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ABSTRACT

Deep reinforcement learning (RL) based rate adaptation has been popular in the past few

years. Unlike the handcrafted rate adaptation which requires manual effort from network

domain experts to design and tune, RL-based rate adaptation has shown significant potential

to self-adapt to different network conditions. However, it still suffers from two limitations:

1) poor generalizability across diverse network environments; and 2) lack of awareness of the

user-perceived quality of experience (QoE).

In this thesis, we introduce a universal training framework for RL-based rate adaptation

to overcome the three limitations currently faced. Although improving the RL model’s

generalizability across network environments and customizing an RL-based rate adaptation

to inject QoE awareness and improve training efficiency are two separate goals, they can be

achieved by the same training framework which makes use of networking domain knowledge

to reweight the reward seen by the RL model at the training stage.

In this work, we cover the design of the universal training framework and instantiate

the frame using use two kinds of network domain knowledge–rule-based baselines and video

codecs–to address the limits respectively. Our experiments in simulated environments, emu-

lated environments, and real-world network settings demonstrate that RL-based rate adap-

tation trained by the proposed training framework does have better generalizability across

diverse network environments and can be customized to be aware of application layer QoE.

Additionally, the RL training efficiency are largely improved in comparison to traditional

RL training methods in network rate adaptation.
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CHAPTER 1

INTRODUCTION

Because of deep reinforcement learning’s (RL) ability to automatically create more adaptive

controlling logics beyond the traditional hand-crafted heuristics, numerous effort has been

made to apply RL to networking (i.e., rate adaptation) and has successfully showcased

benefits over the traditional approaches. In spite of the strengths of RL-based approaches,

their limitations also come to the public’s attention. These limitations are three-fold:

Poor generalizability: Same as RL application in fields like robotics, RL-based approaches

in networking face the generalizability problem that is RL model performs worse on testing

network environments than on training network environments. This happens when the

distribution of training network environments grows larger and when the testing network

environment is out of the training distribution. Due to the amount and the diversity of real-

world networks, RL generalizability problem desperately needs to be resolved or mitigated.

Lack awareness of QoE: RL-based rate adaptation design has been ignoring the diverse

relationships between QoE of different video codecs and the network conditions, i.e., packet

loss. One reason is that RL-based approaches are often trained via a reward computed by

a linear combination of network throughput, packet delay, and packet loss rate rather than

directly codec feedback. Lack awareness of video codec QoE can potentially prevent the

power of video codecs, for example, the loss-resilience of neural video codec, from being fully

released, causing users to experience suboptimal QoE.

Slow RL training convergence speed: To gain the characteristics and dynamics of the

real-world networks, RL-based approaches are often trained online together with a safeguard

policy which prevents RL’s trial-and-error manner from causing QoE catastrophic degrada-

tion. Nevertheless, the safeguard policy can lead to poor RL learning efficiency (slow RL

training convergence speed). This is because the safeguard policy not only interrupts the

training process but limits the RL model’s action space exploration.
1
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Figure 1.1: A universal RL training framework leveraging network domain knowl-
edge to rewweight the training reward

In order to overcome the above limitations, this thesis proposes to resolve from the

training perspective and presents a universal RL training framework (shown in Figure 1.1)

for a networked system, i.e., rate adaptation. The core idea of the training framework to

reweight the RL training reward guided by network domain knowledge. In this thesis, we

instantiate this training framework using two kinds of network domain knowledge: 1) existing

rule-based baselines and 2) loss-tolerant neural video codec.

Genet is an RL learning framework based on the idea of curriculum learning. Its goal

is to improve RL-based solutions’ generalizability across diverse network environments. It

utilizes the performance gap between traditional rule-based baselines (i.e., TCP Cubic in

congestion control) and RL models to automatically search for network environments which

are rewarding for RL training and promotes them to training iteratively. The insight about

rewarding environment is: If the current RL model performs significantly worse in a network

environment than the rule-based baselines, then further training it in this environment tends

to bring substantial improvement.

NVC-CC is an RL-based congestion control for real time communication, leveraging the

loss tolerant characteristic of latest neural video codecs in the training process to improve its

learning efficiency. By training upon reward computed from neural video codec feedback, it

2



removes the reliance of safeguard policies in RL training and gain awareness of video codec

to reach better quality of user experience than both traditional rule-based and RL-based

congestion controls for real time communication.

The rest of this dissertation is structured as follows. We first present Genet in Chapter

2 and NVC-CC in Chapter 3. Chapter 4 concludes this dissertation and discusses the future

work.

3



CHAPTER 2

GENET: AUTOMATIC CURRICULUM GENERATION FOR

LEARNING ADAPTATION IN NETWORKING

2.1 Introduction

Many recent techniques based on deep reinforcement learning (RL) are now among the state

of the arts for various networking and systems adaptation problems, including congestion

control (CC) [71], adaptive bitrate streaming (ABR) [101], load balancing (LB) [102], wireless

resource scheduling [40], and cloud scheduling [104]. For a given distribution of training

network environments (e.g., network connections with certain bandwidth patterns, delay,

and queue length), RL trains a policy to optimize performance over these environments.

However, these RL-based techniques face two challenges that can ultimately impede their

wide use in practice:

• Training in a wide range of environments: When the training distribution spans

a wide variety of network environments (e.g., a large range of possible bandwidth), an

RL policy may perform poorly even if tested in the environments drawn from the same

distribution as training.

• Generalization: RL policies trained on one distribution of synthetic or trace-driven

environments may have poor performance and even erroneous behavior when tested in

a new distribution of environments.

Our analysis in §2.2 will reveal that, across three RL use cases in networking, these challenges

can cause well-trained RL policies to perform much worse than traditional rule-based schemes

in a range of settings.

These problems are not unique to networking. In other domains (e.g., robotics, gaming)

where RL is widely used, it is also known that RL models have performance issues in both
4



new environments drawn from the training distribution and new environments drawn from

an unseen distribution [138, 84, 111, 163, 112]. There have been many efforts to address

these issues by enhancing offline RL training or retraining a deployed RL policy online.

Since updating a deployed model is not always possible or easy (e.g., loading a new kernel

module for congestion control or integrating an ABR logic into a video player), we focus on

improving RL training offline.

A well-studied paradigm that underpins many recent techniques to improve RL training

is curriculum learning [112]. Unlike traditional RL training that samples training environ-

ments in a random order, curriculum learning generates a training curriculum that gradually

increases the difficulty level of training environments, resembling how humans are guided

to comprehend more complex concepts. Curriculum learning has been shown to improve

generalization [106, 21, 47] as well as asymptotic performance [146, 79], namely the final

performance of a model after training runs to convergence. Following an easy-to-difficult

routine allows the RL model to make steady progress and reach good performance.

In this work, we present Genet, the first training framework that systematically intro-

duces curriculum learning to RL-based networking algorithms. Genet automatically gener-

ates training curricula for network adaptation policies. The challenge of curriculum learning

in networking is how to sequence network environments in an order that prioritizes highly

rewarding environments where the current RL policy’s reward can be considerably improved.

Unfortunately, as we show in §2.3, several seemingly natural heuristics to identify rewarding

environments suffer from limitations.

• First, they use intrinsic properties of each environment (e.g., shorter network or work-

load traces [104] and smoother network conditions [58] are supposedly easier), but these

intrinsic properties fail to indicate whether the current RL model can be improved in

an environment.

• Second, they use handcrafted heuristics which may not capture all aspects of an en-
5
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Figure 2.1: Genet creates training curricula by iteratively finding rewarding environments
where the current RL policy has a large gap-to-baseline.

vironment that affect RL training (e.g., bandwidth smoothness does not capture the

impact of router queue length on congestion control, or buffer length on adaptive video

streaming). Each new application (e.g., load balancing) also requires a new heuristic.

The idea behind Genet is simple: An environment is considered rewarding if the current

RL model has a large gap-to-baseline, i.e., how much the RL policy’s performance falls behind

a traditional rule-based baseline (e.g., Cubic or BBR for congestion control, MPC or BBA

for adaptive bitrate streaming) in the environment. We show in §2.4.1 that the gap-to-

baseline of an environment is highly indicative of an RL model’s potential improvement in

the environment. Intuitively, since the baseline already shows how to perform better in the

environment, the RL model may learn to “imitate” the baseline’s known rules while training

in the same environment, bringing it on par with—if not better than—the baseline. On the

flip side, if an environment has a small or even negative gap-to-baseline, chances are that

the environment is intrinsically hard (a possible reason why the rule-based baseline performs

badly), or the current RL policy already performs well and thus training on it is unlikely

to improve performance by a large margin. A small gap-to-baseline might also arise when

the rule-based baseline has poor performance yet the RL model still has a large room for

improvement. Genet ignores this case, but we will discuss it in §2.7.

Inspired by the insight, Genet generates RL training curricula by iteratively identifying

rewarding environments where the current RL model has a large gap-to-baseline and then

adding them to RL training (Figure 2.1). For each RL use case, Genet parameterizes
6



Use case Observed state (policy input) Action (policy
output) Reward (performance)

Adaptive Bitrate
(ABR) Streaming

future chunk size, history
throughput, current buffer length

bitrate selected for
the
next video chunk

∑
i(α·Rebufi+β ·Bitratei

+ γ · BitrateChangei)/n

Congestion Control
(CC)

RTT inflation, sending/receiving
rate,
avg RTT in a time window, min
RTT

change of sending
rate in
the next time window

∑
i(a · Throughputi

+ b · Latencyi + c ·
LossRatei)/n

Load Balancing
(LB)

past throughput, current request
size, number of queued requests
per server

server selection for
the current request −

∑
i Delayi/n

Table 2.1: RL use cases in networked systems. Default reward parameters: α = −10
(rebuffering in seconds), β = 1 (bitrate in Mbps), γ = −1 (bitrate change in Mbps), a = 120
(throughput in kbps), b = −1000 (latency in seconds), c = −2000. Details in A.5.

the network environment space, allowing us to search for rewarding environments in both

synthetically instantiated environments and trace-driven environments. Genet also uses

Bayesian Optimization (BO) to facilitate the search in a large space. In particular, we

cast the search for environments with a large gap-to-baseline as a maximum-search problem

of a blackbox function in a high-dimensional space where each point represents a set of

environment configurations and the function value is the gap-to-baseline. BO is then used

to find a set of training environments with large gap-to-baselines.

Genet is generic, since it does not use handcrafted heuristics to measure the difficulty

of a network environment; instead, it uses rule-based algorithms, which are abundant in the

literature of many networking and system problems, to generate training curricula. Moreover,

by focusing training on places where RL falls behind rule-based baselines, Genet directly

minimizes the chance of performance regressions relative to the baselines. This is important,

because system operators are more willing to deploy an RL policy if it outperforms the

incumbent rule-based algorithm in production without noticeable performance regressions.1

1. An example of this mindset is that a new algorithm must compete with the incumbent algorithm in
A/B testing before being rolled out to production.
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We have implemented Genet as a separate module with a unifying abstraction that

interacts with the existing codebases of RL training to iteratively select rewarding environ-

ments and promote them in the course of training. We have integrated Genet with three

existing deep RL codebases in the networking area—adaptive video streaming (ABR) [8],

congestion control (CC) [2], and load balancing (LB) [7].

It stands to reason that Genet is not without limitations. For instance, Genet-trained

RL policies might not outperform all rule-based baselines (§2.5.5 shows that when using a

naive baseline to guide Genet, the resulting RL policy could still be inferior to stronger

baselines). Genet-trained RL policies may also achieve undesirable performance in envi-

ronments beyond the training ranges (e.g., if we train a congestion-control algorithm on

links with bandwidth between 0 and 100 Mbps, Genet will not optimize for the bandwidth

of 1 Gbps). Moreover, Genet does not guarantee adversarial robustness which sometimes

conflicts with the goal of generalization [119].

Using a combination of trace-driven simulation and real-world tests across three use cases

(ABR, CC, LB), we show that Genet improves asymptotic performance by 8–25% for ABR,

14–24% for CC, 15% for LB, compared with traditional RL training methods. Genet aims

to optimize an RL model’s asymptotic performance (i.e., in-distribution generalizability),

and it does not explicitly optimize the generalization in arbitrary test environments (i.e.,

out-of-distribution generalizability). That said, our empirical test results show that Genet-

trained models improve not only asymptotic performance, but also the performance in unseen

network environments.

The traces and scripts used in Genet are released at https://github.com/GenetProj

ect/Genet.
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2.2 Motivation

Deep reinforcement learning (RL) trains a deep neural net (DNN) as the decision-making

logic (policy) and is well-suited to many sequential decision-making problems in network-

ing [102, 62].2 We use three use cases (summarized in Table 2.1) to make our discussion

concrete:

• An adaptive bitrate (ABR) algorithm adapts the chunk-level video bitrate to the

dynamics of throughput and playback buffer (input state) over the course of a video ses-

sion. ABR policies, including RL-based ones (Pensieve [101]), choose the next chunk’s

bitrate (output decision) at the chunk boundary to maximize session-wide average

bitrate, while minimizing rebuffering and bitrate fluctuation.

• A congestion control (CC) algorithm at the transport layer adapts the sending rate

based on the sender’s observations of the network conditions on a path (input state).

