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Abstract 

This thesis examines the relationship between conditional neutrality, protein 

sequence encoding, and the role of evolutionary history in shaping protein adaptability. 

By analyzing algorithmically designed synthetic variants of the ligand-binding protein 

PSD95pdz3 – where only the core epistatic unit was preserved, and the surrounding 

constraints were scrambled – I show that these surrounding constraints are essential for 

adaptation to new functional challenges. This finding, that certain sequence constraints 

are crucial for evolution, combined with the understanding that these constraints are 

themselves shaped by evolutionary history, suggests that a protein’s past influences its 

capacity for adaptation. Preliminary results using a continuous evolution system (BTH-

PACE) support this, demonstrating that different rates of environmental fluctuation lead 

to distinct patterns of constraints and varying abilities to generate conditional neutrality 

for alternate ligands. This underscores the role that evolutionary history has in shaping 

the pattern of sequence constraints on proteins. To further investigate evolutionary 

dynamics, I introduce HiDenSeq, a novel method for quantifying key evolutionary 

parameters using the Luria-Delbrück distribution. These parameters include the 

distribution of fitness effects, selection pressure, and ability to generate conditional 

neutrality. Together, these findings offer new insights and tools for understanding the 

constraints that govern protein evolution.
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Chapter 1. Introduction 

Proteins have the capacity to fold, function, and adapt to changing selection 

pressures. Significant work has gone into understanding the pattern of amino acid 

interactions, defined as the constraints, that are necessary for folding and function1-5. 

However, how the need to adapt has shaped these constraints on protein sequences is 

not as well understood6-7. From a phenomenological perspective, an example of a 

constraint that seems unique to adaptive fitness is conditional neutrality (CN), the capacity 

of proteins to generate mutations that have no (or minimal) effect on current fitness but 

that provide a selective advantage when environments change8. The key feature of CN 

mutants is that these initially neutral mutations can persist long enough in the standing 

variation to facilitate paths to new fitness peaks as selection pressures vary. CN 

enhances adaptability by essentially decoupling the generation of phenotypic diversity 

from the need for that diversity. Thus, when selection pressures randomly vary, pre-

existing CN mutations in the population can initiate a path of adaptation8-9.  

The concept of CN as a facilitator of evolution might be traced back to the work by 

Luria and Delbrück in the 1940s on viral resistance in bacterial cells10. In their initial work 

they describe what is now known as standing genetic variation (SGV) where bacterial 

cells survived a viral infection due to “mutations which arise independently of the action 

of the virus.” Not all SGV is relevant to adaptation, but subsequent work has shown that 

for a specific new function, the portion of SGV which allows for that function (productive 

variation) can be classified as either CN or direct switching (DS); the distinction between 

the two being the timescale of their persistence after occurrence.11-12 Direct switching 



 
2 

variation is quickly selected against while CN, which maintains most (or all) of the current 

function, will persist in all but the strongest purifying selection. 

The impact of conditional neutrality extends beyond individual mutations to 

influence broader evolutionary processes. Context dependent robustness to mutation can 

drive the retention of genetic diversity within populations by providing a reservoir of 

heritable genetic variation through a process called exaptation13-16. Exaptation is a 

fundamental concept in evolutionary biology that describes the process by which a trait, 

originally evolved for one function, is co-opted for a different purpose17-18. Unlike 

adaptations, which arise through natural selection for a specific function, exaptations are 

traits that acquire new functions, often without significant modifications to their original 

structure16. A classic example of an exaptation is the evolution of feathers. Initially, 

feathers likely evolved in dinosaurs for thermal regulation, but they later became essential 

for flight in birds19-21. Exaptation also occurs at the molecular scale such as the co-option 

of pancreatic trypsinogen as an antifreeze protein in Antarctic fish22. These shifts in 

function highlight the opportunistic nature of evolution, where existing structures can be 

repurposed to meet new ecological challenges.  

By definition, CN mutations, which allow for future adaptation after a shift in 

selection, are an example of exaptations23. Such standing variation can be a source of 

evolutionary innovation, allowing populations to adapt quickly to shifting environments24. 

This phenomenon suggests, and modeling has shown, that the evolutionary significance 

of CN mutations can only be understood in a full ecological and genetic context, 

emphasizing the importance of epistasis (how different mutations interact) and 

pleiotropy25. Pleiotropy refers to the situation where a single gene affects multiple traits, 
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meaning that a mutation in one gene can have widespread, and occasionally conflicting, 

effects an organism’s fitness26. Experimental investigation has shown the evolutionary 

capacity of CN holds true in experimental systems as broad as RNA molecules, cellular 

metabolic networks, and field studies of flowering plants (e.g., Boechera stricta)27-29. Put 

simply, CN allows for increased persistence of productive genetic variation, facilitating 

evolution through exaptation at all scales of biology. 

In recent years, the structural basis for conditional neutrality has been explored. 

Evolution-based models reveal an architecture for proteins in which higher-order and 

collective epistasis are loaded in sparse, physically connected networks spanning from 

the active site to allosteric sites across the protein1-3,30-31,. This collective epistatic unit is 

called a “protein sector”. Functionally relevant sectors have been seen in a broad range 

of protein families suggesting they may be a general feature of proteins. In WW domains 

the pattern of correlations that define the sector alone were shown to be sufficient to 

specify a soluble, foldable, and functional protein (Figure 1.1)32-33. In S1A serine 

proteases three quasi-independent sectors were found, each controlling a distinct 

phenotype for the overall protein (Figure 1.2)3. Furthermore, when mutations were 

generated within each respective sector the phenotypes were shown to vary 

independently, demonstrating that sectors represent a modular unit by which evolution 

can act on to affect change. It is with this logic that sectors have been proposed to 

represent a structural organization of proteins that reflect their evolutionary histories34. 
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Figure 1.1. The sector defines a functional and folded protein 
A. Adapted from Reynolds K, et al, 201335. A clustering of the matrix of statistical coupling values (𝐶"!") in 

WW domains. Statistical coupling represents coevolution and a higher value (more red) indicates two 
residues have a high degree of correlation in the WW domain protein alignment. Clustering separates 
the positions in the protein into two groups: sectors and surroundings. 

B. A three-dimensional structure of the representative Nedd4.3 WW domain bound to its ligand (PDB ID 
1I5H, ligand in yellow). The sector is shown in blue and spans from the active site across the protein. 

C. Adapted from Russ WP, et al, 200533. Mutant cycle analysis of selected coevolving positions within the 
sector of the WW domain. The coupling parameter, Ω, is the ratio of the relative effect of a single 
mutation in the background of WT (X1) to the relative effect of that same mutation in the background of 
another single mutation (X2; Ω = X1/X2); that is, the degree to which the effect of one mutation depends 
on the second. Residues are shown as they exist in B. Single mutations at all sites affect peptide binding 
(effect relative to wild type in parentheses), and mutant cycle analysis demonstrates energetic coupling 
(Ω > 1) between position 485 and positions 461, 466 and 480. Measurements are mean ± s.d. This 
result indicates statistical coupling is predictive for epistasis. 

D. Adapted from Russ WP, et al, 200533. SCA designed proteins, which retain conservation and coupling 
statistics, were created. One such protein CC43, which has a 37% average and 68% top-hit identity to 
natural WW domains in the MSA, was assayed for ligand specificity using a peptide library screening. 
Binding is reported relative to background in the absence of target peptides. 

E. Same as in D for N39, a natural WW domain with PPxY ligand specificity. CC43 is indistinguishable. 
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Figure 1.2. Sectors are evolvable units of a proteins architecture 
A. Adapted from Halabi N, et al, 20093. Data are depicted as in (1.1.A) for the S1A Protease family with 

all non-sector positions removed for clarity. The sector is composed of three independent coevolving 
units, termed the blue, green and pink sectors. 

B. A three-dimensional structure of rat trypsin bound to its ligand (PDB ID 3TGI, ligand in yellow). Sectors 
are colored as outlined in (C). All three sectors have a distinct, orthogonal effects on protein function. 
The blue sector primarily spans the two β barrels of the protein and affects thermal stability. The green 
sector contains the catalytic triad and other residues known to be essential for the chemical mechanism 
of the enzyme. The pink sector comprises the S1 pocket and its surroundings and primarily controls 
catalytic activity.  

C. Adapted from Halabi N, et al, 20093. Plotted is the effect on thermal stability and catalytic power for 
alanine mutations made to rat trypsin. Dots are colored as in (B). The black dot is wildtype rat trypsin 
and white dots are mutations outside the sector. Mutations within a single sector of trypsin proteins 
effect function in only one dimension. 

 

Examining sectors through the lens of CN provides further evidence that sectors 

are both shaped by evolution and have an active role in it. In a case study involving 

PSD95pdz3, a member of the PDZ family of protein interaction modules, a comprehensive 

mutational analysis exposed the spatial organization of CN36. A deep mutational scan 

(DMS) determined the functional effects of all single mutations for binding of the PDZ 

domain to its canonical class I ligand and an alternative class II ligand. Mutations which 

provided class II function were designated either CN or direct switching mutations (DS); 

a designation that is dependent on the quantitative selection pressure. When mapped 

onto the structure of PSD95pdz3, CN mutations, that is mutations which allowed for binding 

of the class II ligand without meaningfully altering class I ligand binding, almost 

exclusively occurred away from the active site (Figure 1.3). This contrasted with direct 
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switching mutations, where class II ligand binding was introduced at the cost of class I 

ligand binding, which occurred exclusively at the active site (Figure 1.3).  

 
Figure 1.3. Spatial distribution of adaptive sites for class II ligand binding in PSD95pdz3 
Adapted from Raman AS, et al, 201636. A three-dimensional structure of PSD95pdz3 bound to a class II 
ligand (ligand in yellow, PDB ID 5HED). The sector is shown in grey mesh. Class II ligand adaptive positions 
that are conditionally neutral for class I ligand binding are shown in green. Direct switching positions are 
shown in red. Nearly all adaptive positions are contained within the sector while direct switching mutations 
localize to the active site. 
 

Strikingly, the conditionally neutral mutants occurred exclusively within and along 

the sector – the collectively epistatic unit – linking this structural feature of a protein to 

allostery and evolution. Thus, in addition to folding and function, sectors also play a role 

in enabling adaptation. Turned around, this implies that the origin and maintenance of 

sector architecture in proteins may stem from the need to adapt to changing selection 

pressures36. In this model, allosteric networks develop not by direct selection for protein 

regulation but are a byproduct of the need to support CN mutants which are statistically 

advantageous in fluctuating environments.  

This model motivates the three main goals of this work. First, to define the 

architectural constraints necessary for adaptability, both in the sector and the non-sector 

surroundings. It is currently unclear whether the connection between the sector and its 

90° 90°
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surroundings is essential in natural proteins. Second, perform an initial test of the 

hypothesis that the pattern of mutations throughout evolution and the ability for CN 

function are dependent on the environmental fluctuation rate. Third, develop a high-

throughput Luria-Delbrück style assay for quantification of evolutionary parameters as a 

foundation for future studies.   

 

1.1. Role for non-sector surroundings in generating an evolvable protein 

In Chapter 3 of this thesis, I explore the role for sector and non-sector constraints 

in adapting to the novel functional challenge of binding a new ligand. I use a previously 

developed, algorithmically designed protein (C234), of the small ligand-binding domain, 

PSD95pdz3. This protein was generated by scrambling the non-sector positions 

(surroundings) and leaving the sector positions unchanged. Prior functional and 

biophysical measurements show that a thermally stabilized version of this synthetic 

protein is indistinguishable from PSD95pdz3, but its ability to generate CN and therefore 

its ability to adapt to new selection conditions had not yet been tested. Here, I have 

developed a bacterial two-hybrid-based phage-assisted continuous evolution assay 

(BTH-PACE). This allowed direct competition of the natural and synthetic proteins in the 

context of random mutagenesis. I also used BTH-PACE to assay the capacity for 

adaptation by quantifying the maintenance of productive SGV, which is statistically likely 

to be CN, of each PDZ domain. Results from this work are consistent with the statement 

that the constraints specifying function and folding, which exist in the sector, are 

insufficient for specifying an evolvable protein. This provides, for the first time, a possible 

role for the surrounding constraints within the architecture of a protein. 
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1.2. The impact of evolutionary history on conditional neutrality 

 Every natural protein is the result of a set of selection pressures that can change 

over the course of their evolutionary history. A long standing hypothesis is that this pattern 

of selection pressures has impacted the constraints placed on individual protein 

sequences24,37-39. If this hypothesis is true, any two proteins which have different 

evolutionary histories should have differing abilities to generate CN. In this chapter, BTH-

PACE was modified to allow for selection of binding to multiple ligands, with selection 

between ligands fluctuating at an experimentally defined rate. Six natural PDZ domains 

were each evolved under three distinct evolutionary regimes leading to proteins with 

different evolutionary histories. The resulting proteins were compared for their ability to 

bind to new ligands. An examination of the pattern of mutations for each evolutionary 

condition showed a dependence on the rate of fluctuation within their environment. This 

work represents the first in vivo attempt at quantifying the effect of evolutionary history on 

protein architecture. 

 

1.3. Development of a high throughput Luria-Delbrück assay 

The parameters defining the distribution of mutants in the classic Luria-Delbrück 

experiment offer a way to directly quantify a system's ability to generate CN as well as 

other evolutionary factors40. However, accurate parameterization of this distribution 

traditionally required hundreds to thousands of replicates, a logistically infeasible task 

until recently41-42. Through a novel experimental procedure called high-density Luria-

Delbrück by sequencing (HiDenSeq), initially developed by Kabir Husain, we achieved 
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the goal of parameterizing the distribution. HiDenSeq utilizes advanced sequencing 

techniques to efficiently analyze a vast number of samples, thus overcoming the previous 

limitations. Additionally, with HiDenSeq, I provide the first experimental validation of an 

extension to the fundamental Luria-Delbrück distribution theory, demonstrating that the 

selection pressure of the system affects the distribution's shape. Although further 

extensions to the theory remain to be tested, this finding opens new avenues for 

quantifying and understanding evolutionary processes. 
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Chapter 2. Methods Development 

To explore the structural principles of evolution, an experimental system is needed 

that allows control over key evolutionary parameters – mutation rate, population size, 

selection pressure, and selection conditions. This chapter describes the development of 

such a system, called the bacterial two-hybrid-based phage-assisted continuous 

evolution assay (BTH-PACE). BTH-PACE was adapted from the previously established 

phage-assisted continuous evolution (PACE) method, building on work by BoRam Lee in 

the Ranganathan lab. 

 

2.1. Bacterial-two-hybrid phage assisted continuous evolution (BTH-PACE) 

 
Figure 2.1. Media flows in BTH-PACE 
Media is stored in a large carboy (A), which flows into a turbidostat (C) containing bacterial host cells which 
are kept at a constant cell density. Bacterial cells flow from the turbidostat to vials, termed lagoons, 
containing M13 bacteriophage and bacterial cells (D). Evolution of phage in BTH-PACE occurs in the 
lagoons. Selection pressure in BTH-PACE is in part determined by the dilution rate of the lagoons. 
Chemicals to set the mutation rate (arabinose) and the selection pressure (doxycycline) are supplied to the 
lagoons via syringes (B). To keep volumes constant, media from the turbidostats and lagoons is constantly 
flowed into a waste container (E). 
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In PACE (Figure 2.1), selection and subsequent evolution occur in the lagoon 

(Figure 2.1.D, Figure 2.2.B)1. Here, M13 bacteriophage, which have had their essential 

gene III (gIII) knocked out, infect bacterial host cells. Without the induction of gIII to 

subsequentially produce protein III (pIII), M13 phage are still be produced by the bacterial 

host cells, but they cannot reinfect new cells due to a defect in F-pilus-mediated cell entry 

caused by the missing pIII protein. To overcome this deficiency, pIII must be produced by 

an alternative mechanism, which defines the selection process in PACE. In its original 

form, PACE selected for improved binding of T7 RNA polymerase to a T3 promoter that 

regulated gIII expression. In BTH-PACE, gIII expression depends on the function of a 

PDZ domain. PDZ domains are small ligand-binding proteins, about 100 amino acids in 

size, that bind C-terminal amino acids with approximately 1 µM affinity and display 

sequence specificity2,3. 

A bacterial two-hybrid system was implemented in which the phage encoded PDZ 

domain is linked to the RNA polymerase ω subunit, while the bacterial host cell contains 

the 434 cI DNA-binding domain linked to a PDZ ligand (Figure 2.2.A). When the PDZ 

domain binds the ligand, gIII is expressed, allowing those phage encoding the PDZ 

domain to propagate (Figure 2.2.B). To confirm that BTH-PACE was selecting for the 

ligand-binding function of the PDZ domain, a standard curve was created using an 

existing library of 83 single mutants of the PDZ domain PSD95pdz3, all of which had their 

KD values measured against the canonical PSD95pdz3 ligand, CRIPT (Figure 2.3.A)4. 

When this library was grown for 6 hours in BTH-PACE, the enrichment of any particular 

PDZ domain correlated monotonically with its known binding strength to the CRIPT ligand 

(Figure 2.3.B). 
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Figure 2.2. Selection in BTH-PACE 
A. Selection in BTH-PACE depends on binding of a PDZ domain to its ligand. The phage-encoded PDZ 

domain is bound to the ω subunit of RNA polymerase. The ligand, which is bound to the 434-cI DNA 
binding domain, is expressed off the host-cell encoded accessory plasmid (AP). Binding of the PDZ 
domain to its ligand causes expression of protein III (pIII, encoded by gene III; gIII on AP), which is 
essential for F pilus mediated M13 bacteriophage propagation. 

B. In BTH-PACE evolution occurs in a lagoon, pictured here. There is a constant inflow of bacterial host-
cells (I) and outflow (II) with a dilution rate fast enough to ensure the bacteria are not evolving in the 
lagoon. Upon entry into the lagoon, bacterial cells are infected by phage (III) and the PDZ domain 
encoded in the phage genome is expressed. If the PDZ domain can bind the ligand, gIII is induced (IV). 
If the PDZ domain cannot bind the ligand, gIII is not induced (V) and non-infectious phage are produced 
which wash out of the lagoon (VI). Phage which encode a PDZ domain allowing for expression of pIII, 
produce infectious phage (VII). These phage are mixed into the lagoon (VIII) and are free to infect new 
bacterial host cells (III).  
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Figure 2.3. Selection and mutation in BTH-PACE 
A. A library of single point mutants to PSD95pdz3 with known binding strengths4. The binding dissociation 

constant of each mutant (black dots) and PSD95pdz3 (red) to the CRIPT ligand is shown. 
B. The library from (A) was grown in BTH-PACE for 6 hours. The binding strength of each mutant (black 

dots, PSD95pdz3 red dot) is plotted against a measure of fitness termed relative enrichment. Relative 
enrichment is defined as 𝑅𝐸	 = 	 𝑙𝑜𝑔#$*𝑓!,& 𝑓!,$⁄ - − 𝑙𝑜𝑔#$*𝑓'(,& 𝑓'(,$⁄ - where 𝑓!,& is the frequency of a 
mutant i at time t and wildtype is PSD95pdz3. Error bars in relative enrichment values are determined 
from three replicates of this experiment. A sigmoid curve (blue, dashed line) has been fit to the data.  

C. The mutation rate (red, dashed line) is determined from averaging out linear fits to drops in the natural 
log of relative frequency (ln(𝑓& 𝑓$⁄ ), where ft is the frequency of PSD95pdz3 at time t) over time. Each 
independent experiment (black dots connected by black lines) is shown. 

 

One of the key advantages of BTH-PACE is the ability to selectively increase the 

mutation rate of the phage without affecting the mutation rate in the infected bacterial 

cells. This ensures that only the phage evolves, simplifying both the experimental setup 

and the interpretation of results. The mutation rate in the phage is controlled by the 

concentration of arabinose in the lagoon, which induces the PBAD promoter to express 
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mutator genes5. To quantify the mutation rate in BTH-PACE, an experiment was 

conducted where the initial population in each lagoon consisted entirely of phage 

containing the PSD95pdz3 PDZ domain. Critically, non-selective bacterial host cells (E. coli 

S2208) were used6. S2208 cells produce pIII upon M13 bacteriophage infection, 

regardless of the PDZ domain's function. In this configuration, any decrease in the 

frequency of PSD95pdz3 phage initially occurs at a rate proportional to the mutation rate. 

ln(𝑓! 𝑓"⁄ ) 	= 	−𝜇𝑙𝑡	                                          (Eq. 2.1) 

This relationship, where µ is the mutation rate in terms of substitutions per base 

pair per hour (spb/hr), 𝑙 is the length of the PDZ domain, and t is time in hours, holds true 

as long as µ𝑙N	 >> 	1, where N is the population of phage in the lagoon. Replicates of this 

experiment produced a mutation rate of 8.7 ± 2.0 x 10-5 spb/hr at an arabinose 

concentration of 25 mM and a lagoon turnover rate of two times per hour (Figure 2.3.C). 

