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2.7 A) shows the relative expected herbivory intensity for initial host and pathogen
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and low pathogen densities. Points and error bars show the credible intervals
of initial host and pathogen densities estimated from the PDE. B) shows the
observed defoliation severity (points) against the logistic regression predictions
from PDE herbivory H(τ). Each study population is shown as a different color.
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3.1 Summary of model projections. Upper panels show the non-evolutionary model
while the lower panels show the evolutionary model for the case in which the dis-
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corresponding to the same generations as the left hand panels. . . . . . . . . . . 47

3.2 The defoliation data and fit of our four competing models to the data. Left panel
shows a map of defoliation from 2000 to 2007. Habitable forest is shown in grey
while uninhabitable non-forest is shown in white. Dashed black line shows the
first order principal component which explains 87% of the variation over latitude
and longitude. Labels show the average wave front as white diamonds along PC1
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evolutionary model while the black line shows the limit of α, which is nearly
identical from the best-fit value of α in the evolutionary model. At around α =
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shows the marginal inverse SSE, a measure of goodness-of-fit, with respect to
α for the fat-tailed Laplace models when fit to the data. The model without
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3.4 Comparison of model projections to data behind the wave front. Upper panels
show the host population density and pathogen density over space for each survey
year from the best-fit model b = 0.2, γ = 0.05, ϕ = 15 and µ = 1 × 10−4. Red
points indicate the projected one dimensional location of defoliation data behind
the wave front. Middle panels show the total variation of infection risk Vn(x)

b .
Variation does not go to zero over time, instead fluctuating in a pattern similar
to the fluctuations of host and pathogen densities. Lower panels show the areas
predicted to have high host densities across a range of simulations. Red layers
show host densities that were greater than or equal to the 95th percentile within
each of 10 simulations that varied pathogen overwintering ϕ = 5, 10, 12, 15, or
25 and inter-generational pathogen survival probability γ = 0.05 or 0.1. The 1D
simulations are projected into 2D space as bands that move in one dimension
along PC1, shown as a dashed black line. Red points show observed defoliation
from 2000 to 2012. Habitable forest cover is shown in grey while uninhabitable,
non-forest cover is shown in white (source USFS). Additional parameters are the
best values for the thin-tailed Laplace dispersal kernel (Table 3.1). . . . . . . . 53
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cundity and higher infection risk to increase in frequency. As the pathogen wave
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birds-eye view of the same spatial simulation. Here, base reproduction r = 1.014,
thin-tailed Laplace dispersal parameter 1.73, overwintering ϕ = 5, pathogen sur-
vival γ = 0.05, and heritability b = 0.2. We use a spatial domain that is 2000 km
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3.6 Eco-evolutionary population dynamics with and without space. Left panels show
population cycles in the non-spatial eco-evolutionary model, which shows consis-
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origin of x = 0 in a spatial integrodifference simulation. Cycle amplitudes are
more variable in the spatial case and variation Vn(0) fluctuates. Both simula-
tions use base reproduction r = 1.014, overwintering ϕ = 5, pathogen survival
γ = 0.05, and heritability b = 0.2. The spatial simulation has a thin-tailed
Laplace dispersal with average travel distance 1.73 km. . . . . . . . . . . . . . . 55

B.1 Posterior estimates of overdispersion over time (ribbons) versus bootstrapped
smaple data (points). Temporal variance in oversdispersion seems to be important
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B.2 Each column represents our fitting routine proposals and posteriors for different
model constructions. Black points show the proposal distribution in PCA space
generated by our linesearch routine and red overlaid points in the top panels show
the MCMC posterior from these proposals. In the bottom panels, Red again is the
MCMC posterior, this time as a proposal distribution, and our second posterior
distribution from MCMC in PCA space is overlaid in blue. In most cases, the
second round of MCMC aided in convergence but did not qualitatively alter the
proposal distribution, except in the right-most panel of Model 12, the PDE with
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time of collection. Each column is a particular study site and, as columns in-
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meter increases. Rows show individual model constructions. . . . . . . . . . . . 86
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B.9 Regression models of defoliation extent where each line shows one of 124 draws
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ABSTRACT

Spatial structure influences ecological interactions but it is not well understood how ecological

interactions drive spatial patterns across scales of observation. We combined spatial models

at two scales to understand how spatial patterning results from host-pathogen interactions

in the Douglas-fir tussock moth, Orgyia pseudotsugata, and what the consequences of spatial

structure are for transmission rates and host heterogeneity. We first combine spatial infec-

tion rate data from multiple tussock moth populations with spatial transmission models to

understand how limited dispersal drives pathogen dynamics and informs the extent of insect

tree damage. We then assess how tree damage patterns observed at larger spatial scales can

be explained by eco-evolutionary dynamics over longer time frames. We found that locally,

patchy pathogen distributions generate hotspots of transmission that shape overall pathogen

dynamics and increase the severity of tree damage caused by Douglas-fir tussock moth larvae.

We observed that this spatial structure constitutes the majority of infection risk variation,

but that accounting for the heritable proportion of infection risk variation in eco-evolutionary

models was necessary to explain the accelerating waves of multiple interacting O. pseudotsug-

ata populations over larger spatial scales. Therefore, both small-scale diffusion between trees

and heritable host infection risk are important for determining the intensity and location

of insect outbreaks at meta-population scales. Our research, founded in model comparisons

that confront theory with data, represents a novel synthesis on Douglas-fir tussock moth

disease ecology at two spatial scales and provides insight into general host-pathogen theory

for understanding pathogen dynamics in nature.
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CHAPTER 1

OVERVIEW

1.1 Spatial ecology across scales

A simple assumption often made to predict population changes over time is to assume that

individuals mix perfectly and that spatial location is unimportant . It is nonetheless true

that organisms exist in spatial contexts. The rates at which individuals interact with each

other and the rates at which populations interact with each other are therefore not uniform

(Shigesada and Kawasaki [1997], Hanski and Simberloff [1997], Okubo and Levin [2001]).

Spatial ecology seeks to understand what level of detail is necessary to include in order to

better represent population dynamics (Levin [1992], Chave [2013], Elderd et al. [2022]).

The rate at which individuals interact can vary due to limited dispersal, which results

in the uneven distribution of individuals over space. Even though dispersal, a trait com-

prised of movement capacity and behavioral choices, is an action taken by individuals, it

can also be understood as a statistical process (Skellam [1951], Durrett and Levin [1994]).

For example, deterministic dispersal models like reaction-diffusion equations emerge from

treating the collective behavior of individuals within an infinite population that has den-

sity over space (Shigesada and Kawasaki [1997], Okubo and Levin [2001]). As individuals

move, their average dispersal is reflected at the population level, which can ultimately affect

the average population dynamics and fundamentally alter ecological processes (Durrett and

Levin [1994]). Further, unique to spatial models is the ability to explain range expansions

(Williamson [1996], Kot et al. [1996]). Range expansions can occur for invasive species or for

any species that has new access to environmental shifts or competition release that allows for

populations to spread (Williamson [1996], Melbourne and Hastings [2009], Erm and Phillips

[2020]). Even though these environmental or ecological factors open up available habitat

for population spread, ultimately range expansions stem form dispersal capacity and spatial
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structure (Shigesada and Kawasaki [1997]).

The uneven distribution of individuals over space can be due to solely limited disper-

sal, environmental differences that filter populations, or a combination of both (Hanski and

Ovaskainen [2000], Abbott and Dwyer [2008], Severns et al. [2019]). Often, whether environ-

ment or dispersal is more important for determining the spatial distribution of populations

depends on the scale of observation (Levin [1992], Real and Biek [2007]). At small spatial

scales without environmental differences, ecological interactions and limited dispersal can

lead to patchiness (Weiner and Conte [1981], Durrett and Levin [1994], Bolker and Pacala

[1997], Dumonteil et al. [2013]). For example, competing species can coexist more readily

in spatial models than in perfectly mixing models (Chesson [2000]). Space can also provide

refugia for prey when interacting with predators (Crowley [1981], Chesson and Murdoch

[1986]), more easily permitting the sustained cycles of predator-prey dynamics that other-

wise would lead to stable populations or extinction. Introducing space in these models thus

decreases the rate of interaction between different species and shifts the ecological dynamics,

even in the absence of environmental differences (Hanski [1994], Shigesada and Kawasaki

[1997]).

At larger scales, spatial patterns can be explained by a combination of both dispersal

and environmental factors (MacArthur [1972], Williamson [1996], Real and Biek [2007]).

For example, synchrony between neighboring population dynamics can be understood as a

result of correlations in their variable environments, but dispersal can strengthen such ef-

fects (Peltonen et al. [2002], Abbott and Dwyer [2008]). Just as higher interaction rates can

strengthen degrees of synchrony, alternating dynamics or wave-like patterns that are charac-

teristic of asynchronous populations can be explained using limited dispersal (Shigesada and

Kawasaki [1997]). Frequently, however, these explanations invoke non-linear ecological inter-

actions rather than environmental correlates to explain spatial patterning (Crowley [1981],

Chesson [2000], Bjørnstad et al. [2002], Severns et al. [2019]). For example, asynchronous

2



travelling waves can also occur at smaller scales, such as those that occur through the uneven

mixing of reaction-diffusion systems used to describe predator-prey interactions (Shigesada

and Kawasaki [1997], Okubo and Levin [2001], Sherratt [2001]). Therefore, it is known that

the degree of spatial structure in the environment and amongst populations can generate

synchrony or asynchrony, but syntheses across scales are rare.

Spatial patterns such as synchrony and travelling waves are commonly observed in nature

(Shigesada and Kawasaki [1997]), and with repetition comes some level of predictability

(MacArthur [1972]). It has therefore been the goal of spatial ecology to understand the

sources and consequences of spatial structure that drive these patterns and, crucially, to

determine the important levels of detail or scale of spatial observation to do so (Levin [1992],

Wilson et al. [2019]). Often, the effects of spatial structure at various scales differ and the

relevance of detail at each scale is case-specific (Chave [2013]). However, there is still a

need for general theory of how spatial scales interact. Identifying the relationship between

long-term, long-distance models and short-term, local models is necessary to determine how

large scale patterns emerge from small scale interactions (Levin [1992]).

1.2 Structure in host-pathogen interactions

Host-pathogen interactions present interesting systems in which to address the role of spatial

structure as they often show spatial patterning at large scales but depend on close individual-

to-individual interactions (Real and Biek [2007], Wilson et al. [2019], Severns et al. [2019]).

These systems possess population structure at various levels, such as host heterogeneity

of infection risk, pathogen variability, and spatial structure (Hudson et al. [2002], Grenfell

et al. [2004], Tack et al. [2012], Britton et al. [2020]). In diseases of wildlife and plants,

host ecology and host traits can be altered by pathogen presence in the absence of spatial

structure (Hudson et al. [2002], Wilson et al. [2019]). Pathogens have been shown to regulate

population cycles observed in much of the host population biology (May and Anderson [1979],
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Real and Biek [2007]). Thus, the ecological dynamics of hosts are fundamentally linked to

their pathogens.

The theory of host-pathogen interactions is widely used in public health (Viboud et al.

[2006], Cobey [2020]), agriculture (Severns et al. [2019]), wildlife management (White et al.

[2018]), and silviculture (Mihaljevic et al. [2020]). There is a general understanding of how

spatial structure can influence disease spread (Severns et al. [2019]), but the importance of

spatial structure amidst other types of population structure is still unclear (Wilson et al.

[2019]). Although to some extent the role of spatial structure has been explored in human

disease systems, the more limited dispersal of plants and animals has led to a larger focus

on spatial structure for wildlife disease (Severns et al. [2019]). Indeed, the idea of epidemic

thresholds that consider well-mixing populations are thought to be less relevant due to lower

levels of mixing and smaller populations in animal pathogens (Lloyd-Smith et al. [2005b]).

Further, the mechanisms that cause some areas to show up-regulated pathogen transmission

while other areas show low levels of transmission are difficult to disentangle (Brown et al.

[2013b], Tian et al. [2018], Mancy et al. [2022], Vazquez-Prokopec et al. [2023]. Multiple

modes of transmission and host heterogeneity can obscure the effects of spatial structure

(Breban et al. [2009]). This is especially when environmental variability is invoked both the

introduce spatial structure and alter transmission rates (Grenfell et al. [2001], Real and Biek

[2007], Brown et al. [2013b]). Therefore, it is important to understand the role of spatial

structure at multiple scales in the host-pathogen system of interest and to confront models

with data in order to compare models at each scale (Wilson et al. [2019]).

Importantly, pathogens place high selective pressure on hosts and their immune systems,

such that trait distributions shift during or after pathogen outbreaks (Dwyer et al. [2000],

Grenfell et al. [2004]). In humans, the co-evolution of immune response and pathogen strains

can be used to identify epidemiological dynamics (Gupta et al. [1998], Gog and Grenfell

[2002]). Animal host infection risks also vary across individuals, and pathogens may place
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stronger selective pressures on these host populations than in humans. As these evolutionary

processes occur over ecological times scales, the altered interaction rates in spatial contexts

can influence the traits of individuals (Dwyer et al. [2000], Grenfell et al. [2004]). However,

the degree to which eco-evolutionary processes influence the spatial patterning of disease is

unclear across scales (Wilson et al. [2019]).

1.3 The Douglas-fir tussock moth, Orgyia pseudotsugata, and its

baculovirus

Insects are ideal model systems to explore host-pathogen interactions (Cory and Myers [2003],

Elderd and Dwyer [2019]). Some of the first mechanistic transmission models were developed

to explain the forest insect outbreak cycles using host-pathogen theory and continue to inform

predictions of their population dynamics (May and Anderson [1979], Dwyer et al. [2000],

Myers and Cory [2013], Dwyer et al. [2022]). Many Lepidopterans (species of butterflies and

moths) are afflicted by pathogens that greatly alter population dynamics (Elderd and Dwyer

[2019]). For example, a generalist fungus Entomophaga maimaiga has been shown to greatly

reduce outbreaks of the invasive spongy moth, Lymantria dispar, since the introduction of

the fungus in North America (Smitley et al. [1995], Liu et al. [2023]). While parasitoids

and generalist predators have also been shown to be important for regulating Lepidopteran

populations (Chesson and Murdoch [1986], Dahlsten et al. [1977], Bjørnstad et al. [2002],

Dwyer et al. [2004], Hughes et al. [2015], a group of specialist viruses known as baculoviruses

have been shown to fundamentally drive eco-evolutionary dynamics in multiple species (Cory

and Myers [2003], Thézé et al. [2018].

