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ABSTRACT: The rare observation of transient Rh···Rh excimer formation in a single
crystal is reported. The estimated excited-state lifetime at 100 K is 2 ns, which makes it
the shortest-lived small-molecule species caught experimentally using the laser-pump/
X-ray-probe time-resolved Laue method. Upon excitation with 390 nm laser light, the
intermolecular Rh···Rh distance decreases from 3.379(4) to 3.19(1) Å, and the metal−
metal contact gains more bonding character. On the basis of the experimental results
and theoretical modeling, the structural changes determined with 100 ps time
resolution reflect principally the S0 → S1 electronic transition.

Profound investigations of light−matter interactions are
indispensable for understanding the mechanisms of crucial

(bio)chemical processes, the nature of excited states, and
structural dynamics. Such knowledge can be successfully
applied to the design of novel effective functional materials
for applications in optoelectronics, solar energy conversion
systems, storage devices, sensors, etc.1−5 Because many such
materials are solid-state materials, conducting studies using
their applicable form or at least as a simplified model would be
desirable. In this respect, crystals constitute convenient model
systems, as they can be relatively easily studied using
crystallographic methods. Nevertheless, to trace short-lived
transient species, advanced approaches have to be applied,
such as laser-pump/X-ray-probe methods combined with serial
crystallography,6−8 or the “pink”-beam Laue technique.9−14 To
achieve the required fine time resolution, such experiments are
performed at synchrotron or XFEL sources, where ultrashort
(approximately femtoseconds to picoseconds) X-ray pulses can
be generated. A number of studies of this kind have already
been conducted for macromolecular samples;13,15−20 however,
due to the development of data analysis tools, some small-
molecule crystals have also been quite successfully examined to
date.9,10,12,21−34

In this work, we have focused our attention on a newly
synthesized rhodium(I)-based potential precatalyst (hereafter
Rh-4-Br) for model Monsanto reactions.35−38 The rhodium
Monsanto process has played a significant role in the
homogeneous catalytic reaction involving the carbonylation
of methanol to acetic acid with an annual global use of several
million tons of acetic acid.39−41

The distorted-square-planar molecular structure of Rh-4-Br
is shown in Figure 1a. The rhodium atom is coordinated by
two carbonyl groups and by a monoanionic N,O-donor
bidentate ligand. The phenyl ring connected to the N1 atom

is substituted with a bromine atom in the para position. The
compound crystallizes in space group P21/n, with one
molecule in the asymmetric unit. The strongest interacting
dimeric motif in the solid state is illustrated in the crystal
structure, characterized by an interaction energy of approx-
imately −74 kJ mol−1 (Table S3.2), as shown in Figure 1b. It
consists of two center-of-symmetry-related molecules and is
stabilized mainly by the d8−d8 (dz2-type) Rh···Rh metallophilic
contact [metal−metal distances of 3.379(4) Å] and two C15−
H15···O3 hydrogen-bond-type interactions between the
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Figure 1. (a) Molecular structure of Rh-4-Br. (b) Main dimeric motif
in the crystal structure of Rh-4-Br [note the Rh···Rh distance is
3.379(4) Å]. Thermal motion is shown as ellipsoids at the 50%
probability level.
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bromine-substituted phenyl rings and the oxygen atom from
the Rh coordination sphere of the adjacent molecule.
Importantly, these dimers constitute discrete motifs in the
crystal structure (Figure S2.1a), as the Rh···Rh interactions do
not propagate further in space, a rare occurrence for many
complexes of this type.42,43 The other side of the metal center
is surrounded by two bromine atoms of the two molecules
located above (Supporting Information).
The shortest intermolecular Rh···Br distances amount to

4.206(5) and 4.348(5) Å, and the interaction energies of the
respective dimers, stabilized also by hydrogen-bond-type
interactions, are equal to −26.3 and −40.9 kJ mol−1,
respectively. With respect to the crystal architecture, slightly
undulated molecular layers parallel to the (103) crystal plane
can be distinguished (Figure S2.1b).
Platinum-group transition-metal coordination compounds

often exhibit interesting spectroscopic behavior, which can be
significantly affected by the metallophilic interactions if
formed.44−48 The luminescence shown by Rh-4-Br can also,
to some extent, be associated with the dz2-type Rh···Rh
contacts. Fluorescence is rather weak in the solid state, with
the maximum at ∼560 nm (Table 1). The estimated lifetime of

