̂(t)⊗ ρ̂R]] ds. (F6)

The fact that we have replaced χ̂(t) with χ̂ (s) tells us that
the integration kernel should be tightly peaked around |t −
s| ∼ 0 and so we can extend the upper integration bound
to infinity with very little error. This finally gives the time-
local Redfield equation:

∂tρ̂ = −
∫ ∞

0
trB[ĤI (t), [ĤI (t − s), ρ̂(t)⊗ ρ̂R]] ds. (F7)

To get something in Lindblad form, we must now make the
rotating-wave approximation. For this, it will be necessary
to recall the exact form of the interaction Hamiltonian:

ĤI =
M∑
μ=1

R̂A,μ ⊗ ˆ̃Aμ ⊗ 1 + R̂B,μ ⊗ 1 ⊗ ˆ̃Bμ + H.c.

=
4M∑
j =1

R̂′
j ⊗ Ŝ′

j , (F8)

R̂′
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2
(R̂A,j + R̂†

A,j ), 1 ≤ j ≤ M ,

i√
2
(R̂A,j −M − R̂†

A,j −M ), M < j ≤ 2M ,

1√
2
(R̂B,j −2M + R̂†

B,j −2M ), 2M < j ≤ 3M ,

i√
2
(R̂B,j −3M − R̂†

B,j −3M ), 3M < j ≤ 4M ,

(F9)

Ŝ′
j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1√
2
(
ˆ̃Aj + ˆ̃A†

j )⊗ 1, 1 ≤ j ≤ M ,
i√
2
(
ˆ̃Aj −M − ˆ̃A†

j −M )⊗ 1, M < j ≤ 2M ,
1√
2
1 ⊗ (

ˆ̃Bj −2M + ˆ̃A†
j −2M ), 2M < j ≤ 3M ,

i√
2
1s ⊗ (

ˆ̃Bj −3M − ˆ̃A†
j −3M ), 3M < j ≤ 4M ,

(F10)

where we have defined R̂′
j and Ŝ′

j to be Hermitian operators
that act on either the reservoir or the system, respectively.
It will also be extremely important to observe that each
system operator is local to either the A or B subsystem.
Next, we will decompose the system operators Ŝ′

j into their
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frequency components. If we define the operator �̂ε as the
projector onto the eigenspace of ĤS with eigenvalue ε, then
we can rewrite

Ŝ′
j =

∑
ω

Ŝ′
j (ω), (F11)

Ŝ′
j (ω) =

∑
ε−ε′=ω

�̂ε′ Ŝ′
j �̂ε . (F12)

Using these operators, we can now expand the equation of
motion as

∂tρ̂ =
∑
ω,ω′,j ,k

ei(ω−ω′)tCjk(ω)

×
[
Ŝ′

j (ω)ρ̂Ŝ′
j (ω

′)†−Ŝ′
j (ω

′)†Ŝ′
j (ω)ρ̂

]
+ H.c.,

(F13)

Cjk(ω) =
∫ ∞

0
eiωs〈R̂†

j (t)R̂k(s − t)〉 ds

=
∫ ∞

0
eiωs〈R̂†

j (s)R̂k(0)〉 ds, (F14)

where in the second line we have used the stationarity
of ρ̂R. Finally, we make the secular approximation and
neglect rapidly rotating terms. Thus, we finally arrive at

∂tρ̂ =
∑
ω,j ,k

Cjk(ω)
[
Ŝ′

j (ω)ρ̂Ŝ′
k(ω)

†−Ŝ′
k(ω)

†Ŝ′
j (ω)ρ̂

]
+ H.c.

(F15)

From here, we can define

γjk(ω) = Cjk(ω)+ Ckj (ω)
∗, (F16)

hjk(ω) = −i
2

(
Cjk(ω)− Ckj (ω)

∗) , (F17)

ĤLS =
∑
jkω

hjk(ω)Ŝ
′†
j (ω)Ŝ

′
k(ω). (F18)

ĤLS is the Lamb-shift Hamiltonian and γjk describes the
dissipative part of the dynamics:

∂tρ̂ = −i[ĤLS, ρ̂] + L̂dissρ̂, (F19)

L̂dissρ̂ =
∑
ω,j ,k

γjk(ω)

[
Ŝ′

j (ω)ρ̂Ŝ′
k(ω)

†−1
2

{
Ŝ′

k(ω)
†Ŝ′

j (ω), ρ̂
}]

.