Baculoviruses are a clade of specialists that are host-specific, evnironmentally-transmitted,

and obligate lethal pathogens of many Lepidopteran species (Cabodevilla et al. [2011], Thézé

et al. [2018]). The specific genus of baculoviruses that afflict Lepidopteran hosts are known as

nucleopolyhedroviruses (NPV). Although there is some evidence that NPV baculoviruses can
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infect multiple hosts, these are likely spillover events and transmission predominantly occurs

within a single Lepidopteran species (Cory and Myers [2003]). As they are environmentally-

transmitted, hosts are exposed to NPV particles, known as “occlusion bodies”, by consuming

contaminated material, either while emerging from contaminated eggs or while foraging on

plants (Myers and Cory [2015], Cabodevilla et al. [2011]). Larvae are thus the only stage

susceptible to the baculovirus infection, but pupae can also suffer NPV-induced mortality

after having fed on contaminated material as larvae (Cory and Myers [2003]). Occlusion

bodies are made of durable polyhedron protein shells that contain multiple virions, which

open inside the basic environment of the insect gut (Cabodevilla et al. [2011]). Larvae have

general innate immune response to baculoviruses, in which melanin globules bind foreign

bodies to prevent viral proliferation (Wu et al. [2016]). If occlusion bodies are not bound by

the innate immune system in the gut, however, virions enter insect cells to replicate within

the nuclei (Cabodevilla et al. [2011]). Once a critical mass of cells have replicated the bac-

ulovirus, the cells rupture to release occlusion bodies into the environment through the host

cadaver. Therefore acquired immunity does not occur if innate immunity is overwhelmed

(Cory and Myers [2003], Myers and Cory [2013]).

The Douglas-fir tussock moth, Orgyia pseudotsugata, is a moth native to the conifer

stands of western North America (Brookes et al. [1978]). Douglas-fir tussock moths reproduce

annually, undergoing diapause as eggs during the winter. Eggs typically hatch in late May,

with southern latitude populations hatching later and northern latitude populations hatching

earlier (Dennis et al. [1986], Shepherd et al. [1988]). Larvae emerge to sync up with flush

foliage presence on their preferred tree hosts: Douglas-firs (Pseudotsuga menziesii) and true

firs,Abies spp. (Beckwith [1976], Mason [1996]). From late July (males) to early August

(females), pupation occurs followed by adult emergence (Brookes et al. [1978]). As females

of the species are flightless, mating occurs when flying male moths follow pheromone cues

to encounter adult females (Mason et al. [1977]). Female moths then lay fertilized eggs onto
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their own pupal casings and die on top of the egg mass.

Because females are flightless, Douglas-fir tussock moth individuals can only disperse

as larvae. They do so through two mechanisms at two spatial scales. Larvae undergo long

distance dispersal prior to feeding, as they produce silken strands to increase buoyancy if they

do not quickly find foraging material (Mitchell [1979]). This behavior known as “ballooning”

occurs only once upon hatch before feeding. Ballooning can thus lead to the population

spread in a single generation, although the degree to which dispersal can shape population

movement is contested (Mitchell [1979], Shepherd et al. [1988]). Larvae then can disperse

between trees or amongst branches after ballooning, but this movement is greatly restricted

in comparison to the distances travelled after hatch.

Although tussock moth populations are frequently at undetectable densities, popula-

tions will periodically reach high, outbreaking densities (Mason [1970, 1996]). During high-

intensity insect outbreaks, in which insect densities are increased by several orders of mag-

nitude, larval herbivory can lead to extensive tree damage and, ultimately, tree mortality

(Shepherd et al. [1988], Alfaro and Shepherd [1991], Mason et al. [1997]). Therefore, tussock

moth populations are monitored as a target for pest management by the US Forest Service.

The baculovirus specializing on Douglas-fir tussock moth, OpNPV, is therefore both ob-

served by forest managers and used in integrated pest management strategies (Hughes and

Addison [1970], Williams and Otvos [2005]). As a bio-control agent, the NPV baculovirus

isolate known as Tussock Moth Bio-control 1 (TMB-1) is occasionally sprayed aerially on

outbreaking Douglas-fir tussock moth populations (Mihaljevic et al. [2020]). The efficacy

of TMB-1 and identifying the scenarios when it would be most useful, however, is still an

active area of research (in prep). This is particularly complicated by the issue of identifying

when and how quickly tussock moth populations would otherwise collapse due to natural

baculovirus outbreaks (Mason [1996]).

One factor that remains uncertain for identifying the course of Douglas-fir tussock moth
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epizootics, the epidemics of animals, is the role of spatial structure. Despite early work

on larval dispersal and baculovirus spread (Dwyer [1992]), no studies have attempted to

apply spatial models to tussock moth infection rate data in natural populations, nor have

any studies attempted to understand the spatial patterning of host populations at meta-

population scales using transmission models. It is well-understood that Douglas-fir tussock

moths possess population structure through variable infection risk across individual hosts,

but it is unknown how the infection risk distribution can be dissected into intrinsic infection

risk and spatially-structured interaction rates (Mihaljevic et al. [2020], Elderd and Dwyer

[2019], Dwyer et al. [2022]). Although investigated experimentally in other Lepidopterans

(Dwyer and Elkinton [1995], Parker et al. [2010]), this question has yet to be investigated

using spatial transmission models, leaving the role of spatial structure in host infection risk

heterogeneity unclear.

1.4 Chapter summaries and conclusions

In Chapter 2, we combined infection rate data over space with spatial transmission models

to understand the most important factors for predicting the spatial patterns of infection. We

generated a spatially referenced dataset of baculovirus infection rates in several populations

of Douglas-fir tussock moth and compared a suite of spatial disease models to explain our in-

fection data. The best model, a novel reaction-diffusion system accounting for host infection

risk heterogeneity, demonstrated that transmission hotspots emerge from the initial pathogen

distribution, but that host dispersal is required to understand the transition of low-intensity

transmission coldspots into late-season transmission hotspots. In addition to the indirect

observation of these bimodal sub-epizootics, we show that environmental stochasticity and

agent-based models provide no predictive performance gains over the deterministic reaction-

diffusion model with random initial conditions, challenging the contemporary emphasis on

stochastic modelling. Our new understanding of shifting transmission hotspots has impli-
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cations for the management of Douglas-fir tussock moth through the ability of our spatial

larval herbivory intensity projections to predict defoliation tree damage observed during the

study.

In Chapter 3, we developed eco-evolutionary host-pathogen models to understand the

spatial patterning of defoliation and the changes in host infection risk heterogeneity over time.

We built integrodifference models that generated accelerating waves due to either individuals

with exceptional long-distance dispersal or evolving host infection risk at the wave front. Our

eco-evolutionary models of host infection risk variation were able to better explain the spatial

distribution of outbreak density tussock moth populations than exceptional dispersal. We

found that such evolutionary models could reproduce defoliation patterns, even in the wake

of invasion. We also determined that intermediate heritability of infection risk variation

was sufficient and necessary to explain defoliation data behind the wave front. Importantly,

we demonstrate that dispersal between fluctuating, asynchronous populations contributes to

the maintenance of host infection risk variation under balancing selection. Our research thus

presents one of the first studies to track host trait variation during an accelerating wave in

a host-pathogen system.

We conclude that both heritable host heterogeneity and imperfect mixing at local scales

drives local defoliation severity and the spatial patterning of insect outbreaks at multiple

scales. Both small-scale diffusion between trees and long-distance dispersal over the land-

scape are important for determining both the intensity and location of insect outbreaks.

However, the importance of effects by individual hosts, either through exceptional long-

distance travel at meta-population scales or through stochastic transmission at local scales,

proved to be unnecessary detail for understanding the spatial patterns of tussock moth pop-

ulations. Our work, driven by model comparison and empirical data, thus represents a

synthesis of Douglas-fir tussock moth disease ecology at two spatial scales.
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CHAPTER 2

DATA AND THEORY SHOW THAT HOST DISPERSAL ALONE

MEDIATES SHIFTING TRANSMISSION HOTSPOTS

2.1 Introduction

The theory of host-pathogen interactions provides crucial tools for managing animal and

plant diseases, principally in the form of mathematical models that can be used to predict

or explain disease dynamics (Keeling and Rohani [2008], Mollison [1995]). A significant

branch of this work has demonstrated that spatial structure can play a pivotal role in shap-

ing pathogen spread (Durrett and Levin [1994], Peltonen et al. [2002], Murray et al. [1986],

Lalley [2009], Wood and Thomas [1996]). Theory has shown that spatial structure and lim-

ited dispersal similarly alter average pathogen dynamics in a variety of disease systems, with

consequences for the estimation of critical metrics such as the effective reproductive number

and pathogen persistence times (Tkachenko et al. [2021], Britton et al. [2011], Wood and

Thomas [1996]). Even in systems with high levels of mixing, such as directly transmissible

human diseases, the effects of spatial structure are often easily detectable (Grenfell et al.

[2001], O’Neill et al. [2000], Giles et al. [2020]). Spatial structure may thus be important for

understanding disease spread in general and particularly important for understanding the

environmentally transmitted pathogens of plants and animals, as hosts have more limited

mobility and heterogeneous environments strongly alter transmission rates (Dwyer and Elk-

inton [1995], Deeth and Deardon [2016], Bonnell et al. [2016]). However, direct applications

of spatial theory to disease spread in nature remain limited, and so the utility of spatial

epidemic theory for explaining disease data remains uncertain.

The study of spatial disease dynamics is constrained by the logistical challenges of collect-

ing spatial disease data. For example, both continuous and discrete spatial models predict

that epidemics will spread through travelling waves (Bjørnstad et al. [2002], Grenfell et al.
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[2001], Dwyer [1992]), but empirical evidence of these patterns requires the observation of

pathogen spread into unexposed populations. Such observations using temporal infection

rate data are rare, with notable exceptions such as the COVID-19 pandemic (Tkachenko

et al. [2021]), Dengue serotype replacements (Harish et al. [2024], Teoh et al. [2013], Vazquez-

Prokopec et al. [2023]), or novel chytrid invasions (Longo et al. [2023], Lips et al. [2006]).

Furthermore, endemic disease models predict that pathogen dynamics should at least some-

times show synchrony over space (Tian et al. [2018], Peltonen et al. [2002], Woods et al.

[1991], Boender et al. [2014]), but analyzing the extent of spatial synchrony in pathogen dy-

namics requires that infection data is collected at the same scales over which hosts disperse

(Deeth and Deardon [2016], Dwyer and Elkinton [1995]).

To provide a framework for identifying pathogen establishment and the extent of infection

rate synchrony over space, we collected a spatially referenced data set of pathogen dynamics

over time in an insect host-pathogen system. We estimated infection rates across space in

multiple populations of the Douglas-fir tussock moth, Orgyia pseudotsugata, each of which

were undergoing epizootics (the epidemics of animals) of a fatal, environmentally transmitted

baculovirus. Within each study population, we sampled larvae, the only life stage susceptible

to the baculovirus, and monitored their infection status at time of collection (Mason [1977],

Otvos et al. [1989]). As larvae readily move between branches but more rarely move between

trees, we expected that spatial structure at the tree scale would strongly affect baculovirus

dynamics (Mason [1977]). We therefore quantified infection rate variation over space by

recording the tree of origin for each larva.

Another obstacle to understanding disease data using spatial theory is the need for com-

putationally intensive methods with which to compare spatially explicit models with spatially

variable data (He et al. [2010], Lessler et al. [2017], Ensoy et al. [2013]). While non-spatial

models of pathogen transmission can often provide reasonable approximations to pathogen

dynamics (Keeling and Rohani [2008]), it remains unclear whether non-spatial models can
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explain spatially explicit data sets. Due to the computational challenges involved in the

quantitative comparison of spatial models to data, mechanistic, spatial disease models are

rarely used to analyze spatial data sets. Instead, differences between sub-population infection

rates are recorded and compared to environmental covariates using static, linear regression

models (Dowdy et al. [2012], Boender et al. [2014], Lessler et al. [2017]). This is particularly

true of the literature addressing the importance of areas with increased infection rates known

as transmission “hotspots”. Hotspots are widely invoked to explain the inherent variation

of pathogen dynamics and receive intense speculation for disease management, but estab-

lishing causation for their presence or absence is difficult with standard approaches (Lessler

et al. [2017], Brown et al. [2013b]). However, statistical regression analyses are increasingly

being supplemented by the use of high-performance computing, which allows for the param-

eterization and simulation of spatial transmission models that can provide deeper insights

into the mechanisms that drive epidemiological data (Touloupou et al. [2020], O’Neill et al.

[2000], Mancy et al. [2022], He et al. [2010], Bretó et al. [2009], Ensoy et al. [2013]). Here, we

took a mechanistic spatial modelling approach to understand the importance of transmission

hotspots in baculovirus dynamics.

We conducted a formal, quantitative assessment of the performance of multiple spatial

models, we built competing spatial models fitted to our spatial infection rate data. Each

of our models makes different assumptions about the importance of stochasticity, spatial

structure, and limited dispersal. In contrast with the abundance of non-spatial disease

models for forest insects (Peltonen et al. [2002], Bjørnstad et al. [2002], Dwyer et al. [2000]),

few studies have explored the effects of small-scale spatial dynamics in these systems (but

see Dwyer and Elkinton [1995], Dwyer [1992]). Most spatial studies of forest insects have

instead focused on large scales, assuming high levels of local mixing within continental-

scale meta-population models (Myers and Cory [2013], Peltonen et al. [2002]). Tracking

pathogen infection rates at the scale of individual trees allowed us to instead test whether
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spatial models that incorporate dispersal at the scale of daily larval movements are able to

reproduce the observed spatial variation in baculovirus infection rates.

Studies of pathogen dynamics have only recently begun to rigorously confront spatial

models with data (Mancy et al. [2022], Tian et al. [2018], Ensoy et al. [2013], Koeijer et al.

[2020], Boender et al. [2014]). Despite this progress, but infection rate data is rarely used to

compare stochastic spatial models to one another. Our work therefore represents what is, to

our knowledge, the first model comparison that quantifies the relative importance of spatial

structure and stochasticity on the dynamics of a host-pathogen system in nature. Moreover,

because the baculovirus is important for the control of Douglas-fir tussock moth outbreaks,

we aim to show how a general understanding of spatial disease spread can generate useful

models for controlling forest pest populations.

2.2 Methods

2.2.1 Data collection

The Douglas-fir tussock moth, Orgyia pseudotsugata, is a defoliator of western North Amer-

ican conifer stands. Frequently at undetectable densities, Douglas-fir tussock moth popula-

tions periodically rise to high densities that are easily detected and sampled. High density

tussock moth outbreaks are typically terminated by epizootics of specialist baculoviruses

that are host-specific, environmentally-transmitted, and obligately lethal. However, high

density populations can still persist after low-infection epizootics.

We identified seven Douglas-fir tussock moth populations undergoing outbreaks through

egg mass surveys and flight trap counts collected by ongoing surveillance projects of the US

Forest Service (figure 2.1). We selected our seven study populations based on the detectable

presence of adult Douglas-fir tussock moth males in the fall of 2019 (figure 2.1). All de-

tectable populations had some level of baculovirus presence, regardless of host population
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density. Pine 3 (PIN3) in Wallowa-Whitman National Forest, Oregon and Cracker Jack

Mine (CRKJ) in Payette National Forest, Idaho had similar mortality trends, despite a dis-

tance of approximately 30 km. Two sites in Frenchtown Face (FR01, FR12) in Lolo National

Forest, Mt. Jumbo (MTJM), and Barmeyer (BARM) also seemed to be a grouping of sim-

ilar trends, but these sites were far closer to each other in the Missoula, Montana area 2.3.

