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Abstract
In a Mean Field Game (MFG) each decision maker cares about the cross sectional distri-
bution of the state and the dynamics of the distribution is generated by the agents’ optimal
decisions. We prove the uniqueness of the equilibrium in a class of MFG where the decision
maker controls the state at optimally chosen times. This setup accommodates several prob-
lems featuring non-convex adjustment costs, and complements the well known drift-control
case studied by Lasry–Lions. Examples of such problems are described by Caballero and
Engel in several papers, which introduce the concept of the generalized hazard function of
adjustment. We extend the analysis to a general “impulse control problem” by introducing
the concept of the “Impulse Hamiltonian”. Under the monotonicity assumption (a form of
strategic substitutability), we establish the uniqueness of equilibrium. In this context, the
Impulse Hamiltonian and its derivative play a similar role to the classical Hamiltonian that
arises in the drift-control case.

Keywords Mean field game · Impulse control · Dynamic games

JEL Classification C02 · E10

1 Introduction

Several interesting economic problems feature a continuum of agents subject to idiosyn-
cratic shocks and aggregate dynamics. The equilibrium of these economies is a fixed point
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in which individual decisions depend on aggregates, and aggregate dynamics depend on
individual decisions. The feedback between decisions and aggregates raises non-trivial ques-
tions about the uniqueness of the equilibrium which cannot be addressed computationally.
Such fixed point problems can be represented by the mathematical structure of Mean Field
Games (MFG), namely two coupled partial differential equations with appropriate bound-
ary conditions: a Hamilton–Jacobi–Bellman equation, describing individual choices, and a
Kolmogorov equation, describing the dynamics of the cross sectional distribution. The MFG
formulation provides a rigorous definition of the problem which is useful to analyze the
uniqueness of the equilibrium.

For a broad class of MFG problems, in which the decision maker controls the drift of
a diffusion process, Lasry and Lions [18] establish a well-known uniqueness result for the
equilibrium of a dynamic game given an arbitrary initial condition. These problems are akin
to e.g., dynamic savings problems, as described by Aiyagari [2] and analyzed as a MFG by
Achdou et al. [1]. An important feature of the Lasry–Lions result is that the uniqueness is
ensured by a property of the flow cost function, the so called Lasry–Lions “monotonicity
condition”. This property is a form of “strategic substitutability” of the players’ actions in a
static game.

In this paper we present a complementary uniqueness result for a class of problems where
the decision maker controls the stopping times for resetting the state, rather than controlling
the drift. In otherwords,we examine the uniqueness of the equilibrium in aMFGcharacterized
by a form of “impulse control” instead of “drift control”. These problems are akin to e.g.,
optimal investment or price-setting problems in the presence of fixed costs, pioneered by
Caballero andEngel [10, 12].Our setup assumes that the uncontrolled state follows a diffusion
process, and that the decision maker can take (costly) actions that affect the probability to
control the state. When such a control opportunity arises, the decision maker can reset the
state to any desired level. Consequently, the state follows a diffusion process with jumps, and
the intensity and size of these jumps are optimally determined.1 We demonstrate that under
standard monotonicity conditions the MFG possesses a unique classical equilibrium.

Optimal decisions in the MFG with impulse control are described by two objects. The
first is the optimal reset function, which represents the level where the state is located after
an adjustment. The second is the probability per unit of time of an adjustment opportunity,
which is also a function of the state and time. These two objects depend on time because the
cross sectional distribution evolves through time, and the decision maker is forward looking.
Equivalently, using the terms introduced by Caballero and Engel, the “optimal reset point”
and the “generalized hazard rate” are time dependent and endogenous. The time dependence
is due to the fact that the cross sectional distribution is time varying. The endogeneity is a
consequence of the dependence of the cross sectional distribution on the optimal decision
rules.

To analyze the problem described above we introduce a function which we label Impulse
Hamiltonian. The Impulse Hamiltonian gives the optimized expected reduction in the cost,
as a function of the difference between the value function at the current time and state
and the minimized value function at the current time. The Impulse Hamiltonian serves a
similar purpose as the Hamiltonian in the case of drift control. The Impulse Hamiltonian has
convexity properties that are analogous to the ones of the standard Hamiltonian. Moreover,
the Impulse Hamiltonian has the property, analogue to the one in the drift control, that its
derivative gives the drift of the diffusion that appears in the Kolmogorov–Fokker–Planck

1 As mentioned, a key aspect of the MFG concept is that the decision maker’s flow cost function depends on
the cross-sectional distribution of the state.
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equation. In particular, in the case of the Impulse Hamiltonian, the probability per unit of
time of a change of the state equals (the negative) of its derivative. It turns out that, as
in the drift-control case, the coupling of the Hamilton–Jacobi–Bellman equation with the
Kolmogorov–Fokker–Planck equation can be done using the Impulse Hamiltonian and its
derivative.

Our main result gives sufficient conditions for the equilibrium uniqueness of the MFG.
The conditions are similar to the ones in the drift control case, and essentially require the
“monotonicity” of the flow cost and terminal value function and some uniformity in the
convexity of the Hamiltonian. Recall that the monotonicity of the period cost function has
the interpretation of strategic substitutability in a static game. In our case, besides the same
monotonicity condition on the period cost function, we require some uniformity on the
first and second derivatives of the Impulse Hamiltonian. We can translate the conditions of
the Impulse Hamiltonian to the distribution of random adjustment cost. For instance, the
uniformity of the first derivative is equivalent to having a mass point on the zero cost of
adjustment, which in economic models translate into having some adjustment as in the Calvo
model, or in the Calvo-plus model. The uniformity of the second derivative is equivalent to
a density of the fixed cost bounded from below.

We first illustrate the uniqueness result using aMFGwithout aggregate uncertainty, i.e., in
the language of MFG, the case with “no aggregate noise”. We then consider two extensions.
The first one adds an aggregate noise as often occurs in many applications in economics.
The second one is a version where the controlled state is multidimensional. Examples of
multidimensional control are the multiproduct pricing models of Midrigan [21], Alvarez and
Lippi [4] and Bhattarai and Schoenle [8].

1.1 Applications

We outline three decision problems that fit within our formulation. In the first problem the
decision maker draws a fixed cost of adjustment from an arbitrary distribution with a constant
probability per unit of time.2 If the decisionmaker pays the fixed cost she can exercise control
and reset the state to any desired value. Otherwise the state of the agent remains uncontrolled
and follows a diffusion process until the next (random) time when the decision maker has the
opportunity to change the state. This type of decision problemwas first proposed in Caballero
and Engel [12], analyzed in Caballero and Engel [10, 14], and recently further characterized
in Alvarez et al. [5], and has been used to study optimal investment and pricing decisions by
firms. In these problems the decisionmaker selects a time invariant probability of adjustment,
referred to as the generalized hazard function, as a function of the state. Additionally, upon
adjusting, the state is optimally reset to a time-invariant value, known as the “reset point”.

The second problem stems from papers in applied mathematics that consider continuous-
time setups where the decision maker controls a diffusion process only at random Poisson
times. Some notable contributions in this area include Wang [22], Dupuis and Wang [17],
and Menaldi and Robin [20].3 These papers develop the appropriate variational inequality
that applies to the decision maker’s value function.

2 We also consider the more general case where the agent draws two costs, one for increases and one for
decreases.
3 Menaldi and Robin [20] considers a more general specifications for the distribution of the random times
where the decision maker can control the state, and a different specification of the adjustment cost.

123



518 Mathematics and Financial Economics (2024) 18:515–554

The third type of problems are economic models such as the one in Woodford [23] and
Costain and Nakov [16], where agents choose a probability of adjustment per unit of time
subject to a cost that increases with this probability.

We emphasize that the three problems outlined above consider a decision maker facing a
time-invariant environment, i.e., a stationary distribution of the state. In these environments
there is no feedback from the aggregate state to individual decisions.4 Instead, in this paper
we consider such decision problems as part of a MFG, by focusing on setups where the
distribution of the state evolves dynamically in a way that depends on the agents’ decisions.
In particular, we analyze the uniqueness of the MFG equilibrium, i.e., the uniqueness of the
fixed point, where the decision maker’s flow cost depends on the cross-sectional distribution,
and the cross-sectional distribution evolves according to the optimal decisions of agents.

Our contributions relate to the literature in MFGs. In particular, there are many papers
on uniqueness on MFGs based on the seminal contribution by Lasry and Lions [18] and the
literature that follows it. The vastmajority of this literature focuses on the case of drift control,
and has extended their initial results to different set ups. Our work is related to Bertucci [7]
and Alvarez et al. [3]. These two papers, and the current one, share the property that agents
choose when to pay a fixed cost to change the value of the state. As a consequence, the
optimal decision rule at each time has the form of dividing the state space in two regions, one
where there is inaction, and one where control is exercised, i.e., for a given state adjustment
either occurs or not. But Bertucci [7] differs from Alvarez et al. [3] and the current paper
because, when stopping, the agent does not reset the value at a certain “location”, i.e., the
min value. As a result the density is “not preserved”, that is some players choose to leave
the game. Instead, in Alvarez et al. [3] and the current paper the agents choose the optimal
adjustment rate, which varies with the value of the state, and never leave the game so that the
total density is preserved. More differences need to be noted: in Alvarez et al. [3] we consider
only a perturbation of the MFG equilibrium, but we allow both for the case of monotonicity
and “anti-monotonicity”, i.e., strategic substitutability and complementarity.

We finish with a remark on the separability assumption used in the period cost function.
In our specification we follow the simplest and most widely used specification where the cost
function has an additive separable structure. In particular, there is additive separability in the
period cost function between the effect of (x,m), i.e., the state and the cross sectional density,
and the state x and the cost of adjustment. This is the same type of separability often assumed
in drift control MFGs. The assumption is important since it allows a simple version of the
monotonicity conditions. In several drift control problems, such as in the Aiyagari [2] model,
this assumption does not hold, and a special treatment is needed—see Achdou et al. [1] for
such analysis. Nevertheless, in many impulse control problems such as the one we refer to
in the literature cited above, this separability assumption is satisfied.

1.2 Organization

In Sect. 2 we set up the equilibrium of the mean field game in the simplest case of a one-
dimensional variable. We define the decision maker’s problem, the aggregation, how the
equilibrium relates them as a fixed point, and introduce the concept of the Impulse Hamilto-
nian. In Sect. 3 we present three decision problems that give rise to an Impulse Hamiltonian.
In Sect. 4 we develop the result of uniqueness of the equilibrium for the mean field game. In
Sect. 5 we introduce an exogenous aggregate random variable, in addition to the idiosyncratic

4 In Appendix B we give a detailed description of the control problem and we derive the corresponding HJB
formulation used in the MFG.
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state controlled by the decision maker. In Sect. 6 we extend the set up to a multidimensional
case and prove uniqueness. For this case we use a version with noisy control, but the extent
of the noise can be taken to be arbitrarily small.

2 Set up

We describe the elements that define a MFG. Let P ≡ {m : R → R+,
∫
m(x)dx = 1}

be the space of densities, and 0 < T < ∞ be the time horizon. A MFG is defined by
{ρ, F, H , μ, σ,m0, uT } where: (i) ρ ≥ 0 is the discount rate, (ii) F : R × P → R is the
flow cost with global coupling, (iii) H : R+ × R → R− is the Impulse-Hamiltonian, (iv)
μ : R → R, and σ : R → R+ are the drift and diffusion coefficients of the uncontrolled
state, (v) m0 ∈ P is the initial cross sectional density, (vi) uT : R × P → R is the terminal
value function.

The equilibrium of the MFG is given by the triplet {x̄, u,m}: (a) a path for the optimal
reset point x̄ : [0, T ] → R, (b) a value function u : R×[0, T ] → R, and (c) a cross-sectional
densitym : R×[0, T ] → R+. This triplet has to solve the coupledHamilton–Jacobi–Bellman
equation, and the corresponding Kolmogorov Forward equation described next.

2.1 Hamilton–Jacobi–Bellman equation

Given a path {m(x, t)}, the value function u and the path x̄ solves the following HJB equation
and boundary conditions:

ρu(x, t) = H (u(x, t) − u(x̄(t), t), x) + F(x,m(t)) + L (u(x, t))

+ ∂t u(x, t) for all t ∈ [0, T ], x ∈ R (1)

u(x, t) ≥ u(x̄(t), t) for all t ∈ [0, T ], x ∈ R (2)

u(x, T ) = uT (x,m(T )) for all x ∈ R (3)

where L gives the expected change of the value function per unit of time due to the change
in x , and for any function f (·, t) that is twice differentiable is defined as

L ( f ) (x, t) = μ(x)∂x f (x, t) + 1
2σ

2(x)∂xx f (x, t)

Equation (2) defines x̄(t) as the optimal reset point at t , i.e., it defines the optimal decision
for an agent that can adjust her state. Finally, (3) specifies that when the game ends at t = T ,
the decision maker receives the given terminal reward uT .

2.2 Interpretation of the Impulse-Hamiltonian

The Impulse-Hamiltonian H : R+ × R → R− gives the expected change (decrease) in the
value function per unit of timewhen the highest difference between the current value function
and the minimum of the value function is ν, i.e., ν = u(x, t) − u(x̄(t), t), conditional on the
current state x . This change occurs as the consequence of an optimal impulse, i.e., a discrete
adjustment, that changes the state from x to x̄(t), i.e., from the current value x to the value
that minimizes u(·, t). We let λ̄(ν, x) be the probability (per unit of time) of an adjustment
given ν. We impose that H(0, x) = 0 for all x , since at the optimum there is nothing that
can be gained by an adjustment. We postulate that λ̄ is positive, and increasing in ν, i.e.,
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λ̄(ν, x) ≥ 0, λ̄(0, x) = 0, and λ̄ν(ν, x) > 0.

We postulate that Hν is (minus) the probability of adjustment per unit of time, i.e.,

Hν(ν, x) = −λ̄(ν, x) and Hνν(ν, x) = −λ̄ν(ν, x) < 0.