An example of RL-based CC policy (Aurora [71]) makes sending rate decisions at the

beginning of each interval (of length proportional to RTT), to maximize the reward (a

combination of throughput, latency, and packet loss rate).

• A load balancing (LB) algorithm in a key-replicated distributed database reroutes

each request to one of the servers (whose real-time resource utilization is unknown),

based on the request arrival intervals, resource demand of past requests, and the num-

ber of outstanding requests currently assigned to each server.

We choose these use cases because they have open-source implementations (Pensieve [8]

for ABR, Aurora [2] for CC, and Park [7] for LB). Our goal is to improve existing RL training

2. There are rule-based alternatives to DNN-based policies, but they are not as expressive and flexible as
DNNs, which limits their performance. Oboe [20], for instance, sets optimal hyperparameters for RobustMPC
based on the mean and variance of network bandwidth and as shown in §2.5.4, is a very competitive baseline,
but it performs worse than the best RL strategy.
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in networking. Revising the RL algorithm per se (input, output, or DNN model) is beyond

our scope.

Network environments: We generate simulated training environments with a range of

parameters, following prior work [101, 71, 102]. An environment can be synthetically gener-

ated using a list of parameters as configuration, e.g., in the context of ABR, a configuration

encompasses bandwidth range, frequency of bandwidth change, chunk length, etc. Mean-

while, when recorded bandwidth traces are available (for CC and ABR experiments), we

can also create trace-driven environments where the recorded bandwidth is replayed. Note

that bandwidth is only one dimension of an environment and must be complemented with

other synthetic parameters in order to create a simulated environment. (Our environment

generator and a full list of parameters are documented in §A.2.) In recent papers, both

trace-driven (e.g., [101, 58]) and synthetic environments (e.g., [71, 102]) are used to train

RL-based network algorithms. We will explain in §2.4.2 how our technique applies to both

types of environments.

Traditional RL training: Given a user-specified distribution of (trace-driven or synthetic)

training environments, the traditional RL training method works in iterations. Each iteration

randomly samples a subset of environments from the provided distribution and then updates

the DNN-based RL policy (via forward and backward passes). For instance, Aurora [71] uses

an iteration of 7200 steps (i.e., 30–50 30-second network environments) and applies the PPO

algorithm to update the policy network by simulating the network environments in each

batch.

Several previous efforts have demonstrated the promise of the traditional RL training—

given the distribution of target environments, an RL policy can be trained to perform well in

these environments (e.g., [101, 71]). Unfortunately, this approach falls short on two fronts.

Challenge 1: Training over wide environment distributions.

When the training distribution of network environments has a widespread (e.g., a large range

10
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(b) Even if RL schemes perform better on average, they are worse than the baselines on a substantial
fraction of test environments.

Figure 2.2: Challenges of RL training over a wider range of environments from small (RL1),
medium (RL2), to large (RL3).

of possible bandwidth values), RL training tends to result in poor asymptotic performance

(model performance after reaching convergence) even when the test environments are drawn

from the same distribution as training.

In Figure 2.2, for each use case, we choose three target distributions (with increasing pa-

rameter ranges), labeled RL1/RL2/RL3 ranges of synthetic environment parameters in Ta-

ble A.1, A.2, and A.3. Figure 2.2(a) compares the asymptotic performance of three RL poli-

cies (with different random seeds) with rule-based baselines, MPC [154] for ABR, BBR [33]

for CC, and least-load-first (LLF) policy for LB, in test environments randomly sampled from

the same ranges. It shows that RL’s performance advantage over the baselines diminishes

rapidly when the range of target environments expands. Even though RL-based policies

still outperform the baselines on average, Figure 2.2(b) reveals a more striking reality—their

performance falls behind the baselines in a substantial fraction of test environments.

An intuitive explanation is that in each RL training iteration, only a batch of randomly
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rule-based baseline.

Figure 2.3: Generalization issues of RL-based schemes using CC as an example.

sampled environments (typically 20–50) is used to update the model, and when the entire

training set spans a wide range of environments, the batches between two iterations may

have dramatically different distributions which potentially push the RL model to different

directions. This causes the training to converge slowly and makes it difficult to obtain a good

policy [112]. Although this problem is not completely avoided in our solution, it is mitigated

by curriculum learning which draws the environments of a batch from a “narrower” training

environment distribution, thus reducing the discrepancies between batches.

Challenge 2: Low generalizability. Another practical challenge arises when the training

process does not have access to the target environment distribution. This calls for models

with good generalization, i.e., the RL policies trained on one distribution also perform well
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on a different environment distribution during testing. Unfortunately, existing RL training

methods often fall short of this ideal. Figure 2.3 evaluates the generalizability of RL-based

CC schemes in two ways.

• First, we train an RL-based CC algorithm on the same range of synthetic environ-

ments as specified in its original paper [71]. We first validate the model by confirming

its performance against a rule-based baseline BBR, in environments that are indepen-

dently generated from the same range as training (Figure 2.3(a); left). Nevertheless,

when tested on real-world recorded network traces under the category of “Cellular” and

“Ethernet” from Pantheon [151] (Table 2.2), the RL-based policy yields much worse

performance than the rule-based baseline.

• Second, we train the RL-based CC algorithm on the “Cellular” trace set and test it

on the “Ethernet” trace set (Figure 2.3(b); left), or vice versa (Figure 2.3(b); right).

Similarly, its performance degrades significantly when tested on a different trace set.

The observations in Figure 2.3 are not unique to CC. Prior work [58] also shows a lack of

generalization of RL-based ABR algorithms.

Summary: In short, we observe two challenges faced by the traditional RL training mech-

anism:

• The asymptotic performance of the learned policies can be suboptimal, especially when

they are trained over a wide range of environments.

• The trained RL policies may generalize poorly to unseen network environments.

2.3 Curriculum learning for networking

Given these observations regarding the limitations of RL training in networking, a natural

question to ask is how to improve RL training such that the learned adaptation policies

13



achieve good asymptotic performance across a broad range of target network environments.3

Curriculum learning: We cast the training of RL-based network adaptation to the well-

studied framework of curriculum learning. Unlike the traditional RL training that samples

training environments from a fixed distribution in each iteration, curriculum learning varies

the training environment distribution to gradually increase the difficulty of training environ-

ments, so that training will see more environments that are more likely to improve, which

we refer to as rewarding environments. In many RL applications, prior work has shown the

promise of curriculum learning, including faster convergence, higher asymptotic performance,

and better generalization (§2.6).

The theoretical intuition behind curriculum learning is that a curriculum allows the

model to optimize a family of gradually less smooth loss functions and prevents it from

being trapped in local minima [26]. In the early stage of the curriculum, easier training

samples are selected to comprise a smoothed loss function that reveals the big picture and is

easier to optimize. The resulting model serves as a good starting point when more difficult

samples are introduced to the training, reducing the smoothness of the loss function and

making it harder to optimize. By optimizing the model on a sequence of loss functions with

decreasing smoothness, the curriculum is able to gradually bring the model parameters close

to the global optimum.

However, the challenge of employing curriculum learning lies in determining which envi-

ronments are rewarding. Apparently, the answer to this question varies with applications,

but three general approaches exist: (1) training the current model on a set of environments

individually to determine in which environment the training progresses faster; (2) using

heuristics to quantify the easiness of achieving model improvement an environment; and (3)

jointly training another model (typically DNN) to select rewarding environments. Among

3. An alternative is to retrain the deployed RL policy whenever it meets a new domain (e.g., a new
network connection with unseen characteristics), but this does not apply when the RL policy cannot be
updated frequently. Besides, it is also challenging to precisely detect model drift in the network conditions
that necessitate retraining the RL policy.
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them, the first option is prohibitively expensive and thus not widely used, whereas the third

introduces the extra complexity of training a second DNN. Therefore, we take a pragmatic

stance and explore the second approach, while leaving the other two for future work.

Why sequencing training environments is difficult: A common strategy in curriculum

learning for RL is to measure environment difficulty and gradually introduce more difficult

environments to training. To motivate our design choices, we first introduce three strawman

approaches, with different strengths and weaknesses. They are used to determine how re-

warding an environment is. A good approach should always select network environments in

which the RL model has a large improvement in reward when trained in them.

Strawman 1: inherent properties. The first idea is to quantify the difficulty level of

an environment using some of its inherent properties. In congestion control, for instance,

network traces with higher bandwidth variance are intuitively more difficult. This approach,

however, only distinguishes environments that differ in the hand-picked properties and may

not suffice under complex environments (e.g., adding bandwidth traces with similar variance

to training can have different effects).

Strawman 2: performance of rule-based baselines. Alternatively, one can use the test

performance of a traditional algorithm to indicate the difficulty of an environment. Lower

performance may suggest a more difficult environment [146]. While this method can dis-

tinguish any two environments, it does not hint at how to improve the current RL model

during training.

Strawman 3: performance gap to the optimum. To fix the problem of Strawman 2, one can

use the performance gap between the current RL policy and the optimum instead [58]. If the

current model performs much worse than the optimum in an environment (e.g., obtained by

using ground-truth bandwidth as the bandwidth prediction), its performance might improve

when trained in this environment. A caveat of this approach is that the computation of the

optimal performance could be prohibitively expensive or even infeasible. This approach may
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Figure 2.4: A simple example where adding trace set X to training has a different effect than
adding Y. Adding X to training improves performance on X only marginally but hurts Y,
whereas adding Y improves the performance on both X and Y.

(a) Trace in X (hard) (b) Trace in Y (improvable)

Figure 2.5: Contrasting (a) an inherently hard (possibly unsolvable) environment with (b)
an improvable environment. The difference is that the rule-based policy’s reward is higher
than the RL policy in (b), whereas their rewards are similar in (a).

also fail to improve RL’s performance in environments that are inherently hard (e.g., highly

fluctuating bandwidth in ABR and CC).

Example: Figure 2.4 shows a concrete example in ABR, where “Strawman 3” leads to a

suboptimal outcome. (§2.5.5 will empirically test these three strawman approaches.) We

first pretrain an RL-based ABR policy which performs poorly on X and Y (two sets of
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bandwidth traces from two different environment configurations, details in §A.3). Since the

performance gap between the current RL model and the optimum is larger on X than on Y ,

Strawman 3 opts for adding X to the training in the next step. However, Figure 2.4 shows

that training further on X yields only a marginal reward improvement on X (and also hurts

the performance on Y ).

Instead, adding Y to training is a better choice at this point—the performance on Y is

significantly improved (and it also benefits the performance on X though to a less extent).

To take a closer look, we plot two example traces from X and Y in Figure 2.5: The trace

from X fluctuates with a smaller magnitude but more frequently, whereas the trace from Y

fluctuates with a greater magnitude but much less frequently. However, such observations

cannot generalize to an arbitrary pair of environments or a different application.

2.4 Design and implementation of Genet

2.4.1 Curriculum generation

To identify rewarding environments, the idea of Genet is to find environments with a large

gap-to-baseline, i.e., the RL policy is worse than a given rule-based baseline by a large margin.

At a high level, adding such environments to training has three practical benefits.

First, when a rule-based baseline performs much better than the RL policy in an en-

vironment, it means that the RL model may learn to “imitate” the baseline’s known rules

while training in the environment, bringing it on par with—if not better than—the baseline.

4 Therefore, a large gap-to-baseline indicates plausible room for the current RL model to

improve. Figure 2.6 empirically confirms this with one example ABR policy and CC pol-

icy (both are intermediate models during Genet-based training). For example, among 73

randomly chosen synthetic environment configurations in CC, a configuration with a larger

4. This may not be true when the behavior of the rule-based algorithm cannot be approximated by RL’s
policy DNN, and we will discuss this issue in §2.7.

17



gap-to-baseline is likely to yield more improvement when adding its environments to the

RL training. Moreover, this correlation is stronger than using the performance gap between

the current model and the optimum (“Strawman 3” in §2.3) to decide which environments

are rewarding. Nonetheless, the model’s training improvement does not only depend on

the gap-to-baseline. Other factors such as training hyperparameters can affect the reward

improvement of an RL model. For example, too large a learning rate causes the RL model

to jump over the optima while too small a learning rate slows down the convergence. In

this work, we only focus on the gap-to-baseline and keep the training hyperparameters (e.g.,

learning rate, batch size of each iteration) unchanged in all the experiments.

Second, although not all rule-based algorithms are easily interpretable or completely

fail-proof, many of them have traditionally been used in networked systems long before the

RL-based approaches and are considered more trustworthy than black-box RL algorithms.

Therefore, operators tend to scrutinize any performance disadvantages of the RL policy

compared with the rule-based baselines currently deployed in the system. By promoting

environments with large gap-to-baselines, Genet directly reduces the possibility that the

RL policy causes performance regressions.

In short, the gap-to-baseline builds on the insight that rule-based baselines are comple-

mentary to RL policies—they are less susceptible to any discrepancies between training and

test environments, whereas the performance of an RL policy is potentially sensitive to the

environments seen during training. In §2.5.5, we will discuss the impact of different choices

of rule-based baselines and why gap-to-baseline is a better way of using the rule-based base-

line than alternatives. It is worth noting that the rewarding environments (those with large

gap-to-baselines) do not have particular meanings outside the context of a given pair of RL

model and baseline. For instance, when an RL-based CC model has a greater gap-to-baseline

in some network environments, it only means that it is easier to improve the RL model by

training it in these environments; it does not indicate if these environments are easy or
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Figure 2.6: Compared with the gap-to-optimum (left), the current model’s gap-to-baseline
(right) in an environment is more indicative of its potential training improvement in the
environment.

challenging to any traditional CC algorithm.

