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ABSTRACT

We study the maximum degree of large induced subgraphs of some highly symmetric graphs.

This type of problem for Boolean hypercubes was formulated as an equivalent formulation

of the Sensitivity Conjecture in the early 90s. A breakthrough result of Hao Huang in 2019

showed that for subsets U of vertices of a n-dimensional Boolean hypercube, if |U | > 2n−1

then U induces a subgraph with maximum degree at least
√
n. As a corollary, this implies

that the degree of a Boolean function is upper bounded by the square of its sensitivity,

confirming the Sensitivity Conjecture.

Huang’s theorem raised a natural question — does a similar property about the size and

maximum degree of an induced subgraph hold for other graphs? In this thesis, we study this

question for general Cayley graphs and the Hamming graph H(n, 3).

We show that for abelian Cayley graphs G = (V,E), if U ⊆ V has size |U | > |V |/2, then

U induces a subgraph of G with maximum degree at least
√

(d+ t)/2 where d is the degree

and t is the number of generators of order 2. This bound on the maximum degree is tight.

On the other hand, for non-abelian Cayley graphs, there are known constructions of infinite

families of non-abelian Cayley graphs that contain an induced 1-regular subgraph on more

than half of the vertices.

Our result shows that for bipartite abelian Cayley graphs, any induced subgraph of

size exceeding the independence number must have a high degree vertex. However, for

non-bipartite abelian Cayley graphs, the independence number can be much smaller. In

particular, for the Hamming graph H(n, k), the independence number α(H(n, k)) is only

1/k times the number of vertices. Moreover, H(n, k) contains an induced subgraph with

maximum degree 1 which has size α(H(n, k)) + 1.

In this thesis, we focus on the case k = 3. We show that there are induced subgraphs of

H(n, 3) with maximum degree 1 that have size larger than α(H(n, 3))+1 but under an extra

assumption, any subgraphs of H(n, 3) with maximum degree 1 have size α(H(n, 3)) +O(1).
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Specifically, if U ⊆ Zn
3 and U induces a subgraph of H(n, 3) with maximum degree at most

1 then

1. If U is disjoint from a maximum size independent set of H(n, 3) then |U | ≤ 3n−1 + 1.

Moreover, all such U with size 3n−1 + 1 are isomorphic to each other.

2. For n ≥ 6, there exists such a U with size |U | = 3n−1 + 18 and this is optimal for

n = 6.

3. If U ∩ {x, x+ e1, x+ 2e1} ≠ ϕ for all x ∈ Zn
3 then |U | ≤ 3n−1 + 729.
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CHAPTER 1

INTRODUCTION

In Computer Science, determining the amount of resources needed for computing a Boolean

function f in various ways is a fundamental problem. How fast can a Turing machine

compute f? What is the smallest Boolean circuit that represents f? What is the shortest

program that generates the truth table of f? How much information do we need to know

about the input in order to compute f? Each of these problems is tied to a specific model of

computation and leads to a different aspect of complexity. Some of these problems capture

the most difficult open problems in mathematics.

1.1 Decision trees and complexity measures

Among various models of computation, decision trees are one of the simplest. The associated

model complexity, namely query complexity, captures the amount of information that we

need to know about the input x in order to compute f(x). Even for query complexity, proving

lower bounds can be tricky since there are exponentially many decision trees that compute

the same function. Fortunately, due to the simplicity of decision trees, one can observe that

functions with low query complexity must have certain combinatorial or algebraic properties.

This led researchers to define complexity measures that could be explicitly determined from

the function itself without relying on any model of computation.

In the early 90s, a lot of progress was made on understanding query complexity. A number

of complexity measures were introduced, including sensitivity [CDR86], block sensitivity

[Nis91], certificate complexity, and degree of the real polynomial representation [NS94]. The

relationships between them as well as their connections to query complexity and even other

computational models were studied extensively. It is not hard to see that these measures

serve as a lower bound for the query complexity. Interestingly, it is also possible to construct
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a decision tree with depth depending only on these measures. Nisan [Nis91] introduced

block sensitivity and showed that query complexity is upper bound by some polynomial in

block sensitivity. The relationship between query complexity and certificate complexity was

discovered in [BI87, HH87, Tar89]. Nisan and Szegedy [NS94] studied the degree of the real

polynomial representation and showed that degree is polynomially related to block sensitivity.

As a corollary, this placed degree into the family of measures that are polynomially related to

query complexity. At the time, it was not known if sensitivity — one of the earliest measures

which was introduced — belongs to the same family.

1.2 Sensitivity versus block sensitivity

The sensitivity versus block sensitivity problem asks what the correct relationship between

sensitivity and block sensitivity is. It was stated as an open problem in [NS94] and the

assertion that block sensitivity is upper bound by some polynomial in sensitivity was known

as the Sensitivity Conjecture.

The separation between block sensitivity and sensitivity was known to be at least quadratic

since the work of Rubinstein [Rub95]. Virza [Vir11] and then Ambainis and Sun [AS11] im-

proved the separation by a constant factor. The largest known separation to this day is still

quadratic. The first super-quadratic separation between sensitivity and any other relevant

measures was achieved by Tal [Tal16], who gave a 2.1 power separation between sensitivity

and query complexity. This separation was then improved by Ben-David, Hatami and Tal

[BHT17] to a cubic separation between quantum query complexity and sensitivity. In the

same paper they also showed a 2.22 power separation between sensitivity and certificate

complexity.

On the other hand, Simon [Sim83] proved that if a Boolean function depends on n vari-

ables, then it must have sensitivity at least Ω(log n). This gave an exponential upper bound

on the other measures in terms of sensitivity. Kenyon and Kutin [KK04] introduced ℓ-block
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sensitivity and improved the bound by reducing the exponent by a constant factor. Ambainis

et al. [ABG+14, APV16, HLS16] improved the upper bound using a combinatorial argu-

ment that is similar to Simon’s proof. Finally, in 2019, Hao Huang used an elegant spectral

argument to solve the sensitivity versus degree version of the problem, which improved the

previous bound exponentially and completely resolved the Sensitivity Conjecture. Although

Huang’s result implies a tight relationship between degree and sensitivity and implies a poly-

nomial relationship between sensitivity and block sensitivity, it is not known if the resulting

relationship between them is tight.

Huang’s method is dramatically different from previous attempts. Specifically, he showed

that any set of 2n−1+1 vertices of the n-dimensional Boolean hypercube induces a subgraph

with maximum degree at least
√
n. This claim is known to imply the Sensitivity Conjecture

via a formulation due to Gotsman and Linial [GL92]. Huang’s Theorem implies a tight

relationship between sensitivity and degree as Chung et. al. [CFGS88] showed that the n-

dimensional Boolean hypercube has an induced subgraph on 2n−1+1 vertices with maximum

degree at most ⌈
√
n⌉.

1.3 Induced subgraphs of highly symmetric graphs

In his paper, Huang [Hua19] asked the following:

Question 1. Given a “nice” graph G with high symmetry, denote by α(G) its independence

number. Let f(G) be the minimum of the maximum degree of an induced subgraph of G on

α(G) + 1 vertices. What can we say about f(G)?

Since then there has been a considerable amount of work trying to extend Huang’s result.

Huang’s argument has been generalized to Cartesian products of directed l-cycles [Tik22] and

Cartesian products of paths [ZH23], as well as other products of graphs [HLL20]. Alon and

Zheng [AZ20] considered arbitrary Cayley graphs over Zn
2 and showed that Huang’s theorem
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implies any induced subgraph on more than half of the vertices must have maximum degree
√
d where d is the degree of the Cayley graph. Potechin and Tsang [PT20] showed that this

can be generalized to any abelian Cayley graph. This answers Huang’s question in the case

of bipartite abelian Cayley graphs.

It was tempting to conjecture that being a Cayley graph is sufficiently symmetric so

that a similar conclusion about the maximum degree of an induced subgraph on more than

half of the vertices can be drawn. However, it turned out to be not the case as Lehner

and Verret [LV20] constructed families of non-abelian Cayley graphs that contain 1-regular

induced subgraphs on more than half of the vertices. García-Marco and Knauer [GMK22]

constructed further examples of infinite families of non-abelian Cayley graphs that contain

1-regular induced subgraphs on more than half of the vertices.

1.4 Our contributions

Our first contribution is about understanding induced subgraphs of abelian Cayley graphs.

Specifically, we show that

Theorem 1.4.1. For any Cayley graph G = Γ(X,S) such that X is abelian and any U ⊆ X

of size |U | > |X|/2, the induced subgraph G(U) of G on U has maximum degree at least√
(|S|+ t)/2 where t is the number of elements in S of order 2.

For the case of bipartite abelian Cayley graphs G, it shows that any induced subgraph

on α(G) + 1 vertices must have maximum degree at least
√
d/2. This bound is tight and it

answers Huang’s question (Question 1) for the class of bipartite abelian Cayley graphs.

However, when a regular graph G = (V,E) is not bipartite, its independence number can

be much smaller than |V |/2. In particular, the Hamming graph H(n, k) with vertex set equal

to the set of strings of length n over k alphabet has independence number α(H(n, k)) = kn−1,

which is only 1/k of the vertices. The Boolean hypercube is precisely H(n, 2) and hence
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Huang’s Theorem shows that any induced subgraph of H(n, 2) of size α(H(n, 2)) + 1 must

have maximum degree at least
√
n. The construction of Chung et al [CFGS88] shows that

the
√
n bound on the maximum degree is the best possible.

Dong [Don21] generalized the construction in [CFGS88] to H(n, k) and showed that

there is an induced subgraph of H(n, k) of size α(H(n, k)) + 1 that has maximum degree

at most ⌈
√
n⌉. For k ≥ 3, Tanday [Tan22] gave a construction of an induced subgraph on

α(H(n, k)) + 1 with maximum degree 1. [GMK22] independently observed that H(n, 3) has

a 1-regular induced subgraph on 3n−1 + 1 vertices.

We further investigate the Hamming graph H(n, 3). In particular, we investigate the

following question:

Question 2. Let U ⊆ Zn
3 . If the induced subgraph of H(n, 3) on U has maximum degree at

most 1, how large can U be?

We know that |U | can be at least 3n−1+1 according to [GMK22, Tan22]. Our first result

shows that this is the largest possible under an extra assumption on U .

Theorem 1.4.2. Let U ⊆ Zn
3 . If U is disjoint from a maximum size independent set of

H(n, 3) and the induced subgraph of H(n, 3) on U has maximum degree at most 1 then

|U | ≤ 3n−1 + 1.

However, without the assumption of being disjoint from a maximum size independent

set, U can be somewhat larger. We construct examples of size 3n−1 +K where K = 2, 6, 18

for n = 4, 5, 6 respectively. Our example for n = 6 can be extended to give an example of

size 3n−1 + 18 for any n ≥ 6.

Theorem 1.4.3. For n ≥ 6, there exists U ⊆ Zn
3 such that |U | = 3n−1 + 18 and U induces

a subgraph of H(n, 3) with maximum degree 1.

It can be shown that our examples for n ∈ [6] are the largest possible. Interestingly, they

all share a common property that there exists i ∈ [n] such that every line along direction
5



i intersects with them. We say that the set is i-saturated if it satisfies this intersection

property with lines along direction i. Our main result is an upper bound on the size of

i-saturated subsets.

Theorem 1.4.4. Let U ⊆ Zn
3 and i ∈ [n]. If U is i-saturated and U induces a subgraph of

H(n, 3) with maximum degree at most 1 then |U | ≤ 3n−1 + 729.

Although our proof involves analyzing cases in low dimensions, it does not rely on a

computer-assisted argument. That being said, by verifying a certain property using a SAT

solver, our size upper bound for i-saturated subsets of Zn
3 with induced degree 1 can be

improved to 3n−1 + 81.
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CHAPTER 2

COMPLEXITY OF BOOLEAN FUNCTIONS

In this chapter, we define decision trees and the complexity measures related to it. We

present selected results from the literature to show the relationships between them that are

relevant to our discussions in the later chapters.

2.1 Complexity measures

A decision tree is a rooted binary tree T such that each internal node is labeled by a variable

xi for some i ∈ [n] and each leaf is labeled by either 0 or 1. Given x ∈ {0, 1}n, T computes

T (x) as follows: start at the root, if it is a leaf then output the value of this leaf, otherwise

query the variable labeling the current node. Recurse on the left and right subtree if the

outcome of the query is 0 and 1 respectively. We say that T computes f if T (x) = f(x) for

all x ∈ {0, 1}n.

Definition 2.1.1 (Query complexity). The query complexity D(f) of f is the minimum

depth of any decision tree that computes f .

Let x ∈ {0, 1}n, and B ⊆ [n]. We denote by xB the string obtained from x by flipping

all of the bits in B, i.e., (xB)i = xi if i ̸∈ B and (xB)i = 1− xi otherwise. When B = {i} is

a singleton, we use xi to denote x{i}.

Definition 2.1.2 (Sensitivity). We say that f is sensitive to the i-th variable (or coordinate)

on x if f(x) ̸= f(xi). The sensitivity s(f, x) on x is the number of variables which f is

sensitive to on x. For b ∈ {0, 1}, the b-sensitivity sb(f) is defined as maxx∈f−1(b){s(f, x)}

and the sensitivity s(f) of f is defined as max{s0(f), s1(f)}.

Definition 2.1.3 (Block sensitivity). Let B ⊆ [n]. We say that f is sensitive to the block

B on x if f(x) ̸= f(xB). The block sensitivity bs(f, x) on x is the maximum number of
7



disjoint blocks which f is sensitive to x, and the block sensitivity bs(f) of f is defined as

maxx∈{0,1}n bs(f, x).

Definition 2.1.4 (Certificate complexity). We say that a subcube Q ∋ x is a certificate

of f on x if f is constant on Q, i.e. f(y) = f(x) for all y ∈ Q. The certificate complexity

C(f, x) on x is the minimum codimension of any certificate on x. The b-certificate complexity

Cb(f) is defined as maxx∈f−1(b)C(f, x), and the certificate complexity C(f) of f is defined

as max{C0(f), C1(f)}.

Any Boolean function f on {0, 1}n admits a unique multilinear polynomial representation

over any given field F:

f(x) =
∑

S⊆{0,1}n
cS

∏
i:Si=1

xi

where the additions and multiplications are over F.

Definition 2.1.5 (F-degree). Let f : {0, 1}n → {0, 1} be a Boolean function and F be a field.

The F-degree degF(f) of f is the degree of the unique multilinear polynomial representation

of f . We use deg to denote degR.

When F = R, by identifying 0 with +1 and 1 with −1, it is helpful to consider f as

a function from {+1,−1}n to {+1,−1}. f still admits a unique multilinear polynomial

representation over R and such a representation is known as the Fourier representation of f :

f(x) =
∑

S⊆{0,1}n
f̂(S)χS(x)

where χS(x) =
∏

i∈[n] xi and the Fourier coefficients f̂(S) can be computed by

f̂(S) =
1

2n

∑
x∈{0,1}n

f(x)χS(x).

Note that the maximum Hamming weight of S for which f̂(S) ̸= 0 is equal to deg(f).
8



2.2 Relationships among the measures

In this section, we review some of the known relationships between the complexity measures

we introduced.

Theorem 2.2.1. For all boolean functions f , we have

1. s(f) ≤ bs(f) ≤ C(f).

2. [Nis91] C(f) ≤ s(f)bs(f).

3. [NS94] bs(f) ≤ 2 deg(f)2.

4. s(f), bs(f), C(f) and deg(f) are at most D(f).

Item 1 and 4 follow easily from the definitions. For item 2, we observe that fixing all

variables in each sensitivity block determines the value of the function. Let x ∈ {0, 1}n,

We can assume each sensitive block B ⊆ [n] on x has size at most s(f) since either there

is a proper sensitive block B′ ⊂ B or f(xB\{i}) ̸= f(xB) for all i ∈ B, which implies

|B| ≤ s(f, xB) ≤ s(f).