Two comments are in order. Firstly as of now it is not clear why (minus) the derivative of the
Impulse Hamiltonian equals the probability (per unit of time) of adjustment. In Sect. 3 we
present three problems where we derive the Impulse Hamiltonian featuring the properties
assumed here. Secondly we note that the first derivative of the Impulse Hamiltonian gives
what Caballero and Engel [9] and Alvarez et al. [5] call the generalized hazard function

�(x, t) ≡ λ̄(u(x, t) − u(x̄(t), t)) = −Hν(u(x, t) − u(x̄(t), t), x).

2.3 Fokker–Planck–Kolmogorov forward equation

Given the value function {u(x, t)} and path {x̄(t)} the cross sectional density m ≥ 0 solves
the partial differential equation

∂tm(x, t) = L∗ (m) (x, t) − λ̄ (u(x, t) − u(x̄(t), x), x) m(x, t) (4)

for all t ∈ [0, T ], all x ∈ R, x �= x̄(t), where L∗ is defined at x for a function f (·, t) that is
twice differentiable as

L∗ ( f ) (x, t) = −∂x (μ(x) f (x, t)) + 1
2∂xx

(
σ 2(x) f (x, t)

)
.

We remark that the term λ̄ (u(x, t) − u(x̄(t), x), x) m(x, t) is the probability flux that leaves
the state (x, t) as a consequence of the optimal adjustment. Moreover, this flux is the product
of the probability of adjustment λ̄ (u(x, t) − u(x̄(t), x), x) per unit of time, multiplied by the
density at that point m(x, t). Finally, (4) does not apply at (x, t) = (x̄(t), t). In this point
there is an influx coming in from all the other points (x, t) with x �= x̄(t), so its evolution is
not local. We return to this issue in Lemma 1. Alternatively we could have written (4), for
all x and t ∈ [0, T ], as:

∂tm(x, t) = L∗ (m) (x, t) − λ̄ (u(x, t) − u(x̄(t), x), x) m(x, t) + δ(x − x̄(t))E(t) (5)

where E(t) ≡ ∫
λ̄(x, t)m(x, t)dx , and where the derivatives in this equation should be

interpreted in the sense of distributions. Notice that (5) includes the termwith a delta function
localized at x̄(t) times the flow of exit per period E(t). The extra term δ(x − x̄(t))E(t) has
the interpretation of the flow of entry into x = x̄(t) per period.5

We can rewrite the time evolution ofm using the assumed property of the Impulse Hamil-
tonian, namely that λ̄(ν, x) = −Hν (ν, x) is the probability of an adjustment per unit of time
if ν = u(x, t) − u(x̄(t), t). Using this property, we can rewrite the time evolution, for all
t ∈ [0, T ], x ∈ R, x �= x̄(t), as

∂tm(x, t) = L∗ (m) (x, t) + Hν (u(x, t) − u(x̄(t), x), x) m(x, t). (6)

We can also write a version of (6) that holds for all x , using the delta function and including
the term E(t)δ(x − x̄(t)) as was done in (5).

5 See Caceres et al. [15] for an application with a similar term.

123



Mathematics and Financial Economics (2024) 18:515–554 521

Finally, to completely determine the time evolution, we require that m must preserve the
probability and that it is initialized by m0, namely for all x ∈ R and for all t ∈ [0, T ],

1 =
∫ ∞

−∞
m(x, t)dx, (7)

m0(x) = m(x, 0), (8)

where we note that the density m cannot be differentiable at x̄ due to the incoming flow of
agents that are re-injected there after adjustment, as further discussed below.

2.4 Relative value function

Note that the argument of H in the Hamilton–Bellman–Jacobi equation and of Hν in the
Kolmogorov forward equation isu(x, t)−u(x̄(t), t).Motivated by this,we define the function
v, for all x and for all t ∈ [0, T ], as

v(x, t) = u(x, t) − u(x̄(t), t) (9)

We are now ready to define a classical equilibrium for the MFG.

Definition 1 Fix an initial densitym0 and a terminal value uT . A classical equilibrium of the
MFG is a triplet of functions {u,m, x̄} where (a) {u, x̄} satisfies the p.d.e. (1), the boundary
conditions in (2), and the terminal condition in (3) given m, and where (b) m satisfies the
p.d.e. (6), the condition in (7), and the initial condition in (8) given {u, x̄}.

3 Three examples of impulse Hamiltonian

We present here three decision problems where we can define the impulse Hamiltonian with
the properties introduced above. Wang [22] and Dupuis and Wang [17] also study similar
decision problems in one dimension, which can be written using an Impulse Hamiltonian.
Menaldi and Robin [20] study a decision problem in many dimensions, a more general setup
that cannot be accommodated by the Impulse Hamiltonian.

In Appendix B we use a discrete-time discrete-state model to explain the foundations
of these problems. We first define the control problem of the decision maker in sequence
form, and the corresponding Bellman equation. The discrete time notation is chosen so that
the corresponding continuous time formulation is immediate. Finally we use the discrete
time Bellman equation to formally derive the continuous time HJB equation for each model,
namely (10) and (14) used in the body of the paper.

3.1 Costly probabilistic adjustment

In this example, the decision maker pays a flow cost c(λ, x) and obtains a probability per unit
of time of changing the state, λ, i.e., she decides the Poisson arrival rate of an opportunity
to change the state. The cost depends on the current level of the state x and on the chosen
probability λ. If the opportunity materializes, which occurs with probability λ, the decision
maker can choose the level of the state freely, and she will do so to minimize u(·, t). The
model here is a generalization of the one in Woodford [23] and Costain and Nakov [16].

The value function u(x, t) solves (see Appendix B.1)

ρu(x, t) = ut (x, t) + L (u) (x, t) + F(x,m(t)) (10)
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+ min
λ≥0

[

c(λ, x) − λ

(

u(x, t) − min
y

u(y, t)

)]

for all x ∈ R and t ∈ [0, T ]
and

u(x, T ) = uT (x,m(T )) for all x ∈ R, (11)

where the path of m(t) is taken as given by the decision maker.
We assume that the cost function c depends on the probability λ and the current value of

the state x , i.e., c : R+ × R → R, and that, for each x ∈ R, c(·, x) is differentiable with
c(λ, x) ≥ 0, c(0, x) = 0, cλ(λ, x) ≥ 0, cλ(0, x) = 0, and

cλλ(λ, x) > 0 if cλ(λ, x) > 0.

We now rewrite this problem introducing x̄(t) = argminy u(y, t), i.e., the optimal choice
x̄(t), for all t ∈ [0, T ]. Then we define the impulse Hamiltonian for any ν ≥ 0 as

H(ν, x) = min
λ≥0

c(λ, x) − λν (12)

and the optimal choice λ̄(ν, x) = argmin
λ≥0

c(λ, x) − λν, (13)

with the following properties:

1. H(0, x) = 0.
2. H(ν, x) ≤ 0, and Hν(ν, x) < 0 for ν > 0.
3. Hν(ν, x) = −λ̄(ν, x) solving ν = cλ

(
λ̄(ν, x), x

)
for ν > 0.

4. Hνν(ν, x) = −λ̄ν(ν, x) = −1/cλλ

(
λ̄(ν, x), x

)
< 0 for ν > 0.

For future reference note that, if there is an 	 > 0 such that c(λ, x) = 0 for all λ ∈ [0, 	]
and x , then

Hν(ν, x) ≤ −	 < 0.

Also, if there is L > 0 such that cλλ(λ, x) > L > 0 for all λ > l and x , then

Hνν(ν, x) ≤ −L < 0 for all ν, x .

3.2 Random fixed costs

In this case, with probability κ(x) > 0 per unit of time, the decision maker draws a fixed
cost of adjustment ψ from a distribution with a mass point G(0, x) ≥ 0 for ψ = 0, and
with a density g(ψ, x) for ψ > 0. The mass point G and density g are allowed to depend
on the state x , so g : (0,∞) × R → [0,∞). It is assumed that successive draws of the
fixed cost, conditional on x , are independently distributed. A decision maker with state (x, t)
and a realization ψ of the cost at hand can either pay the cost ψ and adjust, changing its
value function from u(x, t) to ψ + u(x̄(t), x) where x̄(t) = argminx u(x, t), or not pay the
fixed cost and let the state x evolve as uncontrolled. This is a continuous time version of the
decision problem in Caballero and Engel [11–14], as characterized in Alvarez et al. [5].

The value function solves (see Appendix B.2)

ρu(x, t) = ut (x, t) + L (u) (x, t) + F(x,m(t)) + κ(x)G(0, x) (u(x̄(t), t) − u(x, t))

+ κ(x)
∫ ∞

0
min {0 , ψ + u(x̄(t), t) − u(x, t)} g(ψ, x)dψ (14)

for all x ∈ R and t ∈ [0, T ]
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and

u(x, T ) = uT (x,m(T )) for all x ∈ R, (15)

where the path of m(t) is taken as given by the decision maker.
For this case we define, for any ν ≥ 0, the function H : R+ × R → R. In this model,

H(ν, x) = κ(x)

[

−G(0, x)ν +
∫ ∞

0
min {0 , ψ − ν} g(ψ, x)dψ

]

= κ(x)

[

−G(0, x)ν +
∫ ν

0
(ψ − ν) g(ψ, x)dψ

]

, (16)

and observe that

Hν(ν, x) = −κ(x)

[

G(0, x) +
∫ ν

0
g(ψ, x)dψ

]

≤ 0 so that

λ̄(ν, x) = κ(x)

[

G(0, x) +
∫ ν

0
g(ψ, x)dψ

]

≥ 0, and (17)

Hνν(ν, x) = −κ(x)g(ν, x) ≤ 0 so that λ̄ν(ν, x) = κ(x)g(ν, x) ≥ 0. (18)

For future reference we note that, if there is an 	 > 0 such that κ(x)G(0, x) ≥ 	 > 0 for
all x , then

Hν(ν, x) ≤ −	 < 0.

Moreover, if there is L > 0 such that κ(x)g(ν, x) ≥ L , then

Hνν(ν, x) ≤ −L < 0.

3.3 Asymmetric random fixed costs

We present here a variation of the problem in Sect. 3.2. Given that the model is closely
related to the problem in that section, we give fewer details. As in the previous case, when
the Poisson clock with intensity κ gives the agent an opportunity to adjust, she draws a pair
of fixed cost ψ+, ψ− from a CDF G. If the agent decides to increase its value of x , i.e., if
x(t+) = x̄(t) > x , then the agent pays ψ+. If the agent decides to decrease the value of x ,
i.e., if x(t+) = x̄(t) < x , then the agent pays ψ−. If the agent does not change x , then she
does not pay any cost. This specification allows a very asymmetric adjustment of increases
and decreases, by specifying different marginal distributions of ψ+ and ψ−. One example is
to make adjustment that implies decreases prohibitively costly, so if an adjustment occurs it
is an increase. The reader can verify that this specification implies an impulse Hamiltonian
with the same properties discussed in Sect. 3.2. A capital investment model allowing for
asymmetric adjustment costs is presented and mapped to the data in Baley and Blanco [6]
and Lippi and Oskolkov [19].

4 Uniqueness of MFG: benchmark case

We prove the uniqueness of the classical one-dimensional MFG. We start by stating the
assumptions that we use on the flow cost function F , the terminal value function uT , the
drift and volatility μ, σ 2, and the impulse Hamiltonian H . Then we present two lemmas,
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the second one being the key for the proof, and state the main result. We need the following
assumptions.

1. Monotonicity assumption. F and uT are weakly monotone if, for any ma,mb ∈ P ,
∫ ∞

−∞

(
F(x,ma) − F(x,mb)

) (
ma(x) − mb(x)

)
dx ≥ 0, (19)

and
∫ ∞

−∞

(
uT (x,ma) − uT (x,mb)

) (
ma(x) − mb(x)

)
dx ≥ 0, (20)

F or uT are strictly monotone if the inequalities hold strictly every time that
∫ ∞
−∞(ma −

mb)2dx > 0.
2. Boundedness of F and uT . There exists B > 0 s.t., for allm ∈ P and x ∈ R, |F(x,m)| ≤

B and |uT (x,m)| ≤ B.
3. Regularity of drift and volatility. The drift μ(·) is once continuously differentiable, σ(·)

is twice continuously differentiable, and for some B > 0

||σ ||∞ ≤ B, ||μ||∞ ≤ B, ||∂xμ||∞ ≤ B, ||∂xσ ||∞ ≤ B (21)

4. Impulse Hamiltonian. The impulse Hamiltonian is nonpositive and twice continuously
differentiable and, for all x and ν > 0,

H(0, x) = 0, Hν(ν, x) ≤ 0 and Hνν(ν, x) ≤ 0. (22)

To state the uniqueness result it is necessary to revisit the definition of the MFG to add
some regularity conditions.

Definition 2 Let {u,m, x̄} be a classical equilibrium of the MFG, specified as in Definition
1. We say that {u,m, x̄} is a classical regular equilibrium if in addition:

1. x̄ is a continuous function of time,
2. u is once continuously differentiable with respect to t , twice continuously differentiable

with respect to x for all t with

∂xu(x, t) → 0 as |x | → 0 (23)

3. m is continuous on (x, t) and, for all t ∈ [0, T ], ∫ ∞
−∞ m(x, t)dx = 1 (mass preservation),

m is once continuously differentiable with respect to t everwhere, and twice continuously
differentiable with respect to x for (−∞, x̄(t)) and (x̄(t),∞) with

∂xm(x, t) → 0 as |x | → ∞, (24)

The next lemma uses the conservation of probability to obtain a useful equality between
the adjustment flows, a property implied by the mass conservation of the problem.

Lemma 1 Assume that m solves the Kolmogorov forward equation given {v, x̄} as described
by (6), (7) and (8). Assume that m satisfies the integrability conditions of a classical regular
equilibrium in (24), and that σ 2, μ satisfies the assumptions in (21). Then, for all t ∈ [0, T ],
we have

1
2σ

2(x̄(t))
[
∂xm(x̄(t)−, t) − ∂xm(x̄(t)+, t)

] = −
∫ ∞

−∞
m(x, t)Hν(v(x, t), x)dx . (25)
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For each t the left hand side of (25) is the difference between the probability inflow and
outflow at x̄(t). Note that this requires that ∂xm(·, t) has a different right and left limit.

