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What a misfortune, although you are made

for fine and great works

this unjust fate of yours always

denies you encouragement and success;

that base customs should block you;

and pettiness and indifference.

And how terrible the day when you yield

(the day when you give up and yield),

and you leave on foot for Susa,

and you go to the monarch Artaxerxes

who favorably places you in his court,

and offers you satrapies and the like.

And you accept them with despair

these things that you do not want.

Your soul seeks other things, weeps for other things;

the praise of the public and the Sophists,

the hard-won and inestimable Well Done;

the Agora, the Theater, and the Laurels.

How can Artaxerxes give you these,

where will you find these in a satrapy;

and what life can you live without these.

—Constantine P. Cavafy
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ABSTRACT

Mathematics, as Eugene Wigner once noted, has no inherent reason to be as effective in

the natural sciences as it is. Yet, those who seek to model the world have long used it to

formulate powerful physical theories – from explaining the motions of planets to the dynamics

of electricity and even the quantum-mechanical behavior of particles too small to observe.

While many of the big questions have been answered, countless others remain. Why are some

problems so easily solved, while others remain stubbornly intractable? What governs the

dynamics of complex systems? How do we distinguish real regularities in data from phantom

fluctuations? Today’s solutions look very different from yesterday’s as our reliance on data

and predictive power continues to grow. In such a world, efficiency and simplicity matter

more than ever.

This thesis presents three seemingly unrelated ideas. First, we present a data-driven

approach to structured prediction of mass spectra. Mass spectrometry is commonly used

in analytical chemistry as a means to characterize compounds, as it counts and weighs the

fragments from the high-energy breakdown of molecules. By combining supervision from the

substructures generated in the fragmentation of small molecules with graph neural networks,

we achieve state-of-the-art performance in the prediction of electron-ionization mass spectra.

Next, we explore a semidefinite programming perspective on parametric polynomial

optimization. We demonstrate how parameterized polynomial optimization can be lower

bounded by the solution to an infinite-dimensional sum-of-squares optimization problem and

we show how semidefinite programming can be used to approximate a solution. We prove the

convergence of the resulting hierarchy (a variant of the Lasserre SOS hierarchy) and present

some practical applications.

Finally, we do a deep dive into generative diffusion processes. We discuss the connections

between generative diffusion processes and physics, closely examine the structure of score-

matching, and illustrate ways to uncover the structure of a problem from sparsity priors.

xvi



Each of these topics illuminates a distinct facet of computational science – from the

efficient use of structured data in deep learning to the power and challenges of semidefinite

programming, and finally, returning to the continued inspiration that physics offers for modern

modeling approaches.

May their synthesis be an ode to modern computational thinking and a tribute to the

simple yet powerful ideas of the past, present, and future.
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CHAPTER 1

INTRODUCTION

This thesis is a triptych in computation, exploring three ideas: deep learning for molecular

mass spectra, sum-of-squares optimization, and the structure of diffusion models. The thread

tying them all together is the effective use of modern computing power and well-designed and

prosaic mathematical ideas. We are not interested in mathematics for the sake of mathematics,

but rather in the service of understanding the world around us.

The 21st-century may be considered the century of data. We are drowning in data, collected

from various sources, whether it be physical measurements and observations, Internet content,

and the vast array of detritus generated automatically via our devices. Our machines emit

∼ 300 exabytes of data a day (300 billion gigabytes) while the new disk storage space is

produced at a rate of ∼ 3 exabytes a day. Of course, not all the data generated is useful, which

is why we only store ∼ 1% of it. The useful data predominantly comes from measurement and

metrology devices that observe something about the world, such as the high-quality cameras

we now carry in our pockets or the mass spectrometers used in analytical chemistry, found in

hospitals, laboratories, airports, and everywhere that detection of chemicals is required.

It is a wonder that mass spectrometry works so well. The basic idea resembles that of

Japanese kintsugi pottery: a molecule is energized by some physical process, and in the

relaxation process it fragments into pieces. By measuring the masses of these fragments and

their relative abundances, we can "put back together" (infer) the structure of the original

molecule.

In gas chromatography electron-ionization mass spectrometry (GC/EI-MS), the setting

we analyze, an electron beam is accelerated by a 70 volt electric field. It transfers anywhere

from 15-30 eV to molecules in the gaseous phase. This energy must dissipate in some form,

and typically it acts to fragment the molecule into many pieces. A typical chemical bond has

energy on the order of 3 eV, so quite extensive fragmentation often occurs. This is quite a bit
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Figure 1.1: An example of Japanese kintsugi (left). An example of an observed mass spectrum
(right, from [McLafferty and Turecek, 1994]).

of energy: for context, if we convert this to temperature via the equation E = kBT (with

kB the Boltzmann constant), the equivalent temperature is T ∼ 35000 K! If the process is

so energetically violent, one might ask whether the process is at all repeatable. Individual

realizations of the process for a single molecule may not be, but when applied to a large

number of molecules, the law of large numbers takes hold. Mass spectra tend to be very

consistent from run-to-run, with over 98% dot product similarity [NIST, Zhu and Jonas,

2023]. Such high similarity suggests that there is fruitful structure to be modeled here!

Other types of mass spectrometry differ in the technical details of how molecules are

accelerated and energized, but the ultimate outcome is a spectrum of masses with relative

abundances. We can think of them as histograms of the masses of the fragments. The

spectrometer actually observes the m/z ratio, the mass of the fragment divided by the charge

of the fragment. For our purposes we can assume z = 1 and that the spectrometer is just

measuring mass.

The NIST database presently contains ∼ 3 ·105 mass spectra that have been collected, and

is growing only at the rate of ∼ 10% a year [NIST]. New compounds are not measured very

often, as most compounds of interest have already been measured. However, consider that just

a tabulation of known natural products contains ∼ 2 · 105 molecular structures [Buckingham,
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2023]. This is much smaller than the total possible of compounds that we are aware of and

have tabulated in the PubChem database (∼ 108), which is itself much smaller than the total

possible number of compounds that could exist, ∼ 1060. This disparity is generally true for

most biological and chemical databases: it is fairly straightforward to enumerate possible

chemical structures but much harder to characterize them via biological assays or analytical

chemistry techniques. Choosing to focus only on the molecules that have been characterized

and limiting ourselves to expanding the ones that have been characterized by our limited

capacity is untenable. “Completing” the remaining measurements with synthetic predictions

using accurate models is the only way to get a handle on the vast space of possible molecules.

This requires us to be more intelligent with how we use the data. In chemistry, this means

taking advantage of the structural and physical chemistry knowledge involved in the process.

We cannot just build a black-box model and hope that it works in the mass spectrometry

context. It may perform well in-sample, but we can have no guarantees on how well it will

generalize on larger molecules. Our approach involves learning a model to explicitly assign

probabilities to the fragments of a molecule, with a complete enumeration of the fragments

assumed. Previous work either used deep learning as an end-to-end model to predict the

mass spectrum directly, or used a more structured chemical model that had limited capacity

and training data. We shall see our approach in more detail in Chapter 2.

Next, we consider optimization. In general optimization problems, we are given some

function f(x) and we seek to find its minimum over some domain x ∈ X . In particular, when

the domain X and the function f(x) have some particular structure, we call them convex

problems and can solve them quite efficiently. Convex optimization problems are those where

the function f(x) is convex, i.e. for any pair x1, x2 ∈ X and any λ ∈ [0, 1], the following

holds:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

and the domain X is a convex set. They are particularly special because any locally optimal
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solution is also globally optimal. Because of this, they are very well understood, with efficient

solvers readily available. Modern research has turned to non-convex optimization problems,

where we instead pursue iterative methods that can converge quickly to a local minimum with

few guarantees about the optimality of a solution. We are often satisfied with these solutions,

particularly in deep learning settings, where the optimization landscape is so complex that

finding a global minimum is often infeasible.

Still, there is a rich body of theory to mine in old ideas. Our next topic focuses on a

case of parametric polynomial optimization, where we seek to minimize a polynomial f(x, ω)

over the variables x, with parameters ω that can be varied. This is a harder problem than

standard polynomial optimization, where we now seek to characterize the entire trajectory of

minimizers x∗(ω) = argminxf(x, ω).

For general polynomials this is a hard problem, but the theory of sum-of-squares polyno-

mials suggests a possible solution. A polynomial is sum-of-squares if it can be written as a

sum of squares of other polynomials. In particular, if it is sum-of-squares, we can guarantee

its non-negativity. This was used to great effect in the Lasserre sum-of-squares hierarchy,

which converts polynomial optimization min f(x) into the related non-negativity problem

max
c∈R

c s.t. f(x)− c ≥ 0

and then taking the sum-of-squares relaxation

max
c∈R

c s.t. f(x)− c is sum-of-squares

This last problem is tractable when we search for sum-of-squares polynomials of a fixed

degree, and admits a semidefinite programming solution! Most importantly, the solutions

we find can be proven to converge to the true minimum of the original polynomial as the

degree of the sum-of-squares relaxation increases, and in practice we can often find the true
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minimum with a low degree relaxation (finite convergence). In Chapter 3, we shall see how

to generalize this approach to the parametric case.

Finally, we turn to the structure of diffusion models. Diffusion models are a class of

generative models that have seen a resurgence in popularity since they were demonstrated to

achieve state-of-the-art performance in image modeling. The theory of diffusion processes

dates back to the time of Einstein, when he characterized the motion of colloids in suspension

as a random walk driven by unobserved perturbations, now known as Brownian motion.

In diffusion generative modeling, one seeks to add noise of successively larger noise scales

to progressively transition a data point x ∈ Rd to a sample z ∈ Rd that is indistinguishable

from noise, typically chosen to be a standard Gaussian, e.g. through a time-varying stochastic

process like

dxt = −xtdt+
√
2dWt

where Wt is the standard Wiener process. The trajectory has an exact solution

x(t) = e−tx(0) +
√

1− e−2tz

where x(0) is the sample at time t = 0 and z is a sample from N(0, Id). Reversing this process

would allow us to generate samples from the data distribution by only drawing samples z

and “pushing” them back through the reverse process. It turns out that the reverse process is

well-specified and requires the estimation of a Stein score function of the time-varying density

of samples.

Diffusion generative modeling thus has deep roots in the theory of stochastic differential

equations, Markov chain Monte Carlo, and numerical differential equations, among other

fields. In Chapter 4 we shall take a closer look at some of the core assumptions of diffusion

modeling, examining the structure of score functions in more detail.
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CHAPTER 2

RAPID APPROXIMATE STRUCTURED PREDICTION OF

ELECTRON-IONIZATION MASS SPECTRA

2.1 Introduction

Mass spectrometry is extremely useful in analytical chemistry as it provides valuable infor-

mation on the makeup and structure of various chemicals. In this chapter, we discuss the

application of data-driven deep learning methods to the prediction of the resulting mass

spectra, which are an extremely noisy and difficult physical process to model from first

principles. The data-driven deep learning approach detailed here adapts conventional deep

learning methods to the structured setting of molecules by considering them as a graph.

Several other innovations, including the fusion of standard deep learning with knowledge of

the fragmentation process and generated fragments in high-energy electron-ionization mass

spectrometry, are developed and detailed here. State-of-the-art performance is achieved

on several large datasets of (molecule, spectrum) pairs. This chapter is adapted from the

publication [Zhu and Jonas, 2023]. Additional background and supporting material external

to the core ideas outlined in this chapter can be found in Chapter 5.

2.2 Background

Gas-chromatography electron-impact mass spectrometry (GC/EI-MS) ionizes a volatile

substance via high-energy electron bombardment. The subsequent relaxation of the ionized

substance from the high-energy state induces fragmentation, generating a shower of charged

and neutral fragments. The charge-to-mass (m/z) ratio of the fragments are then measured

in a spectrometer. It is reasonable to assume that fragments are singly-charged [Wei et al.,

2019, Allen et al., 2016], so the measured m/z values can be interpreted directly as fragment
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masses. Due to the cost-effectiveness and experimental reproducibility of GC/EI-MS, it is

a mainstay of modern analytical chemistry workflows. The spectrum of a given compound

is commonly used as a "fingerprint" used for matching against known database spectra.

Additionally, it is often used as one of the first steps in structural characterization.

Currently, the NIST Mass Spectral Library[NIST] is the largest publicly-available database

of EI-MS spectra, containing over 300,000 spectra for molecules containing ≤ 128 atoms.

However, the space of possible molecules is incredibly large, and even annotated databases

such as PubChem[Kim et al., 2020] have over 100 million known chemical structures. Less

than 0.30% of the PubChem compounds have measured spectra. Clearly, experimental

characterization at such scale is prohibitive. This is exacerbated by the fact that cheap

products are easily attainable and measured many times, while many of the structures in

PubChem come from the long-tail of rare, non-natural, or difficult to procure set of compounds.

Such limitations require computational and statistical approaches to predicting mass spectra.

Computational approaches to the mass spectral prediction problem fall into two categories:

first-principles physically-based simulation and data-driven statistical methods.

2.2.1 First-principles physical simulation.

Purely statistical theories. Ab initio approaches to EI-MS prediction leverage quasi-equilibrium

theory (QET) or Rice-Ramsperger-Kassel-Marcus (RRKM) theories [McLafferty and Turecek,

1994] which explicitly model the redistribution of the energy over the internal degrees

of freedom. By keeping only the relevant vibrational modes (with a harmonic oscillator

approximation), the density of states (core to the estimation of the rate constants) may

be approximated. Such theories and its expansions have been used to study the relative

abundances of fragment ions in well-known spectra[Bauer and Grimme, 2016]. The need to

enumerate the possible reaction pathways limits the successful application of such theories to

very small molecules.

7



Born-Oppenheimer Molecular dynamics. Methods such as QCEIMS and its derivatives

combine quantum-mechanical Born-Oppenheimer molecular dynamics (MD) with fragmenta-

tion pathways to compute fragment ions within picosecond reaction times and femtosecond

intervals for the MD trajectories. Statistical sampling of these trajectories then provides a

distribution of observed fragments, generating a spectrum. However, even with the approxi-

mations made to reduce runtime, the runtime complexity is prohibitive for scaling, on the

order of O(100 hours) for small molecules less than 100 Da in mass [Koopman and Grimme,

2019]. While these methods can often qualitatively identify plausible fragmentation pathways,

their accuracy is not yet high enough for compound identification [Wang et al., 2020].

2.2.2 Data-driven statistical methods.

Computational systems for predicting mass spectra fragmentation was a topic of interest for

early AI researchers, leading to projects like DENDRAL [Lindsay et al., 1980] in the 1960s,

which applied rules-based heuristics programming to the structural elucidation in organic

chemistry. The heuristics used in the project have been improved upon over the last few

decades, as chemists continue to add to a library of known fragmentation processes [McLafferty

and Turecek, 1994], by which chemical bonds and atoms are broken and rearranged. These

heuristics are used by chemists to manually identify and explain the occurrence of particular

peaks in small molecule EI-MS spectra [De Vijlder et al., 2018].

Early approaches were rules-based approaches, iteratively applying thousands of known

rules to combinatorially enumerate possible fragments. Such methods have very high recall,

providing a possible explanation for every peak in a spectrum. Recent work fuses the high

recall of the combinatorial approach with learned models to improve precision. In particular,

the series of CFM-ID papers [Allen et al., 2014, 2015, 2016, Djoumbou-Feunang et al., 2019]

achieved state-of-the-art results in using a general rules-based fragmentation scheme to

generate a large fragmentation tree for each molecule, and then learns the parameters for a
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Experiment
Predicted 

Figure 2.1: Example predictions on the held-out NIST2017 test set from the models we assess
in this work: FormulaNet (RASSP:FN), SubsetNet (RASSP:SN), NEIMS[Wei et al., 2019] ,
CFM-ID[Allen et al., 2016] , as well as experimentally-measured spectra [NIST] .

model that parametrizes a Markov transition process over the tree.

The advent of machine learning and graph neural networks has renewed the interest in

this problem. Recent work [Wei et al., 2019, Zhu et al., 2020] innovates in this area by using

deep neural networks that directly predict spectra from molecular fingerprints or molecular

graphs. These systems have been shown to do quite well on learning the regularities present

in EI-MS data, achieving performance surpassing that of simpler linear or neural network

models.

2.3 Methods

The complete calculation of the full fragmentation tree for a given molecule undergoing

EI-MS would contain all necessary information to accurately predict the observed spectrum:

simply compute the isotopic m/z distribution for each observed fragment, and sum these

over all fragments weighting by the fragment probability. However, the physical complexities

and possible fragmentation paths make this a very challenging, and perhaps impossible,
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computational task. Approaches like CFM-ID [Allen et al., 2014] attempt to model this

process, but the exponential growth in possible fragmentations naturally limits the types of

fragmentation events and fragmentation tree depth, impacting spectral prediction accuracy.

We instead reason backwards from our observable: the spectrum. While one could

attempt to directly predict the spectrum given an input molecular structure or molecular

fingerprint (like NEIMS), this discards effectively all physical intuition about the problem.

As we state later, we are interested in developing methods that will naturally extend to

higher-resolution spectra, and contemporary machine learning methods can struggle with

extremely high-dimensional output spaces. Fig. 2.2 illustrates the possible representation

levels at which one can reason about the problem, starting from the input molecule structure

(viewed as a graph) and ending with the mass peak distribution as viewed in the spectrometer.

Note that for any fragment child ion of the original molecule, both the chemical subformula

and the vertex (atom) subsets allow us to exactly determine the observed peak m/z distribution

of the fragment. However, there are far fewer formulae than atom subsets, and far fewer

atom subsets than possible subgraphs. For example, C6H12O6 has a total of 18 bonds. If

we consider complete bond breakages out to depth d, we can generate 18!/(18− d)! unique

bond breaks and up to the same amount of possible subgraphs but only 7× 13× 7 = 637

possible subformulae. For d ≥ 3, the number of possible subgraphs is already larger than

the number of possible subformulae. Thus, we focus only on chemical formulae and atom

subsets. Motivated by the need to generalize to higher-resolution spectra, we adopt two

different physically-informed substructure enumeration methods, one that produces possible

fragment formulae (used in RASSP:FN), and another that produces possible fragment vertex

subsets (used in RASSP:SN).

Generating subformulae. Generating subformulae for a given molecule is straightforward.

For a given molecule, we can iteratively generate all subformulae by recursively taking the set-

wise Cartesian product of the possible subformulae for a single element of the molecule with
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the subformulae over the rest of the molecule. For example, getSubformulae(C6H12O6) =

getSubformulae(C6) ⊗ getSubformulae(H12O6) . The base case is a single element X oc-

curring N times, where the possible subformulae are simply the possible occurrences of X:

getSubformulae(XN ) = [X0, X1, . . . , XN ]. However, only considering the chemical formula

(which elements are present and how many) discards vital structural information such as

bond connectivity. In doing so, we ignore all information about which formulae might appear

more often in the final spectrum than others.

We thus explore an additional, richer representation of fragments: vertex (atom) subsets.

We use atom subsets and vertex subsets interchangeably to refer a subset of the atoms

present in a molecule. Atom subsets are preferred to complete fragment subgraphs because

considering bond connectivity explodes the number of subgraph objects we must consider.

Note that two fragment subgraphs with different bonds may still implicate the same subset

of atoms from the original molecule.

Unfortunately, for most interesting molecules it is quite infeasible to enumerate all possible

subsets, as a molecule with N atoms can have 2N possible atomic subsets. Conveniently

for us, this space of atomic subsets is highly redundant, with many atomic subsets having

similar mass peaks in a spectrum. Thus, we cannot proceed like we did with the chemical

subformulae earlier, where we could simply enumerate all possible subformulae. For atom

subsets, we need to devise a scheme that can generate sufficiently plausible subsets. It

should have enough generality to output all peaks in a spectrum, but not so many as to be

computationally intractable to fit a model to later on.

Generating subsets. In order to select plausible subsets from this much larger space

of possible subsets, we adopt a heuristic bond-breaking approach where we begin with an

initial molecule and recursively break all possible bonds out to a particular depth. In this

work, we consider all fragments generated by breaking bonds out to d = 3. Discussion on

why d = 3 is selected is presented later in Section: Evaluating the impact of the subset
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enumeration. In order to improve the recall of this process, we also perform exhaustive

hydrogen rearrangements, a well-studied transition in mass spectrometric fragmentations

[McLafferty and Turecek, 1994]. Since our fragment generation process features bond removal

and addition, it is possible to generate subgraphs that are not subisomorphic to the original

molecule graph. However, our process notably misses important fragmentation processes.

Consider the fragmentation process for toluene. Toluene (C7H8) starts with a 6-carbon ring

ion and one of the possible pathways leads to an intermediate 7-carbon ring ion. Such a

graph structure is not isomorphic to the original graph, and must be formed by the bonds

breaking and rearranging to form a new ring ion [McLafferty and Turecek, 1994]. However,

this fragment is not explicitly generated by our subset enumeration process, though the

chemical formulae may still be output by our exhaustive formulae enumeration.

Figure 2.2: Different representation levels for the mass spectrometric forward problem. Each
molecule is represented as a graph where nodes are atoms and edges are bonds. Subgraphs
are connected components of the original graph, where both atom/bond presence in the
subgraph are considered. Atom subsets are another level of abstraction where only atom
presence in the set is considered. Formulae are yet another level, where only the counts of
unique elements are considered. Finally, each unique formulae corresponds to a known mass
peak distribution.
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2.3.1 Graph neural networks for predicting a probability distribution over

atom subsets and chemical subformulae

Our different enumeration approaches map to potential fragments, represented as either

atom subsets or chemical formulae. For basic molecule identification, this often suffices –

molecules of radically different structures will have fragments with non-overlapping peak

distributions. However, as molecules get larger and more complex, significant overlap between

their spectra can occur, even for molecules without significant structural similarities. Since

more information about structure is captured in relative peak intensities, we would like

to increase the precision of our barcode spectra and identify likely fragments. To do so,

we employ graph neural networks (GNNs) as function approximators to learn a feature

embedding for every atom in a molecule [Gilmer et al., 2017, Zhou et al., 2019, Waikhom and

Patgiri, 2021, Guan et al., 2021, Zhu et al., 2020, Sanchez-Lengeling et al., 2021]. Rather than

use GNNs directly to learn a molecule embedding or fingerprint that we map to a spectrum,

we instead use it indirectly to produce per-atom features.

The feature embedding stored at each atom represents local about the atom’s neighborhood

and global information about the molecule. The chemical subformulae contains information

about which elements are present in a fragment, and how many. Similarly, an atom subset

contains more specific information about the atoms that are present in a fragment. The

core idea is to learn to combine these two sets of information, to produce a probability

distribution over chemical formulae (FormulaNet) or atom subsets (SubsetNet). Once we

have a probability distribution over atom subsets (chemical subformulae), we can directly

evaluate what the predicted spectrum would be.

Per-atom feature embedding via graph neural network.

For a molecule graph M = (V,E) with NA atoms, we derive F0 features for each atom

(see supplementary materials for an exact description of features and network architecture),
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giving a feature matrix X0 of shape NA × F0. The bonds between atoms are represented

as a symmetric adjacency matrix A ∈ {0, 1, 1.5, 2, 3}NA×NA , where different bond orders

are represented by different values. Together, we feed the per-atom feature matrix X0 and

adjacency matrix A into a multi-layer message-passing graph neural network (GNN) that

outputs a per-atom embedding Xd ∈ RNA×Fd (Fig. 2.3).

Figure 2.3: Message-passing graph neural network (GNN). We start off with a vector of
features for each atom as our input features for the graph. Each successive layer of the
GNN performs an update of each atom’s embedding based on a nonlinear transform of the
embeddings of the atoms adjacent to it (hence "message-passing"). After n iterations, we
generate a new set of embeddings for each atom.

FormulaNet.

The per-atom features Xd can be combined with the atom subset/subformula information in

a few ways. The first model we discuss uses only the set of all chemical formulae that arise

from a molecule’s fragmentation. Note that the chemical formula enumeration process is

simple yet fully exhaustive, combinatorially capturing all possible formula that could arise,

even the ones inaccessible via a physically-based fragmentation process.

Our universe of elements is E = {H,C,O,N, S, P, Cl}. These elements were chosen to

ensure nearly full coverage of molecules from PubChem and NIST. Each chemical formula is

then an array of non-zero integers F ∈ Z|E|+ . If a molecule generates f(M) total chemical

subformula, then the count-encoded representation our model takes is of form Fc ∈ Zf(M)×|E|
+ .

Within the model, the count-encoded representation is converted into a run-length one-hot

encoding of form Fr ∈ Zf(M)×maxelem(E)
+ , where maxelem is sufficiently large to contain all
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Figure 2.4: FormulaNet. We compute per-atom feature embeddings using a graph neural
network (GNN). We then compute an attention weight for each atom’s embeddings using the
attention mechanism described in the text, and use that to perform a weighted sum of those
features to produce a subformula-dependent graph embedding. We combine this with the
representation of the subformula and (after several feedforward layers) derive a probability
that that subformula contributes to the final spectrum.

chemical formula within the dataset. As an example, the formula CH3 may be encoded as

[1, 1, 1, 0, 0, 1, 0, 0, 0, 0] where the first 5 entries correspond to 5 maximum possible H atoms

and the last 5 entries correspond to 5 maximum possible C atoms. The Supplement contains

exact details on how this is done.

We then compute an attention operation using the formula embeddings Fc as key and the

per-atom features Xd as query and value. We then concatenate the result with the formula

embeddings: [attention(Fc, Xd, Xd), Fc] and pass this through a MLP to get unnormalized

scores S for each formula. The unnormalized scores are converted to formula probabilities p

using a softmax and scaled against weights computed via a linear layer from the per-atom

features Xd (Fig. 2.4).
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Figure 2.5: SubsetNet. Like FormulaNet, we use the GNN to generate per-atom feature
embeddings. Separately, we generate candidate atom subsets via direct substructure enu-
meration (bond breaking and rearranging). The per-atom feature embeddings are combined
using the atom subsets as "masks" to sum only the embeddings for the atoms present in each
subset, generating an embedding for each atom subset. These subset embeddings are then
fed into a MLP to generate probabilities for each subset.

SubsetNet.

The direct fragmentation process generates a set of atom subsets. For a molecule M = (V,E)

with NA atoms and NS unique atom subsets, the subset indicator matrix is a binary matrix of

{0, 1}NS×NA . We generate an embedding for each subset by taking the mean of the per-atom

embeddings Xd for only the atoms present in each subset. The subset embeddings Xd+1 and

the run-length N -hot encoding of the formula for each subset Fr are combined and then fed

into a MLP to generate probabilities for each subset (Fig. 2.5).

2.3.2 Observation model

Both RASSP:FN and RASSP:SN generate probability distributions, the first over unique

chemical formulae and the second over atom subsets of the original molecule. Given a formula

we can exactly calculate the observed spectrum, taking into account isotopic variability
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at natural abundance and mass defect. At integer-Dalton resolution, summing the atomic

masses and rounding is sufficient, but using this exact spectral distribution will prove useful

for later high-resolution experiments.

We then weight each formula/subset’s mass spectrum according to the model’s output

probability, and sum all the observed mass spectra together to obtain one final mass spectrum

prediction for the entire molecule.

2.3.3 Learning model parameters from data

Note that for both models, the input consists of the molecule graph and either (1) a set of

possible chemical subformula of the molecule or (2) a set of possible atom subsets of the

molecule. The output is a probability distribution over the subformulae or atom subsets.