To prove item 3, Nisan and Szegedy [NS94] used a result from approximation theory which

asserts that a univariate polynomial which is bounded on an interval and whose derivative

is large at the boundary of the interval must have large degree. Let k = bs(f). Let x be

the input that attains block sensitivity k and let B1, . . . , Bk be the sensitive blocks. [NS94]

defined a new Boolean function g(y1, . . . , yk) = f(y11B1
+ · · ·+ yk1Bk

) where 1S ∈ {0, 1}n

is an indicator vector of the set S, i.e., (1S)i = 1 if i ∈ S and 0 otherwise. They observed

that the symmetrization [MP68] of g is a univariate polynomial with large derivative on the

interval [0, 1]. Since the degree of g is at most deg(f), the result follows. We refer to the

original paper [NS94] for the detailed proofs. The survey by Buhrman and de Wolf [BdW02]

also contains the proofs of these results as well as many other relevant results and references.
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On the other hand, by constructing a decision tree for f in a certain way, it can be shown

that D(f) is upper bounded by the square of the certificate complexity of f . This result was

discovered by several people independently [BI87, HH87, Tar89].

Theorem 2.2.2. For all boolean functions f , D(f) ≤ C0(f)C1(f).

Proof. Consider the following query algorithm for computing f :

1. If no 1-certificate is consistent with the variables we have queried so far, output 0.

2. Similarly, if no 0-certificate is consistent with the variables we have queried so far,

output 1.

3. Otherwise, pick an arbitrary consistent 0-certificate, query all the variables associated

to the certificate and repeat the whole process.

It is clear that the algorithm correctly computes f(x) since it will only output 0 (resp. 1)

when there is no 1-certificate (resp. 0-certificate) that is consistent with x. In each iteration

we query at most C0(f) bits. Moreover, any 0-certificate that we picked in step 3 must

have a new variable in common with any 1-certificate that are still consistent since otherwise

there would be both a 0-certificate and 1-certificate that are consistent with x and hence

0 = f(x) = 1, a contradiction. It follows that there are at most C1(f) many iterations before

all 1-certificates are eliminated.

Together with Theorem 2.2.1, this shows that bs(f), C(f), deg(f) and D(f) are polyno-

mially related, i.e., any one of them can be upper bounded by some polynomial of the others.

Note that the results we selected to present are meant to demonstrate these measures are

closely related to each other. There is a large body of literature improving upon these early

results such as tighter relationships between them as well as separation results showing a

gap between them.

However, despite the extensive research the following question remained:
10



Question 3. Is s(f) polynomially related to bs(f)?

This question was raised by Nisan and Szegedy [NS94] in the early 90’s when they showed

that bs(f) ≤ 2 deg(f)2, and the Sensitivity Conjecture asserts that s(f) is indeed polynomi-

ally related to bs(f).

For special functions, it was known that the Sensitivity Conjecture is true for symmetric

functions, graph properties [Tur84, Sun11], bipartite graph properties [GMSZ13], minterm-

trasitive functions [Cha05], monotone functions [Nis91], functions with constant alternating

number [LZ16], and various classes of functions defined based on the circuits that compute

them [Mor14, BLTV16, KT16]. It was also known to be false for real-valued functions on

Boolean hypercubes with range [0, 1] [Tal16].

However, for general Boolean functions, the best known upper bound on block sensitivity

in terms of sensitivity was exponential for a very long time. The first such upper bound was

proved by Simon [Sim83]. Simon showed that if a Boolean function depends on n variables,

then it must have sensitivity at least Ω(log n). It implies an exponential upper bound on

all bs(f), C(f), deg(f), D(f) in terms of s(f). Kenyon and Kutin [KK04] introduced ℓ-block

sensitivity and obtained a better upper bound on block sensitivity in terms of sensitivity.

Ambainis et al. [ABG+14, APV16, HLS16] improved the upper bound on C(f) using a

combinatorial argument that is similar to Simon’s argument.

There are also a number of equivalent formulations. See the survey [HKP11] by Hatami,

Kulkarni and Pankratov for the progress and equivalent formulations in the 25 years after

the Sensitivity Conjecture was introduced.

In an attempt to obtain weaker conjectures, the author [Tsa14] compared the sensitivity

with a measure that can be much smaller.

Definition 2.2.3. The minimum certificate complexity of a Boolean function f is defined

as minx∈{0,1}n C(f, x).

Note that minimum certificate complexity is not a common complexity measure. Un-
11



like other measures that we have introduced, the minimum certificate complexity is not

polynomially related to any of them. In fact, it can be arbitrarily smaller than the oth-

ers. For instance, the ANDn function on n variables has minimum certificate complexity 1

but s(ANDn) = bs(ANDn) = C(ANDn) = degF(ANDn) = D(ANDn) = n. Similarly, F2-

degree can also be arbitrarily smaller than the others. The parity function Parityn on n vari-

ables has F2-degree 1 but s(Parityn) = bs(Parityn) = C(Parityn) = degR(Parityn) =

D(Parityn) = n.

Even though both minimum certificate complexity and F2-degree can be arbitrarily

smaller than sensitivity, it turns out that if we can obtain a polynomial upper bound on

both measures in terms of sensitivity, the Sensitivity Conjecture would follow.

Definition 2.2.4. We define C ′
min(f) to be the largest minimum certificate of the restriction

of f on any subcube. More precisely, let Qn be the set of all subcubes of the n-dimensional

Boolean cube, and let f |Q be the restriction of f on the subcube Q. Then C ′
min(f) =

maxQ∈Qn
Cmin(f |Q).

Theorem 2.2.5. D(f) ≤ C ′
min(f) degF(f).

Proof. By definition Cmin(f |Q) ≤ C ′
min(f) for any subcube Q. Let Q be a subcube of

codimension m = Cmin(f) on which f is a constant. Since restricting f on Q is equivalent

to fixing some variables of f , it follows that the set of fixed variables corresponding to Q

intersects with all monomials of degree degF(f) in the F-polynomial representation of f

(since otherwise the resulting function would not be a constant). Thus, querying all those

variables reduces the F-degree by at least 1. By repeating this process at most degF(f) times

the function will become a constant and hence we have a decision tree for f . The depth of

the tree is at most maxQ∈Qn
Cmin(f |Q) · degF(f), as desired.

Corollary 2.2.6. Let F be a field and let a, b > 0 be constants. If for all boolean functions

f we have Cmin(f) ≤ s(f)a and degF(f) ≤ s(f)b, then degR(f) ≤ s(f)a+b for all f .

12



However, since then not much progress was made on the Sensitivity Conjecture until the

breakthrough result of Huang [Hua19] in 2019. This result resolved the Sensitivity Conjecture

completely using a beautiful spectral argument. Huang’s proof, which we will present in the

next chapter, is short and elegant.
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CHAPTER 3

THE SENSITIVITY THEOREM AND INDUCED SUBGRAPHS

OF BOOLEAN HYPERCUBES

In 2019, Hao Huang [Hua19] used an elegant spectral argument to solve the sensitivity vs.

degree problem, which improved the previous bound exponentially and completely resolved

the Sensitivity Conjecture. Huang proved a remarkable property of induced subgraphs of

Boolean hypercubes. The connection between induced subgraphs and sensitivity vs. degree

was discovered by Gotsman and Linial [GL92], which we will present next.

3.1 Gotsman-Linial formulation of the Sensitivity Conjecture

Let Qn be the n-dimensional Boolean hypercube. Gotsman and Linial observed that the sen-

sitivity versus degree problem is equivalent to the following combinatorial problem regarding

induced subgraphs of the Boolean hypercube:

Question 4. Is it true that if U ⊆ {0, 1}n has size |U | ≠ 2n−1, then either U or {0, 1}n \U

induces a subgraph of Qn with maximum degree at least nc for some absolute constant c > 0?

To see the connection, recall that any function f : {0, 1}n → R admits a Fourier repre-

sentation

f(x) =
∑
S⊆[n]

f̂(S)χS(x)

where χS(x) = (−1)
∑

i∈S xi and the Fourier coefficients f̂(S) can be computed by

f̂(S) =
1

2n

∑
x∈{0,1}n

f(x)χS(x).

Note that deg(f) is equal to the largest S such that f̂(S) ̸= 0.

14



Since the sensitivity of a function is non-increasing under restriction, we can assume f

has deg(f) = n in the Sensitivity Conjecture. In this case, the Fourier representation of f

has f̂([n]) ̸= 0. Consider the function g(x) = f(x)⊕ Parity(x) where ⊕ is the exclusive-OR

operation. f(x) and g(x) satisfy the equation 1− 2g(x) = (1− 2f(x))χ[n](x) and hence

g(x) =
1

2
−

χ[n](x)

2
+ f(x)χ[n](x),

which has Fourier coefficients ĝ(ϕ) = 1/2+ f̂([n]), ĝ([n]) = f̂(ϕ)− 1/2 and ĝ(S) = f̂([n] \S)

for non-empty proper subsets S of [n]. Since f has degree n, f̂([n]) ̸= 0 and hence ĝ(ϕ) ̸= 1/2.

Since ĝ(ϕ) = 1
2n
∑

x∈{0,1}n g(x)χϕ(x) =
1
2n
∑

x∈{0,1}n g(x), ĝ(ϕ) ̸= 1/2 implies |g−1(1)| ≠

2n−1. On the other hand, for each x ∈ {0, 1}n, the number of neighbors y of x in Qn such

that g(x) = g(y) is precisely the sensitivity of f on x. Thus, the sensitivity of f is equal to

the maximum degree of the subgraph induced by g−1(0) or g−1(1). This proves the following

result of Gotsman and Linial.

Theorem 3.1.1 ([GL92]). The following two statements are equivalent:

1. For all Boolean functions f , deg(f) ≤ s(f)c.

2. For all U ⊆ {0, 1}n, if |U | ≠ 2n−1, then either U or {0, 1}n \ U induces a subgraph of

Qn with maximum degree at least nc.

3.2 Huang’s Theorem

The proof of the Sensitivity Conjecture or the Gotsman-Linial formulation remained out of

reach until in 2019 Huang found a proof of a slightly stronger statement of the Gotsman-

Linial formulation. Specifically, Huang proved the following theorem, which implies the

second statement in Theorem 3.1.1.
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Theorem 3.2.1. For all U ⊆ {0, 1}n, if |U | > 2n−1, then U induces a subgraph of the

n-dimensonal Boolean hypercube with maximum degree at least
√
n.

The
√
n lower bound on the maximum degree is tight [CFGS88]. By the proof of 3.1.1,

to obtain an induced subgraph of Qn that has size greater than 2n−1 and maximum degree

equals to
√
n, it suffices to construct a Boolean function with degree n and sensitivity

√
n.

One such example is the AND-OR tree. The AND-OR tree on n2 variables is the AND

function of n OR functions on disjoint sets of n variables. This function has degree n2 and

sensitivity n.

By Theorem 3.1.1, Huang’s Theorem implies deg(f) ≤ s(f)2 for all Boolean functions f ,

settling the Sensitivity Conjecture.

We present Huang’s proof of Theorem 3.2.1 in the rest of the chapter. The proof is

remarkably short and elegant. We start with the following lemma, which is well-known for

standard adjacency matrices but the same proof can also be applied to signed adjacency

matrices.

Lemma 3.2.2. Let G = (V,E) be an undirected graph and A be a signed adjacency matrix of

G, i.e., Au,v ∈ {+1,−1} if {u, v} ∈ E and Au,v = 0 otherwise. If λ is the largest eigenvalue

of A, then the maximum degree of G is at least λ.

Proof. Let x be an eigenvector corresponding to λ, i.e., λx = Ax. Let u be a vertex such

that |xu| is maximized (i.e., |xu| ≥ |xv| for all v ∈ V ). Observe that

|λ||xu| =
∣∣∣ ∑
v∈V

Au,vxv

∣∣∣ ≤ ∑
v∈V

|Au,v||xu| = deg(u)|xu|.

Since Tr(A) = 0, λ ≥ 0. It follows that deg(u) ≥ |λ| = λ.

To complete the proof of Theorem 3.2.1, Huang designed a signed adjacency matrix for

the Boolean hypercubes such that all eigenvalues have absolute value
√
n and then used the
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Cauchy interlacing theorem to conclude that any large principal submatrix must also have

an eigenvalue at least
√
n.

Definition 3.2.3. Let A1 =

0 1

1 0

. For n ≥ 2, define

An =

An−1 I

I −An−1

 .

It is not hard to see that An is indeed a signed adjacency matrix of Qn. A remarkable

property of An is that all its eigenvalues have absolute value
√
n. More precisely, we have

the following lemma.

Lemma 3.2.4. An has eigenvalues −
√
n and

√
n, each with multiplicity 2n−1.

Proof. It suffices to show that A2
n = nI as this implies all eigenvalues of An have absolute

value
√
n. The result then follows from the fact that Tr(An) = 0.

We prove A2
n = nI by induction on n. The case of n = 1 is trivial. We assume A2

k = kI

and proceed to show that A2
k+1 = (k + 1)I. Indeed, by the recursive definition of Ak+1 and

the inductive hypothesis, we have

A2
k+1 =

Ak I

I −Ak


Ak I

I −Ak

 =

A2
k + I2 Ak − Ak

Ak − Ak (−Ak)
2 + I2

 =

kI + I 0

0 kI + I

 ,

as desired.

Let A be a n × n matrix. A principal submatrix B of A is a submatrix of A obtained

by deleting the same set of rows and columns. The Cauchy interlacing theorem asserts that

the spectrum of A interlaces with the spectrum of its principal submatrix.
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Theorem 3.2.5 (Cauchy interlacing theorem). Let A be a n × n symmetric matrix with

eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Let B be a m×m principal submatrix of A with eigenvalues

µ1 ≥ µ2 ≥ · · · ≥ µm. Then for all i ∈ [m]

λi ≥ µi ≥ λi+(n−m)

.

Proof of Theorem 3.2.1. Let U ⊂ {0, 1}n of size |U | > 2n−1. Let B be the principal sub-

matrix of An obtained by deleting the rows and columns that do not correspond to vertices

in U . Let µ1 be the largest eigenvalue of B. By Lemma 3.2.4, since An has eigenvalue
√
n

with multiplicity 2n−1 and |U | > 2n−1, 1 + (2n − |U |) ≤ 2n−1 and the Cauchy interlacing

theorem implies

µ1 ≥ λ1+(2n−|U |) ≥ λ2n−1 =
√
n.

Since B is a signed adjacency matrix of the subgraph induced by U , Lemma 3.2.2 implies

that this induced subgraph has a vertex with degree at least µ1 ≥
√
n and the proof is

completed.
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CHAPTER 4

CAYLEY GRAPHS

4.1 Introduction

Huang’s Theorem settled the Sensitivity Conjecture affirmatively and optimally, as Chung et

al [CFGS88] showed that the Boolean hypercube Qn has an induced subgraph on 2n−1 + 1

vertices such that the maximum degree is at most ⌈
√
n⌉. Huang asked what we can say

about the maximum degree of induced subgraphs of a graph G on more than α(G) vertices

if G is highly symmetric, where α(G) denotes the independence number of G. This led to

a line of research on studying similar problem for various classes of graphs [Tik22, ZH23,

HLL20, AZ20, PT20].

Cayley graphs are highly symmetric which makes them a natural candidate to study

regarding Huang’s question. Alon and Zheng [AZ20] considered general Cayley graphs over

Zn
2 and generalized Huang’s theorem to this class of graphs. They showed that while Huang’s

method of constructing a special signed adjacency matrix does not work for general Cayley

graphs over Zn
2 , Huang’s theorem itself can be used to deduce this generalization. Potechin

and Tsang [PT20] further generalized Huang’s theorem to any abelian Cayley graph and

conjectured that being abelian is not necessary. However, this turned out to not be the case

as Lehner and Verret [LV20] constructed families of non-abelian Cayley graphs that contain

1-regular induced subgraphs on more than half of the vertices. García-Marco and Knauer

[GMK22] constructed further examples of infinite families of non-abelian Cayley graphs that

contain 1-regular induced subgraphs on more than half of the vertices.