2.4.2 Training framework

Figure 2.7 depicts Genet’s high-level iterative workflow to realize curriculum learning. Each

iteration consists of three steps (which will be detailed shortly):

1. First, we update the current RL model for a fixed number of iterations over the current

training environment distribution;

2. Second, we select the environments where the current RL model has a large gap-to-

baseline; and

3. Third, we promote these selected environments in the training environments distribu-
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Figure 2.7: Overview of Genet’s training process.

tion used by the RL training process in the next iteration.

Training environment distribution: We define a distribution of training environments

as a probability distribution over the space of configurations, each being a vector of 5–6

parameters (summarized in Table A.1, A.2, A.3) used to generate network environments. An

example configuration is: [BW: 2–3Mbps, BW changing frequency: 0–20s, Buffer length: 5–

10s]. Genet sets the initial training environment distribution to be a uniform or exponential

distribution along with each parameter, and automatically updates the distribution used in

each iteration, effectively generating a training curriculum.

When recorded traces are available, Genet can augment the training with trace-driven

environments as follows. Here we use bandwidth traces as an example. The first step

is to categorize each bandwidth trace along with the bandwidth-related parameters (i.e.,

bandwidth range and variance in our case). Each time a configuration is selected by RL

training to create new environments, with a probability of w (30% by default), Genet

samples a bandwidth trace whose bandwidth-related parameters fall into the range of the

selected configuration.

In §2.5.2, we will show that adding trace-driven environments to training improves the

performance of RL policies, especially when tested in unseen real traces from the same

distribution. That said, even if we do not use trace-driven environments in RL training, our

trained RL policies still outperform the traditional method of training RL over real traces
20



or synthetic traces.

Key components: Each round of Genet starts with training the current model for a fixed

number of iterations (defaults to 10). Here, Genet reuses the traditional training method

in prior work (i.e., uniform sampling of training environments per iteration), which makes

it possible to incrementally apply Genet to existing codebases (see our implementation in

§2.4.3). Recent work on domain randomization [126, 138, 116] also shows that a similar

training process can benefit the generalization of RL policies [126, 138, 116]. The details of

the training process are described in Algorithm 1.

After a certain number of iterations, the current RL model and a pre-determined rule-

based baseline are given to a sequencing module to search for the environments where the

current RL model has a large gap-to-baseline. Ideally, we want to test the current RL model

on all possible environments and identify the ones with the largest gap-to-baseline, but this

is prohibitively expensive. Instead, we use Bayesian Optimization [56] (BO) as follows. We

view the expected gap-to-baseline over the environments created by configuration p as a

function of p: Gap(p) = R(πrule, p) − R(πrlθ , p), where R(π, p) is the average reward of a

policy π (either the rule-based baseline πrule or the RL model πrlθ ) over k (10 by default)

environments randomly generated by configuration p. BO then searches in the environment

space for the configuration that maximizes Gap(p).

Once a new configuration is selected, the environments generated by this configuration

are then added to the training distribution as follows. When the RL training process samples

a new training environment, it will choose the new configuration with w probability (30% by

default) or uniformly sample a configuration from the old distribution with 1−w probability

(70% by default), and then create an environment based on the selected configuration. Next,

training is resumed over the new environment distribution.

It is important to notice that the BO-based search does not carry its states when searching

rewarding environments for a new RL model. Instead, Genet restarts the BO search every
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time the RL model is updated. The reason is that the rewarding environments can change

once the RL model changes.

Design rationale: The process described above embeds several design decisions that make

it efficient.

How to choose rule-based baselines? For Genet to be effective, the baselines should not

fail in simple environments; otherwise, Genet would ignore them given that the RL policy

could easily beat the baselines. For instance, when using Cubic as the baseline in training

RL-based CC policies, we observe that the RL policy is rarely worse than Cubic along

the dimension of random loss rate, because Cubic’s performance is susceptible to random

packet losses. That said, we find that the choice of baselines does not significantly impact

the effectiveness of Genet, although a better choice tends to yield more improvement (as

shown in §2.5.5).5

Why is BO-based exploration effective? Genet models the selection of network environ-

ments that maximize gap-to-baseline as a parameter search procedure in a high-dimensional

space—each dimension of the space is a configuration of the network environment (e.g., link

latency), each point in the space is a set of network environments with the same configura-

tions, and the desired points are those whose environments have large gap-to-baselines. This

problem has two features: (1) the environment search space is high-dimensional, and (2)

evaluating the gap-to-baseline of a point in the space is computationally expensive (partly

due to the variance among the environments with the same configurations). In this context,

BO is merely one of the candidate solutions among several others to perform the parameter

search. In §2.5.5, we will compare BO’s efficiency with other candidate solutions and show

that BO is efficient at identifying rewarding environments.

Why not set a threshold for the gap-to-baseline of the selected environments? While

5. One possible refinement in this regard is to use an “ensemble” of rule-based heuristics, and let the
training scheduler focus on environments where the RL policy falls short of any one of a set of rule-based
heuristics.
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Genet uses BO to search rewarding environments with a fixed number of steps (default is

15), an alternative is to run BO until it finds an environment configuration whose gap-to-

baseline is above a threshold. However, the latter strategy may not end (or take a long time

to finish) if the RL model is already better than the baseline in most environments, which

is possible during training. Moreover, the threshold introduces another hyperparameter to

be tuned with domain knowledge.

Impact of forgetting? It is important that we train models over the full range of envi-

ronments. Genet does begin the training over the whole space of environment in the first

iteration, but each subsequent iteration introduces a new configuration, thus diluting the

percentage of random environments in training. This might lead to the classic problem of

forgetting—the trained model may forget how to handle environments seen before. While we

do not address this problem directly, we have found that Genet is affected by this issue only

mildly. The reason is that Genet stops the training after changing the training distribution

for 9 times, and by then, the original environment distribution still accounts for about 10%.6

2.4.3 Implementation

Genet is fully implemented in Python and Bash, and has been integrated with three existing

RL training codebases. Next, we describe the interface and implementation of Genet, as

well as optimizations for eliminating Genet’s performance bottlenecks.

API: Genet interacts with an existing RL training codebase with two APIs (Figure 2.8):

Train signals the RL to continue the training using the given distribution of environment

configurations and returns a snapshot of the model after a specified number of training

iterations; Test calculates the average reward of a given algorithm (RL model or a baseline)

over a specified number of environments drawn from the given distribution of configurations.

6. When we impose a minimum fraction of “exploration” (i.e., uniformly randomly picking an environment
from the original training distribution) in the training (which is a typical strategy to prevent forgetting [156]),
Genet’s performance becomes worse.
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RL_Model = Train (ConfigDistrib, NumIters)

Reward = Test (Baseline, ConfigDistrib, NumTests)

Environment config set

GENET
Optimizer

Figure 2.8: Components and interfaces needed to integrate Genet with an existing RL
training codebase.

Name Use
case

Training
# traces, total length (s)

Testing
# traces, total length (s)

FCC ABR 85, 105.8k 290, 89.9k
Norway ABR 115, 30.5k 310, 96.1k
Ethernet CC 64, 1.92k 112, 3.35k
Cellular CC 136, 4.08k 121, 3.64k

Table 2.2: Network traces used in ABR and CC tests.

Integration with RL training: We have integrated Genet with Pensieve ABR [8],

Aurora CC [2], and Park LB [7], which use different RL algorithms (e.g., A3C, PPO) and

network simulators (e.g., packet level, chunk level). We implement the two APIs above using

functionalities provided in the existing codebase.

Rule-based baselines: Genet takes advantage of the fact that many RL training code-

bases (including our three use cases) have already implemented at least one rule-based base-

line (e.g., MPC in ABR, Cubic in CC) that runs in their simulators. In addition, we also

implemented a few baselines by ourselves, including the shortest-job-first in LB, and BBR in

CC. The implementation is generally straightforward, but sometimes the simulator (though

sufficient for the RL policy) lacks crucial features for a faithful implementation of the rule-

based logic. Fortunately, Genet-based RL training merely uses the baseline to select train-

ing environments, so the consequence of having a suboptimal baseline is not considerable.
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2.5 Evaluation

The key takeaways of our evaluation are:

• Across three RL use cases in networking, Genet improves the performance of RL

algorithms when tested in new environments drawn from the training distributions

that include wide ranges of environments (§2.5.2).

• Genet improves the generalization of RL performance, allowing models trained over

synthetic environments to perform well even in various trace-driven environments as

well as on real-world network connections (§2.5.3).

• Genet-trained RL policies have a much higher chance of outperforming various rule-

based baselines specified during Genet-based RL training (§2.5.4).

• Finally, the design choices of Genet, such as its curriculum learning strategy and

BO-based search, are shown to be effective compared to seemingly natural alternatives

(§2.5.5).

Given the success of curriculum learning in other RL domains, these improvements are not

particularly surprising. However, by showing for the first time that curriculum learning

facilitates RL training in networking, we hope to inspire more follow-up research in this

direction.

2.5.1 Setup

We train Genet for three RL use cases in networking, using their original simulators: con-

gestion control (CC) [2], adaptive bitrate streaming (ABR) [8], and load balancing (LB) [7].

As discussed in §2.4.1, we train and test RL policies over two types of environments.

Synthetic environments: We generate synthetic environments using the parameters de-

scribed in detail in §A.2 and Table A.1,A.2,A.3. We choose these environment parameters
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to cover a variety of factors that affect RL performance. For instance, in CC tests, our envi-

ronment parameters specify bandwidth (e.g., the range, variance, and how often it changes),

delay, queue length, etc.

Trace-driven environments: We also use real traces for CC and ABR (summarized in

Table 2.2) to create trace-driven environments (in both training and testing), where the

bandwidth time series are set by the real traces, but the remaining environment parameters

(e.g., queue length or target video buffer length) are set as in the synthetic environments. We

test ABR policies by streaming a pre-recorded video over 290 traces from FCC broadband

measurements [45] (labeled “FCC”) and 310 cellular traces [122] (labeled “Norway”). We

test CC policies on 121 cellular traces (labeled “Cellular”) and 112 Ethernet traces (labeled

“Ethernet”) collected by the Pantheon platform [151].

Baselines: We compare Genet-trained policies with several baselines. First, traditional

RL trains RL policies by uniformly sampling environments from the target distribution per

iteration. We train three types of RL policies (RL1, RL2, RL3) over fixed-width uniform

distribution of synthetic environments, specified in Table A.1, A.2, A.3. From RL1 to RL3,

the sizes of their training environment ranges are in ascending order.

We also train RL policies over trace-driven environments, i.e., randomly picking band-

width traces from one of the recorded sets. This is the same as prior work, except that we

also vary non-bandwidth-related parameters (e.g., queue length, buffer length, video length,

etc) to increase its robustness. In addition, we test an early attempt to improve RL [58]

which generates new training bandwidth traces that maximize the gap between the RL policy

and optimal adaptation with a non-smoothness penalty (§2.5.5).

Second, traditional rule-based algorithms include BBA [67] and RobustMPC [154] for

ABR, PCC-Vivace [49], BBR [33] and CUBIC for CC, and least-load-first (LLF) for LB.7

7. By default, we use RobustMPC as MPC and PCC Vivace-latency as Vivace, since they appear to
perform better than their perspective variants.
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They can be viewed as a reference point for traditional non-ML solutions.

2.5.2 Asymptotic performance

We first compare Genet-trained policies and traditionally trained RL policies, in terms

of their asymptotic performance (i.e., test performance over new test environments drawn

independently from the training distribution). In other words, we train RL policies over

environments from the target distribution and test them in new environments from the same

distribution.

Synthetic environments: We first test Genet-trained CC, ABR, and LB policies under

their perspective RL3 synthetic ranges (where all parameters are set to their full ranges)

as the target distribution. As shown in Figure 2.2, in these training ranges, traditional

RL training yields little performance improvement over the rule-based baselines. Figure 2.9

compares Genet-trained CC, ABR, and LB policies with their respective baselines over 200

new synthetic environments randomly drawn with the target distribution.

Across three use cases, we can see that Genet consistently improves over traditional RL-

trained policies by 8–25% for ABR, 14–24% for CC, 15% for LB, compared with traditional

RL training methods. We notice that there is no clear ranking among the three traditional

RL-trained policies. This is because RL1 helps training to converge better but only sees a

small slice of the target distribution, whereas RL3 sees the whole distribution but cannot

train a good model. In contrast, Genet outperforms them, as curriculum learning allows it

to learn more efficiently from the large target distribution.