This is the condition that is used for all BTH-PACE experiments in this thesis. 

Carlson et al. described a method for controlling selection pressure in a PACE 

system by producing pIII independently of ligand binding7. Specifically, pIII production is 

induced by anhydrotetracycline (ATc) via the small molecule-inducible TetA promoter 

(Ppsp-tet) which decreases selection pressure as the concentration of ATc increases. 

However, replicating this system outside of the Liu Lab, including in the Ranganathan lab, 

has been challenging, likely due to ATc's light sensitivity. This issue was resolved by using 

doxycycline, an analog of tetracycline that is much less sensitive to light8,9. In a non-

continuous implementation of BTH-PACE (Methods 7.3), the addition of 500 ng/mL 

doxycycline completely removed the selection function from the selection cells, causing 

them to behave like non-selection cells (Figure 2.4.A). In BTH-PACE, a doxycycline 
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concentration as low as 100 ng/mL in the lagoon was sufficient to eliminate selection 

pressure and disrupt the relationship between binding energy and relative enrichment 

(Figure 2.4.B). 

 
Figure 2.4. Doxycycline lowers selection pressure in BTH-PACE 
A. 1% phage containing PSD95pdz3 were mixed with 99% of a null phage that do not contain a PDZ domain. 

This mixture was grown for 4 hours in batch culture under three separate conditions. Presence or 
absence of selection cells indicates growth in S2060 + AP-CRIPT + DP6 or S2208 bacterial host cells 
respectively. The change in the frequency of PSD95pdz3 (𝑓'(,) 𝑓'(,!⁄ ) is assayed (dots; individual 
replicates, bars; condition mean). 

B. The library from Figure 2.3.A was grown in BTH-PACE for 24 hours at four different doxycycline 
concentrations and three replicates per concentration. Plotted is a measure of the selection strength, 
the change in relative enrichment (ΔRE) per change in binding energy (Δkcal/mol), at each time 
(colored lines shown with error in shading). This quantity is found by fitting a line to data as in Figure 
2.3.B where the x-axis has been transformed from binding strength to binding energy. 

  

 Using doxycycline to control the selection pressure avoids the common 

workaround of altering the turnover rate in the lagoon10. Although lowering the turnover 

rate will decrease the selection pressure it comes at the cost of increasing the average 

generation time of the phage. When hundreds of generations of evolution are required, 

this increase in experimental time can become prohibitive.  

Complications in BTH-PACE come from non-biological sources as well. For the 

experiments in this study, PACE was modified to enable turbidostatic growth of bacterial 

cells. Turbidostatic growth keeps the bacteria at fixed density, creating a more consistent 



 
20 

environment for the phage and lowering the chance of phage washout. To minimize 

biofilm formation and buildup in BTH-PACE experiments, proper management of media 

is critical. This is addressed by changing the host cell turbidostat, lagoons, and media 

flow lines from the turbidostat to the lagoons every other day (Figure 2.1). Additionally, a 

fresh bacterial host cell culture, grown from an overnight culture, was used to restart the 

turbidostat every four days to limit biofilm growth. With the modifications and 

quantification of parameters discussed in this section, BTH-PACE experiments can now 

be run indefinitely, while controlling the mutation rate and selection pressure of the 

population. Detailed information on media and chemical/drug concentrations can be 

found in the methods section (Methods 7.1). 
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Chapter 3. Role for non-sector surroundings in generating an evolvable protein 

 

3.1. Abstract 

Proteins display the ability to fold into a native state, carry out biochemical 

reactions, and evolve as conditions of selection fluctuate in the environment. Much work 

has gone into understanding the sequence constraints underlying folding and function, 

but the structural features of proteins that enable evolvability are less well studied. Here, 

we algorithmically designed a synthetic variant of the ligand-binding protein, PSD95pdz3, 

which retained only constraints that define the collective epistatic unit of the protein (the 

sector) and scrambled the non-sector surroundings (C234). Mutations to C234 generate a 

protein (C234-TM) which is nearly as thermally stabilized as PSD95pdz3 and displays near-

wildtype function but fail to adapt when asked to bind a second, class-switching ligand. 

Results from a deep mutational scan for binding function and bacterial-two-hybrid phage 

assisted continuous evolution (BTH-PACE) experiments show that the mechanistic basis 

for this deficiency is not simply due to a small reduction in thermal stability. More likely, a 

model is proposed where the synthetic variants suffer from an inability to engage an 

alternative allosteric network that is preferred during adaption. As a result, a special class 

of mutations (called conditionally neutral) that pre-exist in the standing genetic variation 

and facilitate adaptation are systematically depleted. These data link the intramolecular 

architecture of a protein to its capacity to evolve, demonstrating at the molecular level a 

general design principle likely to underlie all evolvable protein systems. 
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3.2. Introduction 

Proteins exhibit the ability to fold, perform essential functions, and evolve in 

response to selection pressures. While significant progress has been made in 

understanding the constraints governing folding and function, how evolution has 

constrained protein sequences is less thoroughly understood1-7. One known constraint is 

conditional neutrality (CN), defined as a mutation which, in a specific genotype, 

environment, and quantitative selection pressure, has little effect on fitness but, when 

either the genotype or environment changes, provides a fitness advantage8.  

CN mutants were first shown to facilitate evolution through exaptation in work on 

viral resistance in bacterial cells by Luria and Delbrück in 19439. The term exaptation 

refers to a process in evolution where a trait, structure, or feature, originally evolved for 

one function is co-opted for a different purpose10-12. Unlike adaptation, which involves the 

direct shaping of a trait by natural selection for a specific role, exaptation describes how 

existing features can acquire new functions in response to changing environmental or 

biological pressures13-14. Although Luria and Delbrück did not yet have the term 

exaptation in 1943, their discussion of the “immunity of hereditarily predisposed 

individuals” for viral infection describes exactly this process. Pre-existing CN mutants 

serve as textbook examples of exaptation, and further studies have demonstrated that 

this evolutionary role of conditional neutrality is consistent across various experimental 

systems, including RNA molecules, cellular metabolic networks, and field research on the 

flowering plant Boechera stricta15-20. Their ability to persist in standing genetic variation 

(SGV) enables CN mutants to facilitate exaptation across different biological scales21. 
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In recent years, the structural basis for conditional neutrality has been explored. 

Sequence-based models reveal an architecture for proteins in which higher-order 

collective epistasis is loaded into sparse, physically connected networks spanning from 

the active site to allosteric sites across the protein1-3,22-23. This network, called the sector, 

has been linked to various protein features, including thermostability, ligand binding, 

catalysis, and allostery3,24-25. Although CN mutants have been found to exist within the 

sector, an open question remains as to the role the non-sector surroundings play in 

protein evolution and the generation of CN26. 

Previously in the Ranganathan lab, proteins were algorithmically designed in which 

the non-sector surroundings of a small ligand-binding protein, PSD95pdz3, were scrambled 

while the sector remained intact. One such designed protein, C234, was shown to be 

compact in its native state and had near-native ligand binding function. However, C234 is 

thermally unstable, exists in a high-entropy native state, and is not robust to mutations. 

By introducing three stabilizing point mutations to the non-sector region of C234, a new 

protein was made (C234-TM) which is still functional and now approaches the thermal 

stability of the natural PDZ domain while being mutationally robust. Through many 

functional and biophysical measurements, C234-TM is indistinguishable from PSD95pdz3, 

but its ability to generate CN and its related ability to adapt to new selection conditions 

has not yet been explored. 

In this work, we have implemented a bacterial-two-hybrid based phage-assisted 

continuous evolution assay (BTH-PACE). BTH-PACE, which has an elevated mutation 

rate for an evolving gene of interest, allowed us to directly compete the natural and 

synthetic proteins in the context of mutational stress. We also extended BTH-PACE to 
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allow quantification of the ability of each protein to maintain SGV. This work is consistent 

with the statement that the constraints specifying a capacity for evolution exist, at least in 

part, separate from those which are required for function and folding. This provides, for 

the first time, a role for the non-sector surroundings within the architecture of a protein. 

 

3.3. Results 

Biophysical characterization of synthetic proteins 

The key to this work lies in the design of the synthetic proteins, C234 and C234-TM. 

Using a Markov chain Monte Carlo (MCMC) method, the sequence of the small ligand 

binding PDZ domain, PSD95pdz3, was mutated so that positions which are constrained by 

higher order epistasis are preferentially retained (Figure 3.1.A-B). This generated 

sequences where the sector remains largely intact while the non-sector surroundings are 

scrambled (Figure 3.1.C). One such protein, C234, has a similar binding affinity and 

specificity to the canonical Class I ligand, CRIPT (-TKNYKQTSV-COOH, derived from the 

cysteine-rich interactor of PSD95pdz3, 0.452 ± 0.028 µM KD C234 and 1.19 ± 0.12 µM KD 

for PSD95pdz3, Figure 3.1.D). However, C234 is thermally unstable (32°C melting 

temperature, Tm, measured by differential scanning calorimetry (DSC) versus 71°C for 

PSD95pdz3) and has a highly entropic native state ensemble (Figure 3.1.E-F).  

Predictably, and consistent with prior work relating stability and robustness, C234 

was shown not to be robust to mutations as measured in a deep mutation scan (DMS, 

Figure 3.2.B)20,22,27. However, three thermal stabilizing mutations in the non-sector 

surroundings, which produces the protein C234-TM (58°C Tm), are sufficient to recover 

much of the lost stability at physiological temperatures while retaining binding to the 
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CRIPT ligand (1.01 ± 0.05 µM). Additionally, C234-TM recovers robustness to mutations 

in the context of binding the CRIPT ligand (Figure 3.2.C,F). Many biochemical and 

biophysical analyses demonstrate that C234-TM and PSD95pdz3 are nearly identical. 

 

 
Figure 3.1. Algorithmic separation of sector constraints in C234 
A. A MCMC approach was used to swap amino acids within the original PSD95pdz3 (WT) protein sequence. 

In each iteration of MCMC, two random amino acids, both at a given site i, are selected for a swap. 
This ensures site specific conservation is always maintained. The swap is accepted with a probability 
dependent on its effect on the statistical couplings at all other sites, j, and some temperature, T. High 
temperatures accept all mutations and low temperatures accept only mutations which have no effect 
on the statistical coupling between positions in the sequence.  

B. Two heating trajectories were used, C1 and C2. In C1, temperature is always set to infinity meaning all 
swaps are accepted and only site specific conservation is retained. In C2, the temperature starts low 
and then gradually increases over thousands of iterations of MCMC. This ensures that non-sector 
positions are preferentially mutated. 

C. Matrix of statistical coupling values for four sets of proteins. The mean maximum sequence similarity, 
⟨id⟩, for each sequence to a sequence in the natural alignment is shown. Although C1 and C2 generated 
proteins have similar ⟨id⟩, only the C2 alignment preserves the coupling seen in the natural alignment. 

D. Binding profile of one C2 protein, C234, and PSD95pdz3 is shown for the four C-terminal amino acids in 
a PDZ ligand. The natural log of the relative preference over background is shown colorimetrically. 

E. 1H-15N HSQC NMR on 200 µM PSD95pdz3. A dispersed spectrum of peaks indicates the existence of a 
well packed protein. 

F. 1H-15N HSQC NMR on 200 µM C234. Collapsed peaks indicate a protein in a high entropy state. 
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Figure 3.2. DMS for CRIPT ligand binding 
A. DMS of PSD95pdz3 for CRIPT ligand binding. Single mutants for each position in the protein, mutated 

to every other amino acid, are assayed for ligand binding function. The amino acid mutated to is shown 
at the top of the figure. The position in the protein is shown on the left and the original protein sequence 
is shown on the right as well as an outlined white box in that row. Function in comparison to the wildtype 
sequence from low (blue), to neutral (white), to high (red) is shown in the form of normalized relative 
enrichment (norm r.e.). r.e. is defined as r.e.	= 	 𝑙𝑜𝑔#$*𝑓!,& 𝑓!,$⁄ - − 𝑙𝑜𝑔#$*𝑓'(,& 𝑓'(,$⁄ - where 𝑓!,& is the 
frequency of a mutant i at time t and wildtype is PSD95pdz3. Norm r.e. defines 0 as the mean of the stop 
codon mutations and 1 as the mean of the synonymous mutations. Positions within the DMS which 
were missing from the assay are shown in grey. 

B. As in (A) for C234. Note the existence of position 332.5 which is an insertion between positions 332 and 
333 for C234 relative to PSD95pdz3. 

C. As in (A) for C234-TM. 
D. Histograms of the DMS data from for PSD95pdz3 from (A). Stop codons are shown in yellow and 

synonymous mutations, are shown in red. Norm r.e. defines 0 as the mean of the stop codon mutations 
and 1 as the mean of the synonymous mutations. 

E. As in (D) for C234. 
F. As in (D) for C234-TM. 
 

Response to mutational stress in a competitive environment 

Natural proteins must not only function in their existing environment but must also 

evolve by through heritable genetic variation in the form of mutations. The ability to 

maintain a standing pool of mutations for evolution to act upon requires robustness20. 

Robust mutations have no phenotypic effect in a given environment and this property has 

been correlated with an ability to evolve27. For C234-TM, a DMS for CRIPT ligand binding 

indicated a robustness that is similar to PSD95pdz3 (Figure 3.2.A,C). Crucially though, this 

is only for single mutants to the starting protein. Using BTH-PACE, where propagation of 

a phage encoding a single PDZ domain depends on binding to the CRIPT ligand, all three 

proteins were directly competed against each other in the context of mutational stress 

(Figure 3.3.A). Replicates in BTH-PACE take place in vials called lagoons and each 

lagoon represents an independent evolutionary trajectory which is inoculated with a 

population of 108 phage and subjected to a mutation rate of 8.7 x 105 substitutions per 

basepair per generation (Figure 2.3.C). 
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Figure 3.3. C234-TM holds up to mutational stress in BTH-PACE 
A. During PACE, evolution occurs in a lagoon with constant bacterial host cell inflow and outflow. (I) M13 

phage, lacking essential gIII, encode the evolving PDZ domain fused to RNA Polymerase's ω subunit 
and infect host cells containing the accessory plasmid (AP, blue) and DP6 plasmid (purple). The AP 
includes the ligand of interest fused to a DNA binding domain, while the DP6 plasmid controls mutation 
rate and selection pressure. (II) If the PDZ domain binds the ligand, gIII is induced via a bacterial two-
hybrid system. (III) Without binding, gIII is not produced. (IV) Phage without pIII (from gIII) are non-
infectious and wash out. (V) Phage with pIII are infectious and (VI) remain in the lagoon long enough 
to infect new bacterial cells (I). 
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B. A summary of BTH-PACE evolution experiments shown as a stacked bar plot for each independent 
evolutionary trajectory (each lagoon). The bars represent lineage frequency after 120 hours of 
competitive evolution. The first bar on the left shows the initial condition (A0: 0 generations) common to 
all trajectories. Lagoon 4 is data from representative example in (C). Black represents PSD95pdz3, red 
is C234, and cyan is C234-TM, with gradations and hatching indicating specific mutants. 

C. A representative Muller plot showing evolution and competition between PDZ lineages tasked with 
binding the CRIPT ligand. Any wedge which exists within another wedge is determined to have mutated 
from that wedge (ex: I377F; A378V; S98G mutated from I377F; A378V). Colors are as in (B). A slash 
(ex: E340K/G) indicates two mutations, at the same position, that occurred at a similar rate. 

D. Ribbon representation of the crystal structure of PSD95pdz3 (PDB ID 5HED) with its native CRIPT ligand 
(yellow). The sector is shown in grey mesh. Positions 340, 364, 371, and 378 are shown in blue, purple, 
yellow, and orange respectively. 

 

 In a single lagoon, beneficial mutations allow for sweeps of a given protein variant 

across the population and the dominant lineage can alternate over the course of an 

evolutionary trajectory (Figure 3.3.C). The first mutation seen in a trajectory, such as 

E340K and E340G in C234-TM, are seen in the DMS data for CRIPT ligand binding to be 

beneficial. However, subsequent mutations become harder to predict. In many cases, 

such as A378V of the a2 helix in PSD95pdz3 and S371R in C234-TM, the effect of the 

single mutation is approximately neutral or even deleterious, indicating the presence of 

epistasis (Figure 3.3.D). Additionally, some mutations are not possible to assay in a DMS 

such as the frameshift mutation in C234-TM (c.292delT) which truncates the protein due 

to a new stop codon, drastically altering the C-terminal tail of the protein. Nonetheless, in 

the context of the E340K and E340G mutation, this indel mutation is beneficial. 

  Due to the stochastic nature of any individual evolutionary trajectory, the results of 

a single lagoon provide little information on the general fitness of a given lineage. 

However, comparing lagoon results after an arbitrary but consistent time (120 hours) 

shows that the lineages of C234-TM and PSD95pdz3 are equally competitive when asked 

to bind the CRIPT ligand (Figure 3.3.B). Four out of nine lagoons are seen with majority 

PSD95pdz3 and four out of nine are seen with majority C234-TM. The remaining lagoon 
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(lagoon 5 in Figure 3.3.B) has a roughly equal proportion of lineage for each protein 

(53.7% PSD95pdz3 versus 46.3% C234-TM).  

Additionally, for mutations which are present above a frequency of 1 percent of the 

total lagoon population, there is no meaningful difference in the percent of mutations 

which occurred within the sector between the two proteins (9.7% PSD95pdz3 versus 6.5% 

C234-TM). This result holds true for all frequency cutoffs tested, as low as 0.1%, and 

indicates that constraints placed on the non-sector surroundings, which are scrambled in 

C234-TM, do not play a major role in native function. In contrast, C234 is quickly depleted 

in every lagoon (Figure 3.3.B). The depletion of C234 can be explained by its lack of 

thermal stability and resulting inability to maintain any heritable variation. Proteins require 

a headroom of thermal stability for mutational robustness (mutations are on average 1-3 

kcal/mol destabilizing) and C234 does not have this28. As the DMS data for CRIPT ligand 

binding show, C234 is generally intolerant to mutations and unsurprisingly, unable to adapt 

(Figure 3.2.B,E). 

Differences in mutational tolerance to a class II ligand 

To this point, the evolutionary capacity of these PDZ domains has not been tested. 

As the primary function of PSD95pdz3 is presumed to be ligand binding, a logical 

evolutionary challenge would be to task the three proteins with binding a new ligand29. 

PDZ ligands are C-terminal peptides of target proteins and specificity is primarily 

determined by the amino acid sequence of the ligand. PDZ domains are often classified 

by the ligand that they bind and class I ligand binders, like all three proteins in this paper, 

have preference for C-terminal sequences with a consensus of -X-S/T-X-f-COOH (X is 

any amino acid, f is hydrophobic). However, another class of domains exist, termed class 
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II ligand binders, which bind ligands with the profile -X-f-X-f-COOH30. As the determining 

factor between class I and class II ligands is the -2 position, a mutation from threonine to 

phenylalanine at this position, creates a class II ligand. This ligand is referred to as the T-

2F ligand (-TKNYKQFSV-COOH). PSD95pdz3 binds this ligand with the lower KD of 17.0 ± 

1.1 µM. C234 and C234-TM also have a lower affinity for the T-2F ligand with KD’s of 152 ± 

57 µM and 121 ± 15 µM respectively. These binding measurements are a difference 

between PSD95pdz3 and the two artificial proteins. Whereas PSD95pdz3 binds the T-2F 

ligand only 37.6 times worse than the CRIPT ligand, C234 and C234-TM do so 128 and 

120 times worse respectively. 

 
Figure 3.4. The dynamic range of the bacterial-two-hybrid, PDZ-ligand binding assays 
A library of PDZ mutants with known binding energies. ∆Ei is the enrichment of PDZ variant i as defined by 
the natural log of the relative change in its frequency from the start of the PDZ-binding based assay to the 
end. Binding energies of -8.7 to -5.1 kcal/mol are tested corresponding to a KD range of ~0.4 µM to ~183 
µM. This binding assay is what is used to generate data in all DMS experiments. 
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Figure 3.5. DMS for T-2F ligand binding 
A. DMS of PSD95pdz for T-2F ligand binding as in Figure 3.2. The position in the protein is shown on the 

left and the original protein sequence is shown on the right as well as a white box in that row. Function 
from low (blue), to neutral (white), to high (red) is shown in the form of norm r.e. Positions within the 
DMS which were missing from the assay are shown in grey. 

B. As in (A) for C234. Note the existence of position 332.5 which is an insertion between positions 332 and 
333 for C234 relative to PSD95pdz3. 