Given two classical regular equilibria of the MFG {ua,ma, x̄a, } and {ub,mb, x̄b} we
define for all t ∈ [0, T ]

K (t) ≡
∫ ∞

−∞

(
ua(x, t) − ub(x, t)

) (
ma(x, t) − mb(x, t)

)
dx . (26)

The next Proposition obtains the key result to establish uniqueness, in a similar manner
to the classical Lasry–Lions inequality.

Proposition 1 Assume that F and uT are both bounded, and that they satisfies the weak
monotonicity conditions given by (19), and that H is weakly decreasing and weakly concave
as given by (22). Furthermore, assume that μ and σ are once and twice continuously differ-
entiable in x. Suppose that {ua,ma, x̄a} and {ua,mb, x̄b} are two classical regular equilibria
of the MFG and let va, vb be defined as in (9). Then for all t ∈ [0, T ]

d

dt
K (t) ≤ ρK (t)

+
∫ ∞

−∞
ma(x, t)

[(
va(x, t) − vb(x, t)

)
Hν(v

a(x, t), x)

+ H(vb(x, t), x) − H(va(x, t), x)
]
dx

+
∫ ∞

−∞
mb(x, t)

[(
vb(x, t) − va(x, t)

)
Hν(v

b(x, t), x)

+ H(va(x, t), x) − H(vb(x, t), x)
]
dx

−
∫ ∞

−∞

(
F

(
x,ma(t)

) − F
(
x,mb(t)

)) (
ma(x, t) − mb(x, t)

)
dx (27)

Moreover, K (t) = 0 for all t ∈ [0, T ].
The strategy of the proof of Proposition 1 is similar to the one pioneered by Lasry and

Lions. There are three differences. Firstly, m(·, t) is not differentiable at x = x̄(t). This
brings an extra complication, which can be dealt in one dimension by careful analysis of
the terms at x = x̄a and x = x̄b. Indeed, as the reader can check in the proof, as a result
of this lack of differentiability the right hand side of (27) contains an extra term which is
bounded by sups Hν(s, x)[va(x̄b(t), t) + vb(x̄a(t), t)] ≤ 0. Lemma 1 is used to control this
term. Secondly, the p.d.e.’s for the HJB uses the Impulse Hamiltonian H which depends on
v(x, t) = u(x, t)−u(x̄(t), t), as opposed to the classical Hamiltonian which depends on the
first space derivative of u (i.e., derivative with respect to x) in the drift control case. Thirdly
the p.d.e. for the KFE is coupled using the level of the Impulse Hamiltonian H , as opposed
to the divergence in the case of the drift control case. Nevertheless, the convexity properties
of the Impulse Hamiltonian allow a similar proof strategy as the classical Lasry and Lions
result. Finally, the integrability conditions assumed in Definition 2 are used here for K (t)
and its time derivative. Before comparing with the drift control, note that (27), can also be
written, under the simplifying assumption that H̄νν is a uniform upper bound on the second
derivative Hνν(ν, x), as follows:

d

dot
K (t) ≤ ρK (t) + H̄νν

2

∫ ∞

−∞

[
ma(x, t) + mb(x, t)

] (
va(x, t) − vb(x, t)

)2
dx
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−
∫ ∞

−∞

(
F

(
x,ma(t)

) − F
(
x,mb(t)

)) (
ma(x, t) − mb(x, t)

)
dx (28)

To be concrete, we recall that in the drift control setting ũi , m̃i are the value functions and

distributions, and to simplify let ˜̄Hpp < 0 be a uniform upper bound on the second derivative
of the corresponding classical Hamiltonian H̃(p, x), then the Lasry–Lions inequality, for

K̃ (t) ≡
∫ ∞

−∞

(
ũa(x, t) − ũb(x, t)

) (
m̃a(x, t) − m̃b(x, t)

)
dx and

d

dt
K̃ (t) = ρ K̃ (t) +

˜̄Hpp

2

∫ ∞

−∞

(
m̃a(x, τ ) + m̃b(x, τ )

) (
∂x ũ

a(x, τ ) − ∂x ũ
b(x, τ )

)2
dx

−
∫ ∞

−∞

(
F

(
x, m̃a(t)

) − F
(
x, m̃b(t)

)) (
m̃a(x, t) − m̃b(x, t)

)
dx

This expression is to be compared with (28) for our case.
Using the previous two lemmas we can show the main result, i.e., the uniqueness of the

classical MFG equilibrium.

Theorem 1 Assume that (i) F and uT are bounded, (ii) F is strictly monotone and uT
weakly monotone as defined in (19) and (20), (iii) H satisfies the conditions given by (22)
with Hνν(v, x) < 0 for all v > 0, and that (iv) μ and σ are once and twice continuously
differentiable in x. Let {ua,ma, x̄a} and {ub,mb, x̄b} be two classical regular MFG equilib-
rium as in Definition 2 for the initial distribution m0 and terminal value uT . Then ma = mb,
ua = ub, and x̄a = x̄b, i.e., a classical regular equilibrium is unique.

The previous theorem is the main result of this paper. We remark that our proof uses both
strict concavity of H , i.e., Hνν < 0, and strict LLmonotonicity of F . The strict monotonicity
of F is what is required for uniqueness of Nash in the static non-atomic games. Nevertheless,
in the standard classical MFG of drift control, sufficient conditions for uniqueness are weak
monotonicity of F and weak convexity of H̃ , with either of them holding in the strict sense.
We believe that in our case, at the cost of a more cumbersome proof, uniqueness will follow
from both weak concavity of Hνν and weak LLmonotonicity of F , and with either one of the
two holding in the strict sense. Finally, the theorem states that the triplet {u,m, x̄} is unique.
Nevertheless, the uniqueness of the triplet does not imply that u(·, t) has a unique minimum.

The boundedness condition for F and uT can be exchanged by other integrability condi-
tions, which implies that integrals of v are well defined, the limits of v(x, t) are bounded as
|x | diverges. Likewise conditions (23) and (24) can be relaxed and still control the boundaries
in several of the terms in the integration by parts.

5 Adding an exogenous aggregate state

We consider here the case where the state of the problem is given by a triplet (x, z, t), where
x is the state that can be controlled and affects the flow cost, while z is the state, common
to all agents, that cannot be controlled, and both affect the flow cost. In this problem, the
decision maker controls the probability of an adjustment of x , given the state (x, z, t). If an
adjustment takes place, then the state will go from (x, z) at time t to (x̄(z, t), z) so x̄(z, t) is
the optimally chosen value of x . The value function u has arguments (x, z, t). The Impulse
Hamiltonian depends on the decrease in cost, conditional on adjustment, which we denote
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by u(x, z, t) − u(x̄(z, t), z, t) as well as on (x, z). Two economic examples giving rise to
problems with such a structure will be presented.

The common state z follows a diffusion dz = μ̂(z)dt + σ̂ (z)dŴ , where Ŵ is a standard
Brownian motion. In this case the law of motion for the density of z can be written as:

∂t n(z, t) = −∂z
(
μ̂(z)n(z, t)

) + ∂zz

(
σ̂ 2(z)

2
n(z, t)

)

. (29)

To simplify the analysis we assume that the cross sectional distribution of z is at steady
state, and hence we omit the t index and simply write

0 = −∂z
(
μ̂(z)n(z)

) + ∂zz

(
σ̂ 2(z)

2
n(z)

)

.

5.1 The Hamilton–Jacobi–Bellman equation

Given a path {m(x, z, t)}, the value function u and the path x̄(z, t) solves the following HJB
equation and boundary conditions, for all t ∈ [0, T ] and x ∈ R

ρu(x, z, t) = H (u(x, z, t) − u(x̄(z, t), z, t), x, z)

+ F(x, z,m(t)) + L (u) (x, z, t) + ∂t u(x, z, t), (30)

u(x, z, t) ≥ u(x̄(t, z), z, t), (31)

u(x, z, T ) = uT (x, z,m(T )), (32)

where L gives the expected change of the value function per unit of time, due to the change
in x, z, and is defined for a twice continuously differentiable function f , as

L ( f ) (x, z, t) = μ̂(z)∂z f (x, z, t) + μ(x, z)∂x f (x, z, t)

+ 1
2σ

2(x, z)∂xx f (x, z, t) + 1
2 σ̂

2(z)∂zz f (x, z, t).

Note that the optimal reset x̄(z, t) depends both on t and z. So, upon an adjustment at time t ,
the state of the decision maker jumps from (x, z) to (x̄(z, t), z). Also, implicit in the notation
for L is the simplifying hypothesis that the brownians for x and z are independent, i.e., at
times where there is no adjustment we assume that dx = μ(x, z)dt + σ(x, z)dW where
E[dŴ , dW ] = 0.

In this section, we define v as

v(x, z, t) = u(x, z, t) − u(x̄(x, z), z, t). (33)

5.2 Fokker–Planck–Kolmogorov Forward equation

Given the value function {u(x, z, t)} and path {x̄(z, t)}, the cross sectional density m solves,
for all t ∈ [0, T ], (x, z) ∈ R

2, x �= x̄(z, t), the partial differential equation

∂tm(x, z, t) = L∗ (m(x, z, t)) + Hν (u(x, z, t) − u(x̄(z, t), x), x, z) m(x, t) and (34)

1 =
∫ ∞

−∞

∫ ∞

−∞
m(x, z, t)dxdz, (35)

with initial condition m(x, z, 0) = m0(x, z), and where L∗ is defined at x, z, for a function
g(·, t) that is twice differentiable, as

L∗ (g) (x, z, t) = −∂x (μ(x, z)g(x, z, t)) + 1
2∂xx

(
σ 2(x, z)g(x, z, t)

)
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− ∂z
(
μ̂(z)g(x, z, t)

) + 1
2∂zz

(
σ̂ 2(z)g(x, z, t)

)
.

As before, −Hν (u(x, z, t) − u(x̄(z, t), x), x, z), gives the optimally chosen probability of
adjustment.

The initial condition for m has to satisfy

m(x, z, 0) = m0(x, z) for all x, z with
∫ ∞

−∞
m0(x, z)dx = n(z) for all z. (36)

We define the conditional probability as:

m(x, t |z) = m(x, z, t)/n(z, t) = m(x, z, t)/n(z) (37)

and note that, for each (z, t),
∫ ∞

−∞
m(x, z, t)dx = n(z) and

∫ ∞

−∞
∂tm(x, z, t)dx = 0. (38)

5.3 Two “monotone” price setting examples

We provide two price setting examples that give rise to the setup described above. In both
examples x denotes the price charged by the firm, and the firm can only change its price if
it pays a cost, which can be a costly probability of adjustment as in Sect. 3.1, or a random
menu cost as in Sect. 3.2. In the first example the marginal cost of the firm depends on the
output of the rest of the industry. In the second example the demand of the firm depends on
the average price charged by the other firms. Both cases are simple enough so that checking
monotonicity is easily done.
Example 1: Input price dependent on industry output. The demand is given by D(x, z),
which we assume to be decreasing in the price x , and z is an exogenous shock. The marginal
cost of the firm depends on the price of the input, which in turn is a function of the industry’s
output. The industry output is given by D̄ ≡ ∫

D(x ′, z′)m(x ′, z′)dx ′dz′, where m is the
cross sectional distribution of firms indexed by x, z. The marginal cost is given by c(D̄, z) =
γ (z) + θ D̄, where θ is a constant. Since we will be minimizing the objective function, we
let F be minus the profits. Then the flow cost, i.e., “minus the profits”, is

F(x, z,m) = − [
x − c

(
D̄, z

)]
D(x, z) = − [

x − γ (z) − θ D̄
]
D(x, z) ≡ F̃(x, z, D̄).

To discuss whether the static game defined by F̃ features strategic complementarity or
substitutability, we introduce x∗, the optimal price chosen by the firm in the static game,
given by

x∗(D̄) = argmin
x

F̃(x, z, D̄).

A straightforward computation gives

∂x∗(D̄)

∂ D̄
= −θ

Dx (x∗, z, D̄)

F̃xx (x∗, z, D̄)
.

Note that D̄ is smaller ifm is replaced bym′ that is stochastically higher, i.e., if all firms charge

higher prices the demand is lower. Hence ∂x∗(D̄)

∂ D̄
< 0 corresponds to the case of strategic

complements in the static game, and ∂x∗(D̄)

∂ D̄
> 0 corresponds to the case of strategic substi-

tutes. Hence, since F̃xx (x∗, z, D̄) ≥ 0 because x∗ is a minimum and since Dx (x∗, z, D̄) < 0
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because demand is decreasing in the price, the case where θ > 0 is one where the firms’
prices are strategic substitutes in the static game.

We can easily check weak monotonicity in this example. Indeed, let ma(x, z) =
f a(x |z)n(z) and mb(x, z) = f b(x |z)n(z). Then (omitting the extremes of integration for
simplicity)
∫ ∫ (

F(x, z,ma) − F(x, z,mb)
)

(dma − dmb)

=
∫

n(z)
∫ (

F(x, z,ma) − F(x, z,mb)
)

( f a − f b)dxdz

= θ

[∫
n(z)

(∫
D(x, z) f a(x |z)dx −

∫
D(x, z) f b(x |z)dx

)

dz

]2
≥ 0 ⇐⇒ θ > 0.

Thus monotonicity requires that the marginal cost increases with the industry output, which
in this problem implies that the firms’ prices are strategic substitutes in the static game.
Example 2: Cross demand elasticity dependent on the average price. The demand for the
good of the firm depends on its own price x and on the average price X ≡ ∫

x ′ dm(x ′, z′). We
consider the following demand D(x, z, X) = D0(x, z)−θX , where θ is a constant. Note that
θ < 0 corresponds to the case where the goods are substitutes in the demand system, while
θ > 0 corresponds to the case where the goods are complements in the demand system. We
assume that the marginal cost is given by γ (z). Then the flow cost, i.e., “minus the profits”,
is (omitting the extremes of integration)

F(x, z,m) = − (x − γ (z)) (D0(x, z) − θX)

= −(x − γ (z))D0(x, z) − γ (z)θ
∫ ∫

x ′m(x ′, z′)dx ′dz′

+ θx
∫ ∫

x ′m(x ′, z′)dx ′dz′

≡ F̃(x, z, X).