To show the performance more thoroughly, Figure 2.10 picks ABR as an example and

shows the performance across different values along with six environment parameters. We

vary one parameter at a time while fixing other parameters at the same default values (see

Table A.1, A.2, A.3). We see that Genet-trained RL policies enjoy consistent performance

advantages (in reward) over the RL policies trained by traditional RL-trained models. This
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Figure 2.9: Comparing the performance of Genet-trained RL policies for CC, ABR, and
LB, with baselines in unseen synthetic environments drawn from the training distribution,
which sets all environment parameters to their full ranges.

suggests that the improvement of Genet shown in Figure 2.9 is not a result of improving

rewards in some environments at the cost of degrading rewards in others; instead, Genet

improves rewards in most cases. Figure 2.11 shows that in the simulated environments [7],

the Genet-trained LB policy outperforms its baselines by 15%.

Trace-driven environments: Next, we set the target environment distributions of ABR

and CC to be the environments generated from multiple real-world trace sets (FCC and

Norway for ABR, Ethernet and Cellular for CC). We partition each trace set as listed in

Table 2.2. Genet trains ABR and CC policies by combining trace-driven environments and

synthetic environments (described in §2.4.2). For a thorough comparison, both Genet and

the traditional RL training have access to the training portion of the real traces as well as

the synthetic environments. We vary the ratio of real traces and synthetic environments

and feed them to the traditional RL training method, e.g., if the ratio of real traces is

20%, then the traditional RL training randomly draws a trace-driven environment with 20%

probability and synthetic environments with 80% probability. That is, we test different ways

for the traditional RL training to combine the training traces and synthetic environments.

Figure 2.12 tests Genet-trained ABR and CC policies with their respective traditional

RL-trained baselines over new environments generated from the traces in the testing set.

Figure 2.12 shows that Genet-trained policies outperform traditional RL training by 17–
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Figure 2.10: Test of ABR policies along individual env-parameters.

18%, regardless of the ratio of real traces, including when training the model entirely on real

traces.

2.5.3 Generalization

Next, we take the RL policies of ABR and CC trained (by Genet and other baselines)

entirely over synthetic environments (the RL3 synthetic environment range) and test their

generalization in trace-driven environments generated by the ABR (and CC) testing traces

in Table 2.2.

Figure 2.13 shows that they perform better than traditional RL baselines trained over

the same synthetic environment distribution. Though Figure 2.13 uses the same testing en-

vironments as Figure 2.12 and has a similar relative ranking between Genet and traditional

29



0.1 0.5 1 2 3
Job size (MB)

−75

−50

−25

Te
st

 r
ew

ar
d

1 10 50 90 130
Job interval (ms)

−6

−5

−4

Genet RL1 RL2 RL3

Figure 2.11: Test of LB policies along individual env-parameters.

5% 10% 20% 50%100% Genet
(synthetic+real)

0

100

200

Te
st

 r
ew

ar
d RL (synthetic + real)

(a) Congestion control (CC)

5% 10% 20% 50%100% Genet
(synthetic+real)

0.0

0.2

0.4

0.6

Te
st

 r
ew

ar
d

RL (synthetic + real)

(b) Adaptive bitrate (ABR)

Figure 2.12: Asymptotic performance of Genet-trained CC policies (a) and ABR policies
(b) and baselines, when the real network traces are randomly split into a training set and a
test set.

RL training, the implications are different: Figure 2.13 also shows that when the real traces

are not accessible in training, Genet can produce models with better generalization in real-

trace-driven environments than the baselines, whereas Figure 2.12 shows their performance

when the real traces are actively used in training of Genet and the baselines.

2.5.4 Comparison with rule-based baselines

Impact of the choice of rule-based baselines: Figure 2.14 shows the performance of

Genet-trained policies when using different rule-based baselines. We choose MPC and BBA

as baselines in the ABR experiments and BBR and Cubic as baselines in CC experiments,

respectively. We observe that in all cases, Genet-trained policies outperform their respective

rule-based baselines.

30



RL1 RL2 RL3
RL-real

Genet
0

100

200
Te

st
 r

ew
ar

d

(a) CC test in trace-driven environments (Cel-
lular)

RL1 RL2 RL3
RL-real

Genet
0

100

200

Te
st

 r
ew

ar
d

(b) CC test in trace-driven environments (Eth-
ernet)

RL1 RL2 RL3
RL-real

Genet
0.00

0.25

0.50

0.75

Te
st

 r
ew

ar
d

(c) ABR test in trace-driven environments
(FCC)

RL1 RL2 RL3
RL-real

Genet
0.0

0.2

0.4

0.6

Te
st

 r
ew

ar
d

(d) ABR test in trace-driven environments (Nor-
way)

Figure 2.13: Generalization test: Training of various methods is done entirely in synthetic
environments, but the testing is over various real network trace sets.

What if Genet uses naive rule-based baselines? As explained in §2.4.2, the rule-based

baseline should have a reasonable (though not necessarily optimal) performance; otherwise,

it would be unable to indicate when the RL policy can be improved. To empirically verify

it, we use two unreasonable baselines: choosing the highest bitrate when rebuffer in ABR,

and choosing the highest loaded server in LB. In both cases, the BO-based search fails to

find useful training environments, because the RL policy very quickly outperforms the naive

baseline everywhere. That said, the negative impact of using a naive baseline is restricted

to the selection of training environments, rather than the RL training itself (a benefit of

decoupling baseline-driven environment selection and RL training), so in the worst case,

Genet would be roughly as good as traditional RL training.

How likely is Genet to outperform rule-based baselines?

One of Genet’s benefits is to increase how often the RL policy is better than the rule-based
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Figure 2.14: Genet outperforms the rule-based baselines used in its training.
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Figure 2.15: Fraction of real traces where Genet-trained policies (and traditional RL) are
better than the rule-based baselines.

baseline used in Genet. In Figure 2.15, we create various versions of Genet-trained RL

policies by setting the rule-based baselines to be Cubic and BBR (for CC), and MPC and

BBA (for ABR). Compared to RL1, RL2, RL3 (unaware of rule-based baselines), Genet-

trained policies remarkably increase the fraction of real-world traces (emulated) where the

RL policy outperforms the baseline used to train them. This suggests that operators can

specify a rule-based baseline, and Genet will train an RL policy that outperforms it with

high probability.

Breakdown of performance: Figure 2.17 takes one Genet-trained ABR policy (with

MPC as the rule-based baseline) and one Genet-trained CC policy (with BBR as the rule-

based baseline) and compares their performance with a range of rule-based baselines along

with individual performance metrics. We see that the Genet-trained ABR and CC policies
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Figure 2.16: Testing ABR and CC policies in real-world environments.

stay on the frontier and outperform other baselines.

Real-world tests: We also test the Genet-trained ABR and CC policies in five real

wide-area network paths (without emulated delay/loss), between four nodes reserved from

OpenNetLab [6, 53], one laptop at home, and two cloud servers (§A.4), allowing us to

observe their interactions with real network traffic. For statistical confidence, we run the

Genet-trained policies and their baselines back-to-back, each at least five times, and show

their performance in Figure 2.16. The system metrics behind each reward value are shown in

Table A.4 and Table A.5. In all but two cases, Genet outperforms the baselines. On Path-2,

Genet-trained ABR has little improvement, because the bandwidth is always much higher

than the highest bitrate, and the baselines will simply use the highest bitrate, leaving no

room for improvement. On Path-3, Genet-trained CC has negative improvement, because

the network has a deeper queue than used in training, so RL cannot handle it well. This is

an example where Genet can fail when tested out of the range of training environments.
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Figure 2.17: RL-based ABR and CC vs. rule-based baselines.

These results do not prove that the policies generalize to all environments; instead, they

show Genet’s performance in a range of network settings.

2.5.5 Understanding Genet’s design choices

Alternative curriculum-learning schemes: Figure 2.18 compares Genet’s training

curve with that of traditional RL training and three alternatives for selecting training en-

vironments described in §2.3. CL1 uses hand-picked heuristics (gradually increasing the

bandwidth fluctuation frequency in the training environments), CL2 uses the performance

of a rule-based baseline (gradually adding environments where BBR for CC and MPC for

ABR performs badly), and CL3 adds traces where the current RL model is much worse

than the optimum (whereas Genet picks the traces where the current RL model is much

worse than a rule-based baseline). Compared to these baselines, In Figure 2.18, we show
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Figure 2.18: Genet’s training ramps up faster than alternative curriculum learning strate-
gies.

that Genet’s training curves have faster ramp-ups, suggesting that with the same number

of training iterations, Genet can arrive at a much better policy, which corroborates the

reasoning in §2.3.

In addition, “Robustifying” [58]8 (which learns an adversarial bandwidth generator) also

tries to improve ABR logic by adding more challenging environments to training. For a

more direct comparison with Genet, we implement a variant of Genet where BO picks

configurations that maximize the gap between RL and the optimal reward (penalized by

bandwidth non-smoothness with different weights of p). Figure 2.19 compares the resulting

RL policies with Genet-trained RL policy and MPC as a baseline on the synthetic traces in

Figure 2.10. We see that they perform worse than Genet-trained ones and that by changing

the BO’s environment selection criteria, Genet becomes less effective. Genet outperforms

Robustifying, because the non-smoothness metric used in [58] may not completely capture

the inherent difficulty of bandwidth traces (Figure 2.5 shows a concrete example).

BO-based search efficiency: Genet uses BO to explore the multi-dimensional environ-

8. In lack of a public implementation, we follow the description in [58] (e.g., non-smoothness weight) and
apply it to Pensieve (with the only difference being that for fair comparisons with other baselines, we apply
it on Pensieve trained on our synthetic training environments). We have verified that our implementation of
Robustifying achieves similar improvements in the setting of original paper. More details are in Appendix A.6.
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Figure 2.19: Genet outperforms Robustifying [58] that improves RL performance by gen-
erating adversarial bandwidth traces, and variants of Genet using Robustifying’s criteria
in BO-based environment selection.

ment space environment to find the environment configuration with a large gap-to-baseline.

While BO may not always find the single optimal point in arbitrary blackbox function be-

tween environment parameters and gap-to-baseline, we found it to be a pragmatic solution.

To show it, we randomly choose an intermediate RL model during the Genet training of

ABR and CC. Figure 2.20 shows the gap-to-baseline of the configuration selected by BO

for each model within 15 search steps. Within a small number of steps, it can identify a

configuration that is almost as good as randomly searching for 100 points, which is much

more expensive. Figure 2.20 also includes the grid search as a reference, which starts with

all configurations initialized to their respective midpoints and then searches and updates the

best value for each configuration one by one. We observe that it does not converge as fast

as BO.

2.6 Related work

Improving RL for networking: Some of our findings regarding the lack of generalization

corroborate those in previous work [148, 101, 71, 58, 124, 48]. To improve RL for network-

ing use cases, prior work has attempted to apply and customize techniques from the ML
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Figure 2.20: BO-based search is more efficient at finding environments with large gap-to-
baselines than random exploration in the environment configuration space.

literature. For instance, [58] applies adversarial learning by generating relatively smooth

bandwidth traces that maximize the RL regret w.r.t. optimal outcomes, [52, 82] show that

the generalization of RL can be improved by incorporating training environments where a

given RL policy violates pre-defined safety conditions, [129, 128] incorporate randomization

in the evaluation of RL-based systems, and Fugu [153] achieves a similar goal through learn-

ing a transmission time predictor in situ. Other proposals seek to safely deploy a given

RL policy in new environments [103, 124, 132]. In many ways, Genet follows this line of

work, but it is different in that it systematically introduces curriculum learning, which has

underpinned many recent enhancements of RL and demonstrates its benefits across multiple

applications.

Curriculum learning for RL: There is a substantial literature on improving deep RL with

curricula ([112, 61, 118] give more comprehensive surveys on this subject). Each component

of curriculum learning has been extensively studied, including how to generate tasks (envi-

ronments) with potentially various difficulties [133, 130], how to sequence tasks [121, 135],

and how to add a new task to training (transfer learning). In this work, we focus on se-

quencing tasks to facilitate RL training. It is noticed that, for general tasks that do not

have a clear definition of difficulty (like networking tasks), optimal task sequencing is still an
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open question. Some approaches, such as self-paced learning [85] advocate the use of easier

training examples first, while the other approaches prefer to use harder examples first [37].

Recent work tries to bridge the gap by suggesting that an ideal next training task should be

difficult for the current model’s hypothesis, while it is also beneficial to prefer easier points

with respect to the target hypothesis [61]. In other words, we should prefer an easy environ-

ment that the current RL model cannot handle well, which confirms the intuition elaborated

in Bengio’s seminal paper [26], which hypothesizes that “it would be beneficial to make learn-

ing focus on ‘interesting’ examples that are neither too hard nor too easy.” Genet is an

instantiation of this idea in the context of networking adaptation, and the way to identify the

rewarding (or “interesting”) environments is by using the domain-specific rule-based schemes

to identify where the current RL policy has a large room for improvement.

Automatic generation of curricula also benefits generalization, particularly when used

together with domain randomization [116]. Several schemes boost RL’s training efficiency

by iteratively creating a curriculum of challenging training environments (e.g., [47, 106])

where the RL performance is much worse than the optimal outcome (i.e., maximal regret).

When the optimal policy is unavailable, they learn a competitive baseline [47] to approximate

the optimal policy or a metric [106] to approximate the regret. Genet falls in this category,

but proposes a domain-specific way of identifying rewarding environments using rule-based

algorithms.