In this chapter, we will start with some basic examples which show that a certain degree

of symmetry is needed in order to guarantee that large induced subgraphs must have large

maximum degree. We will then present our result for abelian Cayley graphs, followed by the

constructions of Lehner and Verret [LV20], and García-Marco and Knauer [GMK22] which
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showed that our result cannot be extended to non-abelian Cayley graphs.

4.2 Basic examples of graphs with large induced 1-regular

subgraphs

We give a simple example of a regular bipartite graph G = (L,R,E) which has a subset of

size |L|+1 that induces a subgraph with maximum degree 1. Let A,B,C,D be disjoint sets

of size |A| = |C| = n+ 1 and |B| = |D| = n. Let L = A ∪ B and R = C ∪D. Let E be the

union of a perfect matching between A and C, the set of all edges between A and D, and the

set of all edges between B and C. It is straightforward to check that G is (n + 1)-regular,

but the set A∪B has size 2(n+1) = |L|+1 and induces a subgraph with maximum degree

1. A concrete drawing of such a graph for n = 2 is shown in Figure 4.1.

A

CB

D

Figure 4.1: An illustration of the graph G for n = 2.

The second example is the odd graph [BD20] G = (V,E) with vertices {S ⊆ [2n + 1] :

|S| = n} and edges {{S, T} : S ∩ T = ϕ}. It is clear that the automorphism group of

the odd graph contains the symmetric graph Sn. Moreover it is not hard to see that G is

edge-transitive. Let U = {S ⊆ V : 1 /∈ S}. Then |U | =
(2n
n

)
= n+1

2n+1 ·
(2n+1

n

)
> 1

2 |V | and for

each S ∈ U , the only neighbor that is also in U is T = [2n+1] \ ({1}∪S). When n = 2, the

odd graph is precisely the well-known Petersen graph, which is shown in Figure 4.2
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Figure 4.2: An illustration of the odd graph for n = 2. The set U consists of the endpoints
of the red edges.

4.3 Abelian Cayley graphs

We need the following basic definitions. All the groups we consider in this chapter are finite.

Definition 4.3.1 (Cayley Graphs). Given a group X and a set of non-identity elements S

of X, the Cayley graph G = Γ(X,S) = (V,E) is the graph with vertices V = X and edges

E = {(x, sx) : x ∈ X, s ∈ S}. We consider undirected Cayley graphs and hence we assume

that S is symmetric, i.e., if s ∈ S then s−1 ∈ S.

Without loss of generality, we can assume that S generates X as otherwise, letting X ′

be the subgroup of X which is generated by S, Γ(X,S) consists of |X|
|X ′| disjoint copies of

Γ(X ′, S).

The n-dimensional Boolean hypercube Qn can be viewed as a Cayley graph over the

group Zn
2 .

Definition 4.3.2 (Boolean Hypercube). Qn = Γ(Zn
2 , {ei : i ∈ [n]}) where ei is the standard

basis, i.e., (ei)j = 1 if j = i and (ei)j = 0 otherwise.

We can now state our main result.
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Theorem 4.3.3. For any Cayley graph G = Γ(X,S) such that X is abelian and any U ⊆ X

of size |U | > |X|/2, the induced subgraph G(U) of G on U has maximum degree at least√
(|S|+ t)/2 where t is the number of elements in S of order 2.

We prove this theorem in two steps:

1. We show that Huang’s theorem implies that the same property holds for products of

cycles.

2. We generalize the argument used by Alon and Zheng [AZ20] for X = Zn
2 to prove the

result for all abelian X.

4.3.1 From the Boolean hypercube to products of cycles

We recall Huang’s theorem (Theorem 3.2.1) asserts that for Qn, any induced subgraph on

more than half of the vertices has maximum degree
√
n. We show that it implies the same

property for products of cycles.

Corollary 4.3.4. Let X = Zm1 × · · · × Zmd, S = {±e1, . . . ,±ed}, and G = Γ(X,S). For

any U ⊆ X of size |U | > |X|/2, there is an element u ∈ U and k ≥
√
d distinct indices

i1, . . . , ik ∈ [d] such that for all j ∈ [k], either u+ eij ∈ U or u− eij ∈ U .

Proof. To prove this, we cover G with copies of d-dimensional Boolean hypercube Qd.

Definition 4.3.5. Let Ur = {r +
∑

i∈T ei : T ⊆ [d]}.

Observe that Er|Ur ∩ U | > 2n−1 where the expectation is over uniform random r ∈ X.

Thus, there must be some x ∈ X that satisfies |Ux∩U | > 2n−1. Since G(Ux) is isomorphic to

the Boolean cube Qd of dimension d, by Huang’s theorem, the induced subgraph G(Ux ∩U)

of G on Ux ∩ U has maximum degree at least
√
d.
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U01

U00 U10

U11

x00 x10 x20

x01

x02 x12

x11

x22

x21

Figure 4.3: An illustration of some of the sets {Ur : r ∈ G} when d = 2 and m1 = m2 = 3.
The sets U02, U12, U20, U21, U22 wrap around and are not shown.

4.3.2 From products of cycles to abelian Cayley graphs

We now apply an argument of Alon and Zheng [AZ20] to prove Thereom 4.3.3.

Proof of Theorem 4.3.3. By the fundamental theorem of finite abelian groups, we can assume

X = Zm1 × · · · × Zmk . Denote S = {s1, . . . , st, st+1 . . . , sd,−st+1, . . . ,−sd} and let m =

lcm(m1, . . . ,mk). We consider the Cayley graph G′ = Γ(Zd
m, T ) where T = {±e1, . . . ,±ed}.

Let A : Zd
m → X be a linear map defined by A(ei) = si. Note that A is well-defined because

ord(si)|m for all i ∈ [d].

Since S is a generating set of X, the linear map A is onto. Thus, for all x ∈ X,

A−1(x) has size md/|X|. It follows that A−1(U) has size |A−1(U)| = (md/|X|)|U | >

(md/|X|)(|X|/2) = md/2. By Corollary 4.3.4, there is a vertex h ∈ A−1(U) and k ≥
√
d

distinct indices i1, . . . , ik ∈ [d] such that for all j ∈ [k], either h+ eij or h− eij is in A−1(U).

Take hj ∈ {h + eij , h − eij} so that hj ∈ U (if both elements are in U then this choice is

arbitrary) and observe that for all j′ ̸= j ∈ [k],

A(hj′)− A(hj) = A(h)± A(eij′ )− A(h)∓ A(eij ) = ±sij′ ∓ sij ̸= 0.

Thus, all A(h1), . . . , A(hk) are distinct, contained in U , and adjacent to A(h) ∈ U in G(U)

where G = Γ(X,S). Finally, |S| = t+ 2(d− t) and hence d = (|S|+ t)/2, as desired.
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Since the n-dimensional Boolean hypercube Qn is an abelian Cayley graph (Definition

4.3.2) and every element in Zn
2 has order 2, Theorem 4.3.3 reduces to Huang’s Theorem when

the graph is Qn. The dependence on the number of elements in S of order 2 is necessary as

it was pointed out by Alon and Zheng [AZ20] that for the 6-cycle, C6 = Γ(Z6, {+1,−1}), it

has an induced 1-regular subgraph on 4 vertices. Neither 1 and −1 has order 2, hence we

have d = (2 + 0)/2 = 1 in Theorem 4.3.3, which also shows that the bound is tight.

4.4 Counterexamples for non-abelian Cayley graphs

It is natural to ask if abelian is necessary in Theorem 4.3.3. Specifically, is it true that for

all Cayley graphs G = Γ(X,S) where S = S−1, any U ⊆ X of size |U | > |X|/2 induces a

subgraph with maximum degree at least |S|c for some absolute constant c > 0? It turned

out that the answer is negative. In fact there exists infinite families of non-abelian Cayley

graphs with unbounded degree that contain induced subgraphs with maximum degree 1 on

more than half of the vertices. The first such example was constructed by Lehner and Verret

[LV20] using iterated wreath products.

Let X be a group. X acts naturally on the set of functions ZX
2 from X to Z2 by permuting

the domain. More precisely, let a ∈ ZX
2 and x ∈ X, the element ax is defined as the function

ax(y) = a(x−1y) for all y ∈ X. The set ZX
2 itself is also a group under point-wise addition.

The wreath product Z2 ≀ X is the group consisting of elements of the form (a, x) where

a ∈ ZX
2 and x ∈ X with the binary operation defined by

(a, x)(b, y) = (a+ bx, xy).

Let ax ∈ ZX
2 be the indicator function of the element x, i.e., ax(y) = 1 if y = x and ax(y) = 0

otherwise. Lehner and Verret proved the following:

Lemma 4.4.1 ([LV20]). Let X be a group with identity element e and S be a generating
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set for X. Let Y = Z2 ≀X and T = {(ae, e)} ∪ {(0, s) : s ∈ S}. If Γ(X,S) has an induced

subgraph of maximum degree 1 on more than half of its vertices, then the same is true for

Γ(Y, T ).

Starting with X = Z2 and S = {1}, by iteratively applying the lemma, Lehner and

Verret constructed an infinitely family of non-abelian Cayley graphs with unbounded degree

that have an induced subgraph of maximum degree 1 on more than half of the vertices.

They also constructed an infinitely family of 3-regular Cayley graphs over dihedral groups

that contain induced subgraph of maximum degree 1 on more than half of the vertices.

García-Marco and Knauer [GMK22] showed how to construct Cayley graphs over dihedral

groups of unbound degree that have a similar property. More precisely, let Dn denote the

dihedral group

Dn = ⟨a, b|an = b2 = (ab)2 = 1⟩.

For a positive integer m, denote by [m]3 ∈ {1, 2} the right-most nonzero entry in its repre-

sentation in base 3.

Theorem 4.4.2 ([GMK22]). Let n = 3d and S = {a3ib : 0 ≤ i ≤ d}. Then the Cayley graph

Γ(Dn, S) has an induced matching on n + 1 vertices. Specifically, the set M = {ai : [i]3 =

1} ∪ {aib : [i]3 = 2} ∪ {1, b} induces a matching with n+ 1 vertices.

They also considered Cayley graphs over the symmetric groups and provided further

constructions of Cayley graphs that contain an induced subgraph of maximum degree 1

on more than half of the vertices. In particular, they showed that the star graph SGn =

Γ(Sn, {(12), (13), . . . , (1n)}), which is an edge-transitive Cayley graph, has such a property.

Specifically, let supp(π) = {i ∈ [n] : π(i) ̸= i} be the set of elements that are not fixed by π.
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Let f : Sn → {u1, u2, u3, v1, v2, v3} be defined as

f(π) =



u1 if |supp(π)− {1}| = n− 1 and π ∈ An,

v1 if |supp(π)− {1}| = n− 1 and π ̸∈ An,

u2 if |supp(π)− {1}| = n− 2 and π ̸∈ An,

v2 if |supp(π)− {1}| = n− 2 and π ∈ An,

u3 if |supp(π)− {1}| < n− 2 and π ∈ An,

v3 if |supp(π)− {1}| < n− 2 and π ̸∈ An.

Theorem 4.4.3 ([GMK22]). Let U = f−1({u1, u2, v3}) and V = f−1({v1, v2, u3}). Then

|U | ≠ |V | and both U and V induced a subgraph of SGn with maximum degree 1.

It is not difficult to show that for d-regular graphs on n vertices, any induced subgraph

with maximum degree d has size at most dn
2d−1 . García-Marco and Knauer constructed

Cayley graphs that contains an induced matching achieving this bound, answering a question

of Lehner and Verret [LV20].

Theorem 4.4.4 ([GMK22]). Let m be a positive integer. Let X = S2m+1 if m is odd and

X = A2m+1 if m is even. Let ck ∈ S2m+1 be the order 2 permutation defined by

ck(i) =



i+m if i < k −m,

i+m+ 1 if k −m ≤ i ≤ m,

i−m if m < i < k,

i if i = k,

i−m− 1 if k < i ≤ 2m+ 1.

Let S = {ck ∈ X : m + 1 ≤ k ≤ 2m + 1}. Then the Cayley graph Γ(X,S) has degree

m + 1 and it contains an induced matching with m+1
2m+1 |X| vertices. Specifically, the set
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M = {π ∈ X : π(1) ≥ m+ 1} has size m+1
2m+1 |X| and it induces a matching in Γ(X,S).
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CHAPTER 5

HAMMING GRAPH H(n, 3)

5.1 Introduction

We showed in the last chapter that for abelian Cayley graphs with a generating set of size

d, any induced subgraph on more than half of its vertices must have maximum degree at

least
√
d/2. When the graph is also bipartite, it shows that abelian Cayley graphs exhibit a

similar behavior as Boolean hypercubes that there is a “jump” in the maximum degree when

the size of the induced subgraph becomes bigger than its independence number.

However, our result on abelian Cayley does not imply a similar threshold behavior for non-

bipartite abelian Cayley graphs. In particular, the Hamming graph H(n, k) with vertex set

equal to the set of strings of length n over k alphabet has independence number α(H(n, k)) =

kn−1, only 1/k of the number of vertices. It turned out the Hamming graph does not

admit the same threshold behavior despite being a similar to Boolean hypercubes. Dong

[Don21] showed that there is an induced subgraph of H(n, k) of size α(H(n, k)) + 1 that

has maximum degree at most ⌈
√
n⌉. This was improved by Tanday [Tan22] who showed

that H(n, k) has an induced subgraph on α(H(n, k)) + 1 vertices with maximum degree

1. [GMK22] independently discovered that H(n, 3) has a 1-regular induced subgraph on

3n−1 + 1 vertices.

In this chapter, we further investigate the maximum size of the induced subgraph of

H(n, 3) with maximum degree 1.

5.2 Preliminaries

Definition 5.2.1 (Hamming graph H(n, 3)). The Hamming graph H(n, 3) is the graph with

vertices Zn
3 and edges {{x, y} ∈ Zn

3 ×Zn
3 : dH(x, y) = 1} where dH is the Hamming distance.
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Definition 5.2.2 (Standard basis for Zn
3 ). We use the standard basis e1, . . . , en for Zn

3 . In

other words, we take ei ∈ Zn
3 to be the point which is 1 in coordinate i and 0 in the other

coordinates.

Definition 5.2.3 (Induced degree). We say that U ⊆ Zn
3 has induced degree d if U induces

a subgraph of H(n, 3) with maximum degree d.

Throughout the paper, we will draw diagrams representing subsets U ⊆ Zn
3 . For these

diagrams, we will use the following conventions.

1. Each square represents a subset of Zk
3 for some k ≥ 0. When k = 0, we represent a

point of U by • and we represent the empty set ϕ by an empty space.

2. For each 3 × 3 block, the first column corresponds to xk+1 = 0, the second column

corresponds to xk+1 = 1, and the third column corresponds to xk+1 = 2. Similarly, if

there is more than one row, the first row corresponds to xk+2 = 0, the second column

corresponds to xk+2 = 1, and the third column corresponds to xk+2 = 2.

3. When there is more than one block, each additional direction represents an additional

coordinate.

Example 1. The following diagram shows the set of points U = {(0, 0), (0, 2), (1, 1), (2, 1)}.

Note that |U | = 4 and U induces a subgraph of H(n, 3) where every vertex has degree 1.

•

• •

•

We now describe some basic facts about H(n, 3) and maximum size independent sets of

H(n, 3).
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Proposition 5.2.4. The automorphisms of the Hamming graph H(n, 3) are generated by

the following operations.

1. Permuting the coordinates.

2. Multiplying a coordinate by 2.

3. Adding x ∈ Zn
3 to every point.

Remark. When we say two subsets of Zn
3 are isomorphic, we mean that there is an automor-

phism of the Hamming graph H(n, 3) mapping one subset to the other.