Because the exact mass peak distribution is known for each subformulae and subset (Section

2.3.2), we then exactly compute the mass spectrum at arbitrary resolution. We fit each model

using stochastic gradient descent against minibatches of experimentally-observed (molecule,

spectra) pairs to minimize the L2 error between scaled spectra, where the spectral intensities

are scaled by a power. Powers < 1 reduce the importance of outlier peaks, whereas powers

> 1 emphasize the importance of outlier peaks.

Metrics.

Each spectrum is represented as a set of charge-to-mass ratios, intensity tuples (mk, Ik). We

assume that all measured ions have charge one, and as such the charge-to-mass ratios may be

interpreted directly as masses. Nearly all EI-MS data is obtained at integer-Dalton resolution,

i.e. (1.0, I1), (2.0, I2), . . .. For peaks that do not conform to this specification, such as output

peaks from CFM-ID [Allen et al., 2016] that specify the exact fragment mass, we transform

spectra from a set of discrete peaks to a histogram by binning at integer-Dalton resolution,

with bins centered on integer values with unit widths and summing all the intensities for
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peaks falling within the same bin. After binning the spectrum, we normalize it to have unit

L2 norm.

The key metric for forward model performance is the weighted dot product (Eq. 2.1). The

weighted dot product scales each mass by a mass power and each intensity by an intensity

power. Note that due to the normalization factors on the bottom, this metric is actually

weighted cosine similarity and not a proper dot product. Due to the normalization, the values

of weighted dot product (for any a, b) fall in the range [0, 1].

DPa,b(Sp, Sr) =

∑
k m

a
kI

b
pk ·m
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kI

b
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2
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Some common values include (a, b) = (1, 0.5) (regular dot product, DP) and (a, b) = (3, 0.6)

(Stein dot product, SDP) [Stein and Scott, 1994]. a ≥ 1 increases the weight placed on errors

at large masses, and b < 1 reduces the impact of outlier intensity values. SDP is commonly

used in the literature to search and match spectra against spectral databases [Stein and Scott,

1994].

Beyond dot product (DP) and Stein dot product (SDP), we also track intensity-weighted

barcode precision (WP) and intensity-weighted false positive rate (WFPR). These additional

metrics respectively represent how much of the predicted spectral intensity was in bins also

seen in the true spectrum and how much of the predicted spectral intensity was in bins

not seen in the true spectrum. For barcode precision, a bin was considered only if the

L1-normalized intensity surpassed some cutoff imin. In this work, we use imin = 0.0001.

Top-K precision is also a relevant metric (how many of the top-K peaks in the predicted

spectrum are also in the true spectrum). This and further metrics may be found in the

Supplement.
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Datasets.

The primary dataset used for training both SubsetNet and FormulaNet models was the NIST

2017 Main Library [NIST]. After filtering the dataset down to molecules containing only

HCONFSPCl atoms, with total atoms ≤ 48, number of unique fragment formulae ≤ 4096 we

obtained a dataset of 125643 molecules. Each molecule was divided into 10 mutually-exclusive

dataset folds according to the last digit of the CRC32 checksum of the hashed Morgan

fingerprint for the molecule. This procedure groups identical molecules in the same dataset

fold, acting as an automatic check against repeated rows or molecules in the dataset. We

used the first 8 folds for training (2 through 9, 100438 molecules, nist-train) and the last 2

folds for validation (0 and 1, 25205 molecules, nist-test).

To compare effectively with CFM-ID [Allen et al., 2016] which provides spectra for evalu-

ation on a small subset of the NIST 2014 Spectral Library, we generate the smallmols-orig

dataset from their provided molecule list [Allen et al., 2016]. In addition, we pulled molecules

from the PubChem Substance Database [Kim et al., 2020]. smallmols-orig was filtered

in the same way as the nist17-mainlib (HCONFSPCl atoms, ≤ 48 atoms, ≤ 4096 unique

fragment formula), and used for evaluation against publicly-available parameters for the

CFM-ID model [Allen et al., 2016] and the NEIMS model [Wei et al., 2019]. More information

on datasets used is available in the Supplementary Information.

The final model with highest SDP and recall at 10 was a FormulaNet (see supplemental

information for exact model parameters). The trained model generalizes to molecules of

arbitrary size and fragments, so we evaluated it against the 73.2M PubChem molecules with

HCONFSPCl atoms, ≤ 64 atoms, ≤ 32768 max unique fragment formula, and ≤ 49152

max vertex subsets. All the molecules and spectra are indexed and publicly available at our

website spectroscopy.ai.

The NIST Replicate dataset consists of 63741 total "replicate" experimental measurements

of 23200 unique molecules. None of these molecules appear in the NIST Main Library. Each
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molecule was replicated a minimum of 2 times, with a mean of 2.7 replicates, a median

of 2, and a maximum of 24 replicates. This dataset allows us to measure the variability

of the experimental process due to stochasticity and inconsistent apparatuses. We use the

replicate dataset to estimate the run-to-run variability between measured spectra contributed

by varying apparatuses and protocols around the world. This experimental noise provides an

upper bound on forward model performance.

2.4 Results

2.4.1 EI-MS forward prediction

Example spectral predictions are presented in Fig. 2.1, and forward prediction metrics are

presented in Fig. 2.6. SubsetNet (RASSP:SN) and FormulaNet (RASSP:FN) were trained for

40 full epochs against a subset of the NIST 2017 EI-MS Spectral Library after selecting for

molecules with ≤ 48 atoms, ≤ 4096 max unique subformulae, and ≤ 12288 subsets (100,438

molecules from nist17-train). A subset of molecules was held-out and used as a validation

set for tuning hyperparameters and model architectures (nist17-test). Where relevant,

RASSP:SN and RASSP:FN refer to the models of each architecture with best performance

on this validation set. Where available, performance was also compared against the CFM-ID

and NEIMS forward models [Allen et al., 2016, Wei et al., 2019]. NEIMS was trained from

scratch for 100 epochs on nist17-train. CFM-ID spectra for the smallmols subset was

derived from the supplementary data provided by the authors. Full model details, the training

process, as well as code is available in the Supplementary Information.

As we can see in Fig. 2.6(a), our models show significant improvement in performance

over previous physics-based models (CFM-ID), achieving a 95% SDP (out of 100%, actual

values are bounded in [0, 1]) on smallmols compared to the CFM-ID 68%. FN and SN

outperform NEIMS significantly on both the smallmols dataset and the nist17 datasets.
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Figure 2.6: EI-MS prediction performance – The bottom and top of the bars represent the 10th
and the 90th percentiles, with the middle bold tick representing the median (all percentiles
evaluated over the dataset specified). (a) Performance of CFM-ID, NEIMS, SubsetNet,
and FormulaNet models on molecules from smallmols-orig (a subset of NIST EI-MS data
selected in a previous paper[Allen et al., 2016]). (b) Performance of NEIMS, SubsetNet, and
FormulaNet models on nist17-mainlib. Metrics are: Stein dot product (SDP, weighted dot
product with (a, b) = (3, 0.6)), regular dot product (DP, (1, 0.5)), intensity-weighted precision
(WP), and intensity-weighted false positive rate (WFPR). "Exp. repl." refers to experimental
replicate variability, estimated by taking the mean metrics over all replicate experiments in
nist17-replib, and are shown in both (a) and (b) for comparison purposes. They can be
viewed as a proxy for experimental variability and as such an "upper limit" to the forward
prediction accuracy.

We leverage the nist17 replicate experiments to compute the best possible intra-experimental

performance (labeled “Exp. repl”) Note that our prediction performance approaches this

experimental accuracy, as depicted in Fig. 2.6(b).This gives us a sense of the run-to-run

and apparatus-to-apparatus variability in the EI-MS process, providing an upper-bound on

forward model performance.

The actual distribution of DP values is depicted in Fig. 2.7. As we can see, the distributions

for both SN and FN skew much closer to that of experimental variability than NEIMS. There

remains some room for improvement, especially with SN. This indicates how much headroom

there might be left to improve upon by improving forward model predictive performance.
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Figure 2.7: Histogram (probability density function) of prediction dot products DP1,0.5.
Here we show the distribution of dot products for all predictions on the NIST Mainlib from
the 3 models NEIMS, SubsetNet, and FormulaNet as compared to the distribution of dot
products for replicate experiments from NIST Replib (labeled "Exp. repl."). As forward
models improve their accuracy, the distribution should shift to the right. The NIST Replib
distribution represents the current limit of prediction performance, accounting for intrinsic
experimental variability as well as differences in experimental setups.

2.4.2 Library matching

Another validation of the accuracy of our predicted spectra is to use them in a database

lookup (library matching) task resembling the common comparison of experimental spectra

against spectral databases to identify unknown compounds. We follow the procedure detailed

in the NEIMS paper [Wei et al., 2019]: we evaluate the performance of an EI-MS forward

model by using model-inferred spectra to replace a set of molecule, spectra pairs in a spectral

database, and then comparing known experimental "replicate" (molecule, spectra) pairs to

the database to see whether the true molecule is ranked highly.

We use the NIST 2017 Main and Replicate Libraries (nist17-mainlib and nist17-replib

respectively) for this task. The Replicate library consists of replicated experimental mea-

surements, and has no overlap with the Main library. To evaluate a given model’s library

matching performance, we evaluate it against all molecules in the Replicate library. These

spectra are then added to the Main library to form an augmented library that consists of
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mainlib experimental spectra and replicate model-inferred spectra. We use the replicate

library as a query library, randomly selecting a replicate experimental spectrum for each

molecule. Each mol, spectrum row in the query library is then tested against the augmented

library. The max peak in the query spectrum is used to filter the augmented library molecules

to ±5Da, and then the rows from the augmented library are sorted by decreasing SDP vs

the query spectrum. The rank of the matching spectrum is recorded. Some examples of the

library matching task are illustrated in Fig. 2.9.

As seen in Fig. 2.8, both SN and FN outperform NEIMS in the library matching (database

lookup) task they originally detailed [Wei et al., 2019]. The error rate at 1 for NIST, at

16.9%, indicates that doing a simple database lookup and taking the top matching molecule

gets the wrong match 1 out of every 6 spectra. We improve the error rate at 1 from 1 in 2

spectra (47.2%, NEIMS) to 1 in 4.6 spectra (21.4%, FN). The numbers improve rapidly as

the window increases, with the error rate at 10 declining to 1 in 83.3 molecules (1.2%, NIST

Ref). FN improves on NEIMS by nearly 3× in this library matching task. Moreover, we note

that SN and FN were trained to maximize forward metric performance (SDP), not recall at

10.
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Figure 2.8: Library matching performance. Comparison of error rate on the library matching
task in [Wei et al., 2019] over the top 1, 5, and 10 ranked spectra achieved by different model
architectures. All graphics display the performance of using NIST replicate spectra as query
spectra, indicating the lower bound of error rate given present EI-MS experimental accuracy.
Error bars correspond to 1-σ variation when estimating the error rate using bootstraps,
drawing 20% of the query library randomly without replacement.
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Query: C12H7Cl3

Rank 1, C12H7Cl3, DP: 97.2

Rank 2, C12H7Cl3, DP: 96.7

Rank 3, C12H7Cl3, DP: 96.7

Query: C15H26O2

Rank 1, C15H26O2, DP: 90.4

Rank 2, C15H26O2, DP: 89.4

Rank 3, C14H22O3, DP: 88.3

Figure 2.9: Library matching task. The left and right panels demonstrate two examples of the
library matching task. The query spectrum (experimental spectrum from the NIST Replib)
is displayed at top in black, and the top 3 ranked spectra from the augmented database
(comprised of NIST Mainlib experimental spectra and model-predicted spectra on the NIST
Replib) are shown, along with their chemical formulae and the similarity metric (dot product
with (1, 0.5).) Blue spectra are experimental spectra from NIST Mainlib and purple spectra
are the predicted spectra from the model used in the task. In this figure, predicted spectra
are output from the best FormulaNet (FN) model. On the left, we see that the correct match
is the spectrum at rank 3. Two molecules with exact formula matches but slightly different
structures (hydrogen placements) are ranked higher. On the right, the correct match is
ranked outside the top 3, but we can see that two molecules with matching formulae but
slightly different structures are ranked at the top.
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2.4.3 Higher-resolution data

Nearly all computational prediction and database lookups utilize EI-MS spectra measured

at integer-Dalton resolution. Our results detailed here are similar. To test whether either

of these models generalize to higher-resolution data, we trained both SN and FN against a

high-resolution synthetic dataset generated by using the CFM-ID [Allen et al., 2016] provided

weights to predict spectra (and their exact peaks) for molecules from PubChem. Rather

than binning at the 1Da resolution, we binned at 0.10 Da resolution. We randomly selected

1000, 10000, and 100000 molecules to use as training, and held out 10000 molecules to use

as test. The generalization performance of SN and FN is depicted in Fig. 2.10. We see

that the performance of SN and FN converge as the dataset size (and molecular diversity)

increases, but SN generalizes much better at low-dataset size. Due to the limited availability

and expense of collecting high-resolution EI-MS data, this indicates that SN may generalize

far better in the low-dataset regime than FN, indicating that the atom subset representation

generated by substructure enumeration may be a more natural representation of the mass

spectral problem than simply enumerating the formulae. For full details about the generation

of the high-resolution synthetic dataset, see the Supplementary Information.

2.4.4 Dependence on molecular similarity

Ultimately we are interested in our model’s performance on new, unseen structures. Machine-

learning methods learn to recognize patterns in their training data, and thus care is taken to

separate out train and test datasets. Fitting of our model is performed exclusively on molecules

in our identified training set, with test molecules reserved solely for metrics evaluation. In

computational spectral prediction, training and evaluating a spectral prediction model on

molecules of a particular class or structural motif can lead to erroneous evaluation of its

performance.

To further investigate how our model may generalize to previously-unseen structures,
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Figure 2.10: Performance of SubsetNet and FormulaNet with scaling dataset size. As we
increase the size of the high-resolution training dataset (synthesized using CFM-ID [Allen
et al., 2014, 2015, 2016] for molecules from PubChem), we see that SN and FN both converge
to similar performance. However, their performance diverges dramatically when the dataset
is small.

we examine how our prediction on molecules in the test set changes depending on how

structurally those test molecules were to molecules in our training set. Such analysis is key

in determining whether a model truly generalizes to structures it has never seen before, and

may provide further confidence in using its spectral predictions on molecules that have no

observed spectrum.

Forward spectral prediction performance

In Fig. 2.11, we present the SDP vs similarity to the closest molecule in the training set for

all the molecules in our test set. We see a clear dependence on similarity – the higher the

similarity to the training set, the better the performance. This effect is most pronounced at

low similarity levels, where the SDP for the 10% similarity quantile falls to below 20%. Note

that 90% of test set molecules have a similarity to the training set over 69.0% (vertical red

line).
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Figure 2.11: Stein dot product (SDP) vs Tanimoto similarity of our test molecules (n = 25205)
to the closest molecule in the training dataset (n = 100438). Results are binned to the nearest
decile and the 10%-50%(median)-90% percentiles within each bin are plotted. Additionally,
the histogram of the similarities is shown inset above the plot. The vertical red line is the
10th percentile of similarity, plotted at Similarity ≈ 69.0%. 10% of test set molecules fall
below this similarity value, and 90% of test set molecules fall above.

Library matching performance

In the library matching task, the NIST Replicate Library we use as the query set features

molecules that are not seen in the Main Library. Thus, for each molecule in the Replicate

Library, we compute its similarity to the Main Library as the similarity to the closest molecule

in the Main Library. We bin the molecules into "low similarity" molecules (n = 29339)

and "high similarity" molecules (n = 18771). The cutoff is 90%, below which a molecule is

classified as "low similarity", otherwise "high similarity". Low similarity molecules have a

mean log10(rank) of 0.11, whereas high similarity molecules have a mean log10(rank) of 0.14.

This intuitively makes sense – Replicate Library molecules with high structural similarity to

Main Library molecules are likely to have similar spectra in the database, and similar spectra
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can often be hard to distinguish from each other, causing the lookup rank to be higher (worse

identification) than molecules with lower similarity. More detailed statistics can be found in

the Supplement.

2.4.5 Evaluating the impact of the subset enumeration

The way we enumerate substructures (here, atom subsets and chemical subformulae) is

critical. Chemical subformulae can be completely enumerated without knowledge of the

molecule structure, but atom subsets requires bond-breaking and hydrogen-rearrangements.

As we increase the depth to which we break bonds, we generate more fragments and should

expect monotonically-increasing recall and coverage of spectra. In Fig. 2.12 we study the

final performance of trained SubsetNets as all parameters are held constant except the bond-

breaking depth used to generate atom subsets for training is varied. Each model is trained

for 1000 epochs or until the validation SDP no longer increases. The highest-performing

checkpoint as measured by validation SDP is selected for final metrics. As we increase the

depth to which we break bonds from d = 1 to 3, we see increases in forward similarity

(SDP and DP), but a decrease at d = 4. The decrease may be due to the way we randomly

select a subset of the atom subsets in order to fit the entire atom subset indicator matrix

on GPU. Randomly subsampling the generated atom subsets may throw-out important

fragments that we no longer consider for weighting and observation later in the pipeline.

In this work, we only focus on subset achievable by bond breaking out to depth 3. Notice

that if we add hydrogen rearrangements ("d=3 B&R"), we continue to see improvement in

performance. This indicates that further improvements in the recall and physical-plausibility

of the generated subsets is likely to boost performance, in addition to increasing the number

of atom subsets considered for observation.
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Figure 2.12: Performance of SubsetNet as depth of bond breaking increases. We fix a
SubsetNet architecture and dataset (NIST17 Mainlib) and vary the depth to which we
break bonds, affecting the number of generated substructures and atom subsets. Training
is terminated after 1000 epochs and the final performance on the validation set is reported
here. We see that as depth increases to d = 3 performance increases, but tapers off at d = 4.
In addition, adding hydrogen rearrangements (B&R) boosts performance over simply doing
more bond breaking.

2.5 Discussion

Previous efforts to learn machine learning models from mass spectral data have focused on

better rules-based fragment enumeration schemes or used machine learning (graph neural

networks, transformers) to directly predict spectra from molecule embeddings (SMILES

strings, fingerprint hashes, etc). Comprehensive substructure enumeration methods tend to

have high recall at the cost of low precision, whereas machine learning tends to help recover

that precision. In this work, we combine a physically-plausible substructure enumeration

process and GNNs, demonstrating that such a fusion outperforms all previous models. We

present SubsetNet and FormulaNet, two models for predicting EI-MS spectra. FormulaNet

significantly outperforms all previous methods of EI-MS spectral prediction, achieving an

average SDP of 92.9% and DP of 93.5% over the largest publicly-available database of EI-MS
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spectra. In addition, our predicted spectra may be evaluated indirectly by utilizing them

in a library matching (database lookup) task. Here, we also outperform previous methods,

achieving a recall at 10 of 98.0%. SubsetNet does much better at generalization in the

low-data regime, by leveraging more fine-grained information about substructures. Such

performance approaches the limits of experimental data (see Fig. 2.7). We generate EI-MS

spectra predictions for 73.2M molecules from PubChem and make them freely available.

All computational approaches to predicting EI-MS spectra approaches are fundamentally

limited by available data. The largest publicly-available spectral library to date is still the

NIST Mass Spectral Library [NIST]. Experimentalists from around the world are free to

contribute EI-MS spectra measured at 1 Da resolution to the library. As higher-resolution

tandem MS/MS machines come online, spectral databases will increasingly consist of het-

erogeneous data, mixing experimental spectra measured at many different resolution scales.

Importantly, because RASSP predicts a probability distribution over fragments with known

exact mass peak distributions, it can be used to predict spectra at arbitrary resolutions by

simply changing how we bin the binning of predicted probabilities. As such, our approach is

the first approach that can be used to leverage data from many different sources, due to the

ability to train against high and low-resolution data simultaneously. It is common to use some

form of dot product or cosine similarity as a spectral similarity metric with which to measure

forward spectral prediction performance and library matching. However, in higher-resolution

tandem MS/MS it is expected that false-positive rate may matter even more. Future work

would look at importance of different metrics in measuring spectral prediction performance

and integrating supervision from both higher-resolution EI-MS spectral data as well as other

types of metadata, such as ionization energy and experimental apparatus.

Each of the modules (subset and subformula enumeration vs. machine learning model for

the fragments) can be improved independently. For computational ease, our enumeration

process generates fragments by breaking up to and including 3 bonds, and also does all possible
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hydrogen rearrangements. There are more exotic fragmentation schemes that we have ignored,

and including them can potentially improve the recall of the generated fragments. The graph

neural networks we use only consider the atoms. No information about the bonds, besides

their bond order, is considered. These models may potentially be improved by incorporating

edge information and changes to the model architecture, such as a novel bipartite atom-bond

message-passing scheme or other improvements. Together, future improvements may improve

both the recall and the precision of our forward model.

An accurate in silico forward model for predicting EI-MS spectra can be applied to library

search and compound identification. Running similarity search over spectral databases using

repeated spectral measurements obtained from NIST Replib achieves an error rate of 1% at 10

using DP1,0.5, which sets the lower bound on library matching accuracy given current EI-MS

hardware. By augmenting existing spectral databases with in silico spectral predictions from

our forward model, we can massively increase the number of molecule candidates considered,

potentially increasing the ability for scientists to discover novel and rare compounds. However,

the search problem quickly becomes computationally limited. A typical query over the 300K

molecules in NIST Mainlib takes about 100ms. Improvements in the computational efficiency

of the library matching / database search task can arise from more efficient similarity metrics,

approximate computations, and dimensionality reduction via approaches like nearest-neighbor

hashing or locality-sensitive hashing. Recent work has already shown that deep learning-based

similarity measures can dramatically improve accuracy over simpler cosine similarity measures

in database lookup tasks [Matyushin et al., 2020, Ji et al., 2020].

In the long run, we expect computational spectral approaches to enable novel applications.

For example, computationally-obtained spectra may be used to augment metabolomics studies

by enabling researchers to automatically match spectra to molecules that have never been

experimentally studied. Future work could use a good computational forward model for

EI-MS to generate large amounts of training data that could then be used as supervision
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for an inverse model to further automate this and other types of molecular identification

problems. The runtime of these forward models may be improved by further algorithmic

improvements to the substructure generation step as well as the machine learning models.
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CHAPTER 3

STOCHASTIC SUM-OF-SQUARES FOR PARAMETRIC

POLYNOMIAL OPTIMIZATION

Global polynomial optimization is an important tool across applied mathematics, with many

applications in operations research, engineering, and physical sciences. In various settings, the

polynomials depend on external parameters that may be random. In this chapter, we discuss

a stochastic sum-of-squares (S-SOS) algorithm based on the sum-of-squares hierarchy that

constructs a series of semidefinite programs to jointly find strict lower bounds on the global

minimum and extract candidates for parameterized global minimizers. We prove quantitative

convergence of the hierarchy as the degree increases and use it to solve unconstrained and

constrained polynomial optimization problems parameterized by random variables. By

employing n-body priors from condensed matter physics to induce sparsity, we can use

S-SOS to produce solutions and uncertainty intervals for sensor network localization problems

containing up to 40 variables and semidefinite matrix sizes surpassing 800×800. This chapter

is adapted from the publication [Zhu et al., 2024] (to appear in Neurips 2024). Additional

background and supporting material external to the core ideas outlined in this chapter can

be found in Chapter 6.

3.1 Introduction

Many effective nonlinear and nonconvex optimization techniques use local information to

identify local minima. But it is often the case that we want to find global optima. Sum-of-

squares (SOS) optimization is a powerful and general technique in this setting.

The core idea is as follows: suppose we are given polynomials g1, . . . , gm, f where each

function is on Rd → R and we seek to determine the minimum value of f on the closed

set S: S = {x ∈ Rd | gi(x) ≥ 0 ∀ i = 1, . . . ,m}. Our optimization problem is then to find
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infx∈Rd{f(x)|x ∈ S}. An equivalent formulation is to find the largest constant c ∈ R (i.e.

the tightest lower bound) that can be subtracted from f such that f − c ≥ 0 over the set S.

This reduction converts a polynomial optimization problem over a semialgebraic set to the

problem of checking polynomial non-negativity. This problem is NP-hard in general [Garey

and Johnson, 2009], therefore one instead resorts to checking if f−c is a sum-of-squares (SOS)

function, e.g. in the unconstrained setting where S = Rd one seeks to find some polynomials

hk : Rd → R such that f − c =
∑

k h
2
k. If such a decomposition can be found, then we have

an easily checkable certification that f − c ≥ 0, as all sum-of-squares are non-negative but

not all non-negative functions are sum-of-squares.

Notably, if we restrict the hk to have maximum degree s, the search for a degree-2s SOS

decomposition of a function can be automated as a semidefinite program (SDP) [Nesterov,

2000, Lasserre, 2001, Laurent, 2009]. Solving this SDP for varying degrees s generates the

well-known Lasserre (SOS) hierarchy. A given degree s corresponds to a particular level of the

hierarchy. Solving this SDP produces a lower bound cs which has been proven to converge

to the true global minimum c∗ = infx f(x) as s increases, with finite convergence (cs = c∗

at finite s) for functions with second-order local optimality conditions [Nie, 2014, Bach and

Rudi, 2023] and asymptotic convergence with milder assumptions thanks to representation

theorems for positive polynomials from real algebraic geometry [Putinar, 1993, Schmüdgen,

2017]. Further work has elucidated both theoretical implications [Putinar, 1993, Lasserre,

2001, 2018, 2023] and useful applications of SOS to disparate fields [Parrilo, 2000, Nie, 2009,

de Klerk, 2008, Nie, 2014, Bach and Rudi, 2023, Ahmadi and Majumdar, 2019, Papp and

Yildiz, 2019] (see further discussion in Section 6.2).

Motivated by the sum-of-squares certification for a lower bound c on a function f(x), we

generalize to the case where the function to be minimized has additional parameters, i.e.

f(x, ω) where x are variables and ω are parameters drawn from some probability distribution

ω ∼ ν(ω). We seek a function c(ω) that is the tightest lower bound to f(x, ω) everywhere:
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f(x, ω) ≥ c(ω) with c(ω)→ infx f(x, ω). This setting was originally presented in [Lasserre,

2010] as a “Joint and Marginal” approach to parametric polynomial optimization. With the

view that ω ∼ ν(ω) and seeking to parameterize the minimizers x∗(ω) = argminxf(x, ω), we

are reminded of some of the prior work in polynomial chaos, where a system of stochastic

variables is expanded into a deterministic function of those stochastic variables [Sudret, 2008,

Najm, 2009].

Contributions and outline. Our primary contributions are a quantitative convergence

proof for the Stochastic Sum-of-Squares (S-SOS) hierarchy of semidefinite programs (SDPs),

a formulation of a new hierarchy (the cluster basis hierarchy) that uses the structure of a

problem to sparsify the SDP, and numerical results on its application to the sensor network

localization problem.

In Section 3.2, we review the S-SOS hierarchy of SDPs [Lasserre, 2010] and its primal

and dual formulations (Section 3.2.1). We then detail how different hierarchies can be

constructed (Section 3.2.2). Finally, in Section 3.2.3 (complete proofs in Section 6.5.2)

we specialize to compact X × Ω and outline the proofs for two theorems on quantitative

convergence (the gap between the optimal values of the degree-2s S-SOS SDP and the

“tightest lower-bounding” optimization problem goes → 0 as s→∞) of the S-SOS hierarchy

for trigonometric polynomials on [0, 1]n × [0, 1]d following the kernel formalism of [Fang and

Fawzi, 2021, Bach and Rudi, 2023, Slot, 2023]. The first one applies in the general case and

the second one applies to the case where d = 1.