C. As in (A) for C234-TM. 
D. Histograms of the DMS data from for PSD95pdz3 from (A). Stop codons are shown in yellow and 

synonymous mutations, are shown in red. Norm r.e. defines 0 as the mean of the stop codon mutations 
and 1 as the mean of the synonymous mutations. 

E. As in (D) for C234. 
F. As in (D) for C234-TM. 
 

 Ligand binding experiments, with a dynamic range of at least 0.4 µM to 183 µM, 

were used to test DMS libraries of each protein against the T-2F ligand. These 

experiments show stark mutational sensitivity differences when compared to the DMS 

binding experiments conducted against the CRIPT ligand (Compare Figure 3.2 to Figure 

3.5). PSD95pdz3 shows the least difference qualitatively. Although it is collapsed, there is 

still a bimodal distribution of mutational effects with most mutations clustering in a peak 

centered near neutrality with respect to T-2F ligand binding function (Figure 3.5.D). 

Additionally, the second peak, which includes a smaller number of mutations than the 

near-neutral peak, contains deleterious mutations. Unlike the PSD95pdz3-CRIPT DMS 

though, there is a relatively large tail of mutations which improve function for binding the 

T-2F ligand. This makes sense as the unmutated protein initially has a poor ability to bind 

the T-2F ligand. For C234 and C234-TM the story is different (Figure 3.5.E-F). For both 

proteins the distribution of fitness effects is now unimodal with most mutations being 

approximately neutral for T-2F ligand binding. There is a small tail of mutations which are 

gain-of-function, exclusively corresponding to mutations at position 372 but this number 

is greatly decreased relative to PSD95pdz3. 
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As PDZ domains, particularly PSD95pdz3, are a well-studied system, the structural 

effect of single mutants is known in a variety of cases26. The previously mentioned 

position 372, which is in the a2 helix of the binding pocket and contains a universally 

conserved histidine, directly contacts the threonine hydroxyl at the -2 position in the 

CRIPT ligand through a hydrogen bond (Figure 3.6.A). This histidine is therefore thought 

to be crucial to the protein’s specificity for class I ligands. Unsurprisingly, mutations at this 

position in PSD95pdz3, such as H372A, have been shown to cause class switching 

behavior by eliminating the hydrogen bond interactions with the CRIPT ligand and 

removing the steric clash experienced in the unmutated protein when the phenylalanine 

of the T-2F ligand is bound in the active site (Figure 3.6.C-D). In general, mutations to 

position 372 can directly switch the ligand specificity of a PDZ domain from class I to class 

II ligands through a local perturbation. Consistent with this, results from the DMS ligand 

binding assay show all three proteins have gain-of-function mutations at position 372, 

allowing for improved binding to the T-2F ligand at the cost of decreased CRIPT ligand 

binding (Figure 3.2.A-C, Figure 3.5. 

Another position where mutations to the natural protein are known to improve 

binding to the T-2F ligand is 33026. The mechanism for this phenomenon is entirely 

different than position 372 as position 330 is located on a surface loop between the b2 

and b3 strands and does not contact the active site. Binding of the T-2F ligand, causes 

the b2-b3 loop to partially adopt an alternative confirmation which is required to stabilize 

the new rotamer at site 372 that is forced by the steric clash of the phenylalanine (3302, 

Figure 3.6.B). Mutations at site 330, such as G330T stabilize the 3302 confirmation. 

Importantly, 3302 does not preclude the original rotamer state of position 372 and 
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therefore mutations at position 330 are conditionally neutral (Figure 3.6.E-F). Only 

PSD95pdz3 has conditionally neutral mutants for T-2F ligand binding at position 330. 

Furthermore, only PSD95pdz3 has significant adaptive mutants of any kind at any position 

other than 372 in DMS studies. 

 
Figure 3.6. Mutations at position 330 and 372  
Adapted from Raman AS, et al, 201626 

A. The PSD95pdz3 bound to CRIPT (PDB ID 5HEB) structure illustrates key aspects of class I ligand 
recognition. The hydroxyl group of threonine at position -2 in the ligand forms a hydrogen bond with 
histidine at position 372. The glycine at position 330 is situated within a well-ordered β2-β3 loop near 
His372 but is not part of the active site (330₁, where the subscript represents conformation 1). 

B. When T-2F binds to wild-type PSD95pdz3 (PDB ID 5HED), a new partially occupied conformation of the 
β2–β3 loop (330₂) is generated. This conformation allows His372 to accommodate a non-native rotamer 
which avoids steric interference.  

C. Structures of PSD95pdz3; H372A bound to CRIPT (PDB ID 5HFB) show truncation of the side chain at 
position 372 with minimal other structural changes. The loss of both size and hydrogen bonding at 
position 372 corresponds with the decreased ability to bind the CRIPT ligand observed in the DMS. 

D. Same as in (C) for the T-2F ligand bound to PSD95pdz3; H372A (PDB ID 5HFC). The local adjustment 
introduced by the H372A mutation accommodates the bulky phenylalanine side chain at position -2. 

E. The G330T mutation stabilizes 3302 in the β2–β3 loop which allows histidine 372 to occupy either the 
native or a non-native rotamer depending on the ligand present. Consequently, in PSD95pdz3; G330T, 
His372 assumes the native rotamer when bound to CRIPT ligand (PDB ID 5HEY) 

F. Same as in (E) for PSD95pdz3; G330T bound to the T-2F ligand (PDB ID 5HF1). His372 adopts a non-
native rotamer. 

A PSD95pdz3
CRIPT

C DPSD95pdz3; H372A
CRIPT

PSD95pdz3; H372A
T-2F

B PSD95pdz3
T-2F

E F
PSD95pdz3; G330T

CRIPT
PSD95pdz3; G330T

T-2F
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Figure 3.7. DMS of D357N binding to CRIPT and T-2F ligands 
A. DMS of D357N for CRIPT ligand binding as in Figure 3.2. The position in the protein is shown on the 

left and the original protein sequence is shown on the right as well as a white box in that row. Function 
from low (blue), to neutral (white), to high (red) is shown in the form of norm r.e. Positions within the 
DMS which were missing from the assay are shown in grey. 

B. As in (A) for D357N binding to the T-2F ligand. 
C. Histograms of the DMS data from for D357N from (A). Stop codons are shown in yellow and 

synonymous mutations, are shown in red. Norm r.e. defines 0 as the mean of the stop codon mutations 
and 1 as the mean of the synonymous mutations. 

D. As in (D) for D357N binding the T-2F ligand. 
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A destabilized version of PSD95pdz3 

Despite C234-TM’s functionality, its decreased thermal stability compared to 

PSD95pdz3 could be the reason for its lack of CN and a predicted lowered exaptive 

capacity. There is a body of work linking evolvability – specifically robustness and 

exaptation – to protein stability, and, while that work does not make the claim that stability 

is the only factor, this effect must be examined in C234-TM15,20,27,31. An ideal test case 

would involve a mutant version of PSD95pdz3 which differs only in its lowered thermal 

stability.  

Previous work has quantified an array of biophysical parameters for a library of 

single point mutants to 83 positions in PSD95pdz3. The point mutants that were chosen to 

represent the next most common amino acid in the PDZ alignment at each position and 

therefore should result in a protein which behaves similarly to PSD95pdz3,22. One specific 

mutant, PSD95pdz3; D357N, referred to as simply D357N, has the property of reducing the 

thermal stability of the wildtype protein by 15°C (Tm = 53°C) while still retaining CRIPT 

ligand binding (KD = 1.63 µM). This thermal stability is similar to that of C234-TM (58°C), 

and when a DMS is conducted for CRIPT ligand binding the results are again qualitatively 

and quantitatively similar (Figure 3.7.A,C, Figure 3.2). The only slight difference is a 

shifting of the roughly neutral peak to just left of neutrality, indicating the average mutation 

is slightly deleterious compared to wildtype PSD95pdz3, a fact that could be predicted from 

its lower thermal stability. 

Unlike C234-TM, D357N binds the T-2F ligand only 27.2 times worse than the 

CRIPT ligand (KD = 65.6 ± 7.0 µM). This number is actually a slight improvement on the 

37.6x decrease for PSD95pdz3 and significantly better than for C234-TM’s 120x decrease. 
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A DMS for D357N binding to the class II ligand initially looks similar to C234-TM, in that its 

histogram of REs has a unimodal peak centered around neutrality (Figure 3.7.B,D, Figure 

3.5). However, this visualization hides some key differences that become apparent when 

only the mean of the top five RE values are plotted for each position (Figure 3.8). First, 

like all other proteins tested, D357N, sees the strongest adaptation at site 372. The 

reasons for this are the same as those previously discussed and like all other proteins, 

these mutations are direct switching for the experimental conditions of the DMS assay.  

 
Figure 3.8. Site specific improvements to T-2F ligand binding 
The mean and standard error of the top 5 RE scores for each protein (color coded dots) are plotted for each 
protein at each position. Analyzing different numbers, N, of top RE scores does not qualitatively change the 
results as long as N is less than 10. Beyond 10, for a site with only a few mutants which provide T-2F 
function, signal can be hard to distinguish from noise. 
 

Position 357 also appears as a hot spot for improvement to T-2F ligand binding. 

This is not surprising as a mutation at this position is what initially destabilized PSD95pdz3 

and therefore mutations here are likely reverting the stability back to wildtype levels. 

Although no single mutation will similarly revert C234-TM to a natural protein, if, all that 

was needed to allow binding to the T-2F ligand was an increase in thermal stability, it 

expected that positions would exist in the C234-TM DMS that show a similar signal as 
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position 357 does in the D357N DMS. This simple fact argues that something further is 

wrong with C234-TM, likely stemming from the scrambling of its non-sector surroundings.  

An even stronger argument exists at site 340 though. Site 340 is far from the active 

site and crucially, is not the position mutated to make D357N (Figure 3.3.D). This position 

allows for T-2F ligand binding while also increasing CRIPT ligand binding meaning it is 

CN (Figure 3.7.A-B). It is again entirely possible, that mutations at position 340, in the 

background of D357N, only function to increase stability but that further proves the point. 

Even if additional stability is all that is needed for D357N to bind to a class II ligand and 

generate CN, this same path does not exist for C234-TM. It is entirely unable to adapt in 

any capacity other than a local perturbation to the active site. 

Assay for productive SGV in natural and synthetic proteins 

 As it has been previously shown that mutations to the active site are likely to be 

direct switching for all but the weakest selection pressures, a logical hypothesis from the 

previous data is that C234-TM will be deficient in maintaining the CN portion of its 

productive SGV. That is, it will not be able to maintain the exaptive CN mutants required 

to survive under conditions of changing selection. BTH-PACE provides a way to test this 

assertion. If proteins are evolved in BTH-PACE while requiring binding to the CRIPT 

ligand for a period long enough to generate a pool of SGV, then those proteins which can 

maintain CN mutants will have a larger fraction of their population preadapted for T-2F 

ligand binding. This is a statistical argument derived from the fact that for a given selection 

pressure, direct switching mutants are more likely to depleted within a population due to 

purifying selection26. 
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 Experiments, with and without selection for CRIPT ligand binding, were carried out 

and this is exactly what was found in a preliminary analysis (Figure 3.9). As expected 

PSD95pdz3 maintained productive SGV with and without selection. The ratio of the 

frequencies between the two conditions is expected reflect selection against direct 

switching mutants. Conversely, both C234 and C234-TM struggled to maintain any T-2F 

functional mutants, even without selection, and were completely unable to do so when 

selection for CRIPT ligand binding was included in BTH-PACE. Finally, D357N was able 

to maintain productive SGV in BTH-PACE experiments with selection for CRIPT ligand 

binding, though not as well as PSD95pdz3. These results suggest that the defect in C234 

and C234-TM goes beyond a decrease in thermal stability. 

 
Figure 3.9. BTH-PACE assay for CN mutants 
The frequency T-2F functional PDZ variants in a lagoon for 4 replicates (circles, bar is mean of replicates) 
of BTH-PACE with and without selection for CRIPT ligand binding. The percentage of T-2F functional 
mutants found in the CRIPT selection environment relative to the non-selection environment is reported as 
a percentage underneath the bars. 
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 This last result can be improved upon in future work. The reporter for T-2F 

functional mutants is a plaque assay where only phage containing a PDZ domain which 

binds the T-2F ligand form plaques. The level of binding needed to form plaques is 3-5 µM 

and therefore only exceptionally good binders of the T-2F ligand are reported on. This tight 

binding places an incredibly high bar for T-2F ligand binding function; a bar that likely 

precludes many physiologically relevant mutations from being visualized. Sanger 

sequencing of individual plaques confirm this, indicating that variants detected via this 

assay are predominantly at position 372. A simple future experiment is planned to probe 

the results of the BTH-PACE experiments more thoroughly. Deep sequencing of the BTH-

PACE samples before and after growth dependent on T-2F ligand binding will reveal the 

fraction of mutants in the population with T-2F ligand binding function regardless of binding 

affinity.  

 

3.4. Discussion 

Prior work has shown proteins to be inherently heterogeneous, including, but not 

limited to, a biphasic intramolecular structure1. Understanding this intrinsic heterogeneity 

is essential to explaining the biophysical properties and functional versatility of proteins. 

We exaggerate this heterogeneity by retaining only the constraints of collective epistasis 

defined by the sector and scrambling the rest of the protein. Previous work has shown 

the sector to be necessary to protein folding, function, and to contain the sites of CN 

mutations, but experiments testing the sufficiency of sectors have not been conducted. 

Here, using a designed protein, C234, which has had its non-sector surroundings 

scrambled, we show that C234 can bind the native, class I ligand with natural like affinity 
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and specificity. Furthermore, introducing three stabilizing mutations to the non-sector 

region produces a protein with almost wildtype levels of thermal stability. This stabilized 

protein, C234-TM, is robust to mutation for native CRIPT ligand binding and is equally 

competitive when tasked with improving binding to this ligand in BTH-PACE. Up to this 

point, C234-TM appears broadly indistinguishable from the natural protein PSD95pdz3. 

However, once a new functional challenge is introduced – binding the class II ligand T-2F 

– an intrinsic deficiency of C234-TM becomes apparent. C234-TM has no initial ability to 

bind this alternative ligand, whereas PSD95pdz3, can do so with affinities that approach 

physiological relevance. Additionally, while the natural protein has no problems 

maintaining conditionally neutral mutants for T-2F ligand binding, C234-TM is generally 

unable to do so. It is only capable of local adaptation at position 372 in the active site 

which switches ligand specificity from CRIPT to T-2F. 

A model for the non-sector surroundings 

A reasonable explanation for C234-TM’s impaired ability to adapt to a novel ligand 

is the fact that its non-sector surroundings have been scrambled by the design process. 

We propose a conceptual model to explain this phenomenon by framing protein folding 

as a high-dimensional landscape, often visualized as a funnel (Figure 3.10). In this 

landscape, natural proteins reside at the bottom of an energy well, representing a stable, 

low-energy state. However, the landscape is not smooth, and other local minima also 

exist, allowing for the possibility of alternative conformations. When a protein binds its 

native ligand, it triggers the activation of an allosteric network that leads to a new energy 

minimum, consistent with the modeling work of Rouviere et al, 202332. The distinction 

between an allosteric network and an epistatic network is essential here. While epistatic 
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networks are a statistical phenomenon defined by a collective cooperativity in mutational 

effects, allosteric networks are a physical phenomenon. They are the paths of energy 

propagation upon perturbation at the active site. Although the reason for the presence of 

an epistatic network is often the existence of an allosteric network at overlapping or 

nearby positions, they are not the same thing. 

 
Figure 3.10. Non-sector surroundings are essential for conditional neutrality 
Natural proteins, not bound to any ligand, exist in a stable native state conformation at the bottom of an 
energy well (left, black line). Upon binding their native ligand an allosteric network is activated (network 1) 
and a new local energy minimum is found (left, yellow, dashed line). When tasked with binding an alternative 
ligand, a second allosteric network (network 2) can be activated resulting in an alternate conformation 
distinct from when the native ligand is bound. Although it might not be as stable as for the native ligand, 
this also creates a new energy minimum, (left, red, dashed line). For proteins lacking constraints in their 
surroundings, the unbound (right, black, line) and native ligand bound states (right, yellow, dashed line) 
may look similar to the natural protein. However, they are incapable of utilizing an allosteric network second 
and conformational state required for binding a sufficiently different alternative ligand (right, red, dashed 
line). 
 

Importantly, the native ligand is an integral part of both networks, as supported by 

unpublished data from the Ranganathan lab, and therefore alternative ligands might not 

efficiently engage the allosteric network. However, in natural proteins, when an alternative 

ligand binds, we propose that there is the possibility of shifting the equilibrium towards 

Native ligand
activates network 1

Alternate ligand
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another energy well, activating a distinct allosteric network. Preliminary data from the 

Ranganathan lab also supports this assertion. Importantly, this alternative ligand does not 

necessarily activate the original allosteric network, essentially rerouting the protein's 

functional pathways. Proteins like C234-TM, which have lost the constraints on their non-

sector surroundings, can still activate the allosteric network for the native ligand but 

appear to be unable to engage any alternative allosteric networks. This restricts their 

ability to evolve, as they are limited to local alterations. Local alterations are unlikely to 

be CN and therefore their ability to maintain productive SGV is diminished. 

This work is consistent with the constraints on the non-sector surroundings being 

essential for conditional neutrality – the statistically preferred method of exaptation. The 

sector itself defines the canonical solution for function (e.g., ligand binding), but 

interactions with the surrounding regions appear to allow proteins to "riff" off this primary 

function and explore a degeneracy of solutions in response to a new functional challenge. 

Interactions between the sector and its surroundings allow a protein to evolve in a 

conditionally neutral mediated way. 
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Chapter 4. The impact of evolutionary history on conditional neutrality 

4.1. Abstract 

Prior simulations of evolving proteins suggest that the unique evolutionary history 

of a protein, particularly the rate at which environmental conditions fluctuate, plays a 

critical role in defining its allosteric network and, consequently, its ability to adapt to new 

selection pressures. To investigate this relationship further, we evolved six class I PDZ 

domains using the bacterial two-hybrid phage-assisted continuous evolution (BTH-PACE) 

system under varying switching rates of selection pressure. In the previous chapter, we 

demonstrated that conditional neutrality serves as a readout for changes in protein 

architecture and preliminary results reveal that proteins exposed to intermediate rates of 

environmental change exhibit a distinct increase in their ability to harbor conditional 

neutrality. These findings provide experimental evidence supporting the hypothesis that 

a protein’s architecture is intricately linked to its evolutionary history. 

 

4.2. Introduction 

In the previous chapter, it was demonstrated that algorithmically designed ligand-

binding proteins, which contain only the sector-defining constraints (C234 and C234-TM), 

were impaired in their ability to adapt to the class-switching ligand T-2F. This is despite 

both C234 and C234-TM maintaining their natural-like function for binding to their native 

ligand which is consistent with non-sector positions (the surrounding regions) playing a 

role in protein evolution. The proposed function of these surrounding regions is that they 

are essential for activating alternative allosteric networks located within and along the 

sector positions of the PDZ domain. Absent the ability to activate these allosteric 
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networks, distant perturbations, in the form of mutations, are hypothesized to have no 

effect on the active site, making the maintenance of conditionally neutral (CN) mutants 

impossible. 

A straightforward yet unsurprising conclusion from Chapter 3 is that altering the 

constraints on a protein, as was done with C234 and C234-TM, leads to a changed ability 

to support CN. This suggests that CN can be viewed as a readout for the global 

constraints, which are shaped by evolution, that define a natural protein. From this work, 

a hypothesis emerges: a protein’s architecture, defined by its statistical constraints and 

structure, is a product of its unique evolutionary history. This hypothesis is not new; 

previous simulations in a simple Ising network model show that the size of the allosteric 

network depends on the mutation rate of the system and the fluctuation rate between 

environmental conditions1-2. Although this conclusion has not been experimentally tested, 

if validated in natural systems, it would support the hypothesis that a protein's allosteric 

network changes as a function of its selection pressure history. Moreover, since the ability 

to adapt (or exapt) to new selection conditions is a property of the allosteric network, 

measures of adaptation should also be influenced by the rate of change in selection 

pressures, serving as a readout for the evolving architecture of the protein3. 