Notice that substitution or complementarity in the demand system are different than “strate-
gic” substitution or complementarity used in game theory as referred to the agent’s actions.
We now turn to discuss the strategic complementarity or substitution in the static game by
introducing

x∗(X) = argmin
x

F̃(x, z, X).

A straightforward computation gives

∂x∗(X)

∂X
= −θ

1

F̃xx (x∗, z, X)
,

where we notice that F̃xx (x∗, z, X) ≥ 0 because x∗ is a minimum, so that ∂x∗(X)
∂X < 0 implies

that the prices are strategic substitutes in the static game.
We can easily check monotonicity in this example. Let Xk ≡ ∫ ∫

x mk(x, z)dxdz for
k = a, b, so that (omitting the extremes of integration)
∫ (

F(x, z,ma) − F(x, z,mb)
)

(dma − dmb)

= θ

[

Xa
∫ ∫

x (ma(x, z) − mb(x, z))dxdz − Xb
∫ ∫

x (ma(x, z) − mb(x, z)) dxdz

]
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= θ(Xa − Xb)2 ≥ 0 ⇐⇒ θ > 0.

Thus monotonicity requires that the prices are strategic substitutes in the static game.

5.4 Uniqueness of equilibrium of theMFG

We first list the assumptions onμ, μ̂, σ 2, σ̂ 2, F and uT , and then give the regularity assump-
tions on the equilibrium objects u,m, x̄ . For the exogenous objects we assume that

1. Boundedness of μ and σ and their x, z derivatives are bounded.
2. Boundedness of μ̂ and σ̂ and their z derivatives are bounded.
3. The functions F and uT are continuous and bounded.
4. The impulse Hamiltonian H(v, x, z) is twice continuously differentiable in v, with

Hν(v, x, z) ≤ 0 and Hνν(v, x, z) ≤ 0.

The definition of monotonicity is the same, i.e., we say that f : R2 × P → R is weakly
monotone if, for any two densities ma,mb

∫ ∞

−∞

∫ ∞

−∞

(
f (x, z,ma) − f (x, z,mb)

) (
ma(x, z) − mb(x, z)

)
dxdz ≥ 0 .

In the definition of a classical regular equilibrium we require u,m, x̄ to be smooth and
integrable as follows

1. The function x̄(z, t) is a continuous function of time.
2. The function u is once continuously differentiable on t and twice continuously differen-

tiable on (x, z) derivatives for each t .
3. The density m is integrable, its x derivatives converge to zero as |x | → ∞ for each t .

Likewise, its z derivatives converge to zero as |z| → ∞.

Now we start with the characterization. The next lemma is a generalization of the analysis
of the probability flux for the benchmark case.

Lemma 2 For any z ∈ R and t ∈ (0, T ), if m solves the KFE, we have

1
2σ

2(x̄(z, t), z)
[
∂xm(x̄−(z, t), z, t) − ∂xm(x̄+(z, t), z, t)

]

= −
∫ ∞

−∞
m(x, z, t)Hν(v(x, z, t), x, z) dx . (39)

For future reference we define

v(x, z, t) ≡ u(x, z, t) − u(x̄(z, t), z), t) for all x, z, t

as the natural extension of our previous definition for v in the benchmark case. Likewise, we
define K (t, z) and K̄ (t) as

K (t, z) ≡
∫ ∞

−∞

(
ua(x, z, t) − ub(x, z, t)

) (
ma(x, z, t) − mb(x, z, t)

)
dx and

K̄ (t) ≡
∫ ∞

−∞
K (t, z)dz

K̄ (t) =
∫ ∞

−∞

∫ ∞

−∞

(
ua(x, z, t) − ub(x, z, t)

) (
ma(x, z, t) − mb(x, z, t)

)
dxdz (40)

By following an appropriately adapted version of the steps used in the benchmark case, we
can show the main step for the uniqueness of equilibrium, i.e., a version of the Lasry–Lions
inequality. This is done in the next proposition.
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Proposition 2 Let {ua, x̄a,ma} and {ub, x̄b,mb} be two classical regular equilibria of the
MFG, and assume that (i) F and uT are bounded, (ii) that F is LL weakly monotone, and
that (iii) H is decreasing and concave. Let K̄ be defined as (40). Then

d

dt
K̄ (t) ≤ ρ K̄ (t) −

∫ ∞

−∞

∫ ∞

−∞

(
f (x, z,ma(t)) − f (x, z,mb(t))

)

(
ma(x, z, t) − mb(x, z, t)

)
dxdz

+
∫ ∞

−∞

∫ ∞

−∞
ma(x, z, t)

(
va(x, z, t) − vb(x, z, t)

)
Hν(v

a(x, z, t), x, z)dxdz

+
∫ ∞

−∞

∫ ∞

−∞
mb(x, z, t)

(
vb(x, z, t) − va(x, z, t)

)
Hν(v

b(x, z, t), x, z)dxdz

+
∫ ∞

−∞

∫ ∞

−∞

(
ma(x, z, t) − mb(x, z, t)

)

[
H(vb(x, a, t), x, z) − H(va(x, z, t), x, z)

]
dxdz

The uniqueness of equilibrium can be obtained following similar steps as in the benchmark
case. As in the benchmark case, it does require a stricter version of monotonicity for f (·),
and a stricter concavity of H , i.e., that Hνν < 0. Nevertheless, the key step for the uniqueness
result is the inequality in Proposition 2. We leave the details of the uniqueness result to the
reader, but they are completely parallel to the ones of the benchmark case.

6 Multidimensional, noisy optimal decision

In this section we develop a version of the model where we use two generalizations. Firstly,
we allow for x ∈ R

n for n ≥ 1, i.e., we consider the multidimensional case. Secondly, when
the decision maker decides to adjust the state, instead of jumping to x̄(t), the adjustment is
distributed with a density ηε centered around x̄(t). This distribution is indexed by ε > 0,
where ε measures the dispersion of x around x̄(t). The distribution ηε is given by

ηε(x − x̄(t)) = εg

(
x − x̄(t)

ε

)

where g : R → R+ is a smooth density with a maximum at zero, so g(0) > g′(0) = 0. We
use ηε to smooth out the choice of optimal reset point, i.e., when the decision maker selects
to move the state from x to x̄(t), the state will be randomly distributed around x̄(t) according
to the density ηε .

In this case the impulse Hamiltonian is H : R+ ×R
n → R−. The function H(·, x), for a

fixed x ∈ R
n , has the same properties as before, i.e., it is continuously differentiable, negative,

decreasing, and concave. Moreover its first argument is the (negative) of the expected change
conditional on an adjustment.

We note that we let x ∈ R
n , the decision maker’s decision to exercise control changes the

entire n−dimensional state, i.e., it changes all the components of the state. This is similar to
the multiproduct pricing model of Midrigan [21], Alvarez and Lippi [4], and Bhattarai and
Schoenle [8]. An interesting alternative assumption, which we explore separately in Sect. 5,
is the one in which the decision maker can only control some subset of the state.

Additionally, each of the n coordinates of x , when it is uncontrolled, follows dxi =
μi (x)dt + σi (x)dWi for i = 1, 2, . . . , n, where to simplify the notation we assume that
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{Wi ,Wj } are orthogonal for i �= j , i.e., E
[
dWi dWj

] = δi, j dt , where δi, j is the Kronecker
delta. Thus we have two vectors fields

μ(x) =
(
μ1(x), μ2(x), . . . , μn(x)

)
and σ 2(x) =

(
σ 2
1 (x), σ 2

2 (x), . . . , σ 2
n (x)

)
.

Corresponding to this process, or to μ and σ 2, we have that for any smooth function f :
R
n × [0, T ] → R, we define the operators L( f ) and L∗( f ) by

L( f )(x, t) ≡
n∑

i=1

μi (x)
∂

∂xi
f (x, t) + 1

2

n∑

i=1

σ 2
i (x)

∂2

∂xi∂xi
f (x, t),

and

L∗( f )(x, t) ≡ −
n∑

i=1

∂

∂xi
( f (x, t)μi (x)) + 1

2

n∑

i=1

∂2

∂xi∂xi

(
f (x, t)σ 2

i (x)
)
.

We also adapt the notation for the set of densities P = {
f : Rn → R+ with

∫
f (x)dx =

1
}
. Likewise we adapt the conditions on the vector fields for the drift and volatility. In

particular, the function μ : Rn → R
n is once continuously differentiable, and σ : Rn → R

n+
is twice continuously differentiable, and there exists B > 0 such that, for all x ∈ R

n and all
j = 1, . . . , n

||σ ||∞ ≤ B, ||μ||∞ ≤ B, ||∂xμ||∞ ≤ B, ||∂xσ ||∞ ≤ B

Next we define a classical regular equilibrium, for a given scalar ε as follows:

Definition 3 Fix ε > 0 and let (uT ,m0) be given. A classical regular ε-MFG is a triplet
(u, x̄,m), where u : Rn × [0, T ] → R and m : Rn × [0, T ] → R+ are once continuously
differentiable with respect to t , and twice continuously differentiable with respect to x , and
x̄ : [0, T ] → R

n is continuous on t , such that:

(a) ||∂xu(x, t)||2 → 0 and ||∂xm(x, t)||2 → 0 as ||x || → ∞
(b) The HBJ in (x, t) ∈ R

n × (0, T ) is

ρu(x, t) = F(x,m(t)) + L(u)(x, t) + ut (x, t)

+ H

(

u(x, t) −
∫

Rn
u(z, t)ηε(z − x̄(t))dz, x

)

(41)

(c) The KFE in (x, t) ∈ R
n × [0, T ] is

mt (x, t) = Hν

(

u(x, t) −
∫

Rn
u(z, t)ηε(z − x̄(t))dz, x

)

m(x, t) + L∗(m)(x, t)

−
[∫

Rn
Hν

(

u(x ′, t) −
∫

Rn
u(z, t)ηε(z − x̄(t))dz, x ′

)

m(x ′, t)dx ′
]

ηε(x − x̄(t)). (42)

(d) The optimal reset, for all t ∈ [0, T ], satisfies x̄(t) ∈ argminx
∫
u(z, t) νε(z − x) dz.

(e) The terminal and initial conditions for all x ∈ R
n are:

u(x, T ) = uT (x,m(T )) and m(x, 0) = m0(x). (43)

A few comments on the Definition 3 are in order:
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1. It is convenient to adapt the definition of v to the case of noisy control to read as follows

v(x, t) = u(x, t) −
∫

Rn
u(z, t)ηε(z − x̄(t))dz. (44)

2. As in the benchmark case, the term −Hν (v(x, t), x) ≥ 0 gives the probability of an
adjustment at (x, t).

3. The term − [∫
Rn Hν

(
v(x ′, t), x ′)m(x ′, t)dx ′] ηε(x − x̄(t)) in the KFE is the product of

the fraction of the values which adjust, given by − ∫
Rn Hν(v(x ′, t), x ′)m(x ′)dx ′, times

the density of those that adjust to the value x , given by ηε(x− x̄(t)). This is the probability
flow that “enters" at the value x at time t .

4. The KFE holds for all x , including x = x̄(t). This differs from the benchmark case with
ε = 0. This difference, i.e., the fact thatm is smooth everywhere, is due to the regularizing
effect of the function ηε .

5. As ε ↓ 0, then ηε becomes a delta function, and then the KFE holds with a Dirac mass at
(x, t) = (x̄(t), t).

6. If ε = 0 and n = 1 we have exactly the baseline case. If ε = 0 and n > 1 we would have
the extension of the baseline case to the case where the decision maker controls the entire
n−dimensional state, a case which we don’t treat directly.

7. As in the baseline case,L gives the (n−dimensional version of the) linear operator describ-
ing the effect on the expected change on u of the drift μ(·) and volatility σ(·).

8. As in the baseline case, L∗ gives the (n−dimensional version of the) linear operator
describing the propagation of the density m due to effect of the drift μ(·) and volatility
σ(·).
We define weak monotonicity in the same way:
∫

Rn

(
F(x,ma) − F(x,mb)

) (
ma(x) − mb(x)

)
dx ≥ 0 for all ma,mb ∈ P, (45)

∫

Rn

(
uT (x,ma) − uT (x,mb)

) (
ma(x) − mb(x)

)
dx ≥ 0 for all ma,mb ∈ P, (46)

where P = {
f : Rn → R+ with

∫
Rn f (x)dx = 1

}
.

The next proposition is the key to show that a classical ε-MFG equilibrium is unique
under the analogous assumptions as in the baseline case. It establishes a Lasry–Lions type
of inequality, which is the key result to show the uniqueness of equilibrium. In particular we
have:

Proposition 3 Assume that ε > 0, that F and uT are bounded, that F satisfies the mono-
tonicity conditions given by (45), and that H(v, x) is decreasing and concave in v, and twice
continuously differentiable. Furthermore, assume that μ and σ are bounded and once and
twice continuously differentiable in x ∈ R

n. Suppose that {ua,ma, x̄a} and {ub,mb, x̄b} are
two classical equilibria of the ε-MFG as stated in Definition 3. Let va, vb be defined as in
(44), and

K (t) ≡
∫

Rn

(
ua(x, t) − ub(x, t)

)(
ma(x, t) − mb(x, t)

)
dx for all t ∈ [0, T ]. (47)

Then
d

dt
K (t) ≤ ρK (t) −

∫

Rn

(
F(x,ma(t)) − F(x,mb(t))

)(
ma(x, t) − mb(x, t)

)
dx

+
∫ ∞

−∞
ma(x, t)

[(
va(x, t) − vb(x, t)

)
Hν(v

a(x, t), x)
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+ H(vb(x, t), x) − H(va(x, t), x)
]
dx

+
∫ ∞

−∞
mb(x, t)

[(
vb(x, t) − va(x, t)

)
Hν(v

b(x, t), x)

+ H(va(x, t), x) − H(vb(x, t), x)
]
dx (48)

for all t ∈ (0, T ).