In Section 3.3 we review the hierarchy’s applications in parametric polynomial minimization

and uncertainty quantification, focusing on several variants of sensor network localization on

X × Ω = [−1, 1]n × [−1, 1]d. We present numerical results for the accuracy of the extracted

solutions that result from S-SOS, comparing to other approaches to parametric polynomial

optimization, including a simple Monte Carlo-based method.
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3.2 Stochastic Sum-of-squares (S-SOS)

Notation

Let P(S) be the space of polynomials on S, where S ∈ {X,Ω}. X ⊆ Rn and Ω ⊆ Rd, respec-

tively, where X and Ω are (not-necessarily compact) subsets of their respective ambient spaces

Rn and Rd. A polynomial in P(X) can be written as p(x) =
∑

α∈Zn
≥0

cαx
α ∈ P(X) (substi-

tuting n→ d, x→ ω,X → Ω for a polynomial in Ω). Let x := (x1, . . . , xn), ω := (ω1, . . . , ωd),

α be a multi-index (size given by context), and cα be the polynomial coefficients. Let Ps(S)

for some s ∈ Z≥0, S ∈ {X,Ω} denote the subspace of P(S) consisting of polynomials of

degree ≤ s, i.e. polynomials where the multi-indices of the monomial terms satisfy ||α||1 ≤ s.

PSOS(X × Ω) refers to the space of polynomials on X × Ω that can be expressible as a sum-

of-squares in x and ω jointly, and Ps
SOS(X × Ω) be the same space restricted to polynomials

of degree ≤ s. Additionally, W ≽ 0 for a matrix W denotes that W is symmetric positive

semidefinite (PSD). Finally, P(Ω) denotes the set of Lebesgue probability measures on Ω. For

more details, see Section 6.1.

3.2.1 Formulation of S-SOS hierarchy

We present two formulations of the S-SOS hierarchy that are dual to each other in the

sense of Fenchel duality [Rockafellar, 2015, Boyd and Vandenberghe, 2004]. The primal

problem seeks to find the tightest lower-bounding function and the dual problem seeks to

find a minimizing probability distribution. Note that the “tightest lower bound” approach is

dual to the “minimizing distribution” approach, otherwise known as a “joint and marginal”

moment-based approach originally detailed in [Lasserre, 2010].
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Primal S-SOS: The tightest lower-bounding function

Consider a polynomial f(x, ω) : Rn+d → R with x ∈ X ⊆ Rn, ω ∈ Ω ⊆ Rd equipped with

a probability measure ν(ω). We interpret x as our optimization variables and ω as noise

parameters, and seek a lower-bounding function c∗(ω) such that f(x, ω) ≥ c∗(ω) for all

x, ω. In particular, we want the tightest lower bound c∗(ω) = infx∈X f(x, ω). Note that

even when f(x, ω) is polynomial, the tightest lower bound c∗(ω) can be non-polynomial. A

simple example is the function f(x, ω) = (x− ω)2 + (ωx)2, which has c∗(ω) = infx f(x, ω) =

ω4/(1 + ω2) (Section 6.6.1).

For us to select the “best” lower-bounding function, we want to maximize the expectation

of the lower-bounding function c(ω) under ω ∼ ν(ω) while requiring f(x, ω) − c(ω) ≥ 0,

giving us the following optimization problem over L1-integrable lower-bounding functions:

p∗ = sup
c∈L1(Ω)

∫
c(ω)dν(ω) (3.1)

s.t. f(x, ω)− c(ω) ≥ 0

Even if we restricted c(ω) to be polynomial so that the residual f(x, ω) − c(ω) is also

polynomial, we would still have a challenging nonconvex optimization problem over non-

negative polynomials. In SOS optimization, we take a relaxation and require the residual

to be SOS: f(x, ω)− c(ω) ∈ PSOS(X × Ω). Doing the SOS relaxation of the non-negative

Equation (3.1) and restricting c(ω), i.e. f(x, ω)− c(ω) to polynomials of degree ≤ 2s gives

us Equation (3.2), which we call the primal S-SOS degree-2s SDP:

p∗2s = sup
c∈P2s(Ω),W≽0

∫
c(ω)dν(ω) (3.2)

s.t. f(x, ω)− c(ω) = ms(x, ω)
TWms(x, ω)

where ms(x, ω) is a basis function X × Ω→ Ra(n,d,s) containing monomial terms of degree
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≤ s written as a column vector, and W ∈ Ra(n,d,s)×a(n,d,s) a symmetric PSD matrix. Here,

a(n, d, s) represents the dimension of the basis function, which depends on the degree s and

on the dimensions n, d. For this formulation to find the best degree-2s approximation to the

lower-bounding function, we require g(x, ω) = ms(x, ω)
TWms(x, ω) to span P2s(X × Ω).

Selecting all combinations of standard monomial terms of degree ≤ s suffices and results in a

basis function with size a(n, d, s) =
(n+d+s

s

)
.

Dual S-SOS: A minimizing distribution

The formal dual to Equation (3.1) (proof of duality in Section 6.5.1) seeks to find a “minimizing

distribution” µ(x, ω), i.e. a probability distribution that places weight on the minimizers of

f(x, ω) subject to the constraint that the marginal µX(ω) matches ν(ω):

d∗ = inf
µ∈P(X×Ω)

∫
f(x, ω)dµ(x, ω) (3.3)

s.t.
∫
X
dµ(x, ω) = µX(ω) = ν(ω)

where we have written P(X ×Ω) as the space of joint probability distributions on X ×Ω and

µX(ω) is the marginal of µ(x, ω) with respect to ω, obtained via disintegration.

For the primal, we considered polynomials of degree ≤ 2s. We do the same here. The

formal dual becomes a tractable SDP, where the objective turns into moment-minimization

and the constraints become moment-matching. Following [Lasserre, 2001, Nie, 2009], let

M ∈ Ra(n,d,s)×a(n,d,s) be the symmetric PSD moment matrix with entries defined as

Mi,j =
∫
X×Ωm

(i)
s (x, ω)m

(j)
s (x, ω)dµ(x, ω) where m

(i)
s (x, ω) is the i-th element of the ba-

sis function ms. Let y ∈ Rb(n,d,s) be the moment vector of independent moments that

completely specifies M , e.g. in the case that we use all standard monomials of degree

≤ s and have a(n, d, s) =
(n+d+s

s

)
, then b(n, d, s) =

(n+d+2s
2s

)
. We write M(y) as the

moment matrix that is formed from these independent moments. We have yα(i,j) =
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∫
X×Ωm

(i)
s (x, ω)m

(j)
s (x, ω)dµ(x, ω) where the multi-index α(i, j) ∈ Zn+d

≥0 corresponds to

the sum of the multi-indices corresponding to the i-th entry and the j-th entry of ms(x, ω).

We write f(x, ω) in terms of the monomials f(x, ω) =
∑
||α||1≤2s fα[x, ω]

α, where [x, ω] is

the concatenation of the n+ d variables from x, ω and α ∈ Zn+d
≥0 is a multi-index. Note that

every monomial [x, ω]α has a corresponding moment yα:
∫
[x, ω]αdµ(x, ω) = yα. We then

observe that the integral in the objective reduces to a dot product between the coefficients of

f and the moment vector:

∫
f(x, ω)dµ(x, ω) =

∫ ∑
α

fα[x, ω]
αdµ(x, ω) =

∑
α

fαyα

After converting the distribution-matching constraint µX(ω) = ν(ω) in (3.3) into equality

constraints on the moments of ω up to degree 2s, we obtain the following dual S-SOS degree-2s

SDP:

d∗2s = inf
y∈Rb(n,d,s)

∑
||α||1≤2s

fαyα (3.4)

s.t. M(y) ≽ 0

yα = mα ∀ (α,mα) ∈Mν

We writeMν as the set of (α,mα) representing the moment-matching constraints on ωα up

to degree-2s, i.e. we want to set
∫
X×Ω ωαdµ(x, ω) =

∫
Ω ωαdν(ω) = mα for all multi-indices

α ∈ Zd
≥0 with ||α||1 ≤ 2s. There are

(d+2s
2s

)
multi-indices α ∈ Zn+d

≥0 , ||α||1 ≤ 2s where only

the d entries associated with ω are non-zero, and therefore the number of moment-matching

constraints is |Mν | =
(d+2s

2s

)
. Note that the moment matrix M(y) ∈ Ra(n,d,s)×a(n,d,s) is a

symmetric PSD matrix and is the dual variable to the primal W . Observe also that we require

the moments of ν(ω) of degree up to 2s to be bounded. (3.4) is often a more convenient form

than (3.2), especially when working with additional equality or inequality constraints, as we
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will see in Section 3.3. For concrete examples of the primal and dual SDPs with explicit

constraints, see Section 6.3.

3.2.2 Variations

In this section, we detail two ways of building a hierarchy, one based on the maximum

degree of monomial terms in the basis function (Lasserre) and a novel one based on the

maximum number of interactions occurring in the terms of the basis function (cluster basis).

To define any SOS hierarchy, we first select a monomial basis. Some examples include

the standard monomial basis x1, . . . , xn, trigonometric/Fourier 1-periodic monomial basis

sinx1, cosx1, . . . , sinxn, cosxn), or others. Using this basis, we write down a basis function

m(x) which comprises some combinations of monomials. Squared linear combinations of the

basis functions then span a SOS space of functions: H : {(
∑

i himi(x))
2}.

Standard Lasserre hierarchy

In the Lasserre hierarchy, the basis function ms(x) is composed of all combinations of

monomials up to degree s ∈ Z>0 and a given level of the hierarchy is set by the maximum

degree s. The basis function consists of terms xα with α a multi-index and ||α||1 ≤ s.

The degree-2s SOS function space parameterized by this basis function is that spanned by

ms(x)
TWms(x) for PSD W , i.e. the functions that can result from squaring any linear

combination of degree-s polynomials that can be generated from our basis ms(x). As we

increase the degree s, our basis function gets larger and our S-SOS SDP objective values

converge to the optimal value of the “tightest lower-bounding” problem Equation (3.1)

[Lasserre, 2010].
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Cluster basis hierarchy

In this section, we propose a cluster basis hierarchy, wherein we utilize possible spatial

organization of the problem to sparsify the problem and reduce the size of the SDP that

must be solved [Vandenberghe, 2017, Chen et al., 2023]. The cluster basis is a physically

motivated prior often used in statistical and condensed matter physics, where we assume

that our degrees of freedom can be arrayed in space, with locally close variables interacting

strongly (kept in the model) and globally separated variables interacting weakly (ignored).

Moreover, one may also keep only the terms with interactions between a small number of

degrees of freedom, such as considering only pairwise or triplet interactions between particles.

In the cluster basis hierarchy, a given level of the hierarchy is defined both by the maximum

degree of a variable t and the desired body order b. Body order denotes the maximum number

of interacting variables in a given monomial term, e.g. xai x
b
jx

c
k would have body order 3 and

total degree a + b + c. The basis function mb,t consists of terms xα with α a multi-index,

||α||0 ≤ b (at most b interacting variables can occur in a single term), and ||α||∞ ≤ t (each

variable can have up to degree t. The maximum degree of the basis function mb,t is then

s = bt. If we are to compare mb,t from the cluster basis hierarchy with ms from the Lasserre

hierarchy, we find that even when bt = s we still have strictly fewer terms, e.g. in the case

where b = 2, t = 2, s = 4 we have ms containing terms of the form x4i but mb,t only has

degree-4 terms of the x2i x
2
j . For further details, see discussion in Section 6.7.4.

3.2.3 Convergence of S-SOS

As we increase the degree s (either s in the Lasserre hierarchy or b, t in the cluster basis

hierarchy) we would expect the SDP objective values p∗2s (Equation (3.2)) to converge to

the optimal value p∗ and the lower bounding function c∗2s(ω) to converge to the tightest

lower bound c∗(ω) = infx f(x, ω). In this work we refer to p∗2s → p∗ and d∗2s → d∗

interchangeably as strong duality occurs in practice despite being difficult to formally verify
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(Section 6.4). This convergence is a common feature of SOS hierarchies. In this section

we show that using polynomial c∗2s(ω) to approximate c∗(ω) still allows for asymptotic

convergence in L1 as s→∞. We further show how this can be improved with other choices

of approximating function classes beyond polynomial c(ω). We specialize to the particular

case of trigonometric polynomials f(x, ω), c(ω) on X = [0, 1]n and compact Ω ⊂ Rd and

prove asymptotic convergence of the degree-2s S-SOS hierarchy as s→∞.

ln s/s convergence using a polynomial approximation to c∗(ω)

We would like to bound the gap between the optimal lower bound c∗(ω) = infx∈X f(x, ω)

and the lower bound c∗2s(ω) resulting from solving the degree-2s primal S-SOS SDP, i.e.

0 ≤ c∗(ω)− c∗2s(ω) ≤ ε(f, s) ∀ ω ∈ Ω. (3.5)

To that end, we need to understand the regularity of c∗. Without further assumptions,

we may assume c∗ to be Lipschitz continuous, per Proposition 3.2.1.

With Equation (3.5) we may then integrate

0 ≤
∫
Ω
inf
x
f(x, ω)− c∗2s(ω)dν(ω) ≤ |Ω|ε(f, s)

where we control ε in terms of the degree s. If we can drive ϵ → 0 as s → ∞ then we are

done.

Proposition 3.2.1 (Theorem 2.1 in [Clarke, 1975]). Let g : X×Y → R be polynomial. Then

y 7→ infx∈X g(x, y) is Lipschitz continuous.

Theorem 3.2.1 (Asymptotic convergence of S-SOS). Let f : [0, 1]n × Ω→ R be a trigono-

metric polynomial of degree 2r, c∗(ω) = infx f(x, ω) the optimal lower bound as a func-

tion of ω, and ν any probability measure on compact Ω ⊂ Rd. Let s refer to the degree
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of the basis in both x, ω terms and the degree of the lower-bounding polynomial c(ω), i.e.

ms([x, ω]) : Rn+d → Ra(n,d,s) is the full basis function of terms [x, ω]α with ||α||1 ≤ s and

c(ω) only has terms ωα with ||α||1 ≤ s.

Let p∗2s be the solution to the following S-SOS SDP (c.f. Equation (3.2)) with ms(x, ω) a

spanning basis of trigonometric monomials with degree ≤ s:

p∗2s = sup
c∈P2s(Ω),W≽0

∫
c(ω)dν(ω)

s.t. f(x, ω)− c(ω) = ms(x, ω)
TWms(x, ω)

Then there is a constant C > 0 depending only on ||f − f̄ ||F , ||c∗ − c̄∗||, r,Ω, n, d such

that the following holds: ∫
Ω
[c∗(ω)− c∗2s(ω)] dν(ω) ≤ C

ln s

s

where f̄ denotes the average value of the function f over [0, 1]n, i.e. f̄ =
∫
[0,1]n f(x)dx and

||f(x)||F =
∑

x̂ |f̂(x̂)| denotes the norm of the Fourier coefficients. Thus we have asymptotic

convergence of the S-SOS SDP hierarchy to the optimal value p∗ of Equation (3.1) as we

send s→∞.

Proof. The following is an outline of the proof. For complete details, including the full

theorem and proof, please see Section 6.5.2.

We define a trigonometric polynomial (t.p.) c∗a(ω) of degree sc that approximates the

lower-bounding function such that c∗(ω) = infx f(x, ω) ≥ c∗a(ω). The error integral breaks

apart into two terms, one bounding the approximation error between c∗(ω) and c∗a(ω), and

the other bounding the error between the approximate lower-bounding t.p. c∗a(ω) and the

SOS lower-bounding t.p. c∗2s(ω).

We then follow the proofs of [Fang and Fawzi, 2021, Bach and Rudi, 2023, Slot, 2023]

wherein we define an invertible linear operator T that constructs a SOS function out of a

non-negative function, and show that such an operator exists for sufficiently large s. The core
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modification is to the operator T which is defined as an integral operator over two kernels

qx(x), qω(ω), i.e.

Th(x, ω) =

∫
X×Ω

|qx(x− x̄)|2|qω(ω − ω̄)|2h(x̄, ω̄)dx̄dω̄

1/s convergence using a piecewise-constant approximation to c∗(ω)

Prior work [Bach and Rudi, 2023] achieves 1/s2 convergence for the regular SOS hierarchy

without further assumptions. In the previous section, we could only achieve ln s/s due to

the need to first approximate the tightest lower-bounding function c∗(ω) with a polynomial

approximation, which converges at a slower rate. To accelerate the convergence rate, we

want to control the regularity of c∗(ω). We can achieve 1/s by approximating the c∗(ω)

pointwise instead of using a smooth parameterized polynomial. By constructing a domain

decomposition of Ω and finding a SOS approximation in x for each domain, we can stitch

these together to build a piecewise-constant approximation to the lower-bounding function

c∗.

In the one-dimensional case Ω ⊂ R (full proof in Section 6.5.2) we achieve the following:

Proposition 3.2.2. Let Ω ⊂ R be a compact interval and f be a trigonometric polynomial of

degree 2r. Let {ωi} be equidistant grid points in Ω and sp the number of such points. Denote

by c∗s(ωi) the best SOS approximation of degree s of x 7→ f(x, ωi) and define

c∗s =

sp∑
i=1

c∗s(ωi)1[ωi,ωi+1]
.
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Then we have for some constant C ′ depending only on maxωi ||f(ωi, ·)− f̄(ωi, ·)||F , r, n,Ω, sp:

∫
Ω
c∗(ω)− c∗s(ω)dω ≤ max

ωi
∥f(ωi, ·)− f̄(ωi, ·)∥F

[
1−

(
1− 6r2

s2

)−n]
|Ω|+ C

sp
≤ C ′

1

s2

3.3 Numerical experiments

We present two numerical studies of S-SOS demonstrating its use in applications. The first

study (Section 3.3.1) numerically tests how the optimal values of the SDP Equation (3.2)

p∗2s converge to p∗ of the original primal Equation (3.1) as we increase the degree. The

second study (Section 3.3.2) evaluates the performance of S-SOS for solution extraction and

uncertainty quantification in various sensor network localization problems.

3.3.1 Simple quadratic SOS function

As a simple illustration of S-SOS, we test it on the SOS function

f(x, ω) = (x− ω)2 + (ωx)2 (3.6)

with x ∈ R, ω ∈ R. The lower bound c∗(ω) = infx f(x, ω) can be computed analytically as

c∗(ω) = ω4/(1 + ω2). Assuming ω ∼ Uniform(−1, 1), we get that the objective value for the

“tightest lower-bounding” primal problem Equation (3.1) is p∗ =
∫ 1
−1

ω4

2(1+ω2)
dω = π

4 −
2
3 ≈

0.1187. For further details, see Section 6.6.

We are interested in studying the quantitative convergence of the S-SOS hierarchy

numerically. The idea is to solve the primal (dual) degree-2s SDP to find the tightest

polynomial lower bound (the minimizing probability distribution) for varying degrees s.

As s gets larger, the basis function ms(x) gets larger and the objective value of the SDP

Equation (3.2) p∗2s should converge to the theoretical optimal value p∗.

In Figure 3.1 we see very good agreement between p∗ and p∗2s with exponential convergence
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Figure 3.1: Comparison between the objective value p∗2s from solving the degree-2s S-SOS
SDP and the objective value p∗ resulting from the best-possible lower bound c∗(ω) for noise
drawn as ω ∼ Uniform(−1, 1). p∗ =

∫
c∗(ω)dν(ω) = π

4 −
2
3 ≈ 0.1187 is plotted as the line

in black and the p∗2s values are shown as blue dots (left) with the gap between the values
p∗ − p∗2s (right).

as s increases. This is much faster than the rate we found in Section 3.2.3, but agrees with the

exponential convergence results from [Bach and Rudi, 2023] achieved with local optimality

assumptions. Due to the simplicity of (3.6), it’s not surprising that we see much faster

convergence. In fact, for most typical functions, we might expect convergence much faster

than the worst-case rate. The tapering-off of the convergence rate is likely attributed to the

numerical tolerance used in our solver (CVXPY/MOSEK), as we observed that increasing

the tolerance shifts the best-achieved gap higher.

3.3.2 Sensor network localization

Sensor network localization (SNL) is a common testbed for global optimization and SDP

solvers due to the high sensitivity and ill-conditioning of the problem. In SNL, one seeks to

recover the positions of N sensors X ∈ RN×ℓ positioned in Rℓ given a set of noisy observations

of pairwise distances dij = ||xi − xj || between the sensors [Nie, 2009, So and Ye, 2007]. To
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have a unique global minimum and remove symmetries, sensor-anchor distance observations

are often added, where several sensors are anchored at known locations in the space. This

can improve the conditioning of the problem, making it “easier” in some sense.

Definitions

We define a SNL problem instance with X ∈ [−1, 1]N×ℓ as the ground-truth positions for

S = {1, 2, . . . , N} sensors, A ∈ [−1, 1]K×ℓ as the ground-truth positions forA = {1, 2, . . . , K}

anchors, Dss(r) = {dij = ||xi−xj || : i, j ∈ S and dij ≤ r} as the set of observed sensor-sensor

distances and Dsa(r) = {dik = ||xi − ak|| : i ∈ S, k ∈ A and dik ≤ r} as the set of observed

sensor-anchor distances, both of which depend on some sensing radius r.

Writing xi, ak ∈ [−1, 1]ℓ as the unknown positions of the i-th sensor and the k-th anchor,

we can write the potential function to be minimized as a polynomial:

f(x, ω;X,A, r) =
∑

dij∈Dss(r)

(||xi − xj ||22 − dij(ω)
2)2

︸ ︷︷ ︸
sensor-sensor interactions

+
∑

dik∈Dsa(r)

(||xi − ak||22 − dik(ω)
2)2

︸ ︷︷ ︸
sensor-anchor interactions

(3.7)

The observed sensor-sensor and sensor-anchor distances dij(ω), dik(ω) can be perturbed

arbitrarily, but in this work we focus on linear uniform noise, i.e. for a subset of observed

distances we have dij,k(ω) = d∗ij + ϵωk with ωk ∼ Uniform(−1, 1). Other noise types may be

explored, including those including outliers, which may be a better fit for robust methods

(Section 6.7.2).

Equation (3.7) contains soft penalty terms for sensor-sensor terms and sensor-anchor terms.

We can see that this is a degree-4 polynomial in the standard monomial basis elements, and

a global minimum of this function is achieved at f(X,0d;X,A, r) = 0 (where the distances

have not been perturbed by any noise). In general for non-zero ω (measuring distances under
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noise perturbations) we expect the function minimum to be > 0, as there may not exist a

configuration of sensors X̂ that is consistent with the observed noisy distances.

We can also support equality constraints in our solution, in particular hard equality

constraints on the positions of certain sensors relative to known anchors. This corresponds

to removing all sensor-anchor soft penalty terms from the function and instead selecting

NH < N sensors at random to exactly fix in known positions via equality constraints in the

SDP. The SDP is still large but the effective number of variable sensors has been reduced to

N ′ = N −NH .

A given SNL problem type is specified by a spatial dimension ℓ, N sensors, K anchors,

a sensing radius r ∈ (0, 2
√
ℓ), a noise type (linear), and anchor type (soft penalty or hard

equality). Once these are specified, we generate a random problem instance by sampling

X ∼ Uniform(−1, 1)n, A ∼ Uniform(−1, 1)d. The potential f(x, ω) for a given instance is

formed (either with sensor-anchor terms or not, with terms kept based on some sensing radius

r, and noise variables appropriately added).

The number of anchors is chosen to be as few as possible so as to still enable exact

localization, i.e. K = ℓ+1 anchors for a SNL problem in ℓ spatial dimensions. The SDPs are

formulated with the help of SymPy [Meurer et al., 2017] and solved using CVXPY [Diamond

and Boyd, 2016, Agrawal et al., 2018] and Mosek [ApS, 2023] on a server with two Intel

Xeon 6130 Gold processors (32 physical cores total) and 256GB of RAM. For an expanded

discussion and further details, see Section 6.7.

Evaluation metrics

The accuracy of the recovered solution is of primary interest, i.e. our primary evaluation

metric should be the distance between our extracted sensor positions x and the ground-

truth sensor positions X, i.e. dist(x,X). Because the S-SOS hierarchy recovers estimates

of the sensor positions E[xi] along with uncertainty estimates Var[xi], we would like to
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measure the distance between our ground-truth positions X to our estimated distribution

p(x) = N (E[x],Var[x]). The Mahalanobis distance δM (Equation (3.8)) is a modified distance

metric that accounts for the uncertainty [Mahalanobis, 1936]. We use this as our primary

metric for sensor recovery accuracy.

δM (X,N (µ,Σ)) :=

√
(X − µ)TΣ−1(X − µ) (3.8)

As our baseline method, for each problem instance we apply a basic Monte Carlo method de-

tailed in Algorithm 2 (Section 6.7.3) where we sample ω ∼ ν(ω), use a local optimization solver

to find x∗(ω) = infx f(x, ω), and use this to estimate Eω∼ν [x],Varω∼ν [x]. Note that though

this non-SOS method achieves some estimate of the dual SDP objective
∫
f(x, ω)dµ(x, ω), it

is not guaranteed to be a lower bound.

Results

Recovery accuracy. In Table 3.1 we see a comparison of the S-SOS method and the MCPO

baseline. Each row corresponds to one SNL problem type, i.e. we fix the physical dimension ℓ,

the number of anchors K = ℓ+1, and select the sensing radius r and the noise scale ϵ. We then

generate L = 20 random instances of each problem type, corresponding to a random realization

of the ground-truth sensor and anchor configurations X ∈ [−1, 1]N×ℓ, A ∈ [−1, 1]K×ℓ,

producing a f(x, ω) that we then solve the SDP for (in the case of S-SOS) or do pointwise

optimizations for (in the case of MCPO). Each method outputs estimates for the sensor

positions and uncertainty around it as a N (E[x],Cov[x]), which we then compute δM for

(see Equation (3.8)), treating each dimension as independent of each other (i.e. X as a flat

vector). Each instance solve gives us one observation of δM or each method, and we report

the median and the ±1σ34% values over the L = 20 instances we generate.
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Table 3.1: Comparison of S-SOS and MCPO solution extraction accuracy. We present the
Mahalanobis distance δM (Equation (3.8)) of the the true sensor positions X∗ to the extracted
distribution N (E[x],Var[x]) over solutions recovered from S-SOS for varying SNL problem
types. ℓ is the spatial dimension, r is the sensing radius used to cutoff terms in the potential
f(x, ω), ϵ is the noise scale, NH is the number of hard equality constraints used (sensors
fixed at known locations), NC is the number of clusters used (see Section 6.7.4), and N is
the number of sensors used. Each SNL problem instance has K = ℓ+ 1 anchors used in the
potential (if NH = 0). The MCPO values are estimated with T = 50 Monte Carlo iterates.
Each entry is µ̂± σ̂ where µ̂ is the median and robust standard-deviation (σ34%) estimated
over 20 runs of the same problem type with varying random initializations of the sensor
positions. The entries with the lowest median δM are bolded. We also compare the number of
elements in the full basis af , the cluster basis ac, and the reduction multiple when using the
cluster basis af/ac. When passing to the cluster basis, af/ac is how much the semidefinite
matrix shrinks by.