An ideal system for testing this hypothesis experimentally would allow for control 

over mutation rates, fluctuating selection pressures, and population size in an evolving 

system. Thanks to advancements made in the bacterial two-hybrid phage-assisted 

continuous evolution (BTH-PACE) system, all of this is now possible (see chapter 2). In 

this study, six different class I PDZ domains were placed into phage and evolved under 

three distinct rates of switching between selection for class I and class II ligand binding: 
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constant selection for the class I ligand binding only, slow switching, and intermediate 

switching. The phage populations were evolved for at least 504 generations, with the PDZ 

proteins in each population accumulating up to seven mutations from the initial wild-type 

PDZ domain. While work is still ongoing, early results suggest a potential difference in the 

capacity to adapt between proteins evolved under intermediate selection fluctuations and 

those evolved under constant selection. If confirmed, this would represent the first 

experimental validation of the long-standing hypothesis that the constraints observed in 

present-day proteins depend on the specifics of their evolutionary history. 

 

4.3. Results 

Characterization of PDZ domains in BTH-PACE 

The model system for these evolutionary trajectories is the PDZ domain, a small 

ligand-binding protein that interacts with C-terminal ligands with affinities in the range of 

1 µM4. Previous work in this thesis has focused exclusively on the class I ligand-binding 

PDZ domain, PSD95pdz3. Class I domains bind ligands with the consensus C-terminal 

sequence -X-S/T-X-ϕ-COOH (where X is any amino acid and ϕ is any hydrophobic amino 

acid). PSD95pdz3 binds its canonical class I ligand, CRIPT (-TKNYKQTSV-COOH, derived 

from the cysteine-rich interactor of PSD95pdz3) with a KD of 0.452 ± 0.028 µM. Other ligand 

types, such as class II (-X-ϕ-X-ϕ-COOH) and class III (-X-D/E-X-ϕ-COOH), are well-

studied and are thought to present distinct binding challenges for a given PDZ domain. 

For instance, the CRIPT ligand can be switched to a class II ligand (T-2F; -TKNYKQFSV-

COOH), which PSD95pdz3 binds with a weaker KD of 17.0 ± 1.1 µM. 
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Figure 4.1. Comparison of PDZ domains in BTH-PACE 
A. Percent similarity between all PDZ domains that were picked. Values for percent similarity are color 

coded from red (high similarity) to blue (low similarity). 
B. 21 PDZ domains were assayed for BTH-PACE growth in the context of the CRIPT or T-2F ligand. r 

values are determined by fitting phage titers to a growth curve of the form N = N0 x ert. PSD95pdz3 (red 
dots), the five other PDZ domains that were picked for further analysis (blue dot) and all other PDZ 
domains tested (black dots) are shown. 

C. An alignment of the 6 PDZ domains picked. Secondary structure of the PSD95pdz3 domain is shown. 
Sector positions are shown in red. Positions, 322, 372, 377, and 378 are in bold. 

 

Alternating the ligand (CRIPT or T-2F) required for growth therefore constitutes a 

changing environment that can be controlled in BTH-PACE. PDZ domains selected for 

evolution in BTH-PACE had to be able to bind both the CRIPT and T-2F ligands strongly 

enough to not wash out of the lagoon. 21 PDZ domains, which had previously been 

identified to bind the CRIPT ligand5, were assayed for their ability to grow in BTH-PACE 

when challenged with either the CRIPT or T-2F ligand (Figure 4.1.B). Of these, six 
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domains, including PSD95pdz3, were picked because of their ability to bind to both CRIPT 

and T-2F well enough to grow in BTH-PACE. These six domains (PSD95pdz3, SAP102pdz3, 

Magi-2pdz2, Pdzk3pdz1, Magi-3pdz1, and Chapsyn-110pdz3) have had different functional 

requirements and selection pressure fluctuations throughout their history. Therefore, any 

relationship that is found between evolutionary history and protein architecture will 

support the hypothesis that a proteins architecture is a consequence of its evolutionary 

history (Figure 4.1.A). 

Evolutionary trajectories of PDZ domains in BTH-PACE 

The three different fluctuation rates tested in BTH-PACE are defined by the rate at 

which the environment switches between requiring CRIPT ligand binding and T-2F ligand 

binding. The timescale of these environmental fluctuations is determined by the 

empirically measured rate of mutation in BTH-PACE. One environment, termed the 

medium fluctuation rate, had a ligand switching time of 72 hours, which corresponds to 

the average time it takes for the majority of the PDZ population to acquire a single 

mutation in BTH-PACE. A slow fluctuation rate was also chosen with a ligand switching 

time of 144 hours. In total, five lagoons containing PSD95pdz3, as well as one lagoon for 

each of the other five PDZ domains highlighted in Figure 4.1, were evolved. Each 

experiment ran for 504 hours under slow and medium fluctuation regimes, as well as a 

constant environment where the CRIPT ligand was never changed. 

In all environmental conditions and for all proteins tested, the total phage 

population was quantitated using plaque assays. Since population bottlenecks can 

complicate analysis, any lagoon where the total phage population dropped below 5 x 104 

was excluded from further analysis. Using Illumina sequencing, the frequencies of specific 
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mutants within each lagoon were tracked throughout the experiment (Figure 4.2). 

Different variants of the starting PDZ domain rose and fell in frequency over time, with up 

to seven mutations accumulating during the experiment. The accumulation of mutations 

within all PDZ domains tested suggests that none of the PDZ domains are optimized for 

any of the selection conditions, even constant selection for CRIPT ligand binding. An 

example of one specific evolutionary trajectory, medium fluctuation between ligands 

starting with SAP102pdz3 is shown in Figure 4.2. 

 
Figure 4.2. An evolutionary trajectory in BTH-PACE 
A Muller plot of a BTH-PACE trajectory for the SAP102pdz3 protein in the medium fluctuation (72 hour) 
regime. All variants (colored wedges) which reached a frequency above 5% of the total PDZ population for 
a given time point are shown. A wedge which is started within another wedge (i.e., dark blue G322V in 
black SAP102pdz3) indicates a mutation within the preceding (left) wedge. Wedges contain all the mutations 
for all wedges they are descendent from. The dominant species at the end of this trajectory is the dark 
green wedge, SAP102pdz3; G322V; V328I; H372P; A378V; R381L. 
 

SAP102pdz3 G322V A378V
R381L H372P V328I

V328I
A347T

I315T
H372P
R381L

K318R H372P
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When the mutations that arose during BTH-PACE are mapped onto the primary 

sequence of the PSD95pdz3 domain, it becomes clear that certain hotspots are particularly 

prone to adaptation in each set of environments (Figure 4.3.A). Positions 377 and 378 in 

the α2 helix, which do not directly contact the bound ligand, were found to mutate in every 

condition (Figure 4.4). Unfortunately, little is known about the specific roles these 

positions play in PDZ function. The mutations frequently observed in the PSD95pdz3 

trajectories (I377F and A378V, Figure 4.3.B) are not individually known to be adaptive for 

either CRIPT or T-2F ligand binding (Figure 3.2.A, Figure 3.4.A). Consistent with this, the 

mutations I377F and A378V do not occur independently in these trajectories but exist 

almost exclusively as a pair, suggesting the presence of epistasis (Figure 4.5). 

In contrast to the slow or constant environments, mutations at positions 372 and 

322 are the most common in the medium fluctuation environment. This represents the 

first observed difference between proteins with varying evolutionary histories. Position 

322, located in the β1-β2 carboxylate binding loop, and which always mutates before 

position 372, is highly conserved and contains a glycine residue in all six proteins (Figure 

4.1.C). This glycine provides the loop with conformational flexibility, where, upon ligand 

binding, the protein incurs an entropic cost as the loop transitions from an open to a closed 

conformation (Figure 4.6.A). Mutations at position 322 pre-clamp the loop, reducing this 

entropic cost for both CRIPT and T-2F ligands (Figure 4.6.B, Figure 3.2.A, Figure 3.5.A). 

Notably, only in the medium fluctuation environment, where the environment fluctuates 

fastest, does this mutation, which allows for consistent binding of both ligands, 

consistently persist throughout the experiment. This suggests that G322V, while 
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improving function in general, may be near a local fitness peak and is eventually 

outcompeted when environmental conditions remain static for extended periods. 

 
Figure 4.3. Combined mutational spectrum at the end of BTH-PACE 
A. Average frequency of mutation at each site in the tested PDZ domains mapped onto its equivalent 

position in PSD95pdz3 for each environmental condition. Medium fluctuation has 9 lagoons (Pdzk3pdz1 
was dropped), slow has 6 lagoons (2 of PSD95pdz3, and 1 each of SAP102pdz3 and Magi-2pdz2 were 
dropped), and constant selection has 10 lagoons. Positions of interest are colored (322 – red, 372 – 
green, 377 – blue, and 378 – yellow). 

B. Same as in B except data for only PSD95pdz3 lagoons are shown. Instead of a bar chart the specific 
mutations are shown by single letter. The height of a letter corresponds to the frequency of that 
mutation. Amino acids are color coded by function (red – positively charged, blue – negatively charged, 
green – polar, black – hydrophobic, and yellow – special). 

A

B
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Figure 4.4. Mutational hotspots in PSD95pdz3 
Ribbon representation of the crystal structure of PSD95pdz3 (PDB ID: 5HEB) with its native CRIPT ligand 
(yellow). The sector is shown in grey mesh. Positions 322, 372, 377, and 378 are shown in red, green, 
blue, and yellow respectively. 
 

The third, and somewhat unexpected, mutation hotspot, which is primarily 

observed in the medium fluctuation environment, is position 372 (Figure 4.3). In the PDZ 

alignment, position 372 is a highly conserved histidine residue that directly contacts the -

2 position of the PDZ ligand (Figure 4.1.C)3. In PSD95pdz3, this histidine forms a hydrogen 

bond with the threonine of the CRIPT ligand (Figure 4.6.C). When the -2 position in the 

ligand is mutated to phenylalanine, a bulky aromatic residue, His372 in PSD95pdz3 is forced 

to adopt an alternate conformation to prevent steric clashing, resulting in a significantly 

reduced binding affinity for the T-2F ligand (Figure 4.6.D, Figure 3.5). Although crystal 

structures for their binding to T-2F do not exist, this phenomenon is expected to be similar 

in the other five PDZ domains tested. Mutating position 372 to proline removes the steric 

clash and significantly improves binding to the T-2F ligand (Figure 4.6.E). However, the 
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H372P mutation alone, at least in PSD95pdz3, drastically decreases the PDZ domain’s 

ability to bind the CRIPT ligand (KD = 46.1 ± 8.8 µM). 

 
Figure 4.5. Co-mutation of A377F and A378V in PS95pdz3 
In PSD95pdz3, for all samples and all selection regimes, the fraction of the population containing at least one 
of the I377F or A378V mutations is found. A histogram is made by binning samples based on the percent 
of this fraction that contains the double mutant (I377F; A378V) as opposed to either single mutant. It is 
unlikely to see single mutants of I377F or A378V in the BTH-PACE experiments started with PSD95pdz3. 
 

The H372P mutation, located near the active site and occurring exclusively 

alongside other mutations, can be understood through the "outside-in" hypothesis of 

molecular evolution. This hypothesis suggests that adaptation typically start at the 

periphery of a protein and gradually move toward more functionally critical regions, such 

as the active site6-9. The observation that the H372P mutation arises later in evolutionary 

trajectories supports this model. It implies that initial mutations, like the more distant and 

conditionally neutral G322V mutation in the β1-β2 loop, enable the protein to explore new 

functions without immediately impacting its current functionality. As evolution progresses, 

mutational changes in the protein outside the active site set the stage for subsequent 
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mutations like H372P, which now only fine-tune the domain’s substrate specificity rather 

than drastically altering it. Moreover, since mutations at position 372 persist most often 

during the fastest fluctuation rate tested, a related hypothesis can be proposed: outside-

in evolution, which relies on adaptation through CN mutants, occurs only when the rate 

of environmental change is high enough to preclude significant adaptation between 

fluctuations (Figure 4.7). 

 
Figure 4.6. Known mutational effects in PSD95pdz3    
A. Ribbon representation of the crystal structure of PSD95pdz3 (PDB ID: 5HEB) with its native CRIPT ligand 

(yellow). As the PDZ domain is binding the CIRPT ligand, the β1-β2 loop is clamped. 
B. A G322A mutation preclamps the β1-β2 loop (red). Preclamping occurs even without ligand present 

and mimics the clamping seen in (A). This lowers the entropic cost of binding. 
C. Same as in (A) with the focus now on position 372 (green sticks). The histidine at position 372 makes 

a hydrogen bond (yellow dashed lines) with the threonine in the -2 position of the CRIPT ligand. 
D. Mutating the -2 position of the CRIPT ligand to a phenylalanine (red sticks) creates a steric clash with 

the histidine at position 372 (PDB ID: 5HED). This steric clash, which completely removes the hydrogen 
bond between position 372 in the PDZ domain and position -2 in the ligand, is a large factor in the lower 
binding affinity of PSD95pdz3 for the T-2F ligand. 

E. Same as in (D) except position 372 has been mutated to a proline (green sticks) in PyMol. This removes 
the steric clash and increases the binding affinity of PSD95pdz3 for the T-2F ligand. 

A 

C D E

B
β1-β2 
loop

unclamped clamped
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Figure 4.7. Trajectory of mutations at site 372 
The average frequency of mutations at site 372 (green) is tracked over time for all three selection regimes 
(individual samples, black dots). The selection regime specified on the right of each plot and the condition 
of selection at a given time is indicated by the shading of the plot (CRIPT ligand binding – white; T-2F – 
grey). For the medium fluctuation regime, mutations at positions 322 (red), 377 (blue), and 378 (yellow) are 
also shown. 
 

Latent function in evolved PDZ domains 

To further investigate the impact of evolutionary history on a protein’s architecture, 

a comprehensive analysis of the adaptability of these proteins is required. As previously 

mentioned, the sector of a protein – a feature of its architecture – coincides with its 

allosteric network, which facilitates CN mediated exaptation through the presence of pre-

existing mutations distant from the active site. If a protein's architecture is influenced by 

the different environmental fluctuation rates tested in this study, this should be observed 

through a quantitative assessment of CN. One method to quantify the degree of CN is by 

measuring the ability of the dominant evolved PDZ domains from the ends of these 
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evolutionary trajectories to bind novel ligands relative to the starting condition (Table 

4.1.A). In these BTH-PACE experiments, binding to both the class I ligand, CRIPT, and 

the class II ligand, T-2F, was essential for survival. However, many additional PDZ ligands, 

both those that can be classified as class I, II, or III ligands, and those that cannot, exist. 

Previous work has shown that PDZ ligands, traditionally categorized into three 

classes, can actually be divided into as many as 16 groups and subgroups4,10. To help 

identify novel ligands, multiple correspondence analysis (MCA) was performed on data 

previously collected by Stiffler et al, 20065. MCA analysis identified five distinct 

dimensions in the data, from which thirteen ligands were selected to represent the full 

range of these dimensions. Ten ligands can be neatly classified into the three established 

PDZ ligand classes. The remaining three ligands, while still representing naturally 

occurring PDZ ligands, do not fit into these traditional classifications (Table 4.1.B). 

 
Table 4.1. PDZ domains and ligands used in binding growth assay 
A. PDZ domains picked from the endpoint of BTH-PACE evolution trajectories for growth rate analysis in 

a bacterial-two-hybrid binding assay. X is treated as a stop codon here. 
B. PDZ ligands picked for growth rate analysis. The ligand sequence provided is the 4 C-terminal amino 

acids. These amino acids are thought to be the determinants of PDZ-ligand binding. Ligand classes 
are determined by traditional class criteria (Class I, -X-S/T-X-ϕ-COOH; class II (-X-ϕ-X-ϕ-COOH); class 
III, -X-D/E-X-ϕ-COOH; where X is any amino acid and ϕ is any hydrophobic amino acid). 

PACE selection 
condition PDZ domain Accumulated mutations

slow PSD95pdz3 S298F; I307V; N326I; I377F; A378T; A390T; Q391H

slow Pdzk3pdz1 H372P

slow Magi-3pdz1 F325L; G330R; A373E

slow Chapsyn110pdz3 R368C; H372P; A377E

medium PSD95pdz3 S320P; G322V; H372P; I377F; A378V

medium SAP102pdz3 G322V; V328I; H372P; A378V; R381L

medium Magi-3pdz1 V312L; F325L; T326I; R332H; E334D; A354D; A373E

medium Chapsyn110pdz3 G333W; H372P

constant PSD95pdz3 D306N; G322V; A378T; A402S

constant SAP102pdz3 G319R; G322V; R381H

constant Magi-3pdz1 F325L; A373E; M378V

constant Magi-2pdz2 T326I; E332G; L336Q; E404X

constant Chapsyn110pdz3 T385P; D396G

Ligand Ligand 
Sequence

Ligand 
Class

AcvR2 ESSL 1

Claudin 23 DSDL 1

CRIPT QTSV 1

GluR1 ATGL 1

Kir2.2 ESEI 1

NMDAR2A ESDV 1

TRPC5 TTRL 1

Claudin 2 TGYV 2

SSTR2 IAWV 2

T-2F QFSV 2

Claudin 18 YDYV 3

Mel1a/b VDSV 3

Claudin 4 SNYV ?

Kv2.1 DQSI ?

Neurexin 1/2 EYYV ?

A B
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Figure 4.8. Fraction of evolved PDZ domains binding to novel ligands 
Shown is the fraction of evolved PDZ-novel ligand pairs that increased the growth rate by at least 0.5, 1.0, 
or 1.5/hr for each BTH-PACE fluctuation rate. PDZ domains were picked from the end of each BTH-PACE 
experiment. 
 

Individual PDZ domains were picked from the end of BTH-PACE trajectories for 

this analysis (Table 4.1.A). Individual PDZ domains are used to isolate alterations to 

internal architecture of single proteins from functional differences in the SGV of the 

population. Regardless of which selection condition that an evolved PDZ domain came 

from, BTH-PACE improved the fraction with which the PDZ evolved domains could bind 

to novel ligands in a growth rate-dependent assay. However, those domains evolved 

under the medium fluctuation environment exhibit a distinct advantage in their ability to 

bind alternative ligands (Figure 4.8). For the medium fluctuation period, 46% of the 

evolved PDZ-ligand pairs tested showed an increase of at least 0.5/hr in their growth rate 

constant, r (where 𝑁(𝑡) = 𝑁	"𝑒#!, with N as the total phage population, N0 as the starting 

phage population, and t as time). In contrast, only 38% and 25% of evolved PDZ-ligand 
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pairs exhibited such an increase under slow fluctuation and constant CRIPT ligand 

conditions, respectively. This result, where the fraction of functional PDZ-ligand pairs for 

the fluctuating environments is higher than for the constant environment, is not dependent 

on the arbitrary 0.5/hr cutoff used here. Since r represents the growth rate in a bacterial 

two-hybrid binding assay, an increase in r implies two key points. First, these evolved 

proteins, while still able to survive in their original environment, have enhanced their ability 

to bind alternative ligands. Second, if these proteins were evolved in a new BTH-PACE 

experiment with a ligand other than CRIPT or T-2F, PDZ domains evolved under the 

medium fluctuation regime would likely have a competitive advantage. 

 

4.4. Discussion 

Impact of Evolutionary History on Mutation Patterns 

This chapter presents an early experimental assessment of how evolutionary 

history influences the current architecture of proteins. Six PDZ domains were evolved 

under three different environmental fluctuation rates. As expected, proteins with different 

evolutionary histories exhibited distinct patterns of accumulated mutations, exemplified 

by position 372 and specifically the H372P mutation. Since the H372P mutation switches 

ligand binding preference from the CRIPT ligand to the T-2F ligand, constant selection for 

CRIPT ligand binding resulted in minimal accumulation of this mutation. Under slow 

fluctuation, the H372P mutation appeared but was partially depleted as the ligand binding 

requirement shifted back from CRIPT to T-2F. It was only in the medium fluctuation 

environment that the H372P mutation persisted in the majority of the evolutionary 

trajectories after 504 generations (Figure 4.7). 
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Interestingly, the H372P mutation was only acquired after the PDZ domains had 

already accumulated peripheral mutations (Figure 4.2, Figure 4.7). This suggests that 

prior changes to the active site configuration, likely mediated through the protein's 

allosteric network, were necessary before H372P could be tolerated. This observation 

supports the theory that evolution, at least under certain conditions, proceeds in an 

"outside-in" manner. Prior work has proposed this as a common evolutionary mechanism, 

and while this study supports that hypothesis, additional evidence is needed to fully 

understand the extent and conditions under which “outside-in” evolution is possible. 

Changes in protein architecture as a function of evolutionary history 

The extent of latent ligand binding function, or the level of CN function, was used 

to evaluate changes in protein architecture. Individual proteins evolved in an environment 

where selection conditions changed every 72 hours (medium), while still maintaining 

fitness in their version of BTH-PACE, demonstrated the greatest ability to bind alternative 

ligands compared to those evolved under other conditions (Figure 4.8). This increased 

level of CN function indicates that these proteins have experienced alterations in their 

internal architecture, shaped by the specific patterns of selection pressures they 

encountered during evolution. The data here provide early evidence supporting the 

hypothesis of a causal relationship between environmental history and protein 

architecture. This highlights how evolutionary pressures can fundamentally reshape 

protein constraints, altering their ability to adapt to novel conditions. 