From a technical point of view the proof of Proposition 3 is similar to the one for the
benchmark case in Proposition 1. The main difference is that in the case of ε > 0, the density
m is differentiable everywhere, so we don’t need to develop a special argument to bound the
terms involving the discontinuities in mx (·, t) at x = x̄(t), as we need to do in the case of
ε = 0. In the one dimensional case analyzed in Proposition 1, these terms were easier to deal
with, involving the product of left and right derivatives of mx (·, t) at x = x̄(t) with other
functions that we can sign. Instead, in the n−dimensional case with ε = 0, the arguments
would have been much more cumbersome.

Given Proposition 3, the proof of uniqueness of the classical regular equilibria of the ε-
MFG follows similar steps as in the baseline one dimensional case with ε = 0. In particular,
if we add weak monotonicity of uT , strengthen the assumption to strict monotonicity of F
and to strict concavity of H with Hνν < 0, then the analogous steps lead to the uniqueness
of the equilibrium.

An interesting question are the properties of the limit as ε ↓ 0. Recall that we have shown
that the ε-MFG equilibrium is unique for ε > 0. Is the limit of an ε-MFG as ε ↓ 0 always
an equilibrium for the n−dimensional model with ε = 0? Is it the case that any equilibrium
for ε = 0 corresponds to the limit as ε ↓ 0 for an n−dimensional ε-MFG model? We leave
these questions for future work.

7 Concluding remarks

Lasry and Lions [18] established an important uniqueness result for a Mean-Field-Game
problem in which the decision maker controls the drift of a diffusion process. An important
feature of the Lasry–Lions result is that the uniqueness is ensured by a property of the flow
cost function, the so called Lasry–Lions monotonicity condition. This property is a form of
“strategic substitutability” when applied to a game defined by the period cost function.

Our paper presented a complementary uniqueness result for some problems where the
control of the decision maker consists in choosing the stopping times for resetting the state,
rather than in controlling its drift. In other words, we examine the uniqueness of the equilib-
rium in a MFG characterized by a form of “Impulse Control” instead of “drift control”. The
type of problem we consider is common in economics and emerges in e.g., optimal invest-
ment or price-setting problems in the presence of fixed costs, pioneered by Caballero and
Engel [10, 12]. We analyzed three variations on the problem. We identify suitable assump-
tions that, coupled with the Lasry–Lions monotonicity condition, ensure that the problem
features a unique classical equilibrium.
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A Proofs

Proof of Lemma 1 Differentiating (7) with respect to time, and replacing using (6), we obtain:

0 =
∫ ∞

−∞
∂tm(x, t)dx

= −
∫ ∞

−∞
∂x (μ(x)m(x, t)) dx +

∫ ∞

−∞
1
2∂xx

(
σ 2(x)m(x, t)

)
dx

+
∫ ∞

−∞
Hν(v(x, t), x)m(x, t)dx

= −μ(x)m(x, t)|∞−∞ + 1
2∂x

(
σ 2(x)m(x, t)

) |∞x̄+(t) + 1
2∂x

(
σ 2(x)m(x, t)

) |x̄−(t)
−∞

+
∫ ∞

−∞
Hν(v(x, t), x)m(x, t)dx

Using that μ(x) is bounded and m(x, t) → 0 as |x | → ∞, and that σ 2 is bounded, and that
mx (x, t) → 0 as |x | → ∞ then

0 = 1
2∂x

(
σ 2(x)m(x, t)

) |x̄−(t)
x̄+(t) +

∫ ∞

−∞
Hν(v(x, t), x)m(x, t)dx

Since m(·, t), σ 2(·, t) and ∂xσ
2(·, t) are continuous at x = x̄(t) then

∂x
(
σ 2(x)m(x, t)

) |x̄−(t)
x̄+(t) = σ 2(x̄(t))∂x (∂xm(x, t)) |x̄−(t)

x̄+(t)

obtaining the desired result. ��
Proof of Proposition 1 First we note that because F is bounded, then u is also bounded. Then
the following integral is well defiend:

K (t) =
∫ ∞

−∞

(
ua(x, t) − ub(x, t)

) (
ma(x, t) − mb(x, t)

)
dx

and since v(x, t) − u(x, t) = −u(x̄(t), t) does not depend on x , then

∂xu(x, t) = ∂xv(x, t), and ∂xxu(x, t) = ∂xxv(x, t) for all x .

Using that
∫ ∞
−∞

(
ma(x, t) − mb(x, t)

)
dx = 0, then:

K (t) =
∫ ∞

−∞

(
va(x, t) − vb(x, t)

) (
ma(x, t) − mb(x, t)

)
dx

We differentiate K with respect to time to obtain:

d

dt
K (t) = d

dt

∫ ∞

−∞

(
va(x, t) − vb(x, t)

) (
ma(x, t) − mb(x, t)

)
dx

=
∫ ∞

−∞

(
va(x, t) − vb(x, t)

)
∂t

(
ma(x, t) − mb(x, t)

)
dx

+
∫ ∞

−∞

(
ma(x, t) − mb(x, t)

)
∂t

(
va(x, t) − vb(x, t)

)
dx

The strategy is to exchange the time derivative of the integral with the integral of the time
derivative, to replace the resulting time derivatives with the expression of the KFE, and then
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applying integration by parts. Using the properties of vi (x, t) − ui (x, t) = −ui (x̄ i (t), t) for
i = a, b, and that

∫
(ma − mb)dx and its time derivatives are zero:

d

dt
K (t) = d

dt

∫ ∞

−∞

(
ua(x, t) − ub(x, t)

) (
ma(x, t) − mb(x, t)

)
dx

=
∫ ∞

−∞

(
va(x, t) − vb(x, t)

)
∂t

(
ma(x, t) − mb(x, t)

)
dx

+
∫ ∞

−∞

(
ma(x, t) − mb(x, t)

)
∂t

(
ua(x, t) − ub(x, t)

)
dx

Using the p.d.e for the HJB in (1), using that ∂xv = ∂xu and ∂xxv = ∂xxu, and the p.d.e in
(6) to replace in the previous integrals as follows:

d

dt

∫ ∞

−∞

(
ua(x, t) − ub(x, t)

) (
ma(x, t) − mb(x, t)

)
dx

=
∫ ∞

−∞

(
va − vb

) (
∂xx (

σ 2

2 ma − σ 2

2 mb)
)

−
(
ma − mb

)
σ 2

2

(
∂xx (v

a − vb)
)
dx

+
∫ ∞

−∞

(
va − vb

) (
−∂x (μma − μmb)

)
−

(
ma − mb

)
μ

(
∂x (v

a − vb)
)
dx

+ ρ

∫ ∞

−∞

(
ua − ub

) (
ma − mb

)
dx

+
∫ ∞

−∞

(
va − vb

) (
maHν(v

a) − mbHν(v
b)

)
dx −

∫ ∞

−∞

(
ma − mb

) (
H(va) − H(vb)

)
dx

−
∫ ∞

−∞

(
ma − mb

) (
F(x,ma) − F(x,mb)

)
dx

where we omit the arguments (x, t) or x from the different functions to simplify the notation.
Thus we write:

d

dt
K (t) = d

dt

∫ ∞

−∞

(
ua − ub

) (
ma − mb

)
dx = ρ

∫ ∞

−∞

(
ua − ub

) (
ma − mb

)
dx

+ IV (t) + ID(t) + IH (t) + IF (t)

where

IV (t) ≡
∫ ∞

−∞

(
va − vb

) (
∂xx (

σ 2

2 ma − σ 2

2 mb)
)

−
(
ma − mb

)
σ 2

2

(
∂xx (v

a − vb)
)
dx

ID(t) ≡
∫ ∞

−∞

(
va − vb

) (
−∂x (μma − μmb)

)
−

(
ma − mb

)
μ

(
∂x (v

a − vb)
)
dx

IH (t) ≡
∫ ∞

−∞

(
va − vb

) (
maHν(v

a) − mbHν(v
b)

)
dx

−
∫ ∞

−∞

(
ma − mb

) (
H(va) − H(vb)

)
dx

IF (t) ≡ −
∫ ∞

−∞

(
ma − mb

) (
F(ma) − F(mb)

)
dx

Note that the integrals in IV (t), ID(t), and IH (t) are all well defined given the integrability
assumptions of a classical regular equilibrium, as well as the integrability assumptions on μ

and σ 2. Next, we obtain an inequality for each term, i.e., for IV (t), ID(t), IH (t) and IF (t).
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1. We will show that
IV (t) ≤

[
vb(x̄a(t), t) + va(x̄b(t), t)

]
H̄ν

where H̄ν = sup{s≥0,x} Hν(s). To simplify the notation we let v̂ ≡ va − vb and m̂ ≡
ma − mb. With this notation we have

IV (t)|UL ≡
∫ U

L

[(
va − vb

) (
∂xx (

σ 2

2 ma − σ 2

2 mb)
)

−
(
ma − mb

)
σ 2

2

(
∂xx (v

a − vb)
)]

dx

=
∫ U

L

[
v̂ ∂xx

(
σ 2

2 m̂
)

− m̂ σ 2

2 ∂xx v̂
]
dx

In an interval x ∈ [L,U ] where m̂x is twice continuously differentiable we have:

IV (t)|UL =
∫ U

L

[
v̂ ∂xx

(
σ 2

2 m̂
)

− m̂ σ 2

2 ∂xx v̂
]
dx

=
∫ U

L
v̂ ∂xx

(
σ 2

2 m̂
)
dx +

∫ U

L
∂x

(
m̂ σ 2

2

)
∂x v̂dx − m̂ σ 2

2 ∂x v̂|UL
= v̂ ∂x

(
m̂ σ 2

2

)
|UL − m̂ σ 2

2 ∂x v̂|UL
where we integrate by parts each term. Assume, without loss of generality that −∞ <

x̄a(t) < x̄b(t) < ∞, so we can write:

IV (t)|∞−∞ = IV (t)|x̄a−∞ + IV (t)|x̄bx̄a + IV (t)|∞x̄b
We use that, given the assumption on integrability for a classical regular equilibrium, then
mi → 0 and |∂xmi | → 0, that ∂xvi → 0 as |x | → ∞, and vi is bounded for i = a, b to
obtain:

0 = lim|x |→∞ v̂ ∂x

(
m̂ σ 2

2

)
(x) − lim|x |→∞ m̂ σ 2

2 ∂x v̂(x)

Thus we can write:

IV (t)|∞−∞ = IV (t)|x̄a−x̄a+ + IV (t)|x̄b−
x̄b+

Let’s concentrate on the first term, IV (t)|x̄a−x̄a+ . We use that va(x̄a(t), t) = 0 and

∂xv
a(x, t)|x=xa = 0 to obtain:

IV (t)|x̄a−x̄a+ = v̂ ∂x

(
m̂ σ 2

2

)
|x̄a−x̄a+ − m̂ σ 2

2 ∂x v̂|x̄a−x̄a+
= v̂ ∂x

(
m̂ σ 2

2

)
|x̄a−x̄a+

where the second line uses that mi and ∂xv
i are continuous on x , and hence 0 =

m̂ σ 2

2 ∂x v̂|x̄a−x̄a+ . Then

IV (t)|x̄a−x̄a+ = v̂ ∂x

(
m̂ σ 2

2

)
|x̄a−x̄a+ = −vb σ 2

2 ∂xm
a |x̄a−x̄a+ < 0

where we use that σ 2 is continuously differentiable, and that m̂ = ma − mb, and that
∂xmb is continuous at x = x̄a . Using Lemma 1 we obtain:

IV (t)|x̄a−x̄a+ = vb(x̄a(t), t)
∫ ∞

−∞
ma(x, t)Hν(v

a(x, t), x)dx ≤ vb(x̄a(t), t)H̄ν
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The argument for IV (t)|x̄b−
x̄b+

is identical, giving:

IV (t)|x̄b−
x̄b+

= va(x̄b(t), t)
∫ ∞

−∞
mb(x, t)Hν(v

b(x, t), x)dx ≤ va(x̄b(t), t)H̄ν

Combining the two results we obtain the desired inequality.
2. We will show that ID(t) = 0. This follows by using integration by parts, since v̂(·, t) is

continuously differentiable. The boundaries at x = ∞ and x = −∞, the terms vanish
given the assumption on the tails. In particular:

ID(t) =
∫ ∞

−∞

(
va − vb

) (
−∂x (μma − μmb)

)
−

(
ma − mb

)
μ

(
∂x (v

a − vb)
)
dx

= −
(
va − vb

) (
μma − μmb

)
|∞−∞

using that vi (·, t), and μ are bounded, and that mi → 0 as |x | → ∞. Thus ID(t) = 0.
3. We will show that

IH (t) =
∫ ∞

−∞
ma(x, t)

[(
va(x, t) − vb(x, t)

)
Hν(v

a(x, t), x)

+ H(vb(x, t), x) − H(va(x, t), x)
]
dx

+
∫ ∞

−∞
mb(x, t)

[(
vb(x, t) − va(x, t)

)
Hν(v

b(x, t), x)

+ H(va(x, t), x) − H(vb(x, t), x)
]
dx

We fix a x, t , omit them for clarity and write:
(
va − vb

) (
maHν(v

a) − mbHν(v
b)

)
−

(
ma − mb

) (
H(va) − H(vb)

)

= ma
[(

va − vb
)
Hν(v

a) + H(vb) − H(va)
]

+ mb
[(

vb − va
)
Hν(v

b) + H(va) − H(vb)
]

Integrating across x we get the desired expression. That IH (t) ≤ 0 follows directly by
concavity of H(·, x).

4. Finally, IF (t) ≤ 0. This follows directly by the assumption (19) on weak monotonicity
for F .

Combining the bounds obtained by IV (t), ID(t), IH (t) and IF (t)we get the desired result
in (27).