Parameters Basis comparison M-distance (δM )

ℓ r ϵ NH NC N af ac af/ac S-SOS MCPO

1 0.5 0.3 0 1 10 78 78 1x 0.94 ± 0.22 2.61± 3.86
1 1.0 0.3 0 1 10 78 78 1x 0.29 ± 0.16 1.10± 0.58
1 1.5 0.3 0 1 10 78 78 1x 0.11 ± 0.11 0.86± 0.52

1 1.5 0.3 2 1 10 78 78 1x 0.24 ± 0.37 1.06± 1.28
1 1.5 0.3 4 1 10 78 78 1x 0.10 ± 0.03 0.61± 0.41
1 1.5 0.3 6 1 10 78 78 1x 0.06 ± 0.04 0.48± 0.32
1 1.5 0.3 8 1 10 78 78 1x 0.04 ± 0.02 0.31± 0.17

2 1.5 0.1 0 9 9 406 163 2.5x 2.86 ± 0.94 1562.39± 596.29
2 1.5 0.1 0 9 15 820 317 2.6x 3.25 ± 1.19 1848.65± 650.45

3.4 Discussion

In this work, we discuss the stochastic sum-of-squares (S-SOS) method to solve global

polynomial optimization in the presence of noise, prove two asymptotic convergence results

for polynomial f and compact Ω, and demonstrate its application to parametric polynomial

minimization and uncertainty quantification along with a new cluster basis hierarchy that

enables S-SOS to scale to larger problems. In our experiments, we specialized to sensor

network localization and low-dimensional uniform random noise with small n, d. However,

it is relatively straightforward to extend this method to support other noise types (such
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as Gaussian random variates without compact support, which we do in Section 6.6.4) and

support higher-dimensional noise with d≫ 1.

Scaling this method to larger problems n ≫ 1 is an open problem for all SOS-type

methods. We take the approach of sparsification, by making the cluster basis assumption

to build up a block-sparse W . We anticipate that methods that leverage sparsity or other

structure in f will be promising avenues of research, as well as approximate solving methods

that avoid the explicit materialization of the matrices W,M . For example, we assume that

the ground-truth polynomial possesses the block-sparse structure because our SDP explicitly

requires the polynomial f(x, ω) to exactly decompose into some lower-bounding c(ω) and

SOS fSOS(x, ω). Relaxing this exact-decomposition assumption and generalizing beyond

polynomial f(x, ω), c(ω) may require novel approaches and would be an exciting area for

future work.
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CHAPTER 4

GENERATIVE DIFFUSION PROCESSES: A DEEP DIVE INTO

SCORE FUNCTION STRUCTURE

4.1 Introduction

Diffusion models have seen tremendous success in modern generative modeling applications,

ranging from image generation to audio synthesis. What are the core ideas? This chapter of

the thesis will cover the basics of diffusion models, and then explore how we can relax some

of the assumptions made in the standard diffusion model to improve its performance. Section

4.2 will cover the basics of diffusion processes in physics and probabilistic generative modeling.

We will review some of the core ideas in statistical physics that relate to diffusion, including

random walks, the Langevin equation, and the Fokker-Planck equation. Section 4.3 will

introduce some of the methods we will use, including the core ideas of diffusion processes we

use and the modeling approaches we take, which focus on interpretable and simple function

approximators. Section 4.4 will present a series of vignettes that explore the structure of

simple diffusion processes, focusing on cases where the score function is analytically known

and numerically verifying the behavior.

4.2 Background

To understand diffusion generative models, we will need to understand both diffusion processes

in physics and the principles of probabilistic generative modeling. In this section, we will

discuss how diffusion processes arise naturally in physics, and how seeking to model them

mathematically led mathematicians and physicists to the Fokker-Planck equation, which is the

most general dynamics governing the conserved transport of a density. After discussing Monte

Carlo methods briefly, we then dive into diffusion processes in generative modeling, starting
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with a look at early work in diffusion models, ranging from the denoising score matching idea

of [Vincent, 2011], to the DDPMs of [Sohl-Dickstein et al., 2015], and culminating in the line

of work [Song et al., 2018, 2019, Song and Ermon, 2020, Song et al., 2021] that advance the

continuous-time ideas of SDE and ODE diffusion.

4.2.1 Diffusion in physics

Random walk in 1D

In physics, diffusion arises as an irreversible process where particles spread out from regions of

high concentration to regions of low concentration, typically from thermalization or random

motion. Brownian motion, as discovered by Brown in 1827 and later explained by Einstein

in 1905, is a classic example of diffusion. But an even more simple case where the basic

physics can be understood is that of the discrete random walk on a 1D lattice. Consider a

particle that starts at the origin and moves left or right with equal probability at each time

step. The probability distribution of the particle’s position at time t is given by the binomial

distribution:

p(x, t) =
1

2t

(
t

t+x
2

)
where x ∈ {−t,−t + 1, . . . , t − 1, t} is the position of the particle at time t. We can see

that the mean position of the particle is E[x(t)] = 0 and the variance is Var[x(t)] = t. As

t→∞, the distribution converges to the normal distribution with the same parameters via

the central limit theorem, giving us

p(x, t)→ 1√
2πt

exp

(
−x2

2t

)

This is the simplest example of a diffusion process, where we have a single particle at a known

place at time t = 0.
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Continuous-time Langevin and the Fokker-Planck equation

Now we can pass to the continuous time limit. Consider x(t) ∈ Rd a stochastic process that

describes the position of a particle at time t, evolving under the influence of a deterministic

drift term a(x, t) ∈ Rd and a stochastic term with some diffusion coefficient b(x, t) ∈ R. The

diffusion coefficient can be non-scalar but for our purposes it suffices to consider the scalar

case. The resulting stochastic differential equation (SDE) is the Langevin equation and is

given by:

dx(t) = a(x, t)dt+ b(x, t)dW (t)

where dW (t) is the Wiener process, a continuous-time stochastic process that is the limit of

a random walk with ⟨dW (t)⟩ = 0, ⟨dW (t)2⟩ = dt.

Suppose we initialize a density of particles at time t = 0 and ask: What happens to the

distribution of particles at time t? The equation governing the time evolution of this density

is the Fokker-Planck equation. There are several formal ways to derive the Fokker-Planck

equation, but a simpler way may be to consider that Ito’s lemma gives us for some test

function f(x, t):

df(x(t), t) =

(
∂f

∂t
+ a(x, t)

∂f

∂t
+

1

2
b(x, t)2

∂2f

∂x2

)
dt+ b(x, t)

∂f

∂t
dW (t)

Now take the time derivative and expectation of both sides and use the fact that ⟨dW (t)⟩ = 0

to get
d

dt
⟨f(x(t), t)⟩ =

∫ (
∂f

∂t
+ a(y, t)

∂f

∂y
+

1

2
b(y, t)2

∂2f

∂y2

)
p(y, t)dy

Integrating by parts and assuming boundary terms vanish (due to decay conditions at ±∞

on f), we get:

d

dt
⟨f(x(t), t)⟩ =

∫
f(y, t)

(
−∂p

∂t
− ∂

∂y
(a(x, t)p(y, t)) +

1

2

∂2

∂y2
(b(y, t)2p(y, t))

)
dy
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Now let f(x, t) be a martingale, which means that the whole expression should be zero. The

PDE inside the parentheses is set to zero, giving us the Fokker-Planck equation:

∂p

∂t
= − ∂

∂x
(a(x, t)p(x, t)) +

1

2

∂2

∂x2
(b(x, t)2p(x, t))

Indeed, any density that evolves according to a Fokker-Planck equation can be thus termed a

diffusion process.

The effect of the drift and diffusion terms

As we will see, the choice of the drift and diffusion terms a(x, t) and b(x, t) is crucial in

determining the behavior of the diffusion process.

No drift term, constant diffusion term: Heat equation Suppose there is no drift

term a(x, t) = 0 and the diffusion term is b(x, t) =
√
2. Then the Fokker-Planck equation

becomes:
∂p

∂t
=

1

2

∂2

∂x2
p(x, t)

This is the heat equation, which describes the diffusion of heat in a medium. In an unbounded

domain, the solution to the heat equation is the Gaussian distribution:

p(x, t) =
1√
4πt

exp

(
−x2

4t

)

We can see that the variance of the distribution grows linearly with time, which is a

characteristic of diffusion processes. Indeed, in this case we also see there is no stationary

distribution, as the variance grows indefinitely.

Drift term, no diffusion term: Advection equation In the case where there is a

drift term but no diffusion term, we lose the stochastic element and the process becomes
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deterministic. The Fokker-Planck equation becomes the advection equation:

∂p

∂t
= − ∂

∂x
(a(x, t)p(x, t))

This equation describes the transport of particles by a velocity field a(x, t).

Drift and diffusion terms In other cases with a drift term, the stationary distribution

can be found by setting the time derivative to zero. For example, if a(x, t) = −∇V (x) and

b(x, t) =
√
2, where V (x) is a potential function, then we find the stationary distribution is

given by the Boltzmann distribution:

p(x) =
1

Z
exp(−V (x))

where Z is the normalization constant.

In this case, we see that the drift term pushes the particles towards regions of low potential

energy, while the diffusion term spreads the particles out in the absence of a potential gradient.

The strength of the diffusion term can be thought of as a measure of the noise in the system,

and in physics the higher the noise, the higher the “temperature”.

Monte Carlo methods and diffusion

Beyond being useful for classical and quantum statistical mechanics, the Fokker-Planck

equation has found applications in Monte Carlo methods. Thinking about what the stationary

density is in the presence of drift and diffusion terms automatically suggests a strategy for

generating samples from any Gibbs (Boltzmann) probability density, i.e. one of the form

p(x) =
1

Z
exp(−V (x)).
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This is especially useful in cases where the normalization constant Z may be intractable.

Fear not – Langevin Monte Carlo will at least enable us to draw samples! We can simply

initialize samples x0 from any distribution that has support at least covering the support of

p(x), and then run the Langevin dynamics to generate trajectories that will be distributed

according to the target distribution p(x). This is the idea behind Langevin Monte Carlo, a

powerful tool for sampling from high-dimensional distributions.

Langevin Monte Carlo Let p(x) = 1
Z exp(−V (x)) be the target distribution. Consider

the overdamped Langevin SDE:

dx(t) = −∇V (x)dt+
√
2dWt (4.1)

where Wt is a d-dimensional Brownian motion. As can be seen from plugging the expression

into the Fokker-Planck equation, the stationary distribution of this process is the Boltzmann

distribution p(x) ∝ exp(−V (x)). Assume V (x) is L-smooth, i.e. continuously differentiable

and ∃ a constant L such that for all x, y ∈ Rd,

||∇V (x)−∇V (y)|| ≤ L||x− y||

This SDE can be proven to define a Markov semigroup (Pt)t≥0 with Ptp0 converging to p

in total variation so long as p0 has sufficient support [Roberts and Tweedie, 1996, Dwivedi

et al., 2018].

We are interested in numerical solutions to this SDE. A common way to do this is to

discretize the SDE and use the first-order Euler-Maruyama method:

xn+1 = xn −∇V (xn)∆t+
√
2∆tzn

where zn ∼ N(0, Id).
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One important caveat: the character of V (x) matters. In particular, Langevin Monte

Carlo is effective when V (x) is convex, i.e. p(x) is log-concave. Intuitively, we can see this by

considering that the Langevin dynamics will push particles towards regions of low potential

energy, and the diffusion term will spread them out. Thus, it is most effective at capturing

unimodal densities. If the potential is not convex, the particles may get stuck in local minima

[Brooks et al., 2011].

It is common to add an additional accept-reject step based on the detailed balance condi-

tions of Metropolis-Hastings. Known as Metropolis-adjusted Langevin dynamics (MALA),

this method can improve the acceptance rate of the samples.

4.2.2 Generative modeling and diffusion processes

It is useful to distinguish between discriminative models and generative models. Generative

models seek to model the joint distribution of the data p(x, y) whereas the discriminative

approach models the conditional distribution p(y|x). One can easily see that generative

modeling methods should be a superset of discriminative modeling methods, as a trained

generative model that provides the conditional data likelihood p(x|y) and a prior p(y) over

labels will give rise to a discriminative model p(y|x) via Bayes’ theorem:

p(y|x) = p(x|y)p(y)
p(x)

Our intuition suggests that in many cases we would expect discriminative models to outperform

generative models if the only metric that matters is classification accuracy – and this is

indeed borne out in practice [Ng and Jordan, 2001].

However, there are many reasons we may want to trade off classification accuracy for the

ability to model the entire data distribution. Some tasks that require one to model the full

distribution of data include the following:
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• Density estimation: Given an input x, we would like to estimate the likelihood p(x).

A well-learnt p(x) can be used for other applications such as anomaly detection, where

we would compare likelihood of a new data point to a threshold.

• Denoising: Given a corrupted input x′, we may want to recover the original input x

by finding the most likely x given x′, i.e. argmaxxp(x|x′).

• Sampling: We would like to draw new samples x ∼ p(x), and perhaps even condition

on some other variables y. Generating high-fidelity samples from data can be quite

useful in practical scenarios, as we have seen in recent applications to image and video

generation (creative applications), audio synthesis (text-to-speech, music generation),

natural language and even protein and DNA sequence generation.

None of these tasks can be accomplished easily by traditional discriminative models. They

require us to expand our horizons. An introduction to generative modeling for all these

tasks could take up a whole thesis, but in this thesis we will only discuss a few specific cases,

starting with diffusion and denoising models.

Energy-based models

A common approach in generative modeling when given some dataset of samples D =

{x1, . . . , xn} with x ∈ Rd is to specify some parameterized model pθ(x) and fit it via

maximum-likelihood, i.e.

θ∗ = argmaxθ
n∑

i=1

log pθ(xi)

pθ(x) must be a density and therefore we must have
∫
pθ(x)dx = 1. An easy way to enforce

this normalization is to specify pθ(x) as an exponential family distribution, i.e.

pθ(x) =
1

Z(θ)
exp(−Eθ(x))
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where Eθ(x) is an energy function that we want to fit and Z(θ) is the normalization constant.

Computing the partition function Zθ =
∫
exp(−Eθ(x))dx is generally intractable, which

typically renders maximum-likelihood infeasible for most reasonable energy functions.

Previous approaches to dealing with this conundrum have included:

• Strong constraints on the form of the model: Employing strong constraints

on the model form can enable the partition function Zθ to be easily computed. This

includes normalizing flow models, which explicitly model the transformation between a

simple base distribution (e.g., a Gaussian) and the target distribution. The advantage of

normalizing flows is that they provide a tractable Jacobian determinant, which allows for

exact computation of the normalization constant, bypassing the need for approximating

Z(θ). Normalizing flows construct an invertible transformation fθ : Rd → Rd between

a base distribution pu(u) and the desired distribution pθ(x), where x = fθ(u). The

probability density is computed as:

pθ(x) = pu(f
−1
θ (x))

∣∣∣∣∣det ∂f−1θ (x)

∂x

∣∣∣∣∣
• Approximate inference methods: When exact computation of Z(θ) is infeasible,

approximate methods such as Monte Carlo estimation or importance sampling can be

employed. These methods approximate the gradient of the log-likelihood (which involves

Z(θ)) by sampling from the model’s distribution or a surrogate distribution. Contrastive

divergence (CD) is a well-known approximation method that sidesteps the need to

compute Z(θ) by focusing on minimizing the difference between two distributions during

training. Specifically, CD uses a combination of sampling and optimization steps to

efficiently estimate the gradients.

• Variational methods: Another class of methods uses variational techniques to ap-

proximate the log-partition function. These methods introduce an auxiliary distribution
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q(x) and optimize a lower bound on the log-likelihood by minimizing the Kullback-

Leibler (KL) divergence between q(x) and pθ(x). While this approach doesn’t give

exact likelihoods, it provides a tractable way to train EBMs by circumventing direct

computation of Z(θ).

• Score matching and denoising score matching: The topic of our work, these

techniques bypass the normalization constant directly and focus on matching the

Stein score function of a density, i.e. the gradient of the log-probability ∇x log p(x).

Denoising score matching introduces noise into the data and trains the model to

reconstruct the clean data, further simplifying training. These methods provide an

alternative to likelihood-based training by focusing on matching local properties of the

data distribution.

Previous work in diffusion models

Motivating score matching Physics has long played a role in providing intuition and

theory to guide the development of new machine learning models. We saw earlier that ideas

from the physics of diffusion could be used to generate samples from a Boltzmann distribution

(Gibbs density), in particular using the overdamped Langevin diffusion. A Gibbs density

p(x) ∝ exp(−V (x)) is specified by an energy function V (x). Actually evaluating the density

p(x) is generally challenging, but generating samples can be done easily.

Now suppose we are asked: given some samples D = {x1, . . . , xN} (i.e. an empirical data

distribution pD(x)), how do we fit an energy-based model (Gibbs density) to it?

This is where score matching comes in. For some density p(x), we define the score function

as

s(x) := ∇x log p(x)

If we can approximate s(x) with some parameterized score function sθ(x), then we are done –
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we’ve obtained the (negative) energy function for the Gibbs density and can apply Monte

Carlo techniques to draw new samples from pD(x).

Naïvely we might expect that minimizing the explicit score matching loss (Fisher divergence

between the true score function and our score model):

LESM = Ex∼pD(x)

[
1

2
||sθ(x)−∇x log p(x)||22

]
(4.2)

would get us there. But the issue with this is that the ground truth ∇x log p(x) is not known,

particularly when we just have samples from some data distribution {x} ∼ pD(x). Several

tricks have been developed to circumvent this restriction, most notably denoising score

matching [Vincent, 2011]. First, we make the observation that the explicit score matching

loss can be rewritten implicitly [Hyvarinen, 2005]:

LESM = Ex∼pD(x)

[
1

2
||sθ(x)||2 + div · sθ(x)

]
︸ ︷︷ ︸

LISM

+ constant (4.3)

Technically, we can stop here as LISM is now tractable. However note that we take the

divergence of our score function model sθ(x). When doing stochastic gradient descent against

samples from the dataset x ∼ D, the divergence term introduces second-order derivatives of

the score function. This limits how complex sθ(x) can be.

Note also that in the finite-sample setting we have a limited number of samples in our

dataset D. If we were to optimize a stochastic version of LISM, we might want to smooth out

the “lumpiness” of the sampled data. This motivates passing to the explicit score matching of

our score model sθ(x) with a non-parametric Parzen window density estimator, which applies

additional smoothing to the empirical data distribution pD(x). i.e.

LESM,qσ = Eqσ(x′)

[
1

2
||sθ(x′)−∇x′ log qσ(x

′)||2
]
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where qσ(x) is a Gaussian kernel density estimator with bandwidth σ.

We then take further inspiration from the denoising autoencoder literature. Instead of

explicitly matching the score function where we convolve the empirical data distribution with

a Gaussian kernel, what if we instead required the score function to act as a denoiser, i.e. it

would map the noisy sample x′ back to the clean sample x? Let the transition kernel from x

to x′ be qσ(x
′|x), typically Gaussian:

q(x′|x) = N(x′;x, σ2I)

We can imagine modifying the density pD(x) to instead consider the joint density pσ(x, x
′) =

qσ(x
′|x)pD(x). We now define the denoising score matching objective:

LDSM = E(x,x′)∼pσ(x,x′)

[
1

2
||sθ(x′)−∇x′qσ(x

′|x)||2
]

(4.4)

The idea here being that the score at some noisy point should push us towards the clean

point. In fact this is equivalent to LESM,qσ !

This final score matching loss is the workhorse powering modern diffusion models today.

Specifically, with the Gaussian kernel

qσ(x
′|x) = N(x′;x, σ2I)

we have

∇x′ log qσ(x
′|x) = x− x′

σ2
.

Hence the interpretation “denoising”: if we take a step along the score function, we take out

some of the noise that was added to the sample.
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Denoising score matching and Denoising diffusion probabilistic models The

precursors to modern diffusion models all settled on the idea of progressively adding noise to

data.

The earliest work that applies diffusion physics to probabilistic generative models, [Sohl-

Dickstein et al., 2015] proposed an approach where one constructs a Markov chain of latent

variables x0, x1, . . . , xT where xT is pure Gaussian noise, and x0 is the data distribution.

The forward diffusion process resembles a discretized Langevin SDE wherein we have the

transition kernel

q(xt|xt−1) = N(xt;
√
αtxt−1, (1− αt)I)

where αt is a function of t. αt is referred to as the “variance schedule”. The forward trajectory,

starting with a sample x0 from the data distribution p0(x) and ending with a sample xT

drawn from a simpler distribution pT (x) ≈ N(x; 0, Id), is obtained after T iterations of the

transition kernel:

p(xT ) = p0(x0)
T∏
t=1

q(xt|xt−1)

The reverse process has the exact same functional form as the forward process even with

Gaussian transition kernels [Feller, 2015]. However, their mean and covariances must be

learned from data. [Sohl-Dickstein et al., 2015] parametrize each transition kernel pθ(xt|xt−1)

with a neural network. The model is trained via a variational lower bound, i.e.

L = Ex0∼p0(x)

log pT (x0)− T∑
t=1

Ext−1∼pθ(xt−1|xt) [log pθ(xt|xt−1)]


Despite the initial success of [Sohl-Dickstein et al., 2015], the model was limited in its

expressivity. It took several years for tweaks to be made to enable diffusion models to

generate high-quality samples for high-dimensional data. [Ho et al., 2020] operated with a

similar framework but made the realization that one could reparameterize the reverse process:
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instead of modeling the means of the transition kernels, one could also model the noise ϵ.

Sampling from the reverse process then resembled Langevin dynamics.

[Song and Ermon, 2020] propose a Noise Conditional Score Network (NCSN) which seeks

to learn the score function sθ(x, σ) from minimizing the denoising score matching objectives:

θ∗ = argminθEx∼pD(x)

[
Eσ∼q(σ)

[
∥sθ(x, σ)−∇x log pσ(x)∥2

]]

Once the score function model is learned, one can sample from the denoised distributions

pσ(x) by running Langevin dynamics to get samples from the reverse process:

xt = xt−1 +
σ2

2
∇x log pσ(xt−1) +

√
σzt

where zt ∼ N(0, Id).

SDE and ODE diffusion Subsequent work generalized this discrete-time case to a

continuous-time setting. In the continuous case, the data is described by a stochastic

differential equation (SDE) or its deterministic counterpart, an ordinary differential equation

(ODE), for modeling the forward and reverse processes.

[Song et al., 2021] introduced a general framework for diffusion models by modeling the

forward noising process as a continuous-time SDE. Specifically, they start with the Ito SDE:

dx = f(x, t)dt+ g(t)dw

where w is the standard Wiener process, f(x, t) is the drift term, and g(t) is the diffusion

coefficient. The reverse-time SDE can be written as [Anderson, 1982]:

dx = [f(x, t)− g(t)2∇x log pt(x)]dt+ g(t)dw̄
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where dt is a negative time increment, dw̄ is a reverse-time Wiener process, and ∇x log pt(x)

is the score function of the time-varying density.

It is also possible to do this in a deterministic fashion. Instead of an SDE, Song et al 2021

also propose an ODE formulation:

dx = [f(x, t)− 1

2
g(t)2∇x log pt(x)]dt

The deterministic ODE formulation is particularly useful for modeling the reverse-time

process, as it is easier to integrate and does not require the addition of noise. However, it

can be shown that the stochasticity in the SDE approach can lead to more robust results and

better convergence [Nie et al., 2024].

Diffusion vs autoregression and the unreasonable effectiveness of diffusion models

for image data One might be tempted to suggest that diffusion models might be the end

of the line for generative modeling. Diffusion models have have tremendous success in image

modeling in particular. The forward process erases the original image in a progressive fashion.

While the noise level remains small, large-scale features of the image are still preserved and

readily identifiable (Figure 4.1).

[Rissanen et al., 2023, Dieleman, 2024] suggest that diffusion models implicitly model

images as a coarse-to-fine process. When adding the isotropic Gaussian noise that is universally

used, combined with the fact that naturally-occurring images have a 1/fα-type spectral

density, one can see that when following the reverse process, diffusion models successively

generate features from coarse to fine scale (Figure 4.2).

The success of diffusion modeling in image data may be attributed in large part to this

fact. Explicitly taking this into account has provided alternative and fruitful directions

for research in generative modeling. [Guth et al., 2022] accelerate score-based modeling by

applying diffusion to modeling the wavelet coefficients instead of raw image data, which
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Figure 4.1: Forward and reverse process examples (from [Rissanen et al., 2023]). We can see
that at the initial stages of the forward process nearly all the structure remains identifiable.
At small times we see that the high-frequency structure starting to blur, and at large times
even the low-frequency structure starts to blur.

they show to be a more natural and well-conditioned procedure requiring fewer time steps.

[Rissanen et al., 2023] explicitly apply the heat equation to images and show how to invert

the heat dissipation process.

Statistical efficiency The practice of diffusion modeling ran on well ahead of the theory.

Using score matching as a training method to fit a density is well-principled as the estimator

is known to be consistent. However, little was known in what circumstances we could

expect score matching to perform similarly to that of maximum likelihood, whether it was

“statistically efficient” in the sense of being asymptotically equivalent to maximum likelihood,

and if not, how much worse.

In the early works on diffusion, multimodality and low-dimensional manifold structure

were conjectured as sources of difficulty for score matching, leading to the idea of annealing

the density towards a more well-behaved Gaussian by convolving the data distribution with
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Figure 4.2: Spectral density for images and the result of adding isotropic Gaussian noise at
increasing scales (from [Rissanen et al., 2023]).
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Gaussians of increasing variance. Because regions of the density with low probability will

necessarily have fewer samples to estimate the score with, it is necessary to anneal the density

slowly towards one that is more diffuse and easier to learn.

Recent theoretical work [Koehler et al., 2022] has formalized these intuitions, demon-

strating that the statistical efficiency of score matching depends on the properties of the

underlying distribution, particularly the isoperimetric properties (Poincare, log-Sobolev,

and isoperimetric constants), which characterize the mixing time of Langevin dynamics. In

particular, multimodal distributions with well-separated modes have very large such constants,

which increase the mixing time. In these settings, score matching can easily be much less

efficient than maximum likelihood.

Despite this loss of efficiency in theory, score matching is often the only practical solution

for very high-dimensional problems. Theory has not yet extended to cover the case of the

annealing strategies prominently featured in modern diffusion techniques. Future work may

yet uncover interesting connections between the behavior and mixing times of high-dimensional

Langevin dynamics and the practical reality of diffusion models.

Common themes

We can distill the core ideas of basic diffusion modeling into a few key points:

1. Pick an easy-to-sample from target distribution The standard here is to select

the standard Gaussian, as it is the easiest distribution to sample from. It is isotropic, has a

simple density, and is the stationary distribution of the heat equation.

2. Transform your data distribution into the target as smoothly and as simply as

possible. Once we’ve picked the target distribution, we need to find a way to transform our

data distribution into the target. Because we’ve previously selected the standard Gaussian,

we can use the Langevin SDE to do this. This naturally admits a closed-form solution for
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the trajectory of any particle x0 → xT .

3. Use a function approximator to learn the score function. Now that we can draw

samples from the density pt(x), we can use a neat trick to estimate the score function. We

will train a function approximator (typically a neural network) to learn the score function,

which is the gradient of the log-density:

s(x, t) := ∇x log pt(x)

4. Use numerical integration to reverse the process and generate samples. Once

this is complete, we can generate samples from the target distribution xT and numerically

integrate the reverse Langevin SDE using our learned score function. If sθ(x, t) is “close” to

the true score function, we expect the reverse process to generate samples that are close to

the original data distribution.

A more complete taxonomy of possible improvements that can be made to this standard

diffusion modeling process is shown in Figure 4.3.

We can see that improvements to the target distribution and the forward diffusion

process would be classified as diffusion process design, whereas improvements to the function

approximation fitting step would be likelihood optimization, and anything related to avoiding

the hefty computational cost of numerically integrating the reverse Langevin SDE would be

classified as sampling acceleration.

We will not review all of these improvements in this chapter, but we will focus on a few

key areas where we believe improvements can be made. Here are a few natural questions

that arose in the course of our investigations:

• Can we build an intuition for what the score function does, what it means? Can we do

this in simple cases and more complex cases?