Some proposals in safe policy improvement (SPI) for RL also use rule-based schemes [57,

88], though for different purposes than Genet. While Genet uses the performance of rule-

based schemes to identify where the RL policy can be maximally improved, SPI uses the

decisions of rule-based algorithms to avoid violation of failures during training.
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2.7 Discussion

Does a small gap-to-baseline always mean that an RL model has small improve-

ment when trained on it?

Although a small gap-to-baseline on a network environment indicates that the RL model

already performs quite closely with the rule-based baseline, there is still a chance that the

RL model could be greatly improved when trained in that environment. This is because if

the rule-based baseline performs very badly in an environment, the gap-to-baseline will no

longer be indicative of the potential improvement of RL training. For example, Cubic may

perform poorly on a high-bandwidth link with occasional random packet loss, as Cubic does

not differentiate random packet loss and congestion-induced loss, causing it to lower conges-

tion window size when the available bandwidth does not drop. In such cases, even if an RL

model has a small gap-to-baseline with Cubic, there could still be room for the RL model

to improve performance, but Genet may not choose to prioritize such environments. That

said, this problem could be mitigated by using a more performant baseline or an “ensemble”

of existing baselines (i.e., measuring the maximum gap to any baseline from a set).

Does training in environments of large gap-to-baseline always lead to large RL

model improvement?

Unfortunately, the answer is not always. RL models may not always be able to approximate

the performance of rule-based baselines, e.g., due to an RL model’s coarse decision granular-

ity. For instance, Aurora (an RL-based CC) is a monitor-interval-based CC algorithm. Each

monitor interval needs to be long enough to accumulate enough packet acks (e.g., 10–50) to

compute the features (throughput, latency, etc.) for the RL model to select the sending rate.

In contrast, traditional TCP algorithms like Cubic and BBR can update sending rate (cwnd)

on the arrival of each packet ack. Thus, Aurora has a much coarser decision granularity than

traditional TCPs, rendering it hard for the RL model to approximate the traditional TCP’s

behavior when the network condition suddenly changes. For instance, during sudden band-
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width drops and rapid queue buildups, the inter-packet interval dramatically increases, and

so does Aurora’s monitor interval, whereas TCP Cubic or BBR can still update its sending

rate on each packet ack. In these cases, Aurora will never ramp up or reduce sending rate

as fast as its rule-based baselines, so even with a large gap-to-baseline in such environments,

Aurora may not see a large reward improvement.

What if a rule-based baseline does not exist?

The current Genet training framework requires the existence of a rule-based baseline for the

target networking problem. If the problem does not have a well-studied rule-based baseline,

there are three alternative training methods that Genet can fall back to. First, Genet can

fall back on traditional RL training. Although it loses the benefits of curriculum learning,

it may still produce a reasonable RL-based policy. Second, we can use the performance gap

between an optimal solution based on ground truth knowledge (such as future bandwidth

variation) and the current RL model as the guidance of rewarding network environment

selection. [58] trains an ABR RL model using network traces from a bandwidth-generating

model. The training of the bandwidth-generating model is then guided by the performance

gap between the optimal solution and the current RL model. This training method works

well when the optimal solution is feasible and computationally cheap. Third, a trained RL

model can be treated as a rule-based baseline. [47] trains two RL models (with identical

model architecture) competitively on the environments produced by an adversarial generator.

The adversarial generator is a neural network that aims to maximize the reward difference

between the two RL models. However, the training complexity increases due to the increased

number of models to be trained. Even though Genet can fall back on alternative training

methods, how to extend it to work in applications domains that do not have an existing

rule-based baseline remains to be investigated.
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2.8 Conclusion

We present Genet, a new training framework to improve the training of deep RL-based

network adaptation algorithms. For the first time, we introduce curriculum learning to the

networking domain as the key to reaching better RL performance and generalization. To

make curriculum learning efficient in networking, the main challenge is how to automat-

ically identify the “rewarding” environments that can maximally benefit from retraining.

Genet addresses this challenge with a simple-yet-efficient idea that highly rewarding net-

work environments are where the current RL performance falls significantly behind that of

a rule-based baseline scheme. Our evaluation on three RL use cases shows that Genet

improves RL policies (in both performance and generalization) in various environments and

workloads.
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CHAPTER 3

LOSS-TOLERANT NEURAL VIDEO CODEC AWARE

CONGESTION CONTROL FOR REAL TIME VIDEO

COMMUNICATION

3.1 Introduction

Real-time video communication including video conferencing [97], live video/VR broadcast-

ing [16, 12, 64], IoT applications [1, 17], and cloud gaming [15, 13] has been a key component

of our daily lives [29] and carries a dominant amount of traffic in today’s internet [42].

These RTC applications require high network bandwidth and low network latency to

deliver seamless and high quality experience to users, pushing the telecommunication infras-

tructure upgrade to meet the demands and forcing the congestion control (CC) algorithms to

promptly adapt to the constantly changing network conditions. Unlike traditional congestion

controls [60, 31, 69] which are designed for reliability and in-order delivery through retrans-

missions instead of realtimeliness, plenty of hand-crafted congestion controls for real-time

video communication [34, 55, 162, 78, 110, 120] have been proposed to boost bandwidth

utilization, suppress packet delays, and avoid packet losses. However, these pre-programmed

rule-based congestion control algorithms are not panacea in all network settings as they fall

short of adapting to the highly heterogeneous network conditions.

To save the human effort optimizing a rule-based congestion control algorithm for nu-

merous network conditions, researchers have made huge effort to explore the data-driven

approaches to design congestion control and rate adaptation [101, 71, 157, 158, 159, 150, 58],

which have shown great potential over the handcrafted heuristics. The “learning online,

running online" strategy is often adopted to train a RL-based solution in order to bridge

the gap between training network environments and the real network environments at the

deployment stage. RL models directly interact with the real network environments to col-
42



lect experience and then update themselves during runtime. However, the trial-and-error

behavior of online RL training will unavoidably take risky actions which might disturb the

system performance. A safeguard policy, typically a handcrafted heuristics, is often used to

substitute the RL model once an erroneous action is detected or the system is in a risky

state [157, 103]. After the safeguard policy recovers the system to a safe state, the RL-based

model takes the control back.

The main design philosophy behind safeguarding an RL-based CC by traditional CCs

in RTC applications is based on an implicit assumption on video codec. The assumption

is that delayed or lost packets can lead to incomplete frames received which then block

video decoding at the receiver side and hurt users’ QoE badly. Nevertheless, the existence

of safeguard policy might slow down the RL model action space exploration and hinder the

learning progress.

The recent loss-tolerant neural video codecs (NVC) [46, 65, 94, 39, 38, 134] breaks the

implicit assumption on video codecs as these NVCs can decode incomplete frames and still

deliver decent frame quality. They have shown strong loss tolerance ability across a wide

range of packet loss rates on top of its high compression efficiency and good generalization

over various video content. Figure 3.1 shows a state-of-art NVC, GRACE, has a smoother

and slower video quality drop with increasing packet loss rate than commonly used encoder-

side forward error correction (FEC) and decoder-side error concealment (EC).

However, there is no systematic way to adapt the congestion control algorithm to best

utilize the loss-tolerant video codecs. The traditional RL-based congestion controls fall short

of being aware of video codec properties as their RL rewards are typically a linear combination

of network throughput, packet delays, and packet loss rates. Therefore, a key challenge is

that how we can inject video codec QoE awareness to RL design and leverage neural video

codec properties to resolve RL’s limitations.

In this paper, we present NVC-CC, an RL-based RTC congestion control algorithm
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Figure 3.1: Loss-tolerant neural video codec has slow and smooth video quality
drop with increasing packet loss rate.

which can be trained online without the help of safeguard policies by taking advantage of

the NVCs’ packet loss tolerance properties. Our key insight is that the safeguard policies run

along the RL model hinders the RL online learning efficiency and leveraging the loss-tolerant

properties of NVC can remove RL’s safeguard reliance.

Comprehensive experiments (§3.5) on a diverse set of videos and network traces show

that our NVC-aware CC running with the loss-tolerant NVC breaks loose its reliance on

safeguard policies and reduces the training time by 41% compared to other prior RL-based

CCs. It also boosts the mean video quality by 0.3 to 1.6dB%, lower the tail frame delay by

3 to 200ms, and reduces the video stalls by 20% to 77% in comparison with other baseline

RTC CCs.

Contributions: Our work makes the following contributions.

1) We reveal the inefficiency of training in RL-based RTC congestion control solutions trained

by online learning with safeguard policies and introduce the trade-off between learning effi-

ciency and QoE in RL training (§3.3.2).

2) We analyze how the loss-tolerant NVCs can help improve training efficiency by allowing

RL-based CCs to learn without the restriction of safeguard policies and not not hurting QoE

(§3.3.3).

3) We propose NVC-CC, which, to the best of our knowledge, the first RL-based congestion

control aware of and taking advantage of the loss-resilient properties of neural video codecs
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(§3.4) and validate its remarkable performance gain over the state-of-the-art solutions (§3.5).

3.2 Background

To help explain NVC-CC’s design, we first introduce some important concepts in real-time

video communication.

3.2.1 Real-time video communication

Figure 3.2 shows a typical RTC workflow. Given a new frame and a reference frame, 1) the

video codec at the sender encodes the new frame based on a target encoding bitrate estimated

by the congestion control module; 2) the sender’s pacer packetizes the code and paces the

packets into the network according to a target sending bitrate estimated by the congestion

control module; 3) the congestion control module simultaneously collects the feedback from

the network and adapts the target bitrate continuously; and 4) finally the video codec at the

receiver decodes the received data and reconstructs each frame.

Because lost or heavily delayed packets can affect frame decoding and introduce undesired

frame quality drop, frame delay and video stalls to end users, RTC CCs need to deal with

available bandwidth fluctuations with the best effort. However, it is impossible for the CC

module to perfectly predict the future bandwidth changes, making heavily delayed packets

and packet losses unavoidable. Thus, loss-resilient techniques and video codecs play a vital

role in frame decoding especially under packet losses.

To differentiate the packet loss in network level, we define packet loss per frame as any

packets not received before the receiver is expected to decode the frame [39].
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Figure 3.2: RTC workflow.

3.2.2 Neural video codec

Neural video codec (NVC) consists of trained neural networks instead of handcrafted logic as

video encoder and decoder. Prior works in NVCs [46, 65, 94] have demonstrated comparable

or even better compression efficiency comparing to traditional video codecs like H.265 [136],

and VP9 [109] because they replace handcrafted heuristics in the common logical components

of traditional video codes, such as motion estimation, warping, and transformative compres-

sion, with neural networks, which can learn more complex algorithms from data. Prior NVCs

have also shown great generalization across a variety of video content due to their ability to be

trained on a huge amount of videos. Additionally, recent studies [39, 38, 134] have discovered

that NVCs have stronger loss resilience over a wider range of packet loss rates comparing to

traditional loss resilience schemes (shown in Figure 3.1). To obtain stronger loss tolerance

ability, the neural encoder and decoder are jointly optimized via training directly across

packet loss rates. Figure 3.3 illustrates the training procedure of the loss-tolerant NVC,

GRACE. Unlike traditional NVC training that assumes no data loss between the encoder

and decoder, GRACE applies “random masking”–setting a fraction of randomly selected el-

ements to zeros–to the encoder’s output to simulate network packet losses. However, an

important missing piece missing from prior works is that how should RL-based congestion

control leverage these loss tolerant NVCs to fix its limitations.
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Figure 3.3: GRACE’s training procedure.

3.3 Motivation

In this section, we will first verify the effectiveness of RL-based solutions in the field of RTC

communication. Then, we are going to take OnRL [157] as an example to show that the

existence of safeguard can cause learning efficiency problem and analyze the tradeoff between

learning efficiency and the QoE during RL training. Lastly, we motivate how a loss-tolerant

NVC can mitigate this problem.

3.3.1 RL-based CCs are promising

Recently proposed RL-based CCs have impressive improvement over traditional rule-based

CCs. The RL-based CC, usually implemented by a neural network (NN), works with the

transport layer and video codecs to collect states from the network environment. It then

makes a decision on sending rate and broadcast the latest sending rate to the transport layer

and video codes. During the training stage, its goal is to maximize a reward (typically a

combination of throughput, latency, and packet loss rate).

The reasons for adopting RL in RTC CC are two-fold. Firstly, learning-based congestion

controls have significant potential to self-adapt to different network conditions, eliminating

the necessity for manual tuning or engineering for each specific network scenario. Contrast

to traditional rule-based CCs like GCC [34] which have taken engineers years of effort to

optimize to various network environments, the learning-based approach allows the adaptation
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Figure 3.4: RL-based CC has shown prospects over traditional rule-based CCs.

to new network environments to be automatically done by machines in hours or days.

Secondly, CC problem is a sequential decision-making process, which fits well in the scope

of reinforcement learning. Additionally, the neural network in deep reinforcement learning

(DRL) exposes the potential and ability to learn from raw input data without the need

of tedious data preprocessing and handcrafted feature engineering as long as the training

network environment distribution aligns with the testing distribution.