To finish the proof we use the inequality in (27), together with the assumptions of weak
monotonicity of F , weak monotonicity uT , and concavity of H(·, x) to show that K (t) = 0
for all t ∈ [0, T ]. Note that, since ma,mb are equilibrium, then they both satisfy ma(x, 0) =
mb(x, 0) = m0(0), and thus K (0) = 0. Then, using this initial condition, we can integrate
(27), to obtain that for all t ∈ [0, T ]:
K (t) ≤ (49)

∫ t

0
e−ρ(t−s)

∫ ∞

−∞
ma(x, s)

[(
va(x, s) − vb(x, s)

)
Hν(v

a(x, s), x)

+ H(vb(x, s), x) − H(va(x, s), x)
]
dx ds
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+
∫ t

0
e−ρ(t−s)

∫ ∞

−∞
mb(x, s)

[(
vb(x, s) − va(x, s)

)
Hν(v

b(x, s), x)

+ H(va(x, s), x) − H(vb(x, s), x)
]
dx ds

−
∫ t

0
e−ρ(t−s)

∫ ∞

−∞

(
F(x,ma(s)) − F(x,mb(s))

) (
ma(x, s) − mb(x, s)

)
dx ds

≤ 0 (50)

where the inequalities follow from the weak monotonicity of F , and weak concavity of
H(·, x). By definition of an equilibrium, ui (x, T ) = uT (x,mi (T )) for i = a, b, so K (T ) =∫
(uT (x,ma(T )) − uT (x,mb(T )))(ma(x, T ) − mb(x, T ))dx ≥ 0, where the inequality

comes from the assumption of weak monotonicity of uT . Thus for K (T ) ≥ 0 and (49) to
hold simultaneously it must be that K (t) = 0 for almost all t . ��
Proof of Theorem 1 We proceed in three steps. The proof uses the results of Proposition 1.
First we show that m is unique. Second, we show that x̄ is unique. Third we show that v is
unique. Fourth, we show that u is unique.

As an intermediate step, note that under the stated assumptions Proposition 1 holds, and
hence K (t) = 0 for all t . Thus, d

dt K (t) = K (t) = 0 so using (27) we get that each of the
two terms of the right hand side is non-positive, so that

0 =
∫ ∞

−∞
ma(x, t)

[(
va(x, t) − vb(x, t)

)
Hν(v

a(x, t), x)

+ H(vb(x, t), x) − H(va(x, t), x)
]
dx

+
∫ ∞

−∞
mb(x, t)

[(
vb(x, t) − va(x, t)

)
Hν(v

b(x, t), x)

+ H(va(x, t), x) − H(vb(x, t), x)
]
dx (51)

and

0 =
∫ ∞

−∞

[
F(x,ma(t)) − F(x,mb(t))

] (
ma(x, t) − mb(x, t)

)
dx (52)

Step 1: Uniqueness of m. Using the assumption of strict monotonicity of F , we have that
(52) implies that ma = mb.

Step 2: Uniqueness of x̄ . Assume, to obtain a contradiction, that x̄a(t) �= x̄b(t) for some
t . Recall that the derivative ∂xma(x, t) has a jump discontinuity at x = x̄a(t). On the other
hand, since x̄b(t) �= x̄a(t), then in classical MFG equilibrium, ∂xmb(x, t) is differentiable
at x = x̄a(t). This is a contradiction with ma = mb, and hence x̄a(t) = x̄b(t).

Step 3: Uniqueness of v. Since ma = mb = m, we can write (51) as:

0 =
∫ ∞

−∞
m(x, t)

[(
va(x, t) − vb(x, t)

)
Hν(v

a(x, t), x) + H(vb(x, t), x) − H(va(x, t), x)
]
dx

+
∫ ∞

−∞
m(x, t)

[(
vb(x, t) − va(x, t)

)
Hν(v

b(x, t), x) + H(va(x, t), x) − H(vb(x, t), x)
]
dx

=
∫ ∞

−∞
m(x, t)

(
va(x, t) − vb(x, t)

) (
Hν(v

a(x, t), x) − Hν(v
b(x, t), x)

)
dx

=
∫ ∞

−∞
m(x, t)

(
vb(x, t) − va(x, t)

) ∫ vb(x,t)

va (x,t)
Hνν(s, x)ds dx (53)
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Since we assume that Hνν(s, x) < 0 for all s > 0, then whenever m(x, t) > 0 we must have
va(x, t) = vb(x, t).

Step 4: Uniqueness of u. We use that va = va and that ma = mb to establish that
ua = ub. To do so, we compare the HBJ for ua with the one for ub, establishing three
properties. First, since va(x, t) = vb(x, t) for all x, t then, ∂xua(x, t) = ∂xub(x, t) and
∂xxua(x, t) = ∂xxub(x, t), and hence L(ua) = L(ub). Second, since ma = mb, we have
F(x,ma(t)) = F(x,mb(t)). Third, since va = vb, then H(va(x, t), x) = H(vb(x, t), x).
Thus, subtracting the p.d.e. for the HBJ of ub from the one for ua we get the following o.d.e.
for every x :

ρ(ua(x, t) − ub(x, t)) = ∂t u
a(x, t) − ∂t u

b(x, t) for t ∈ [0, T ]
with terminal condition ua(x, T ) − ub(x, T ) = uT (x,ma(T )) − uT (x,mb(T )) = 0 since
ma(·, T ) = mb(·, T ). The only solution of this o.d.e. is zero. Thus, ua(x, t) − ub(x, t) = 0
for all x, t . ��
Proof of Lemma 2 Since

∫ ∞
−∞ m(x, z, t)dx = n(z) which does not depend on time:

0 =
∫ ∞

−∞
∂tm(x, z, t)dx

= −
∫ ∞

−∞
∂x (μ(x, z, t)m(x, z, t))dx −

∫ ∞

−∞
∂z(μ̂(z)n(z)m(x, t |z))dx

+
∫ ∞

−∞
∂xx (

1
2σ

2(x, z, t)m(x, z, t))dx +
∫ ∞

−∞
∂zz(

1
2 σ̂

2(z, t)n(z)m(x, t |z))dx

+
∫ ∞

−∞
Hν(v(x, z, t), x, z)m(x, z, t)dx

= −
∫ ∞

−∞
∂x (μ(x, z, t)m(x, z, t))dx − ∂z(μ̂(z)n(z))

∫ ∞

−∞
m(x, t |z)dx

− μ̂(z)n(z)
∫ ∞

−∞
∂z(m(x, t |z))dx

+
∫ ∞

−∞
∂xx (

1
2σ

2(x, z, t)m(x, z, t))dx + ∂zz(
1
2 σ̂

2(z, t)n(z))
∫ ∞

−∞
m(x, t |z)dx

+ 2∂z( 12 σ̂
2(z, t)n(z))

∫ ∞

−∞
∂zm(x, t |z)dx + 1

2 σ̂
2(z, t)n(z)

∫ ∞

−∞
∂zzm(x, t |z)dx

+
∫ ∞

−∞
Hν(v(x, z, t), x, z)m(x, z, t)dx

Using the p.d.e for n:

0 = −
∫ ∞

−∞
∂x (μ(x, z, t)m(x, z, t))dx

− μ̂(z)n(z)
∫ ∞

−∞
∂zm(x, t |z)dx +

∫ ∞

−∞
∂xx (

1
2σ

2(x, z, t)m(x, z, t))dx

+ 2∂z( 12 σ̂
2(z, t)n(z))

∫ ∞

−∞
∂zm(x, t |z)dx + 1

2 σ̂
2(z, t)n(z)

∫ ∞

−∞
∂zzm(x, t |z)dx

+
∫ ∞

−∞
Hν(v(x, z, t), x, z)m(x, z, t)dx
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Exchanging the integrals with derivatives:

0 = −
∫ ∞

−∞
∂x (μ(x, z, t)m(x, z, t))dx

− μ̂(z)n(z)∂z

∫ ∞

−∞
m(x, t |z)dx +

∫ ∞

−∞
∂xx (

1
2σ

2(x, z, t)m(x, z, t))dx

+ 2∂z( 12 σ̂
2(z, t)n(z))∂z

∫ ∞

−∞
m(x, t |z)dx

+ 1
2 σ̂

2(z, t)n(z)∂zz

∫ ∞

−∞
m(x, t |z)dx +

∫ ∞

−∞
Hν(v(x, z, t), x, z)m(x, z, t)dx

But since for all z:

1 =
∫ ∞

−∞
m(x, t |z)dx then 0 = ∂z

∫ ∞

−∞
m(x, t |z)dx = ∂zz

∫ ∞

−∞
m(x, t |z)dx

then

0 = −
∫ ∞

−∞
∂x (μ(x, z, t)m(x, z, t))dx +

∫ ∞

−∞
∂xx (

1
2σ

2(x, z, t)m(x, z, t))dx

+
∫ ∞

−∞
Hν(v(x, z, t), x, z)m(x, z, t)dx

Using the boundedness of μ and integrability of m:
∫ ∞

−∞
∂x (μ(x, z, t)m(x, z, t))dx = μ(x, z, t)m(x, z, t)|x=∞

x=−∞ = 0

Finally, using the boundedness and integrability of m at infinity, we get:
∫ ∞

−∞
∂xx (

1
2σ

2(x, z, t)m(x, z, t))dx = ∂x (
1
2σ

2(x, z, t)m(x, z, t))|x=∞
x=−∞

+ ∂x (
1
2σ

2(x, z, t)m(x, z, t))|x=x̄−(z,t)
x=x̄+(z,t) = ∂x (

1
2σ

2(x, z, t)m(x, z, t))|x=x̄−(z,t)
x=x̄+(z,t)

= 1
2σ

2(x̄(z), z, t)∂x (m(x, z, t))|x=x̄−(z,t)
x=x̄+(z,t)

Replacing these expression we obtain the desired result. ��
We write a series of lemmas which prepare the results for Proposition 2.

Lemma 3 Let {ua, x̄a,ma} and {ub, x̄b,mb} be two classical regular equilibria of the MFG,
and recall vi (x, z, t) ≡ ui (x, z, t) − ui (x̄ i (z, t), z), t) for i = a, b. Then, for any z ∈ R and
t ∈ (0, T ),

K (t, z) ≡
∫ ∞

−∞

(
ua(x, z, t) − ub(x, z, t)

) (
ma(x, z, t) − mb(x, z, t)

)
dx

=
∫ ∞

−∞

(
va(x, z, t) − vb(x, z, t)

) (
ma(x, z, t) − mb(x, z, t)

)
dx .

Proof of Lemma 3. Let g(z, t) = ua(x̄a(z, t), z), t) − ub(x̄b(z, t), z), t) then
∫ ∞
−∞(ua −

ub)(ma−mb)dx = ∫ ∞
−∞(va−vb)(ma−mb)dx+∫ ∞

−∞ g(ma−mb)dx . But
∫ ∞
−∞ ma(x, z, t)dx =

∫ ∞
−∞ mb(x, z, t)dx = n(z) so that

∫ ∞
−∞ g(z, t)(ma(x, z, t)−mb(x, z, t))dx = g(z, t)[n(z)−

n(z)] = 0. ��
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The next lemma, which uses the p.d.e.’s for the HBJ and KF equations, gives a decompo-
sition of the change of K through time (the extremes of integration are omitted to simplify
notation).

Lemma 4 Define K̄ (t) = ∫
K (t, z)dz. Then, for all t ∈ [0, T ],

d

dt
K̄ (t) = ρ K̄ (t)

+
∫ ∫ (

(va(x, z, t) − vb(x, z, t)
)
L∗(ma − mb)(x, z, t)dxdz

−
∫ ∫ (

(ma(x, z, t) − mb(x, z, t)
)
L(va − vb)((x, z, t)dxdz

−
∫ ∫ (

ma(x, z, t) − mb(x, z, t)
) (

F(x, z,ma(t)) − F(x, z,mb(t))
)
dxdz

−
∫ ∫ (

(ma(x, z, t) − mb(x, z, t)
)

(H(va(x, z, t), x, z)

− H(vb(x, z, t), x, z))dxdz

+
∫ ∫ (

(va(x, z, t) − vb(x, z, t)
)

(
Hν(v

a(x, z, t), x, z)ma(x, z, t) − Hν(v
b(x, z, t), x, z)mb(x, z, t)

)
dxdz.

where we omit the range of the integrals, which runs from−∞ to+∞ to simplify the notation.

Proof of Lemma 4 Weomit the range of the integrals, which runs from−∞ to+∞ to simplify
the notation. Start with

d

dt
K̄ (t) =

∫
d

dt
K (t, z)dz =

∫ ∫
d

dt
(ua − ub)(ma − mb)dxdz

=
∫ ∫

(ma − mb)∂t (u
a − ub)dxdz +

∫ ∫
(ua − ub)∂t (m

a − mb)dxdz

Using p.d.e. obtained from the HJB equation:
∫ ∫

(ma − mb)∂t (u
a − ub)dxdz

=
∫ ∫

(ma − mb)ρ(ua − ub)dxdz −
∫ ∫

(ma − mb)(F(ma) − F(mb))dxdz

−
∫ ∫

(ma − mb)(H(va) − H(vb))dxdz −
∫ ∫

(ma − mb)L(ua − ub)dxdz

and using the p.d.e. obtained from the KF equation:
∫ ∫

(ua − ub)∂t (m
a − mb)dxdz

=
∫ ∫

(ua − ub)L∗(ma − mb)dxdz +
∫ ∫

(ua − ub)(Hν(v
a)ma − Hν(v

b)mb)dxdz

Use that [ua(x, z, t)−ub(x, z, t)]−[va(x, z, t)−vb(x, z, t)] = g(z, t)where the function
g does not depend on x , then

∫ ∫
(ua − ub)∂t (m

a − mb)dxdz −
∫ ∫

(va − uv)∂t (m
a − mb)dxdz
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=
∫ ∫

g∂t (m
a − mb)dxdz =

∫
g

[∫
∂t (m

a − mb)dx

]

dz = 0

since
∫

∂tmadx = ∫
∂tmbdx = 0 for any z. Thus:

∫ ∫
(ua − ub)∂t (m

a − mb)dxdz =
∫ ∫

(va − vb)∂t (m
a − mb)dxdz

=
∫ ∫

(va − vb)L∗(ma − mb)dxdz +
∫ ∫

(va − vb)(Hν(v
a)ma − Hν(v

b)mb)dxdz

Finally, using the linearity of L and the definition of g above:
∫ ∫

(ma − mb)L(ua − ub)dxdz −
∫ ∫

(ma − mb)L(va − vb)dxdz

=
∫ ∫

(ma − mb)L(g)dxdz =
∫

L(g)

[∫
(ma − mb)dx

]

dz = 0

since
∫
madx = ∫

mbdx = n for any z.
Thus

d

dt
K̄ (t) = −

∫ ∫
(ma − mb)(F(ma) − F(mb))dxdz

−
∫ ∫

(ma − mb)(H(va) − H(vb))dxdz

+ ρK (t) +
∫ ∫

(va − vb)L∗(ma − mb)dxdz

−
∫ ∫

(ma − mb)L(va − vb)dxdz

+
∫ ∫

(va − vb)(Hν(v
a)ma − Hν(v

b)mb)dxdz

��
The next lemma analyzes two expressions of the previous lemma, using repeated integra-

tion by parts

Lemma 5 Let {ma, ua, x̄a} and {mb, ub, x̄b} be two regular classical equilibria of the MFG.
Then:

∫ ∞

−∞

∫ ∞

−∞

(
va(x, z, t) − vb(x, z, t)

)
L∗(ma − mb)(x, z, t)dxdz

−
∫ ∞

−∞

∫ ∞

−∞

(
ma(x, z, t) − mb(x, z, t)

)
L(va − vb)(x, z, t)dxdz

≤ H̄ν

∫ ∞

−∞
n(z)

(
vb(x̄a(z, t), z, t) + va(x̄b(z, t), z, t)

)
dz.

where H̄ν ≡ sups,x,z Hν(s, x, z).