• If the data is generated from some energy-based model (Gibbs density) with structure
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Figure 4.3: A taxonomy of improvements to diffusion models (sourced from “A Survey on
Generative Diffusion Models”, [Cao et al., 2023])
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in the terms of E(x), can we recover that from the samples? Does that show up in the

score function itself?

4.3 Methods

In order to answer some of the previously posed questions, we will need to outline a few

methods. Out of the zoo of generative diffusion processes we select a particular one that we

use primarily. In addition, we also outline our modeling approaches to approximating the

score function sθ(x, t).

4.3.1 Standard diffusion

Diffusion SDE formulation

We proceed according to the SDE framework per [Song et al., 2021]. Consider the Ito SDE

comprised of a drift vector and a scalar diffusion coefficient on the Brownian motion:

dx = f(x, t)dt+ g(t)dW, t ∈ [0,∞) (4.5)

where x ∈ Rd, f(x, t) : Rd × [0,∞) → Rd, g(t) : [0,∞) → R≥0, and Wt is the standard

Wiener process. If f(x, t) and g(t) are piecewise-continuous then the forward SDE has a

unique solution [Oksendal, 1992]. It is common to truncate time to a maximum value, and

we do the same, letting t ∈ [0, T ].

There are three types of forward processes commonly examined, variance preserving (VP),

72



variance exploding (VE), and sub-variance preserving (sub-VP):

dx = −1

2
β(t)xdt+

√
β(t)dw (VP)

dx = −1

2
β(t)xdt+

√
β(t)(1− exp(−2

∫ t

0
β(s)ds)dw (sub-VP)

dx =

√
d[σ2(t)]

dt
dw (VE)

where σ2(t) is a monotonically-increasing variance function with σ2(0) = 0. Note that the

overdamped Langevin SDE (Equation 4.1) that we will discuss in some detail later corresponds

to VP-SDE with β(t) = 2. The names for these SDEs derive from the fact that the variance

of the VE-SDE is unbounded as t → ∞ due to the monotonic increase in σ2, whereas it

can be shown that the VP-SDE always has bounded variance, and that the sub-VP SDE

has variance that is upper-bounded by the corresponding VP-SDE with the same β(t) [Song

et al., 2021].

Let pt(x) denote the marginal distribution of the process at time t, p0(x) the data

distribution, and pT (x) the prior/source distribution. The reverse-time SDE that corresponds

to the forward process has the form [Anderson, 1982]:

dx = [f(x, t)− g(t)2∇x log pt(x)]dt̄+ g(t)dW̄ .

Given a good estimate for the score function s(x, t) = ∇x log pt(x), we can numerically

integrate this reverse-time SDE to generate samples from the data distribution p0(x).

To fit the score function, we use the denoising score matching loss

LDSM = Et∼U(0,T )

[
λ(t)Ex0∼p0Ext∼q(xt|x0)

(
||sθ(x, t)−∇xt log q(xt|x0)||

2
2

)]
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where t is uniformly sampled from [0, T ], x0 is drawn from the data distribution, and xt is

drawn from the marginal distribution as q(xt|x0) is the Gaussian kernel associated with the

forward SDE. λ(t) is a weighting function designed to maintain the same loss magnitude at

various points in time, typically of the form

λ(t) ∝ E[||∇xt log q(xt|x0)||
2
2]
−1.

Variance-Preserving SDE

In the remainder of this work, we shall focus on the VP-SDE. We will specialize to the case

where the prior distribution is pT (x) = N(x; 0, Id). The VP-SDE with β(t) = 2 is as follows:

dxt = −xtdt+
√
2dwt

which has as solution the Ornstein-Uhlenbeck process for x0 ∼ p0

x(t) = e−tx0 +
√

1− e−2tz

where z ∼ N(0, Id).

When training the score function using LDSM, we have:

∇xt log q(xt|x0) = −
xt − e−tx0√
1− e−2t

= −z

Hence the name denoising score matching: we seek a score function approximation that

predicts the noise that was added to the sample.
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4.3.2 Models as probes for score function structure

We will use several different model classes for sθ(x, t) all employing various ideas including

the cluster basis expansion, radial basis functions, and separation of variables. The reason to

employ these assumptions, rather than jumping straight to a multi-layer perception or U-net

(as commonly seen in practical diffusion modeling work), is that we want these functions to

be more interpretable. Our objective is to compare models based on their fitting performance,

evaluate their sample complexity, and see whether they can uncover the structure of the

problem. This last part requires the use of regularization, in particular group lasso, a

generalization of lasso that treats entire groups of variables as terms to be thrown into a L1

loss.

Cluster basis with radial kernel expansion

In physics, one often makes the assumption that a function of n variables may be well-

approximated by a sum of simpler functions that each only mix k ≪ n variables. This is

guided by the observation that many systems in practice have complex many-body potentials

that emerge from the sum of 2-body interactions, such as the potential landscapes formed

by classical particles interacting under 1/r2-type potentials (gravity, electrostatic) as well as

more exotic quantum phenomena.

We refer to this as the cluster basis assumption. It forms the basis of one of our workhorse

models, used as a score function approximation. The idea is to place radial basis kernels

exp(−||(x, t) − c||2) at evenly-spaced points throughout space and time. We place the

restriction that each kernel can only have two spatial variables and one time variable. Let

the score function be a vector-valued function on space and time sθ(x, t) : Rd × [0,∞)→ Rd:

sθ(x, t) =
∑
i≤j

s
(ij)
θ (xi, xj , t) (4.6)

75



with the individual functions in the sum decomposing further as

s
(ij)
θ (xi, xj , t) = θ⃗(ij) · Φ(xi, xj , t) (4.7)

=
∑
k

θ
(ij)
k exp(−γ||(xi, xj , t)− ck||22) (4.8)

where γ is a fixed inverse variance parameter for the radial basis functions and the ck are

chosen to be evenly-spaced points in a compact subset of R2 × [0,∞), e.g. [−L,L]2 × [0, T ]

where L, T is chosen large enough to contain the support of the score function we want to

estimate.

Product radial kernel expansion

Inspired by the closed-form formula for the score function of a correlated Gaussian diffusing

to a standard Gaussian (Section 4.4.1), we make the assumption that the score function is a

sum of functions that separate in the spatial and time variables:

sθ(x, t) =
∑

a(x)b(t).

For modeling the spatial dependence, we make use of the cluster basis ideas outlined earlier.

We have:

sθ(x, t) =


s1(x, t)

...

sd(x, t)


Each component is a sum of functions that depend only on two and three variables, with the

maximum order of dependence in spatial variables being two (hence 2-cluster):

sk(x, t) =
∑
i

sik(xi, t) +
∑
i<j

sijk(xi, xj , t) (4.9)
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We assume functional forms that are sums of products that where the spatial and time

variables completely separate:

sik(x, t) = θ⃗ik · Φ(x, t) =
∑
ℓm

θ
(ik)
ℓm aℓ(x)bm(t) (4.10)

sijk(x, y, t) = θ⃗ijk · Φ(x, y, t) =
∑
ℓm

θ
(ijk)
ℓm aℓ(x, y)bm(t) (4.11)

Here θ⃗ik, θ⃗ijk denote our variable weights to be fit (that are then indexed into with ℓ,m),

Φ(x, t),Φ(x, y, t) denote a basis function vector that is formed by taking the outer product of

a basis in spatial variables and a basis in time.

In this work we use radial basis functions as our basis in space and exponentially-decaying

basis functions as our basis in time:

aℓ(x) = exp(−λ||x− cℓ||2)

aℓ(x, y) = exp(−λ||(x, y)− c⃗ℓ||2)

bm(t) = exp(−γm|t|)

Note that ℓ indexes over a predefined grid of evenly-spaced points cℓ ∈ R, c⃗ℓ ∈ R2 that covers

the region where we want to model the score function and ℓ indexes over a set of real decay

parameters γm that we want to fit to data as well.

The parameters that are to be fit include θ⃗ik, θ⃗ijk (the weights on the product terms) and

the decay parameters γm.

Fitting

In our numerical work, all the models are fit via stochastic gradient descent on LDSM. When

relevant, the learning rate and regularization weights are provided. As we utilize the VP-SDE

77



and Ext|x0 [||∇xt log q(xt|x0)||22] ∼ O(1) is constant in time, we may set λ(t) = 1.

Group lasso

In addition to the denoising score-matching loss LDSM, we also add a group lasso regularization

term to encourage sparsity on the weights, but treating “groups” of parameters as individual

terms to encourage to be zero. The idea behind group lasso is simple. Suppose we have

θ ∈ Rw as a parameter vector. Let G = (g1, . . . , gm) be a mutually-exclusive partitioning of

the indices, i.e. gi ⊆ [1, . . . , w], ∪mi=1gi = [1, . . . , w] and gi ∩ gj = ∅ for all i ̸= j.

These partitions typically correspond to semantically meaningful groupings of the variables.

For example, θ⃗ij from Equation 4.7 and θ⃗ik, θ⃗ijk from Equations 4.10 and 4.11, corresponding

to the weights on individual 2-cluster functions, are natural groups. We might start with

a model that has terms corresponding to all
(d
2

)
pairs of variables xi, xj but if the score

function has 2-cluster structure we would want to encourage the fitting process to discover

that.

The lasso penalty [Tibshirani, 1996] is famous for encouraging sparsity by applying a L1

norm to the parameters, i.e.

LLasso = ||θ||1 =
w∑
i=1

|θi|

The group lasso [Yuan and Lin, 2006, Jacob et al., 2009, Mao, 2020] instead treats the L2

norm of a parameter group ||θgi||2 as a quantity that goes inside the absolute value, so we

write

LGroup lasso = ||θ||G =
w∑
i=1

√
ℓi||θgi||2

where θgi = {θk : k ∈ gi} is the parameter vector for partition gi and ℓi is the length of θgi .

In our case, the resulting loss looks like:

L = LDSM + λLGroup lasso. (4.12)
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4.4 Vignettes

Now, we will examine a few of the common themes discussed in the previous section on

diffusion models, take a look at a few simple cases, and try relaxing certain assumptions in

the hopes that we will arrive at a deeper understanding of how diffusion models work and

how they may be improved.

4.4.1 Score function structure in simple cases

First, we examine the score function for a delta function, which gives us a concrete example of

how scores behave for highly concentrated distributions. Next, we analyze the score function

for a correlated Gaussian distribution and discuss how conditioning and matrix inversion play

a role in learning the score. Lastly, we will touch upon sample complexity considerations,

demonstrating how the difficulty of learning the score function can change with time during

the diffusion process. These examples help highlight the mathematical structure of score

functions and prepare us for tackling more complex cases in generative models.

Delta function

In the simplest case, consider the data distribution to be a delta function concentrated at

some point c ∈ Rd, i.e. p0(x) = δ(x− c). We aim to diffuse it towards the standard Gaussian

pT (x) = N(x; 0, Id). With Langevin dynamics, we have trajectories:

xt = e−tc+
√

1− e−2tz

with z ∼ N(0, Id). The explicit density at intermediate times is:

pt(x) = N(x; e−tc, (1− e−2t)Id)
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and thus the score function is:

s(x, t) = ∇x log pt(x) = −(1− e−2t)−1(x− e−tc)

The score function points in the direction of increasing density by definition. For small t,

the score always points away from x towards c, and for large t, the score points towards the

origin. During the reverse process, following the score will transport us towards c. However,

note that as t→ 0 the score blows up. This ill-conditioning makes it difficult to model the

score near t = 0.

Diffusing a correlated Gaussian to standard Gaussian

Let’s look at the case where we start with data drawn from a correlated Gaussian and we

want to distribute it to a standard Gaussian. Of course, this is not useful for generative

purposes as we know we may directly draw samples from a correlated Gaussian, but as a

simple problem it still provides us insight for how more complex distributions may behave.

Start with the data distribution (x ∈ Rd):

p0(x) = N(x;µ,Σ) =
1

(2π)d/2det(Σ)1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

We want to diffuse it towards the standard Gaussian N(x; 0, Id) as t→∞. With the Langevin

dynamics from before (Eq. ??), we have

xt = e−tx0 +
√

1− e−2tz.

Therefore we have the explicit density for all time t

pt(x) = N(x; e−tµ, e−2tΣ + (1− e−2t)Id)
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and the score function

s(x, t) = ∇x log pt(x) = −(e−2tΣ + (1− e−2t)Id)
−1(x− e−tµ) = −K(t)−1(x− e−tµ).

Letting K(t) = e−2tΣ + (1− e−2t)Id, we can see that the score function is a time-varying

linear function in x requiring the inversion of a matrix.

Suppose that our goal is to generate samples via reverse diffusion. We use some score

function model sθ(x, t) and minimize the denoising score-matching loss

θ∗ = argminθLDSM(θ)

= Ext∼pt(x)
[
||sθ(x, t)− s̃(xt, t)||22

]
= Ex0∼p0(x),xt∼pt(x)

[∣∣∣∣∣∣∣∣sθ(x, t) + (xt − e−tx0√
1− e−2t

) ∣∣∣∣∣∣∣∣2
2

]

= Ex∼p0(x)
[
||sθ(x, t) + z||22

]

We can already see from this objective alone that the target score function at some point

xt = e−tx0 +
√
1− e−2tz for x0 ∼ p0 and z ∼ N(x; 0, Id)

s̃(xt, t) = −z =
xt − e−tx0√
1− e−2t

blows up as t→ 0. We have a singularity at t = 0 just as in the previous delta function case.

This suggests that we cannot discretize time too finely near t = 0 when implementing this

numerically.

Conditioning as t → ∞ Let λi be the eigenvalues of the data covariance Σ. The

corresponding eigenvalues of K(t) are

λi(K(t)) = e−2t(λi − 1) + 1
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and the condition number of K(t) is

κ(K(t)) =
maxi[e

−2t(λi − 1) + 1]

mini[e−2t(λi − 1) + 1]

As we let t→∞, we have κ(K(t))→ 1, since Id is perfectly conditioned.

Note additionally that the mapping λi(Σ)→ λi(K(t)) is affine and therefore must preserve

the ordering of the eigenvalues for all t. Letting λ1 be the largest eigenvalue and λd the

smallest eigenvalue of Σ, we may write

κ(K(t)) =
e−2t(λ1 − 1) + 1

e−2t(λd − 1) + 1

We have
dκ

dt
= 2e2t

λd − λ1
(e2t + λd − 1)2

≤ 0

as λ1 ≥ λd. Thus, the condition number monotonically approaches 1 from above.

In this simple scenario, we observe that the true score function is a linear map that

requires a matrix K(t) to be inverted. This matrix K(t) has conditioning that monotonically

improves as t → ∞. The score function is “easiest to learn” when the data is perfectly

uncorrelated.

Sample complexity “Hard to learn” in this setting refers primarily to the sample complexity,

the number of data points one would need to sample from an oracle generating samples

xt ∼ pt(x). Suppose such an oracle existed and our goal was to model the full trajectory of

pt(x). One approach would be to go to t = 0 and estimate K(0) = Σ to an error ||Σ̂−Σ||F ≤ ε.

From classical multivariate statistics [Anderson, 2003] we have that the sample covariance

matrix follows a Wishart distribution Σ̂n ∼ Wp(Σ, n− 1) where n is the number of samples

we use to estimate

Σ̂n =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)T
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We know that

E

[∣∣∣∣∣∣∣∣Σ̂n − Σ

∣∣∣∣∣∣∣∣2
F

]
≤ C
||Σ||2F
n

where C is a constant depending on the dimension d. Therefore to estimate Σ̂ to within ε

Frobenius norm requires O(||Σ||F /
√
n) samples.

But can we do better by picking any other time t? Well, at time t we have

pt(x) = N(x; e−tµ, e−2tΣ + (1− e−2t)Id)

and so estimating K(t) would require O(||K(t)||F /
√
n) samples. Note that we have

||K(t)||F =

√√√√ d∑
i=1

λi(K(t))2

With λi(K(t) = e−2t(λi − 1) + 1 we can also see that ||K(t)||F is monotonically decreasing

over time. So we actually don’t want to go to t = 0 to do the estimation! This suggests that

we may be better off selecting a large time, estimating the covariance K(t) there to within

error ε, and use the imputed Σ thus derived.

This solution works in this specific instance where we know the form of pt(x) in advance.

However, it’s worth noting that due to the discretization error introduced by any numerical

scheme involved in the backwards pass, small errors made late in time (early in time for the

reverse diffusion) can accumulate as we proceed in reverse time to draw samples.
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One mode in two dimensions

Assume d = 2. For illustration purposes, suppose we have x = [x1;x2]
T and x1, x2 are zero

mean with correlation ρ, and each have variance σ21, σ
2
2, i.e.

Σ =

 σ21 ρσ1σ2

ρσ1σ2 σ22

 .

The explicit density is pt(x) = N(x; 0,Σ(t)) for t ∈ [0,∞) where Σ(t) is given as

Σ(t) = e−2tΣ + (1− e−2t)I2

=

e−2t(σ21 − 1) + 1 e−2tρσ1σ2

e−2tρσ1σ2 e−2t(σ22 − 1) + 1



The score function is s(x, t) = −(Σ(t))−1x with

s(x, t) = −

e−2t(σ21 − 1) + 1 e−2tρσ1σ2

e−2tρσ1σ2 e−2t(σ22 − 1) + 1


−1x1

x2


Numerics Now that we have a ground-truth score function to compare against, we can

proceed to verify our results numerically. All our results moving forward are specialized to the

case where σ1 = 0.5, σ2 = 1, ρ = −0.8, and the maximum time is T = 2. Our first goal is to

sanity check the score function. In Figure 4.4 we have plotted samples from p0(x) = N(x; 0,Σ)

in blue and samples from pT ≈ N(0, I2) in orange, with the true score function at those

times overlaid in black arrows. We can see that the score function points in the direction of

increasing density.

We then perform Euler-Maruyama to reverse samples from pT to p0 using the true (oracle)
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Figure 4.4: Samples from p0 and pT where σ1 = 0.5, σ2 = 1, ρ = −0.8, T = 2. The true score
function s(x, t) directions are plotted in small black arrows.
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score function s(x, t) derived above. We use the following metrics to assess for “quality of fit”,

all deriving from the literature comparing one multivariate Gaussian to another:

• Mahalanobis distance (M -distance): Given samples {x} alleged to be from a multivariate

normal N(µ,Σ), we compute the distance DM (x,N(µ,Σ)) =
√
(x− µ)TΣ−1(x− µ).

Assuming that the samples are truly drawn from N(µ,Σ), the distribution of distances

should follow a χ2 distribution with d degrees of freedom [Anderson, 2003]. We can

then compute p-values or run a χ2 goodness-of-fit test on the distances to assess for

statistical significance.

• Kullback-Leibler divergence (KL divergence): We estimate the sample mean and

covariance µ̂, Σ̂ from our samples and then used the closed-form expression for the KL

divergence of two multivariate Gaussians P = N(µ̂, Σ̂), Q = N(µ,Σ) has a closed-form

solution [Murphy, 2012]:

DKL(P ||Q) =
1

2

(
Tr(Σ−1Σ̂) + (µ− µ̂)TΣ−1(µ− µ̂)− d+ log

detΣ
detΣ̂

)

• 2-Wasserstein distance (W distance): The Wasserstein distance (earth mover’s distance)

between two probability distributions can be viewed as the minimum energetic cost of

transporting one distribution to the other. The 2-Wasserstein distance for 2 Gaussians

conveniently has a closed-form expression [Givens and Shortt, 1984]:

W 2
2 (P,Q) = ||µ̂− µ||2 + Tr[Σ̂ + Σ− 2

√
Σ̂1/2ΣΣ̂1/2]

We can see in Figure 4.5 the metrics chosen all seem consistent throughout time, with slight

errors emerging as t→ 0.

Now that we’ve verified that Euler-Maruyama with the oracle score function suffices to

reproduce pt(x) for all t ∈ [0, T ], we now train a score function approximator sθ(x, t). We use
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Figure 4.5: Statistics (P-value of the M -distance, M -distance, 2-Wasserstein distance, and
KL divergence of the Euler-Maruyama integrated trajectories using the true score function
for σ1 = 0.5, σ2 = 1, ρ = −0.8, T = 2. B = 10000 and NT = 500 so ∆t = 0.004. We can see
that the metrics are consistent throughout time with slight errors emerging as t→ 0.
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the 2-cluster radial basis function estimator in Section 4.3.2 with NX = 5, NT = 10, L = 3

with NX , NT denoting the number of points placed in each x, t dimension and L denoting the

maximum extent of the region we generate grid points within, i.e. ck ∈ [−L,L]2 × [0, T ]. We

use two losses. The first loss is the Fisher divergence (L2 distance) between sθ(x, t) and the

oracle score function. The second loss is the denoising score matching loss LDSM (Equation

4.4). We use a learning rate of η = 0.1, no group lasso loss penalty, and batch sizes of B = 128

for NB = 104 batches.

In Figure 4.6 we show the cosine distances between the learned score function sθ(x, t)

and the true score s(x, t) for randomly sampled points (t, xt). When we use the oracle score

matching loss, we find much better agreement over all time, but the denoising score matching

(which is the only practical loss in actual situations without an oracle score) performs decently

well too.

In Figures 4.7 and 4.8 we can see the gap between using the oracle score-matching loss and

the denoising score-matching loss. The oracle-trained sθ(x, t) very nearly matches the original

data distribution p0, but the denoising score-trained sθ(x, t) is much more compressed and

only models the variance of the true p0(x) well in one direction, failing to capture the much

larger variation in the orthogonal direction. We see much different behavior in the statistics

over time, with errors growing as t→ 0.

Interestingly enough, the behavior where our generated samples have isotropic variance

that seems to be the minimum of the variances σ1, σ2 suggests almost that our minimizing the

denoising score matching loss is related to minimizing DKL(P ||Q) (where P is the anisotropic

p0(x) and Q is our approximate samples). This is concordant with other literature that

connects the score-matching loss to certain variational objectives, like the evidence lower

bound (ELBO) in a variational framing of the problem [Sohl-Dickstein et al., 2015, Ho et al.,

2020].
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Figure 4.6: Comparison of the result of using the oracle score-matching loss and the denoising
score matching loss on the resulting learned score functions sθ(x, t). Here we generate various
x(t) points and evaluate the cosine distance between the true score function and the learned
score function. The blue dots are samples and the red dots are binned means and standard
deviations.
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Figure 4.7: Comparison of the samples obtained at t = 0. The oracle (explicit) score-matching
loss (Equation 4.2) was used in fitting the score function sθ(x, t) used for the top figure since
the true score function is known here, and LDSM (Equation 4.4) was used for the bottom
figure. Note how in the top figure the samples we obtain from reverse diffusion (orange) are
much more reflective of the true variation of the density in both of its extremal directions,
whereas in the bottom figure we can see that the generated samples are much more closely
clumped.

4.4.2 Complex cases: multimodal distributions and more dimensions

Mixture of Gaussians

Now we will consider a case where we start with a mixture of Gaussians instead of a single

Gaussian. Let x0 ∼ p0(x) where

p0(x) =
K∑
i=1

πiN(x;µi,Σi)

and
∑K

i=1 πi = 1. After passing it through the Langevin diffusion we get the trajectory

xt = e−tx0 +
√
1− e−2tz
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Figure 4.8: Statistics for the Euler-Maruyama reverse-diffused trajectories xt using the learned
score function sθ(x, t) (blue) and the true score function s(x, t) (orange). At a given time
t, we observe B = 10000 samples that should match the marginal density pt(x) which is
known explicitly. We compute the M -distances, the average p-value of the M -distances,
the 2-Wasserstein distance (using the empirical µ̂, Σ̂ estimated at each time t), and the
KL divergence of the Euler-Maruyama integrated trajectories. Here, our parameters were
σ1 = 0.5, σ2 = 1, ρ = −0.8, T = 2, NT = 500,∆t = T/NT = 0.004.
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Note that this is closed-form and linear! As such, we observe that each component of the

mixture transforms in the same way as the single Gaussian case, i.e.

pt(x) =
K∑
i=1

πiN(x; e−tµi, e
−2tΣi + (1− e−2t)I)

In this case, the score function is

s(x, t) = ∇x log pt(x)

which can be derived as follows. First, we express the log of the mixture density:

log pt(x) = log

 K∑
i=1

πiN
(
x; e−tµi, e

−2tΣi + (1− e−2t)I
)

Taking the gradient with respect to x, we obtain the score function:

s(x, t) = ∇x log pt(x) =
∇xpt(x)

pt(x)

The gradient of pt(x) is given by:

∇xpt(x) =
K∑
i=1

πiN
(
x; e−tµi, e

−2tΣi + (1− e−2t)I
)
·
(
−
(
e−2tΣi + (1− e−2t)I

)−1
(x− e−tµi)

)

Thus, the score function can be written as a weighted sum of the score functions for each

component, with the weights being the posterior probabilities of each component:

s(x, t) = −
K∑
i=1

πiN
(
x; e−tµi, e−2tΣi + (1− e−2t)I

)
pt(x)

·
((

e−2tΣi + (1− e−2t)I
)−1

(x− e−tµi)
)

where pt(x) is the mixture density at time t.

In summary, the score function s(x, t) for the mixture of Gaussians is a weighted sum of
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the score functions of each Gaussian component, where the weights are the responsibilities

(posterior probabilities) of each component given x.

Two modes in two dimensions

Following the results of the previous section, we’ll specialize to the case where we have k = 2

modes in 2D:

p0(x) = πN(x;µ1,Σ1) + (1− π)N(x;µ2,Σ2)

Let x ∈ R2 and choose

µ1 =

a

a

 Σ1 = Σ

µ2 =

−a
−a

 Σ2 = Σ

with

Σ =

 σ21 ρσ1σ2

ρσ1σ2 σ22


Results In the results to follow, we fix a = 1 and σ1 = 0.5, σ2 = 1, ρ = −0.8, π = 1/3.

First, we demonstrate that the score function derived earlier indeed behaves as we expect.

In Figure 4.9 we can see that the score function arrows (in black) point to the nearest mode

early on in the forward process at t = 0.1 while the later samples at t = 0.5 have scores

pointing more towards the origin, as the target (prior) distribution we want to end up with

is still the standard Gaussian. Figure 4.11 plots the M-distance and KL-divergence of the

samples generated via reverse diffusion using the oracle and the learned score functions.

We see very similar behavior as with the case of one mode in two dimensions (Section

4.4.1). In Figure 4.10, we see the same behavior as before where when we switch from the
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Figure 4.9: Samples from pt for t ∈ {0.1, 0.5}. The true score function s(x, t) directions are
overlaid in black arrows.

oracle score loss (best-case performance of our model but unachievable in practical scenarios)

to the denoising score matching loss the samples tend to concentrate more than the true

distribution.

Two modes in ten dimensions

As we saw in the previous section, multimodality was not challenging for a relatively simple

score function model in two dimensions. Let’s go to more dimensions. We pick a data

distribution p0(x) ∝ exp(−E(x)) where the energy function is sparse in x, i.e. one that is

polynomial with each term having low degree. Specifically, we select the 1D Ginzburg-Landau

distribution on d sites with nearest-neighbor connections. For x ∈ Rd and parameters

a, b ∈ R, β ∈ R+ we have the energy function:

E(x) = a
d−1∑
i=1

(xi − xi+1)
2 + b

d∑
i=1

(1− x2i )
2
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Figure 4.10: Comparison of the result of using the oracle score-matching loss and the denoising
score matching loss. Here we illustrate the densities p0(x) obtained by pushing samples
through the reverse diffusion process using score functions sθ(x, t) that were trained using
either the oracle loss or the denoising loss.

and the target probability density

p0(x) =
exp(−βE(x))

Z

where Z is the intractable partition function. We can see that sampling p0 is non-trivial, and

no closed form solution for the intermediate densities pt(x) and score functions s(x, t) can be

found.