Definition 5.2.5. Given a graph G, let α(G) denote the maximum size of an independent

set of G.

For the Hamming graph H(n, 3), we have that α(H(n, 3)) = 3n−1 and the maximum size

independent sets of H(n, 3) are hyperplanes of the vector space Zn
3 .

Definition 5.2.6. Let n ≥ 2 be a natural number. Given a set of vertices S ⊆ Zn−1
3 , for

each c ∈ Zn
3 , we define (S, c) ⊆ Zn

3 to be the set of points

(S, c) = {(x1, . . . , xn) ∈ Zn
3 : (x1, . . . , xn−1) ∈ S, xn = c}

Proposition 5.2.7. I is a maximum size independent set of H(n, 3) if and only if there

exist b ∈ {1, 2}n and c ∈ Z3 such that b1 = 1 and I = {x ∈ Zn
3 :
∑n

i=1 bixi ≡ c mod 3}.

Moreover, for each I of this form, the only independent sets of H(n, 3) of size 3n−1 which

are disjoint from I are the independent sets I ′ = {x ∈ Zn
3 :
∑n

i=1 bixi ≡ c + 1 mod 3} and

I ′′ = {x ∈ Zn
3 :
∑n

i=1 bixi ≡ c+ 2 mod 3}.

Proof. We prove this by induction. For the base case n = 1, the only independent sets of

size 1 are {0}, {1}, and {2} which are given by {x ∈ Z3 : x ≡ 0 mod 3}, {x ∈ Z3 : x ≡ 1
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mod 3}, and {x ∈ Z3 : x ≡ 2 mod 3} respectively. All three of these indepdendent sets are

disjoint.

For the inductive step, assume that the statement is true for n ≤ k. By the inductive

hypothesis, maximum size independent sets of H(k, 3) have size 3k−1 so the only way to

obtain an independent set I of H(k + 1, 3) of size 3k is if I = (I0, 0) ∪ (I1, 1) ∪ (I2, 2) where

I0, I1, I2 are disjoint independent sets of Zk
3 of size 3k−1. By the inductive hypothesis,

I0 = {x ∈ Zk
3 :
∑k

i=1 bixi ≡ c mod 3} for some b ∈ {1, 2}k and c ∈ Z3 such that b1 = 1.

Moreover, since the only independent sets of H(k, 3) of size 3k−1 which are disjoint from

I0 are I ′ = {x ∈ Zk
3 :
∑k

i=1 bixi ≡ c + 1 mod 3} and I ′′ = {x ∈ Zk
3 :
∑k

i=1 bixi ≡ c + 2

mod 3}, we must either have that I1 = I ′ and I2 = I ′′ or I1 = I ′′ and I2 = I ′. In the first

case, we have that I = {x ∈ Zk
3 :
∑k

i=1 bixi + 2xk+1 ≡ c mod 3}. In the second case, we

have I = {x ∈ Zk
3 :
∑k

i=1 bixi + xk+1 ≡ c mod 3}.

To show the moreover statement, observe that if b, b′ ∈ {1, 2}n, b1 = b′1 = 1 and b′ ̸= b

then for any c, c′ ∈ Z3, the linear equations
∑n

i=1 bixi ≡ c mod 3 and
∑n

i=1 b
′
ixi ≡ c′

mod 3 have 3n−2 common solutions.

For our analysis, it is useful to fix three disjoint maximum size independent sets of

H(n, 3).

Definition 5.2.8. For each n ∈ N, we define An = {x ∈ Zn
3 :
∑n

i=1 xi = 0}, Bn = {x ∈

Zn
3 :
∑n

i=1 xi = 1} and Cn = {x ∈ Zn
3 :
∑n

i=1 xi = 2}.

The following recursive definition of An, Bn, and Cn is useful.

Proposition 5.2.9. A1 = {0}, B1 = {1} and C1 = {2} and for all n ∈ N,

1. An+1 = (An, 0)∪(Cn, 1)∪(Bn, 2). We can represent this visually as An+1 = An Cn Bn .

2. Bn+1 = (Bn, 0)∪(An, 1)∪(Cn, 2). We can represent this visually as Bn+1 = Bn An Cn .

3. Cn+1 = (Cn, 0)∪(Bn, 1)∪(An, 2). We can represent this visually as Cn+1 = Cn Bn An .
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•
•

•

•
•

•

•
•

•

Figure 5.1: This figure shows the independent set A3. Note that the first block of A3 is A2,
the second block of A3 is C2, and the third block of A3 is B2.

For an illustration of the independent set A3, see Figure 5.1.

5.2.1 Collapsing one dimension of Zn
3

For our analysis, it is very useful to collapse one dimension of Zn
3 . To do this, we define the

following subsets of Z3.

Definition 5.2.10. We define A = A1 = {0}, B = B1 = {1}, C = C1 = {2}, X = Z3 \A =

{1, 2}, Y = Z3 \B = {0, 2}, and Z = Z3 \ C = {0, 1}.

For an illustration of A, B, C, X, Y , and Z, see Figure 5.2.

Proposition 5.2.11. A subset has maximum induced degree at most 1 if and only if the

following conditions are satisfied:

1. Every A is adjacent to at most one other A and is not adjacent to any Y or Z.

2. Every B is adjacent to at most one other B and is not adjacent to any X or Z.

3. Every C is adjacent to at most one other C and is not adjacent to any X or Y .

4. Every X is only adjacent to A or ϕ.

5. Every Y is only adjacent to B or ϕ.

6. Every Z is only adjacent to C or ϕ.

It is also useful to represent a subset U by a function Uf (x) such that U = ∪
x∈Zn−1

3
(Uf (x)× {x}).
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A = • • • , B = • • • , C = • • • ,
X = • • • , Y = • • • , Z = • • •

Figure 5.2: This figure shows A, B, C, X, Y , and Z.

Definition 5.2.12. Let U be a subset of Zn
3 such that for each x ∈ Zn−1

3 , the line {x, x +

e1, x+2e1} contains at most two points of U . We define Uf to be the function Uf : Zn−1
3 →

{ϕ,A,B,C,X, Y, Z} such that U = ∪
x∈Zn−1

3
(Uf (x)× {x}).

Definition 5.2.13 (Affine subsets). We define an affine subset of Zn
3 to be a subset H ⊆ Zn

3

of the form

H = {x ∈ Zn
3 : For all i ∈ RH , xi = ci}

for some RH ⊆ [n] and elements {ci : i ∈ RH} where each ci ∈ Z3.

We say that an affine subset H contains direction ei if i /∈ RH (i.e., the value of xi

is not restricted by H). We say that two distinct affine subsets H and H ′ are parallel if

H ′ = H ± ej for some j ∈ [n].

Definition 5.2.14. Given an affine subset H of Zn
3 which contains direction e1, we define

Hred to be the affine subset of Zn
3 such that H = Z3 ×Hred.

Definition 5.2.15 (i-saturated). Given U ⊆ Zn
3 and i ∈ [n], we say that U is i-saturated if

U ∩ {x, x + ei, x + 2ei} ̸= ϕ for all x ∈ Zn
3 . In other words, U is i-saturated if and only if

every line in direction ei contains at least one point of U .

Proposition 5.2.16. If U ⊆ Zn
3 , U is 1-saturated and U induces a subgraph of maximum

degree at most 1 then for all x ∈ Zn−1
3 , Uf (x) ∈ {A,B,C,X, Y, Z}.

5.3 Canonical sets

We first consider subsets of Zn
3 that have induced degree 1 and are disjoint from a maximum

size independent set of H(n, 3). It was known that such subsets can have size 3n−1 +
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1 [GMK22]. In this section, we show that this is the maximum possible size for such a

subset. Specifically, if U ⊆ Zn
3 has induced degree 1 and U is disjoint from a maximum size

independent set of H(n, 3), then |U | ≤ 3n−1+1. Moreover, up to isomorphism, there is only

one such subset of size 3n−1 + 1.

Definition 5.3.1. We say that U ⊆ Zn
3 is a canonical set if |U | ≥ 3n−1 + 1, U is disjoint

from a maximum size independent set of H(n, 3), and U has induced degree at most 1.

5.3.1 Definition of Dn and facts about Dn

Up to isomorphism, the only canonical set in Zn
3 is the set Dn which is defined as follows.

Definition 5.3.2. We define Dn recursively.

1. D1 = {1, 2}

2. For all n ∈ N, Dn+1 = (Dn, 0) ∪ (An, 1) ∪ (An, 2).

D2 = X A A =
• •

•
•

D3 = D2 A2 A2 =
• •

•
•

•
•

•

•
•

•

Figure 5.3: This figure shows D2 and D3.

Proposition 5.3.3. For all n ∈ N, An ∩Dn = ϕ and all vertices in Dn have degree 1.

Proof. We prove this by induction. For n = 1, D1 = {1, 2} so both of the vertices in D1

have degree 1. Since A1 = {0}, D1 ∩ A1 = ϕ, as needed.

For the inductive step, assume that all vertices in Dn have degree 1 and An ∩Dn = ϕ.

Recall that
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1. An+1 = An Cn Bn

2. Dn+1 = Dn An An

Since An ∩ Dn = ϕ, An ∩ Bn = ϕ, and An ∩ Cn = ϕ, Dn+1 ∩ An+1 = ϕ. To see that all

vertices in Dn+1 have degree 1, observe the following:

1. By the inductive hypothesis, An ∩Dn = ϕ and each vertex in Dn has degree 1.

2. Each vertex in one of the copies of An is only adjacent to the same vertex in the other

copy of An.

Proposition 5.3.4. For all n ∈ N,

1. There is exactly one line of the form {x, x+ e1, x+ 2e1} which contains two points of

Dn.

2. For all k ∈ [2, n], there are exactly 3k−2 lines of the form {x, x + ek, x + 2ek} which

contain two points of Dn.

Corollary 5.3.5. For all n ≥ 2, Dn is 1-saturated and 2-saturated but is not i-saturated for

any i ≥ 3.

We now observe that for all n ∈ N, there is exactly one other maximum size independent

set of H(n, 3) which is disjoint from Dn.

Definition 5.3.6. Define

A′
n =

{
x ∈ Zn

3 :

(
n−1∑
i=1

xi

)
+ 2xn ≡ 0 mod 3

}
= (An−1, 0) ∪ (Bn−1, 1) ∪ (Cn−1, 2).

Proposition 5.3.7. For all n ∈ N, if I is a maximum size independent set of H(n, 3) and

I ∩Dn = ϕ then I = An or I = A′
n.
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Proof. We prove this for n+ 1 rather than n to make the diagrams nicer.

Recall that Dn+1 = Dn An An and let I be an independent set of H(n + 1, 3) of

maximum size which is disjoint from Dn+1. Since the only independent sets of H(n, 3) of

maximum size which are disjoint from An are Bn and Cn, I must be equal to one of the

following two possibilities

1. I = I ′ Bn Cn

2. I = I ′ Cn Bn

for some independent set I ′ of H(n, 3) of maximum size. Since An is the only independent

set of H(n, 3) of maximum size which is disjoint from Bn and Cn, we must have I ′ = An.

This implies that I = An+1 or I = A′
n+1, as needed.

Before proving our uniqueness theorem, we need one more fact.

Lemma 5.3.8. If U ⊆ Zn
3 is isomorphic to Dn and An∩U = ϕ then |U ∩Bn| = |U ∩Cn| =

|U |
2 .

Proof. Recall that every vertex of Dn has degree 1 so there is a matching M of size 3n−1+1
2

between the vertices of U . For each edge {u, v} ∈ M , at most one of u and v are in Bn as

Bn is an independent set. Similarly, at most one of u and v are in Cn. Since u, v /∈ An as

U ∩ An = ϕ, either u in Bn and v ∈ Cn or v in Bn and u ∈ Cn. Since this is true for all

edges {u, v} ∈ M , the result follows.

5.3.2 Uniqueness of canonical sets

We are now ready to prove our uniqueness theorem.

Theorem 5.3.9. Let U ⊆ Zn
3 . If |U | ≥ 3n−1 + 1, U has induced degree 1 and U is disjoint

from a maximum size independent set of H(n, 3), then there exists σ ∈ Aut(H(n, 3)) such

that σ(U) = Dn.
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Proof. We prove this by induction on n. For n = 1 and n = 2, it can be checked directly

that up to isomorphism, Dn is the unique subset of Zn
3 of size at least 3n−1 + 1 which has

induced degree 1.

For the inductive step, assume the result is true for Zn+1
3 and let U be a subset of Zn+2

3

such that |U | ≥ 3n+1 + 1, U has induced degree 1, and U is disjoint from a maximum size

independent set of H(n+ 2, 3).

Writing U = (U0, 0)∪(U1, 1)∪(U2, 2), at least one of U0, U1, and U2 must have size larger

than 3n. By applying an appropriate translation, we can assume that |U0| > 3n. Since U0

is disjoint from an independent set, we can apply an automorphism of H(n + 1, 3) so that

U0 = Dn+1. After we do this, we have that

U =

Dn An An

U01 U11 U21

U02 U12 U22

for some subsets U01, U11, U21, U02, U12, U22 of Zn
3 . Following similar logic as before and

swapping the second and third rows and/or the second and third columns if needed, we can

assume that U is disjoint from the independent set

An+2 =

An Cn Bn

Cn Bn An

Bn An Cn

We now make the following observations:

1. Since |U | ≥ 3n+1 + 1, |U01|+ |U11|+ |U21|+ |U02|+ |U12|+ |U22| ≥ 6 · 3n−1.

2. |U01| + |U02| ≤ 2 · 3n−1 as otherwise the first column would be disjoint from an

independent set and would have more than 3n + 1 points, which would contradict the

inductive hypothesis.
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3. U11 ⊆ Cn as U11 is disjoint from both An and Bn.

4. U22 ⊆ Bn as U22 is disjoint from both An and Cn.

5. |U12| ≤ 3n−1 + 1 and if |U12| = 3n−1 + 1 then |U11| ≤ 3n−1 − |U12|
2 and |U22| ≤

3n−1− |U12|
2 . To see this, observe that if |U12| > 3n−1 then since U12 is disjoint from An,

U12 is a canonical set. By the inductive hypothesis, |U12| = 3n−1+1 and every vertex

of U12 has degree 1. This implies that U12 ∩ U11 = ϕ and U12 ∩ U22 = ϕ. By Lemma

5.3.8, |U12 ∩ Cn| = |U12|
2 so since U11 ⊆ Cn and U11 ∩ U12 = ϕ, |U11| ≤ 3n−1 − |U12|

2

6. Following similar logic, |U21| ≤ 3n−1 + 1 and if |U21| = 3n−1 + 1 then |U11| ≤ 3n−1 −
|U21|
2 and |U22| ≤ 3n−1 − |U21|

2 .

Combining these observations, there are two possibilities for the sizes of U01, U11, U21, U02, U12, U22.

1. |U01|+ |U02| = 2 · 3n−1 and |U11| = |U12| = |U21| = |U22| = 3n−1.

2. n = 1, |U01|+ |U02| = 2, |U12| = |U21| = 2, and |U11| = |U22| = 0.

If |U01|+ |U02| = 2 · 3n−1 and |U11| = |U12| = |U21| = |U22| = 3n−1, we have that

U =

Dn An An

U01 Cn U21

U02 U12 Bn

We make the following further observations:

1. U12 = Bn or U12 = Cn. To see this, observe that U12 ∩ An = ϕ and U12 must be an

independent set as for every vertex u ∈ U12, either u ∈ U11 = Cn or u ∈ U22 = Bn so

if u had degree 1 in U12 then U would have a degree 2 vertex.

2. Following similar logic, U21 = Bn or U21 = Cn.
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3. U01 = U02 = An. To see this, observe that by the first two observations, U12 = Cn and

U21 = Bn or U12 = Bn and U21 = Cn. In either case, U01 and U02 must be disjoint

from both Bn and Cn as U is disjoint from An+2.