the emissive state is <1 ns at room temperature (∼700 ps) and
increases with a decrease in temperature reaching ∼2 ns at 100
K. No thermally activated delayed fluorescence (TADF)49 was
detected (Supporting Information).
The theoretical computations were performed by using the

density functional theory (DFT) method (Supporting
Information). The used range-separated CAM-B3LYP func-
tional50 should take into account possible charge transfer
occurring upon excitation, which is important once a dimeric
motif is considered. According to the time-dependent DFT-
derived vertical electronic transitions, the lowest singlet−
singlet transition occurs at ∼360 nm. It involves a number of
molecular orbitals with the most significant contributions from
the HOMO−2 → LUMO and HOMO−2 → LUMO+2
transitions, and noteworthy HOMO → LUMO and HOMO
→ LUMO+2 components (Figure S3.1). The HOMO−2
orbital is located principally on the Rh centers (mainly dz2
atomic orbitals) and has an antibonding character. HOMO
also covers the Rh atomic orbitals and has a similar
antibonding nature; however, it is additionally visibly spread
over the heterocyclic ligand fragment. In turn, the LUMO
orbital involves the heterocyclic fragment of the ligand, and to
a lesser extent the Rh atomic orbitals (mainly dxy), whereas
LUMO+2 shows more emphasized metal−metal bond
character (Figure S3.1f). Overall, the S0 → S1 electronic
transition is a mixture of π → π* excitation and metal-to-ligand
charge transfer (MLCT) with a metal-to-metal bond CT
contribution. Relatively close in energy, at ∼345 nm, a similar
in nature but brighter S0 → S3 transition can be found (Table

S3.1). In this case, the MLCT character is much more
dominant. Also, the lowest-energy singlet−triplet transition (S0
→ T1, ∼476 nm) resembles the S0 → S3 transition in character,
though it lacks contributions from HOMO−2 and LUMO+2
involving the Rh···Rh region most. The calculated ultraviolet−
visible spectrum well reflects features of the respective
experimental solid-state data (Figure S4.1). The latter is
more spread out and shifted toward lower energies, which is
typical for solid-state absorption spectra.
In light of the information presented above, we expect some

structural changes in the central region of the studied molecule
once the system is excited with the 390 nm laser light matching
the experimental solid-state band with respect to the S0 → S1
electronic transition. Thus, the time-resolved (TR) laser-
pump/X-ray-probe Laue diffraction experiment was carried out
at the BioCARS beamline in APS, allowing for ∼100 ps single-
X-ray-pulse diffraction.20,51 The X-ray diffraction signals were
collected both after (“ON”, pump−probe delay set to 100 ps;
laser-pulse duration of 38 ps) and without (“OFF”) laser
exposure, while further data treatment was based on the
intensity ratios (RON/OFF = ION/IOFF).

52 The collected data
were integrated using our GPU-accelerated one-dimensional
seed-skewness algorithm (Supporting Information).53 Further
processing24,54−59 and merging of four best-quality data sets
yielded a single data set of ∼50% overall completeness. Due to
the relatively small excimer population, charge density changes
can be reliably assessed only fairly close to the heavy atoms
(here Rh and Br atoms), while the statistical noise and Fourier-
rippling effects for less complete data sets overshadow the
possible signal in the remaining part of the molecule (for
details, see the Supporting Information). The resulting
photodifference map60,61 (FON

100 ps − FOFF) illustrating the
observed electron density changes upon laser light excitation
is presented in Figure 2.

The significant accumulation of electrons in the region
between the two Rh centers and typical depletion of electron
density at atomic positions suggest temporary contraction of
the metal−metal bond after excitation and increased vibration
of all atoms due to the laser-induced increase in temperature. A
weaker signal on the other side of the metal center in the
direction of the neighboring Br atom can be related to a shift of
both the adjacent molecules toward each other upon excitation
(Figure S5.3). Indeed, it is also accompanied by accumulation
of some electron density at the respective side of the Br atom.
Pairs of closest bromine atoms also seem to move slightly
toward each other upon excitation. It should also be noted that
on the basis of the photo-Wilson plot analysis,62−64 the
increase in temperature upon excitation was estimated to be
∼4 K (Figure S5.6).