We have conducted simulation experiments to compare an RL-based solution, OnRL, to

several well-known rule-based CCs and the results do verify prior works’ findings that RL-

based solutions can outperform traditionally rule-based approaches when testing on network

environments in the same distribution as they train on. We train and compare OnRL against

rule-based CCs with a traditional video codec (e.g. H.264) on 2850 video sessions (50 diverse

synthetic network traces randomly drawn from the network environment distribution in

Table 3.2 and 57 videos from Table 3.1). Figure 3.4 plots the tradeoff between average frame

quality and average tail frame delay among different CCs and it does show that OnRL is

better than the rule-based approaches over the network environments in the same distribution

that it trains on.

48



−1.0 −0.5 0.0 0.5 1.0
RL action

0.00

0.25

0.50

0.75

1.00

CD
F

W/ safeguard
W/O safeguard

Figure 3.5: Comparison between CDFs of sampled actions from RLs trained with
and without the safeguard policy.

3.3.2 Inefficient online RL training with safeguards

RL-based solutions are not perfect. Given that RL models learn by exploring the action space

and collecting the environment feedback as mentioned in §3.1, they will inevitably conduct

risky actions which may overwhelm the network capacity to cause packet delay increase or

packet losses or underutilize the network available bandwidth. These risky actions eventually

incur huge frame delay, poor video quality, and video stalls hurt QoE because traditional

video codecs cannot decode incomplete frames and further packet retransmission might be

needed.

To prevent such risky actions in RL training (especially online RL training), prior works [157,

103] detect if risky actions are made and immediately fall back to a rule-based policy to re-

cover the system to a safe state. Only after the system is not in a risky state anymore, the

RL policy mode is switched back. For example, OnRL [157] falls back to its safeguard policy,

GCC, when its RL model action leads to an obvious packet jitter greater than a dynamically

adjusted threshold. On the action which triggers a policy switch, it is heavily penalized so

that the model is expected to learn to avoid the policy switch in the future. However, the

existence of safeguard policies prevents the RL model from learning efficiently [59].

The reasons are threefold. Firstly, the existence of safeguard policies can prevent action

space from being explored thoroughly and diversely during training. We verify that safeguard
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policies limit RL action space exploration by comparing the distributions of sampled actions

between training the RL models with and without the safeguard policy respectively on an

identical network environment. Figure 3.5 shows that OnRL model with the safeguard

policy spends more than 70% of time exploring the region of action space which increases

the sending rates while the training without the safeguard policy balances its sampling in

both action space regions that increase sending rate and regions that decrease sending rate.

The diversity of actions selected by RL model with safeguard is thus much narrower than

that without safeguard and RL model may potentially miss better action sequences, which

in turn slows down the learning efficiency.

Secondly, the existence of safeguard policies limits RL observation space exploration.

An intuitive example is to verify is that an OnRL model trained in a network environment

with a deep queue network is brought to a network environment with a very short queue.

Packets are dropped without apparent latency increases so its safeguard policy will not be

triggered. Because RL model never sees network observations with packet losses in the

training on previous network environment, it may conduct risky actions and then cause the

QoE degradation until it learns from the network observations with packet loss.

Thirdly, the sampling efficiency when training RL models with safeguard policies is low.

The trajectory (the sequence of tuples formed by actions, rewards, and network observations)

collected by the mixture of RL model and the safeguard policy cannot be directly passed

to the NN training optimizer because it violates the assumption that on-policy RL learning

algorithms like PPO [131] and Markov Decision Process modeling of RL require that every

action should be from the RL model. We also empirically show that safeguard in OnRL

is triggered too frequently causing low sampling efficiency during the training process. For

instance, Figure 3.6 shows the behavior of OnRL’s sending rate within the first 30 seconds

when OnRL is trained on a single network environment with respect to a 5-min video. OnRL

switches into GCC for 160 times and stays in GCC for 8 seconds which are wasted in OnRL
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Figure 3.6: OnRL triggers GCC-based safeguard very frequently causing low RL
training sample efficiency. The network has one-way link propagation delay of
25ms, a FIFO queue with capacity of 30KB and no random loss.

training within 30 seconds.

Therefore, there naturally exists a tradeoff between the learning efficiency of an RL model

to convergence and the reward or QoE in the RL training stage. We define the learning

efficiency as the number of seconds used to train an RL model to converge on a network

environment. The model convergence is defined such that the RL model’s testing reward

on a training network environment does not vary by more than 10% if the training on this

network environment continues. Following the methodology in OnRL, we use RL reward in

Equation 3.2 to represent video QoE. We verify the tradeoff by training RL with and without

its safeguard on a single environment and plot the training reward before model convergence

and the training time used until model convergence in Figure 3.7. We sweep a wide range of

safeguard sensitivity to demonstrate different degree of safeguard involvement in RL-based

CC. It is clear that traditional RL-based approaches sacrifices the training efficiency in favor

of less QoE degradation in RL online training. A question to ask is that: Can we remove

RL reliance on safeguard policies to speed up RL training without hurt users’ QoE during

RL training stage using loss-tolerant NVCs?
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Figure 3.7: The tradeoff between QoE (training reward) and the time RL training
convergence needs. The safeguard is triggered more frequently as the color
(safeguard sensitivity) darkens.

3.3.3 How can a loss-tolerant NVC help RL-based CC training?

In this subsection, we first discuss loss-tolerant NVCs differences compared to traditional

video codecs and then talk about how a loss-tolerant NVC can help RL-based CC training.

The differences lie in the following two aspects:

Difference 1: loss-tolerant NVCs can translate packet delays and packet losses into video

frame quality drop much smoother than traditional video codecs because they can decode

an incomplete frame which is not decodable for traditional ones as shown in Figure 3.1. A

takeaway is that a risky action from RL-based CC is not risky any more if the video codec

is changed from traditional ones to NVC and RL-based CC can explore more actions than

before.

Difference 2: A high-bitrate video frame with minor packet loss rates (i.e., less than 10%)

encoded by a loss-tolerant NVC can have better quality than a low-bitrate video frame with

zero packet loss does. Figure 3.8 plots the qualities of a video frame encoded by GRACE

under different bitrates and frame-level packet loss rates given that the reference frame is

received completely. The frame quality encoded at 1810Kbps with 10% frame data lost is

approximately 2dB better than encoded at 1068Kbps with no frame data lost. However,
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Figure 3.8: GRACE frame quality under three encoding bitrates and various
frame-level packet loss rates. Bars with the same color but different hatches
represent the quality of a frame encoded at the same bitrate and received with
different frame loss rates.

because quality degradation caused by incomplete reference frames will propagate along

frames. [39] suggests that a NVC state synchronization is required every 10 frames when

contiguous frame losses happen. But a takeaway is that sending frames at high-bitrate with

minor packet loss at frame level may yield better frame quality in between two NVC state

synchronization events.

Figure 3.9 shows an example that the safeguard policy prevents the RL model from

finding a better sequence of actions when the RL-based CC is trained with the loss-tolerant

NVC, GRACE. In this figure, CCs is assumed to make a bitrate decision on every frame

encoding event (every 40ms), and the frame data are smoothly paced out into the network

before the next frame comes. As illustrated in Figure 3.9a, every time the RL chooses a

bitrate overshooting the bandwidth and causes the delay inflation, the safeguard immediately

takes over the control and reduces the bitrate. A possible sequence of actions that can be

explored by RL without the safeguard whereas RL with safeguard will never explore due to

the existence of the safeguard is in Figure 3.9b. By enduring the tail delay 12.7ms and less

than 50% frame loss rate, the frame sent at 80ms is approximately 1dB in Figure 3.9b higher

than that in Figure 3.9b. The average frame quality over 5 frames is about 0.2dB better.
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Figure 3.9: Action sequence comparison between RLs training with or without a
safeguard policy. The network environment has constant bandwidth of 1.0Mbps,
10ms minimum one-way delay (OWD), and a very shallow queue of 1.5KB.

From this example, when training with a loss-tolerant NVC, the safeguard policy is thus not

necessary any more.

3.4 Design

So far we have shown that the RL-based RTC CCs look promising over traditional rule-

based RTC CCs and how a loss-tolerant NVC can help the RL training if RL-based CC

can be aware of it. We thus propose a new RL-based RTC CC design which leverages the

loss tolerance characteristic of recent loss-tolerant NVCs via changing the reward function

design.

State, action, and NN architecture: NVC-CC’s observed states are designed based

on those of Aurora [71] and OnRL [157]. A observed state is collected every time 50ms

window, where the window length is equal to the RTCP feedback interval. It consists of

the following: (i) latency gradient, the derivative of packet latency with respect to time; (ii)

latency ratio, the ratio of the current time window’s mean packet latency to the minimum
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observed mean packet latency of any time windows in the connection’s history; (iii) sending

ratio, the ratio of packets sent to packets acknowledged by the receiver. To resolve the

oscillation problem of sending rates of RL decision encountered in prior works, the action

space is not a discrete space like OnRL’s but a continuous space [−1, 1]. NVC-CC takes

an input feature vector constructed by the states of 10 time windows and makes an action

at to adjust the sending rate xt for the next time window t according to Equation 3.1. γ

is the throughput measured within the past 200ms. The NN architecture of NVC-CC is a

small fully connected neural network with two hidden layers composed of 32 and 16 neurons

respectively and tanh nonlinearity.

xt =


xt−1 ∗ at at > 0

γ/at at < 0

(3.1)

Reward function: Existing RL-based CCs [71, 158, 157, 150] typically compute the linear

combination of throughput, packet delays, packet losses as the reward instead of directly

using the feedback of video codecs because they assume a traditional video codec runs on

top and cannot reflect the state of the network smoothly. For example, Aurora [71] ob-

serves network states in a time window to optimize for a reward as shown in Equation 3.2.

Throughput (Tput) in kbps, latency (Lat) in second, and loss rate (Loss) are measured in a

time window and a = 120, b = −1000, c = −2000.

R =
∑
i

1

n
(a · Tputi + b · Lati + c · Lossi) (3.2)

Instead of indirectly optimizing QoE of real-time communication session via a reward based

on network-level performance, we propose to optimize a reward directly on frame quality

and packet delays, enabled by the loss-tolerant video codecs. One may argue that QoE

of traditional video codecs can also be used in RL-based CC training. However, because
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traditional video codecs cannot always decode a frame and reflect the frame quality and

delay to the sender within every decision step especially when there are packet losses or

heavy packet queuing. The trial and error manner in RL model training can easily cause

non-ideal decision to be made, leading to packet losses and queuing. Thus, QoE-based reward

will be sparse in the RL-based CC training. The reward sparsity can slow down training or

even harm the performance of the converged model. Loss-tolerant neural video codecs, on

the contrary, can decode regardless of packet losses and echo the frame quality and delay

back to the sender on time.

NVC-CC’s reward function is defined as Equation 3.3, where q̄ is a normalized frame

quality of a video frame with respect to the frame’s minimum and maximum possible frame

quality, latency is packet latency (RTT) in ms, and a = 0.1 is the penalty coefficient on the

latency term.

R =
∑
i

(q̄i + a · Latencyi)/n (3.3)

Training: The RL model is trained online against network traces and videos in a network

simulator which replay network traces with a duration of 30 seconds. The network traces

are randomly generated based on the network parameters in Table 3.2. The total number

of training steps is 720000. Pre-recorded video profiles are used to simulate video codec

behavior and look up frame quality of GRACE encoded frames and the profiles are uniform

randomly sampled during the training process.

3.5 Evaluation

Our key finds are as follows:

• Learning efficiency: NVC-CC running with the loss-tolerant NVC reduces the train-

ing time by 41% compared to other prior RL-based CCs.

• Better QoE: When testing on network traces from the same training distribution,
56



NVC-CC boosts the mean video quality by 0.3 to 1.6dB%, lower the tail frame delay

by 3 to 200ms, and reduces the video stalls by 20% to 77% in comparison with other

baseline RTC CCs.

3.5.1 Setup

Testbed implementation: We implement and compare different RTC CCs running with

GRACE in a packet-level simulator, which replays network traces. All RTC CCs are run with

padding enabled so that CCs can probe the available bandwidth efficiently. The simulator

achieves the video encoding and decoding by replaying GRACE profiles which are collected

on a server with 2 Nvidia A40 GPUs by profiling GRACE for various videos under diverse

packet loss conditions. In this work, we only focus on how the congestion control algorithm

affect the QoE and network-level performance so we assume the frame encoding and decoding

is negligible. Optimizing the encoding and decoding time of the neural video codec is out of

the scope of this work.

Baselines: We compare the NVC-CC with several baselines. These baselines include

human handcrafted CCs, RL-based CCs (OnRL, Aurora), and an oracle CC.

Firstly, the traditional human handcrafted CCs include GCC, Salsify, and FBRA. GCC [34],

a widely used CC in WebRTC applications, measures packet delay gradient and packet loss

rate to detect network congestion and adjusts the target bitrate of video codecs at each

frame. Salsify uses smoothed packet jitter to estimate the target sending rate and encodes

a frame with two bitrates at a time to fast adapt the bandwidth fluctuation. FBRA sends

FEC data in addition to actual video data to fast probe available bandwidth and provide

protection against packet loss.

Secondly, the RL-based baselines include OnRL and Aurora. To mimic OnRL’s federated

learning logic that aims to provide generalizability across diverse networks, we train OnRL

across diverse network environments instead of aggregating models from different users.
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Unlike OnRL, Aurora is trained offline and deployed online without further finetuning.