While this work is already suggestive of evolutionary history influencing protein 

architecture, further research is needed. The current quantification of conditional 

neutrality, while useful at this initial stage, does not differentiate between an expansion of 
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the ligand-binding space of a PDZ domain (a “generalist” for ligand binding function) and 

alterations within that space (alterations to ligand binding specificity). Previous studies 

have shown that single mutations alter the ligand-binding space but do not necessarily 

create generalists for ligand binding3. However, this does not guarantee that subsequent 

mutations, as observed in BTH-PACE, will continue to have the same effect. This should 

be investigated further. Moreover, the quantification of conditional neutrality shown in 

Figure 4.8 is averaged across multiple condition. While this already suggests there is a 

relationship between the exaptive capacity of individual proteins – due to alterations in 

their internal architecture – and their statistical history of selection, to achieve a condition-

specific quantification of conditional neutrality, a different approach is required. Minor 

modifications to a novel method, High-Density Luria-Delbrück by Sequencing 

(HiDenSeq), discussed in Chapter 5 of this thesis, could enable this quantification (see 

Chapter 6.2.2 for proposed modifications to HiDenSeq). 

 The preliminary work presented here offer a guide as to whether different 

evolutionary histories result in differences in protein architectures. If subsequent data 

continue to support this, it will raise several new questions for the field of molecular 

evolution. One key question is where in the protein the constraints imposed by 

evolutionary history are stored. Given that CN is encoded along the epistatic network 

defined by the sector, it is tempting to propose that the sector serves as this repository of 

information3,11. Supporting this view, simulation work has shown that the size of an 

allosteric network in Ising models of proteins correlates with the fluctuation rate of its 

environment. However, Chapter 3 of this thesis demonstrates that the connection 

between the sector and its surroundings is crucial for an evolvable protein. Understanding 
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the extent to which the sector, its surroundings, or other components of the protein are 

constrained by evolutionary history will be important for fully appreciating the design of 

natural proteins. 

A second, potentially more challenging problem is to learn how specific 

environmental histories are encoded in protein sequences. Just as proteins are optimized 

for their functions within a cell, they are also likely optimized for expression and 

biosynthesis within the environmental history in which they evolved. As synthetic and 

designed proteins continue to advance and gain therapeutic relevance, an important 

consideration will be to specify constraints that align with the expected environment in 

which they will function12-13. This is particularly relevant for applications where the genetic 

information of a synthetic gene is passed through multiple generations14-15. 
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Chapter 5. Development of a high throughput Luria-Delbrück assay 

5.1. Abstract 

The parameters defining the distribution of mutants in the classic Luria-Delbrück 

experiment offer the potential for directly quantifying a system's ability to generate 

conditional neutrality (CN) and other evolutionary factors. Historically, accurately 

parameterizing this distribution required hundreds to thousands of replicates, a task that 

was logistically infeasible until recently. However, through a novel experimental 

procedure called high-density Luria-Delbrück by sequencing (HiDenSeq), initially 

developed by Kabir Husain, we have achieved this goal. HiDenSeq utilizes advanced 

sequencing techniques to efficiently analyze a vast number of samples, thus overcoming 

previous limitations. Additionally, using HiDenSeq, we provide the first experimental 

validation of an extension to the fundamental Luria-Delbrück distribution theory, 

demonstrating that the system's selection pressure affects the distribution's shape. 

Although further extensions to the theory remain to be tested, this finding opens new 

avenues for quantifying and understanding evolutionary processes. 

 

5.2. Introduction 

As molecular biology research continues to explore the genetic underpinnings of 

evolution, there is a growing need for sophisticated methodologies that can accurately 

detect, analyze, and interpret evolutionary processes1-3. The previous sections of this 

thesis also emphasize the necessity of experimental tools to assay molecular evolution. 

These tools are essential for uncovering the intricate mechanisms, as well as where they 

are encoded within proteins, that govern genetic variation, adaptation, and exaptation at 
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the molecular level4. By developing and refining these tools, we can enhance our 

understanding of molecular evolution, leading to insights into genetic diversity, the 

evolution of genomes, and the molecular basis of adaptation and exaptation. As more 

advanced design algorithms are developed the need for assays testing these evolutionary 

parameters will become increasingly important to quantify any differences that remain 

relative to natural proteins5-7. 

One of the first experiments used to assay evolutionary parameters was the famed 

Luria-Delbrück experiment, conducted in 1943, now more commonly known as the 

fluctuation assay8-9. This assay, which led to the formulation of the Luria-Delbrück 

distribution, was used to determine the mutation rate of the system and the number of 

phage-resistant mutants arising in a population that initially had none. With these data, 

they inferred the presence of pre-existing genetic variation. Over the past 80 years, this 

distribution has been the focus of extensive research, and, when fully parameterized, it 

can also be used to quantify parameters such as the level of CN or even the full 

distribution of fitness effects (DFE) experienced by a protein under specific environmental 

conditions10-13. However, fully parameterizing the Luria-Delbrück distribution requires 

thousands, if not tens to hundreds of thousands, of independent trials, a task that has 

historically been unfeasible due to logistical limitations14-15. 

With the help of post-doc Kabir Husain, from the lab of Arvind Murugan, we are 

able to overcome these logistical limitations by using a novel experimental procedure 

called High-Density Luria-Delbrück by Sequencing (HiDenSeq). This method allows the 

number of independent experiments to be limited only by transformation efficiency, 

enabling the execution of hundreds of thousands of replicates. We demonstrate that 
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HiDenSeq not only fully recapitulates the original Luria-Delbrück distribution but also 

quantifies an extension to this basic theory by accounting for environmental selection 

pressure. Additionally, we propose that other simple extensions, such as a bimodal 

distribution of fitness effects (DFE) and the existence of CN, should also be quantifiable 

through HiDenSeq. 

 

5.3. Results 

A theoretical examination of the Luria-Delbrück distribution 

In the classic Luria-Delbrück experiment, a small number of bacterial cells were 

used to inoculate a culture and allowed to grow until their population size reached 

between 10⁸ and 5 x 10⁹ bacteria per mL8. At this point, they were plated onto agar 

containing T1 phage. The number of colonies, originating from bacteria that had acquired 

resistance to T1 phage through mutation, was counted and a distribution of these counts 

was plotted. For this seminal study, 280 replicates were completed; a number that, even 

with the use of robots, has not been significantly surpassed to this day. This work 

confirmed the presence of pre-existing genetic variation and identified the phenomenon 

of “jackpot” mutations. Jackpot mutations, which occur after only a few generations of 

growth in the Luria-Delbrück assay, give the distribution its characteristic power-law tail 

(Figure 5.1.A). Specifically, in the original formulation of this experiment, where there is 

no selection pressure during the initial growth period, the complementary cumulative 

distribution function (CCDF or 1-CDF) of the number of mutants, m, decays with a slope 

approaching -1 in log-log space until m begins to approach the final population size, N 

(Figure 5.1.B, Methods 7.9). 
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Figure 5.1. The Luria-Delbrück experiment and distribution 
A. Shown here are two replicates of the Luria-Delbrück experiment. In both cases, a small number of 

bacteria, which lack a specific selectable function are used to inoculate a culture. The culture is allowed 
to grow until the total population reaches N. At this point, selection is applied, and the number of 
functional mutations, which now have the selectable function and therefor form colonies on a plate, is 
counted. In the top row, a jackpot mutation occurs, resulting in many functional colonies. Jackpot 
mutations occur early on in the growth phase and, as a consequence of the low population size at this 
time, are rare. In the second row, the only functional mutation occurs during the last few generations, 
which is more likely. 

B. Simulation of the Luria-Delbrück distribution (Methods 7.8.2). The simulation (black line; σ = 1, N = 105, 
µ = 10-4) is done without selection pressure during the growth phase. The red-dashed line indicates a 
slope of -1.  

 

Examination of the power-law tail of the distribution reveals its sensitivity to 

changing conditions in the experiment. In its original conception the Luria-Delbrück 

experiment was designed to exert very little selection pressure during the growth phase. 

However, this does not have to be the case. If some selection pressure is introduced, the 

resulting fitness effect of functional mutations, that is those that enable the original 

organism to survive selection, will alter the distribution of m values. This is also influenced 

by the mutation rate and the timing of individual mutations. We will define a parameter, 

σ, that is dependent on the selection pressure in the system, as the growth rate of a 

mutant relative to the growth rate of the wild-type genome. 

σ ≡ $*+,
$-.

                                                 (Eq. 5.1) 

Growth Selection
A B
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 In this case, if mutants grow slower than the wild-type genome σ will be less than 

1. This will lead to a truncated distribution, since even jackpot mutations, which occur 

early in the growth phase, will not achieve a high count (Figure 5.2.A,C). This formulation 

also allows for the intriguing scenario where mutants grow faster than the wild type (σ > 

1, Figure 5.2.B,C). Mathematically, the tail of the distribution will have a slope inversely 

proportional to σ, as long as m does not approach N (Eq. 5.2, Derivations 5.5.1).  

𝑃𝑟𝑜𝑏(#	𝑚𝑢𝑡𝑎𝑛𝑡𝑠 > 𝑚) 	≈ 	𝜇𝑁𝑚%& '(                              (Eq. 5.2) 

 
Figure 5.2. The effect of differential growth rates on the Luria-Delbrück distribution 
A. Shown is a replicate of the Luria-Delbrück experiment as in 5.1.A. In this replicate, the mutation that 

arises has a slower growth rate than wildtype during the growth phase of the experiment. In this 
scenario, even jackpot mutations have few mutants present at the end. 

B. Same as 5.2.A except the mutation that arises has a faster growth rate than wildtype during the growth 
phase of the experiment. 

C. Three simulations of the Luria-Delbrück distribution with varying values of σ (N = 105, µ = 10-4 for all 
simulations). The blue line (σ = 0.5) represents a scenario like 5.2.A. The green line (σ = 1.5) represents 
a scenario like 5.2.B. The black line has σ = 1. 

 

The full distribution is also dependent on µ, the rate of mutation to functional 

genotypes which can survive the selective challenge. This rate reflects a subset of all 

mutations generated during the growth phase is lower than the generic mutation rate as 

Luria-Delbrück experiments are blind to non-functional mutants. In all cases, deviations 

from a σ value equal to 1 will be exaggerated by increases in selection pressure in the 

A C

σ > 1
B

Growth Selection
σ < 1
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system. These three parameters, σ, µ, and N, are all that is needed to describe the full 

distribution. 

 
Figure 5.3. Luria-Delbrück distribution with a bimodal DFE 
A. A gaussian mixture model of DFE where 90% of fitness effects are conditionally neutral (σCN = 1 ± 0.1) 

and 10% are direct switching (σDS = 0.3 ± 0.1). 
B. Same as in 5.2A except 90% of mutants are direct switching and 10% are conditionally neutral. 
C. Simulated distributions resulting from the DFEs shown in 5.3.A (black line) and 5.3.B (maroon line). A 

higher percentage of mutants belonging to the lower of two σ values in a bimodal DFE (more direct 
switching mutants) results in a biphasic Luria-Delbrück distribution with a steep initial drop off followed 
by a long tail sloping as -1/σCN. 

 

Natural organisms do not produce mutations represented by a single value for σ; 

instead, there is a DFE covering a range of values for σ 16. DMS experiments presented 

in this thesis and elsewhere have shown that a common form of the DFE for natural 

proteins is bimodal, with some mutations being approximately neutral and others being 

deleterious (Figure 3.2.D)17-19. Additionally, since only mutants capable of surviving under 

new selection are examined in the Luria-Delbrück experiment, these bimodal peaks would 

be classified as conditionally neutral and direct switching, respectively. Although the 

Luria-Delbrück distribution does not have a closed form, it can be simulated12-13,20. 

A

B

C
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Simulations that bias the DFE toward conditionally neutral mutants (most σ = 1) or direct 

switching mutations (most σ < 1) result in different distributions, which could be used to 

quantify a protein's ability to generate conditional neutrality (Figure 5.3). 

Experimental validation of Luria-Delbrück theory with HiDenSeq 

 
Figure 5.4. High Density Luria-Delbrück by Sequencing (HiDenSeq) 
In contrast to a classic Luria-Delbrück experiment, the organism, in this case, an M13 bacteriophage, is 
barcoded with DNA. Barcoded phages are grown in culture with host bacterial cells, where each barcode 
represents a unique Luria-Delbrück experiment. Mutations arise during this growth phase, which are then 
selected for in a subsequent selection growth phase. Importantly, the original phage cannot grow during 
the selection phase of the experiment. After the selection growth, no phage containing the original genotype 
will persist at detectable frequencies, and the distribution of frequencies for the barcodes, as determined 
by Illumina sequencing, is equivalent to the Luria-Delbrück distribution, scaled along the x-axis. 

 

These theories have yet to be tested in an experimental setting, as they require 

thousands to hundreds of thousands of replicates of the Luria-Delbrück assay; something 

that is not feasible using traditional approaches. To overcome this limitation, a novel 

experimental technique called HiDenSeq was developed. The key advancement of 

HiDenSeq is that, instead of each replicate requiring an independent flask, individual 

experiments are tagged with a unique DNA barcode. This allows for thousands of 

replicates to be conducted within a single flask, and after the experiment is completed, 

the count for the number of functional mutants can be obtained using next-generation 

sequencing (Figure 5.4). Although this technique can be implemented in various 

Barcode Growth Selection
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organisms and systems, this work will focus on an application using the previously 

described RSP10-PDZ3 phage and its infection of a selection bacterial strain from BTH-

PACE (S2060 + AP-CRIPT + DP6). This system is ideal for experimentally verifying the 

impact of selection pressure on the Luria-Delbrück distribution, as the presence of the 

DP6 plasmid allows for modulation of selection pressure through the doxycycline-

inducible Ppsp-tet promoter. 

When doxycycline is absent from the system, selection pressure is at its highest, 

and the distribution should be modeled with σ < 1. Conversely, as the concentration of 

doxycycline rises, selection pressure decreases, and σ is expected to approach 1. 

HiDenSeq experiments were conducted across a range of selection pressures (Figure 

5.5 shows two conditions).  

 
Figure 5.5. HiDenSeq experiments support Luria-Delbrück theory 
HiDenSeq experiments were done at a range of selection pressures, two of which, high (A, 0 ng/mL 
Doxycycline) and low (B, 100 ng/mL Doxycycline) are shown here. Experimental data (black dots) and the 
simulation data which come from the best fit parameters in Laplace space (red dashed line), are shown. 
The σ which corresponds to this fit and represents a readout of the selection pressure is given. 
 

A B

σ = 0.84 ± 0.054 σ = 0.96 ± 0.093
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To fit the data to a Luria-Delbrück model, two transformations were applied. First, 

the Luria-Delbrück theory assumes all replicates have the same population size, N, at the 

end of the growth period and before selection12-13. In an experimental setting this is 

impossible due to the distribution of barcode counts in the initial phage population (Figure 

5.6). However, the Luria-Delbrück distribution has the convenient property of Lévy-

stability13. Lévy-stability means for any distribution, M, which is defined as M = m1 + m2, 

when m1 and m2 are both sampled from some distribution, P(m), M will be the same 

distribution as P(m), with only changes to the scaling and location parameters. This 

means, for the Luria-Delbrück distribution, independent barcodes can have their data 

combined into a grouped barcode without affecting fitting of σ or µ. The population size, 

N, will be impacted but only because combining two barcodes together combines their 

populations. We will use a longest-processing-time-first (LPT) algorithm to group 

barcodes into a predefined number of buckets, each bucket containing 1 or more 

barcodes which, in total, have an approximately equal total count prior to selection. 

 
Figure 5.6. Importance of bucketing in interpreting HiDenSeq data 
A. The original distribution of barcodes (red) and the distribution of bucketed barcodes using a LPT 

algorithm (black). Bucket or barcode frequencies are directly proportional to the population size for a 
HiDenSeq replicate. The LPT algorithm reduces the spread of the input data by at least 100 times. 

B. Simulations of a Luria-Delbrück system where σ is 1.0 and the mean of µN is 10. Three different uniform 
spreads of N are shown. The larger the spread in N as defined by the ratio of the maximum N value to 
the minimum N value, the less likely the data behave like the expected Luria-Delbrück distribution 
(black). Spreads of one order of magnitude or less (blue) do not meaningfully affect the data. 

A B

Nmax/Nmin
1
10
1000
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 The second modification to the data is to transform it into Laplace space. As 

previously mentioned, the Luria-Delbrück distribution does not have a known closed form. 

This is not true after a Laplace transform, 𝑙𝑛𝑃@(𝑠), of the data where s is a new complex 

variable used in Laplace space (Eq. 5.3, Derivations 5.5.2). 

𝑙𝑛𝑃@(𝑠) ≈ −𝜇𝑁 A1 − &
'
𝐸&)& '⁄ (𝑠)C                                (Eq. 5.3) 

Equation 5.3 simplifies the fitting complexity by combining the mutation rate, µ, and 

population size, N, into a single quantity, µN, which can be fit as one independent 

parameter. This remains valid until m approaches N. A Laplace transform of the data 

utilizes the special function, Ep(z), known as the generalized exponential integral. For 

more information on Equation 5.3 see Derivations 5.5.2. 

 
Table 5.1. Fit parameters for HiDenSeq experiments. 
Values for the fits of σ and µN are determined as outlined after the data are divided into 1,538 buckets. µ 
is in units of functional mutations per gene per generation (fspg/gen). The experimentally determined N 
values were obtained by dividing a plaque assay for the total phage culture by the number of buckets. 

 

 Least squares fitting was used to find the parameters for the distribution, with initial 

estimates of µN derived from experimental data (Table 5.1). Additionally, since all these 

experiments were conducted at the same arabinose concentration, dividing µN by the 

experimentally determined N yields an estimate for µ that is consistent across conditions 

Doxycycline 
Concentration

σ ± SD
(fit)

µN ± SD
(fit)

N
(experimental)

µ (fspg/gen)
(estimated)

0 ng/mL 0.84 ± 0.054 1.09 ± 0.19 4.3 x 105 2.5 ± 4 x 10-6

10 ng/mL 0.88 ± 0.049 1.02 ± 0.20 4.4 x 105 2.3 ± 5 x 10-6

25 ng/mL 0.94 ± 0.057 1.55 ± 0.30 6.6 x 105 2.3 ± 4 x 10-6

50 ng/mL 0.84 ± 0.11 1.27 ± 0.38 5.5 x 105 2.3 ± 7 x 10-6

75 ng/mL 0.97 ± 0.065 1.62 ± 0.37 6.1 x 105 2.7 ± 6 x 10-6

100 ng/mL 0.96 ± 0.093 4.44 ± 1.28 2.6 x 106 1.7 ± 5 x 10-6

150 ng/mL 0.99 ± 0.095 3.76 ± 1.12 2.7 x 106 1.4 ± 7 x 10-6
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(Table 5.1). For a true Luria-Delbrück distribution, Lévy-stability also means that fitting 

with one set of LPT buckets should suffice for modeling data from a different number of 

buckets. The only alteration to the fitting parameters is that the population size must be 

adjusted according to the ratio of the change in the number of LPT buckets (Figure 5.7). 

Both verifications support the notion that the modeled data originate from a Luria-

Delbrück process and that the doxycycline-dependent change in σ reflect the changing 

selection pressure in the system (Figure 5.8). 

 
Figure 5.7. HiDenSeq data is Lévy-stable. 
HiDenSeq data for all seven doxycycline conditions tested. Plotted are data with different amounts of 
buckets ranging from 100 (small, red) to 1584 (large, orange). As expected, a single fit of the data 
corresponding to 1584 buckets generates accurate simulation data for all other buckets if the value for µN 
is altered by the same factor as the number of buckets. 
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Figure 5.8. Selection pressure alters Luria-Delbrück fit parameters 
Shown are the fitted σ values for HiDenSeq experiments run at seven different doxycycline concentrations 
ranging from high (0 ng/mL) to low (150 ng/mL). The estimated uncertainties are provided. 
 

5.4. Discussion 

This work introduces a novel assay for measuring evolutionary parameters. While 

numerous methods exist for quantifying fundamental protein characteristics such as 

folding and function, assays specifically designed to assess evolutionary processes are 

scarce. In this study, we demonstrate that HiDenSeq can effectively quantify selection 

pressure by evaluating the fitness effects of mutations on a wild-type protein. Increased 

selection pressure results in a steeper slope in the tail of the Luria-Delbrück distribution 

(Figure 5.8). Importantly, this finding, which has the benefit of being tailored to the specific 

system under investigation, is still generalizable. In principle, any microbial system that 
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experiences a selection condition where the original organism cannot currently grow but 

has the potential to adapt, can be utilized as a platform for HiDenSeq. 