Combining these observations, we have that

U =

Dn An An

An Cn Bn

An Cn Bn

or

Dn An An

An Cn Cn

An Bn Bn

The first case is Dn+2 and the second case can be transformed into Dn+2 by swapping

coordinates n+ 1 and n+ 2 (which corresponds to swapping the rows and columns.)

If n = 1, |U01| + |U02| = 2, |U12| = |U21| = 2, and |U11| = |U22| = 0 then we must have

that

U =

X A A

A X

A X

≃

• •

•

•

•

•

•

•

•

•

.

Note that the right hand side is obtained from the left hand side by replacing A with {0}

and X = {1, 2} where the replacement is done in the third coordinate rather than the first

coordinate. As shown by Figure 5.3, the right hand side is D3 so we have that U ≃ D3, as

needed.

We now make some useful observations about the structure of canonical sets.

Definition 5.3.10 (Popular direction). Let U be a canonical subset U of Zn
3 . We define the

popular direction of U to be the unique i ∈ [n] such that there are exactly 3n−2 lines of the

form {x, x+ ei, x+ 2ei} which contains two points of U .
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Definition 5.3.11 (Extra point). Given a 1-saturated canonical subset U of Zn
3 , writing

U = ∪
x∈Zn−1

3
(Uf (x)× {x}), we define the extra point xU of U to be the unique xU ∈ Zn−1

3

such that Uf (xU ) is X, Y , or Z.

Corollary 5.3.12. If U is a 1-saturated canonical subset U of Zn
3 then for all affine subsets

H ⊆ Zn
3 containing the direction e1, if H contains the extra point of U then U ∩ H is a

canonical set for H.

Proof. We prove this statement by induction. The base case n = 1 is trivial. For the

inductive step, assume that the result is true when n = k and consider the case when

n = k + 1.

Since U is a 1-saturated canonical set, there is a popular direction i ∈ [k+1] for U which

is not 1. Let U0 = {x ∈ U : xi = 0}, U1 = {x ∈ U : xi = 1}, and U2 = {x ∈ U : xi = 2}.

Similarly, let H0 = {x ∈ H : xi = 0}, H1 = {x ∈ H : xi = 1}, and H2 = {x ∈ H : xi = 2}.

We must have that when we ignore coordinate i, two of U0, U1, and U2 are copies of the

same independent set I while the third is a canonical set which is disjoint from I. Without

loss of generality, we can assume that when we ignore coordinate i, U1 = U2 = I and U0 is

a canonical set which is disjoint from I. There are two cases to consider.

1. H contains the direction ei. In this case, H0 contains the extra point of U which is

also the extra point of U0. By the inductive hypothesis, U0 ∩H0 is a canonical set for

H0. When we ignore coordinate i, U1 = U2 = I and U0 ∩ I = ϕ so we must have that

U1 ∩ H1 and U2 ∩ H2 are two copies of the same independent set which are disjoint

from U0 ∩H0. This implies that U ∩H is a canonical set.

2. H does not contain the direction ei. In this case, since H contains the extra point of

U , we must have that H = H0. Since H = H0 contains the extra point of U0 and U0

is a canonical set, the result follows from the inductive hypothesis.
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5.3.3 Canonical paths

For our analysis, it is useful to define canonical paths on Uf . We will show that if U is

a 1-saturated subset of Zn
3 which induces a subgraph of maximum degree 1 then for each

x ∈ Zn−1
3 such that Uf (x) ∈ {X, Y, Z}, there must be a large number of x′ ∈ Zn−1

3 such

that the canonical path starting at x′ ends at x. This implies that there cannot be too many

x ∈ Zn−1
3 such that Uf (x) ∈ {X, Y, Z}.

Definition 5.3.13. Let U be a 1-saturated subset of Zn
3 which induces a subgraph of maxi-

mum degree at most 1 and write U = ∪
x∈Zn−1

3
(Uf (x)× {x}). For each x ∈ Zn−1

3 , we define

the canonical path Px starting at x as follows.

If there is a direction i ∈ [n − 1] such that Uf (x + ei) = Uf (x) or Uf (x + 2ei) = Uf (x)

then we do the following:

1. If Uf (x+ ei) = Uf (x) then we take the point y = x+ 2ei and then take the canonical

path Py starting from y.

2. If Uf (x+ 2ei) = Uf (x) then we take the point y = x+ ei and then take the canonical

path Py starting from y.

If there is no direction i ∈ [n− 1] such that Uf (x+ ei) = Uf (x) or Uf (x+ 2ei) = Uf (x)

then we end Px at x.

A key observation for our upper bound in section 5.5 is that on 1-saturated canonical

sets U , all canonical paths end at the extra point of U .

Lemma 5.3.14. For all n ∈ N, writing Dn = {Dn,f (x) × x : x ∈ Zn−1
3 }, we have that for

all x ∈ Zn−1
3 , the canonical path Px starting at x ends at the extra point xDn

= (0, . . . , 0) of

Dn.

Proof. We prove this statement by induction. The base case n = 1 is trivial. For the

inductive step, assume that the result holds for Dn and consider Dn+1 = Dn An An .
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If x ∈ Dn then the result follows from the inductive hypothesis. If x is in one of the copies of

An then the next point y will be in Dn so the result follows from the inductive hypothesis.

Example 2. Observe that

D4 = D3 A3 A3 =

X A A

A C B

A C B

A C B

C B A

B A C

A C B

C B A

B A C

If we start with the A at x = (2, 1, 2) (the middle right point of the right block), the next

points of Px are the B at (2, 1, 0), the A at (2, 0, 0), and the X at (0, 0, 0), i.e., the middle

right, upper right, and upper left points of the left block.

Lemma 5.3.15. Let U be a 1-saturated subset of Zn
3 which has induced degree at most 1 and

let H ′ = Z3×H ′
red and H ′′ = Z3×H ′′

red be two affine subsets of Zn
3 containing the direction

e1. Taking U ′ = U ∩ H ′ and U ′′ = U ∩ H ′′ and writing U ′ = ∪x∈H ′
red

(U ′
f (x)× {x}) and

U ′′ = ∪x∈H ′′
red

(U ′′
f (x)× {x}),

1. If U ′ is a canonical set for H ′ then for all x ∈ H ′
red, the canonical path Px starting at

x ends at the extra point xU ′ of U ′.

2. If U ′ is a canonical set for H ′, U ′′ is a canonical set for H ′′, and H ′ ∩H ′′ ̸= ϕ then

xU ′ = xU ′′ and U ′ ∩ U ′′ is a canonical set for H ′ ∩H ′′.

Proof. We prove the first statement by induction. For the first statement, the base case

n = 1 is trivial. For the inductive step, assume that the first statement is true when n ≤ k

and consider the case when U ⊆ Zk+1
3 .

Observe that if U ′ is a canonical set, since U and thus U ′ are 1-saturated, there is

a popular direction i ∈ [k + 1] for U ′ which is not 1. Let U ′
0 = {x ∈ U ′ : xi = 0},

U ′
1 = {x ∈ U ′ : xi = 1}, and U ′

2 = {x ∈ U ′ : xi = 2}. Observe that U ′
0 = U0 ∩ H ′

0,
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U ′
1 = U1 ∩ H ′

1, and U ′
2 = U2 ∩ H ′

2 where U0 = {x ∈ U : xi = 0}, U1 = {x ∈ U : xi = 1},

U2 = {x ∈ U : xi = 2}, H ′
0 = {x ∈ H ′ : xi = 0}, H ′

1 = {x ∈ H ′ : xi = 1}, and

H ′
2 = {x ∈ H ′ : xi = 2}.

We must have that when we ignore coordinate i, two of U ′
0, U

′
1, and U ′

2 are copies of the

same independent set I while the third is a canonical set which is disjoint from I. Without

loss of generality, we can assume that when we ignore coordinate i, U ′
1 = U ′

2 = I and U ′
0

is a canonical set which is disjoint from I. By the inductive hypothesis, (H ′
0)red contains

the extra point xU ′ of U ′ and all canonical paths starting in (H ′
0)red end at xU ′ . Since all

canonical paths starting in (H ′
1)red or (H ′

2)red reach U ′
0 after their first step, all canonical

paths starting in H ′
red must end at xU ′ .

We now show the second statement. Observe that by the first statement, for all x ∈ H ′
red,

Px ends at xU ′ . Similarly, for all x ∈ H ′′
red, Px ends at xU ′′ . Thus, we must have that

xU ′ = xU ′′ . Since xU ′ ∈ H ′
red and xU ′′ ∈ H ′′

red, xU ′ = xU ′′ ∈ (H ′ ∩ H ′′)red. By Corollary

5.3.12, U ′ ∩ U ′′ = U ′ ∩ (H ′ ∩H ′′) = U ′′ ∩ (H ′ ∩H ′′) is a canonical set for H ′ ∩H ′′.

The fact that U ′ ∩ U ′′ is a canonical set for H ′ ∩ H ′′ depends on the fact that U is

1-saturated and H and H ′ contain the direction e1. When we consider general subsets of Zn
3

rather than 1-saturated subsets, it is possible for two canonical sets to have an intersection

which is not a canonical set. We show this by giving a U ⊆ Z6
3 where there are two canonical

subsets of U which are isomorphic to D4 and intersect in a 2-dimensional affine subset where

they only have two points.

The first canonical set is S = {x ∈ U : x4 = x5 = 0} (i.e., the points in the first set of

blocks) and the second canonical set is S′ = {x ∈ U : x1 = 1, x3 = 2} (i.e., all of the B

shown in gray cells). Note that S ∩ S′ consists of the two B in the bottom row of the first

set of blocks which are marked with a star.
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X A A

A B B

A C C

A C B

B A C

C B∗ A

A C B

B A C

C B∗ A

A C C

C A A

B B

C B A

A C B

B A C

C B A

A C B

B A C

A B B

C C

B A A

B A C

C B A

A C B

B A C

C B A

A C B

A C C

C A A

B B

C B A

A C B

B A C

C B A

A C B

B A C

C B B

Z C C

C A A

B A C

C B A

A C B

B A C

C B A

A C B

A A

C B B

B C C

A C B

B A C

C B A

A C B

B A C

C B A

A B B

C C

B A A

B A C

C B A

A C B

B A C

C B A

A C B

A A

C B B

B C C

A C B

B A C

C B A

A C B

B A C

C B A

B C C

B A A

Y B B

C B A

A C B

B A C

C B A

A C B

B A C
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5.4 Size lower bound

Recall that α(H(n, 3)) = 3n−1 is the size of the largest independent set of H(n, 3). For n = 1

and 2, the largest induced degree 1 subset of Zn
3 has size α(H(n, 3))+1 and these subsets are

unique up to isomorphism. For n = 3, it is not hard to show that the largest induced degree

1 subset still has size α(H(n, 3)) + 1 but there are two non-isomorphic subsets. For n = 4,

it is possible to have an induced degree 1 subset of size strictly greater than α(H(n, 3)) + 1.

The following set has size α(H(n, 3)) + 2 = 29.

• •

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

In fact, it can be shown that not only is this set the largest possible subset of Z4
3 with

induced degree 1, but it is also the only one up to isomorphism.

Theorem 5.4.1. Up to isomorphism, there is a unique set X ⊆ Z4
3, X has maximum induced

degree 1, and |X| = 33 + 2.

Proof.

Proposition 5.4.2. For any n ≥ 3 and any set X ⊆ Zn
3 , if there are two parallel affine
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subsets of dimension 2 (i.e., 3× 3 blocks) which each contain at least 4 points of X then the

maximum induced degree of X is at least 2.

Proof. Assume that X ⊆ Zn
3 , there are two parallel affine subsets of dimension 2 (i.e., 3× 3

blocks) which each contain at least 4 points of X, and the maximum induced degree of X is

at most 1.

Up to isomorphism, there is only one subset of Z2
3 of size 4 with maximum induced degree

at most 1 so without loss of generality we can assume that one of the affine subsets is as

follows.
• •

•

•

Since the maximum induced degree of X is 1, in the second parallel affine subset, X cannot

contain any of the points shown in red.

Since X can contain at most three of the remaining points, X cannot contain 4 points of

this affine subset which gives a contradiction.

We now consider the possible ways for the points of X to be divided up when we split

Z4
3 into nine 3 × 3 blocks. By Proposition 5.4.2, if X has maximum induced degree 1 and

|X| = 33 + 2 = 29 then up to isomorphism, the only possibilities are as follows.

4 3 3

3 4 3

3 3 3

or

4 3 3

3 4 3

2 3 4
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If we consider the possibilities for two of the 3× 3 blocks with four points in X then up to

isomorphism, there are three possibilities.

First, these 3× 3 blocks may be the same. In this case, if we look at the six neighboring

blocks, X cannot contain any of the points shown in red.

• •

•

•

• •

•

•

Observe that X can contain at most 4 of the six upper left corners so at least two of these

neighboring 3× 3 blocks can only contain 2 points of X. This is impossible as all but one of

these 3× 3 blocks must have at least 3 points of X.

The second possibility is that one of the 3 × 3 blocks is obtained from the other by

either swapping the row containing two points of X with a row containing one point of X

or swapping the column containing two points of X with a column containing one point of

X (but not both). In this case, if we look at the two blocks which neighbor both of these

blocks, the points shown in red cannot be in X so both of these blocks contain at most 2

points of X. Again, this gives a contradiction.
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• •

•

•

•

• •

•

The third possibility is that the one of the 3×3 blocks is obtained from the other by swapping

the row containing two points of X with a row containing one point of X and swapping the

column containing two points of X with a column containing one point of X.

We now show that there is no way for the points of X to have the division

4 3 3

3 4 3

2 3 4

and up to isomorphism, there is a unique way to have the division

4 3 3

3 4 3

3 3 3

. To see that

there is no way to have the division

4 3 3

3 4 3

2 3 4

, observe that if each pair of 3 × 3 blocks

with 4 points of X satisfies the third possibility then up to ismorphism, these points must

48



be arranged as follows.

• •

•

•

•

• •

•

•

•

• •

Observe that X can only contain four of the six points in the upper left corners of the six

remaining blocks. Similarly, X can only contain 4 of the 6 middle points of these blocks and

X can only contain 4 of the 6 bottom right points of these blocks.

Finally, we consider the case where the points of X are divided as

4 3 3

3 4 3

3 3 3

and the pair

of blocks with four points of X satisfy the third possibility. In this case, up to isomorphism,

these blocks must have the following points. This implies that the points shown in red cannot
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be in X.
• •

•

•

•

• •

•

For the bottom left and upper right blocks, X must contain the top left point. Moreover,

we must either have that the middle and bottom right points are in X or the middle right

and bottom middle points are in X. Observe that the first case is impossible as this would

eliminate too many possible points from the middle right or bottom middle block. Thus,

for the bottom left and upper right blocks, X must contain the top left, middle right, and

bottom middle points. Note that this eliminates the top left point of the middle right and

bottom middle blocks.

For the middle right and bottom middle blocks, observe that X cannot contain the

bottom right point as this would eliminate both the top right and the bottom left points.

Thus, for the the middle right and bottom middle blocks, X must contain the top right,

middle, and bottom left points.
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Thus, the points for all of the blocks except the bottom right block must be as follows.

• •

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

For the bottom right block, the points shown in red cannot be in X. There are exactly three

points remaining so X must contain these points.

This set demonstrates some interesting properties. Denote the set as X4 and let N(x)

denote the set of neighbors of x:

1. There exists a subset O ⊆ Z4
3 such that ∪x∈ON(x) ⊆ X4. Moreover, the only vertices

with degree 1 in the induced subgraph are the vertices in ∪x∈ON(x).

2. X4 is i-saturated for all i ∈ [4].

Almost all the extremal subsets for n ≤ 4 satisfy both properties, with D3 the canonical set

of dimension 3 being the only exception. D3 satisfies neither of the two properties, but it

satisfies a weaker form of property 2: it is i-saturated for some i ∈ [3].