Lastly, we add an oracle CC which knows the future bandwidth change and perfectly

matches the target video bitrate to the available bandwidth. It thus serves as the optimal

performance that a CC can achieve.

Videos: Our evaluation experiments reuse the test video datasets in [39], which consists of

57 videos randomly sampled from three public datasets, as shown in Table 3.1. Each video

in the datasets is 10-30 seconds long. In this work, we use the same set of videos in both

training and testing stages because we only focus on how network traces’ diverse dynamics

affect the training and testing of RL-based CCs.

Network traces: The network traces used in this work include both synthetic traces and

real-world collected traces. The synthetic are synthetically generated from a network trace

generator used in [150]. Each network trace is described in five dimensions including link

bandwidth, minimum link round trip time (RTT), bandwidth change interval, random packet

loss rate, and queue capacity with their ranges in Table 3.2. The real-world collected traces

are from Pantheon dataset [151].

Quality metrics: To compare the performance of a RTC CC, in addition to network-level

statistics, we report the QoE of a real-time video communication session across the following

three aspects [39].

• Video quality of a frame is measured by structural similarity index measure (SSIM).

We report SSIM in dB, computed as −10log(1− SSIM) [39, 55, 152].

• Realtimeness is measured by 98th percentile (p98) of frame delay (time gap between

the frame’s encoding and decoding).

• Smoothness of a video is measured by video stall (an inter-frame gap exceeding

200ms [97]). Like GRACE, we report the average number of video stalls per second

and the ratio of video stall time over the entire video length.
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Dataset # of
videos

Length
(s) Size Description

Kinetics 45 450 720p
360p

Human actions
and interaction
with objects

Gaming 5 100 720p Game recordings

FVC 7 140 1080p Video calls
(indoor/outdoor)

Total 57 690

Table 3.1: Video datasets used.

Parameter Range
Link Bandwidth (Mbps) [0.6, 6]
Minimum link RTT (ms) [2, 200]

Bandwidth change interval (s) (0, 15]
Random packet loss rate [0, 5%]
Queue capacity (packets) [1, 100]

Table 3.2: Network parameter ranges used to generate network traces used in training and
testing.

3.5.2 Learning efficiency and asymptotic performance

We first compare NVC-CC and prior RL-based CC, in terms of their convergence speed and

asymptotic performance (i.e., test performance over new test environments drawn indepen-

dently from the training distribution).

We train NVC-CC and baseline RL-based CCs across network environments generated

from the distribution described in Table 3.2 with three different random seeds. Then we test

them in new environments from the same distribution during the entire training process.

Figure 3.10 plots how the validation reward guided by GRACE (defined in Equation 3.3) of

each RL-based CC changes over training time. NVC-CC converges to the best test reward

of 0.859, which is 50% and 26% better than that of Aurora and that of OnRL respectively.

It takes NVC-CC 78 minutes to converge to the best reward, which is approximately 41%

faster than both Aurora and OnRL.
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Figure 3.10: NVC-CC training ramps up faster and converges to a better test
reward than the baseline RL-based CCs.

3.5.3 Performance evaluation on synthetic network traces

We then compare NVC-CC and baseline CCs on the network traces which are drawn from

the training distribution but unseen in the training process. The performance is broke down

in terms of the real-time video communication QoE metrics mentioned in §3.5.1. We run

them with GRACE on 2850 video sessions. These video sessions are composed by 50 network

environments randomly sampled from the distribution in Table 3.2 and 57 videos described

in Table 3.1. Their QoE breakdown is shown in Figure 3.11. NVC-CC outperforms the

traditional rule-based RTC CCs by more than 1.6dB in average frame quality (SSIM). It

outperforms OnRL and Aurora by at least 0.3dB. In terms of realtimeness, it leads the rule-

based CCs by 3 to 200ms and leads Aurora and OnRL by 200ms. NVC-CC causes fewer

video stalls than most of rule-based CCs and RL-based CCs except GCC which is known to

be conservative. Salsify is outperformed by NVC-CC because GRACE is not a functional

video codec Salsify requires and its fast bandwidth adaptation mechanism does not work

well. FBRA is outperformed by the most of other approaches because it often overshoots

the network capacity by abusing FEC data too much.

We also break down the CC’s performance from the network level. From Table 3.3, it is

clear that NVC-CC is able to aggressively consume the available bandwidth by trading off

minor degree of packet losses as it is aware of loss-tolerant NVC performance via the reward
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Figure 3.11: QOE breakdown when evaluating on synthetic network traces from
the training distribution.

CC Tput
(Mbps)

Delay p98
(ms)

Loss
(%)

Oracle 3.17 113 0.1
GCC 1.22 287 1.5
Salsify 1.72 272 5.6
FBRA 2.19 478 18.9
Aurora 2.59 376 4.6
OnRL 2.12 325 2.4

NVC-CC 2.55 355 3.5

Table 3.3: Network-level performance breakdown of Figure 3.11

in Equation 3.3.

3.5.4 Performance evaluation on real-world network traces

In addition to evaluating the CCs on the network traces from the training distribution, we

test NVC-CC’s generalizability on network traces outside the training distribution by evalu-

ating them real-world collected traces from Pantheon dataset [151]. These traces contain two

major network settings–ethernet and cellular and they were collected on 10 different links

among nodes globally. Each CC is the tested on 570 video sessions and the resulted QoE

breakdown are shown in Figure 3.12a and Figure 3.12b respectively. Although NVC-CC

still outperforms prior RL-based CCs along all four QoE metrics in both network settings,

its benefits over traditional rule-based CCs are marginal, indicating that NVC-CC’s gener-

alizability on network traces outside its training distribution still needs to improve.
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Figure 3.12: QOE breakdown when evaluating on real-world network traces.

3.6 Discussion

While the preliminary results show early promise of NVC-CC, there are still limitations in

its methodology and future steps needed to be done.

Video and codec dependency: Because NVC-CC’s reward used in training relies on

the frame quality of a video frame, there naturally exists a dependency between the trained

NVC-CC model and the video codec as well as the training videos. The dependency on

video codec indicates that a different NVC-CC model should be used when the loss-tolerant

NVC is updated. To address the dependency on training videos, more research effort needs

to be invested in measuring and improving NVC-CC RL model’s generalization over videos

with diverse content.

Sim-to-real generalization: Similar to other RL models trained in a simulated envi-

ronment and deployed in the real world, NVC-CC also faces the simulation to real world

generalization problem. Even though NVC-CC is trained using online RL training, our

experiments are conducted by replaying network traces in a network simulator. Thus, an
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important future step to investigate is to measure and improve NVC-CC’s generalizabilty

over real-world network environments.

Fairness: On the Internet, many different congestion control protocols need to interact, and

ours can possibly behave unfairly in some scenarios. For example, being aware of loss-tolerant

NVC allows NVC-CC to be aggressive in increasing packet sending rate and unaffected by

minor packet drops. It is possible that NVC-CC takes up the majority of link capacity and

forces traditional TCP to back off quickly.

Scalability: Due to the reliance on the performance of loss-tolerant NVCs, NVC-CC

also inherits some limitations from NVCs. For instance, GRACE is not optimized enough

to run at 30 fps on resource-constrained devices that barely sustain classic video codec.

Thus, NVC-CC cannot be trained to support 30 fps real time streaming on such devices.

Another example is that GRACE focuses on unicast video communication instead of multi-

party video conferencing. Therefore, the performance of NVC-CC in multi-party video

conferencing scenario is still unknown.

3.7 Conclusion

We present NVC-CC, an RL-based congestion control algorithm for real time video com-

munication applications. For the first time, we analyze the tradeoff between quality of

experience during RL training stage and RL model convergence speed. We reveal that the

commonly used safeguard policies used to prevent risky actions and recover the networked

system to safe states can cause sampling efficiency and slow down the RL model conver-

gence. NVC-CC addresses the training efficiency problem by training RL model on top

of loss-tolerant neural video codec without the need of safeguard policies. Our evaluation

shows that NVC-CC’s training with loss-tolerant neural video codec improves RL training

efficiency and achieves better quality of experience in various network environments and

video workloads.
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CHAPTER 4

CONCLUSION

4.1 Contributions

This thesis contributes by proposing a universal training framework via leveraging network

domain knowledge to reweight the reward observed in RL training. The training framework

aims to overcome the limitations faced by for DRL-based rate adaptations. These limita-

tions include: 1) poor generalizability across diverse network environments, and 2) lack of

awareness of the user-perceived quality of experience. To mitigate the above limitations

and instantiate the training framework, we have proposed two exemplifications, Genet and

NVC-CC, which using two different network domain knowledge respectively (rule-based

baselines and video codecs).

Genet adopts the philosophy of curriculum learning by gradually feeding more “difficult”

environments to the training rather than choosing them uniformly at random. It leverages

the intuition that further training a RL model in a network environment tends to bring sub-

stantial improvement if the RL model performs significantly worse in the environment than

the rule-based baselines. Genet automatically searches for such environments and itera-

tively promotes them to training. In three case studies (adaptive video streaming, congestion

control, and load balancing), Genet produces RL policies that outperform both regularly

trained RL policies and traditional baselines inside the training distribution. Genet im-

proves asymptotic performance by 8–25% for ABR, 14–24% for CC, 15% for LB, compared

with traditional RL training methods. Although not specifically optimized, Genet also

improves the model performance when tested outside the training distribution.

NVC-CC is an RL-based congestion control algorithm which takes the advantage of

loss resilience properties of recent neural video codecs and incorporates the codec feedback

in the training reward function. Because of its awareness of loss tolerance in neural video
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codec (trained with reward including feedback from both the video codec and the network),

NVC-CC overcomes the reliance on safeguard policies and improves the training efficiency.

Through extensive evaluation on various videos and network traces in a simulated environ-

ment, NVC-CC reduces the training time by 41% compared to other prior RL-based CCs

when both NVC-CC and prior RL-based CCs are trained with the loss-tolerant neural video

codec. It also boosts the mean video quality by 0.3 to 1.6dB%, lower the tail frame delay by

3 to 200ms, and reduces the video stalls by 20% to 77% in comparison with other baseline

RTC CCs such as GCC, Salsify, and FBRA.

4.2 Future work

Four potential directions in machine learning for networking and systems can be explored in

the future.

Robustness of RL in dynamic action space: The state-of-art RL-based approaches for

network and systems are designed for static action space over time. However, this assumption

does not always hold in real life. For instance, an RL-based solution for load balancing

requires to choose from a fixed set of machines. If any machine in the action space used for

training crashes due to hardware fault or the action space grows by adding new machines, it

is highly possible that the RL model makes unwise choices like keeping choosing the faulty

machine or ignoring the newly added machines. Therefore, an important missing piece in

prior works is that how robust the RL-based approach is with respect to a dynamic action

space. There are many possible solutions like masking off invalid actions [66], completely

retraining the deployed RL model on new action space, finetuning the last layer of the

RL model, or even training RL models with a dynamic action space [36]. My research

will systematically explore and compare these potential solutions and try to improve the

robustness of RL-based approaches on dynamic action space.

Trace generation using generative neural networks: Current RL-based approaches
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especially those trained offline in a network simulator rely heavily on replaying network traces

during their training stage. These network traces can be classified into either synthetic traces

generated by heuristics or real-world collected traces. Synthetic traces are easy to generate

but are known to lack real-world network dynamics and fidelity. Real-world traces overcome

the drawbacks of synthetic traces are nontrivial and time consuming to collect and tend

to involve with privacy and legal issues. My future research direction is to leverage the

latest (controllable) generative adversarial network (GAN) [92], which are trained on real-

world network traces, to synthesize network traces for RL training. The intuition is that

generative neural networks can hold the fidelity and dynamics of real-world collected traces

but generate distinct traces from their training data.

Running time optimization for RL-based approaches and neural video codecs: Ex-

isting RL-based solutions for networking and systems typically uses the neural network mod-

els with merely 2 to 3 fully connected layers because only shallow models which have low

running time on CPU-only hardware settings can satisfy the millisecond-level decision granu-

larity required by modern systems and network. However, according to the experience in the

field of computer vision and natural language processing, large and deep models show amaz-

ing performance and accuracy. It indicates that deeper and more complex neural networks

still have huge potential in the field of networking if their running time can be further opti-

mized. Therefore, another future research direction is explore more architectures for neural

networks in systems and networking and optimize their running time for high performance

system and high speed networks.

Running time optimization for neural video codecs should also be conducted in the future.

The state-of-art neural video codecs require to be run on GPU and cannot keep up with more

than the frame rate of 25 FPS in video streaming applications [39]. Therefore, more effort

should be spent on the integration of neural video codecs with current WebRTC framework

and its speed-up.
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Safeguard policy experience reuse: Demonstrate in §3.3, safeguard policy can often

dominate the networked system and hinder RL exploration of the action space, causing poor

training efficiency. A key question to ask is how to leverage the experience collected by

the safeguard policy to help RL model training so it will not be wasted. Although prior

works have proposed possible solutions including translating a safeguard policy into a neural

network which can be co-trained with RL model via feature fusion [158] and rewarding

environment selection by comparing the performance of rule-based safeguard and that of RL

model [150], they still fall short of complicated training process and poor decision granularity.