Chesaw (CHSW) in the Okanogan National Forest, Washington was a low-level outbreak

with limited mortality. We were unable to identify populations ahead of the larval season for

sampling unless males were detected in flight traps the preceding fall, which restricts the set

of dynamics that we can capture. However,this still allowed for the inclusion of the Chesaw

study population that was near the estimated host disease density threshold and we were

able to estimate the variable initial pathogen conditions that generated different temporal

dynamics for the higher density host sites.

Transmission begins at the start of the summer when hatching tussock moth larvae

consume egg mass material contaminated with baculovirus occlusion bodies. In our models,

we consider these exposed first instars to be the initial cadaver densities that instigate within-

season transmission. We sampled larvae in our seven study sites over the course of June to

August, which reflects the time period when larvae are present after hatch but have not yet

pupated or died during epizootic population collapse (figure 2.3). Larvae were collected by

using a beat sheet to expel larvae from branches at breast height in the mid crown of conifers

suitable for larval growth Mason [1977]. To avoid the effects of larval removal, we did not

necessarily sample the same trees over the course of our study, but all sampled trees in a

given study population were within a 10m radius of one another.

We selected trees at random within a 10 meter radius of one another to form a tree

cluster comprising a time point sample within a given study population. As we selected

these trees at random, sampling three branches from each tree, sometimes individual trees

yielded no insects. We continued sampling until finding three trees that possessed insects,
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Figure 2.1: Map of our seven study sites in USFS Regions 1 and 6. Defoliation of the previous
year is shown in green, denoting proximity to previous Douglas-fir tussock moth outbreaks.
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Figure 2.2: Reproduced figure from Brookes et al. [1978], showing the categorical defoliation
severity levels.

to a maximum of ten trees per tree cluster. We always sampled a minimum of three trees

per tree cluster for the time point sample of a given study population, collecting four time

points from each of our seven study populations in total.

Throughout our infection rate study, we collected categorical defoliation severity data

from each tree sampled for larvae, where the field team noted either 0%, 10%, 25%, 50%,

75%, or 90% following figure 2.2 (reproduced from Brookes et al. [1978]). the maximum

observed severity level on any given tree in our study was 75%.

2.2.2 Small-scale spatial transmission models

Our models made varying assumptions about host and pathogen mobility, spatial structure,

stochasticity, and host heterogeneity in susceptibility. These component mechanisms were

included in isolation and in combination so that we could identify the most important drivers

of pathogen dynamics in our spatial infection data.

We began with a non-spatial ordinary differential equation system (ODE) model as a

plausible null alternative model against which to test our spatial models. The non-spatial
16
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due to baculovirus epizootics shown as linear models.
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model is an SEIR model from human epidemiology (equations 2.1-2.4, Keeling and Rohani

[2008], Mihaljevic et al. [2020]).

dS

dt
= −ν̄SP

(
S(t)

S(0)

)C2

(2.1)

dE1

dt
= ν̄SP

(
S(t)

S(0)

)C2

−mδE1 (2.2)

dEi

dt
= mδEi−1 −mδEi i = 2, ...,m (2.3)

dP

dt
= mδEm − µP. (2.4)

Here, susceptible hosts S(t) that become infected move through a series of non-infectious

exposed classes E1..m(t) until dying and becoming infectious cadavers P (t), which contami-

nate foliage to transmit the baculovirus to feeding uninfected host larvae and then decay at

rate µ. As there is no acquired immunity in this system, and there is only one generation

per year, the density of susceptible hosts never increases. A key component of all our models

is that we allow susceptible hosts S(t) to vary in their infection risk. The mean infection

risk ν(t) at time t decreases over the epizootic because hosts with higher risk are removed

through infection sooner. The coefficient of variation C determines the shape of the infection

risk distribution, with higher values generating a more skewed distribution. Using a moment

closure approximation of the changing distribution of individual heterogeneity over time, we

assume that shape parameter C is constant (Appendix A).

The non-spatial model assumes that dispersal is sufficiently high such that spatial struc-

ture has no effect on pathogen dynamics. To instead allow for spatial structure, we began

with the opposing extreme case in which initial conditions varied over space, but disper-

sal was low enough to be neglected. The resulting model consists of multiple independent

ODEs that were arranged spatially but that were not connected by dispersal. For this model,

and for all of the spatial models, we initialized host and pathogen populations by assigning
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integer densities to each grid point according to a multinomial distribution. Because the

initial host and pathogen densities had equal probability over space, the models assume no

overdispersion at the outset of the epizootic.

To allow for a full consideration of spatial structure and host dispersal, we next con-

structed a version of the SEIR model in which larvae diffused between spatial locations. Be-

cause the mean infection risk ν(x, t) changes as a function of local host S(x, t) and pathogen

P (x, t) densities, larval dispersal can affect the spatial distribution of mean infection risk

ν(x, t) over time. We therefore derived a spatial reaction-diffusion model that accounted

for the effects of larval dispersal on mean infection risk using a spatial moment closure

approximation (Appendix A).

Previous work using the non-spatial form of the moment closure approximation showed

that the mean infection risk ν(t) decreases according to a convenient analytical solution

as a function of coefficient of variation C and the fraction of hosts S(t) surviving, ν(t) =

ν̄
(
S(t)
S(0)

)C2

(equation 2.1). In contrast, the effects of host movement in the reaction-diffusion

model are sufficiently complicated that the model instead requires a separate equation to

describe the changes in average infection risk ν(x, t) over space and time. Unusually, this

equation includes a cross-diffusion term, such that

∂S(x, t)

∂t
= −νSP +D

∂2S

∂x2
(2.5)

∂ν(x, t)

∂t
= −ν2C2P +

D

S

[
S
∂2ν

∂x2
+ 2

∂ν

∂x

∂S

∂x

]
. (2.6)

This model allows for non-zero, limited dispersal. The diffusion equations for exposed classes

are closely analogous to the equation 2.5 for the susceptible host class and are therefore not

shown here. The spatial models with dispersal have periodic boundaries that represent a

2-dimensional slice of the forest canopy. The 2D simulation more realistically reflects how
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we collected our data at breast height within each study population.

In addition to making different assumptions about the importance of host dispersal and

spatial structure, we also made different assumptions about sources of stochasticity. We first

allowed for environmental stochasticity, the random fluctuations that affect all individuals

in a population. To do this, we multiplied the transmission rate ν̄ by a coefficient exp ϵτ for

each day τ . The coefficients exp ϵτ were drawn from a log-normal distribution that had an

expectation of one and variance term σ. In an effort to describe the relationship between

average host and pathogen densities quantitatively, Mihaljevic et al., 2020 Mihaljevic et al.

[2020] developed a non-spatial, mechanistic transmission model that assumed infection rate

variation arose from sampling error and environmental stochasticity added to equations 2.1-

2.4, which we here use as our non-spatial null model.

To next allow for demographic stochasticity, the random events that befall individuals, we

constructed agent-based models that tracked individual life histories within the total popula-

tion. In contrast to the PDE models, which describe individual variation using a continuous

distribution, agent-based models are exact simulations of heterogeneous infection risk in a

discrete population. We therefore assigned individual hosts their own infection risk values.

Because infectious cadavers consist of a large number of infectious virion particles known

as “occlusion bodies”, we also included hybrid models that tracked susceptible and exposed

hosts as individuals but assumed infectious cadavers to be infinitely divisible densities rather

than countable individuals. For each model variant, we considered implementations with or

without environmental stochasticity.

We then fit the models using a Markov chain Monte Carlo Gibbs sampler (MCMC).

To maximize computational efficiency, we used iterative PCA-adjusted proposal distribu-

tions that accounted for posterior parameter correlations (Appendix B, Kennedy and Dwyer

[2018]). To compare the predictive ability of different models to explain our spatial infection

data, we used a statistical model comparison technique known as Pareto-smoothed impor-
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tance sampling leave-one-out cross-validation (PSIS-LOO-CV, see Table 2.1). Using PSIS-

LOO-CV through the loo package in the programming language R (Vehtari et al. [2024a]),

we systematically validated each model by excluding one data point at a time and calculating

the probability density of that data point conditioned on the rest of the data (Vehtari et al.

[2017]). The resulting expected log pointwise predictive density (ELPD) allowed us to quan-

tify how well our current data on spatial infection rates would generalize to future data. The

ELPD information criterion for model comparison quantifies the average predictive accuracy

of each model while PSIS uses the posterior variance of the log predictive density to reduce

bias in ELPD estimation. PSIS-LOO-CV therefore provides a comprehensive performance

evaluation that is more robust than the parameter penalty of BIC or the variance penalty

of WAIC, even in the case of weak priors and influential data points (Appendix B, Vehtari

et al. [2024b, 2017]).

2.2.3 Defoliation regression models

In order to have a predictor for defoliation observed on each tree in our study populations,

we calculated the integrated host density over time

H(τ) =
1

n

n∑
i=0

∫ τ

0
(S(i, t) + E(i, t))dt (2.7)

for each of n discretized spatial grid points. In order to arrive at the posterior distri-

bution of herbivory intensity π(H(τ)), we drew 150 random samples from the transmission

parameter posterior π(θ⃗ and calculated H(τ) for each 64 realizations across a grids search

of initial conditions combinations. These values of H(τ = 40) are shown in figure 3A of the

main text. We then constructed linear models of the form

H(τ) ∼ ν̄ ∗ C ∗ S̄(0) ∗ P̄ (0) ∗ τ, (2.8)
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Figure 2.4: Conceptual figure showing the likelihood calculation approach. Top panels show
the spatial simulation where each point is an individual tree. Histograms then show the
distribution of fractions infected at each of the four likelihood score evaluation time points,
with kernel density estimator K(i) overlayed. The observed data from one study population
is then shown in the third row as a histogram with empirical kernel density estimators of
high probability shown as bars around singular data points. Data and the continuous time
kernel density estimator are then plotted jointly to represent the jernel-binomial likelihood
function described in detail in Appendix B
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to integrate over simulations and posterior draws. The linear models of H(τ) captured the

majority of the variation over the posterior (R2 = 0.98). We next selected 124 independent

samples from the posterior for initial conditions and transmission parameters within each

study site, using the maximum integrated auto-correlation time across chains to determine

sample size. We then used the linear model from equation 2.8 to generate expected values

H(τ̂) for each study site over time, where τ̂ is the time of observation based on sample time

and the fitted time of first observation t0 for each study site.

We next constructed logistic regression models using the expected herbivory intensity

H(τ) and time of observation for each sample time τ̂ as predictors. For each data point,

which represented either the percent of foliage consumed (severity) or whether a tree had

any defoliation present (extent), we therefore had 124 (H(τ̂)) predictor values in order to

integrate over the entirety of the posterior π(H(τ̂)). We compared the BIC scores for each

individual model posterior draw (figure B.11) to determine quantitative differences in predic-

tive power. We likewise compared a logistic regression model in which we modeled severity

and extent as functions of cumulative insects sampled, generating an analogous approach for

calculating H(τ) empirically. We excluded study site FR01 from all defoliation regression

models, as defoliation from the previous year was included in the severity estimates and

values were therefore indeterminately inflated for the whole time series.

2.3 Results

The average infection rates in our seven study populations were similar to those observed in

previous insect-baculovirus studies (Woods and Elkinton [1987], Otvos et al. [1989], Mihalje-

vic et al. [2020], Woods et al. [1991]). As is typical of baculovirus epizootics, infection rates

consistently increased during the early larval season, whereas late-season infection rates were

more variable across populations (figure 2.5, Woods and Elkinton [1987]). The high peak

infection rates and variable late-season trajectories that we observed can be at least quali-

23



tatively explained in terms of average larval densities, where study sites with higher larval

densities tended to have a more rapid population collapse (figure 2.3, Woods and Elkinton

[1987], Woods et al. [1991], Otvos et al. [1989]).

MTJM (19.7−23.7 larvae m^−2) PIN3 (39.9−61.3 larvae m^−2) CRKJ (90.4−168.6 larvae m^−2)

CHSW (0−1.8 larvae m^−2) FR12 (8.6−11.7 larvae m^−2) FR01 (9.9−13.3 larvae m^−2) BARM (14.6−17.9 larvae m^−2)
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Figure 2.5: Mean fraction infected (black points and lines) and binomial confidence intervals
(error bars) and tree-level infection rates (white circles) over time in our seven study pop-
ulations. The seven study populations are arranged by increasing observed initial average
larval densities, with the site name shown and then the branch density given in parentheses.
Larval densities at the start of the season ranged from approximately 1 larva per m2 (CHSW,
top left) to approximately 135 larvae per m2 (CRKJ, bottom right).

As a result, the non-spatial model with environmental stochasticity provides a reasonable

fit to our data (figure 2.6), as it did in Mihaljevic et al. [2020]. This result quantitatively

demonstrates the importance of average initial host and pathogen densities in explaining a

significant portion of the variation in baculovirus infection rates (Mihaljevic et al. [2020],

Woods and Elkinton [1987]).
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2.3.1 Transmission hotspots and host dispersal drive pathogen dynamics

In contrast to previous studies explaining variation over pooled, spatially averaged infection

rates, however, the models needed to explain the variation in baculovirus infection rates

across trees to have strong predictive performance. Our spatially referenced data allowed

us to show that spatial models indeedprovide a much better explanation for our data, such

that the ELPD difference between the best model and the non-spatial model is ∆̂ELPD =

−24.21± 8.21 (table 2.1). This large difference between the ELPD estimates demonstrates

the strong predictive performance of the best spatial model relative to the non-spatial model

(Appendix B, Vehtari et al. [2017]). The best model is the deterministic reaction-diffusion

model, which explains variation around the mean infection rate by invoking a random initial

distribution of susceptible hosts and infectious cadavers across space, in combination with

modest amounts of larval host movement between spatial locations. We therefore conclude

that when hosts have limited mobility, spatial models are likely to provide substantially

better explanations for pathogen dynamics than non-spatial models.

The spatial models provide better explanations for our data because they easily repli-

cate the bimodal pattern of sub-epizootic infection rates over space, which cannot be easily

detected from infection rates that are averaged across trees. Projections from the best spa-

tial model show that infection rates diverge across trees, where some spatial locations in

an epizootic are transmission hotspots that experience high-intensity sub-epizootics, while

others are coldspots that experience low-intensity sub-epizootics (figure 2.6). Because the

estimated host disease density threshold is low relative to observed and posterior larval

densities, whether or not a location in a spatial simulation will be a transmission hotspot

depends on the initial pathogen distribution. Nevertheless, trees that start out as trans-

mission coldspots can have late-season infection rate increases due to exposed hosts dispers-

ing from early season transmission hotspots with high densities of infected larvae. Due to

these dispersal-mediated hotspot shifts, the projected overdispersion of infection rates in the
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spatial models more closely matches the overdispersion of our infection data (figure B.1),

mechanistically demonstrating the improved ability of spatial models to explain infection

rate variation.

The effect of dispersal-mediated delayed infection is most obvious in the case of our

second-highest density study population, which showed the strongest divergence and sharpest

increases of infection rates in coldspots that became late-season hotspots (figures 2.6, SB.6).