All the extremal subsets for n ≤ 4 are i-saturated for some i. By permutating the

coordinates if needed, we can assume without loss of generality that they are 1-saturated
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and hence we can represent them by functions Uf : Zn
3 → {A,B,C,X, Y, Z} such that

U = ∪
x∈Zn−1

3
(Uf (x)× {x}). The extremal subset X4 for Z4

3 can be written as follows

X A A

A B C

A C B

A B C

B Y B

C B A

A C B

C B A

B A C

.

5.4.1 Finding subsets via SAT solvers

By Proposition 5.2.11, subsets U with induced degree at most 1 can be characterized by a

set of conditions on the adjacent blocks. If in addition U also 1-saturated, then it can be

characterized as a solution to a certain CNF formula. Specifically, Proposition 5.2.11 can be

rephrased as the following fact regarding the function representation.

Proposition 5.4.3. Let Uf : Zn−1
3 → {A,B,C,X, Y, Z} and U = ∪

x∈Zn−1
3

(Uf (x)× {x}).

Then U has induced degree 1 if and only if for all x ∈ Zn−1
3 and distinct y, z ∈ N(x), Uf

satisfies the following constraints:

1. Uf (x), Uf (y) and Uf (z) are not all equal.

2. If Uf (x) = X, then Uf (y) = A.

3. If Uf (x) = Y , then Uf (y) = B.

4. If Uf (x) = Z, then Uf (y) = C.

To construct our SAT instance, we create a variable vx,E for each x ∈ Zn−1
3 and E ∈

{A,B,C,X, Y, Z} that indicates if Uf (x) = E. We have the following formula for each

x ∈ Zn−1
3 .

Assignx(v) =
( ∨
E∈{A,B,C,X,Y,Z}

vx,E

)
∧
( ∧
E,F∈{A,B,C,X,Y,Z},E ̸=F

¬vx,E ∨ ¬vx,F
)
.
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For each x ∈ Zn−1
3 and distinct y, z ∈ N(x), the first constraint in Proposition 5.4.3 can

be represented by the CNF

NAEx,y,z(v) =
∧

E∈{A,B,C,X,Y,Z}
(¬vx,E ∨ ¬vy,E ∨ ¬vz,E).

The remaining constraints can be represented by

Disjx,y(v) = (¬vx,X ∨ vy,A) ∧ (¬vx,Y ∨ vy,B) ∧ (¬vx,Z ∨ vy,C).

Thus Uf corresponds to a satisfiable assignment to

∧
x∈Zn−1

3 ,y,z∈N(x),y ̸=z

Assignx(v) ∧NAEx,y,z(v) ∧Disjx,y(v).

Note that we do not try to minimize the size of the formula and there are redundant

clauses.

5.4.2 Examples of subsets with 6 and 18 extra points

With the help of a SAT solver, we found an induced degree 1 subset in Z5
3 of size α(H(5, 3))+6

and an induced degree 1 subset in Z6
3 of size α(H(6, 3)) + 18. We illustrate them below in

terms of Uf using A,B,C,X, Y, Z blocks. Note that each block with a value in {X, Y, Z}

(i.e., values in the the gray cells) contributes one additional point to the set. We say that

a subset of Zn
3 has m extra points if |U | − α(H(n, 3)) = m. For 1-saturated subsets the

number of extra points is precisely the number of X, Y, Z blocks.
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Example of 6 extra points in Z5
3.

X A A

A C B

A B C

A B C

B C A

C A B

A C B

C Z C

B C A

A B C

C A B

B C A

B Y B

A B C

C B A

C B A

B C A

A A X

A C B

B B Y

C A B

C B A

C A B

Z C C

B A C

A C B

C B A

Example of 18 extra points in Z6
3.

X A A

A C B

A B C

A B C

B C A

C A B

A C B

C Z C

B C A

A B C

C A B

B C A

B Y B

A B C

C B A

C B A

B C A

A A X

A C B

B B Y

C A B

C B A

C A B

Z C C

B A C

A C B

C B A

A B C

B A C

C C Z

B C A

Y B B

B A C

C A B

B C A

A B C

C A B

A X A

B A C

C B A

B A C

A C B

Z C C

C A B

C B A

B C A

C A B

A B C

A A X

B C A

C B A

C B A

A B C

B Y B
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A C B

C B A

B A C

C A B

B A C

A X A

B B Y

A C B

C A B

B C A

B A C

Y B B

A B C

C C Z

B A C

C A B

A B C

B C A

C Z C

A C B

B C A

B C A

A B C

C A B

A C B

X A A

A B C

Each 1-saturated induced subset U has a natural extension to higher dimensions that

preserves the number of extra points. This allows us to generate an example with 18 extra

points for all n ≥ 6.

Lemma 5.4.4. Let U ⊆ Zn
3 be a set corresponding to Uf : Zn−1

3 → {A,B,C,X, Y, Z}.

If U has induced degree 1 then there exists V ⊆ Zn+1
3 such that |V | − α(H(n + 1, 3)) =

|U | − α(H(n, 3)) and V has induced degree 1.

Proof. Define Vf : Zn
3 → {A,B,C,X, Y, Z} as follows. For each y ∈ Zn−1

3 ,

1. If Uf (y) = X then Vf (0, y) = X, Vf (1, y) = A, and Vf (2, y) = A.

2. If Uf (y) = Y then Vf (0, y) = Y , Vf (1, y) = B, and Vf (2, y) = B.

3. If Uf (y) = Z then Vf (0, y) = Z, Vf (1, y) = C, and Vf (2, y) = C.

4. If Uf (y) = A then Vf (0, y) = A, Vf (1, y) = C, and Vf (2, y) = B.
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5. If Uf (y) = B then Vf (0, y) = B, Vf (1, y) = A, and Vf (2, y) = C.

6. If Uf (y) = C then Vf (0, y) = C, Vf (1, y) = B, and Vf (2, y) = A.

It is straightforward to verify that Vf satisfies the constraints in Proposition 5.4.3 and hence

the corresponding subset V = ∪
x∈Zn−1

3
(Vf (x)× {x}) has induced degree 1. Since |V | −

α(H(n + 1, 3)) = |{x ∈ Zn
3 : Vf (x) ∈ {X, Y, Z}}| and |{x ∈ Zn

3 : Vf (x) ∈ {X, Y, Z}}| =

|{x ∈ Zn−1
3 : Uf (x) ∈ {X, Y, Z}}| by construction, the result follows.

Corollary 5.4.5. For all n ≥ 6, there exists U ⊆ Zn
3 such that U has induced degree 1 and

|U | = α(H(n, 3)) + 18.

Note that our example of 6 extra points contains a subset that is isomorphic to the

extremal set X4 in Z4
3, i.e., it is an extension to X4. Similarly, the example of 18 extra points

is an extension to the example of 6 extra points. However, the SAT solver determined that

there is no 1-saturated subset in Z7
3 with induced degree 1 and size greater than α(H(n, 7))+

18 which extends our 18 extra points example in Z6
3.

5.5 Size upper bound

As induced degree is non-increasing under restriction, the extremal subset of Z4
3 we presented

in the previous section implies an upper bound of 6 and 18 extra points for Z5
3 and Z6

3.

Hence both examples we showed are the largest possible in the corresponding dimensions.

Moreover, since the extremal subset of Z4
3 is unique up to isomorphism and it is i-saturated

for all i ∈ [4], we have

Proposition 5.5.1. For n ∈ [6], if U ⊆ Zn
3 has induced degree 1 and has the maximum size,

then U is i-saturated for some i ∈ [n].

In this section we prove the following.
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Theorem 5.5.2. Let U ⊆ Zn
3 . If U has induced degree 1 and U is 1-saturated, then |U | ≤

3n−1 + 729.

Recall that 1-saturated subsets with induced degree 1 can be identified as functions

Uf : Zn−1
3 → {A,B,C,X, Y, Z}. We will use the function representation extensively in this

section. In order to simplify the notation, we will consider functions with domain Zn
3 instead

of Zn−1
3 and note that these functions correspond to subsets of Zn+1

3 .

All subsets of Zn
3 we consider in this section are 1-saturated and it will be convenient to

extend our definitions for subsets to their corresponding functions.

Definition 5.5.3 (Canonical functions). We say that a function Uf : Zn
3 → {A,B,C,X, Y, Z}

is canonical if the corresponding subset is canonical.

Definition 5.5.4 (Induced degree). The induced degree of a function Uf : Zn
3 → {A,B,C,X, Y, Z}

is defined as the maximum degree of the subgraph induced by U where U is the corresponding

subset of Uf .

Definition 5.5.5. We say that that two functions Uf , Vf : Zn
3 → {A,B,C,X, Y, Z} are

isomorphic if their corresponding subsets are isomorphic, i.e., there exists σ ∈ Aut(H(n, 3))

such that σ(U) = V where U, V are the corresponding subsets of Uf and Vf .

5.5.1 The proof strategy

The main observation is that if Uf has induced degree 1 and Uf (x) ∈ {X, Y, Z}, then not

only does it determine the values of Uf (y) for all y ∈ N(x), it also imposes a strong restriction

on what the values can be on Uf (z) for z where dH(x, z) = 2. Specifically, we will show that

for n ≥ 8, if Uf has induced degree 1 and Uf (x) ∈ {X, Y, Z}, then for all i ∈ [n] there exists

j ∈ [n] \ {i} such that either

Uf (x+ ej) = Uf (x+ 2ej),
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Uf (x+ ei + ej) = Uf (x+ ei + 2ej),

Uf (x+ 2ei + ej) = Uf (x+ 2ei + 2ej).

or

Uf (x+ ei) = Uf (x+ 2ei),

Uf (x+ ej + ei) = Uf (x+ ej + 2ei),

Uf (x+ 2ej + ei) = Uf (x+ 2ej + 2ei).

For illustration, suppose Uf (x) = X and let i ∈ [n], then there must be a different

direction j ∈ [n] \ {i} such that the function looks like one of the following:

i→

j ↓

X A A

A E F

A E F

· · ·

...

or

i→

j ↓

X A A

A E E

A F F

· · ·

...

where E,F ∈ {B,C} and E ̸= F . In either case, we find a canonical set containing x. Then

we show that it is possible to find a much larger canonical set by choosing different directions

i. Specifically, we will show that there exists a d-dimensional canonical set containing x

where d ≥ n− 6. By constructing a large canonical set containing each x for which Uf (x) ∈

{X, Y, Z} and showing that canonical sets containing different x are disjoint, we conclude

that |{x ∈ Zn
3 : Uf (x) ∈ {X, Y, Z}}| ≤ 36. Since the size of U is precisely 3n + |{x ∈ Zn

3 :

Uf (x) ∈ {X, Y, Z}}|, the theorem follows.
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5.5.2 The line extension lemma

The first step of our proof is the following lemma.

Lemma 5.5.6 (Line extension lemma). Let n ≥ 8 and Uf : Zn
3 → {A,B,C,X, Y, Z}. If Uf

has induced degree 1 and Uf (0) = X, then for all i ∈ [n] there exists j ∈ [n] \ {i} such that

the restriction of Uf on Span(ei, ej) is canonical.

Remark. Using a SAT solver, it can be shown that n ≥ 6 is sufficient for Lemma 5.5.6.

Definition 5.5.7 (i-skew functions). We say that a function Uf : Zn
3 → {A,B,C,X, Y, Z}

is i-skew if Uf satisfies the following:

1. Uf has induced degree 1.

2. Uf (0) = X.

3. For all j ∈ [n] \ {i}, the restriction of Uf on Span(ei, ej) is not canonical.

In other words, Lemma 5.5.6 asserts that if a function is i-skew for some i ∈ [n], then

n ≤ 7. We will give a complete characterization for 1-skew functions for n = 2, 3 and use

that to prove a property for them for n = 4 which is sufficient for proving Lemma 5.5.6.

n = 2

Let Uf : Z2
3 → {A,B,C,X, Y, Z} and R = {(1, 1), (1, 2), (2, 1), (2, 2)}. If Uf has induced

degree 1 and Uf (0, 0) = X, then it is clear that A /∈ Uf (R) since otherwise Uf will have

induced degree at least 2, Similarly, {X, Y, Z} ∩Uf (R) = ϕ since X, Y and Z intersect with

each other and each of them will force the neighbors to be their complements. Since any

three elements in R form a path of length 2, we cannot have three B or three C on those

locations. It follows there are exactly two B and exactly two C on R. If the B are adjacent

then it is disjoint from a maximum size independent set and hence is canonical. Thus, the

only 1-skew function is isomorphic to the following:
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X A A

A B C

A C B

(5.1)

The stabilizing actions for this function are generated by (i) swapping the 2nd and 3rd

rows and then swapping B and C; (ii) swapping the 2nd and 3rd columns and then swapping

B and C; and (iii) swapping the row and column coordinates.

n = 3

Definition 5.5.8. Let n > m. We say that a function Uf : Zn
3 → {A,B,C,X, Y, Z} extends

a function Vf : Zm
3 → {A,B,C,X, Y, Z} if there exists a function Wf that is isomorphic to

Uf and Wf (x× 0m−n) = Vf (x) for all x ∈ Zm
3 .

We now show that up to isomorphism, there are precisely three 1-skew functions for

n = 3. We list the 14 distinct 1-skew functions for n = 3 which extend (5.1) and have the

first row of the second block equal to (A,B,C) in Section 5.5.5.

Theorem 5.5.9. For n = 3, there are 28 1-skew functions extending (5.1). Each of them is

isomorphic to one of the following:

(a)

X A A

A B C

A C B

A B C

B C A

C A B

A C B

B A C

C B A

(5.2)

with stabilizing actions generated by swapping the 2nd and 3rd rows, swapping the 2nd

and 3rd blocks, and then swapping B and C.
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(b)

X A A

A B C

A C B

A B C

B C A

C A B

A C B

C B A

B A C

(5.3)

with stabilizing actions generated by (i) swapping the row and column coordinates; and

(ii) swapping the 2nd and 3rd rows, swapping the 2nd and 3rd columns, and then

swapping the 2nd and 3rd blocks.

(c)

X A A

A B C

A C B

A B C

B C A

C A B

A C B

C A B

B B E

(5.4)

where E ∈ {A,C, Y }. The stabilizing actions are generated by (i) swapping the row

and column coordinates; and (ii) swapping the row and block coordinates.

Proof. Since the restriction of Uf on Span(e1, e2) is not canonical, by swapping B and

C if necessary we can assume the restriction of Uf on Span(e1, e2) is identical to (5.1).

Furthermore, by swapping the second and third block, we can assume the function is of the

following form. Note that it also reduces the number of extensions by half. We consider the

following partial function for which the values of the empty entries will be determined later.

X A A

A B C

A C B

A B C A C B

We now consider all the possible values for the entries in the first column of the middle

and last blocks which do not immediately create a vertex of degree at least 2. More precisely,

let S = {(0, 1, 1), (0, 1, 2), (0, 2, 1), (0, 2, 2)} be the set of coordinates of these entries. Then

Uf (x) ∈ {B,C} for all x ∈ S, and exactly two of them are equal to B or otherwise Uf will
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have induced degree 2.

• Case 1: adjacent B in S. If Uf (0, 1, 1) = Uf (0, 1, 2) = B (the (0, 1) entries of the

middle and third blocks), then the entries below them must be equal to C. This allows

us to fill the remaining entries as follows. The subscripts in the table below indicate

the order in which they are deduced.

X A A

A B C

A C B

A B C

B C7 A1

C A5 B3

A C B

B A6 C4

C B8 A2

.

If the adjacent B are in the first column of the middle block, i.e., Uf (0, 1, 1) =

Uf (0, 2, 1) = B, then the two entries in the first column of the last block must be

equal to C. By swapping the row coordinate with the block coordinate, it can be

reduced to the case above and hence the remaining entries will be uniquely identified.

The result is as follows.

X A A

A B C

A C B

A B C

B C A

B A C

A C B

C A B

C B A

.

Similarly, we can uniquely deduce the functions for the remaining two cases and they

are both isomorphic to one of the functions above.