Proof of Lemma 5 Weomit the range of the integrals, which runs from−∞ to+∞ to simplify
the notation. Let v̂ = va − vb and m̂ = ma − mb. Use the linearity of the operator to get:

∫ ∫
(va − vb)L∗(ma − mb) dxdz =

∫ ∫
v̂ L∗(m̂) dxdz
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= −
∫ ∫

v̂ ∂x (μm̂) dxdz −
∫ ∫

v̂ ∂z(μ̂m̂) dzdx

+
∫ ∫

v̂ ∂xx (
1
2σ

2m̂) dxdz +
∫ ∫

v̂ ∂zz(
1
2 σ̂

2m̂) dzdx

Likewise:
∫ ∫

(ma − mb)L(va − vb) dxdz =
∫ ∫

m̂L(v̂) dxdz

=
∫ ∫

m̂μ∂x v̂ dxdz +
∫ ∫

m̂μ̂ ∂z v̂ dzdx

+
∫ ∫

m̂ 1
2σ

2 ∂xx v̂ dxdz +
∫ ∫

m̂ 1
2 σ̂

2 ∂zz v̂ dzdx

Notice we have changed the order of integration across terms.
To compute

∫ ∫
v̂L∗(m̂)dxdz we use that for a fixed z we integrate by parts with respect

to x to obtain:

−
∫

v̂ ∂x (μm̂) dx =
∫

μm̂∂x (v̂) dx − v̂μm̂|∞−∞
∫

v̂ ∂xx (
1
2σ

2m̂) dx = −
∫

∂x v̂ ∂x (
1
2σ

2m̂) dx

+ v̂ ∂x (
1
2σ

2m̂)|x̄a−−∞ + v̂ ∂x (
1
2σ

2m̂)|x̄b−x̄a+ + v̂ ∂x (
1
2σ

2m̂)|∞
x̄b+

and for a fixed x we integrate by parts with respect to z to obtain:

−
∫

v̂ ∂z(μ̂m̂) dz =
∫

μ̂m̂ ∂z v̂ dz − v̂μ̂m̂|∞−∞
∫

m̂ 1
2 σ̂

2 ∂zz v̂ dz = −
∫

∂z(m̂
1
2 σ̂

2) ∂z v̂ dz + m̂ 1
2 σ̂

2 ∂z v̂|∞−∞

Likewise to compute − ∫ ∫
m̂ L(v̂) dxdz we use that for a fixed z we integrate by parts

with respect to x to obtain:

−
∫

m̂μ∂x v̂ dx =
∫

v̂ ∂x m̂μ dx − m̂μv̂|∞−∞

−
∫

m̂ 1
2σ

2 ∂xx v̂ dx =
∫

∂x (m̂
1
2σ

2) ∂x v̂ dx − m̂ 1
2σ

2 ∂x v̂|∞−∞

and for a fixed x we integrate by parts with respect to x to obtain:

−
∫

m̂μ̂ ∂z v̂ dz =
∫

v̂ ∂z(m̂μ̂) dz − m̂μ̂ ∂z v̂|∞−∞

−
∫

m̂ 1
2 σ̂

2 ∂zz v̂ dz =
∫

∂z(m̂
1
2 σ̂

2) ∂z v̂ dz − m̂ 1
2 σ̂

2 ∂z v̂|∞−∞

Using the properties assumed for μ, σ 2 and the integrability assumptions for vi and mi

at a regular classical equilibrium we get that for a fixed z:

0 = v̂μm̂|∞−∞ = v̂ ∂x (
1
2σ

2m̂)|∞−∞ = m̂μv̂|∞−∞ = m̂ 1
2σ

2 ∂x v̂|∞−∞
and likewise for a fixed x we get:

0 = v̂μ̂m̂|∞−∞ = m̂ 1
2 σ̂

2 ∂z v̂|∞−∞ = m̂μ̂ ∂z v̂|∞−∞ = m̂ 1
2 σ̂

2 ∂z v̂|∞−∞
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Note that

A = v̂ ∂x (
1
2σ

2m̂)|x̄a−−∞ + v̂ ∂x (
1
2σ

2m̂)|x̄b−x̄a+ + v̂ ∂x (
1
2σ

2m̂)|∞
x̄b+

= v̂ ∂x (
1
2σ

2m̂)|x̄a−x̄a+ + v̂ ∂x (
1
2σ

2m̂)|x̄b−
x̄b+

Using that ∂xσ 2(x, z) and m(x, z, t) are continuous on x everywhere we obtain:

A ≡ v̂ ∂x (
1
2σ

2m̂)|x̄a−x̄a+ + v̂ ∂x (
1
2σ

2m̂)|x̄b−
x̄b+

= v̂ 1
2σ

2 ∂x m̂)|x̄a−x̄a+ + v̂ 1
2σ

2 ∂x m̂|x̄b−
x̄b+

At this point it may be more clear to write all the arguments. In particular

A(z, t) =
(
va(x̄a(z, t), z, t) − vb(x̄a(z, t), z, t)

)
1
2σ

2(x̄a(z, t), z)

×
(
∂xm

a(x, z, t) − ∂xm
b(x, z, t)

)
|x=x̄a−(z,t)
x=x̄a+(z,t)

+
(
va(x̄b(z, t), z, t) − vb(x̄b(z, t), z, t)

)
1
2σ

2(x̄b(z, t), z)

×
(
∂xm

a(x, z, t) − ∂xm
b(x, z, t)

)
|x=x̄b−(z,t)

x=x̄b+(z,t)

Using that ∂xma(x, z, t) is continuous at x̄b(z, t) and that ∂xmb(x, z, t) is continu-
ous at x̄a(z, t) whenever x̄a(z, t) �= x̄b(z, t). Also we use that va(x̄a(z, t), z, t) =
vb(x̄b(z, t), z, t) = 0, then

A(z, t) = −vb(x̄a(z, t), z, t) 12σ 2(x̄a(z, t), z)∂xm
a(x, z, t)|x=x̄a−(z,t)

x=x̄a+(z,t)

− va(x̄b(z, t), z, t) 12σ 2(x̄b(z, t), z)∂xm
b(x, z, t)|x=x̄b−(z,t)

x=x̄b+(z,t)

And using Lemma 2, we have:

1
2σ

2(x̄a(z, t), z)∂xm
a(x, z, t)|x=x̄a−(z,t)

x=x̄a+(z,t) = −
∫ ∞

−∞
ma(x, z, t)Hν(v

a(x, z, t), x, z) dx

≥ −H̄ν

∫ ∞

−∞
ma(x, z, t)dx = −H̄ν n(z)

1
2σ

2(x̄b(z, t), z)∂xm
b(x, z, t)|x=x̄b−(z,t)

x=x̄b+(z,t)
= −

∫ ∞

−∞
mb(x, z, t)Hν(v

a(x, z, t), x, z) dx

≥ −H̄ν

∫ ∞

−∞
mb(x, z, t)dx = −H̄ν n(z)

where H̄ν is an upper bound on the derivative of Hν . Hence we have that:
∫ ∫

v̂L∗(m̂)dxdz −
∫ ∫

m̂ L(v̂) dxdz

≡
∫ ∞

−∞

∫ ∞

−∞

(
va(x, z, t) − vb(x, z, t)

)
L∗(ma − mb)(x, z, t)dxdz

−
∫ ∞

−∞

∫ ∞

−∞

(
ma(x, z, t) − mb(x, z, t)

)
L(va − vb)(x, z, t)dxdz

≤ H̄ν

∫ ∞

−∞
n(z) vb(x̄a(z, t), z, t)dz + H̄ν

∫ ∞

−∞
n(z) va(x̄b(z, t), z, t)dz

��
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Proof of Proposition 2 The proof of this proposition follows directly by bounding each of the
terms in decomposition of d

dt K̄ (t) in Lemma 4. In particular, Lemma 3 shows that several
integrals in d

dt K̄ (t) can we written using va −vb instead of ua −ub. Lemma 5 shows that the
terms in d

dt K̄ (t) involving the integrals
∫
(va−vb)L∗(ma−mb) and− ∫

(ma−mb)L(va−vb)

are both negative, so we write d
dt K̄ (t) as an inequality. ��

Proof of Proposition 3 The structure of the proof is similar to proof of Proposition 1. Below
we will omit the domain of the integrals, which is Rn , to simplify the notation. We note that
the boundedness of F and uT implies that u and v are bounded. Since v(x, t) = u(x, t) −∫
u(z, t)ηε(z − x̄(t))dz does not depend on x , then

∂xu(x, t) = ∂xv(x, t), and ∂xxu(x, t) = ∂xxv(x, t)

Using that
∫ (

ma(x, t) − mb(x, t)
)
dx = 0, then:

∫ (
va(x, t) − vb(x, t)

) (
ma(x, t) − mb(x, t)

)
dx

=
∫ (

ua(x, t) − ub(x, t)
) (

ma(x, t) − mb(x, t)
)
dx

We start with:

d

dt

∫ (
ua(x, t) − ub(x, t)

) (
ma(x, t) − mb(x, t)

)
dx

=
∫ (

ua(x, t) − ub(x, t)
)

∂t

(
ma(x, t) − mb(x, t)

)
dx

+
∫ (

ma(x, t) − mb(x, t)
)

∂t

(
ua(x, t) − ub(x, t)

)
dx

Using the properties of vi (x, t) − ui (x, t) = −ui (x̄ i (t), t) for i = a, b, and that
∫
(ma −

mb)dx and its time derivative are zero:

d

dt

∫ (
ua(x, t) − ub(x, t)

) (
ma(x, t) − mb(x, t)

)
dx

=
∫ (

ua(x, t) − ub(x, t)
)

∂t

(
ma(x, t) − mb(x, t)

)
dx

+
∫ (

ma(x, t) − mb(x, t)
)

∂t

(
ua(x, t) − ub(x, t)

)
dx

=
∫ (

va(x, t) − vb(x, t)
)

∂t

(
ma(x, t) − mb(x, t)

)
dx

+
∫ (

ma(x, t) − mb(x, t)
)

∂t

(
ua(x, t) − ub(x, t)

)
dx

Using the p.d.e for the HJB in (41) and the one in KBF (42) to replace in the previous integrals
as follows:

d

dt

∫ (
ua(x, t) − ub(x, t)

) (
ma(x, t) − mb(x, t)

)
dx

=
∫ (

va − vb
) (

L∗(ma − mb)
)

−
(
ma − mb

) (
L(ua − ub)

)

+ ρ

∫ (
ua − ub

) (
ma − mb

)
dx
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+
∫ (

va − vb
) (

maHν

(
va

) − mbHν

(
vb

))
dx

−
∫ (

ma − mb
) (

H
(
va

) − H
(
vb

))
dx

−
∫ (

ma − mb
) (

F(x,ma) − F(x,mb)
)
dx

−
∫ (

va − vb
) ((∫

Hν

(
va

)
ma

)

ηa −
(∫

Hν

(
vb

)
mb

)

ηb
)

dx

where we omit the arguments (x, t) or x from the different functions to simplify the notation,
and where we use the notation:

H
(
vi

)
as H

(

u(x, t) −
∫

ui (z, t)ηε(z − x̄ i (t))dz, x

)

Hν

(
vi

)
as Hν

(

u(x, t) −
∫

ui (z, t)ηε(z − x̄ i (t))dz, x

)

vi as u(x, t) −
∫

ui (z, t)ηε(z − x̄ i (t))dz

ηi as ηε(z − x̄ i (t))

for i = a, b. Using that ∂xv = ∂xu and ∂xxv = ∂xxu we can write:

d

dt

∫ (
ua(x, t) − ub(x, t)

) (
ma(x, t) − mb(x, t)

)
dx

=
∫ (

va − vb
) (

L∗(ma − mb)
)

−
(
ma − mb

) (
L(va − vb)

)
dx

+ ρ

∫ (
ua − ub

) (
ma − mb

)
dx

+
∫ (

va − vb
) (

maHν

(
va

) − mbHν

(
vb

))
dx

−
∫ (

ma − mb
) (

H
(
va

) − H
(
vb

))
dx

−
∫ (

ma − mb
) (

F(x,ma) − F(x,mb)
)
dx

−
∫ (

va − vb
) ((∫

Hν

(
va

)
ma

)

ηa −
(∫

Hν

(
vb

)
mb

)

ηb
)

dx

Thus we write:

d

dt

∫ (
ua − ub

) (
ma − mb

)
dx = ρ

∫ (
ua − ub

) (
ma − mb

)
dx

+ IL(t) + IH (t) + IF (t)

where

IL(t) ≡
∫ (

va − vb
) (

L∗(ma − mb)
)

−
(
ma − mb

) (
L(va − vb)

)
dx

IF (t) ≡ −
∫ (

ma − mb
) (

F(x,ma) − F(x,mb)
)
dx

IH (t) ≡
∫ (

va − vb
) (

maHν

(
va

) − mbHν

(
vb

))
dx
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−
∫ (

ma − mb
) (

H
(
va

) − H
(
vb

))
dx

−
∫ (

va − vb
)((∫

Hν

(
va

)
ma

)

ηa −
(∫

Hν

(
vb

)
mb

)

ηb
)

dx

Next, we obtain an inequality from each of the following terms.