Therefore, new methodologies should be investigated in the future.
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APPENDIX A

GENET

A.1 Details of RL implementation

The input of RL algorithm consists of a space of configurations, an initial policy parameters

and predefined total number of iterations to train. The space of configurations is constructed

by ranges of environment configurations. Each range is marked by the configuration’s min

and max values. Within a training iteration, each dimension of the space of configurations

is uniformly sampled to create K configurations. For each configuration, N random envi-

ronments are created. Thus, rollouts are collected by running the policy on total K × N

environments to update the policy. When the policy is updated for the predefined number

of iterations, the RL algorithm stops training and outputs a trained policy.

Algorithm 1 Traditional Reinforecment Learning (RL)
Input: Ω: space of configurations, θ: initial policy parameters, Niters: # of iterations
Output: θ: returned policy parameters
1: for i from 1 to Niters do
2: Φrand ← ∅
3: for 1 to K do ▷ K: # configs per iteration
4: pi ∼ Random(Ω) ▷ Uniformly sampled config in Ω
5: for 1 to N do ▷ N : # random envs per config
6: E ← S(pi) ▷ Create a simulated env by pi
7: rollout ϕ ∼ πθ(·;E) ▷ Rollout policy πθ on E
8: Φrand ← Φrand ∪ ϕ
9: end for

10: end for
11: with Φrand update:
12: θ ← θ + ν ▽θ J(πθ) ▷ Gradient update with rate ν
13: end for
14: return θ

82



ABR Parameter RL1 RL2 RL3 Default Original

Max playback buffer (s) [2, 10] [2, 50] [2, 100] 60 60
Video chunk length (s) [1, 4] [1, 6] [1, 10] 4 4
Min link RTT (ms) [20, 30] [20, 220] [20, 1000] 80 80
Video length (s) [40, 45] [40, 200] [40, 400] 196 196
Bandwidth change interval (s) [2, 2] [2, 20] [2, 100] 5
Max link bandwidth (Mbps) [2, 5] [2, 100] [2, 1000] 5

Table A.1: Parameters in ABR simulation. Colored rows show the configurations (and their
ranges) used in the simulator in the original paper. The synthetic trace generator is described
in §A.2.

CC Parameter RL1 RL2 RL3 Default Original

Maximum link bandwidth (Mbps) [0.5, 7] [0.4, 14] [0.1, 100] 3.16 [1.2, 6]
Minimum link RTT (ms) [205, 250] [156, 288] [10, 400] 100 [100, 500]
Bandwidth change interval (s) [11, 13] [8, 3] [0, 30] 7.5
Random loss rate [0.01, 0.014] [0.007, 0.02] [0, 0.05] 0 [0, 0.05]
Queue (packets) [2, 6] [2, 11] [2, 200] 10 [2, 2981]

Table A.2: Parameters in CC simulation. Colored rows show the configurations (and their
ranges) used in the simulator in the original paper. The synthetic trace generator is described
in §A.2. The range of RL1 is defined as 1/9 of the range of RL3 and the range of RL2 is
defined as 1/3 of RL3. The CC parameters shown here for RL1 and RL2 are example sets.

A.2 Trace generator logic

ABR: For the simulation in ABR, the link bandwidth trace has the format of [timestamp

(s), throughput (Mbps)]. Our synthetic trace generator includes 4 parameters: minimum

BW (Mbps), maximum BW (Mbps), BW changing interval (s), and trace duration (s). Each

timestamp represents one second with a uniform [-0.5, 0.5] noise. Each throughput follows a

uniform distribution between [min BW, max BW]. The BW changing interval controls how

often throughput change over time, with uniform [1, 3] noise. Trace duration represents the

total time length of the current trace.

CC: The trace generator in the CC simulation takes 6 inputs: maximum BW (Mbps), BW

83



LB Parameter RL1 RL2 RL3 Default Original

Service rate [0.1, 2] [0.1, 5] [0.1, 10] [0.5, 1.0, 2.0] [2, 4]
Job size (byte) [100, 200] [100, 103] [1, 104] 2000 [100, 1000]
Job interval (ms) [0.01, 0.05] [0.01, 0.1] [0.1, 1] 0.1 0.2
Number of jobs [10, 100] [10, 1000] [10, 5000] 2000 1000
Queue shuffled probability [0.1, 0.2] [0.1, 0.5] [0.1, 1] 0.5

Table A.3: Parameters in LB simulation. Colored rows show the configurations (and their
ranges) used in the simulator in the original paper. The synthetic trace generator is described
in §A.2.

changing interval (s), link one-way latency (ms), queue size (packets), link random loss rate,

delay noise (ms), and duration (s). It outputs a series of timestamps with 0.1s step length

and dynamic bandwidth series. Each bandwidth value is drawn from a uniform distribution

of range [1, max BW] Mbps. The BW changing interval allows bandwidth to change every

certain seconds. The link one-way latency is used to simulate packet RTT. The queue size

simulates a single queue in a sender-receiver network. Link random loss rate determines the

chance of random packet loss in the network. Delay noise determines how large a Gaussian

noise is added to a packet. The trace duration is determined by the duration input.

LB: We use the similar workload traces generator as the Park [7] project, where jobs arrive

according to a Poisson process, and the job sizes follow a Pareto distribution with parameters

[shape, scale]. In the simulation, all servers process jobs from their queues at identical rates.

A.3 Details of Figure 2.4

Trace sets in Figure 2.4 was generated by two configurations. For trace set X, we used BW

range: 0–5Mbps, BW changing frequency: 0–2s. For trace set Y, we used BW range: 0–

10Mbps, BW changing frequency: 4–15s. As a motivation example, each trace set contains

20 traces to show the testing reward trend.
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Algorithm 2 Genet training framework
Input: Ω: uniform configuration distribution (equal probability on each configuration), πrule: rule-

based policy.
Output: θ: final RL policy parameters
1: function Genet(Ω, πrule)
2: θ ← Random initial policy parameters
3: Ωcur ← Ω ▷ Ωcur will be updated and used for training
4: for from 1 to Niter do ▷ # of exploration iterations
5: BO.initialize(Ω) ▷ Initialize with full config space Ω
6: for from 1 to NboTrials do ▷ # of trial configs by BO
7: p← BO.getNextChoice()
8: adv ← CalcBaselineGap(p, πrl

θ , π
rule)

9: BO.update(p, adv)
10: end for
11: pnew ←BO.getDecision()
12: ▷ Weight new config pnew by w and old configs by 1− w
13: Ωcur ← (1− w) · Ωcur + w · {pnew}
14: θ ←UniformDomainRand(Ωcur, θ,Niters)
15: end for
16: return θ
17: end function
18: function CalcBaselineGap(p, πrl

θ , π
rule)

19: Initialize: samples← ∅
20: for 1 to NTests do ▷ # of reward comparisons
21: E ← S(p) ▷ Create a simulated env by pi
22: rollout ϕrl ∼ πrl

θ (·;E) ▷ Rollout RL πrl

23: rollout ϕrule ∼ πrule(·;E) ▷ Rollout rule-based πrule

24: add Reward(ϕrule)−Reward(ϕrl) to samples
25: end for
26: return mean(samples)
27: end function

A.4 Testbed setup

ABR: To test our model on a client-side system, we first leverage the testbed from Pen-

sieve [8], which modifies dash.js (version 2.4) to support MPC, BBA, and RL-based ABR

algorithms. We use the “Envivio- Dash3” video which format follows the Pensieve settings.

In this emulation setup, the client video player is a Google Chrome browser (version 85)

and the video server (Apache version 2.4.7) run on the same machine as the client. We

use Mahimahi [113] to emulate the network environments from our pre-recorded FCC [100],
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Figure A.1: Real-world network paths used to test ABR and CC policies.

cellular [122], Puffer [153] network traces, along with an 80 ms RTT, between the client and

server. All above experiments are performed on UChicago servers.

CC: We build up CC testbed on Pantheon [151] platform on a Dell Inspiron 5521 machine.

Pantheon uses network emulator Mahimahi [113] and a network tunnel which records packet

status inside the network link. We run local customized network emulation in Mahimahi by

providing a bandwidth trace and network configurations. We run remote network experiment

by deplopying pantheon platform on the nodes shown in Figure A.1. Among all the CC

algorithms tested, BBR [33] and TCP Cubic [60] are provided by Linux kernel and are called

via iperf3. PCC-Aurora [71] and PCC-Vivace [49] are implemented on top of UDP. We train

our models in python and Tensorflow framework and port the models into the Aurora C++

code.

Real network testbed: We also test the Genet-trained ABR and CC policies in real

wide-area network paths (depicted in Figure A.1), including four nodes reserved from [6],

one laptop at home, and two cloud servers.
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ABR Bitrate (Mbps) Rebuffering (s) Bitrate change (Mbps) Reward
MPC 3.98 0.03 0.02 3.66

Path 1 BBA 3.84 0.018 0.15 3.51
Genet 3.87 0.006 0.04 3.77
MPC 3.22 0.041 0.07 2.74

Path 2 BBA 2.81 0.014 0.12 2.55
Genet 3.15 0.008 0.07 3.01
MPC 2.24 0.042 0.04 1.78

Path 3 BBA 1.75 0.03 0.05 1.40
Genet 2.26 0.033 0.02 1.91
MPC 2.93 0.013 0.04 2.76

Path 4 BBA 2.96 0.05 0.03 2.43
Genet 2.88 0.002 0.02 2.84
MPC 2.35 0.027 0.05 2.03

Path 5 BBA 1.82 0.022 0.04 1.56
Genet 2.32 0.004 0.03 2.25

Table A.4: Reward breakdown of Figure 2.16(a) in ABR real-world experiment.

A.5 Details on reward definition

ABR: The reward function of ABR is a linear combination of bitrate, rebuffering time, and

bitrate change. The bitrate is observed in kbps, and the rebuffering time is in seconds, and

bitrate change is the bitrate change between bitrate of current video chunk and that of the

previous video chunk. Therefore, a reward value can be computed for a video chunk. The

total reward of a video is the sum of the rewards of all video chunks.

CC: The reward function of CC is a linear combination of the throughput (packets per

second), average latency (s), and packet loss (percentage) over a network connection. In

training, a reward value is computed using the above metrics observed within a monitor

interval. The total reward is the sum of the rewards of all monitor intervals in a connection.

LB: The reward function of LB is the average runtime delay of a job set, which is measured

by milliseconds. For each server, we observe its total work waiting time in the queue and

the remaining work currently being processed. After the incoming job is assigned, the server

would summarize and update the delay of all active jobs.
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Path CC Throughput (Mbps) 90th percentile latency (ms) Packet loss rate Reward
BBR 164.2 57.25 0.0906 -35.62

Path 1 Cubic 158.2 56.60 0.0072 104.2
Genet 180.5 55.54 0.0063 152.1
BBR 0.2108 3346 0.0407 -1721

Path 2 Cubic 0.2149 6978 0.2206 -4273
Genet 0.1975 6381 0.0267 -3178
BBR 5.40 1581 0.0136 -705.9

Path 3 Cubic 6.63 1400 0.0382 -719.1
Genet 4.91 1180 0.0075 -439.9

Table A.5: Reward breakdown of Figure 2.16(b) in CC real-world experiments.

A.6 Baseline implementation

According to the paper [58], we train an additional RL model for Robustify to improve the

main RL-policy model by generating adversarial network traces inside ABR. The state of the

adversary model contains the bitrate chosen by the protocol for the previous chunk, the client

buffer occupancy, the possible sizes of the next chunk, the number of remaining chunks, and

the throughput and download time for the last downloaded video chunk. The action is to

generate the next bandwidth in the networking trace, in order to optimize the gap between

the ABR optimal policy, RL-policy, and the unsmoothness, which is the absolute difference

between the last two chosen bandwidths. Here, the penalty of unsmoothness is set as 1,

same as the paper.

We use PPO as the training algorithm, and train the Robustify adversary model with a

RL model until they both converge. Afterward, we add the traces Robustify model generated

into the RL training process to retrain the RL. The PPO parameter settings follow the

original paper.

As an alternative implementation, we also use the reward defined in Robustify as the

training signal for BO to search and update environments. For the unsmoothness penalty

here, we empirically tried three numbers: 0.1, 0.5, 1. From our results, penalty=0.5 works

better than others.
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Figure A.2: Training RL and CL with more iterations still cannot outperform Genet.

A.7 Reward value breakdown

Table A.4 and Table A.5 contain the system metrics behind the reward values in Figure 2.16

for ABR and CC, respectively. The breakdown is done by decomposing the reward equations

introduced in Table 2.1. For ABR, Table A.4 shows that Genet tends to train a model that

leads to less rebuffering and more smoothed bitrate selection without significantly sacrificing

the average bitrate. For CC, Table A.5 shows that Genet-trained model tends to have a

lower 90th percentile latency and packet loss rate while not reducing throughput too much

on Path 2 and 3. On Path 1, the performance gain is mainly from the larger throughput

that Genet-trained model enables.

A.8 Train RLs and CLs with more iterations

To understand whether baselines like RLs and CLs can outperform Genet if they are given

more training iterations, we trained RLs and CLs with twice as many training iterations as

Genet. We empirically found that training with more iterations did not help the models

trained by RLs and CLs as much as those trained by Genet. Their learning curves are

shown in Figure A.2.
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