X A A

A B C

A C B

A B C

C A B

B C A

A C B

C B A

B A C

.
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and
X A A

A B C

A C B

A B C

C A B

C B A

A C B

B C A

B A C

.

By swapping the 2nd and 3rd block, we have 8 1-skew functions in total and each of

them is isomorphic to (5.2).

• Case 2: no adjacent B in S.

There are two cases for which there are no adjacent B in the first column of the middle

and last block. These two cases are isomorphic by swapping the 2nd and 3rd columns

and then swapping B and C. So it suffices to consider the case that the (0, 1) entry in

the middle block is B.

Consider the 6-cycle consisting of the cells in gray.

X A A

A B C

A C B

A B C

B

C

A C B

C

B

.

None of these entries can be C. They also cannot be in {X, Y, Z} and hence they are

either A or B. However, there cannot be a pair of adjacent B in this cycle or otherwise

the induced degree will be at least 2. It follows that this 6-cycle must either contain a

pair of adjacent As, or it consists of alternating A and B.

– Adjacent A in the 6-cycle.

The values of all entries will be determined by where we place the adjacent A and
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there are three possibilities. Suppose the adjacent A are at the (1, 2) entry of the

middle and last block. Then the function will be as follows:

X A A

A B C

A C B

A B C

B A

C A B

A C B

C B A

B A

,

which further implies the remaining entries must be C:

X A A

A B C

A C B

A B C

B C A

C A B

A C B

C B A

B A C

.

If the adjacent A are in the last column of the middle block, then it is isomorphic

to the case above by swapping the row and block coordinates. Moreover, it is

also isomorphic to the case that the adjacent A are in the last row of the middle

block by swapping the row and column coordinates. Thus, all three cases are

isomorphic to each other.

We have another three different 1-skew functions if the (0, 1) entry in the mid-

dle block is C by the same logic. By swapping the 2nd and 3rd blocks we have a

total of 12 1-skew functions extending (5.1) and all of them are isomorphic to (5.3).

– No adjacent A in the 6-cycle. It remains to consider the case for which the A

and B in the 6-cycle are alternating. Suppose the (2, 1) entry in the middle block

is A, then we have the following partial function:
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X A A

A B C

A C B

A B C

B A

C A B

A C B

C A B

B B

.

The empty entry of the middle block must be C but the empty entry of the last

block can be A,C or Y . So we must have

X A A

A B C

A C B

A B C

B C A

C A B

A C B

C A B

B B E

where E ∈ {A,C, Y }, which is precisely (5.4).

The other function is the following, which is isomorphic to the function above by

swapping both the 2nd and 3rd rows, columns and then blocks.

X A A

A B C

A C B

A B C

B E B

C B A

A C B

C B A

B A C

.

There are 2 ways to place the A and B alternatively in the 6-cycle. Similar to the

case of adjacent A, the rest of the functions can be generated by (i) swapping the

2nd and 3rd columns and then swapping B and C (note that swapping B and C

also swaps Y and Z) and (ii) swapping the 2nd and 3rd blocks. In total there are

8 1-skew functions with alternating A in the corresponding 6-cycle which extend

(5.1) and all of them are isomorphic to (5.4)
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n = 4

In this case, there are a lot more 1-skew functions and we will not give a complete list of

them. Instead, we prove the following lemma, which is sufficient for proving Lemma 5.5.6.

Lemma 5.5.10. Let Uf : Z4
3 → {A,B,C,X, Y, Z}. If Uf (x1, x2, x3, 0) is identical to (5.2)

or (5.3), and Uf (x1, x2, 0, x4) is isomorphic to (5.2) or (5.3). Then Uf has induced degree

at least 2.

The proof involves analyzing the 1-skew functions for n = 3 and it is presented in a

separate section. The following corollary is what we need.

Corollary 5.5.11. Let Uf : Z4
3 → {A,B,C,X, Y, Z} be a 1-skew function. Then Uf is an

extension of (5.4).

5.5.3 Proof of Lemma 5.5.6

We now prove Lemma 5.5.6 which says that if Uf : Zn
3 → {A,B,C,X, Y, Z} is a 1-skew

function then n ≤ 7.

Suppose for contradiction there exists a 1-skew function Uf for n ≥ 8. Since there exists a

restriction of a 1-skew function that is also 1-skew, we can assume n = 8. For i = 3, 4, . . . , 8,

let Hi = {x ∈ Z8
3 : xk = 0 ∀k ∈ [8] \ {1, 2, i}}. We claim that there are at least 5 His

for which the restriction of Uf on Hi is isomorphic to (5.4). Suppose not, then there are

Hi ̸= Hj such that both the restrictions of Uf on them are not isomorphic to (5.4). However,

by Lemma 5.5.10, this implies that Uf has induced degree 2, contradicting the assumption

that it has induced degree 1.

Now, let R = {(1, 1), (1, 2), (2, 1), (2, 2)} × 06. Since for each i such that the restriction

of Uf on Hi is isomorphic to (5.4), there exist a x ∈ R and a neighbor y ∈ Hi of x such

that Uf (x) = Uf (y), by the pigeonhole principle there is a x ∈ R and distinct neighbors y, y′
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of x such that Uf (x) = Uf (y) = Uf (y
′), contradicting the assumption that Uf has induced

degree 1.

5.5.4 Growing the canonical set

We now use Lemma 5.5.6 to prove that for n ≥ 8, if Uf : Zn
3 → {A,B,C,X, Y, Z} has

induced degree 1 and Uf (0) = X, then there exists n′ ≥ n− 6 such that Uf is an extension

of a canonical function on Zn′
3 .

By restricting Uf on an affine subset, the following is immediate.

Corollary 5.5.12. Let Uf : Zn
3 → {A,B,C,X, Y, Z} with induced degree 1 and Uf (0) = X.

Let I = {i1, . . . , id} ⊆ [n]. If n− d ≥ 7, then for each i ∈ I, there exists j /∈ I such that the

restriction of Uf on Span(ei, ej) is canonical.

Proof. Without loss of generality, let i = i1 and H = {x ∈ Zn
3 : xi2 = xi3 = · · · = xid = 0}.

The dimension of H is n− d+ 1 ≥ 8. Since 0 ∈ H and the induced degree is non-increasing

under restriction, by Lemma 5.5.6 there exists j ∈ [n] \ I such that the restriction of Uf on

Span(ei, ej) is canonical, as desired.

Theorem 5.5.13. Let n ≥ 8 and Uf : Zn
3 → {A,B,C,X, Y, Z}. If Uf has induced degree 1

and Uf (0) = X, then there exists I ⊆ [n] such that |I| ≥ n− 6 and the restriction of Uf on

H = {x ∈ Zn
3 : xi = 0 ∀i /∈ I} is canonical.

The following lemma will be useful.

Lemma 5.5.14. Let Uf : Zn
3 → {A,B,C,X, Y, Z} with induced degree 1. If there exists

i ∈ [n] and an affine subset H such that the restriction of Uf on H is an independent set I

and Uf (x) = Uf (x+ ei) for all x ∈ H, then

1. If there exists x ∈ H such that Uf (x + ej) = Uf (x + ej + ei), then the restriction of

Uf on H + ej is an independent set disjoint from I and Uf (y) = Uf (y + ei) for all

y ∈ H + ej.
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2. If there exists x ∈ H such that Uf (x+ ej) = Uf (x+2ej), then the restriction of Uf on

H+ej is an independent set disjoint from I and Uf (y) = Uf (y+ej) for all y ∈ H+ej.

Proof. We only present the proof of item 1, the proof of item 2 is similar and is omitted.

Suppose H contains directions i1, . . . , id. Let Km = Span(ei1 , . . . , eim) + x + ej . We

show that Uf (y) = Uf (y + ei) for all y ∈ Km and m ∈ [d] by induction on m.

The base case m = 0 is trivial since K0 = {x+ ej}, y = x+ ej and hence Uf (x+ ej) =

Uf (x + ej + ei) by the assumption. Suppose Uf (y) = Uf (y + ei) for all y ∈ Kk. Consider

y ∈ Kk+1. If y ∈ Kk, we are done. Otherwise, either y + ek+1 ∈ Kk or y + 2ek+1 ∈ Kk.

Suppose y + ek+1 ∈ Kk (the case of y + 2ek+1 ∈ Kk is similar), then by the inductive

hypothesis, we have Uf (y + ek+1) = Uf (y + ek+1 + ei). Since Uf has induced degree 1,

Uf (y), Uf (y + 2ek+1) ̸= Uf (y + ek+1). We have the following two cases:

1. If Uf (y + ek+1) ̸= Uf (y − ej), then Uf (y) ∈ {A,B,C} \ {Uf (y + ek+1), Uf (y − ej)}

since y − ej ∈ H and Uf (y − ej) = Uf (y − ej + ei). It follows that Uf (y + ei) ∈

{A,B,C}\{Uf (y+ek+1+ei), Uf (y−ej+ei)} = {A,B,C}\{Uf (y+ek+1), Uf (y−ej)}.

So Uf (y) = Uf (y + ei), as desired.

2. If Uf (y+ek+1) = Uf (y−ej), then Uf (y+ek+1) ̸= Uf (y+2ek+1−ej). By the same logic

as case 1, Uf (y+2ek+1) = Uf (y+2ek+1+ei) which further implies Uf (y) = Uf (y+ei).

We illustrate this lemma and its proof below. This lemma asserts that if there are two

identical independent sets which are adjacent to each other in direction i then if we consider

the neighboring affine subsets in direction j, if there is a pair of identical elements in these

neighboring affine subsets which are adjacent in direction i or j then this determines all of

the entries of these neighboring affine subsets. Moreover, it forces these affine subsets to be

identical independent sets which are adjacent in the same direction as the pair of identical

elements.
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In the figures below, the top two blocks are the two identical independent sets which

are adjacent in direction i. In the figure on the left, the pair of B in the first row of the

middle blocks are an identical pair of elements which are adjacent in direction i. This pair

determines the values in all of the gray cells and makes these affine subsets into identical

independent sets which are adjacent in direction i. In the figure on the right, the pair of B

in the first column of the middle left and bottom left blocks are an identical pair of elements

which are adjacent in direction j. This pair determines the values in all of the gray cells and

makes these affine subsets into identical independent sets which are adjacent in direction j.

i−→

· · ·

A B C

B C A

C A B

A B C

B C A

C A B

· · ·

B C A

C A B

A B C

B C A

C A B

A B C

· · ·

C A B

A B C

B C A

C A B

A B C

B C A

or

i−→

· · ·

A B C

B C A

C A B

A B C

B C A

C A B

· · ·

B C A

C A B

A B C

C A B

A B C

B C A

· · ·

B C A

C A B

A B C

C A B

A B C

B C A

Proof of Theorem 5.5.13. We proceed by induction on n. For n = 8, Lemma 5.5.6 asserts

that there exists i ̸= j such that Uf is canonical on Span(ei, ej).

Suppose the claim is true for functions on Zk
3 for some k ≥ 8. Let Uf be a function on

Zk+1
3 that satisfies the assumption. Since the restriction of Uf on {x ∈ Zk+1

3 : xk+1 = 0}}
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is a function on Zk
3 and it also satisfies the assumption of the theorem. By the inductive

hypothesis, there exists I = {i1, . . . , id} ⊆ [k] such that d ≥ k − 6 and the restriction of

Uf (x1, . . . , xk, 0) on H = {x ∈ Zk
3 : xi = 0 ∀i /∈ I} is canonical. If d > k − 6, we are done.

However, if d = k − 6, then k + 1 − d = 7. Thus, by Corollary 5.5.12 for each i ∈ I, there

exists j /∈ I such that the restriction of Uf on Span(ei, ej) is canonical. Let i be the popular

direction of the restriction of Uf on H, and j be the direction asserted by Corollary 5.5.12.

We claim that Uf is canonical on H ′ = {x ∈ Zk+1
3 : xi = 0 ∀i /∈ I ′} where I ′ = I ∪ {j}.

Let H ′
a,b = H ′ ∩ {x ∈ Zk+1

3 : xi = a, xj = b} where a, b ∈ {0, 1, 2}. Since Uf is canonical

on Span(ei, ej), we have either

Uf (ei + ej) = Uf (ei + 2ej),

Uf (2ei + ej) = Uf (2ei + 2ej).

or

Uf (ej + ei) = Uf (ej + 2ei),

Uf (2ej + ei) = Uf (2ej + 2ei).

Suppose the former case holds. By Lemma 5.5.14, Uf on H ′
1,1 and H ′

1,2 are a pair of

identical independent sets. So U is isomorphic to the following on H ′:

i→

j ↓

Dk−1 Ak−1 Ak−1

E Bk−1 Ck−1

F Bk−1 Ck−1

where Bk−1 and Ck−1 are distinct independent sets of size 3k−2. Since U has induced degree
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1 and it is 1-saturated, E and F must be disjoint from both Bk−1 and Ck−1 and have size

at least 3k−2. It implies that E = F = Ak−1. Thus U is canonical on H ′.

For the latter case, by Lemma 5.5.14, the restriction of U on H ′ is isomorphic to the

following:
i→

j ↓

Dk−1 Ak−1 Ak−1

E Bk−1 Bk−1

F Ck−1 Ck−1

By Proposition 5.3.7, E,F ∈ {Ak−1, A
′
k−1}. Since E and F are disjoint from Bk−1 and

Ck−1 respectively, E = Ak−1 and F = Ak−1. Thus Uf is canonical on H ′ and the proof is

completed.

Lemma 5.5.15. Let Uf : Zn
3 → {A,B,C,X, Y, Z}. If Uf has induced degree 1, and there

exist x ̸= y such that Uf (x), Uf (y) ∈ {X, Y, Z}. Let Hx and Hy be affine subsets which

contain x and y respectively and the restrictions of Uf on them are canonical, then Hx∩Hy =

ϕ.

Proof. Suppose for contradiction Hx ∩Hy ̸= ϕ. By Lemma 5.3.15, the restrictions of Uf on

Hx and Hy have the same extra point. However, there can be exactly one extra point in a

canonical set, hence x = y, contradicting our assumption.

Proof of Theorem 5.5.2. By translating each x such that Uf (x) ∈ {X, Y, Z} to 0n and The-

orem 5.5.13, there exists an affine subset Hx of dimension at least n − 6 on which Uf is

canonical. The size of U is precisely 3n plus the number of such affine subsets. By Lemma

5.5.15, these Hxs are disjoint and hence there are at most 36 of them.

Remark. It can be shown by using a SAT solver that it sufficient to have n ≥ 6 in Lemma

5.5.6. Using this, the result in Theorem 5.5.13 can be improved which can reduce the final

bound from 3n−1 + 36 to 3n−1 + 34.
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5.5.5 1-skew functions for n = 3 and a proof of Lemma 5.5.10

We list all 1-skew functions for n = 3 which extend (5.1) and have the first row of the second

block equal to (A,B,C).

Isomorphic to (5.2):

(i)

X A A

A B C

A C B

A B C

B C A

C A B

A C B

B A C

C B A

.

(ii)

X A A

A B C

A C B

A B C

B C A

B A C

A C B

C A B

C B A

.

(iii)

X A A

A B C

A C B

A B C

C A B

B C A

A C B

C B A

B A C

.

(iv)

X A A

A B C

A C B

A B C

C A B

C B A

A C B

B C A

B A C

.

Isomorphic to (5.3):
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(v)

X A A

A B C

A C B

A B C

B C A

C A B

A C B

C B A

B A C

.

(vi)

X A A

A B C

A C B

A B C

B C B

C A A

A C B

C A A

B B C

.

(vii)

X A A

A B C

A C B

A B C

B C A

C B A

A C B

C A B

B A C

.

(viii)

X A A

A B C

A C B

A B C

C A B

B C A

A C B

B A C

C B A

.

(ix)

X A A

A B C

A C B

A B C

C C B

B A A

A C B

B A A

C B C

.