(F20)

The matrix γjk(ω) is positive and so it can be unitarily
diagonalized. Taking U(ω) to be a unitary matrix, we can

rewrite

γjk(ω) = κl(ω)U∗
lj (ω)Ulk(ω). (F21)

The dissipation can then be rewritten as

L̂dissρ̂ =
∑
ω,l

D[L̂l(ω)]ρ̂, (F22)

L̂l(ω) =
∑

n

U∗
ln(ω)Ŝ

′
n(ω). (F23)

Recall that when we began, each operator Ŝ′
j was local

to one of the two subsystems [cf. Eq. (F10)]. Moreover,
because ĤS = ĤA + ĤB contains no interactions between
the subsystems, the projections into frequency space,
Ŝ′

j (ω), must also remain local to a single sublattice (i.e.,
the dynamics of two noninteracting subsystems cannot
mix local operators together). Thus, each jump operator
in Eq. (F23) is a sum of local operators, as we set out
to prove. Moreover, we can observe that the Lamb-shift
Hamiltonian in Eq. (F18) is quadratic in Ŝ′

j (ω) and so after
tracing out the reservoir there will generically be long-
range Hamiltonian interactions between the two systems.
Such a Lamb-shift Hamiltonian is generically constrained
by the form of the dissipation (via Kramers-Kronig rela-
tions); however, we take it to be arbitrary since it does not
affect any of the final results given in the main text.

APPENDIX G: NUMERICAL TECHNIQUES

In this appendix, we outline the numerical techniques
used to generate the random models as presented in, e.g.,
Fig. 2. The algorithm used can be summarized into the
following steps:

(1) Generate the steady state. The first step is to gener-
ate the steady state. We pick a value of the entangle-
ment δE2 and run an optimization algorithm to find
a set of Schmidt coefficients such that the normal-
ization is fixed to unity and the Renyi-2 entropy is
fixed, beginning from a set of random values.

(2) Generate jump operators. Next, we generate a
random N × N matrix sampled from the random
complex Ginibre ensemble, which becomes the A
matrix. [If we wish to use a different ensemble, we
follow the prescription in Eq. (B3).] We then use this
along with the Schmidt coefficients from step (1) to
generate B uniquely using Eq. (24). We repeat this
M times to generate M jump operators.

(3) Generate Hamiltonian. If we are simulating direc-
tional dynamics, we generate a Hamiltonian as pre-
scribed in Eq. (D8). Otherwise, we proceed to the
next step.
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(4) Find dissipative gap. Given the matrices A and B
generated in step (2) and the Hamiltonian in step
(3) (if present), we use the QuTip [80] software
package to generate a Liouvillian superoperator. We
extract its eigenvalues, from which we can find the
dissipative gap.

These steps generate a single data point for a fixed N , M ,
δE2, and distribution. Each plot samples from 20 different
values of δE2 and samples different random models from
each value to get good convergence of the average and
standard deviation, usually about 100 samples for each.

To be even more explicit, we will now go through a
specific example of generating such a system for N = 2
and M = 1. First we perform step (1). Note that because
we have two constraints (normalization and entanglement)
and two Schmidt coefficients, they are exactly specified.
We can write the matrix 
 as


 =
( 1

2 − p 0
0 1

2 + p

)
, (G1)

p =
√
δE2

2
. (G2)

Next, we do step (2) and generate a random matrix A,
which we will leave unspecified as

A =
(

a11 a12
a21 a22

)
. (G3)

This allows us to uniquely specify a matrix B as

B = −
AT
−1 =
( −a11 ξa21
ξ−1a12 −a22

)
, (G4)

ξ = 2p − 1
2p + 1

. (G5)

Since we are not using directional dynamics, we can now
proceed directly to step (4) and generate a Liouvillian
superoperator. To do this, we first need to find the jump
operator L = A ⊗ 1 + 1 ⊗ B, which can be written as

L =

⎛
⎜⎜⎝

0 ξa21 a12 0
ξ−1a12 a11 − a22 0 a12

a21 0 a22 − a11 ξa21
0 a21 ξ−1a12 0

⎞
⎟⎟⎠ . (G6)

From here, it is simple to use this matrix to generate a
Lindbladian and find its spectrum.
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