There are also many extensions to be made with this assay that have the potential 

to greatly increasing the quantitative nature of molecular evolution research. Many of 

these will be expanded on in Chapter 6 but the one that is the most relevant to this thesis 

is conditional neutrality. As mentioned, HiDenSeq has the potential to differentiate 

between conditionally neutral and direct switching mutations (Figure 5.2). If two systems 

are subjected to the same environment and one protein fits best to a Luria-Delbrück model 

with a σ value near 1 while another has a sigma value less than 1, it could be said that 

the first system is better at generating conditional neutrality in the given context.  

Furthermore, as protein design algorithms continue to progress, such as those 

based on evolution like direct coupling analysis (DCA), neural networks like variational 

autoencoders (VAEs), or and natural language processing (NLP), it becomes crucial to 

evaluate the adaptive capacity of proteins produced by these processes22-24. HiDenSeq, 

through its ability to quantify CN can be this tool. Without this additional assay it will be 

difficult to know if the synthetics proteins have fully incorporated all the information 

contained in natural sequences. 

 

5.5. Derivations 

These derivations are the work of Kabir Husain. 

5.5.1. Power-law tail slope 

The tail of the Luria-Delbrück distribution is dominated by rare events, termed jackpot 

mutations, that result in a large number of organisms carrying the same functional 
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mutation. These jackpot mutations must occur early and therefore, they are assumed to 

be single mutations. This single mutation occurs at time 𝜏, where 0 < 𝜏 < T, and T is the 

total time of the initial growth phase of the experiment. At time 𝜏, the population size, n(𝜏), 

is 

𝑛(𝜏) = 𝑒+/,                                               (Eq. 5.4) 

Where λ0 is the growth rate of the wildtype or original variant and µ is the functional 

mutation rate per organism per generation. And since, the probability that no mutation 

occurs by some early time, 𝜏, is determined by a Poisson process (𝑃(𝑚 = 0) = 𝑒%-.), the 

probability that a mutation has occurred by time 𝜏 is 

1 − 𝑒%-/(,) ≈ 𝜇𝑒+/,                                        (Eq. 5.5) 

Since 𝜏 is monotonically related to the number of functional mutants at the end of the 

initial growth phase, m, this is also equivalent to the probability that you observe at least 

m mutants. To express 𝜏 in terms of m, we need to introduce another quantity, λ, which 

is the growth rate of a mutant assuming all mutants have the same growth rate. 

𝜆(𝑇 − 𝜏) = ln𝑚 	⟹ 𝜏 = 𝑇 − &
+
ln𝑚                             (Eq. 5.6) 

And plugging this into equation 5.4 

                                   Prob(# of mutants > 𝑚) ≈ 𝜇𝑁	exp I− +/
+
ln𝑚J 

                                                                          = -.
20/ 0⁄ 	 

= 𝜇𝑁𝑚%& '⁄                                   (Eq. 5.7) 

Where σ is defined as in equation 5.1 (σ = λ/λ0) and N is defined as the total population 

of the experiment after the initial growth phase. In log-log space this power-law tail has a 

slope of -1/σ. The expression is only true for the large m values at the tail of the 
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distribution, where jackpot events are revealed. However, it only holds until m approaches 

N as the number of mutants cannot exceed the total population of the experiment. 

5.5.2. LaPlace transform of the Luria-Delbrück distribution 

Assume all mutants have fitness σ relative to the wildtype population. Additionally, 

assume an individual experiment starts with n0 wildtype cells and grows to a population 

of N cells. Functional mutations (mutations to genotypes which can survive the selective 

challenge, and which are a subset of all mutations seen during the first growth phase) 

occur with a probability µ ≪ 1 per cell division. Xn, an indicator function, tracks whether a 

mutation has occurred during each cell division (population goes from n to n+1) 

𝑋/ = M 0 with probability 1 − 𝜇
1 with probability μ                                      (Eq. 5.8) 

Each mutation gives rise to a mutant lineage of size Yn 

𝑌/ = I.
/
J
'
𝑋/                                              (Eq. 5.9) 

Therefore, the total number of mutants, m, produced is 

 𝑚  =  ∑ 𝑌/																																																								(Eq. 5.10).
/3//                                            

Then the log of the Laplace transform P(m) (equivalent to the negative cumulative 

generating function) is computed 

ln 𝑃@(𝑠) ≡ lnU 𝑑𝑚	𝑒%42	𝑃(𝑚) = ln〈𝑒%42〉
5

"
 

= Y ln Z𝑒 𝑥𝑝 ]−𝑠 A
𝑁
𝑛C

'

𝑋/^_
/3.

/3//

																																																								 

= Y ln`1 − 𝜇 + 𝜇𝑒%4(. /⁄ )2b																																					Eq. (5.11)
/3.

/3//
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Now, a change of variables is done to 𝑥 = 𝑛 𝑁⁄  and approximate the sum by an integral, 

where 𝑥" = 𝑛" 𝑁⁄  

ln 𝑃@(𝑠) ≈ 𝑁U 𝑑𝑥
&

6/
lnI1 − 𝜇 + 𝜇𝑒%4 6⁄ 2

J 																													Eq. (5.12) 

If µ ≪ 1, and if Re(s) > 0, which they are, the logarithm can be expanded to the first order 

in µ and the integral can be evaluated 

																																		ln 𝑃@(𝑠) ≈ 𝜇𝑁U 𝑑𝑥
&

6/
I𝑒%4 6⁄ 2

− 1J 

																																																= −𝜇𝑁(1 − 𝑥") + 𝜇𝑁U 𝑑𝑥	𝑒%4 6⁄ 2
&

6/
 

= −𝜇𝑁(1 − 𝑥") +
𝜇𝑁
𝜎 𝐸&)& '⁄ (𝑠) −

𝜇𝑁
𝜎 𝐸&)& '⁄ (𝑠𝑥"%')								Eq. (5.13) 

Where Ep(z) is the special function known as the generalized exponential integral 

𝐸7(𝑧) =
1

𝑧7%&U 𝑑𝑡
𝑒%!

𝑡7 																																											Eq. (5.14)
5

8
 

Equation 5.14 is the end of the calculation. However, a few simplifying assumptions can 

be made. In the first term of equation 5.14, 1 − 𝑥" can be approximated as 1. Second, the 

third term is only relevant when m is on the order of 𝑁' ≈ 𝑁. It is responsible for truncating 

the power tail of the distribution and keeping m less than N. In practice though, m never 

approaches N and therefore we can simplify equation 5.14 to the following expression. 

𝑙𝑛𝑃@(𝑠) ≈ −𝜇𝑁 A1 − &
'
𝐸&)& '⁄ (𝑠)C                               (Eq. 5.15) 
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Chapter 6. Conclusions 

6.1. Discussion 

 The overall goal of my thesis has been to further understand the relationship 

between conditional neutrality (CN), its encoding within protein sequences, and its 

dependence within a protein on a history of changing selection pressures. 

In Chapter 3 of my thesis, I took advantage of a of synthetic version of the ligand 

binding protein PSD95pdz3, which had the constraints defining a sector algorithmically 

separated from the non-sector surroundings. Prior work in the Ranganathan Lab has 

shown that a stabilized version of this protein, C234-TM, was functional for native ligand 

binding, thermally stable enough to allow for mutational robustness in the context of 

binding its native ligand, and able to engage an allosteric network in the form of long-

range effects on the active site. However, once a non-native ligand was introduced, C234-

TM was shown to be deficient. It bound the non-native ligand with an affinity nearly 10 

times worse than the natural protein and, when required to maintain productive genetic 

variation in BTH-PACE, was completely unable to do so. A prior theory posits that thermal 

stability buffers evolvability and therefore the issue with C234-TM could be its slightly 

lowered thermal stability relative to PSD95pdz3,1-3. However, PSD95pdz3; D357N, which 

has a similar but slightly lower melting temperature than C234-TM (53°C vs. 58°C), 

behaves similarly to PSD95pdz3 in the context of a non-native ligand. Instead, we propose 

that C234-TM, which can engage its allosteric network in the context of the native ligand, 

is not able to access an alternative allosteric network in the context of an alternative ligand 

(Figure 3.9). The information for this ability is encoded in the non-sector surroundings and 
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therefore, although thermal stability is necessary for adaptation, further constraints are 

required to recapitulate natural proteins. 

 In Chapter 4 of my thesis, I developed a system for continuous evolution, termed 

BTH-PACE, to investigate the impact of evolutionary history on protein architecture. Six 

different PDZ domains were evolved in environments where the ligands fluctuated every 

72 hours (medium), 144 hours (slow), or remained constant. These varying environments 

led to distinct mutation patterns, exemplified by the H372P mutation. In the constant 

environment, where significant alterations to the active site were neither necessary nor 

tolerated, the H372P mutation was absent. In the slow environment, H372P appeared 

only when the alternate ligand was present in BTH-PACE but was partially selected 

against when the native ligand returned. In the medium environment, after sufficient 

background alterations were acquired, H372P became an adaptation that enabled 

survival with either ligand. These varying environments induced constraints resulted in 

proteins with different abilities to bind a panel of novel PDZ ligands, serving as a test of 

conditional neutrality. Proteins from the medium environment exhibited the most CN, 

indicating that their internal architectures were altered from the other two environments. 

While more research is needed, this work offers an early assessment of the impact of 

evolutionary history on protein design. 

 In chapter 5 of my thesis, with the assistance of post-doc Kabir Husain, I tested a 

novel method for quantifying evolutionary parameters, called HiDenSeq. This method 

leverages technological and experimental advancements to reveal the full Luria-Delbrück 

distribution generated from the Luria-Delbrück assay. Theoretical extensions to this 

distribution provide valuable insights, including the ability to quantify the full distribution 
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of fitness effects (DFE), CN, and the selection pressure within a system. These traits have 

received little attention in the context of the Luria-Delbrück distribution due to 

experimental limitations. In our work, we demonstrate that the measured Luria-Delbrück 

distribution is sensitive to the selection pressure in the system and that HiDenSeq can 

detect these deviations. While research on the Luria-Delbrück distribution will 

undoubtedly continue, HiDenSeq offers an exciting and novel opportunity to quantify 

specific evolutionary parameters in a single experiment. 

 In summary, this thesis reveals how the interplay between thermal stability, 

allosteric networks, and evolutionary history have had an essential role in shaping CN. 

The research also underscores how evolutionary history influences protein architecture, 

with environments that switch at the pace of new gene fixation producing the most 

exaptive proteins. Additionally, the development of HiDenSeq introduces a new method 

for quantifying evolutionary parameters, offering the potential for deeper insights into the 

dynamics of protein evolution. These findings contribute to a more comprehensive 

understanding of the constraints encoding evolution within proteins. 

 

6.2. Future Work 

6.2.1. EcORep HiDenSeq 

 The current implementation of HiDenSeq builds on the established BTH-PACE 

system. In BTH-PACE, as in PACE more broadly, the key to maintaining a well-

understood selection condition is the separation of the evolution of the M13 bacteriophage 

from the host bacterial cells4. This is achieved by raising the mutation rate of the bacteria 

in the lagoon and setting the lagoon's dilution rate high enough so that the bacteria, with 
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their slower replication rate than the phage, are on average not replicating while in the 

lagoon. Without this balancing act the evolution of the phage and bacteria become 

intertwined and straightforward interpretation of data becomes impossible. In HiDenSeq, 

the phage and bacteria are allowed to grow together for many generations, and evolution 

where the PDZ domain encoded in the phage evolves for binding to an unchanging and 

homogeneous ligand is lost.   

Perhaps the clearest example of this comes from a deeper sequencing of the 

HiDenSeq data from Chapter 5. If, instead of just sequencing barcodes, you look at both 

the barcodes and the full PSD95pdz3 PDZ domain linked to each barcode, some surprising 

mutations begin to appear. Specifically, the H372P mutation in the active site of the 

protein becomes dominant. Furthermore, if you isolate those barcodes with single 

mutants for the H372P mutation and look at their HiDenSeq distribution, the estimated σ 

value which best fits the data is 0.89 (Figure 6.1). If only the CRIPT ligand was present in 

the bacterial cells this finding, where σ approaches 1, should not be possible and that is 

backed up by both measurements of the KD for PSD95pdz3; H372P to the CRIPT ligand 

(KD = 46.1 ± 8.8 µM) and the fact that H372P mutations do not appear as single mutants 

in BTH-PACE when selecting for CRIPT ligand binding (Figure 3.2.A, Figure 4.7). I 

hypothesize that this difference in HiDenSeq comes from the fact that, due to the long 

incubation times of bacteria and phage without dilution, the bacteria encoded ligand is 

also allowed to mutate. Although the examination of selection pressure in HiDenSeq that 

was tested in this work is not affected by this complication, statements about conditional 

neutrality become impossible as the selection condition is not well defined. 
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Figure 6.1. PSD95pdz3; H372P in HiDenSeq 
A subset of the data from a HiDenSeq experiment of PSD95pdz3 assaying for CRIPT to T-2F ligand binding 
at 100 ng/mL doxycycline restricted to the H372P mutation. Data (black dots) are overlayed with an estimate 
of σ (σe = 0.89) that comes from a linear fitting of the tail of the distribution (red dashed line). See Derivations 
5.5.1 for an explanation of this approximation. 
 

 A solution to this issue is to perform HiDenSeq such that the evolving PDZ domain 

is truly separated from its ligand. A recently developed semi-continuous evolution system 

called E. coli orthogonal replication system (EcORep) allows for this5. Simply, EcORep 

utilizes of a novel orthogonal replication system in E. coli where an orthogonal replicon is 

replicated by a DNA Polymerase that does not replicate the bacterial genome. This DNA 

polymerase has a much higher mutation rate (7.6 x10-6 spb/gen) than the genomic DNA 

polymerase. The replicon can contain cargo as large as 16.5 kilobases which is more 
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than sufficient to encode the half of the bacterial-two-hybrid containing the PDZ domain. 

The rest of the bacterial-two-hybrid system, including a ligand of interest, and some 

means of selection, could then be transformed into E. coli on another plasmid that is 

replicated by the normal genomic DNA polymerase. To date, a bacterial-two-hybrid 

system has not been modified for use in EcORep, but its implementation should be 

straightforward given the extensive work with similar assays in the Ranganathan lab and 

others. 

 As with any new experimental system, some care must be taken to account for the 

intricacies of EcORep relative to BTH-PACE. Most importantly, the mutation rate in 

EcORep is, presently, about an order of magnitude lower than what is currently used in 

HiDenSeq (~8.7 x 10-5 spb/gen). The Luria-Delbrück distribution is sensitive to the 

mutation rate and a lower rate will shift the entire distribution to the left on the x-axis, 

decreasing the chance of seeing larger m values. This, combined with the low 

transformation efficiency of the orthogonal replicon (1,824 transformants per µg DNA), 

lowers the number of independent replicates of HiDenSeq. Consequently, capturing the 

tail of the distribution could be challenging. Either increasing the mutation rate of the 

orthogonal DNA polymerase or increasing the transformation efficiency of the orthogonal 

replicon could solve this limitation. 

 EcORep-HiDenSeq presents another minor concern, there is currently no method 

for modulating the selection pressure in EcORep. Altering the copy number of the plasmid 

can be used to approximate changes in selection pressure, but for HiDenSeq analysis is 

simplest if the copy number is kept as low as possible. Instead, like PACE, a plasmid 

would likely need to be introduced to supplement E. coli growth independently of PDZ-
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ligand binding. Once these issues are addressed, EcORep-HiDenSeq could proceed 

similarly to what is described in the Methods Section 7.4, with only small changes due to 

the differing biology of the two systems.  

 

6.2.2. Theoretical Extensions to the Luria-Delbrück Distribution 

Presented in this work was a verification to the extension of the classic Luria-

Delbrück theory that allowed selection pressure during the growth phase of a Luria-

Delbrück experiment. However, other data were also collected that, presently, cannot be 

interpreted without additional extensions. As shown in Chapter 3, the C234 and C234-TM 

PDZ domains are unable to adapt to binding a non-native ligand, likely because of an 

inability to engage their allosteric network. Furthermore, current data suggests that these 

proteins, when assayed for T-2F ligand binding, are unable to maintain productive SGV 

which is statistically likely to take the form of CN mutants. A HiDenSeq experiment was 

conducted to see if the Luria-Delbrück distribution generated by these proteins would be 

modeled by a σ less than 1 as would be consistent if they could not produce CN mutants. 

The experimental data have three unexpected results (Figure 6.2). First, as 

explained in 6.2.1, interpretations of CN are impossible given the ill defined selection 

function that exists in this implementation of HiDenSeq. Secondly, and unlike results for 

PSD95pdz3, the majority of the C234 and C234-TM domains had more than one mutation. 

This is not accounted for in any current Luria-Delbrück theory. Third, the distribution did 

not fit simulations for a single mode of mutational effects (see Figure 5.2.C for an 

example). Instead, and again in contrast to PSD95pdz3, there is a distinct biphasic nature 
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to the distribution, indicative of a more complicated DFE (see Figure 5.3.C for an 

example). 

 
Figure 6.2. HiDenSeq of C234 and C234-TM 
HiDenSeq of C234 (A) and C234-TM (B) assaying for CRIPT to T-2F ligand binding at 100 ng/mL doxycycline. 
Plotted are all mutants, including those with more than 1 mutant to the wildtype protein. 
 

These unexpected results, although intertwined, need to be understood before a 

complete interpretation of the data from a HiDenSeq experiment done on C234 or C234-

TM is possible. The result without a clear path to a solution is finding number two, the 

existence of multiple mutations in a single PDZ domain. One possible route to modeling 

this phenomenon is to rewrite the negative cumulative generating function (Laplace 

transform) to account for additional acquired mutations after the original mutation. 

Logically, if a mutation occurs at time 𝜏, this is equivalent to starting a new Luria-Delbrück 

experiment at time 𝜏 which then grows until the total population of it, its subsequent 

mutants, and the original variant reach a total population size of N. Therefore, it seems 

worthwhile to develop a Laplace transform where the Luria-Delbrück distribution is nested 
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within the parent distribution for each new mutation. Similarly, simulations could be written 

and tested where a nested simulation is started each time a new mutation occurs.  

This strategy, for it to prove useful requires simplifying assumptions to be placed 

on the σ values used to fit data. In its purest form, each new mutation introduces a whole 

new set of potential σ values for the new Luria-Delbrück distribution and fitting in this 

manor will quickly prove intractable. One possible simplification assumes σ can only take 

three values across all mutations – one for direct switching (σ < 1), one for perfectly 

conditionally neutral mutations (σ = 1), and one for gain-of-function mutations (σ > 1). 

Another idea sets σ relative to the parent strain instead of the original wildtype strain. This 

simplifies the number of parameters that need to be fit if the relative σ is assumed to be 

constant. These ideas are untested and not exhaustive but should provide a jumping off 

point for future work. 

 

6.2.3. Further characterization of the impact of evolutionary history 

 This work has tentatively shown that even a brief period of evolution can leave an 

impact on the architecture of a protein. Mutations that are relevant and beneficial in one 

environment, such as H372P in the intermediate fluctuation regime, become conditionally 

viable in a slow environment, or non-viable when the environment is static. This changing 

pattern of mutations leads to a difference in the ability to bind novel ligands. However, a 

more comprehensive analysis should be done to confirm this finding. In this work, only 

three environmental conditions were tested, including the extreme of no environmental 

fluctuation. Two additional fluctuation rates should assayed: 24 hour fluctuation 

(environmental fluctuation faster than the time to new mutant fixation), and the constant 
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presence of both the CRIPT and T-2F ligand (a control for the upper limit of “fluctuation”). 

With these two additional conditions, the work would sufficiently span the entire scope of 

fluctuation regimes possible. 

 With these environments rates tested, additional post BTH-PACE work should also 

be done. Assuming EcORep-HiDenSeq is viable, quantification of the ability to produce 

CN mutants should be correlated to any changes in the architecture of a protein. 

Successful EcORep-HiDenSeq experiments require a ligand that the proteins have not 

been exposed to and cannot currently bind but also where subsequent point mutations to 

the protein allow for binding to that ligand. Work which resulted in Figure 4.8 indicates it 

is unlikely that a single novel ligand will be both unable to bind PDZ domains generated 

from all conditions and still have functional single mutants. These are the two criteria for 

a working HiDenSeq assay. Instead, unique ligands will need to be identified for each 

protein evolved in BTH-PACE that can work in HiDenSeq. After EcORep-HiDenSeq is 

completed, the distributions should be parametrized and experimentally derived σ values 

compared. It is my hypothesis that proteins from a medium fluctuation environment, which 

are required to continually adapt to new conditions but still able to alter their genotypes 

between fluctuations, will have σ values closest to perfect conditional neutrality (σ = 1). 