(x)

X A A

A B C

A C B

A B C

C A B

B A C

A C B

B C A

C B A

.

Isomorphic to (5.4):
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(xi)

X A A

A B C

A C B

A B C

B C A

C A B

A C B

C A B

B B E

where E ∈ {A,C, Y }.

(xii)

X A A

A B C

A C B

A B C

B E B

C B A

A C B

C B A

B A C

where E ∈ {A,C, Y }.

(xiii)

X A A

A B C

A C B

A B C

C A B

B C A

A C B

B C A

C F C

where F ∈ {A,B,Z}.

(xiv)

X A A

A B C

A C B

A B C

C C F

B A C

A C B

B A C

C B A

where F ∈ {A,B,Z}.

We are ready to prove Lemma 5.5.10. Recall that the statement is as follows:

Lemma 5.5.16. Let Uf : Z4
3 → {A,B,C,X, Y, Z}. If Uf (x1, x2, x3, 0) is identical to (5.2)

or (5.3), and Uf (x1, x2, 0, x4) is isomorphic to (5.2) or (5.3). Then Uf has induced degree

at least 2.
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Proof. We analyze the two major cases separately.

• Uf (x1, x2, x3, 0) is identical to (5.2).

We show that when Uf (x1, x2, 0, x4) is isomorphic to (5.2) or (5.3), Uf must have

induced degree at least 2. We consider the following partial function, where the entries

are to be determined.

X A A

A B C

A C B

A B C

B C A

C A B

A C B

B A C

C B A

A B C E E E E E E

A C B E E E E E E

Now the first column must be identical to one of the cases among (i) to (x) in Appendix

5.5.5. Each of case (i)-(iv) enjoys the same symmetry as (5.2). Thus we need to consider

them one by one.
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– Case (i). The B in the gray cells immediately cause Uf to have induced degree 2.

X A A

A B C

A C B

A B C

B C A

C A B

A C B

B A C

C B A

A B C

B C A

C A B

E E E E E E

A C B

B A C

C B A

E E E E E E

.

– Case (ii). The subscripts of the entries indicate the order in which they are
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deduced. The entries in the gray cells certify the induced degree is at least 2.

X A A

A B C

A C B

A0 B C

B0 C A

C0 A B

A0 C B0

B0 A C0

C0 B A0

A B C

B C A

B A C

E0 E E E0 E E0

A C B

C A B

C B A

E E E

A1

E E E

A2 C3

– Case (iii). The gray cell at (0, 2, 1, 1) cannot be A, B or C, otherwise Uf will have
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induced degree 2. But it cannot be X, Y, Z either.

X A A

A B C

A C B

A0 B C

B0 C A

C0 A B

A0 C B

B0 A C

C0 B A

A B C

C A B

B C A

E E E

A1

E E E

A2

A C B

C B A

B A C

E E E

A3

E E E

A4

– Case (iv). The entries with the same subscript are deduced at the same time

given the entries with smaller subscripts. There is no assignment to the gray cell
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will result in a 1-saturated function with induced degree 1.

X A A

A B C

A C B

A0 B0 C

B0 C0 A

C0 A0 B

A0 C B

B0 A C

C0 B A

A B C

C A B

C B A

C3 A4 E

A1 B6

B2 C5

C3 E E

A1

B2

A C B

B C A

B A C

B3 A4 E

C2 B5

A1

B3 E E

C2

A1

For case (v) to (x), the stabilizing action for (5.2) partitions them into three orbits

{(v), (viii)}, {(vi), (ix)} and {(vii), (x)}. So it suffices to consider case (v), (vi) and

(vii).

– Case (v). The three B in the gray cells immediately certify that the function has
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induced degree at least 2.

X A A

A B C

A C B

A B C

B C A

C A B

A C B

B A C

C B A

A B C

B C A

C A B

E E E E E E

A C B

C B A

B A C

E E E E E E

– Case (vi).

X A A

A B C

A C B

A0 B0 C0

B0 C0 A0

C0 A0 B0

A0 C0 B

B0 A0 C

C0 B0 A

A B C

B C B

C A A

E0 E0 E0 E0 E0 E

A C B

C A A

B B C

E E E

A1 C3 B5

E E E

A2 C4

80



– Case (vii).

X A A

A B C

A C B

A B C0

B C A0

C A B0

A C B0

B A C0

C B A0

A B C

B C A

C B A

E E B6

B5

C1

E E E

B7

A C B

C A B

B A C

E E A4

C3

A2

E E E0

• Uf (x1, x2, x3, 0) is identical to (5.3).

If Uf (x1, x2, 0, x4) is isomorphic to (5.2), then it is isomorphic to one of the cases we

have analyzed above by swapping the row and column indices of the blocks. So it

remains to consider the case that Uf (x1, x2, 0, x4) is isomorphic to (5.3).

If Uf (x1, x2, 0, x4) is isomorphic to (5.3), then it is identical to one of the functions

among (v) to (x) we listed above. We start with the following partial function, where
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E are the entries to be determined.

X A A

A B C

A C B

A B C

B C A

C A B

A C B

C B A

B A C

A B C E E E E E E

A C B E E E E E E

Recall that the stabilizing actions for (5.3) includes (a) swapping the row and column

coordinates, and (b) swapping 2nd and 3rd rows, columns and then blocks. These

actions together with the action of swapping the 2nd and 3rd blocks partition cases

(v) to (x) into four orbits: {(v)}, {(vi), (vii)}, {(viii)}, {(ix), (x)}. Thus it suffices to

analyze case (v), (vi), (viii) and (ix) respectively.

– Case (v). The three B in the gray cells certify the induced degree is at least 2
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immediately.

X A A

A B C

A C B

A B C

B C A

C A B

A C B

C B A

B A C

A B C

B C A

C A B

E E E E E E

A C B

C B A

B A C

E E E E E E

– Case (vi).

X A A

A B C

A C B

A B0 C

B C0 A

C A0 B

A C0 B

C B0 A

B A0 C

A B C

B C B

C A A

E E0 E E E0 E

A C B

C A A

B B C

E E E

C1

E E E

B3

C2
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– Case (viii).

X A A

A B C

A C B

A B0 C0

B C0 A0

C A0 B0

A C0 B0

C B0 A0

B A0 C0

A B C

C A B

B C A

E E0 E

B2 C4

E E E

B1 C3

A C B

B A C

C B A

E E0 E0 E E0 E0

– Case (ix).

X A A

A B C

A C B

A B0 C0

B C0 A0

C A0 B0

A0 C0 B0

C0 B0 A0

B0 A0 C0

A B C

C C B

B A A

E E0 E0 E0 E0 E0

A C B

B A A

C B C

E

B3

C4 A1

C2

A6 B5 A7

In all cases Uf must have induced degree at least 2 and this completes the proof.
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CHAPTER 6

FUTURE DIRECTIONS

6.1 Further questions about H(n, 3)

We analyzed the maximum size of a subset U ⊆ Zn
3 which induces a subgraph with maximum

degree 1. We showed that if U is disjoint from a maximum size independent set then

|U | ≤ α(Zn
3 ) + 1 but U can be larger if U is not disjoint from a maximum size independent

set. In particular, for n ≥ 6, there exists such a U with size α(Zn
3 ) + 18 and this is optimal

when n = 6. We also showed that if U is i-saturated for any i ∈ [n] then |U | ≤ α(Zn
3 )+ 729.

The assumption of being i-saturated for some i was motivated by the fact that it is a

common property shared by all extremal subsets of Zn
3 for n ∈ [6] and works well with

SAT-solvers. We conjecture that similar results hold if we remove the assumption of being

i-saturatedfor some i ∈ [n] but this remains to be proven.

Conjecture 1. All induced degree 1 subsets of Zn
3 have size α(H(n, 3)) +O(1).

We can also ask what happens if we consider subsets of Zn
3 with larger induced degree.

Question 5. Given d, n ∈ N, what is the largest subset of Zn
3 with induced degree at most

d?

We observe that there is a nice construction which has at least 3⌊
(d−1)n

d ⌋ extra points.

That said, it is possible that there are larger constructions.

Lemma 6.1.1. For all d, n ∈ N, there is a subset U of Zn
3 with induced degree at most d

such that |U | ≥ 3n−1 + 3⌊
(d−1)n

d ⌋ and U is disjoint from a maximum size independent set of

H(n, 3).

Proof. We prove this lemma by induction. If n ≤ d, we can take U = Zn
3 \ An and we will

have that |U | = 3n−1 + 3n−1 ≥ 3n−1 + 3⌊
(d−1)n

d ⌋ and U is disjoint from An.
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If n > d then by the inductive hypothesis, there is a subset Un−d ⊆ Zn−d
3 of size at least

3n−1 + 3⌊
(d−1)n

d ⌋−(d−1) which is disjoint from An−d. We can now do the following:

1. Start with the independent set Ad.

2. Replace each of the 3d−1 points in Ad with a copy of Un−d and replace each point

which is not in Ad with a copy of An−d.

It is not hard to verify that this subset has size at least 3n−1+3⌊
(d−1)n

d ⌋ and is disjoint from

the independent set An.

We illustrate this construction for d = 2 below. When d = 2, we have that

U2 =

• •

• •

• •

and for k ≥ 1, U2(k+1) =

U2k A2k A2k

A2k A2k U2k

A2k U2k A2k

.

6.2 Other classes of graphs

Although the constructions in [LV20, GMK22] showed that for non-abelian Cayley graphs,

a large induced subgraph does not necessarily have large maximum degree. It would be an

interesting direction to identify a natural class of non-abelian Cayley graphs for which this

property holds. García-Marco and Knauer showed a promising direction for Cayley graph

over the Coxeter groups.

Another way to interpret Huang’s Theorem for Boolean hypercubes is that there is a

threshold for which the maximum degree exhibits a "jump" when the size of the subgraph

pass that threshold. Frankl and Kupavskii [FK20] and Chau et al. [CEFL23] studied the

maximum degree of induced subgraphs of Kneser graphs and showed that there is a "jump"

in minimum maximum degree when the size of the induced subgraph increases. This would

be an interesting direction to explore further.
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APPENDIX A

PARALLEL INDEPENDENT SETS LEMMA

By formulating the problem of finding 1-saturated subsets with induced degree 1 as a CNF

formula, we are able to use SAT solver to discover crucial properties about the solution. The

following lemma is one of the examples. Although we did not use this for any of our results

for H(n, 3), we find it to be interesting.

Lemma A.0.1. Let Uf : Z4
3 → {A,B,C,X, Y, Z}. If Uf has induced degree 1, Uf (0) =

Uf (e2), Uf (e1) = Uf (e1 + e2) and Uf (e3) = Uf (e1 + e3), then Uf (x) = Uf (x + e2) for all

x ∈ Zn
3 such that x3 = x2 = 0.

Roughly speaking, it asserts that a pair of parallel independent sets can be extended by

an additional match. To illustrate, if we have the following partial function:

A B C

A B C

C C E E E E

E E E E E E E E E

E E E E E E E E E

(A.1)

Then this function must be isomorphic to the following partial function, hence having a
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pair of larger independent sets in the first column:

A B C

A B C

C C E E E E

B C A

B C A

E E E E E E

C A B

C A B

E E E E E E

Notation and convention. In the proof, we will consider many cases in which we deduce

entries a certain order. For presentation purposes, we highlight the deduced entries in differ-

ent colors. Entries with the same color are deduced at the same time given the entries that

are already determined at that point. Entries in red are deduced first (also indicated by the

subscript 1), then followed by blue (with subscript 2), green (with subscript 3), orange (with

subscript 4) and finally yellow (with subscript 5).

Proof. We start with the partial function (A.1) and we want to show that for each block in

the left hyperplane, the first two rows must be equal.

• Cases where the first and second rows are not independent sets.

Up to symmetry, there are two cases where the first and second rows in the blocks of

the left hyperplane are not independent sets. The first case is as follows (here C does

not appear twice in the first or second row of the blocks of the left hyperplane):
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A B C

A B C

C C A E E E

C A A

B C B

E E E E E E

B C B

C A A

E E E E E E

It is straightforward to make the deductions shown in red, blue, green, and orange (in

that order) which gives a contradiction at the B in the gray cell:

A B C

A B C

C C A

B1 A1 B2

B1 A1 B2

C2 C2 A3

C A A

B C B

E0 B1 B4 E0 E0 C3

B C B

C A A

A1 E C2

B4 C3

E0 E0 E

B B4
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The second case is as follows:

A B C

A B C

C C E E E E

C C B

B A A

E E E E E E

B A A

C C B

E E E E E E

It is straightforward to make the deductions shown in red, blue, green, and orange (in

that order):

A B C

A B C

C C E

B1 A1

B1 A1 E

C2 C2

C C B

B A A

E E E

E0 E0

E E E

A4 B3

B A A

C C B

A2 B1 E

E E

E0 E0 E

E E
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where E ∈ {A,B}. It implies the gray cells must be C, i.e.,

A B C

A B C

C C E

B A

B A E

C C

C C B

B A A

E

C C

E

A B

B A A

C C B

A B E C C E

Then we can make the deductions shown in red, blue, green, orange, and yellow (in

that order):

A B C

A B C

C C B3

B A A2

E0 E0

B A A2

C C B3

E0 E0

C C B

B A A

B5 A4 A5

C C B1

A4 B3 C4

A B C4

B A A

C C B

A B C4

A4 B3 C4

C C B1

B5 A4 A5
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where the gray cells must all be B, which is a contradiction.

• Case where the first and second rows are independent sets. We now consider

the cases when the first and second rows of the blocks in the left hyperplane are all

independent sets. One such case is as follows:

A B C

A B C

C C E E E E

B C A

C A B

E E E E E E

B C A

C A B

E E E E E E

It is straightforward to make the deductions shown in red and blue (in that order)
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which gives a contradiction at the red and blue B in the gray cells:

A B C

A B C

C C E

B1 A1

B1 A1 E

C2 C2

B C A

C A B

A1 B2 E

B2

E0 E0 E

B C A

C A B

A1 B2 E

B2

E0 E0 E

The final case is as follows:

A B C

A B C

C C A E E E

B C A

C A B

E E E E E E

C A B

B C A

E E E E E E
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It is straightforward to make the deductions shown in red, blue, and green (in that

order).

A B C

A B C

C C A

B1 A1 B2

B1 A1 B2

C2 C2 A3

B C A

C A B

E0 E0 E0 E0 E0 E0

C A B

B C A

E0 E0 E0 E0 E0 E0

The gray cell is either A or C. Suppose it is C, then we have

A B C

A B C

C C A

B A B

E0 E0 E0

B A B

C C A

E0

B C A

C A B

E A4 E

C B1 A1

E0

E E E

A4

C A B

B C A

E A4 E

A1 B3 C2

E E E

A4
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where the A in the gray cells lead to a contradiction. Thus, this entry must be an A

and we have the following partial function, where the gray cell is either A or B:

A B C

A B C

C C A

B A B

B A B

C C A

B C A

C A B

E E E

A

E E E

C A B

B C A

E E E E E E

We claim that the gray cell must be B. Assume for contradiction it is A, then it is

straightforward to make the deductions shown in red, blue, and green (in that order)
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below, which leads to a contradiction at the gray cells.

A B C

A B C

C C A

B A B

E0 E0 E0

B A B

C C A

E0 E0 E0

B C A

C A B

A B1

A C1

E0

C1 E0 E0

B1

C A B

B C A

B1 A2 C3

C1 B3 A2

A2 C3

A2 B3

Thus, we must have the following partial function

A B C

A B C

C C A

B A B

B A B

C C A

B C A

C A B

B E E

A

E E E

C A B

B C A

E E E E E E
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However, we can now make the deductions shown in red, blue, green, and orange (in

that order), leading to a contradiction at the gray cells.

A B C

A B C

C C A

B A B

E0 E0 E0

B A B

C C A

B C A

C A B

B A1 C1

A A4

E0

E E E

C A B

B C A

A1 B2 C3

C2 A4

E E E
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