Importantly, however, we can also distinguish study sites where this late-season shift did

not occur. In our highest density site, which had a higher estimated initial pathogen den-

sity and therefore a more spatially uniform initial pathogen distribution, the spatial model

projected that there were only a few coldspot sub-epizootics. Thus, the infection rates over

space in our highest-density site were mostly small deviations from a single high-intensity

average infection rate. Although the non-spatial model projections, by the nature of lacking

bimodality, also showed that infection rates across realizations were small deviations from

the average for our highest density population, the spatial model projections still had lower

variation across realizations, which visually demonstrates the improved performance of the

spatial models as quantified by LOO-CV (figure 2.6).

2.3.2 Stochasticity worsens predictive performance

Like the best model, the second-best model included space, but, in contrast, did not allow

for host movement between spatial locations, instead explaining infection rate variation

by invoking environmental stochasticity. Although the difference ∆̂ELPD = −2.31 ± 3.26

from the best model is substantial, the relatively large standard error of differences yields

a confidence interval that overlaps zero, meaning that the data cannot easily distinguish

between the second best model and the best model, the deterministic PDE (Piironen et al.

[2020], Yates et al. [2023]). However, because this model assumes that dispersal can be

neglected, it cannot reproduce the late-season infection rate increases that occurred in the
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Figure 2.6: Posterior estimates of epizootic temporal dynamics for the deterministic PDE
model (teal) and the non-spatial ODE model with environmental stochasticity (dark blue)
plotted against the spatial distribution of infection rates observed in tree-level infection rates
(white circles). The seven panels show posterior model projections and data from our seven
study populations, showing the study site name and the insect branch density estimate
(larvae per meter squared) in parentheses. Filled areas represent areas of high posterior
probability from fitted model simulations, where more than 50% of simulations drawn from
the posterior had high kernel density estimates k(i, t) ≥ 0.7 for a given fraction infected i at
a given time t.

coldspot sub-epizootics of some populations (figure B.6).

Moreover, the second-best model requires environmental stochasticity to explain our in-

fection data, but key evidence from our model comparison suggests that environmental

stochasticity is unlikely to be helpful for understanding baculovirus epizootics in natural

populations. To begin, in the non-spatial model, the posterior estimate of the stochastic-

ity parameter σ is roughly twice as high as the corresponding estimates in spatial models

incorporating environmental stochasticity (table 2.1). This difference suggests that the non-

spatial model uses environmental stochasticity to account for the effects of limited dispersal
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and spatial structure, albeit ineffectively. Additional support for this reasoning comes from

previous studies that have shown baculovirus epizootics are typically insensitive to weather,

the presumed driver of environmental stochasticity (D’Amico and Elkinton [1995], Woods

and Elkinton [1987]). Adding environmental stochasticity therefore serves mostly to spread

out model trajectories until they include the data, rather than providing information that is

otherwise missing from a model.

Further, the third-best model, which consists of the best model plus environmental

stochasticity, had a difference of ∆̂ELPD = −2.53 ± 1.62. The fit of the third-best model

is thus only slightly worse than the fit of the second-best model, but, in contrast, the data

can distinguish the fit of the PDE model with environmental stochasticity to be worse than

the fit of the best model. Crucially, the Bayesian stacking weight, the estimated percentage

of the log predictive density that is better explained by a given model, was 0.00 for the

third-best model. This stacking weight indicates that the stochastic model adds no new in-

formation to a composite model that already contains its deterministic analog, which is the

best model. In addition, the remaining models consisted of model pairs that were identical

except that one included environmental stochasticity while the other did not. In every paired

case, the model that included environmental stochasticity had a worse model selection score

than its analog that did not include environmental stochasticity. Model selection based on

PSIS-LOO-CV therefore definitively rejects the hypothesis that allowing for environmental

stochasticity improves the ability of our models to explain the data.

A more surprising result from our model-selection analysis is the poor performance of

agent-based models, which allow for demographic stochasticity. Like environmental stochas-

ticity, the inclusion of demographic stochasticity consistently lowered the selection score of

models attempting to explain the infection rate variation in our data (table 2.1). Hybrid

models with agents for hosts and differential equations for pathogens offered more predictive

power than fully agent-based models, while both performed more poorly than the analogous
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differential equations models (table 2.1). This result contradicts the widely held belief in

spatial ecology theory that individual-based models are more realistic and therefore always

more useful to understand data (Durrett and Levin [1994], DeAngelis and Grimm [2014]).

It is worth noting, however, that unlike models incorporating environmental stochasticity,

models incorporating demographic stochasticity were able to perform well for at least some

of our study sites. Combining the non-zero Bayesian stacking weights shows that hybrid

agent-based models accounted for ∼ 33% of the log predictive density in a composite model,

indicating that agent hosts, but not agent pathogens, can offer some predictive power (table

2.1).

Population-level cross validation showed that, in populations with higher larval host den-

sities, agent-based models were indistinguishable from the best model (figure B.14). This

result may at first appear counter-intuitive, given the greater importance of demographic

stochasticity at smaller population sizes (He et al. [2010], Alonso et al. [2006], Britton et al.

[2011]). However, it is important to realize that agent-based models are sensitive to exact

population sizes, population sizes change rapidly once epizootics begin, and the variation in-

duced by demographic stochasticity is strongest at the outset of the epizootic, when pathogen

and exposed host populations are smaller (Britton et al. [2011], Lalley [2009], Andersson and

Britton [1998]). From these points, it is clear that the variation induced by demographic

stochasticity is sensitive to the uncertainty in initial host and pathogen densities, especially

in smaller population sizes. Therefore, the uncertainty in our host density estimates has

drastically stronger effects on model projections in populations with a posterior mean of

one larva/m2 than 100 larvae/m2. This effect increased the variability of likelihood scores

across realizations and thus lowered the performance of agent-based models relative to dif-

ferential equations models, especially for early time points across populations (figure B.15).

Agent-based models therefore have lower predictive power in smaller populations because

their projections are more variable than those of PDE models.
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2.3.3 Spatial transmission models provide a deeper understanding of insect

tree damage

The mechanisms underlying baculovirus transmission dynamics are a research priority for for-

est pest management because Douglas-fir tussock moth outbreaks have severe consequences

for forests in western North America (Mihaljevic et al. [2020], Mason [1977]). Although pre-

vious, non-spatial baculovirus transmission models have offered some insights into defoliation

(Mihaljevic et al. [2020]), the tree damage caused by grazing insects, such models typically

project high mortality when fit to baculovirus epizootic data. Observed defoliation is often

also high, making the correlation between tussock moth mortality and observed defoliation

unclear.

Rather than classical approaches that use insect densities or the ultimate fraction of hosts

surviving to predict defoliation, we instead predicted tree damage using projected herbivory

intensity from our mechanistic transmission models. We calculated the cumulative herbivory

intensity H(τ) by summing projected larval densities from time t = 0 to t = τ . Although the

cumulative fraction of hosts infected was comparable between the spatial and non-spatial

models, the coldspots in spatial models created refugia that allowed for high larval host

densities outside of hotspots with active transmission. Even during severe epizootics with

mortality exceeding ∼ 99% of the host population, refugia greatly increased the average

herbivory intensity at middle stages of the epizootic, after hosts in transmission hotspots

began to die off but prior to dispersal-mediated establishment of baculovirus in coldspots.

The average herbivory intensity over space was therefore up to 1.5 times greater than the

average across non-spatial model simulations for the same insect and pathogen density initial

conditions (figure 2.7A). Herbivory intensity H(τ) projected by the best spatial model was

only lower than that of the non-spatial model when host densities were below the disease

density threshold and pathogen densities were high. Although we did not directly observe

such scenarios in our study populations due to the cryptic nature of extremely low Douglas-fir
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tussock moth larval densities, this case is not likely to inform defoliation mitigation strategies

because such populations do not cause detectable tree damage.

To determine if the posterior distribution of H(τ) could be useful for understanding

observed defoliation patterns, we constructed logistic regression models that used projected

herbivory to predict defoliation severity, the average percent of foliage lost in the tree canopy

(figure 2.7B), and to predict defoliation extent, the percent of trees with defoliation (Ap-

pendix A). If the increased herbivory intensity due to susceptible hosts in coldspot refugia

was mechanistically driving observed defoliation, we would expect that defoliation severity

would be better predicted by the herbivory intensity from spatial model projections. Hosts

surviving for longer would have more time to consume foliage, therefore increasing defolia-

tion severity in coldpsot refugia, the average severity overall, and the risk of tree mortality.

Defoliation extent predictions should be comparable across models, however, because the

presence of defoliation across trees is related to initial insect densities prior to any mortality

due to baculovirus exposure.

The herbivory projections of the best spatial model provided a reasonable fit to both

defoliation extent (R2 = 0.29 ± 0.06) and severity (R2 = 0.38 ± 0.04). Crucially, the best

spatial model was able to predict the higher maximum severity that we observed in high

mortality study populations (figure 2.7B). Observed insect branch densities alone provided

similar fits to defoliation extent (R2 = 0.29, ∆BIC = (+14.2,−8.0)), but provided a worse

fit for severity (R2 = 0.23, ∆BIC = (+1.2,+0.9)), in line with the refugia hypothesis. The

non-spatial model also had a worse fit to defoliation severity data (R2 = 0.33± 0.08, ∆BIC

= (+1.1, 0.0)), while having comparable predictions for extent (R2 = 0.31 ± 0.04, ∆BIC

= (−4.1,+1.3), figure B.11). We thus concluded that, in addition to improving model fit

for infection data, the hotspot and coldspot sub-epizootics that are a key feature of the

best spatial model have important implications for herbivory intensity, and provide useful

predictions of previously-unexplained, severe defoliation.
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Figure 2.7: A) shows the relative expected herbivory intensity for initial host and pathogen
densities, where herbivory intensity accumulates over time as larva-days per m2. We use the
mean-field herbivory intensity for the PDE model, which shows much higher intensity than
expected under the non-spatial model for high host densities and low pathogen densities.
Points and error bars show the credible intervals of initial host and pathogen densities esti-
mated from the PDE. B) shows the observed defoliation severity (points) against the logistic
regression predictions from PDE herbivory H(τ). Each study population is shown as a dif-
ferent color. Although the regression is a function of time t, defoliation severity predictions
from each line is a draw from the posterior distribution over H(τ).

Because the divergent sub-epizootic trajectories of hotspots and coldspots are due to

patchy initial pathogen distributions, Douglas-fir tussock moth defoliation severity mitiga-

tion can only be achieved through higher, and more uniform, pathogen densities (figure

2.7A). One pest management strategy able to provide such an effect is Tussock Moth Bio-

control (TMB), a natural isolate of the baculovirus produced by the US Forest Service

and aerially sprayed to manage Douglas-fir tussock moth populations (Williams and Otvos

32



[2005]). Although criticized for having more rapid decay than naturally occurring infectious

cadavers (Mihaljevic et al. [2020]), the benefits of reducing coldspot refugia may have outsize

effects to reduce herbivoyr intensity, thereby reducing defoliation severity and increasing tree

survivorship during O. speudotsugata outbreaks.

2.4 Discussion

Our work provides strong evidence for the occurrence of shifting transmission hotspots in

baculovirus epizootics, affirming the importance of spatial theory for insect-baculovirus in-

teractions. Diverging hotspot and coldspot sub-epizootics are not unique to baculovirus

dynamics (Tian et al. [2018], Nassuato et al. [2013], Dowdy et al. [2012]), but the trans-

mission models used to understand them are rarely spatial and are often not subjected to

rigorous model comparison within single studies (Lessler et al. [2017], Ensoy et al. [2013],

Lane-deGraaf et al. [2013]). Here we identify the causal mechanisms of hotspot occurrence in

baculovirus epizootics for the first time, showing that they exacerbate the well-known phe-

nomenon of delayed late-season peaks in larval baculovirus infection that result from exposure

incubation periods (Woods and Elkinton [1987]). We indirectly observed the late-season es-

tablishment of baculovirus in patchy areas with previously unexposed host sub-populations,

highlighting the importance of pathogen densities and host dispersal for determining the

uneven rate of infection spread over space. Moreover, our model projections provide mecha-

nistic explanations for spatial infection rate patterns and simultaneously offer explanations

for the high levels of defoliation caused by tussock moth outbreaks that should otherwise

collapse due to high average infection rates.

Our best spatial model explains the spatial variation of infection rates over time by in-

voking only variable initial conditions and limited host dispersal. However, even the worst

spatial models outperformed the non-spatial model, underscoring the importance of compar-

ing multiple spatial models to one another. The assessment of a spatial model in isolation
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risks the inappropriate validation of additional assumptions tacked onto models that ac-

count for spatial structure. This concern is heightened by the marked qualitative differences

between the spatial model projections over time (figure B.6) and their large variation in

predictive performance (table 2.1). For example, through our model selection analysis we

rigorously quantified by ELPD that stochasticity always lowered the predictive performance

of the spatial models, whether such stochasticity was environmental or demographic (table

2.1).

The lack of improvement when we included effects of environmental stochasticity is per-

haps unsurprising, but it suggests that models incorporating environmental stochasticity

may obscure the important effects of spatial heterogeneity on pathogen dynamics, especially

when fitted to non-spatial data. Whether in baculoviruses (Mihaljevic et al. [2020], Dwyer

et al. [2022]) or other pathogens (Alonso et al. [2006], Andersson and Britton [1998]), stochas-

tic modeling is ubiquitous in contemporary disease modeling as it is considered essential for

robust inferences (He et al. [2010], Funk and King [2020]). However, our work shows that

for baculovirus epizootics, and perhaps for other environmentally transmitted diseases, the

strength of stochasticity to account for variation in the mechanisms included within a model

could also validate incorrect assumptions about the role of limited dispersal in the absence

of rigorous spatial model comparison.

Given the better performance of PDE models relative to agent-based models, our study

emphasizes the utility of deterministic moment closure approximations, which can incorpo-

rate variability introduced by individual fates without being sensitive to exact densities over

time (figure B.14). Further, the selection of the reaction-diffusion model over agent-based

simulations drives the rate at which coldspot sub-epizootics become late-season transmission

hotspots. In the best model, point releases of infectious material generate travelling waves

that propagate even at the low diffusion rate we estimated as the true rate of larval host

movement. In the agent-based models, however, dispersal rates were greatly inflated because
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travelling waves at slower rates stopped due to drift (figure E.2). Premature termination of

travelling waves due to demographic stochasticity made the agent-based models incorporat-

ing limited host dispersal closely resemble the agent-based models assuming no dispersal in

a wide range of scenarios.

The advancing waves of baculovirus establishment in coldspot sub-spizootics we found

to be key to understanding baculovirus transmission are in fact related to an early criticism

of diffusion models. Because reaction-diffusion equations depend on infinitesimal exposed

host densities to establish pathogen populations, such models were thought to be irrelevant

for describing natural systems subject to demographic stochasticity (Anderson et al. [1981],

Murray et al. [1986], Mollison [1991]). Although originating in rabies, where this critique may

be more reasonably applied, this debate continues to receive generalized theoretical attention,

both analytically (Fowler [2021], Lobry and Sari [2015]) and through the advocacy for using

discrete agents to represent demographic processes (Durrett and Levin [1994], DeAngelis and

Grimm [2014], Alonso et al. [2006]). The success of our hybrid models, where pathogens are

infinitely divisible densities, as compared to the fully agent-based models, where infectious

cadavers are discrete individuals, demonstrates that, for at least baculovirus transmission,

occlusion body virions are the discrete individual units that propagate disease spread.