1. We have that
IL(t) = 0

since L and L∗ are adjoints. The boundary terms do not contribute given the assumption
in ((a)).

2. IF (t) ≤ 0: holds directly by the assumption of weak monotonicity of F , i.e., that
∫ (

ma − mb
) (

F(x,ma) − F(x,mb)
)
dx ≥ 0.

3. We will show that:

IH (t) ≤
∫ (

va − vb
) (

maHν

(
va

) − mbHν

(
vb

))
dx

−
∫ (

ma − mb
) (

H
(
va

) − H
(
vb

))
dx

This follows from expanding each term, i.e.,

IH (t) ≡
∫ (

va − vb
) (

maHν

(
va

) − mbHν

(
vb

))
dx

−
∫ (

ma − mb
) (

H
(
va

) − H
(
vb

))
dx

−
∫ (

va − vb
) ((∫

Hν

(
va

)
ma

)

ηa −
(∫

Hν

(
vb

)
mb

)

ηb
)

dx

We can rewrite the last line to get:

IH (t) =
∫ [

ma + mb
] H̄νν(v

a, vb)

2

(
va − vb

)2
dx

−
(∫

Hν

(
va

)
madx

) ∫ (
va − vb

)
ηadx

−
(∫

Hν

(
vb

)
mbdx

) ∫ (
vb − va

)
ηbdx

Using the definition we have:
∫

vaηadx =
∫ [

ua(x, t) −
∫

ua(z, t)ηε(z − x̄a(t))dz

]

ηε(x − x̄a(t))dx

=
∫

ua(x, t)ηε(x − x̄a(t))dx −
∫

ua(z, t)ηε(z − x̄a(t))dz = 0

and
∫

vbηadx =
∫ [

vb(x, t)
]
ηε(x − x̄a(t))dx ≥ 0
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Thus:
∫ (

va − vb
)

ηadx ≤ 0 and
∫ (

vb − va
)

ηbdx ≤ 0

and using that

−
(∫

Hν

(
va

)
madx

)

≥ 0 and −
(∫

Hν

(
vb

)
mbdx

)

≥ 0

Hence we obtain the desired result.

Combining the expressions for IL (t), IH (t), IF (t) we obtain the desired result for the
proposition. ��

B Discrete time version of the decision problem

In this section we define a discrete time version of the continuous time problems analyzed
in Sects. 3.1 and 3.2. We first define the control problem of the decision maker in sequence
form and the corresponding Bellman equation. Our discrete time notation is chosen so that
the corresponding continuous time formulation is immediate. Finally we use the discrete
time Bellman equation to formally derive the continuous time HJB equation for each model,
namely (10) and (15) used in the body of the paper.

B.1 Costly probability model

We let � be the length of the time period. We assume that when x is uncontrolled it evolves
as:

xt+� = xt + μ(xt )� + σ(xt )
√

� et+�

where

et+� =
{

+1 with probability = 1
2

−1 with probability = 1
2

and where et+� is independent of er for any r .
To simplify notation, we let f (x, t) = F(x,m(t)), and a discount factor given by 1/(1+

�ρ). Let us consider an agent with a value x at time t , before any decisions are made, so the
agent gets f (x, t)� flow cost during the discrete time period t to t + �.

We consider a Poisson point process Nt , that counts the number of adjustment oppor-
tunities that the agent had until period t . In particular if Nt − Nt−� = 1 the agent has an
adjustment opportunity. Otherwise the agent cannot adjust and x is uncontrolled. In particular
we assume

Nt − Nt−� =
{
1 with probability = λ(xt , t)�

0 with probability = 1 − λ(xt , t)�

for some function λ(xt , t) that is chosen by the decision maker as part of the policy. In other
words the agent decides the probability λ per unit of time of an adjustment opportunity. The
agent pays a cost c(x, λ)� if she chooses λ.
The control problem.The policy p of the decisionmaker consists of choosing two objects: the
first is the probability per unit of time, λ(x, t) of an adjustment opportunity at every t and x .
The second is x̄(t), which is the value of x atwhich the state is set if the adjustment opportunity
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occurs. Hence λ : R × [0,�, 2�, . . . , T − �] → [0, 1
�

] and x̄ : [�, 2�, . . . , T ] → R. To
simplify notation we restrict the policy to depend only on x and t , which by the principle of
optimality is without loss of generality. For a given policy the law of motion of x is

x p
t+� − x p

t =

⎧
⎪⎨

⎪⎩

μ(x p
t )� + σ(x p

t )
√

� with Prob. 1
2 (1 − �λ(x p

t , t))

μ(x p
t )� − σ(x p

t )
√

� with Prob. 1
2 (1 − �λ(x p

t , t))

x̄t+� − x p
t with Prob. �λ(x p

t , t)

for t = 0, �, . . . , T−�. The value for the decisionmaker of a given policy, and the stochastic
process generated by it, is

J p(x, t) = E

[ ∑

r=t,...,T−�

(1 + ρ�)−
r−t
�

(
f (x p

r , r) + c(x p
r , λ(x p

r , r))
)
�

+ (1 + ρ�)−
T−t
� uT (x p

T ,m(T ))

∣
∣
∣xt = x

]

where the expectation is taken with respect to the process for x p for all t = 0, �, . . . , T −�

and x .
Bellman equation. We denote the value function by u(x, t) = minp J p(x, t). Before writ-
ing down the discrete time Bellman equation, we introduce the following notation for the
conditional expectation of the next period value function:

Ex (ut+�) ≡ 1

2
u

(
x + μ(x)� + σ(x)

√
�, t + �

)
+ 1

2
u

(
x + μ(x)� − σ(x)

√
�, t + �

)

We can now write the discrete time Bellman equation for this problem:

u(x, t) = f (x, t)� + min{0≤λ≤1/�} c(x, λ)�

+ 1

1 + ρ�
(1 − λ�)Ex (ut+�) + 1

1 + ρ�
λ�u(x̄t+�, t + �)

where x̄t+� = argmin
y

u(y, t + �)

The first term of the right hand side is the period cost. The second term has the cost
of selecting λ. The third and fourth terms correspond to the continuation. The third term
corresponds to the case where the agent does not get the opportunity to adjust. The last one
contains the case where the agent has a possibility of adjusting the state.
Heuristic derivation of the continuous timeHJB equation. Multiplying both sides by (1+ρ�)

(1 + ρ�)u(x, t) = f (x, t)(1 + ρ�)� + min{0≤λ≤1/�} c(x, λ)(1 + ρ�)�

+ (1 − λ�)Ex (ut+�) + λ�u(x̄t+�, t + �)

rearranging

ρ�u(x, t) = f (x, t)(1 + ρ�)� + (1 + ρ�) min{0≤λ≤1/�} c(x, λ)(1 + ρ�)�

+ Ex (ut+�) − u(x, t) + λ�
[
u(x̄t+�, t + �) − Ex (ut+�)

]

Dividing by �

ρu(x, t) = f (x, t)(1 + ρ�) + (1 + ρ�) min{0≤λ≤1/�} c(x, λ)(1 + ρ�)
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+ Ex (ut+�) − u(x, t)

�
+ λ

[
u(x̄t+�, t + �) − Ex (ut+�)

]

Taking � ↓ 0 and using that:

Ex (ut+�) − u(x, t)

�
→ ux (x, t)μ(x) + σ 2(x)

2
uxx (x, t) + ut (x, t)

Ex (ut+�) → u(x, t)

u(x̄t+�, t + �) → u(x̄(t), t)

f (x, t)(1 + ρ�) → f (x, t)

We obtain the desired result:

ρu(x, t) = f (x, t) + min{0≤λ} c(x, λ) + λ [u(x̄(t), t) − u(x, t)]

+ ux (x, t)μ(x) + σ 2(x)

2
uxx (x, t) + ut (x, t)

B.2 Random fixed cost model

We let � be the length of the time period. We assume that when x is uncontrolled it evolves
as:

xt+� = xt + μ(xt )� + σ(xt )
√

� et+�

where

et+� =
{

+1 with probability = 1
2

−1 with probability = 1
2

and where et+� is independent of er for any time r . We consider a Poisson point process
Nt , that counts the number of adjustment opportunities that the agent had until period t . In
particular if Nt − Nt−� = 1 the agent has an adjustment opportunity. Otherwise the agent
cannot adjust and x is uncontrolled. In particular we assume

Nt − Nt−� =
{
1 with probability = κ(xt )�

0 with probability = 1 − κ(xt )�

for some function κ that is given to the decision maker.
When an adjustment opportunity occurs the agent draws a fixed costψ from a distribution

with CDF G(ψ). If the agent pays ψ then she can adjust x to any value. We label the
realizations of the cost drawn up to time t as {ψ0, ψ1, . . . , ψNt }. The realizations of Nr+� −
Nr , ψr are independent of the realizations of er ′ for all r , r ′.

To simplify notation, we let f (x, t) = F(x, (m(t)) and a discount factor given by 1/(1+
�ρ). Let us consider an agent with a value x at time t , before any decisions are made, so
the agent gets f (x, t)� flow cost during the discrete time period t to t + �. Without loss of
generality, we consider policies described by a threshold s for each x, t : the agent pays ψ

and adjusts only if ψNt ≤ s(x, t).
The control problem. The policy p of the decision maker consists of choosing two objects:
the first is the threshold s(x, t) for the fixed cost that triggers an adjustment conditional
on Nt − Nt−� = 1. The second is x̄(t), the value of x at which the state is set after the
adjustment. Hence s : R × [0,�, 2�, . . . , T − �] → R+ and x̄ : [�, 2�, . . . , T ] → R.
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To simplify notation we restrict the policy to depend only on x and t , which by the principle
of optimality is without loss of generality. For a given policy the law of motion of x is

x p
t+� − x p

t =

⎧
⎪⎪⎨

⎪⎪⎩

μ(x p
t )� + σ(x p

t )
√

� with Prob. 1
2

(
1 − �κ(x p

t )1{ψNt ≤s(x p
t ,t)}

)

μ(x p
t )� − σ(x p

t )
√

� with Prob. 1
2

(
1 − �κ(x p

t )1{ψNt ≤s(x p
t ,t)}

)

x̄t+� − x p
t with Prob. �κ(x p

t )1{ψNt ≤s(x p
t ,t)}

for t = 0, �, . . . , T−�. The value for the decisionmaker of a given policy, and the stochastic
process generated by it, is

J p(x, t) = E

[ ∑

r=t,...,T−�

(1 + ρ�)−
r−t
�

(
f (x p

r , r)� + ψNr 1{ψNr ≤s(x p
r ,r)}

)

+ (1 + ρ�)−
T−t
� uT (x p

T ,m(T ))

∣
∣
∣xt = x

]

where the expectation is taken with respect to the process for x p for all t = 0, �, . . . , T −�

and x .
Bellman equation. We denote the value function by u(x, t) = minp J p(x, t). Before writ-
ing down the discrete time Bellman equation, we introduce the following notation for the
conditional expectation of the next period value function:

Ex (ut+�) ≡ 1

2
u

(
x + μ(x)� + σ(x)

√
�, t + �

)
+ 1

2
u

(
x + μ(x)� − σ(x)

√
�, t + �

)

We can now write the discrete time Bellman equation for this problem:

u(x, t) = f (x, t)� + 1

1 + ρ�
(1 − κ(x)�)Ex (ut+�)

+ 1

1 + ρ�
κ(x)�

∫
min {Ex (ut+�) , ψ + u(x̄t+�, t + �)} dG(ψ)

where x̄t+� = argmin
y

u(y, t + �)

The first term of the right hand side is the period cost. The second and third term correspond
to the continuation. The second term corresponds to the case where the agent does not get
the opportunity to adjust. The last one contains the case where the agent has a possibility of
adjusting the state. This last term contains the only decision of the problem.
Heuristic derivation of the continuous timeHJB equation.Multiplying both sides by (1+ρ�)

(1 + ρ�)u(x, t) = f (x, t)(1 + ρ�)� + (1 − κ(x)�)Ex (ut+�)

+ κ(x)�
∫

min {Ex (ut+�) , ψ + u(x̄t+�, t + �)} dG(ψ)

rearranging

u(x, t)ρ� = f (x, t)(1 + ρ�)� + Ex (ut+�) − u(x, t)

+ κ(x)�

[∫
min {Ex (ut+�) , ψ + u(x̄t+�, t + �)} dG(ψ) − Ex (ut+�)

]

collecting terms in the minimum:

u(x, t)ρ� = f (x, t)(1 + ρ�)� + Ex (ut+�) − u(x, t)

+ κ(x)�
∫

min {0 , ψ + u(x̄t+�, t + �) − Ex (ut+�)} dG(ψ)

123



Mathematics and Financial Economics (2024) 18:515–554 553

Dividing by �

u(x, t)ρ = f (x, t)(1 + ρ�) + Ex (ut+�) − u(x, t)

�

+ κ(x)
∫

min {0 , ψ + u(x̄t+�, t + �) − Ex (ut+�)} dG(ψ)

Taking � ↓ 0 and using that:

Ex (ut+�) − u(x, t)

�
→ ux (x, t)μ(x) + σ 2(x)

2
uxx (x, t) + ut (x, t)

Ex (ut+�) → u(x, t)

u(x̄t+�, t + �) → u(x̄(t), t)

f (x, t)(1 + ρ�) → f (x, t)

We obtain the desired result:

ρu(x, t) = f (x, t) + ux (x, t)μ(x) + σ 2(x)

2
uxx (x, t) + ut (x, t)

+ κ(x)
∫

min {0 , ψ + u(x̄(t), t) − u(x, t)} dG(ψ)
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