As the dimensionality of the problem increases, it becomes ever more important to

constrain the size of our score function approximation. Recall that our score function model

takes the form

sθ(x, t) =
∑
i,j

s
(ij)
θ (x, t).

Without a constraint on the number of (i, j) components, we must consider O(d2) in the

components that must be fit. Overfitting may be acceptable in most generative model settings,

especially when the test set is identical to the test set. But in our case, we are interested
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Figure 4.11: Statistics of the trajectories induced by reverse diffusion with Euler-Maruyama
and the learned (left, orange) and oracle (right, orange) score functions, compared against
the samples from forward diffusion (both left and right, blue).
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in methods that may automatically identify the structure of the energy function and prune

unnecessary variables and components. Here, we utilize the group lasso idea outlined earlier

(Section 4.3.2) to encourage sparsity at the “group” level.

Generating samples with Metropolis-Hastings Note that since we are starting with

an unnormalized energy-based model with access only to E(x) but not the partition function

Z, we need to generate approximate samples. We employ Metropolis-Hastings, a MCMC

method hinted at earlier. The idea is outlined in pseudocode in Algorithm 1. For a = b = 1,

we use Metropolis-Hastings with σ = 0.1, β = 0.7. Note that Metropolis-Hastings (like other

MCMC) algorithms generates correlated samples. To draw T approximately independent

and identically distributed samples from p0(x) using Metropolis-Hastings, we actually run

it for N = 4T samples, throw away the first half to give the Markov chain time to burn

in, and then randomly draw (with replacement) T samples from the remaining 2T samples.

Following this procedure, we generate a dataset D of samples xi ∼ p0.

Algorithm 1 Metropolis-Hastings Algorithm [Metropolis et al., 1953]
1: Input: Initial state x0, energy function E(x), number of iterations N , inverse temperature

β, proposal standard deviation σ
2: Output: A set of randomly selected samples {xi} from target distribution p(x) ∝

exp(−βE(x))
3: Initialize x← x0
4: Compute initial energy E(x)
5: Initialize sample set S ← {x}
6: for i← 1 to N − 1 do
7: Propose x′ ← x+N (0, σ2) ▷ Propose a new state using Gaussian noise
8: Compute E(x′)
9: Compute acceptance probability α← min

(
1, exp(−β(E(x′)− E(x)))

)
10: Sample u ∼ Uniform(0, 1)
11: if u < α then
12: x← x′ ▷ Accept the new state
13: end if
14: Add x to S
15: end for
16: Return Randomly select N/4 samples from the last N/2 samples in S
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Model and fitting We use the cluster basis model ansatz with radial basis functions in

the full sense and in the product basis sense (Section 4.3.2 and 4.3.2). Fitting is done using

stochastic gradient descent on the denoising score-matching loss (Eq. 4.4) with group lasso

loss (Equation 4.12), i.e.

L = Lscore-matching + λLgroup.

We set the group lasso scaling parameter to λ = 0.003 and the learning rate to 0.01. A batch

size of 128 was used with 10000 batches total used for training, each batch being drawn i.i.d.

from the forward process.

Results In Figure 4.12 we see the samples generated through reverse diffusion using the

learned score function sθ(x, t) trained using group lasso (blue) compared against samples

generated through the forward diffusion process (orange). Note that the forward-diffused

samples are much more spread out (higher temperature) than the reverse-diffused samples.

One may identify this as a similar phenomenon as what we saw in Section 4.4.1 and 4.4.2

where the result of our reverse diffusions also severely underestimated the spread of the data,

yet still capturing the essential details, such as the number and location of the modes.

In Figures 4.13 and 4.14 we can see the norms of the score function components sij , the

first aggregated over all times and the second broken out into different times. The expectation

is that overall we see weight on the ±1 diagonals due to the adjacent xixi+1 terms in the

Ginzburg-Landau energy function, but as time increases more of the weight should lie on the

diagonal as a standard Gaussian has no weights mixing any terms off the diagonal.

4.5 Discussion

In this chapter we took a close look at generative diffusion processes. In particular, we

specialized to simple cases where the score function could be computed analytically, for

example in the case of a delta function or a correlated Gaussian. In the case of the correlated
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Figure 4.12: Samples generated via reverse diffusion using a learned score function model
trained with group lasso, plotted in cross-section for (x1, x2) and (x1, x6). Blue dots corre-
spond to reverse diffusion with the learned function, orange dots correspond to the training
samples at the same time generated using forward diffusion.
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Figure 4.13: The L2 norms of θij for all i, j ∈ {1, . . . , d}, averaged over all times.
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Figure 4.14: The L2 norms of θij for all i, j ∈ {1, . . . , d} at different time knots tk for our
learned score function.
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Gaussian, we found that the score function is a linear function of x, requiring the inversion of

a time-varying covariance matrix. As time progresses in the diffusion process, the conditioning

of this covariance matrix improves monotonically, making the score function easier to estimate

accurately.

Furthermore, we explored more complex cases involving multimodal distributions, such

as mixtures of Gaussians and higher-dimensional systems like the Ginzburg-Landau model.

We observed that the score function becomes more intricate due to the presence of multiple

modes and interactions between variables. By employing modeling approaches like the cluster

basis expansion and incorporating group lasso regularization, we were able to capture the

underlying structure of the score function effectively. The group lasso encouraged sparsity in

the learned parameters, aligning with the inherent sparsity of the energy functions in these

systems.

A key observation in all these scenarios was the fact that when trained to optimality, the

learned score functions generate samples through reverse diffusion that severely underestimate

the true variation in the data distributions, almost as if the temperature were lowered. We

saw that going from the oracle score function (when known) to the denoising score matching

loss could potentially explain this.

There remain still other questions that we did not have a chance to address in this chapter

and would be fruitful directions for future work:

• Can we do better than the Langevin SDE with the standard Gaussian as our target? If

we change the target distribution to be some other easy-to-sample from distribution,

can we converge faster and will our transport path p0 → pT be more efficient?

• How can we measure the efficiency of a transport plan once we have it? What are some

key metrics?

• How do these initial results change as we move to higher-dimensional problems? What

about some real datasets?
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By dissecting both simple and complex cases, we gained valuable insights into the

challenges of learning score functions, particularly regarding conditioning, sample complexity,

and the impact of multimodality. Our methods hopefully provide a foundation for exploring

more sophisticated models that can handle high-dimensional, structured data.
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CHAPTER 5

SUPPLEMENT TO DATA-DRIVEN DEEP LEARNING IN THE

STRUCTURED PREDICTION OF ELECTRON-IONIZATION

MASS SPECTRA

5.1 Data

5.1.1 Preprocessing

All spectra in the NIST 2017 dataset was extracted from the installed software provided

upon purchase [NIST]. After scraping and cleaning (including filtering for only the molecules

containing HCONFSPCl atoms) we are left with 241,028 molecule-spectra experiments across

237,189 unique molecules (de-duped using INCHI keys) in nist17-mainlib, and 63,741

molecule-spectra experiments across 23,200 unique molecules (de-duped using INCHI keys)

in nist17-replib. Using INCHI keys as unique identifiers for molecules (hash collisions

are possible but extremely rare), we confirm that there are zero molecules common to

both nist17-mainlib and nist17-replib. This is because nist17-mainlib is the "Main"

library, and nist17-replib (the "Replicate" library) is a collection of spectral experiments

for molecules that were replicated at least 2 or more times. This database is not used during

training and is only used during the library matching task. For other datasets (see Table

5.1), we report the number of rows, corresponding to the number of total molecule-spectra

experiments. More complete dataset information, including lists of molecules and their

metadata, will be made available upon request.

To keep the training runtime at an acceptable level, we filter the training set based on the

maximum observed peak mass, the max number of atoms, and the max number of unique

fragment formula. In this work, we train and evaluate against molecules with all mass peaks

≤ 511 Daltons, ≤ 48 atoms and ≤ 4096 max unique fragment formula. However, the way
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that the models are structured allow us to perform inference against molecules of arbitrary

size. We do so when running inference against pubchem-pred.

As mentioned in the Main Text, we subdivide our nist17-mainlib dataset into train

(41.7% of nist17-mainlib) / test (10.4% of nist17-mainlib) splits by computing the

CRC32 checksum of the morgan4 molecular fingerprint for each molecule and subdividing into

splits based on the last digit of the value. This minimizes the chance that exactly identical

molecules-spectra experiments or overly-similar molecules are placed into both the training

and test sets. Hashed fingerprints ending in [0, 1] were used as the test split, and all others

were used as the train split. The function we used to compute the CRC32 checksum of the

fingerprint is morgan4_crc32, available in rassp.util in our released code.

5.1.2 Resolution

All spectra in NIST 2017 are reported at integer Dalton resolution. For downstream training

and evaluation, we represent spectra as vectors s ∈ R512, with bin i containing the observed

intensity at charge-to-mass ratio i. For example, bin 1 contains the intensity for m/z = 1, bin

2 contains the intensity for m/z = 2, and so on. In this work we do not consider fragments

ionized to charge z > 1, so the spectra may be directly read off as intensities for a given mass

value m/z = m. We refer to charge/mass ratio and mass interchangeably in this work.

5.1.3 Synthetic high-resolution data

In Section 2.4.3, we discuss performance of SN and FN against a high-resolution synthetic

dataset generated by running CFM-ID against molecules from PubChem. We randomly

sample 110,000 molecules (100,000 used for training and 10,000 used as a held-out eval set)

from PubChem that contain only HCONFSPCl atoms, ≤ 48 atoms, max fragment formula

≤ 4096, and molecular weight ≤ 512. We then run CFM-ID against these molecules using the

EI-MS model weights and default configuration as provided by the CFM-ID authors[Allen
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Table 5.1: Datasets referenced in this work. The smallmols datasets are sourced from NIST
2014 [Allen et al., 2016, NIST], the nist17 datasets are sourced from NIST 2017 [NIST], and
the pubchem datasets are sourced from PubChem [Kim et al., 2020].

Name # Mols Source Mean
#
atoms

Max
#
atoms

Max
unique
formula

Max
weight

smallmols-orig 17,322 NIST14 25.4 87 151,700 772.1
smallmols-filtered 13,281 NIST14 24.0 48 4,095 504.0
nist17-mainlib 241,028 NIST17 42.3 255 3,427,050 1,674.8
nist17-replib 63,741 NIST17 30.1 173 823,680 967.0
nist17-train 100,438 (41.7%) NIST17 30.1 48 4,096 509.7
nist17-test 25,205 (10.4%) NIST17 30.0 48 4,096 510.0
pubchem-clean 90,844,616 PubChem 47.7 128 43,868,720 2,046.2
pubchem-pred 73,198,384 PubChem - - - -
pubchem-clean-filtered 27,960,210 PubChem 33.7 48 4,096 512.0

et al., 2014]. CFM-ID outputs a list of fragments (in smiles form) and the corresponding

prediction intensities. We use these results as synthetic high-resolution data, because the

fragments have known exact mass and can be binned at arbitrary resolution.

Using the synthetic data, we then construct a dataset by binning at ∆m = 0.050 Dalton

resolution. Because we consider molecules with weight up to 512, the dataset contains spectra

with 512/∆m = 10240 bins.

We then train SN and FN from scratch against this dataset, varying the number of

molecules over 3 orders of magnitude via subsampling: 1k, 10k, and 100k. The metrics

reported in Fig. 10 are obtained by taking the best-performing model on each run and

evaluating it against the held-out test set of 10k molecules, also binned at ∆m = 0.050

Dalton resolution. Due to the difference in binning between the 0.050 Dalton resolution

experiments and the 1 Dalton resolution experiments, test SDPs and other metrics are not

directly comparable. However, the relative comparisons between models as we increase the

size of the training set are meaningful.
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Table 5.2: Features used for each atom

Feature name Dimensions
Atomic number (integer) 1
Atomic number (one-hot) 8
Valence (integer) 1
Total valence (one-hot) 6
Aromatic (boolean) 1
Hybridization (one-hot) 8
Formal charge (one-hot) 3
Default valence (one-hot) 6
Ring size (one-hot) 5
Total hydrogens (one-hot) 6
Total dimensions 45

5.2 SubsetNet and FormulaNet in detail

5.2.1 Input featurization

Suppose X ∈ NA ×D to be our feature matrix for a molecule of NA atoms and D per-atom

features. Using the features listed in Table 5.2, we have D = 45 in this work.

• Atomic number (integer)

• Atomic number (one-hot)

• Total valence (integer)

• Is aromatic (boolean)

• Hybridization (one-hot)

• Formal charge (one-hot)

• Covalent radius (float)

• van der Waals radius (float)

• Default valence (one-hot)
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• Total hydrogens (one-hot)

In addition, we also generate the symmetric adjacency matrix which contains bond order

information A ∈ {0, 1}NA×NA×4, storing 1 in bin 1 for a single bond, bin 2 for a hybridized

bond, bin 3 for a double bond, and bin 4 for a triple bond.

Our featurization pipeline is common to both SubsetNet and FormulaNet, and converts

the molecule into a tuple (X,A).

5.2.2 Model details

Graph neural networks for computing molecule and atom embeddings

We cite some useful references for understanding and utilizing GNNs for this and related

problems [Sanchez-Lengeling et al., 2021, Zhu et al., 2020].

The first phase of SubsetNet and FormulaNet are GNNs that ingest the per-atom features

and the adjacency matrix (X0, A) and outputs per-atom features/embeddings XL. Specifically,

the GNN is a mapping f : RNA×D0 , {0, 1}NA×NA×4 → RNA×DL .

SubsetNet. The layers are as follows:

• Batch normalization

• 16 layers of message-passing graph convolutional layers

– 512 × 512 Weight matrix multiply (first layer converts from the input feature

dimension D = 45 to 512)

– Adjacency matrix masking

– Sum with bias

– LeakyRELU

– Residual sum with the previous layer’s output
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– Instance normalization - Batchnorm1d

The output is a matrix of per-atom feature vectors XL ∈ RNA×DL . In our case we set

NA to be a maximum of 64 atoms and DL = 512.

FormulaNet. The first phase of FormulaNet, like SubsetNet, is a GNN. Featurization

proceeds as before, and the GNN layers are as follows:

• Batch

• 16 layers of message-passing graph convolutional layers

– 512 × 512 Weight matrix multiply (first layer converts from the input feature

dimension D = 45 to 512)

– Adjacency matrix masking

– Sum with bias

– LeakyRELU

– Residual sum with the previous layer’s output

– Layer normalization - LayerNorm1d

The main difference between SubsetNet and FormulaNet’s GNN component is the nor-

malization used within each layer.

Parametrizing a probability distribution over the subformula and subsets

In the previous phase, we took as input per-atom feature vectors X0 ∈ RNA×D0 and output

per-atom embeddings XL ∈ RNA×DL . We combine these per-atom embeddings with a

separately-constructed enumerations over the possible fragments to produce a probability

distribution over the fragments.

SubsetNet. In SubsetNet, the relevant fragments are represented as atom subsets.

109



The atom subsets are obtained via a direct fragmentation and subset enumeration

procedure wherein we recursively break all the bonds out to a given breaking depth d = 3,

compute the resulting connected components, and throw away information about the edges

and retain only the atoms that were present in connected components together as atom

subsets. Each atom subset is stored as a vector si ∈ {0, 1}NA with 1 if the corresponding

atom was present in the subset, and 0 if not.

The per-atom embeddings from the first phase XL is then combined with the atom subsets

(obtained via direct fragmentation and subset enumeration) to generate per-subset embeddings.

Let the atom subset indicator matrix be S ∈ {0, 1}NS×NA . The matrix multiplication SXL

gives us a matrix of per-subset embeddings XS ∈ RNS×DL , which corresponds to doing a

linear combination of the per-atom embeddings for only the atoms present in each subset.

In addition, for each subset we also take its chemical formula and generate a cumulative

one-hot binary feature vector. Since we restrict to molecules containing only HCONFSPCl

atoms (8 unique elements), we require constraints on the maximum number of allowed

atoms for each element. The maximum allowed elements for each element in HCONFSPCl

respectively was [50, 46, 30, 30, 30, 30, 30, 30]. The corresponding embedding size for any

single formula is the sum of the max allowed elements, here 276. Hence, we have the

per-subset embeddings XS ∈ RNS×DL and the per-subset chemical formula embeddings

XSF ∈ RNS×276.

The second phase combines the per-subset embeddings XS and the per-subset chemical

formula embeddings XSF via a fully-connected layer, and then additionally pass it through

two more fully-connected layers to reduce the per-subset embeddings down to per-subset

logit scores, which are then converted into subset probabilities via softmax.

FormulaNet. In FormulaNet, the relevant fragments are represented as chemical formula.

This is essentially taking the atom subset information from above, and taking a quotient

operation over the subsets where we identify all subsets that have the same chemical formula
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as equivalent.

We generate the set of subformulae for a given molecule. As before in SubsetNet, we

produce a cumulative one-hot binary feature vector for each subformula.

The formula embeddings and per-atom embeddings XL from the first phase are then

mapped into the same space and an attention operation is taken, amounting to a pairwise

comparison between all formula and all atom embeddings. The resulting similarities are

converted by softmax into values between 0 and 1, and then used to scale and reduce the

per-atom embeddings down to a per-subformula embedding.

Like SubsetNet, the next phase combines the per-subformula embeddings with the per-

formula one-hot embeddings using a GRUCell. The output is passed through three fully-

connected layers (each containing 128 units) to get a per-formula logit score, just as SubsetNet

combines the per-subset embeddings with the per-subset chemical formula.

Further details for model implementation are available in our provided code.

5.2.3 Hyperparameters

The loss function used was a simple MSE loss against the square root of spectral intensities.

Scaling the intensities by a power of 0.5 in the loss function was intended to de-emphasize

outlier intensities. Both models were trained to convergence using the Adam optimizer with

learning rate 0.0002.

5.2.4 Training

Both models were trained to convergence after 20 passes over the full nist17-train dataset,

which took 100 hours on a workstation with 2 Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz

CPUs and 2 NVIDIA RTX 2080 Ti GPUs. Inference on small molecules with ≤ 48 atoms

and ≤ 4096 max formula on the same workstation achieved an average of 16 molecules per

second. All training and inference was performed using 32 threads and a single GPU.
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5.2.5 Reproducing results

In our publicly-released code, we provide the model code and configuration files used when

producing our results. The NIST dataset is proprietary and cannot be released by us. Instead,

we provide the first 100 molecules from the smallmols-orig dataset [Allen et al., 2016]. The

INCHI and SMILES strings are provided, in addition to high-res predicted spectra obtained

by running the publicly-available CFM-ID EI-MS model [Allen et al., 2016]. We provide

a script that trains a model against this dataset, performs basic forward inference, and

computes metrics for the forward prediction task and the library matching task.

Pretrained model weights, including the best FormulaNet and SubsetNet models we

trained, are not included with the code package due to size constraints but are publicly-

available at https://people.cs.uchicago.edu/~ericj/rassp/. Instructions for use are

included in the code package README.md.

5.3 Comparisons to other models

5.3.1 CFM-ID [Allen et al., 2016]

CFM-ID provided the exact smiles strings corresponding to the smallmols dataset. In order

to get the most favorable comparison for CFM-ID, we used the provided spectra (which

performed better than the spectra output by the model using the weights provided) as our

benchmark in Fig. 6. However, due to lack of coverage of our dataset, we used the provided

EI-MS weights and the default configuration to generate spectra from PubChem molecules

for the synthetic dataset employed in producing Fig. 10.

5.3.2 NEIMS [Wei et al., 2019]

We retrained the NEIMS model on the same nist17-train dataset. Note that the NEIMS

code accepts .tfrecord format only. In addition, the code expects spectra to be normalized
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Table 5.3: Forward model runtime

Model name Runtime (ms) per mol Mols per second
CFM-ID 300,000 [Allen et al., 2016] 0.0033
NEIMS 5[Wei et al., 2019] 200
SubsetNet 53 19
FormulaNet 23 44

to have a maximum magnitude of 999 (as detailed in the original paper) [Wei et al., 2019].

We did not use the provided model weights due to their training set containing molecules

from both our train and test sets. There is no guarantee that we trained the model optimally,

however we did train for a much longer period (100 epochs or passes over our NIST 2017

training set) with the default hyperparameters to ensure that our comparison would be as

favorable to the original work as possible.

5.3.3 Runtime

Forward model runtime information is detailed in Table 5.3.

CFM-ID numbers and NEIMS numbers are pulled from the reported numbers in the

original papers.

All training, inference, and benchmarks were performed on a server with 1 Intel(R)

Xeon(R) Gold 6130 CPU @ 2.10GHz CPU and 1 NVIDIA RTX 2080 Ti GPUs. Inference

runtimes were computed using 16 PyTorch CPU workers for loading data.

5.4 PubChem inference

We take our best-performing FormulaNet model and evaluate it on pubchem-pred, containing

73.2M small molecules from the PubChem database. All molecules and predicted spectra in

pubchem-pred will be made available at our public website spectroscopy.ai.
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5.5 Analysis of molecular similarity vs performance

All mentions of molecular similarity refers to the Tanimoto similarity (AKA Jaccard similarity

or the ratio of Intersection over Union), defined on two binary arrays as:

TanimotoSimilarity[f⃗ , g⃗] =
f⃗&g⃗

f⃗ ||⃗g

where the & operator represents a bitwise-AND operation and the || operator represents a

bitwise-OR operation. This similarity measure is a real number in [0, 1].

In these studies, we used the default RDKit fingerprint for molecules (2048-dimension

binary bitvector) [Landrum].

5.5.1 Forward spectral prediction performance and similarity

For every molecule in our test set (n = 25205), we find its nearest neighbor in the training

set (n = 100438) as measured by similarity discussed above. We present the scatter plot of

SDP (Y-axis) scattered against the similarity to training (X-axis) in Fig. 5.1 below.

Figure 11 (Main Text) is the same data, but additionally binned for clarity. We bin the

similarity in deciles (round to the nearest 10%) and compute the 10%-50%-90% percentile

values within each bin. We present the number of molecules in each similarity bin of Figure

11 in Table 5.4. Note that as the similarity decreases, we have fewer molecules in each bin.

The values in lower bins are expected to be more noisy for this reason.

5.5.2 Library matching performance and similarity

For every molecule in the NIST Replicate Library (n = 63741) we find its nearest neighbor

in the NIST Main Library (n = 241028) as measured by similarity discussed above.

Because matching rank is a heavily skewed value that ranges over several orders of

magnitude (the most common matching rank is < 10, but matching rank can often reach
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Figure 5.1: SDP vs similarity hex jointplot

100 or 1000), we do not report 10%-50%-90% percentiles but rather compute the mean in

log-space. We use logarithms to base 10.

We present the scatter plot of log10(rank) (Y-axis) scattered against similarity (X-axis)

in Fig. 5.2.

Unlike the forward spectral prediction analysis, we only bin into "low similarity" < 90%

and "high similarity" ≥ 90% molecules here, and compute the mean log10(rank) over each

bin. Percentiles make little sense for this data because a majority of molecules have a rank of

1 (log10 rank of 0). The low similarity molecules (n = 29339) had a mean log10 rank of 0.110

and the high similarity molecules (n = 18771) had a mean log10 rank of 0.135.
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Table 5.4: Number of molecules in each similarity bin for Main Text Figure 11

Decile n
0% 0
10% 5
20% 25
30% 64
40% 176
50% 440
60% 1146
70% 2756
80% 6550
90% 10117
100% 5188

5.6 Additional statistical analysis

We would like to understand how our reported performance metrics (SDP and others for

forward spectral prediction, matching rank for library matching / database lookup) vary as

our models are trained on different subsets of the data. To do so, we split our dataset into 5

cross-validation splits, and trained 5 different FormulaNet models to 1000 epochs using each

split (choose 4 for training, hold 1 out for testing).

For the forward performance, the standard-deviation of headline (the value we report in

the abstract) mean SDP (evaluated on the held-out test set, which changes from training run

to training run) we see on the order of 0.10%. At the level of individual molecules, we get an

average run-to-run std-dev in SDP of 2.1% (over 5 runs).

For the library matching task, we looked at the dispersion in rankings between the 5

models. Because each model is trained on a different subset of data (80% is selected and

20% is held out), there is likely to be gaps where a certain model will fail to rank the query

molecule highly. We see this borne out in practice. 91% of the time all 5 models will rank

the query molecule in the top 10 molecules and achieve a median rank dispersion (the max

delta between the highest rank and the lowest rank achieved by any of the five models) of

0.0 and an average rank dispersion of 13.6. The other 9% of the time, we see a median rank
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Figure 5.2: Log10(MatchingRank) vs similarity scatter plot

dispersion of 24 and an average rank dispersion of 152.1, suggesting that when a model does

fail, it fails spectacularly in comparison to the others.

This suggests that accumulating more data on diverse molecular structures is key in

achieving the best possible performance on both tasks.

5.7 Discussion

5.7.1 Glucose example

Given a molecular graph G = (V,E) where the vertexes correspond to atoms and the edges

correspond to bonds, our subset enumeration process outputs a list of atom subsets. These
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Figure 5.3: EI-MS prediction performance. Similar to the figure in the Main Text, but the
bars here represent the mean value over the entire dataset, and Top-1 accuracy (Top1) is
reported instead of Weighted False-Positive Rate (WFPR). Top-1 accuracy was left out of
the Main Text due to 10-50-90% percentile reporting failing to display meaningful bars, since
Top-1 accuracy is either 0 or 1 for each row (the peak with highest intensity in predicted
spectra also matches the peak with highest intensity in the target).

subsets are not randomly generated by choosing a subset of the atoms, but are instead

generated via a physically-plausible "break-and-rearrange" process by which all possible

bond breakages out to integer depth d are iteratively considered, followed by any possible

rearrangement of hydrogens. Running this process on glucose C6H12O6 outputs 164 unique

subsets of the 12 heavy-atoms (6 carbon and 6 oxygen). Considering subsets of all hydrogens

is also possible, but makes this process more computationally-intensive.

An example of the atom (vertex) subsets output by our subset enumeration process is

shown in Fig. 5.4. All atom subsets form one connected-component due to our "physically-

plausible fragment" assumption. If a bond breakage would generate two separate fragments,

then both are considered as separate atom subsets.

Each atom subset maps surjectively onto the set of unique chemical subformulae of the

original molecule (each atom subset corresponds to a subformulae, and there can be many

subsets that map to the same subformula), and each chemical subformulae gives rise to a
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Figure 5.4: Three randomly-chosen heavy-atom (C and O only) subsets of glucose

Table 5.5: Chemical formulae and molecular weight for the three subsets depicted in Fig. 5.4

Subset idx Chemical formula Mol weight
106 C4O4 112.04
131 C2O1 40.02
152 C2O2 56.02

unique peak distribution. In Table 5.5, we see the chemical formula corresponding to each

subset.

The peak distribution for each of the three subsets in Fig. 5.4 is shown in Fig. 5.5. Each

peak is shaded according to the intensity. Note the primary peak centered at the exact weight

of the molecular ion listed in Table 5.5, but also the faint echoes of peaks at higher mass,

caused by the naturally-occurring isotopic variability of carbon and oxygen.
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Figure 5.5: The barcode spectra corresponding to the three subsets depicted in Fig. ??. Each
peak is shaded proportionally to the intensity. The X-axis corresponds to Daltons/amu.