We therefore suggest that the utility of demographic stochasticity is not a universal truth,

and that infinitesimal infectious densities and dispersal-mediated sub-epizootic dynamics are

highly useful for understanding infection data through the establishment and propagation

of transmission hotspots. With the growing recognition of environmental transmission as a

major mode of directly transmissible diseases, our inferences may be more generally useful

in systems apart from insect-baculovirus interactions and could warrant further applications

(Breban et al. [2009], Brown et al. [2013b]). While pathogen densities tend to receive less

attention than host densities in the estimation of epidemic size (Lloyd-Smith et al. [2005b],

Keeling and Rohani [2008]), we demonstrate that low, infinitesimally-divisible pathogen
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densities alter host survivorship over time, with profound ecological impacts that occur in

nature. Moment closures, along with reaction diffusion equations, have a rich history in

the field of disease ecology, but the two are rarely combined (Dwyer et al. [2000], Murray

et al. [1986], Keeling and Rohani [2008]). Our novel reaction-diffusion approximation of

heterogeneity in infection risk therefore provides a crucial step towards understanding the

mechanisms driving transmission rate variation over space.
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CHAPTER 3

HERITABLE INFECTION RISK GENERATES ACCELERATING

WAVES AND RE-PRODUCES INSECT OUTBREAK DATA

3.1 Introduction

The theory of biological invasions provides a useful conceptual framework for describing

the spread of populations over time and space (Williamson [1996], Shigesada and Kawasaki

[1997], Okubo and Levin [2001]), notably by showing that limited dispersal can lead to

travelling waves of population expansion (Murray et al. [1986], Dwyer [1992], Kot et al.

[1996]). Although most often invoked in studies of invasive species (Burton et al. [2010],

Rollins et al. [2015]), travelling waves can also describe non-invasive populations undergoing

range expansions (Hill et al. [1999]), or variation in population cycles within an organism’s

native range (Bjørnstad et al. [2002]). For mathematical convenience, early analyses of

travelling waves focused on constant wave speeds (Skellam [1951], Shigesada and Kawasaki

[1997]), but later work showed that waves can also accelerate (Kot et al. [1996]). This is

important because travelling waves in nature often accelerate (Williams et al. [2019], Miller

et al. [2020]).

Early studies argued that accelerating waves are likely due to a small but non-trivial

number of individuals travelling exceptionally long distances (Kot et al. [1996], in what fol-

lows we refer to this phenomenon as “exceptional dispersal”). Recent work, however, has

shown that acceleration can also be driven by the evolution of traits relevant to reproduc-

tion or movement at the wave front (Edmonds et al. [2004], Perkins et al. [2013], Fetters and

McGlothlin [2017], Deforet et al. [2019]), an effect that holds even for multi-species models

(Burton et al. [2010], Perkins [2012], Bennett and Sherratt [2019]). Efforts to explain data

on accelerating waves have generally only ever invoked exceptional dispersal or evolutionary

change in isolation and thus have not considered the relative importance of the two mecha-
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nisms. Partly as a result, the effects of evolution at the wave front for population dynamics

behind the wave front are poorly understood (Erm and Phillips [2020]).

Here, we carry out a test of the importance of evolution and exceptional dispersal for

both population dynamics and trait variation in a seasonally driven host-pathogen interaction

undergoing a range expansion. We take advantage of a natural travelling wave in Douglas-

fir tussock moth, Orgyia pseudotsugata, to test the relative usefulness of exceptional long-

distance dispersal and evolutionary change for explaining data on accelerating waves in

nature. Tussock moth populations regularly fluctuate from high to low densities in predator-

prey type cycles that are driven by a host-specific, fatal baculovirus (Brookes et al. [1978],

Mason [1996]). For Douglas-fir tussock moth, these cycles occur roughly every nine years and,

during high-density outbreaks, cause defoliation that damages trees. In western Montana,

however, outbreaks did not occur between 1976 and 2000, even though they had occurred in

previous decades (Shepherd et al. [1988]). Then, from 2000 to 2007, outbreak-level tussock

moth populations occurred nearly every year. Although the question of why the tussock

moth disappeared and re-established in western Montana is biologically interesting, we lack

sufficient information to answer it here. However, as we will demonstrate, these outbreaks

show wave-like patterns and we can provide insights into the mechanisms that determine the

speed of advance and spatial patterning of tussock moth spread.

Host-pathogen or predator-prey population dynamics in the wake of invasion could be a

stable point equilibrium, stable cycles, or chaos, but which patterns occur in nature is rarely

investigated (Bjørnstad et al. [2002], Sherratt and Smith [2008], Bennett and Sherratt [2019],

Miller et al. [2020]). Instead, in studies of travelling waves in host-pathogen interactions,

often only the wave speed is derived (Murray et al. [1986], Dwyer [1992], Mundt et al. [2009],

Phillips et al. [2010], Leung and Kot [2015]). Although an important metric, the average

wave speed generally provides little to no information about what the population dynamics

of ecological systems will look like after range expansion has occurred (Sherratt et al. [1995],
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Sherratt and Smith [2008]). For example, even in the absence of evolutionary processes,

only limited areas of parameter space generate stable travelling waves (Grenfell et al. [2001],

Bjørnstad et al. [2002]). To better understand accelerating waves, we therefore compared

model predictions to data on both dynamics at the wave front and dynamics behind the

wave front.

Previous studies that have invoked evolutionary change to understand accelerating waves

have often focused on how the evolution of average trait values causes acceleration, partic-

ularly on the evolution of average dispersal distance (Perkins et al. [2013], Brown et al.

[2013a], Bennett and Sherratt [2019], Erm and Phillips [2020]), or average fecundity at the

wave front (Mason et al. [2008], Weiss-Lehman et al. [2017], Fetters and McGlothlin [2017]).

This focus on average trait values, however, has led to a limited understanding of heritable

variation. Meanwhile, there is strong evidence that Douglas-fir tussock moth larvae vary in

their infection risk (Dwyer et al. [2000], Mihaljevic et al. [2020]) and that heritable infec-

tion risk can alter tussock moth outbreak cycles (Páez et al. [2017], Dwyer et al. [2022]).

However, the mechanisms that maintain this variation are largely unknown, even in theory

(Erm and Phillips [2020]). In this study, we attempt to understand how heterogeneity in

the Douglas-fir tussock moth’s infection risk is maintained by explicitly modeling variation

in infection risk both at and behind the wave front. We do this by constructing spatial

eco-evolutionary models that explain spatial patterns in defoliation data by invoking either

evolving fecundity and infection risk at the wave front or exceptional dispersal. Our work

shows that an eco-evolutionary model is a better explanation for accelerating waves than

an exceptional dispersal model. Our work thus provides, to the best of our knowledge, the

first example demonstrating that evolution has a larger effect on the spread of a species

interaction than does long-distance dispersal.
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3.2 Methods

Douglas-fir tussock moth populations are often so low as to be undetectable, while densities

during periodic outbreaks are high enough to cause severe tree damage (Mason [1987, 1996]).

To identify high-density Douglas-fir tussock moth populations in western Montana, we used

tree defoliation data from annual aerial detection surveys provided by the US Forest Service.

Although the data track the two-dimensional spread of tussock moth defoliation, visual

inspection of the data suggested that the spread was approximately linear. We therefore

simplified our analysis of the data by transforming the coordinates of all defoliation from

2000 to 2019 using principal component analysis (PCA). Because the first order principal

component (PC1) explained ∼ 87% of the coordinate variance, we built a linear model

that describes distance from the 2000 origin in PC1 units, resulting in a transformed, one-

dimensional data set of the spread of the population over space and time. We then used the

average position of defoliation, the putative high-density tussock moth populations, along

PC1 as the wave front position.

Our model of spatial spread without evolution begins with a non-spatial model that can

provide reasonable projections of forest insect population dynamics (Dwyer et al. [2000]).

Like many outbreaking insects, Douglas-fir tussock moths have discrete, non-overlapping

generations (Hunter [1995]). The model then assumes that the host population Nn+1 and

the pathogen population Zn+1 in generation n + 1 are determined partly by the fraction

of hosts in(Nn, Zn) that become infected during the epizootic of the previous generation n.

A fraction infected in become infectious cadavers in the next generation at overwintering

rate ϕ while the remaining fraction (1 − in) reproduces at rate r (Dwyer et al. [2000]). To

introduce space into this model, we used integrodifference equations, which assume that

space is continuous and generations are discrete (Kot et al. [1996]).
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Nn+1(x) =

∫ Reproduction︷ ︸︸ ︷
rNn(y) [1− in(y)]

Dispersal︷ ︸︸ ︷
k(x, y) dy (3.1)

Zn+1(x) =

∫
ϕNn(y)in(y)︸ ︷︷ ︸
Overwintering

k(x, y)︸ ︷︷ ︸
Dispersal

dy + γZn(x)︸ ︷︷ ︸
Pathogen survival

(3.2)

in(x) = 1−
(
1 +

ν̄V

µ
(Nnin + Zn)

)− 1
V
, (3.3)

Here, the dispersal function k(x, y), usually referred to as a dispersal “kernel”, is the

probability that individuals dispersing from location y arrive at location x. Because the

transformed data are effectively one-dimensional, we allow for only one-dimensional spread

in the model. The dispersal kernel k(x, y) can either be a “thin-tailed” kernel, meaning

that its tails decay exponentially, or a “heavy-tailed” kernel, meaning that its tails allow for

exceptional long-distance dispersal. We consider a special case of heavy-tailed kernels called

“fat-tailed” kernels that decay according to a power law and that are known to generate

accelerating waves (Kot et al. [1996], Mundt et al. [2009], Liu and Kot [2019]).

Adult female tussock moths are flightless, so the main form of long-distance dispersal

occurs when larvae “balloon”, during which they produce silken strands that allow the larvae

to disperse on the wind (Mitchell [1979]). Because the baculovirus disperses in the form

of infected first instar larvae, and because there is no evidence that viral infection affects

ballooning (Brookes et al. [1978]), we assumed that overwintering baculovirus disperses ac-

cording to the same dispersal kernel as uninfected hosts. We further assume that baculovirus

that survives over the long-term at rate γ does not disperse.

Virus transmission is the result of direct contact between uninfected larvae and infectious

cadavers (Cory and Myers [2003]). Thus the fraction of hosts in(x) infected is described by a

standard “SEIR” model from theoretical epidemiology modified to allow for host variation

of infection risk, which is a basic feature of insect-baculovirus interactions (Appendix C,
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Dwyer et al. [2000], Keeling and Rohani [2008], Myers and Cory [2015]). Therefore, the

fraction of hosts in(x) infected in generation n depends on the average infection risk at the

start of the epizootic, ν̄, the squared coefficient of variation of infection risk, V (Appendix

C, Dwyer et al. [2000, 2022]), and the decay rate of the pathogen, µ.

In our eco-evolutionary model, we allow for a fitness trade-off such that high fecundity

is associated with high infection risk through a cost parameter ω (Appendix C, Elderd

et al. [2008], Páez et al. [2017], Dwyer et al. [2022]). The eco-evolutionary model allows for

evolutionary change in the average infection risk ν̄n(x) and in the host variation Vn(x), the

squared coefficient of variation of the distribution of infection risk. Because infection risk

is likely due to a mixture of genetic and environmental factors, and to avoid the unrealistic

evolution of complete baculovirus resistance, we assume that infection risk is only partly

heritable. The heritability b is thus the fraction of the variance in the infection risk that is due

to additive genetic variation (Páez et al. [2017]). The full eco-evolutionary integrodifference

model is
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Nn+1(x) =

∫
rk(x, y)Nn(y) [1− in(y)]

Trade-off effect on fecundity︷ ︸︸ ︷(
1 + ων̄n(y) [1− in(y)]

Vn(y)
b

)
dy (3.4)

Zn+1(x) =

∫
k(x, y)ϕNn(y)in(y)dy + γZn(x) (3.5)

ν̄n+1(x) =

∫
k(x, y)Nn(y)(1− in(y))ν̄n+1

2
(y)

Trade-off effect on average risk︷ ︸︸ ︷[
1 + ω(1 + Vn(y))ν̄n+1

2
(y)
]
dy∫

k(x, y)Nn(y)(1− in(y))
[
1 + ων̄n+1

2
(y)
]
dy

(3.6)

Vn+1(x) =

∫
k(x, y)Nn(y)(1− in(y))ν̄

2
n+1

2

(y)

Trade-off effect on variation in risk︷ ︸︸ ︷
[1 + Vn(y)]

[
1 + ω(1 + 2Vn(y))ν̄n+1

2
(y)
]
dy

ν̄2n+1(x)×
∫
k(x, y)Nn(y)(1− in(y))

[
1 + ων̄n+1

2
(y)
]
dy

− 1

(3.7)

in(x) = 1−
(
1 +

ν̄n(x)Vn(x)

bµ
(Nn(x)in(x) + Zn(x))

)− b
Vn(x)

(3.8)

ν̄n+1
2
(x) = ν̄n(x) [1− in(x)]

Vn(x)︸ ︷︷ ︸
Infection risk before reproduction

, (3.9)

Here, we simplify the notation by explicitly including an expression for the “half-generation”

average infection risk ν̄n+1
2
(x), which is determined after the epizootic in generation n but

before reproduction or dispersal.

To understand the relative importance of exceptional long-distance dispersal and evolu-

tionary change in driving accelerating waves, we fit four different versions of our models to

the tussock moth spread data. The first model included a thin-tailed kernel and evolving

infection risk, the second included a fat-tailed kernel and evolving infection risk, the third

included a fat-tailed kernel but did not include evolving infection risk, while the fourth model

included neither a fat-tailed kernel nor evolving infection risk.

Initially, we used the wave front data to fit only the parameters that affect the wave

speed, which are the intrinsic reproduction rate r, the cost ω, and the dispersal parameter,
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the meaning of which differed between thin-tailed and fat-tailed dispersal kernels. To explain

why, we note that to ensure that models with different dispersal kernels could be comparable,

we used a thin-tailed Laplace kernel and a fat-tailed Laplace kernel, which are approximately

equivalent for some parameter values and very different for others (Liu and Kot [2019]). The

dispersal parameter therefore consisted of either the power law decay order α for a fat-tailed

Laplace kernel or the expected absolute distance travelled E[|∆x|] for a thin-tailed Laplace

kernel.