Furthermore, if the data fit a bimodal DFE, then I would expect the medium fluctuation 

environment to have the largest fraction of its mutants approximately conditionally neutral. 

 

6.2.4. Evolutionary viability of a synthetic variant of PDZ 

 This work tested the capacity for evolution using synthetic variants of PSD95pdz3 in 

the form of C234 and C234-TM. These proteins were designed by systematically altering 
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the existing architecture by retaining only sector constraints while scrambling the non-

sector surroundings. Consequently, they do not behave like natural proteins when 

subjected to non-native functional challenges. More complex algorithms for protein design 

exist such as those that rely on the statistics of direct coupling analysis (DCA) or neural 

networks (variational auto encoders amongst others)6,7. These approaches aim to capture 

the totality of constraints placed upon proteins and recapitulate them in completely novel 

protein sequences. Recent work by Xinran Lian and Nikša Praljak demonstrated that by 

using one such method for protein design, termed InfoVAE, synthetic orthologs of the 

small ligand binding protein, SH3, could be made (Figure 6.3.A)7. Furthermore, when 

these orthologs were mapped into a low-dimensional latent space, those proteins which 

localized near the SH3 domain Sho1 had ligand binding function for the Sho1 ligand 

43.9% of the time; a number comparable to natural orthologs (Figure 6.3.B). 

 
Figure 6.3. InfoVAE design of SH3 orthologs 
A. Adapted from Lian X, et al., 20247, Figure 1C. Schematic of evolutionary-based data-driven generative 

models, consisting of a compression step (encoding) that maps a sequence alignment of natural 
homologs to a low-dimensional Gaussian latent space (blue box), defined by vector 𝑧 for each 
sequence, and a decoder that converts latent space coordinates to synthetic protein sequences. By 
definition, a VAE is trained to reproduce its inputs; thus, decoded sequences represent hypotheses for 
synthetic members of the protein family. 

B. Adapted from Lian X et al., 2024, Figure 4F. Distribution of normalized relative enrichment scores 
measured by a high-throughput selection assay for the 987 local InfoVAE designed SH3 domains. 
Locality is defined by a sampling of the InfoVAE latent space near to SHO1SH3 and its orthologs. 43.9% 
of these designed sequences showed natural like function, a number comparable to natural proteins 
localized to the same region in the InfoVAE latent space. 
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 What remains to be tested for these, or any, synthetic proteins, is if they contain 

any capacity for adaptation. The structure of the latent space for InfoVAE SH3 domains 

is organized by both functionality and phylogeny. This indicates that some knowledge of 

evolutionary history has been retained by the model but does not necessarily mean the 

proteins are adaptable. Proteins very near to each other in latent space can still be tens 

of mutations away in sequence space, a gap that may not be traversable in evolution. To 

date testing these and other proteins for adaptability has been difficult due to a lack of 

experimental tools and metrics for quantifying and conducting evolution. With the 

advancements made in BTH-PACE it should be possible to compete natural SH3 

domains with their synthetic orthologs for binding to a variety of ligands, both constant 

and changing. As was seen in Chapter 4 of this work, natural PDZ domains can adapt to 

changing conditions of selection; whether or not synthetic proteins have a similar capacity 

remains an open question. Lastly, once EcORep-HiDenSeq is working, the presence of 

conditional neutrality in synthetic variants for various ligands can be quantified and 

compared to their natural counterparts. These two experiments would provide an 

essential test of how far the biological community has come in designing truly natural-like 

proteins. 
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Chapter 7. Methods 

7.1. Bacterial-two-hybrid phage assisted continuous evolution (B2H-PACE) 

This is a general method for B2H-PACE which is used many times throughout this 

work. For specific variants of B2H-PACE, see section 7.2.  

 

M13 bacteriophage strains 

All viruses are derived from the PDZ3-RSP10 strain made by BoRam Lee. RSP10 

is a modification of the SP098 M13 bacteriophage. RSP10 has the essential gene, gene 

III knocked out. The gene III promoter however, is still used to express the RNA 

Polymerase ω subunit linked to a PSD95pdz3 domain. Gibson assembly was used to 

replace the PSD95pdz3 protein with other PDZ domains (C234, C234-TM, SAP102pdz3, 

Magi-3pdz1, Pdzk3pdz1, Magi-2pdz2, and Chapsyin-110pdz3). Transformation of assembled 

phage genomes was done in electrocompetent S2208 cells (described below) with a two 

hour recovery time in 2xYT media. Phage were then purified by centrifugation at 11,000xg 

for 4 minutes and passage of the supernatant through a 0.2 µM filter. Supernatant 

containing isolated phage was stored at 4°C.  

 

Bacterial strains 

All bacterial cells are derived from the E. coli strain S2060. Non-selection bacterial 

cells (S2208) carry the plasmid Ppsp-tet-gene III (pJC175h) which initiates gene III 

production upon any phage infection. The original selection strain (S2060 + AP-CRIPT) 

as developed by Boram Lee contained a version of the accessory plasmid (AP-CRIPT; 

pAB076i3-CRIPT) which expresses the PDZ ligand, CRIPT, linked to a DNA binding 
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domain (bacteriophage 434 repressor protein CI). QuikChange mutagenesis was used to 

generate the AP-T-2F from AP-CRIPT. Accessory plasmids with other ligands were 

created through overlap extension PCR. Cells that allowed control over the mutation rate 

and the selection pressure contained the DP6 plasmid in addition to the plasmids 

previously described (selection; S2060 + AP-CRIPT + DP6, non-selection; S2208 + DP6). 

DP6 contains a constitutive promoter for titratable arabinose induction of the PBAD 

promoter expressing mutator genes and a doxycycline inducible promoter, Ppsp-tet, for 

gene III production. 

 

Generalized BTH-PACE 

Turbidostatic growth at 37°C, in 200 mLs Davis Rich Media + 1 mL/L Tween-80, is 

initiated from 500 µLs bacterial cells of a 3 mL overnight culture grown in 2xYT media at 

37°C. Liquid from the turbidostatic culture is flowed to lagoons at a rate of 12 mL/hr. 

Lagoons are where phage evolve during BTH-PACE and have a volume of 6 mLs 

meaning there is a dilution rate of 2 times per hour. The lagoons are also supplied with a 

constant flow of arabinose and doxycycline from an external source when required. These 

control the mutation rate and selection pressure respectively. If there is increased 

mutagenesis in the system the concentration of arabinose in the lagoon is 25 mM. The 

concentration of doxycycline varies from 0 ng/mL to 150 ng/mL in the lagoon. When 

doxycycline is present, the whole system is shielded from light to protect from 

degradation.  

After an overnight equilibration of the system, 5 x 108 phage are added to each 

lagoon. Samples are taken at predefined times and the phage are purified through 
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centrifugation as described previously. The turbidostat, lagoons, and tubing connecting 

the turbidostat to the lagoons is exchanged every two days to prevent biofilm formation. 

A change to a fresh turbidostat, started from a new overnight culture of bacteria grown at 

37°C, is done every 4 days for the same reason. Waste from the turbidostat and lagoons 

flows into a bucket containing 10% bleach. Phage titers throughout the experiment are 

monitored through colorimetric plaque assay for infection of S2208 bacterial cells using 

0.001 g/mL X-gal in 2xYT + 4 g/L top agar and 2xYT + 18 g/L bottom agar. 

 

7.2. Variants of B2H-PACE seen throughout thesis 

Unless otherwise stated, all versions of BTH-PACE described in this section are 

exactly as described above. Variations in length, initial condition, mutation rate, and 

selection are described. 

Competitive stress BTH-PACE 

Each lagoon is initiated with an expected equal proportion of M13 bacteriophage 

containing one of the PSD95pdz3, C234, or C234-TM PDZ domains. In total the starting 

phage population is 5 x 108. The bacterial strain used AP-CRIPT + DP6. The mutation 

rate is set to 8.7 x 10-5 substitutions per basepair per generation by 25 mM arabinose in 

the lagoons. To not wash out the phage, the selection pressure is lowered through the 

addition of 10 ng/mL doxycycline. The experiment was conducted for 120 hours 

corresponding to roughly 120 generations. 

BTH-PACE to assay standing genetic variation 

Each lagoon is initiated with 5 x 108 M13 bacteriophage containing only one of 

PSD95pdz3, PSD95pdz3; D357N, C234, or C234-TM PDZ domains. The bacterial strain used 
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is used is AP-CRIPT + DP6 for selection and S2208 + DP6 for non-selection. In both 

cases the mutation rate is set to 8.7 x 10-5 substitutions per basepair per generation by 

25 mM arabinose in the lagoons. There is no doxycycline. The experiment was conducted 

for 6 hours corresponding to roughly 6 generations. Total phage was quantified using a 

colorimetric plaque assay where S2208 bacterial cells were infected. The frequency of T-

2F functional phage was quantified by first propagating the sample for 8 hours in S2208 

bacteria. Then the propagated sample is assayed for its total phage and T-2F functional 

phage using a colorimetric plaque assay of S2208 and AP-T-2F bacterial cells 

respectively. The propagation step is needed to increase the resolution of the experiment. 

 

Fluctuating environment BTH-PACE 

In every condition, lagoons are initiated with 5 x 108 M13 bacteriophage containing 

a single PDZ domain (PSD95pdz3, SAP102pdz3, Magi-3pdz1, Pdzk3pdz1, Magi-2pdz2, or 

Chapsyin-110pdz3). The initial bacterial strain used is used is AP-CRIPT + DP6 and this is 

switched to and from AP-T-2F + DP6 at the defined rate. The mutation rate is set to 8.7 x 

10-5 substitutions per basepair per generation by 25 mM arabinose in the lagoons. To not 

wash out the phage, the selection pressure is lowered through the addition of 10 ng/mL 

doxycycline. The experiment was conducted for 504 hours corresponding to roughly 504 

generations. 

 

7.3. Growth rate determination of PDZ variants 

Phage containing PDZ domains of interest were isolated from colonies seen on a 

plaque assay and verified by Sanger sequencing. The colonies were propagated for 8 
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hours in 2xYT containing a 1:1000 dilution of an overnight culture (37°C) of S2208 

bacterial cells that were allowed to recover for 1 hour at 37°C before phage were added. 

After 8 hours of propagation the phage was purified and their PDZ domains verified with 

Sanger sequencing. The phage titer was then assayed with a colorimetric plaque assay 

using S2208 cells. 

Overnight cultures (37°C) of bacteria were diluted 1:1000 in 5 mL 2xYT and 

allowed to recover for 1 hour at 37°C. For each phage containing a unique PDZ domain, 

15 different AP bacteria were used each containing a different ligand. After 1 hour of 

recovery, phage was added to create a population of 200 phage/µL. The phage and 

bacteria were incubated for 3.5 further hours. 1 mL of phage was purified after 2 and 3.5 

hours. The phage titer at each timepoint was determined with a colorimetric plaque assay 

using S2208 cells. The growth rate was determined by calculating for r in the equation 

𝑁(𝑡) = 𝑁"𝑒#!, where N is the population size and t is time. 

 

7.4. High Density Luria-Delbrück by Sequencing (HiDenSeq) 

For HiDenSeq, all overnight cultures, bacterial growth, and phage propagation was 

done at 37°C. A 16-nucleotide barcode was added to PDZ3-RSP10 phage strains using 

overlap extension PCR. A 1 mL overnight culture of AP-CRIPT+DP6 cells was diluted 

1:200 and allowed to recover for 2 hours in 2xYT media. After 2 hours 106 phage, 

corresponding to 105 unique barcodes were added. Additionally, the culture was now 

made to have 25 mM arabinose and a doxycycline concentration ranging from 0 to 150 

ng/mL. After 2.5 hours of growth the entire phage sample was purified as previously 

described. This process was repeated 2-3 times, until the total phage population reaches 
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1010, where the phage added are the purified phage from the previous growth. The 

volume of bacteria for each growth will increase to equal the volume of phage previously 

purified. A 60 µL sample is withheld after each purification to monitor phage titers. 

Once the phage population is 1010, the entire population is added to a 100 mL 

culture of AP-T-2F bacterial cells that have been allowed to recover for 2 hours in 2xYT 

after a 1:250 dilution from an overnight culture. The phage is propagated for 3 hours, a 

500 µL sample of phage is purified, and the 100 mL culture is spun down at 4000 xg for 

15 minutes at room temperature. The supernatant is retained and immediately added to 

a second 100 mL culture of AP-T-2F bacterial cells that have been allowed to recover for 

2 hours in 2xYT after a 1:250 dilution from an overnight culture creating a 200 mL culture. 

This is repeated two more times resulting in 800 mLs of phage and bacteria and 12 hours 

of total phage propagation time. At this point, a 1 mL phage sample is taken. This 1 mL 

sample is added to a 1 L culture of AP-T-2F cells that are diluted 1:10,000 in 2xYT and 

allowed to recover for 1 hour. The phage is propagated for 12 hours with 1 mL samples 

being purified every 3 hours. 

 

7.5. Illumina sequencing preparation 

Samples used for next generation sequencing on Illumina MiSeq, NextSeq 550, 

NextSeq 2000, or NovaSeq 6000 machines were prepared in the same way. An initial 

PCR with Q5 DNA polymerase and a 2.5% DMSO spike-in involving 10 cycles (5 

min|98°C hot start; 10 cycles of 18 sec|98°C, 18 sec|58°C, and 18 sec|72 °C; 2 min|72°C; 

hold|10°C) was used to excise the PDZ domain, and barcode when relevant, from the 

phage. This step also introduced nucleotide diversity and added on the read 1 and read 
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2 sequencing primer binding sites. A second round of PCR with Q5 DNA polymerase 

involving 25 cycles (30 sec|98°C hot start; 25 cycles of 18 sec|98°C, 18 sec|58°C, and 18 

sec|72 °C; 2 min|72°C; hold|10°C) was used to add indices for multiplexed samples and 

add on the P5/P7 clustering sequences. For information on the specifics of the 

sequences, see Illumina’s website. Samples were quantified with Qubit assay and then 

loaded at concentrations instructed by Illumina documentation. Paired end sequencing 

runs were used and a 25% PhiX spike-in was included. 

 

7.6. Processing of Illumina sequencing data 

FASTQ data from each Illumina run was processed with custom Julia code 

(Methods 7.8.1). FLASh was first used to merge paired end reads. Merged sequencing 

files were then trimmed to examine only the region of interest. Trimmed reads were then 

assessed for data quality using a rolling window average of the Phred scores within a 

given read. If at any point the average Phred score in a rolling window (length of 4) 

dropped below 20 for a given read, that read was removed from future analysis. In 

addition, for every read that passed this check, an error rate was found corresponding to 

the percent chance of at least one error in the sequence. All reads were then grouped by 

their sequence and stored as a dictionary of counts. Using the previously stored error 

rates, and a false discovery rate of 1%, sequences of count K were accepted or rejected 

based on if K was significant in a binomial distribution with a probability equal to the 

determined error rate and the number of trials equaling the total number of reads for the 

most prevalent sequence in the sample. 
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7.7. Luria-Delbrück data processing 

Data processing for Luria-Delbrück sequencing were analyzed as described above 

through the step of sequence trimming. Sequence trimming leaves only a 16-nucleotide 

barcode and an associated PDZ domain per read. Barcodes are removed from further 

analysis if a single nucleotide has a Phred score below 30. All barcodes were then 

grouped by their sequence and stored as a dictionary of counts. Barcodes with a count 

below 3 are dropped. Using a LPT algorithm, barcodes from before selection are grouped 

into a predefined number of “machines” to standardize the count per machine prior to 

selection. This same grouping is used post selection. However, current theory only 

allowed for single mutations to the starting PDZ domain and therefore barcodes 

associated with a PDZ domain which had more than one mutation were not included in 

the counts after selection. Data are fit in Laplace space by least squares fitting to a model 

which has the free parameters µN (functional mutation rate times population size), σ 

(differential growth rate), and α (x-axis scaling factor). Uncertainty in µN and σ is 

determined by finding the curvature around the minimized value, MSD0, of the mean 

squared deviations for either parameter, p, through fitting of a second order Taylor 

expansion. 

&
9:;/

𝑀𝑆𝐷(𝑝) ≈ 1 + <
9:;/

(𝑝 − 𝑝")=                                (Eq. 7.1) 

Then, as the covariance matrix can be approximated by the inverse of the Hessian 

curvature matrix, the following quantity should approximate the standard deviation of the 

measurement. 

𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦	𝑖𝑛	𝑝 = n9:;/
<

                                       (Eq. 7.2) 
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7.8. Code of significant importance to this work 

7.8.1. Conversion of Illumina .fastq files to dictionaries of nucleotide counts 

This code was run with Julia version 1.7.2. It will turn .fastq files from an Illumina 

sequencing run into .csv files which contain dictionaries of counts for unique nucleotide 

sequences. It also trims reads down to a region of interest and does error checking and 

removes untrustworthy reads. The entire code was saved into a Julia file named 

NGS_part_1.jl and is run from the terminal. For this code to work the following file 

structure must be in place. 

> Home directory 
 > NGS_part_1.jl 
 > flash 
 > FASTQ_files 
  > #ID_FwdPrimer_RevPrimer_S#_Lane#_Read#_001.fastq 
 

NGS_part_1.jl is the Julia code to be executed. “flash” is a Unix executable from 

John Hopkins University Center for Computational Biology (v1.2.11). It is used to merge 

read 1 and read 2 files for paired-end Illumina sequencing runs. FASTQ_files, is where 

the unzipped .fastq files from the Illumina sequencing run are stored. Names for the .fastq 

files must follow the naming structure above with special care given to the placement of 

the underscores (“_”). With the exception of “#ID”, which is a unique identification number 

(or a number that is shared between a set of paired-end sequencing files) that must be 

added to each file, all of this should be in place in the raw Illumina output files. 

NGS_part_1.jl uses regular expressions to split the filename based on the underscores 

to properly run. 

The output data will be stored in a folder that is specified when the code is run. It 

has the following structure. 

> Output folder 
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 > Flash_Output 
 > Merged 
 > nt_seqs 
 > QS_scores 
 > Raw_nt_counts 
 

All files will begin with the #ID at the beginning of the .fastq files. Flash_output is a 

folder that stores all the output from the flash executable that is not the merged file. 

Merged is a folder that stores the merged sequence files (ex: 1_merged.fastq). nt_seqs 

is a folder which stores only reads which can be trimmed and pass error checking. If the 

analysis is being done in chunks, there may be multiple files per unique #ID separated by 

~K, where K is Kth chunk (ex: 1~4_nt_seqs.fastq, where the #ID is 1, and this is the 4th 

chunk of analysis for this #ID). QS_scores is a folder which stores the probability of that 

a read has no errors for each read that can be trimmed and pass error checking. File 

naming is the same as for the nt_seqs folder (ex: 1~4_QS_scores.fastq, where the #ID is 

1, and this is the 4th chunk of analysis for this #ID). Raw_nt_counts contains two file 

types. The first file type is a .csv file which, per #ID, contains all the nucleotide sequences 

for all chunks of that #ID (ex: 1_raw.csv). The second file type is a .csv file which, per 

#ID, is a dictionary where the entries are unique nucleotide sequences, and the counts 

are the number of times that sequence is in the data (ex: 1.csv).  

 

An example of a terminal command entry is shown below. 

julia ./NGS_part_1.jl FASTQ_files nextseq -m -M 210 -b CTTCTAGA -e CAAGTCCT -Q 
trimmomatic -c 0.99 -H 1000000 -o NGS_Analysis_Output 
 

In order of flags and options, this code will: 

• FASTQ_files: analyze .fastq files from the FASTQ_files folder. 

• nextseq: analyze the data from a Nextseq2000 Illumina sequencing run. 
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• -m: merge files from a paired end sequencing run. 

• -M 210: set the maximum overlap of merged sequences for the flash Unix 

executable to be 210 nucleotides. 

• -b CTTCTAGA: look for a region of interest, after merging, beginning just after the 

nucleotide sequence specified. 

• -e CAAGTCCT: look for a region of interest, after merging, ending just before the 

nucleotide sequence specified. 

• -Q trimmomatic: use the trimmomatic method for determining if a read should be 

kept for further analysis. 

• -c 0.99: The sliding window in the trimmomatic error checking method cannot fall 

below a 99% confidence that it is correct or the whole read is removed from the 

analysis pipeline. 

• -H 1000000: For large files, the workflow is split into chunks of 1 million reads. This 

speeds up the analysis. 

• -o NGS_Analysis_Output: Where the output data is stored. 