Our prediction models are trained to output a probability distribution over subformulae

(RASSP:FN) and subsets (RASSP:SN). Once such a probability distribution is obtained, it

is a simple matter of scaling the peak distribution corresponding to each subset with the
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probability for that subset, and then summing all the peak distributions together to get the

final output spectrum.

For sake of completion, we also provide the indicator matrix that describes all 164

heavy-atom subsets in Fig. 5.6 and the barcode spectrum for each subset in Fig. 5.7.
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Figure 5.6: Indicator matrix depicting each of the 164 heavy-atom subsets of glucose produced
by our enumeration scheme. The presence of the atom is shown in white, and the absence of
the atom is shown in black. The first 6 atom indexes are carbon and the last 6 atom indexes
are oxygen.

5.7.2 Toluene example

Toluene is a simple example illustrating the tradeoffs and improvements our spectral prediction

process makes.

Fig. 5.8 illustrates FormulaNet’s prediction of the toluene spectrum (negative values, in

blue) vs the ground-truth experimental spectrum (positive values, in black). We note that

our predicted spectrum captures all the important peaks attributable to fragments in the

well-studied fragmentation process at [39, 51, 65, 77, 91, 92] Daltons. We have highlighted

these peaks as light vertical lines in red.

We note that the 7-member ring ion featured in the fragmentation process is not a fragment

or subgraph explicitly considered in our process, due to computational constraints. Rather,

our subset and subformula enumeration process considers both the 91 amu 6-member ring ion

with attached carbon (after a single hydrogen loss) and the 7-member ring ion as identical,

due to having the same set of underlying atoms. Throwing away bond information in the

subset/subformula enumeration process is critical in making our solution computationally
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Figure 5.7: Barcode spectra for each of the 164 heavy-atom subsets of glucose produced by
our enumeration scheme.

feasible, but it does result in losing the ability to separate the 6-member ring and the

7-member ring, even though they present in the mass spectrometer as the same peak.
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Figure 5.8: Toluene
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CHAPTER 6

SUPPLEMENT TO STOCHASTIC SUM-OF-SQUARES FOR

PARAMETRIC POLYNOMIAL OPTIMIZATION

6.1 Notation

Let P(X) and P(Ω) denote the spaces of polynomials on X ⊆ Rn and Ω ⊆ Rd, respectively,

where X and Ω are (not-necessarily compact) subsets of their respective ambient spaces Rn

and Rd. Specifically, all polynomials of the forms below belong to their respective spaces:

p(x) =
∑

α∈Z≥0

cαx
α ∈ P(X), p(ω) =

∑
α∈Z≥0

cαω
α ∈ P(Ω)

where x = (x1, . . . , xn), ω = (ω1, . . . , ωd), α is a multi-index for the respective spaces, and cα

are the polynomial coefficients.

Let Pd(S) for some S ∈ {X,Ω} denote the subspace of P(S) consisting of polynomials of

degree ≤ d, i.e. polynomials where the multi-indices of the monomial terms satisfy ||α||1 ≤ d.

PSOS(X × Ω) refers to the space of polynomials on X × Ω that can be expressible as a

sum-of-squares in x and ω jointly. Additionally, W ≽ 0 for a matrix W denotes that W is

symmetric positive semidefinite (PSD). Finally, P(Ω) denotes the set of Lebesgue probability

measures on Ω.

6.2 Related work

6.2.1 Sum-of-squares theory and practice

The theoretical justification underlying the SDP relaxations in global optimization we use here

derive from the Positivstellensätz (positivity certificate) of [Putinar, 1993], a representation

theorem guaranteeing that strictly positive polynomials on certain sets admit sum-of-squares
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representations. Following this, [Lasserre, 2001, 2018, 2023] developed the Moment-SOS

hierarchy, describing a hierarchy of primal-dual SDPs (each having fixed degree) of increasing

size that provides a monotonic non-decreasing sequence of lower bounds.

There is rich theory underlying the SOS hierarchy combining disparate results from

algebraic geometry [Parrilo, 2000, Lasserre, 2018, 2023], semidefinite programming [Nie,

2009, Papp and Yildiz, 2019], and complexity theory [de Klerk, 2008, O’Donnell, 2016]. The

hierarchy exhibits finite convergence in particular cases where convexity and a strict local

minimum are guaranteed [Nie, 2014], otherwise converging asymptotically [Bach and Rudi,

2023]. In practice, the hierarchy often does even better than these guarantees, converging

exactly at c∗s for some small s.

The SOS hierarchy has found numerous applications in wide-ranging fields, including:

reproducing certain results of perturbation theory and providing useful lower-bound certifica-

tions in quantum field theory and quantum chemistry [Hastings, 2022, 2023], providing better

provable guarantees in high-dimensional statistical problems [Hopkins, 2018, Hopkins and Li,

2018], useful applications in the theory and practice of sensor network localization [Nie, 2009,

Sedighi et al., 2021] and in robust and stochastic optimization [Bertsimas et al., 2011].

Due to the SDP relaxation, the SOS hierarchy is quite powerful. This flexibility comes at

a cost, primarily in the form of computational complexity. The SDP prominently features a

PSD matrix W ∈ Ra(n,d,s)×a(n,d,s) with a(n, d, s) scaling as
(n+d+s

s

)
for n dimensions and

maximum degree s. Without exploiting the structure of the polynomial, such as locality

(coupled terms) or sparsity, solving the SDP using a standard interior point method becomes

prohibitively expensive for moderate values of s or n. Work attempting to improve the

scalability of the core ideas underlying the SOS hierarchy and the SDP method include

[Ahmadi and Majumdar, 2019, Papp and Yildiz, 2019].
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6.2.2 Stochastic sum-of-squares and parametric polynomial optimization

The S-SOS hierarchy we present in this work as a solution to parametric polynomial opti-

mization was presented originally by [Lasserre, 2010] as a “Joint + Marginal” approach. That

work provides the same hierarchy of semidefinite relaxations where the sequence of optimal

solutions converges to the moment vector of a probability measure encoding all information

about the globally-optimal solutions x∗(ω) = argminxf(x, ω) and provides a proof that the

dual problem (our primal) obtains a polynomial approximation to the optimal value function

that converges almost-uniformly to c∗(ω).

6.2.3 Uncertainty quantification and polynomial chaos

Once a physical system or optimization problem is characterized, sensitivity analysis and

uncertainty quantification seek to quantify how randomness or uncertainty in the inputs can

affect the response. In our work, we have the parametric problem of minimizing a function

f(x, ω) over x where ω parameterizes the function and is drawn from some noise distribution

ν(ω).

If only function evaluations f(x, ω) are allowed and no other information is known,

Monte Carlo is often applied, where one draws ωk ∼ ν(ω) and solves many realizations of

infx fk(x) = f(x, ωk) to approximately solve the following stochastic program:

f∗ = inf
x
Eω∼ν [f(x, ω)]

Standard Monte Carlo methods are ill-suited for integrating high-dimensional functions,

so this method is computationally challenging in its own right. In addition, we have no

guarantees on our result except that as we take the number of Monte Carlo iterates T →∞

we converge to some unbiased estimate of Eω∼ν [f(x, ω)].

Our approach to quantifying the uncertainty in optimal function value resulting from
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uncertainty in parameters ω is to find a deterministic lower-bounding c∗(ω) which guarantees

f(x, ω) ≥ c∗(ω) no matter the realization of noise. This is reminiscent of the polynomial

chaos expansion literature, wherein a system of some stochastic variables is expanded into a

deterministic function of those stochastic variables, usually in some orthogonal polynomial

basis [Sudret, 2008, Najm, 2009].

6.2.4 Building intuition for the connection between SDPs and sum-of-squares

We stated that it was obvious that a sum-of-squares polynomial admits a representation of

the form m(x)TWm(x), but we didn’t explicitly show why. The idea hinges on the Cholesky

decomposition of a PSD matrix:

Example 6.2.1. Let s = 2 and X × Ω = R × R. We exhibit a basis function m2(x, ω) :

X × Ω→ R6 over the monomials:

m2(x, ω) = [1, x, ω, x2, xω, ω2]T

Observe that

m2(x, ω)
TAm2(x, ω) ∈ P2s(X × Ω)

If W is PSD, it exhibits a Cholesky factorization W = LLT where L is lower-triangular,

enabling us to write

m2(x, ω)
TWm2(x, ω) = ||LTm2(x, ω))||22

Thus, mT
2Wm2 ∈ P2s

SOS(X × Ω).

This idea is not just a trivial one linking sum-of-squares polynomials to SDPs, this idea is

also useful in practical optimization and is commonly known as the Burer-Monteiro approach

[Burer and Monteiro, 2003, Boumal et al., Jiang and Khoo].
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6.2.5 Theory of orthogonal polynomials

In this work, we draw noise uniformly over [−1, 1]d. Numerically, it is expected we would

achieve faster and more stable results in using which is a natural fit for the Legendre basis

set. But depending on the noise distribution, other choices of basis may be a better fit, such

as Hermite polynomials for Gaussian random variates.

The theory of orthogonal polynomials is intimately related to the character of the noise

distribution ν(ω); in fact given any choice of ν(ω) we may find a sequence of polynomi-

als {Pn(x)} where each polynomial in the sequence is orthogonal relative to any other

with respect to some weight function ν(x), e.g. for 1D polynomials over [a, b] we require∫ b
a Pm(x)Pn(x)ν(x)dx = δm,n where δm,n is the Kronecker delta, i.e. 1 if m = n else

0. Several well-known orthogonal polynomial sequences have names and we provide their

corresponding weight functions [Schmüdgen, 2017]:

• Legendre polynomials and Uniform(−1, 1), i.e. ν(x) = 1

• Hermite polynomials and Gaussian(0, 1/2), i.e. ν(x) = 1√
π
e−x

2

• Chebyshev polynomials and the Wigner semicircle distribution of radius 1, i.e. ν(x) =

π−1(1− x2)−1/2

Using the appropriate sequence of orthogonal polynomials that matches the noise distribution

ν(ω) in the basis ms(x, ω) is not exactly necessary as the results still apply without (e.g.

we use the standard monomial basis and specialize to ω ∼ Uniform(−1, 1)). However, it is

anticipated that using the class of orthogonal polynomials that matches the noise distribution

would make the problem more numerically stable, particularly as the problem gets large.
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6.3 An example

Example 6.3.1. Let f(x, ω) be some polynomial of degree ≤ 2s written in the standard

monomial basis, i.e.

f(x, ω) =
∑

||α||1≤2s
fαx

α

=
∑

||α||1≤2s
f(α1,...,αn+d)

n∏
i=1

xαi
i

d∏
i=1

ω
αn+i
i

Let ms(x, ω) ∈ Ra(n,d,s) be the basis vector representing the full set of monomials in x, ω of

degree ≤ s with a(n, d, s) =
(n+d+s

s

)
.

For all α ∈ Zn+d
≥0 with ||α||1 ≤ 2s and αk = 0 for all k ∈ {1, . . . , n} (i.e. monomial terms

containing only ω1, . . . , ωd) we must have:

∫
X×Ω

ωαdµ(x, ω)−
∫
Ω
ωαdν(ω) = 0

Explicitly, for µ to be a valid probability distribution we must have:

∫
X×Ω

dµ(x, ω)− 1 = M0,0 − 1 = y(1,0,...) − 1 = 0

Suppose Ω = [−1, 1], ω ∼ Uniform(−1, 1) so that d = 1, ν(ω) = 1/2. We require:

∫
X×Ω

ωαdµ(x, ω) =

∫
[−1,1]

ωαdν(ω) =



1 α = 0

0 α = 1

1
3 α = 2

0 α = 3

1
5 α = 4

128



6.4 Strong duality

To guarantee strong duality theoretically, we need a strictly feasible point in the interior

(Slater’s condition). For us, this is a consequence of Putinar’s Positivstellensatz, if f(x, ω)

admits a decomposition as f(x, ω) = c(ω)+g(x, ω) where g(x, ω) > 0 (i.e. is strictly positive),

we have strong duality, i.e. p∗ = d∗ and p∗2s = d∗2s [Lasserre, 2001, Schmüdgen, 2017].

However, it is difficult to verify the conditions analytically. In practice, strong duality is

observed in most cases, so in this work we refer to solving the primal and dual interchangeably,

as p∗2s = d∗2s in all cases we encounter where a SDP solver returns a feasible point.

6.5 Proofs

6.5.1 Primal-dual relationship of S-SOS

Regular SOS

Global polynomial optimization can be framed as the following lower-bound maximization

problem where we need to check global non-negativity:

sup
c∈R

c (6.1)

s.t. f(x)− c ≥ 0 ∀x

When we take the SOS relaxation of the non-negativity constraint in the primal, we now

arrive at the SOS primal problem, where we require f(x)− c to be SOS which guarantees
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non-negativity but is a stronger condition than necessary:

sup
c∈R

c (6.2)

s.t. f(x)− c ∈ PSOS(X).

The dual to Equation (6.1) is the following moment-minimization problem:

inf
µ∈P(X)

∫
f(x)dµ(x) (6.3)

with
∫

dµ(x) = 1.

Taking some spanning basis ms(x) : Rn → Ra(n,s) of monomials up to degree s, we have the

moment matrix M ∈ Ra(n,s)×a(n,s):

Mi,j =

∫
mi(x)mj(x)dµ(x) = yα

where we introduce a moment vector y whose elements correspond to the unique moments of

the matrix M . Then we may write the degree-2s moment-minimization problem, which is

now in a solvable numerical form:

inf
y

∑
α

fαyα (6.4)

with M(y)1,1 = 1

M(y) ≽ 0

where we write M(y) as the matrix formed by placing the moments from y into their

appropriate places and we set the first element of ms(x) to be 1, hence M1,1 =
∫
dν(x) = 1

is simply the normalization constraint. For further reading, see [Nie, 2009, Lasserre, 2001].
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Stochastic SOS

Now let us lift this problem into the stochastic setting with parameters ω sampled from a

given distribution ν, i.e. replacing x→ (x, ω). We need to make some choice for the objective.

The expectation of the lower bound under ν(ω) is a reasonable choice, i.e.

∫
Ω
c(ω)dν(ω)

but we could also make other choices, such as ones that encourage more robust lower bounds.

In this work however, we formulate the primal S-SOS as below (same as Equation (3.1)):

p∗ = sup
c∈L1(Ω)

∫
c(ω)dν(ω) (6.5)

s.t. f(x, ω)− c(ω) ≥ 0

Note that if the ansatz space for the function c(ω) is general enough, the maximization of

the curve c is equivalent to a pointwise maximization, i.e. we recover the best approximation

for almost all ω. Then the dual problem has a very similar form to the non-stochastic case.

Theorem 6.5.1. The dual to Equation (6.5) is the following moment minimization where

µ(x, ω) is a probability measure on X × Ω:

inf
µ∈P(X×Ω)

∫
f(x, ω)dµ(x, ω)

with
∫
X×Ω

ωαdµ(x, ω) =

∫
Ω
ωαdν(ω) for all α ∈ Nd.

Remark 6.5.2. Notice, that the condition
∫
X×Ω ωαdµ(x, ω) =

∫
Ω ωαdν(ω) implies that the

first marginal of µ is the noise distribution ν. Let µω denote the disintegration of µ with

respect to ν, [Ambrosio et al., 2005]. Then the moment matching condition is equivalent to

µω(X) = 1 for almost all ω and µ being a Young measure w.r.t. ν. The idea is that µω(x) is
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a minimizing density for every single configuration of ω.

Proof. We use P≥0(X×Ω) to denote the space of non-negative polynomials on X×Ω. Given

measure ν on Ω and polynomial function p : X × Ω→ R consider

sup
γ∈L1(Ω,ν)

q∈P≥0(X×Ω).

∫
Ω
γ(ω)dν(ω)

s.t p(x, ω)− γ(ω) = q(x, ω)

This is equivalent to

− inf
γ∈L1(Ω,µ)

q∈P≥0(X×Ω)

f(γ, q) + g(γ, q)

with

f(γ, q) = −
∫
Ω
γ(ω)dν(ω)

and

g(γ, q) = −χ{f−γ−q=0} =


0 if f − γ − q = 0

−∞ else
,

i.e. g is the characteristic function enforcing non-negativity.

Denote by h∗ the Legendre dual, i.e.

h∗(y) = sup
x
⟨x, y⟩ − h(x).

Then by Rockafellar duality, [Ekeland and Temam, 1976, Rockafellar, 2015], and noting that
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signed Borel measures B are the dual to continuous functions, the dual problem reads

sup
Γ∈L∞(Ω,µ),µ∈B

−f∗(Γ, µ)− g∗(−(Γ, ν))

and we would have

sup
Γ∈L∞(Ω,µ),µ∈B

−f∗(Γ, µ)− g∗(−(Γ, µ)) = − inf
γ∈L1(Ω,µ)

q∈P≥0(X×Ω)

f(γ, q) + g(γ, q).

The Legendre duals of f and g can be explicitly calculated as

f∗(Γ, µ) =


0 if Γ = −1 and µ ≤ 0

∞ else

and

g∗(Γ, µ) =


∫
Ω×X

f(x, ω)dµ(ω, x) if f − γ ∈ P≥0(X × Ω) and Γ(ω) = µω(X)

∞ else

since

f∗(Γ, µ) = sup
γ,q

(∫
Ω
γ(ω)Γ(ω)dν(ω) +

∫
Ω×X

q(x, ω)dµ(x, ω)− f(γ, q)

)
= sup

γ,q

∫
Ω
γ(ω)(Γ(ω) + 1)dν(ω) +

∫
Ω×X

q(x, ω)dµ(x, ω)

=


0 if Γ = −1 and µ ≤ 0

∞ else
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and

g∗(Γ, µ) = sup
γ,q

∫
Ω
γ(ω)Γ(ω)dν(ω) +

∫
Ω×X

q(x, ω)dµ(ω, x) + χ{f−γ−q=0}

=


sup
γ

∫
Ω
γ(ω)Γ(ω)dν(ω) +

∫
Ω×X

(f(x, ω)− γ(ω))dµ(ω, x) if f − γ =∈ P≥0(X × Ω)

∞ else

=


sup
γ

∫
Ω
γ(ω)(Γ(ω)− µω(X))dν(ω) +

∫
Ω×X

(f(x, ω)dµ(ω, x) if f − γ ∈ P≥0(X × Ω)

∞ else

=


∫
Ω×X

(f(x, ω)dµ(ω, x) if f − γ ∈ P≥0(X × Ω) and Γ(ω) = µω(X)

∞ else

Altogether, we get

−f∗(Γ, µ)− g∗(−Γ,−µ) =


∫
Ω×X

f(x, ω)dµ(ω, x) if µω(X) = 1

∞ else.

6.5.2 Convergence of S-SOS hierarchy

Lemma on approximating polynomials

Lemma 6.5.3. Let Ω be compact and g : Ω→ Rn be Lipschitz continuous. Then there is a

trigonometric polynomial gs of degree s and a constant C > 0 depending only on Ω and n

such that

g ≥ gs
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and

∥g − gs∥L2(Ω) ≤
1 + ln(s)

s
C∥g∥H1(Ω).

One cannot expect much more as the following example shows:

Example 6.5.4. Consider g : R× R2 → R defined by

g(x, p, q) = (x2 + px+ q)2.

Then we have for every (p, q) ∈ R2 that

inf
x∈R

g(x, p, q) =


0 if p2

4 ≥ q

(p
2

4 − q)2 else.

Therefore, (p, q) 7→ infx∈R g(x, p, q) is once differentiable but not twice.

Convergence at ln s/s rate

Theorem 6.5.1 (Asymptotic convergence of S-SOS). Let f : [0, 1]n×Ω→ R be a trigonomet-

ric polynomial of degree 2r, c∗(ω) = infx f(x, ω) the optimal lower bound as a function of ω,

and ν any probability measure on compact Ω ⊂ Rd. Let s = (sx, sω, sc), referring separately

to the degree of the basis in x terms, the degree of the basis in ω terms, and the degree of the

lower-bounding polynomial c(ω).

Let c∗2s(ω) be the lower bounding function obtained from the primal S-SOS SDP with

ms(x, ω) a spanning basis of trigonometric monomials with degree ≤ sx in x terms and of

degree ≤ sω in ω terms:

p∗2s = sup
c∈P2sc(Ω),W≽0

∫
c(ω)dν(ω)

s.t. f(x, ω)− c(ω) = ms(x, ω)
TWms(x, ω)
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Then there is a constant C > 0 depending only on Ω, d, and n such that for all sω, sx ≥

max{3r, 3sc} the following holds:

∫
Ω
[c∗(ω)− c∗2s(ω)] dν(ω) ≤ |Ω|ϵ(f, s)

ε(f, s) ≤∥f − f̄∥F

[
1−

(
1− 6r2

s2ω

)−d(
1− 6r2

s2x

)−n]

+ ∥c∗ − c̄∗∥F

[
1−

(
1− 6r2

s2ω

)−d]
+ C

(1 + ln(2sc))

2sc
.

where f̄ denotes the average value of the function f over [0, 1]n, i.e. f̄ =
∫
[0,1]n f(x)dx

and ||f(x)||F =
∑

x̂ |f̂(x̂)| denotes the norm of the Fourier coefficients.

ϵ(f, s) bounds the expected error, giving us asymptotic convergence as s = min(sx, sω, sc)→

∞. Note the first two terms give a O( 1
s2
) convergence rate. However, the overall error will be

dominated by the degree of c(ω) (from the third term) hence our convergence rate is O( ln ss ).

Proof. By the convergence of Fourier series [Jackson, 1930] we have the existence of a

trigonometric polynomial g′ of degree s with

∥g − g′∥L1(Ω) ≤
C ′

s
∥g∥H1(Ω)

as well as

∥g − g′∥∞ ≤ Lg
ln(s)

s
.

Then we define gs = g′ − ∥g − g′∥∞ and hence g ≥ gs. Furthermore,

∥g − gs∥L1(Ω) ≤
(C ′ + |Ω| ln s)

s
Lg.

Writing C(Ω) = max{C ′, |Ω|} we have the desired form where |Ω| is the volume of Ω.
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Proof of Theorem 6.5.1. Let Ω ⊂ Rd be compact and f : Rn × Ω → R be a 1-periodic

trigonometric polynomial (t.p.) of degree ≤ 2r. We then make Ω isomorphic to [0, 1]d and

hereafter consider Ω = [0, 1]d and f : [0, 1]n × [0, 1]d → R. Let ε > 0 and b = ε
2 . Let the best

lower bound be

c∗(ω) = inf
x∈X

f(x, ω).

Proof outline. We split the error into two parts. First, we use the fact that there is a

lower-bounding t.p. c∗a of degree sc such that

∥c∗ − c∗a∥ ≤ C
1 + ln sc

sc

and

c∗ ≥ c∗a.

This will provide us with a degree-sc t.p. approximation to the lower bounding function,

which in general is only known to be Lipschitz continuous.

Next, we show, that for any b > 0 there is a degree-2s SOS t.p. fSOS(x, ω) such that

fSOS = f − (c∗a − b).

We write s = (sx, sω) where sx, sω denotes the respective max degrees in the variables x, ω.

Once we have constructed this, we can compute f − fSOS = c∗a − ε and since we know

that fSOS ≥ 0 everywhere and c∗a − ε is some degree-sc t.p. we have found a degree-sc

lower-bounding t.p. The construction of this SOS t.p. adds another error term. If we can

drive ε→ 0 as s̄ = min(sx, sω, sc)→∞ then we are done.

Proof continued. To that end, let c∗a : Ω → R be the best degree-sc trigonometric
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approximation of c∗ with respect to L1 such that

c∗ ≥ c∗a.

By [Clarke, 1975], we know that c∗ is locally Lipschitz continuous with Lipschitz constant

Lc∗ and hence, by Lemma 6.5.3 we get that there is C(Ω) > 0 such that

∥c∗ − c∗a∥L1Ω) ≤ C(Ω)
1 + ln sc

sc
Lc∗ .

Next we introduce c∗2s(ω) which is some degree-2s t.p. After an application of the triangle

inequality and Cauchy-Schwarz on the integrated error term
∫
Ω |c
∗ − c∗2s|dω we have

∫
Ω

∣∣∣∣ infx∈X
f(x, ω)− c∗2s(ω)

∣∣∣∣dω ≤ ∫
Ω
|c∗a(ω)− c∗2s(ω)|dω + |Ω|∥c∗ − c∗a∥L2(Ω)

∫
Ω

∣∣∣∣ infx∈X
f(x, ω)− c∗2s(ω)

∣∣∣∣dω ≤ ∫
Ω
|c∗a(ω)− c∗2s(ω)|dω︸ ︷︷ ︸

gap between some SDP solution c∗2s(ω) and t.p. c∗a(ω)

+ C(Ω)
1 + ln sc

sc
Lc∗︸ ︷︷ ︸

approx. error of L-contin. fn.

Now we want to show that for any ε > 0 we can construct a degree-2s SOS trigonometric

polynomial fSOS(x, ω) such that

fSOS = f − c∗a + b.

with b = ε/2 and s = (sx, sω) > r. We can then set f − fSOS = c∗a− b = c∗2s as the degree-2s

lower-bounding function. If we can drive b = ε/2 → 0 as s, sc → ∞ we are done, as by
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construction |c∗a − c∗2s| = b.

Observe that by assumption f − c∗a + b is a t.p. in (x, ω) where f is degree-2r and c∗a is

degree sc ≥ 2r. Denote by (f − fa∗ + b)ω its coefficients w.r.t the ω basis. Note that the

coefficients are functions in x. Following the integral operator proof methodology in [Bach

and Rudi, 2023], define the integral operator T to be

Th(x, ω) =

∫
X×Ω

|qω(ω − ω̄)|2|qx(x− x̄)|2h(x̄, ω̄)dx̄dω̄,

where qω is a trigonometric polynomial in ω of degree ≤ sω and qx is a trigonometric

polynomial in x of degree ≤ sx. The intuition is that this integral operator explicitly builds

a SOS function of degrees (sx, sω) out of any non-negative function h by hitting it against

the kernels qx, qω.

We want to find a positive function h : X × Ω→ R such that

Th = f − c∗a + b.

In frequency space, the Fourier transform turns a convolution into pointwise multiplication

so we have:

T̂ h(x̂, ω̂) = q̂ω ∗ q̂ω(ω̂) · q̂x ∗ q̂x(x̂) · ĥ(x̂, ω̂).

In the Fourier domain it is easy to write down the coefficients of ĥ:

ĥ(x̂, ω̂) =


0 if ∥x̂, ω̂∥∞ > max{2r, 2sc}

f̂(x̂, ω̂)− ĉ∗a(ω̂)1x̂=0 + b1x̂=01ω̂=0

q̂ω ∗ q̂ω(ω̂) · q̂x ∗ q̂x(x̂)
otherwise.
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Computing Th− h gives:

f(x, ω)− c∗a(ω) + b− h(x, ω)

=
∑
ω̂,x̂

f̂(x̂, ω̂)

(
1− 1

q̂ω ∗ q̂ω(ω̂) · q̂x ∗ q̂x(x̂)

)
exp(2iπω̂Tω) exp(2iπx̂Tx)

+
∑
ω̂

(b1ω̂=0 − c∗a)
(
1− 1

q̂ω ∗ q̂ω(ω̂)

)
exp(2iπω̂Tω)

and thus after requiring q̂ω ∗ q̂ω(0) = q̂x ∗ q̂x(0) = 1 we have:

max
x,ω
|f(x, ω)− c∗a(ω) + b− h(x, ω)|

≤∥f − f̄∥F max
ω̂ ̸=0

max
x̸̂=0

∣∣∣∣1− 1

q̂ω ∗ q̂ω(ω̂) · q̂x ∗ q̂x(x̂)

∣∣∣∣
+max

ω̂ ̸=0
∥c∗a − c̄∗a∥F

∣∣∣∣1− 1

q̂ω ∗ q̂ω(ω̂)

∣∣∣∣.
As a reminder, because c∗ ≥ c∗a everywhere we have f − ca ≥ f − c∗ ≥ 0 or f − c∗a+ b > 0,

since b = ε/2 > 0. Since Th = f − c∗a + b > 0 and it is a SOS, we need to guarantee h > 0.