Simulating the full integrodifference model equations is computationally intensive, so we

instead fit only analytical expressions for the wave speed to the data (Appendix D.1, Kot

et al. [1996], Neubert et al. [2000], Liu and Kot [2019]). Because pathogen spread rates are

limited by their hosts, such that pathogen advance often lags behind the host wave front,

we used analytical wave speeds that approximate the host invasion in the absence of the

baculovirus (Sherratt et al. [1995], Bjørnstad et al. [2002], Phillips et al. [2010]). For each

parameter set, we calculated the sum of squared errors (SSE) from the one-dimensional

defoliation wave front data and then used optim in R to estimate the nuisance parameters,

the initial variation V0(0) and initial average infection risk ν̄0(0), that minimized the SSE for

each parameter set. The low number of parameters that determine wave speed meant that

a simple grid search routine over 3,000 parameter sets was sufficient to find the maximum

likelihood estimates of the parameters (Appendix D.2, McKinley et al. [2009]). Because the

number of parameters and number of observations were the same across models, we were

then able to select the best model using the SSE without correcting for differences in the

number of parameters between models (Yates et al. [2023]).

To compare our models to data from behind the wave front, we used the best-fit param-

eters from our wave front fitting routine and conducted a second grid search routine across

the remaining parameters, which do not affect the wave speed but do affect the population

dynamics behind the wave front: pathogen overwintering ϕ, pathogen survival γ, pathogen
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decay µ, and heritability b (Dwyer et al. [2000, 2022]). Because generating model predictions

of dynamics behind the wave front necessarily required full integrodifference models, in this

case we generated spatial simulations for each of the 100 parameter sets of our grid search

routine. Because we did not have enough information to construct a separate model of

defoliation, we assumed that areas with high host densities in the integrodifference models

corresponded to areas of defoliation in the data (as shown in Chapter 2, Shepherd et al.

[1988], Mason [1996]). We thus assumed that defoliation occurred with a probability equal

to the percentile of the host density in the simulation. Because we had no information about

the starting year of the invasion, we also varied the year of initial re-introduction, from 1995

to 2000. As in our comparisons of the model to the wave front data, the number of param-

eters was the same across models and so we were able to choose the best model using only

the unadjusted likelihood.

3.3 Results

In our non-evolutionary model, point releases of hosts and pathogens in empty landscapes

led to travelling waves with a constant speed of advance, but in our eco-evolutionary model

the travelling waves accelerated (figure 3.1). Because host populations near the wave front in

the evolutionary model were reproducing in the absence of the pathogen, those populations

had higher fecundity and increased average infection risk ν̄n(x̂n). Host-pathogen interactions

with heritable host infection risk can thus lead to accelerating waves because of increased

fecundity at the wave front.

As the average infection risk increased near the wave front, the variation in the infection

risk Vn(x̂n) decreased over time (figure 3.5). Although a similar decline occurred in the

corresponding non-spatial model, the decline occurred much more rapidly near the wave front

in the spatial model (Appendix C). This rapid decline occurred because host populations

near the wave front experienced very low selection pressure for increased resistance and thus
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Figure 3.1: Summary of model projections. Upper panels show the non-evolutionary model
while the lower panels show the evolutionary model for the case in which the dispersal kernel
is a fat-tailed Laplace distribution. Left panels show host densities over space for generations
1 through 11. Distances between wave front locations x̂n that reach the threshold density
N̄ = 1 × 10−3 in successive generations are shown as points. Right panels show the host
densities from the same simulations as a birds-eye view over generations n = 1 through 50.
In the right hand panels, the colored points show how far the wave front has moved, with
colors corresponding to the same generations as the left hand panels.
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Rank Evolution Dispersal kernel Cost ω Intrinsic growth r Dispersal value SSE
1 Yes Thin-tailed 7.44 1.01 E[|∆x|] = 1.73 28.9
2 Yes Fat-tailed 809.7 1.02 α = 1744.9 30.5
3 No Fat-tailed - 48.7 α =18.60 181.0
4 No Thin-tailed - 9.51 E[|∆x|] = 2.79 732.3

Table 3.1: Four models incorporating either eco-evolutionary dynamics (models 1 and 2),
fat-tailed dispersal (models 2 and 3) or both (model 2) and associated sum of squared errors.

fecundity increased, reducing variation (figure 3.5).

The only model without an accelerating wave of advance, the model without evolution

and with a thin-tailed kernel, provided by far the worst fit to the data (SSE = 732.3), with an

average residual difference between the best-fit wave front and the data of 11.0 km. From this,

we conclude that Douglas-fir tussock moth spread accelerated during re-establishment (figure

3.2). Although the model with a fat-tailed dispersal kernel and no evolution also generated

accelerating waves, that model badly overestimated the early 2000-2003 wave front position

and therefore also provided a poor fit to the data (SSE = 181.0, figure 3.2). The evolutionary

models provided a better fit to defoliation data than either of the models without evolution,

regardless of whether the dispersal kernel was fat- or thin-tailed (figure 3.2, table 3.1). Our

evolutionary models were able to capture both the slow expansion during the early stages

of the invasion and the more rapid expansion later in the invasion, and therefore had much

lower error overall (SSE = 28.9, 30.5, table 3.1). We therefore conclude that evolution is

necessary to explain tussock moth spread.

Notably, the two evolutionary models produced nearly identical wave fronts (figure 3.2).

To explain this similarity, we note that the fat-tailed Laplace converges to a thin-tailed

Laplace for high values of power law decay α ≥ 100 (figure 3.3A). This is important because

the evolutionary model with fat-tailed dispersal explained the defoliation data better at

higher levels of α, such that this best-fit dispersal kernel was effectively thin-tailed. In

contrast, the non-evolutionary model with fat-tailed dispersal model explained the data

better for lower values of α, and therefore required fat-tailed dispersal to explain the data
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Figure 3.2: The defoliation data and fit of our four competing models to the data. Left
panel shows a map of defoliation from 2000 to 2007. Habitable forest is shown in grey while
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other points show the defoliation from the left panel projected from 2D to 1D.
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(figure 3.3B).

Indeed, the estimated value of α = 1745 for the evolution model with a (potentially)

thin-tailed kernel was sufficiently high that there was no difference between the tails of its

dispersal kernel and those of the evolutionary model with an explicitly thin-tailed kernel

(figure 3.3A). The SSE difference between the two evolutionary models (∆SSE = 1.6) was

therefore due to the average dispersal distance, which was 1.73 km in the thin-tailed eco-

evolutionary model and 1 km in the fat-tailed eco-evolutionary model. The much lower SSE

at higher values of α demonstrates that the accelerating re-establishment that we observe in

the wave front data is not caused by fat-tailed dispersal kernels. Rather, the acceleration is

solely caused by the evolving infection risk and increased fecundity at the wave front. We

therefore conclude that accelerating waves in Douglas-fir tussock moth are better explained

by evolutionary change than by fat-tailed dispersal.

In addition to explaining the wave front spread, our eco-evolutionary model was able to

provide a good fit to defoliation data behind the wave front (figure 3.4). The eco-evolutionary

model was able to explain the defoliation data behind the wave front regardless of fat-tailed

(∆AIC = 0) or thin-tailed (∆AIC = −1.35) dispersal (figure D.3). Model ability to explain

wave fronts was independent of overwintering ϕ and survival γ, but tended to be higher for

low pathogen decay µ. We found that the initial year of re-introduction between 1995 and

1997 was important for explaining the defoliation data (figure D.5). There was considerable

support for intermediate values of heritability b = 0.02 and b = 0.002 based on likelihood

score comparison (figure D.4). Although the non-evolutionary model with a thin-tailed

dispersal kernel was the worst model for describing the wave front, we observed that it

was able to better describe defoliation data behind the wave front (∆AIC = −10.8) than

the model incorporating fat-tailed dispersal and lacking evolution, which provided the worst

explanation (∆AIC = −23.4). Our comparison of model simulations to defoliation data after

the initial invasion front therefore further indicates that exceptional dispersal is unlikely to
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Figure 3.3: Effects of power-law decay α on fat-tailed dispersal kernels. The top panel shows
the fat-tailed Laplace kernel with power law decay α, which is thin-tailed in the limit α =∞.
The red line shows the best-fit value of α from the non-evolutionary model while the black line
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a peak at the maximum likelihood estimate α = 18.6 (table 3.1), and is thus moderately
fat-tailed. For the model with evolution, however, the inverse SSE increases with α, showing
that the model with evolution fits the data better with a thin-tailed dispersal kernel.
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provide informative predictions for long-term population dynamics.

Crucially, the best-fit simulations of our eco-evolutionary models showed realistic cycles

in both the host and pathogen populations (figure 3.6). Moderate heritability b ≥ 0.02 was

important to produce realistic sustained cycles, with periods that averaged 7 to 11 years

and with amplitudes of several orders of magnitude, that mirror tussock moth populations

in nature (Shepherd et al. [1988], Dwyer et al. [2022]). While lower values of heritability

b ≤ 0.002 were able to explain some of the defoliation data, but led to dampened oscillations

that could not account for the recurrence of outbreaks in 2012. We therefore conclude that

our eco-evolutionary models with heritability b = 0.02 are able to explain recurrent outbreaks

caused by natural cycles through at least moderate heritability of infection risk.

Although variation in infection risk Vn(x̂n) near the wave front decreased during spread,

behind the wave front variation tended to increase sharply after the initial invasion and then

roughly stabilized at longer time scales (figure 3.5, figure 3.6). In our best-fit models, the

maintenance of heterogeneity is a direct result of cycle dynamics behind the wave front (3.6,

figure C.4). This effect occurs because populations at different stages of the tussock moth

outbreak and collapse behind the wave front interact through dispersal, leading to episodic

increases in variation Vn(x) behind the wave front (figure 3.6, figure 3.5). Because the host-

pathogen cycles in our model do not exactly repeat, small perturbations due to dispersal

between asynchronous populations can cause chaotic oscillations that are partly responsible

for this effect (figure 3.6, figure C.4, Sherratt [2001], Bjørnstad et al. [2002], Bennett and

Sherratt [2019]). In our spatial eco-evolutionary model, variation in infection risk is thus

maintained through dispersal between out-of-sync populations. We therefore conclude that

the realistic fluctuations predicted by our best-fit eco-evolutionary models contribute to the

long-term maintenance of variation in host infection risk.
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Figure 3.4: Comparison of model projections to data behind the wave front. Upper panels
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the best-fit model b = 0.2, γ = 0.05, ϕ = 15 and µ = 1 × 10−4. Red points indicate the
projected one dimensional location of defoliation data behind the wave front. Middle panels
show the total variation of infection risk Vn(x)

b . Variation does not go to zero over time,
instead fluctuating in a pattern similar to the fluctuations of host and pathogen densities.
Lower panels show the areas predicted to have high host densities across a range of simula-
tions. Red layers show host densities that were greater than or equal to the 95th percentile
within each of 10 simulations that varied pathogen overwintering ϕ = 5, 10, 12, 15, or 25 and
inter-generational pathogen survival probability γ = 0.05 or 0.1. The 1D simulations are
projected into 2D space as bands that move in one dimension along PC1, shown as a dashed
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3.1).
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Figure 3.6: Eco-evolutionary population dynamics with and without space. Left panels
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3.4 Discussion

Here, we show that a host-pathogen model with heritable host resistance provides a better

explanation for the accelerating wave of defoliation observed during the re-establishment of

Douglas-fir tussock moth outbreaks in western Montana than does a non-evolutionary model

with fat-tailed dispersal. Moreover, the best evolutionary model realistically projects the

maintenance of host variation behind the front and does an excellent job of predicting areas

of defoliation behind the initial wave. A combination of models and data thus provides strong

evidence that an eco-evolutionary host-pathogen interaction led to the rapid re-occurrence

of Douglas-fir tussock moth outbreaks after a multi-decadal absence in western Montana.

Dispersal traits often receive more attention than other traits in the study of biological

invasions (Olivieri et al. [1995], Shigesada and Kawasaki [1997], Kot et al. [1996], Liu and

Kot [2019], Perkins et al. [2013], Brown et al. [2013a], Bennett and Sherratt [2019], Erm and

Phillips [2020]). Although ballooning allows larval populations to disperse and thus escape

the baculovirus, we observed that fat-tailed dispersal provided only a poor explanation of

our data on tussock moth population spread. Our findings support previous conjectures

that long-distance dispersal alone is unlikely to explain Douglas-fir tussock moth population

spread (Mitchell [1979]). Because fat-tailed dispersal provided a meaningfully worse but not

terrible fit to the wave speed data (figure 3.2), our study demonstrates the importance of

comparing competing models to data in studies of accelerating invasions.

Our model also projected that variation in host infection risk will be low near the wave

front (figure 3.5). Decreased variation during population expansion is often considered to

be the product of dispersal bottlenecks and demographic stochasticity (Lande [1988], Miller

et al. [2020]), but our model shows that reductions in variation at the wave front can alter-

natively be due to selection acting on traits at the wave front. Because we observed that

infection risk variation decreased more sharply at the wave front than in the corresponding

non-spatial model, and because host population sizes near the advancing wave front were
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larger, it is unlikely that dispersal bottlenecks altered variation in infection risk in Douglas-fir

tussock moth populations during expansion.

Notably, the model does a poor job of reproducing the absence of defoliation in 2006 (fig-

ure 3.4). This difference may be due to variables not included in our models that nonetheless

complicate the prediction of insect population dynamics. For example, generalist parasitoids

can affect tussock moth densities (Mason [1970], Mason et al. [1977], Dahlsten et al. [1977],

Brookes et al. [1978], Dwyer et al. [2004], Liu et al. [2023]), while forest cover patchiness

may alter host survivorship. These factors would not alter conclusions about the acceler-

ating wave front, however, because neither parasitoids nor habitat patchiness affect wave

speeds in our models (Appendix D.1). In contrast, weather fluctuations and climate shifts

are well-known to have effects on advancing wave fronts (Parmesan and Yohe [2003], Di-

amond [2018]). This could be especially true for the Douglas-fir tussock moth, for which

temperature, relative humidity, and precipitation across years have been shown to regulate

outbreak severity and host reproduction (Dixon [2024]), which is closely tied to wave speed.

These climatic variables may have led to a lack of defoliation observed in 2006.

Recent empirical studies have shown that, in expanding populations, genetic variation

tends to be lower at the wave front than behind the wave front (Rollins et al. [2015], Williams

et al. [2016], Dahirel et al. [2022]). Previous theory has largely explained this phenomenon

through demogrpahic bottlenecks, whereas our work shows that it can also be explained by

species interactions with evolving interaction terms. Our work may therefore be of broad

applicability in large populations with increasing fecundity during invasion. Population dy-

namics and ecological interactions in the wake of invasions have also been poorly understood

(Miller et al. [2020], Erm and Phillips [2020]), and so our result that species interactions

behind the wave front can maintain variation may similarly be of general importance. Our

work thus shows that models of eco-evolutionary species interactions over time and space

can provide meaningful insights into the effects of evolutionary change on invasions and the
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spatial pattern of population cycles.
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CHAPTER 4

CONCLUSIONS AND FUTURE DIRECTIONS

In this study we provide evidence that spatial structure is important for understanding

the disease ecology of Douglas-fir tussock moth. Our work at two different spatial scales

uses model comparison informed by empirical data to draw conclusions about the spatial

patterning of tussock moth populations.