The code for the NGS_part_1.jl file. 

using ArgParse 
using DataFrames 
using CSV 
using StringDistances 
using StatsBase 
 
function parse_commandline() 
    s = ArgParseSettings() 
 
    @add_arg_table s begin 
        "folder" 
            help = "Folder containging all FastQ Files" 
            required = true 
            arg_type = String 
        "machine" 
            help = "Illumina machine used to generate FASTQ files" 
            required = true 
            arg_type = String 
            range_tester = in(["novaseq", "miseq", "nextseq"]) 
        "--cutoff", "-c" 
            help = "Cutoff for quality score.  For probabilistic method this is probability 
                    the sequence is correct.  For minQ and trimmomatic methods this is a  
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                    phred score (if a proability is given it will be converted to a phred  
                    score" 
            arg_type = Float64 
            default = 0.8 
        "--output", "-o" 
            help = "Location of output folder" 
            arg_type = String 
            default = "NGS Analysis Output" 
        "--flip", "-f" 
            help = "Flip nt sequence if needed" 
            action = :store_true 
        "--merge", "-m" 
            help = "Merge files if paired end reads" 
            action = :store_true 
        "--beginROI", "-b" 
            help = "NT sequence just upstream ROI, use 'N' to specify no upstream sequence" 
            arg_type = String 
            default = "AGGACTTG" 
        "--endROI", "-e" 
            help = "NT sequence just downstream ROI, use 'N' to specify no downstream sequence" 
            arg_type = String 
            default = "TCTAGAAG" 
        "--minOverlapFLASH", "-O" 
            help = "Minimum overlap for flash to merge sequences" 
            arg_type = Int 
            default = 10 
        "--maxOverlapFLASH", "-M" 
            help = "Maximum overlap for flash to merge sequences" 
            arg_type = Int 
            default = 70 
        "--QTrimMethod", "-Q" 
            help = "Method to use for quality trimming of data. Can be either: 
                    'probabilistic' {reads kept based on total Phred score calculation} 
                    'minQ' {reads kept based on lowest probability base in read} 
                    'trimmomatic' {reads kept based on sliding window average}" 
            arg_type = String 
            default = "probabilistic" 
        "--window", "-w" 
            help = "Only necessary when 'trimmomatic' method is used.  Sets the size of 
                    the sliding window" 
            arg_type = Int 
            default = 4 
        "--IgnoreR1", "-i" 
            help = "Ignore read 1 files, superceded by -m" 
            action = :store_true 
        "--IgnoreR2", "-I" 
            help = "Ignore read 2 files, superceded by -m" 
            action = :store_true 
        "--Chunksize", "-H" 
            help = "If this value is set to a number greater than 0, nt_seq and QS_score  
                    files will be generated in chunks where this value indicates the  
                    number of lines that are gone through before a new file is generated. 
                    A value of 1,000,000 should speed up processing times." 
            arg_type = Int 
            default = 0 
    end 
 
    return parse_args(s) 
end 
 
#Find the input files and merge files if necessary 
function get_input_files(folder::String,  
                         merge::Bool,  
                         minOverlap::Int, 
                         maxOverlap::Int, 
                         output::String, 
                         machine::String, 
                         IgnoreR1::Bool, 
                         IgnoreR2::Bool) 
    files = [i for i in readdir(folder) if i[1] != '.'] 
    mkpath(output) 
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    #Merge files if requested 
    if merge 
        #Create folder for merged files and find file pairs 
        mFolder, flFolder = output * "/Merged", output * "/Flash_Output" 
        mkpath(mFolder) 
        mkpath(flFolder) 
        paired_files = pair_files(files, machine) 
         
        #Go through each pair and merge with flash 
        for i in 1:size(paired_files, 1) 
            #Find the files and the identifier 
            file1, file2 = paired_files[i, :] 
            if machine == "novaseq" 
                identifier = parse(Int64, last(split(file1, "_")[1], 3)) 
            elseif machine == "miseq" 
                identifier = parse(Int64, split(file1, "_")[1]) 
            elseif machine == "nextseq" 
                identifier = parse(Int64, split(file1, "_")[1]) 
            end 
 
            #Don't do flash if file already exists 
            if string(identifier) * "_merged.fastq" in readdir(mFolder) 
                continue 
            end 
             
            #identifier = split(file1, "_")[1] 
            file1 = folder * '/' * file1 
            file2 = folder * '/' * file2 
 
            #Determine the options for flash and run it 
            opt1 = "--output-prefix=1" 
            opt2 = output 
            opt3 = "-m " * string(minOverlap) 
            opt4 = "-M " * string(maxOverlap) 
            run(pipeline(`./flash $opt1 $file1 $file2 -d $opt2 $opt3 $opt4`, stdout = "devnull")) 
             
            #Move the merged file 
            destination = mFolder * "/" * string(identifier) * "_merged.fastq" 
            mv(output * "/1.extendedFrags.fastq", destination) 
             
            #Move the other files 
            others = [j for j in readdir(output) if (isfile(output * "/" * j)) && (j[1] != '.')] 
            destination = flFolder * "/" * string(identifier) * "_" 
            for j in others 
                mv(output * "/" * j, destination * j) 
            end 
        end 
 
        #Get and return the merged files 
        return [mFolder * "/" * j for j in readdir(mFolder)] 
     
    #If ignoring read 1 or 2 return only the read 2 or 1 files 
    elseif IgnoreR1 
        return [folder * "/"* i for i in readdir(folder) if (i[1] != '.') && (occursin("R2", i))] 
    elseif IgnoreR2 
        return [folder * "/"* i for i in readdir(folder) if (i[1] != '.') && (occursin("R1", i))] 
    end 
     
    #If not merging return the already good files 
    return [folder * "/" * i for i in readdir(folder) if i[1] != '.'] 
end 
 
#Finds the proper pairs of files and returns them 
function pair_files(files::Vector{String}, 
                    machine::String) 
    #Find identifiers and run (i5 or i7) 
    IDs = DataFrame(name = String[], identifier = Int[], Run = Int[]) 
    for i in files 
        if i == ".DS_Store" 
            continue  
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        end 
 
        #Each machine has a slightly different file structure 
        if machine == "novaseq" 
            id = parse(Int64, last(split(split(i, "_")[1], "-")[3], 3)) 
            run = parse(Int64, split(i, "_")[3][2]) 
        elseif machine == "miseq" 
            id = parse(Int64, split(i, "_")[1]) 
            run = parse(Int64, split(i, "_")[5][2]) 
        elseif machine == "nextseq" 
            id = parse(Int64, split(i, "_")[1]) 
            run = parse(Int64, split(i, "_")[5][2]) 
        end 
        push!(IDs, [i, id, run]) 
    end 
     
    #Pair up files and return the (Nx2) array 
    paired_files=Array{Union{Nothing, String}}(nothing,length(unique(IDs, 2)[!,"identifier"]), 2) 
    for (a, i) in enumerate(unique(IDs, 2)[!, "identifier"]) 
        pair = IDs[isequal.(IDs.identifier, i), :].name 
        paired_files[a, :] = pair 
    end 
    return paired_files 
end 
 
#Finds the reverse compliment sequence for a string of nucleotides 
function flip_seq(seq::String) 
    compliment = Dict('A' => 'T', 'T' => 'A', 'C' => 'G', 'G' => 'C', 'N' => 'N') 
    return reverse(join([compliment[i] for i in seq])) 
end 
 
#Finds the region of interest in a given sequence 
function find_ROI(seq::String, start::String, final::String) 
    #Create key but only specify start and final if needed 
    if start != "N" key = start * "(.+)" 
    else key = "(.+)" end 
     
    if final != "N" key *= final end 
 
    if key == "(.+)" 
        return seq, 1, length(seq) 
    end 
    key = Regex(key) 
 
    #Find the region of interest 
    roi = findall(key, seq) 
 
    #If the match does not work do not continue examining the seq 
    if length(roi) != 1 
        return "", -1, -1 
    end 
     
    #Find the start and final index 
    sInd, fInd = roi[1][1], last(roi[1]) 
    if start != "N" sInd += length(start) end 
    if final != "N" fInd -= length(final) end 
     
    #Return roi and indices 
    roi = seq[sInd:fInd] 
    return roi, sInd, fInd 
end 
 
#Method for finding Qscore of a given read 
function find_Q(qroi::String) 
    qroi = [Int(only(i)) - 33 for i in split(qroi, "")] 
    qroi = 1 .- 10 .^ (qroi/-10) 
 
    Qscore = 1 
    for i in qroi Qscore*= i end 
    return Qscore 
end 
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#Method for finding minimum phred score in a read 
function find_Qmin(qroi::String) 
    Qmin = minimum([Int(only(i)) - 33 for i in split(qroi, "")]) 
    return Qmin 
end 
 
#Method for determining if window ever drops below cutoff in a read 
function find_Qslide(qroi, window, cutoff) 
    qroiINT = [Int(only(i)) - 33 for i in split(qroi, "")] 
     
    for i in 1:length(qroiINT)-3 
        if sum(qroiINT[i:i+3])/window < cutoff 
            return true 
        end 
    end 
    return false 
end 
 
#Read in a file for sequence analysis and convert them to fastq files containing 
#just the nucleotides from the region of interest (roi) 
function read_file(file::String,  
                   start::String,  
                   final::String,  
                   cutoff::Float64,  
                   flip::Bool, 
                   code_length::Int, 
                   output::String, 
                   QTrimMethod::String, 
                   window::Int, 
                   machine::String, 
                   chunksize::Int) 
    seqs_folder = "nt_seqs" 
    QS_folder = "QS_scores" 
 
    #Open the file 
    open(file) do F 
        #Find the file identifier 
        identifier = split(last(split(file, "/")), "_")[1] 
        line = 1 
        read = "" 
        roi, sInd, fInd, = "", -1, -1 
 
        #Make specific filename adendums for breaking up the file into chunks 
        chunk = 1 
        if chunksize > 0 
            chunkname = "~" * string(chunk) 
        else 
            chunkname = "" 
        end 
         
        #Some variables that need to be accessed outside the while loop 
        output_nt = "" 
        output_QS = "" 
        count = 1 
 
        #Go through each line (each entry for a fastq files is 4 lines) 
        while ! eof(F) 
            l = readline(F) 
 
            #First line is the identifier, just reset some of the variables 
            if line % 4 == 1 
                read = l * "\n" 
                roi, sInd, fInd, = "", -1, -1 
             
            #Second line is the sequence 
            elseif line % 4 == 2 
                #Flip seq if necessary 
                if flip  
                    l = flip_seq(l) 
                end 
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                #Find ROI 
                roi, sInd, fInd = find_ROI(l, start, final) 
                 
                read *= roi * "\n" 
             
            #Third line is a "+" sign 
            elseif line % 4 == 3 
                nothing 
             
            #Fourth line is the phred scores 
            else 
                #Do not add sequences  
                if sInd == -1  
                    line += 1 
                    continue 
                end 
                 
                #Find Q-score ROI and determine Q score 
                if flip 
                    l = reverse(l) 
                end 
                qroi = l[sInd:fInd] 
                Qscore = find_Q(qroi) 
                 
                #Based on quality trimming method decide if read meats minimum standard 
                #Create alternate Q20 dataset 
                if QTrimMethod == "probabilistic" 
                    if Qscore < cutoff 
                        line += 1 
                        continue 
                    end 
                elseif QTrimMethod == "minQ" 
                    Qmin = find_Qmin(qroi) 
                    if cutoff < 1 
                        cutoff = -log10(1 - cutoff) * 10 
                    end 
                    if Qmin < cutoff 
                        line += 1 
                        continue 
                    end 
                elseif QTrimMethod == "trimmomatic" 
                    if cutoff < 1 
                        cutoff = -log10(1 - cutoff) * 10 
                    end 
                    if find_Qslide(qroi, window, cutoff) 
                        line += 1 
                        continue 
                    end 
                end 
                 
                #Create folders/files and append data 
                output_nt *= read * "+\n" * qroi * "\n" 
                output_QS *= string(Qscore) * "," 
                count += 1 
 
                #For speed, files are only written every 300 reads 
                if count % 300 == 0 
                    filename1 = output * "/" * seqs_folder * "/" * identifier * chunkname * "_" 
                    filename2 = output * "/" * QS_folder * "/" * identifier * chunkname * "_" 
                    filename1 *= "nt_seqs.fastq" 
                    filename2 *= "QS_scores.fastq" 
                     
                    mkpath(output * "/" * seqs_folder) 
                    mkpath(output * "/" * QS_folder) 
 
                    #Write sequence file 
                    file1 = open(filename1, "a") 
                    write(file1, output_nt) 
                    close(file1) 
                    output_nt = "" 
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                    #Write quality score file 
                    file2 = open(filename2, "a") 
                    write(file2, output_QS) 
                    close(file2) 
                    output_QS = "" 
                end 
                 
                #If the files are large and need to be broken up into chunks 
                if chunksize > 0  
                    #Check if the chunksize (i.e. the number of reads) of the file  
                    #has been reached 
                    if count % chunksize == 0 
                        #Make a new file and write the remainder of the data to the  
                        #old output files 
                        filename1 = output * "/" * seqs_folder * "/" * identifier * chunkname*"_" 
                        filename2 = output * "/" * QS_folder * "/" * identifier * chunkname * "_" 
                        filename1 *= "nt_seqs.fastq" 
                        filename2 *= "QS_scores.fastq" 
 
                        mkpath(output * "/" * seqs_folder) 
                        mkpath(output * "/" * QS_folder) 
 
                        file1 = open(filename1, "a") 
                        write(file1, output_nt) 
                        close(file1) 
                        output_nt = "" 
 
                        file2 = open(filename2, "a") 
                        write(file2, output_QS) 
                        close(file2) 
                        output_QS = "" 
 
                        chunk += 1 
                        chunkname = "~" * string(chunk) 
                    end 
                end 
            end 
             
            line += 1 
        end 
         
        #Write the remainder of the data to the output files 
        filename1 = output * "/" * seqs_folder * "/" * identifier * chunkname * "_" 
        filename2 = output * "/" * QS_folder * "/" * identifier * chunkname * "_" 
        filename1 *= "nt_seqs.fastq" 
        filename2 *= "QS_scores.fastq" 
 
        mkpath(output * "/" * seqs_folder) 
        mkpath(output * "/" * QS_folder) 
 
        file1 = open(filename1, "a") 
        write(file1, output_nt) 
        close(file1) 
 
        file2 = open(filename2, "a") 
        write(file2, output_QS) 
        close(file2) 
    end 
end 
 
#Method to convert FastQ files into dictionary with counts for each unique sequence 
function compress_to_dict(files::Vector{String}, output::String, machine::String) 
    data = Dict() 
    identifier = split(split(last(split(files[1], "/")), "_")[1], "~")[1] 
    println(identifier) 
    folder = output * "/Raw_nt_counts/" 
    mkpath(folder) 
     
    #Go through each file and convert to a redundent array of sequences with a count of 1 
    for file in files 
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        println("  ", file) 
        #For large files larger than 100GB do this line by line version which is slower  
        #but will not crash 
        if filesize(file) > 100000000000 
            #Open the file 
            open(file) do F 
                line = 1 
                 
                #Go through each line 
                while ! eof(F) 
                    l = readline(F) 
                     
                    #Find the nucleotide sequences and add them to the array 
                    if length(l) != 0 && length(findall(r"[AGTC-]", l)) == length(l) 
                        if l in collect(keys(data)) 
                            data[l] += 1 
                        else 
                            data[l] = 1 
                        end 
                    end 
 
                    #This section is for tracking the progress in the output window 
                    if line % 10^7 == 0 
                        println("   ", line) 
                        CSV.write(folder * identifier * ".csv", data) 
                    end 
                    line += 1 
                end 
            end 
        #Otherwise read into a redundent array of sequences with a count of 1 
        else 
            println("  All at once") 
            dict_data = CSV.read(file, DataFrame, delim = 'a', header = 0) 
            dict_data = dict_data[dict_data.Column1 .!= "+", :] 
            dict_data = dict_data[(!).(startswith.(dict_data.Column1, "@") .&     
                                  contains.(dict_data.Column1, " ")), :] 
            dict_data = dict_data[contains.(dict_data.Column1, "T"), :] 
            seqs = unique(dict_data.Column1) 
             
            println("  ", length(seqs), " unique seqs") 
            CSV.write(folder * identifier * "_raw.csv", dict_data, append = true) 
            dict_data = nothing 
        end 
    end 
     
    #Convert the array into a dictionary with a count associated with each unique sequence 
    matrix_data = CSV.read(folder * identifier * "_raw.csv", DataFrame, header = 0) 
    matrix_data = convert(Matrix, matrix_data) 
    counts = countmap(matrix_data) 
    matrix_data = nothing 
    CSV.write(folder * identifier * ".csv", counts, append = true) 
    counts = nothing 
end 
 
function main() 
    parsed_args = parse_commandline() 
 
    #Get the FASTQ files and flash to merge if necessary 
    files = get_input_files(parsed_args["folder"],  
                            parsed_args["merge"], 
                            parsed_args["minOverlapFLASH"], 
                            parsed_args["maxOverlapFLASH"], 
                            parsed_args["output"], 
                            parsed_args["machine"], 
                            parsed_args["IgnoreR1"], 
                            parsed_args["IgnoreR2"]) 
     
    #Get some variables from the inputs 
    start = parsed_args["beginROI"] 
    final = parsed_args["endROI"] 
    cutoff = parsed_args["cutoff"] 
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    code_length = 0 
 
    #Open Files one at a time and read through them line by line 
    flip = parsed_args["flip"] 
    QTrimMethod = parsed_args["QTrimMethod"] 
    if !(QTrimMethod in ["probabilistic", "minQ", "trimmomatic"]) 
        println("ERROR: Quality trimming method not found.  Please try ", 
                "probabilistic, minQ, or trimmomatic") 
        return 
    end 
    output = parsed_args["output"] 
    window = parsed_args["window"] 
    machine = parsed_args["machine"] 
    chunksize = parsed_args["Chunksize"] 
    for i in files 
        println(i) 
        read_file(i, start, final, cutoff, flip, code_length, output, QTrimMethod,  
                  window, machine, chunksize) 
    end 
 
    #Get the nt created sequence files  
    nt_files = get_input_files(output * "/nt_seqs",  
                               false, 
                               parsed_args["minOverlapFLASH"], 
                               parsed_args["maxOverlapFLASH"], 
                               output, 
                               parsed_args["machine"], 
                               false, 
                               false) 
     
    #Convert nucleotide sequences to dictionary 
    if chunksize > 0 
        nt_file_groups = Set([split(last(split(i, "/")), "~")[1] for i in nt_files]) 
        for nfg in nt_file_groups 
            nfg_files = [file for file in nt_files if occursin("/" * nfg * "~", file)] 
            compress_to_dict(nfg_files, output, machine) 
        end 
    else 
        for i in nt_files 
            compress_to_dict([i], output, machine) 
        end 
    end 
end 
 
main() 
println("Done.") 

 

7.8.2. Luria-Delbrück Distribution Code 

This code was used from a Jupyter notebook running Julia version 1.7.2. 

using Distributions 
using Random  
 
function simulateLD_DFE(mu::Float64,  
                        mut_GrowthRate_vec::Vector{Float64}, 
                        mut_GrowthRate_sd_vec::Vector{Float64}, 
                        mut_GrowthRate_freq_vec::Vector{Float64}, 
                        nRep::Int,  
                        nPop::Int; 
                        seed::Int = 102594) 
    Random.seed!(seed) 
    # Starting from one wt cell, how long does it take to get to nPop cells? 
    finalT = log(nPop) 
     
    #Create the distribution for finding the DFE 
    mGRv = hcat(mut_GrowthRate_vec, mut_GrowthRate_sd_vec) 
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    DFE = MixtureModel([Normal(mGRv[i, 1], mGRv[i, 2]) for i in 1:size(mGRv)[1]], 
                       mut_GrowthRate_freq_vec) 
     
    # Compute the number of mutations that occur per replicate 
    dist = Poisson(mu * nPop) 
    r = rand(dist, nRep) 
     
    # At what times does each mutation occur? 
    tv = Dict() 
    rmax = maximum(r) 
    tv = rand(nRep, Int(rmax)) 
    tv = log.(1 .+ (nPop - 1) * tv) 
     
    # What are all the growth rates? 
    GR = rand(DFE, (nRep, rmax)) 
    GR[GR .< 0] .= 0 
     
    # What is the final number of mutants? 
    mutNum = zeros(nRep) 
    for rep in 1:nRep 
        val = finalT .- tv[rep, 1:Int(r[rep])] 
        mutNum[rep] += sum(exp.(GR[rep, 1:length(val)] .* val)) 
    end 
 
    return mutNum 
end 

 

 