If maxx,ω |f(x, ω)− fa∗ (ω) + b− h(x, ω)| ≤ b then

max
x,ω
|Th− h| < b.

Since Th ≥ b and b > 0 we have

h = Th+ h− Th ≥ Th− ∥h− Th∥∞ ≥ b− b ≥ 0

and hence h > 0 if we ensure maxx,ω |Th− h| ≤ b.

Now let us show that

max
x,ω
|f(x, ω)− c∗a(ω) + b− h(x, ω)| ≤ b
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can be ensured if s = (sx, sω) is large enough.

Using the same kernel and bounds as in [Bach and Rudi, 2023], we choose for z ∈ {x, ω}

the triangular kernel such that

q̂z(ẑ) =

(
1− 6r2

z2

)d

+

d∏
i=1

(
1− |ẑi|

sx,ω

)
+
.

Note that (x)+ = max(x, 0). Then we have

max
x
|f(x, ω)− c∗a(ω) + b− h(x, ω)|

≤∥f − f̄∥F max
ω̂,x̂

∣∣∣∣1− 1

q̂ω ∗ q̂ω(ω̂) · q̂x ∗ q̂x(x̂)

∣∣∣∣+ ∥c∗a − c̄∗a∥F max
ω̂

∣∣∣∣1− 1

q̂ω ∗ q̂ω(ω̂)

∣∣∣∣
≤∥f − f̄∥F

∣∣∣∣1− (1− 6r2

s2ω

)−d(
1− 6r2

s2x

)−n ∣∣∣∣+ ∥c∗a − c̄∗a∥F
∣∣∣∣1− (1− 62

s2ω

)−d ∣∣∣∣
Therefore, by choosing sω and sx large enough such that

∥f − f̄∥F
∣∣∣∣1− (1− 6r2

s2ω

)−d(
1− 6r2

s2x

)−n ∣∣∣∣+ ∥c∗a − c̄∗a∥F
∣∣∣∣1− (1− 62

s2ω

)−d ∣∣∣∣ ≤ b =
ε

2

we have

h ≥ 0

and thus Th is SOS. By design we have

c∗a − c∗2s ≤ b

and thus ∫
Ω
|c∗a − c∗2s|dω ≤

ε

2
.
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Recalling

∫
Ω

∣∣∣∣ infx∈X
f(x, ω)− c∗2s(ω)

∣∣∣∣dω ≤ ∫
Ω
|c∗a(ω)− c∗2s(ω)|dω︸ ︷︷ ︸

gap between some SDP solution c∗2s(ω) and t.p. c∗a(ω)

+ C(Ω)
1 + ln sc

sc
Lc∗︸ ︷︷ ︸

approx. error of L-contin. fn.

we can additionally choose sc large enough to guarantee

C(Ω)
1 + ln sc

sc
Lc∗ ≤

ε

2

and then we are done.

Setting sx, sω, sc = s and sending s→∞ we have asymptotic behavior of the final error

expression:

∫
Ω

∣∣∣∣ infx∈X
f(x, ω)− c∗2s(ω)

∣∣∣∣dω ≤ C1
1

s2
+ C2

1

s
+ C3

ln s

s
= O

(
ln s

s

)

with the constants C1, C2, C3 depending on r, n, d, ∥f − f̄∥F , ∥ca − c̄∗a∥F ,Ω and Lc∗ .

Convergence at 1/s rate

Proof of Proposition 3.2.2. Let c∗a(ω) be a piecewise-constant approximation of c∗(ω) =

infx f(x, ω) on equidistant grid-points. Then ∥c∗ − c∗a∥L1Ω ≤ C 1
sp

where sp is the number of

grid points ωi. Let

c∗s(ω) =
∑

c∗s(ωi)1[ωi,ωi+1]
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where c∗s(ωi) is the best lower bound (resulting from regular SOS) of degree s of x 7→ f(x, ωi).

Then we have c∗a(ωi)− c∗s(ωi) can be bounded by

max
ωi
∥f(ωi, ·)− f̄(ωi, ·)∥F

(
1−

(
1− 6r2

s2

)−n)

by [Bach and Rudi, 2023]. Then

∫
Ω
c∗(ω)− c∗s(ω)dω ≤

∑
i

|c∗a(ωi)− c∗s(ωi)||∆(ωi)|+ ∥c∗ − c∗a∥L1(Ω).

Using the same bound we get for the first term from the proof of Theorem 6.5.1, we can

reduce the first term to a O(1/s2) dependence and we use the theorem on the L1 convergence

of piecewise-constant approximation to 1-periodic trigonometric polynomials from [Jackson,

1930] for the second:

∫
Ω
c∗(ω)− c∗s(ω)dω ≤ max

ωi
∥f(ωi, ·)− f̄(ωi, ·)∥F

(
1−

(
1− 6r2

s2

)−n)
|Ω|+ C

sp

Note that the 1/sp term dominates in the resulting expression and thus we have the desired

result.

6.6 S-SOS for a simple quadratic potential

We provide a simple application of S-SOS to a simple quadratic potential that admits a

closed-form solution so as to demonstrate its usage and limitations.
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6.6.1 Analytic solution for the lower bounding function c∗(ω) with

ω ∼ Uniform(−1, 1)

Let x ∈ R and ω ∼ Uniform(−1, 1). Suppose that we have

f(x, ω) = (x− ω)2 + (ωx)2

In this case we may explicitly evaluate the exact minimum function c∗(ω) = infx f(x;ω).

Note that

f(x;ω) = x2 − 2ωx+ ω2 + ω2x2

Explicitly evaluating the zeros of the first derivative we have

∂xf(x;ω) = 2x∗ − 2ω + 2ω2x∗ = 0

x∗(1 + ω2) = ω

x∗ =
ω

1 + ω2

and, thus,

c∗(ω) = inf
x
f(x;ω) =

ω4

1 + ω2
.

Note that despite f(x, ω) being a simple degree-2 SOS polynomial, the tightest lower-

bound c∗(ω) = infx f(x, ω) is explicitly not polynomial. However, it is algebraic, as it is

defined implicitly as the root of the polynomial equation

c∗(ω)(1 + ω2)− ω4 = 0
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6.6.2 Degree-2s S-SOS to find a polynomial lower-bounding function c∗2s(ω)

Observe that the tightest lower-bounding function c∗(ω) is not polynomial even in this simple

setting. However, we can relax the problem to trying to find c2s ∈ P2s(Ω) to obtain a weaker

bound with infx f(x, ω) = c∗(ω) ≥ c2s(ω).

We now proceed with formulating and solving the degree-2s primal S-SOS SDP (Equa-

tion (3.2)). We assume that c2s(ω) is parameterized by a polynomial of degree ≤ 2s in ω.

Observe that this class of functions is not large enough to contain the true function c∗(ω).

We choose s ∈ {2, 4} and use the standard monomial basis in x, ω, we have the feature

maps m2(x, ω) : R2 → R6 and m4(x, ω) : R2 → R15, since there are
(n+s

s

)
unique monomials

of up to degree-s in n variables. These assumptions together enable us to explicitly write a

SOS SDP in terms of coefficient matching. Note that we must assume some noise distribution

ν(ω). For this section, we present results assuming ω ∼ Uniform(−1, 1). We solve the

resulting SDP in CVXPY using Legendre quadrature with k = 5 zeroes on [−1, 1] to evaluate

the objective
∫
c(ω)dν(ω). In fact, k sample points suffice to exactly integrate polynomials

of degree ≤ 2k − 1.

We solve the SDP for two different levels of the hierarchy, s = 2 and s = 4 (producing

lower-bound polynomials of degree 4 and 8 respectively), and plot the lower bound functions

c2s(ω) vs the true lower bound c∗(ω) = ω4/(1 + ω2) as well as the optimality gap to the true

lower bound in Fig.6.1.

6.6.3 Convergence of lower bound as degree s increases

To solve the S-SOS SDP in practice, we must choose a maximum degree 2s for the SOS function

m2(x, ω)
TWm2(x, ω) and the lower-bounding function c(ω), which are both restricted to

be polynomials. Indeed, a larger s not only increases the dimension of our basis function

ms(x, ω) but also the complexity of the resulting SDP. We would expect that d∗2s → d∗ as

s → ∞, i.e. the optimal value of the degree-2s S-SOS SDP (Equation (3.4)) converges to
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Figure 6.1: Lower bound functions for basis function degree d = 2, 4 (left) and the optimality
gap to the true lower bound c∗(ω)− c∗2s(ω) (right)

that of the “minimizing distribution” optimization problem (Equation (3.3)).

In particular, note that in the standard SOS hierarchy we typically find finite convergence

(exact agreement at some degree 2s∗ < ∞). However, in S-SOS, we thus far have only a

guarantee of asymptotic convergence, as each finite-degree S-SOS SDP solves for a polynomial

approximation to the optimal lower bound c∗(ω) = infx∈X f(x, ω). In Figure 3.1, we illustrate

the primal S-SOS SDP objective values

p∗2s = sup
c∈P2s(Ω)

∫
c(ω)dν(ω) with f(x, ω)− c(ω) ∈ P2s

SOS(X × Ω)

for a given level of the hierarchy (a chosen degree s for the basis ms(x, ω)) and their

convergence towards the optimal objective value

∫
c∗(ω)dν(ω) =

π

4
− 2

3
≈ 0.1187

for the simple quadratic potential, assuming ν(ω) = 1
2 with ω ∼ Uniform(−1, 1). We note

that in the log-linear plot (right) we have a “hinge”-type curve, with a linear decay (in
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logspace) and then flattening completely. This suggests perhaps that in realistic scenarios

the degree needed to achieve a close approximation is very low, lower than suggested by our

bounds. The flattening that occurs here is likely due to the numerical tolerance used in our

solver (CVXPY/MOSEK), as increasing the tolerance also increases the asymptotic gap and

decreases the degree at which the gap flattens out.

6.6.4 Effect of different noise distributions

In the previous two sections, we assumed that ω ∼ Uniform(−1, 1). This enabled us to solve

the primal exactly using Legendre quadrature of polynomials. Note that in Figure 3.1 we see

that the lower-bounding c∗2(ω), c
∗
4(ω) for ω ∼ Uniform(−1, 1) is a smooth polynomial that

has curvature (i.e. sign matching that of the true minimum). This is actually not guaranteed,

as we will see shortly.

In Figure 6.2, we present the lower-bounding functions c∗4(ω) achieved by degree-4 S-SOS

by solving the dual for ω ∼ Normal(0, σ2) for varying widths σ. We can see that for small

σ ≪ 1, the primal solution only cares about the lower-bound accuracy within a small region

of ω = 0, and the lower-bounding curve fails to “generalize” effectively outside the region of

consideration.

6.7 S-SOS for sensor network localization

The following is a self-contained exposition of sensor network localization. Our notation and

framing tend to follow that of [Nie, 2009]. Certain parts of this section have been used in the

main chapter as important background.
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Figure 6.2: Different lower-bounding functions for degree-4 S-SOS done on the simple
quadratic potential f(x, ω) = (x− ω)2 + (ωx)2. The true lower-bounding function c∗(ω) is
plotted in black.
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6.7.1 SDP formulation

Recall the form of f(x, ω):

f(x, ω;X,A, r) =
∑

dij∈Dss(r)

(||xi − xj ||22 − dij(ω)
2)2

︸ ︷︷ ︸
sensor-sensor interactions

+
∑

dik∈Dsa(r)

(||xi − ak||22 − dik(ω)
2)2

︸ ︷︷ ︸
sensor-anchor interactions

Note that the function f(x, ω) is exactly a degree-4 SOS polynomial, so it suffices to choose

the degree-2 monomial basis containing a =
(Nℓ+d+2

2

)
elements as m2(x, ω) : RNℓ+d → Ra.

That is, we have N sensor positions in ℓ spatial dimensions and d parameters for a total of

Nℓ+ d variables.

Let the moment matrix be M ∈ Ra×a with elements defined as

Mi,j :=

∫
m

(i)
2 (x, ω)m

(j)
2 (x, ω)dµ(x, ω)

for i, j ∈ {1, . . . , a}, which fully specifies the minimizing distribution µ(x, ω) as in Equa-

tion (3.4).

Our SDP is then of the form

d∗4 = inf
y

∑
α

fαyα

s.t. M(y) ≽ 0

yα = mα ∀ (α,mα) ∈Mν

yα = y∗α ∀ (α, y∗α) ∈ H

where yα = mα corresponds to the moment-matching constraints of Equation (3.4) and

yα = y∗α correspond to any possible hard equality constraints required to set the exact position

(and uncertainty) of a sensor E[xi] = x∗i ,E[x
2
i ] − E[xi]2 = 0 for all ω. Mν represents the
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(d+2s
2s

)
moment-matching constraints necessary for all moments w.r.t. ω and H represents

the 2ℓn constraints needed to set the exact positions of n known sensor positions in Rℓ (i.e. 1

constraint per sensor and dimension, 2 each for mean and variance).

6.7.2 Noise types

In this work we focus on the linear uniform noise case, as it is a more accurate reflection

of measurement noise in true SNL problems. Special robust estimation approaches may be

needed to properly handle the outlier noise case.

• Linear uniform noise: for a subset of edges we write dij,k(ω) = d∗ij + ϵωk, ωk ∼

Uniform(−1, 1), and ϵ ≥ 0 some noise scale we set. The same random variate ωk may

perturb any number of edges. Otherwise the observed distances are the true distances.

• Outlier uniform noise: for a subset of edges we ignore any information in the actual

measurement dij,k = ωk, ωk ∼ Uniform(0, 2
√
ℓ) where ℓ is the physical dimension of

the problem, i.e. xi ∈ Rℓ.

6.7.3 Algorithms: S-SOS and MCPO

Here we explicitly formulate MCPO and S-SOS as algorithms. Let X = Rn,Ω = Rd and

use the standard monomial basis. We write z = [x1, . . . , xn, ω1, . . . , ωd]. Our objective is to

approximate c∗(ω) = infx f(x, ω) for all ω, with a view towards maximizing
∫
c∗(ω)dν(ω) for

ω sampled from some probability density ν(ω).

MCPO (Algorithm 2) simply samples ωt and finds a set of tuples (x∗(ωt), ωt) where the

optimal minimizer (x∗(ωt, ωt) is computed using a local optimization scheme (we use BFGS).

S-SOS (Algorithm 3) via solving the dual (Equation (3.4)) is also detailed below.
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Algorithm 2 Monte Carlo Point Optimization (MCPO)
1: Input: Function f(x;ω), sampler for distribution ν(ω), number of samples T
2: Output: Approximate integral Î, empirical distribution pD(x), empirical mean µ,

empirical covariance Σ
3: for t = 1 to T do
4: Sample ωt ∼ ν(ω)
5: Find minimizer xt = minx f(x;ωt) using BFGS
6: end for
7: Estimate integral Î ≈ 1

T

∑T
t=1 f(xt;ωt)

8: Construct empirical distribution

pD(x) =
1

T

T∑
t=1

δ(x− xt)

9: Calculate empirical mean µ̂ = 1
T

∑T
t=1 xt and covariance Σ̂ = 1

T−1
∑T

t=1(xt− µ̂)(xt− µ̂)T .

6.7.4 Cluster basis hierarchy

Recall from Section 3.2.2 that we defined the cluster basis hierarchy using body order b

and maximum degree per variable t. In this section, we review the additional modifications

needed to scale S-SOS for SNL.

In SNL, f(x, ω) is by design a degree s = 4 polynomial in z = [x, ω], with interactions of

body order b = 2 (due to the (xi, xj) interactions) and maximum individual variable degree

t = 4. Written this way, we want to only consider monomial terms [x, ω]α with ||α||1 ≤ s,

||α||∞ ≤ 4, and ||α||0 ≤ 2.

To sparsify our problem, we start with some k-clustering (k clusters, mutually-exclusive)

of the sensor set C = {C1, . . . , Ck}. This clustering can be considered as leveraging some

kind of “coarse“ information about which sensors are close to each other. For example, just

looking at the polynomial f(x, ω) enables us to see which sensors (i, j) must be interacting.

Assume that there is some a priori clustering given to us. We denote x(i) as the subset of

the variables restricted to the cluster Ci, i.e. x(i) = {xj : j ∈ Ci}. Moreover, let G = (V,E)

be a graph where the vertices V = {1, . . . , k} correspond to the k clusters and the edges
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Algorithm 3 Stochastic Sum-of-squares (S-SOS), Dual formulation
1: Input: Maximum basis function degree s ∈ Z>0, complete basis function ms(x, ω) :

Rn+d → R(
n+d+s

s ), function f(x;ω) : Rn+d → R represented as a dictionary mapping
multi-index α ∈ Zn+d

≥0 → coefficient fα, probability density function for ν(ω) with known
moments

∫
ωαdν(ω) <∞ ∀ ||α||1 ≤ 2s, any hard equality constraints where we want to

set xk = x∗k for some k ∈ K.
2: Let i1, i2, i4 be the lexicographically-ordered arrays

Z(n+d+1)×(n+d)
≥0 ,Z(

n+d+s
s )×(n+d)

≥0 ,Z(
n+d+2s

2s )×(n+d)
≥0

which correspond to the arrays of multi-indices for all degree-1, degree-s, and degree-2s
monomials in the variables z.

3: Create M ∈ R(
n+d+s

s )×(n+d+s
s ) as a matrix of variables to be estimated.

4: Create y ∈ R(
n+d+2s

2s ) as a vector of variables to be estimated, corresponding to the vector
of independent moments that fully specifies M .

5: Add M ≽ 0 constraint.
6: for i in length(i2) do
7: for j in length(i2) do ▷ Require M to be formed from the elements of y.
8: Compute αij = i2[i] + i2[j] as the multi-index corresponding to the sum of the

multi-indices i2[i], i2[j].
9: Add constraint Mi,j = yαij .

10: end for
11: end for
12: for each row α in i4 do ▷ Require yα moments to equal the known moments of ωα.
13: if

∑n
i=1 αi = 0 then

14: Add constraint yα =
∫
zαdν(ω) =

∫
ωα[−d:]dν(ω).

15: end if
16: end for
17: for k in K do ▷ Handle any hard equality constraints in our variables x.
18: Form multi-index α1 ∈ Zn+d

≥0 where the entry for xk is set to 1 and everything else is
zero.

19: Form multi-index α2 ∈ Zn+d
≥0 where the entry for x2k is set to 1 and everything else is

zero.
20: Add constraint yα1 = x∗k. ▷ E[xk] = x∗k.
21: Add constraint yα2 = (x∗k)

2. ▷ Var[xk] = E[x2k]− E[xk]2 = 0.
22: end for
23: Form the objective to be minimized: F =

∫
f(x, ω)dµ(x, ω) =

∑
α∈i4 fαyα.

24: Solve SDP where we compute inf F subject to above constraints.
25: Output: If the problem is feasible (i.e. there exists a degree-2s decomposition of f into

fSOS and c∗2s(ω)), return moment matrix M ∈ R(
n+d+s

s )×(n+d+s
s ), dual objective value

d∗2s. Otherwise, terminate and return failed/infeasible SDP solve.
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E = {(i, j) : i, j ∈ V } correspond to known cluster-cluster interactions.

The SOS part of the function f(x) may then be approximated as the sum of dense intra-

cluster interactions and sparse inter-cluster interactions, where the cluster-cluster interactions

are given exactly by edges in the graph G:

ms(x)
TWms(x) ≈

∑
i∈V

ms(x
(i))TW (i)ms(x

(i)) +
∑

(i,j)∈E
ms(x

(i))TW (i,j)ms(x
(j))

where W (k) are symmetric PSD matrices and W (i,j) are rectangular matrices where we

require W (i,j) = (W (j,i))T . ms(x) for x ∈ Rn here behaves as before and denotes the basis

function generated by all
(n+s

s

)
combinations of monomials with degree ≤ s. Notice that

this is a strict reduction from the standard Lasserre hierarchy at the same degree s, since in

general the standard basis ms(x) on the full variable set will contain terms that mix variables

from two different clusters that may not have an edge connecting them.

Efficiency gains in the SDP solve occur when we constrain certain of the off-diagonal

W (i,j) blocks to be zero, i.e. the graph G is sparse in cluster-cluster interactions. As we can

see from the block decomposition written above, this resembles block sparsity on the matrix

W . We may interpret the above scheme as having a hierarchical structure out to depth 2,

where we have dense interactions at the lowest level and sparse interactions aggregating them.

In full generality, the resulting hierarchical sparsity in W may be interpreted as generating a

chordal W , which is known to admit certain speed-ups in SDP solvers [Vandenberghe, 2017].

When attempting to solve an SNL problem in the cluster basis instead of the full basis,

we need to throw away terms in the potential f(x, ω) that correspond to cross-terms that are

“ignored” by the particular cluster basis we chose. The resulting polynomial f̄(x, ω) has fewer

terms and produces a cluster basis SDP that is easier to solve, but generally less accurate

due to the sparser connectivity.

In particular, for the rows in Table 3.1 that have NC > 1, we do a NC -means clustering

153



of the ground-truth sensor positions and use those sensor labels to create our partitioning

of the sensors. We connect every cluster using plus-one ci, ci+1 (including the wrap-around

one) connections, so that the cluster-cluster connectivity graph has NC edges. We then use

this information to throw out observed distances from the set Dss and from the full basis

function m2(x, ω). See our code for complete details.

6.7.5 Hard equality constraints

The sensor-anchor terms in Equation (3.7) are added to make the problem easier, because

by adding them now each sensor no longer needs to rely only on a local neighborhood of

sensors to localize itself, but can also use its position relative to some known anchor. When

we remove them entirely, we need to incorporate hard equality constraints between certain

sensors and known “anchor” positions. This fixes certain known sensors but lets every other

sensor be unrooted, defined only relative to other sensors (and potentially an anchor if it is

within the sensing radius).

To deal with the equality constraints where we set the exact position of a sensor xi = x∗i ,

we solve the dual Equation (3.4) and implement them as equality constraints on the moment

matrix, i.e. for the basis element m2(x, ω)i = xi we may set E[xi]−x∗i = M0,i−x∗i = 0. Note

that we also need to set Var(xi) = 0 so for m2(x, ω)j = x2i we add the equality constraint

Var(xi) = E[x2i ]− E[xi]2 = M0,j −M2
0,i = 0.

6.7.6 Solution extraction

Once the dual SDP has been solved, we extract the moment matrix M and can easily

recover the point and uncertainty estimates for the sensor positions E[x],Var[x] by inspecting

the appropriate entries M0,i corresponding to m2(x, ω)i = xi and M0,j corresponding to

m2(x, ω)j = x2i .
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Figure 6.3: Comparison of the performance of MCPO and S-SOS (degree-4) for sensor
recovery accuracy in 1D SNL with varying number of samples T used in the estimate of
empirical µ̂, Σ̂. M-distance is δM , our metric for sensor recovery accuracy per Equation (3.8).
The problem type here is a N = 5 sensor, ℓ = 1 spatial dimension, |Ω| = 2 noise variables,
ϵ = 0.1 noise scale, r = 3 sensing radius problem. The full basis is used here for the S-SOS
SDP.

6.7.7 Impact of using MCPO with varying numbers of samples T

In Figure 6.3 we can see how δM varies as we scale the number of samples T used in

the MCPO estimate of the empirical mean/covariance of the recovered solutions. In this

particular example, the runtime of the S-SOS estimate was 0.3 seconds, comparing to 30

seconds for the T = 300 MCPO point. Despite taking 100x longer, the MCPO solution

recovery still dramatically underperforms S-SOS in δM . This reflects the poor performance

of local optimization methods vs. a global optimization method (when it is available).

6.7.8 Scalability

The largest 2D SNL experiment we could run had N = 15 sensors, NC = 9 clusters, and

d = 9 noise parameters. This generated Nℓ+ d = 39 variables and 820 basis elements in the

naive m2(x, ω) construction, which was reduced to 317 after our application of the cluster

basis, giving us W,M ∈ R317×317. A single solve in CVXPY (MOSEK) took 30 minutes on

155



our workstation (2x Intel Xeon 6130 Gold and 256GB of RAM). We attempted a run with

N = 20 sensors and NC = 9 clusters and d = 9 noise parameters, but the process failed due

to OOM constraints. Thus, we report the largest experiment that succeeded.
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CHAPTER 7

CONCLUSION

In this dissertation, we have seen three very different perspectives on computational science

today. In Chapter 2, we described a method to accurately and rapidly predict the EI-MS

mass spectra for small molecules. Our method achieves state-of-the-art performance and

speed with the limited data available, combining the data efficiency of modern graph neural

networks with the chemical prior knowledge of plausible substructure enumeration. Our

method, RASSP, compares favorably to first-principles simulation of mass spectra, which

is too slow to generate large-scale predictions, and to other data-driven approaches, which

are either end-to-end deep learning [Wei et al., 2019] or utilize more traditional ideas from

cheminformatics [Allen et al., 2014, 2016, Djoumbou-Feunang et al., 2019].

However, EI-MS is only the start. EI-MS is primarily limited by the resolution of the

observed spectra, which has m/z peaks observed at integer amu/Daltons. Utilizing higher-

resolution data, such as that output from tandem MS/MS machines, can improve on resolution

by several orders-of-magnitude and outputting significantly more data per spectrum. Our

approach is distinguished from other data-driven approaches by the fusion of deep learning

with substructure enumeration, enabling us to easily train and predict spectra at arbitrary

resolution. Our early results in this direction indicate that many more possibilities may lie in

this direction.

In Chapter 3, we reviewed an approach to parametric polynomial optimization that takes

a sum-of-squares relaxation. The hierarchy thus generated resembles the Lasserre hierarchy.

We proved convergence of this hierarchy and obtained a convergence rate that improves on

previous results [Lasserre, 2010]. Notably, we provide illustrations of how such a hierarchy

performs in practice, focusing on the sensor network localization setting.

Though sum-of-squares polynomials map neatly onto the cone of semidefinite matrices,

the SOS hierarchy may be replaced by even more restrictive cones, such as more tractable
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DSOS and SDSOS optimization alternatives [Ahmadi and Majumdar, 2019]. There are

fundamental algorithmic limits on how efficient semidefinite solvers can be, so any way we

can avoid the semidefinite cone is welcome.

Even if we do keep the semidefinite cone, there are still more specialized ways to scale our

method, particularly when we leverage sparsity or other structure in the solution matrix W .

Our work outlined the cluster basis hierarchy, a variant that seeks to match the polynomial

with basis functions of limited “body” order, i.e. the number of unique variables a given

monomial has. Other ways of reducing the matrix size we need to consider should also be

considered.

Finally, in Chapter 4, we took a look at generative diffusion processes. We looked

at diffusion processes where the score function s(x, t) = ∇x log pt(x) could be explicitly

computed, and we found that the ill-conditioning of score near t = 0 and even multi-modality

posed little hurdle for the current variants of diffusion models. It would be interesting to

generalize these results to much higher dimensions, as behavior may be very different in those

regimes. Ultimately, though we know for certain that diffusion models “just work” in practice,

we seek to understand the “why” and “how”.
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