In Chapter 2, we demonstrated that transmission hotspots drive overall pathogen dy-

namics and that these hotspots change over time. The initial transmission hotspots are due

to patchy pathogen distribution. Later, host dispersal between low-intensity transmission

coldpsots and high-intensity transmission hotspots mediates the rate at which transmission

increases in coldspot sub-epizootics. We showed that this theoretically important result has

consequences for the severity and extent of defoliation caused by Douglas-fir tussock moth

larvae, which survive longer in coldspot refugia. This study extends previous work that could

not explain defoliation extent using non-spatial baculovirus transmission models (Mihaljevic

et al. [2020]) or insect density alone (Mason [1996]).

In Chapter 3, we extended spatial models to encompass multiple populations over long

time periods. We determined that heritable infection risk variation generates the spatial

patterning of defoliation over large landscape scales. A key feature of this spatial patterning

is the accelerating wave front of high density host populations that occurred in our evolu-

tionary models. Exceptionally long-distance dispersal was shown to not be as important

for explaining the wave of Douglas-fir tussock moth re-establishment in western Montana.

These findings demonstrate how spatial structure maintains heritable infection risk behind

the accelerating wave front of invading host-pathogen interactions.

Both Chapters 2 and 3 make distinct assumptions about how average infection risk is

distributed amongst populations. In Chapter 2, average infection risk during the epizootic

varies across trees, becoming more variable over time due to differences between transmis-
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sion hotspots and coldspots. Meanwhile, the initial average infection risk is assumed to be

consistent across independent populations. In Chapter 3, the evolutionary integrodifference

model assumes that initial average transmission risk ν̄n(x) does differ across populations and

individuals at any point x are assumed to be perfectly mixing. Although these assumptions

appear to be at odds with each other, the different scales of observation and heritability term

b allows for consistency and leads to a general synthesis of spatial structure that describes

tussock moth population dynamics.

We first note that host populations in our integrodifference model tended to have the same

average infection risk ν̄n(x) when host densities were high. Additionally, the heritability term

b of our integrodifference model allows for a proportion (1− b) of variation that is driven by

the environment, which includes local spatial structure. In contrast, all of the infection risk

variation V ≡ C2 in our continuous time spatial models (Chapter 2) is assumed to be intrinsic

to host biology because local spatial structure is included explicitly. The consequences of

this assumption can be seen when comparing the estimated infection risk variation in spatial

models to that estimated in non-spatial models (figure B.4). The non-spatial had the highest

estimated infection risk variation. The relative estimate of variation in our best spatial model

indicates that spatial structure generates approximately 61.5% of infection risk variation.

This difference shows the consistency of the model across both chapters, where the value of

heritability b ≈ 0.39 is close to the moderate level of heritability b = 0.2 that we found to

be important for maintaining cycles behind the wave front (figure 3.4). However, because

lower levels of heritability b ≥ 0.002 provided some level of explanation for the defoliation

data, there is likely some unaccounted for variables that contribute to non-heritable variation

beyond spatial structure alone.

There are many mechanisms that our integrodifference models lack that could explain

lower values of infection risk heritability b. First, Douglas-fir tussock moth larvae feed upon

multiple tree species throughout their range (Brookes et al. [1978]). Although predominantly
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feeding on Douglas-fir (Pseudotsuga menziesii) and true firs (Abies spp.), larvae have also

been found feeding on other, sub-optimal foraging trees. Tree host is important as species

can determine fecundity and health of larvae (Mason et al. [1977], Alfaro and Shepherd

[1991], Mason [1996]). Further, it is well-known that plant diet influences interactions with

baculovirus in the insect gut, with consequences for population-level transmission (Dwyer

et al. [2005], Cory and Hoover [2006], Lee et al. [2006], Cory and Hoover [2006]). Douglas-fir

constituted most of the forest stands from the infection rate monitoring data of Chapter 2,

intermixed with grand fir in the forest stand of the Idaho and Oregon study sites and with

some larvae feeding on Ponderosa pine (Pinus ponderosa) at the Oregon study population.

The Montana study populations, near the accelerating wave populations assessed in Chapter

3, were entirely Douglas-fir, however, meaning that this variable may have little importance

for explaining our estimate of heritability explaining patterns of defoliation in the area.

Second, the baculovirus transmitted in Douglas-fir tussock moth populations represents

two distinct clades of nucleopolyhedroviruses (Hughes and Addison [1970]). So-called “mor-

photypes", for their distinguishing morphology, the two clades are highly genetically diverged

(Thézé et al. [2018], Williams and Otvos [2005]). Multiple non-linear interactions could lead

to increased non-heritable variation. To begin, the two morphotypes can have differing trans-

mission rates depending on the larval diet and specialize on particular instars (Williams and

Otvos [2005], Mihaljevic et al. [2020], Dixon [2024]). Further, there is also genetic variation

within each morphotype, co-infection is not uncommon, and host and pathogen co-evolution

are only recently coming to be understood (Williams and Otvos [2005], Fleming-Davies et al.

[2015], Hudson et al. [2016], Dixon [2024]). Not only would pathogen heterogeneity contribute

to the overall host infection risk variation across populations, pathogen heterogeneity would

also have ramifications for transmission hotspots. Patchy pathogen distribution would be

made more variable under pathogen heterogeneity. We observed a range of baculovirus mor-

photype compositions in our infection rate study data, but did not encode this information in
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the models. Future research should therefore work to combine our small-scale dispersal and

transmission hotspot model with models that have addressed morphotype by environment

co-evolution models (Fleming-Davies et al. [2015], Hudson et al. [2016], Dixon [2024]).

Third, parasitoids, which kill hosts by growing inside of them, are prevalent in tussock

moth populations Mason et al. [1977], Dahlsten et al. [1977], Brookes et al. [1978], Hughes

et al. [2015]. Natural data on parasitoid prevalence reflects theory that show specialist par-

asitoids (Bjørnstad et al. [2002]) and generalist predators (Dwyer et al. [2004]) can affect

Lepidopteran population dynamics. Parasitoids can grow in any stage of development (eggs,

larvae, or pupae), which can alter relative mortality due to other factors such as baculovirus

infection (Mason et al. [1977]). For example, if larval parasitoids were present, susceptible

host larvae will be removed from the population during the epizootic. In reference to Chapter

2, this would mean that coldspot sub-epizootics may not show increased late-season trans-

mission. In contrast, if egg parasitoids were present, reduced numbers of emerging larvae

could decrease the number of exposed first-instar larvae and thereby increase the patchiness

of pathogen distribution. It is then trivial to note that these local parasitoid impacts would

increase the environmental variation of infection risk, decreasing the heritability b = 0.39

approximated from differences between posterior estimates of C2. This is especially true

since patchy spatial environments contribute to the variation of specialist parasitoids more

than generalist predators (Hughes et al. [2015]). In general then, adding non-linear host-

parasitoid interactions would exacerbate the complexity of the host-pathogen interactions

(Dwyer et al. [2004]). Parasitoids may therefore be able to explain gaps between heritability

estimates that our eco-evolutionary model cannot explain. We should likely consider these

effects across scales and the consequences for heritable host variation.

Finally, although we have seen that environmental noise is not informative for sin-

gle epizootics (Chapter 2), environmental differences over larger spatial scales and climate

change over longer time periods will affect Douglas-fir tussock moth populations (Shepherd
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et al. [1988], Dixon [2024]). Despite baculovirus transmission being generally unaffected by

weather, climate change effects on Douglas-fir tussock moth populations will also likely have

consequences for the baculovirus through either immunity and reproduction (D’Amico and

Elkinton [1995], Cory and Myers [2003]. Further, plant diet and baculovirus infection inter-

act; as forest composition and leaf chemical composition shift under a changing climate, we

will also need models that account for the interactions of climate, plant diet, and pathogen

variation in addition to spatial variability (Cory and Hoover [2006], Elderd and Dwyer [2019],

Dixon [2024]). Although significant recent research has enhanced our understanding in these

areas (Dixon [2024]), the implications of these interactions for initial pathogen densities and

dispersal-mediated hotspot shifts are not clear. Climate change will lead to host range shifts

(Diamond [2018], Dixon [2024]), but the speed at which these expansions will occur is un-

certain. We’ve characterized the distance distribution in one such area that showed a novel

range expansion where defoliation was not previously detected (Section D.2.2). Therefore,

the projections of Chapter 3 have to be combined with range shift models that account for

climatic variables in order to predict the future spatial patterning of Douglas-fir tussock

moth populations.

A key piece of data missing from our analyses is genetic relatedness over space, which

would more clearly identify the rate of spread. Genetic data can be used to estimate popula-

tion mixing and dispersal rates (Osmond and Coop [2021]), which would allow for additional

evidence supporting estimates of dispersal from accelerating wave defoliation data. Addi-

tionally, the degree of genotypic variation present in both host and baculovirus samples could

provide insights into phenotypic variation of heritable infection risk. For example, genetic

information would complement mating experiments that test the heritability and cost of in-

fection risk or allow for the identification of loci involved in fecundity and infection risk traits

(Section D.2, Páez et al. [2017]). Thus, the synthesis of genetic data, mating experiments,

and climatic host range models would aid in our ability to understand the variability inherent
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in tussock moth population cycles and better predict the spatial patterning of defoliation for

better insect outbreak management.
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APPENDIX A

INFECTION RISK DISTRIBUTIONS OVER CONTINUOUS

SPACE AND CONTINUOUS TIME

In our core SEP model, we assume that hosts vary in their susceptibility (Dwyer et al. [2000],

Mihaljevic et al. [2020]). Host heterogeneity is denoted by the coefficient of variation in the

distribution of infection risk C. The coefficient of variation is derived from a moment closure

approximation over the continuous distribution of host infection risks S(ν, t) yielding mean

transmission risk ν(t) and the fixed shape parameter C. In this model, more susceptible

individuals are infected with the virus at a faster rate. From our moment closure approxi-

mation, only the mean transmission risk changes over time, while the ratio of the variance

to the squared mean, C2, remains constant. In a non-spatial model, we can integrate dν
dt and

we end up with the term

ν(t) = ν̄

(
S(t)

S(0)

)C2

(A.1)

where ν̄ ≡ ν(0) and the effective transmission rate ν(t) is shown to decrease over time as

S(t) is strictly decreasing and C is strictly positive. The rate of decrease in transmission due

to the incorporation of host heterogeneity is determined by C2 such that a higher coefficient

of variation of infection risk C leads to faster decline in transmission and shorter epizootics

with higher host survivorship.

Spatial heterogeneity contributes to heterogeneity in individual infection risk (Keeling

and Rohani [2008], Elderd et al. [2022]). Therefore, we have to close the moments of S(ν, x, t)

bearing in mind this new assumption. It is worth reproducing the moment closure without

space here first, despite its summary above and presence in other publications, to simplify

the understanding of notation used in the spatial moment closure.
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A.1 Non-spatial moment closure approximation

We can use a simple SIR model to demonstrate the non-spatial moment closure. The toy

model for our demonstration is thus

∂S

∂t
= −βSI, (A.2)

dI

dt
= I

∫ ∞
0

βS(β, t)dβ − γI. (A.3)

where a partial derivative over S shows how all susceptible host populations distributed

according to their transmission risk β change over time. The infectious class I is produced

according to the expectation of this transmission risk in the susceptible population.

We define the jth moments of the distribution of S(β, t) as follows:

sj =

∫ ∞
0

βjS(β, t)dβ, (A.4)

mj =

∫∞
0 βjS(β, t)dβ∫∞
0 S(β, t)dβ

. (A.5)

(A.6)

Most of what we care about in the distribution of susceptibles is in the lower moments,

where s0(t) is the total susceptible population and m1(t) is the expected transmission risk

of the susceptible class at time t. This simplifies what we define as the rate of change in

infectious class I in equation (A.3), where we now have

dI

dt
= I

∫∞
0 S(β, t)dβ∫∞
0 S(β, t)dβ

∫ ∞
0

βS(β, t)dβ − γI. (A.7)

= Is0(t)m1(t)− γI. (A.8)
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We would like to do simplify equation (A.2) as well, but we wind up with an infinite

chain of lower moments that depend on higher moments.

s′j =
∂

∂t

∫ ∞
0

βjS(β, t)dβ, (A.9)

=

∫ ∞
0

βj
∂S

∂t
dβ, (A.10)

=

∫ ∞
0
−βj+1SIdβ, (A.11)

= −Isj+1 (A.12)

= −Imj+1s0 (A.13)

We “close" these moments before s∞ by assuming that the CV is constant

CV =

√
Var[x]
E[x]

, (A.14)

=

√
E[x2]− E[x]2

E[x]
, (A.15)

=

√
m2 −m2

1

m1
(A.16)

and we therefore can use algebra to remove m2 from our final system of equations. We

use the quotient rule to define m′1

m′1 =
s′1s0 − s′0s1

s20
(A.17)

=
(−Is2)s0 − (−Is1)s1

s20
(A.18)

= −I
s0s2 − s21

s20
(A.19)

= −I
(s2
s0
−
(s1
s0

)2)
. (A.20)

= −I
(
m2 −m2

1

)
. (A.21)
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Noting that

C2 =
m2 −m2

1

m2
1

(A.22)

m2 −m2
1 = m2

1C
2 (A.23)

and remembering our definition in equation A.13, we can write our model accounting for

host heterogeneity in susceptibility as

ds0
dt

= −m1Is0 (A.24)

dm1

dt
= −m2

1C
2I (A.25)

Using notation from our SEP model, where

S ≡ s0 (A.26)

ν ≡ m1, (A.27)

we have completed the moment closure with

dS

dt
= −νSP (A.28)

dP

dt
= νSP − µP (A.29)

dν

dt
= −ν2C2P (A.30)

A.2 Moment closure in space

We are now looking to close moments of a PDE system that distributes populations over

space. Again using our toy model SIR notation, we have S(β, x, t) and I(x, t), where x
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is one-dimensional space. Two-dimensional calculations are more algebraically-intense, but

produce the same system of equations.