Table 1. Solid-State Emission Maxima and Lifetimes for Rh-
4-Br

temperature, T (K)
emission maximum, λemmax

(nm)
emission lifetime, τ

(ns)

room temperature 566 0.70(1)
250 561 0.77(1)
200 558 1.25(1)
150 558 1.70(1)
100 557 2.01(1)

Figure 2. Photodifference map (FON
100 ps − FOFF) of Rh-4-Br showing

atomic shifts in the S1 excited state superimposed onto the S0 ground-
state geometry. Solid isosurfaces, ±0.50 e Å−3; semitransparent, ±0.41
e Å−3; blue for positive and red for negative.
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To determine the experimental geometry of the short-lived
excited-state species and verify the presumptions described
above, a response ratio [η = (ION − IOFF)/IOFF = RON/OFF − 1]
structure refinement was conducted.65−67 Given the moderate
data completeness, it was crucial to first estimate the
population of the excited state so it can be set at a fixed
value during further refinement steps. An excited-state
population of 1% assures the lowest discrepancy ratio-based
RR factor68 (Figure S5.4), whereas the most reasonable results
were obtained when only the Rh atoms were refined freely.
Such an approach is sensible, taking into account the very
small excited-state population and data completeness. As a
result, a notable signal is obtained only for electron-rich heavy
atoms such as Rh or Br. Indeed, apart from the electron density
peaks in the vicinity of the Rh centers, some significant
electron density redistribution is also visible for the bromine
atoms. However, the refinement of Br strongly affects the
position of the organic part of the molecule that cannot be
refined reliably (Supporting Information). In all of the tested
structural models, the Rh···Rh contact shortens significantly.
The intermolecular Rh···Rh distance decreases from 3.379(4)
to 3.19(1) Å (i.e., by ∼6%) in the most trustworthy model,
leading to metallophilic interaction strengthening and for-
mation of the excimer species. The character of this transition,
spectroscopic features, and structural changes are in agreement
with the time-dependent DFT results for the S0 → S1
transition and the QM/MM modeling (Figure S3.3).69 Its
nature is illustrated well by the transition density map and
atomic charges (Supporting Information). Nonetheless, the
minor contribution from the T1 excited state cannot be
completely excluded. The comparison of the QM/MM and
isolated-molecule calculation results with experiments shown
in Table 2 indicates that the Rh···Rh distance should decrease

upon excitation of excited singlet state S1 and even more for a
potential triplet state T1. In the case of the optimized isolated
dimer, its components are slightly farther apart in the ground
state, while upon excitation to S1 or T1, the Rh···Rh distance
shortens significantly more compared to the solid-state results,
by ∼0.4 Å for S1 and >0.55 Å for T1. It should also be noted
that although the QM/MM-optimized structure for the ground
state does not fully match the experimental value, the chosen
level of theory yields a sensible excited-state geometry
(Supporting Information). Indeed, the experimental and
predicted Rh···Rh distances in the S1 state are statistically
consistent. The investigations show that reliable experimental
results are extremely important in the case of modeling of
excited-state species (Supporting Information).
Overall, the experimental results indicate the formation of an

excimer upon near-ultraviolet light irradiation of the Rh-4-Br
crystal. To date, only one other excimer was detected using the

(monochromatic) TR diffraction technique.70 However, in that
case, the bonding situation is far more complex due to the
presence of infinite molecular stacks in the crystal structure;
thus, the nature of the laser-generated species remains unclear.
The excited-state population of Rh-4-Br was estimated to be
∼1%, while its lifetime was estimated to be 2 ns at 100 K (no
TADF signal was detected). Hence, this is the shortest-living
species caught in a time-resolved X-ray Laue experiment so
far.21−25,27,28,31−33,71 This was further evidenced during the
pump−probe Laue experiment by the lack of a detectable
differential signal 1 ns after laser excitation. Theoretical
computations indicated the presence of mixed MLCT and π
→ π* transitions and some metal-to-metal bond CT
contribution. Nevertheless, as opposed to other works on the
Rh···Rh distance contractions,24−26 on the basis of the
spectroscopic features, short TR Laue signal, and theoretical
predictions, the refined excited-state model of Rh-4-Br can
most likely be attributed to the lowest-lying S1 singlet state. In
the previously reported cases of Rh···Rh shortening, often the
information about the systems was not fully consistent (e.g.,
the ES lifetime was determined at a temperature different from
that of the TR Laue experiment), and the S1 excited state was
not taken into consideration, even though the 100 ps time
delay with the 100 ps-long probe was applied. In this work,
excited states S1 and T1 were modeled and analyzed, and the
increase in the temperature of the sample upon excitation was
estimated. The study shows that using the TR Laue method
and newly developed processing schemes, it is possible to
detect and refine very short-lived excited-state species with
close-to-residual populations. We believe that with the ongoing
emergence of XFELs, our efforts will contribute to the
development of the methods and the design of approximately
femtosecond pump−probe experiments in the future.
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