Our initial model for which we need a moment closure is then

∂S

∂t
= −βSI +D

∂2S

∂x2
(A.31)

∂I

∂t
= I

∫ ∞
0

βS(β, x, t)dβ − γI (A.32)

where we conveniently do not need to account for the diffusion of infectious cadavers,

although calculations would be the same for an analogous communicable disease with live

infectious individuals. Following our earlier moment closure approach, we have

∂s0
∂t

=
∂

∂t

∫ ∞
0

S(β, x, t)dβ (A.33)

=

∫ ∞
0

∂S

∂t
dβ (A.34)

=

∫ ∞
0

(
− βSI +D

∂2S

∂x2

)
dβ, (A.35)

= −I
∫ ∞
0

βSdβ +D
∂2
∫∞
0 Sdβ

∂x2
(A.36)

= −m1Is0 +D
∂2s0
∂x2

(A.37)

Now that we have added a diffusion term, the expression for the derivative of each

successive moment is not identical to the last as in equation A.13. Even calculating the next

moment s′1 is cumbersome
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∂s1
∂t

=
∂

∂t

∫ ∞
0

βS(β, x, t)dβ (A.38)

=

∫ ∞
0

β
∂S

∂t
dβ (A.39)

=

∫ ∞
0

β

(
− βSI +D

∂2S

∂x2

)
dβ, (A.40)

= −Is2 +D
∂2s1
∂x2

(A.41)

= −Is2 +D
∂2
(
m1s0

)
∂x2

(A.42)

= −Is2 +D

(
s0

∂2m1

∂x2
+ 2

∂m1

∂x

∂s0
∂x

+m1
∂2s0
∂x2

)
. (A.43)

we are, however interestedf in m1(x, t), not only s1(x, t), thus we again take the quotient

rule derivation

∂m1

∂t
=

∂

∂t

(
s1
s0

)
(A.44)

=
∂s1
∂t s0 −

∂s0
∂t s1

s20
, (A.45)

= s0

(
−Is2 +D

(
s0

∂2m1

∂x2
+ 2

∂m1

∂x

∂s0
∂x

+m1
∂2s0
∂x2

))
/s20

−s1
(
−m1Is0 +D

∂2s0
∂x2

)
/s20 (A.46)

= −m2
1C

2I +D

(
(s20/s

2
0)
∂2m1

∂x2
+ 2(s0/s

2
0)
∂m1

∂x

∂s0
∂x

+ ((m1s0)/s
2
0 − s1/s

2
0)
∂2s0
∂x2

)
(A.47)

= −m2
1C

2I +D

(
∂2m1

∂x2
+ (2/s0)

∂m1

∂x

∂s0
∂x

)
(A.48)

= −m2
1C

2I +
D

s0

(
s0

∂2m1

∂x2
+ 2

∂m1

∂x

∂s0
∂x

)
(A.49)

The final system of equations is thus
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∂S(x, t)

∂t
= −m1IS +D∂2S

∂x2
(A.50)

∂m1(x, t)

∂t
= −m2

1C
2I + D

s0

(
s0

∂2m1
∂x2

+ 2∂m1
∂x

∂s0
∂x

)
(A.51)

And altogether with our SEP model notation, we end up with the final PDE system

presented in the main text

∂S(x, t)

∂t
= −νPS +D

∂2S

∂x2
(A.52)

∂ν(x, t)

∂t
= −ν2C2P +

D

S

[
S
∂2ν

∂x2
+ 2

∂ν

∂x

∂S

∂x

]
(A.53)

∂E1(x, t)

∂t
= νPS −mδE1 +D

∂2E1

∂x2
(A.54)

∂Ei(x, t)

∂t
= mδEi−1 −mδEi +D

∂2Ei

∂x2
(i ∈ [2,m]) (A.55)

∂P (x, t)

∂t
= mδEm − µP (A.56)

(A.57)
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APPENDIX B

FITTING SPATIAL MODELS TO INFECTION RATE DATA

USING AN ADAPTED MCMC ALGORITHM

B.1 Likelihood incorporation of sample error with reflections on

data

Binomial probability mass functions can be used to calculate the probability of observing

a given number of hosts infected per number of hosts collected. Often in natural systems,

we know that count data are overdispersed compared to a binomial distribution, meaning

that the variance of observed counts is higher than would be expected under a binomial

distribution. To account for overdispersion, beta-binomials are frequently invoked to describe

the distribution of count data Young-Xu and Chan [2008]. The beta-binomial assumes that

the number of insects infected k (out of n collected insects) depends on the true fraction of

hosts infected p; however, it further assumes that p varies and is itself a random variable.

For example, each sample i can have its own true fraction of infected insects, pi, distributed

according to a beta distribution with shape parameters α and β, denoted B(α, β), taking

the form

f(ki|ni, α, β) =
∫ 1

0
Bin(ki|ni, pi)Beta(pi|α, β)dpi (B.1)

=

(
ni
ki

)
B(ki + α, ni − ki + β)

B(α, β)
(B.2)

where B(α, β) is the Beta function, B(α, β) =
G(α)G(β)
G(α+β)

, and G is the Gamma Function,

G(z) =
∫∞
0 tz−1e−tdt.

For our non-spatial model, we thus have a beta-binomial distribution that has expectation

E[pi] = α
α+β and variance V (pi) = E[pi](1−E[pi])γ. We can see that γ is the overdispersion.
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Overdispersion γ is bounded between 0 and 1 because γ = 1
α+β+1 . If γ = 0 there is no

variance, meaning that we recover the binomial distribution because p is always exactly

equal to E[pi], whereas if γ = 1 then the overdispersion is at its maximum and the variance

of the beta distribution with mean E[pi] is greatly increased.

We observed that it is easier to fit a log-log inverse overdispersion because we can place a

wider range on the parameter during model fitting and give equal weight to small, non-zero

values and values approaching maximal overdispersion γ = 1. Therefore we define

γ =
1

exp(exp(γ̂))
, (B.3)

where the fitted parameter γ̂ is unbounded, with values of −∞ being maximally overdis-

persed and values of ∞ possessing zero overdispersion. We can therefore define the beta

distribution of pi according to the overdispersion γ and mean fraction infected p, which is

taken from a given time point in the non-spatial model simulation as

p(t) =

∑m
j=1E(t)j

S(t) +
∑m

j=1E(t)j
. (B.4)

Defining α = pγ−1 and β = (1−p)γ−1, we can capture a range of distribution behaviors.

B.1.1 Bounded kernel density estimators

In contrast to the non-spatial model, our spatial models assume the fraction infected pi

to be distributed according to the observed values over space and time. Instead of a beta

distribution then, we construct a kernel density estimator (KDE) of the histogram of fractions

infected. Kernel density estimators are smoothing approximations to the full distribution of

a variable given some sample. Some number n of data points are given as inputs and the

output is a density estimate that integrates to 1 over the whole interval of the distribution

(0, 1). The likelihood functions of our spatial models are then generally of the form
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f(ki|ni, θ⃗) =
∫ 1

0
Bin(ki|ni, p)Kx(p, t)dp, (B.5)

where K(p, t) is the kernel density estimator of the distribution of fraction infected over

space at time t.

Fundamentally kernel density estimates are built by a summation of distributions cen-

tered at each data point. There are two hyperparameter components to a given kernel

density estimate. These are the bandwidth h, which is a measure related to the variance of

the distribution replicated and centered at each data point, and, in practical applications,

the integration step g, the evenly spaced units over which the density is calculated so that

integrating it using numerical methods yields 1. These two hyperparameters are optimized

independently of each other, with h scaling as n−
1
5 and g typically being set to some suf-

ficiently small value so that there are 102 to 103 steps over the data range plus or minus

m× h (Chen [1999]).

Typically, we assumed that the data are unbounded and that Gaussian distributions with

σ = h are centered at each data point. This means that the kernel density estimate K(X)

is equal to

K(X) =
1

n

n∑
1

N (xi, h) (B.6)

However, these calculations do not work for bounded data. For example, if we consider

a beta-distributed variable Y ∼ Beta(α, β), normally-distributed approximations will give

non-zero density for observations outside the range the data can take on. To account for this

issue, we have to change the distribution centered at each point and adjust our calculation

of the bandwidth h.
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h = min
(
σX + ϵ,

IQR(X)

1.34

)(
4n

3

)−2
5

(B.7)

K(X) =
1

n

n∑
i=1

g(xi, h) (B.8)

where

g(x, h) =


Beta

(
x|ρ(x, h), 1−xh

)
, x ≤ 2h

Beta
(
x|xh , ρ(1− x, h)

)
, x ≥ 1− 2h

Beta
(
x|xh ,

1−x
h

)
, otherwise


(B.9)

ρ(x, h) = 2h2 + 2.5−
√

4h4 + 6h2 + 2.25− x2 − x
h (B.10)

The average of all Beta distributions g(x, h) is an unbiased estimator of the bounded density

K(X). If only one point in our spatial simulation had non-zero host density, we instead set

K(X) to be a Dirac delta function with point density at the fraction infected observed in

the surviving population.

During our spatial simulations, we take the estimate of the fraction infected at each

point in space, from the fraction summation formula in equation B.4, and used these values

to generate the bounded density K(X) from 0 to 1. We then integrate using the binomial

likelihood function f(ki|ni, θ⃗). We used the trapezoidal rule with 401 integration steps to

integrate the binomial likelihood over density estimator K(X).

Once we calculated the value of the pointwise likelihood f(ki|ni, θ⃗) from a given simula-

tion for all of our data, we take the sum of the log likelihood scores as the final likelihood

for a given parameter set. During model fitting, we used one model realization per likeli-

hood score calculation and during log pointwise predictive density calculation we used 64
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realizations per likelihood calculation.

B.1.2 Temporal overdispersion is better captured by spatial models due to

improved sample error estimation

It is important to note that the construction of K(X) allows for overdispersion to vary

temporally while the use of hyperparameter γ in the beta-binomial non-spatial likelihood

does not allow for changes in overdispersion over time.

If γ > p, then the beta distribution is bimodal, otherwise the distribution is unimodal.

This means that during times with low infection rates in a fixed overdispersion model, the

distribution of fraction infected p(t) will be bimodal for low values of fraction infected. This

is the opposite case in our spatial model, where the bimodality, and thus overdispersion, is

most pronounced during the middle to late season of the epizootic. Therefore, the fitted

overdispersion values in our spatial models provided much better fits to those overdispersion

values bootstrapped from our infection data (figure B.1).

B.2 PCA-adjusted MCMC provides computationally-efficient

convergence

B.2.1 Dimensionally-reduced Gibbs sampler

Sampling from high-dimensional posterior distributions π(w|x) can be challenging with stan-

dard MCMC algorithms due to potential correlations between the parameters w Kennedy

and Dwyer [2018]. These correlations can lead to poor mixing and slow convergence. To

mitigate this issue with our Gibbs sampler, we first generated a reasonable proposal distribu-

tion w using linesearch and then used principal component analysis (PCA) transform h(w)

to account for correlations between parameters (algorithm 2, Kennedy and Dwyer [2018]).

This gave us proposed values in terms of the principal components, which are orthogonal
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Figure B.1: Posterior estimates of overdispersion over time (ribbons) versus bootstrapped
smaple data (points). Temporal variance in oversdispersion seems to be important and PDE
matches data. Beta-binomial with fixed overdispersion cannot replicate data appropriately.

and therefore uncorrelated by construction and allows for better mixing. We then repeated

this process iteratively to increasingly improve un-correlated proposal distributions.

We generated our first proposal distributions by using 500 line search algorithms and

taking the parameter sets in the top 40% of posterior probabilities, which forms a rough

78



posterior surface. We then transform these line search outputs using PCA and use this as a

proposal distribution following algorithm 2. We then take the posterior from our first round

of MCMC, using 5000 iterations and a burn-in period of two integrated autocorrelation

times (IATs). This prevents inclusion of overdispersed initial parameter suggestions. We

then do another round of MCMC, transforming the posterior using a second PCA and run

10000 iterations, which we show to be approximately the IAT squared in all of our model

construction MCMCs. In figure B.2 we show the proposal distribution and posterior for our

two rounds of MCMC, which allowed us to in a sense parallelize MCMC in time.

We initialized our state r(0) by independently drawing the principal component coeffi-

cients fromN (0, σi), with variances being multiplied by 1.2 to overdisperse our initial sample.

Applying h−1 to r(0) yielded the corresponding parameter vector θ(0) in the original space,

while still being expressed in an uncorrelated basis. This helped eliminate potential issues

with correlated initial conditions. We then performed dimensionally-reduced Gibbs sampling

in the principal component space as follows. At each iteration t, we cycled through each

principal component j, proposing updates by drawing r′j from N (0, σj). Crucially, we only

sample each principal component in proportion to the total variance that it can explain in

the proposal distribution. This means that lower order principal components are re-sampled

less frequently for a more efficient exploration of the high-dimensional distribution space,

thus saving simulation time of more similar parameter sets. Over MCMC posterior-proposal

iterations, the distribution of variance explained by lower order components becomes more

even and acceptance ratios approach ideal mixing (figure B.5), resulting in more frequent

draws from these components relative to first and second order principal components.

After computing the proposed full parameter vector θ′ = h−1(r′), we evaluated the cor-

responding posterior π(θ′|x). We then used the standard Metropolis-Hastings acceptance

ratio of posteriors and proposal densities. We only used one realization of each model per

likelihood score calculation. To avoid the winner’s curse fallacy common to stochastic mod-
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els, where exceedingly good likelihood scores are accepted too quickly, we initially rejected

acceptance ratios greater than one. For these parameter sets, which would otherwise be

accepted under a standard Gibbs sampler, we re-calculated the likelihood and then followed

the standard protocol for the second acceptance ratio, making this sampler cautious. We

still followed the standard approach to accept ratios less than one with the probability of

acceptance being the ratio in order to avoid rejecting slightly worse parameter sets. If a pro-

posed component update was accepted, we updated r
(t)
j , θ(t), and our estimated posterior

π̂ (algorithm 2).

By performing most of the algorithm’s operations in the orthogonal principal component

space, we were able to effectively decouple the correlated parameters and sample from the full

posterior distribution much more efficiently than could be achieved with standard MCMC

approaches on the original correlated space.

Algorithm 1: Initialize Gibbs Sampler
Define h(w) as the PCA transform of n−dimensional posterior π(w|x);
Define σ⃗ as the vector of length n where σi denotes the standard deviation of
principle component i from h(w);

Define v⃗ as vector of length n where vi denotes the variance explained by principal
component i;

Initialize r(0) from h(w) where ri ∼ N (0, σi);
Initialize θ(0) ← h−1(r(0));
Initialize π̂ ← π(θ(0)|x);

B.2.2 Convergence diagnostics

In table B.1, we show the priors used and list of parameters across all models.

The MCMC chains showed improved mixing over MCMC proposal-posterior iterations.

From our best spatial model, we show some examples for the parameters ν̄, µ, δ, and C,

which were the only parameters in all of our models that were not host or pathogen densities

(figure B.3). We also show the respective Gelman-Rubin R̂ statistics for each chain (figure
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Algorithm 2: Iterative PCA Gibbs Sampler
for MCMC iteration t ∈ (1, n) do

Store r′ ← r(t−1);
for Principal component j ∈ (1, n) do

if (t mod ⌊v0v−1j ⌋) == 0 then
Propose r′j ∼ N (0, σj);
Set θ′ = h−1(r′);
Calculate π(θ′|x, s1) with random seed s1;

Calculate criterion ρ ≡ π(θ′|x)
π̂ ×

p
(
r
(t−1)
j |σj

)
p
(
r′j |σj

) ;

Draw random number u1 ∈ (0, 1];
if ρ < u1 then

Reject proposal and store r
(t)
j ← r

(t−1)
j ;

Re-store r′j ← r
(t−1)
j ;

else if ρ < 1 then
Accept r

(t)
j ← r′j ;

Store θ(t) ← θ′;
Re-calculate and store π̂ ← π(θ′, s2|x) with random seed s2 ̸= s1;

else
Re-calculate π(θ′|x, s2) with random seed s2 ̸= s1;

Re-calculate criterion ρ =
π(θ′|x)

π̂ ×
p
(
r
(t−1)
j |σj

)
p
(
r′j |σj

) ;

Draw random number u2 ∈ (0, 1];
if ρ < u2 then

Reject proposal and store r
(t)
j = r

(t−1)
j ;

Re-store r′j ← r
(t−1)
j ;

else
Accept r

(t)
j ← r′j ;

Store θ(t) ← θ′;
Store π̂ ← π(θ′|x, s2)

end
else

r
(t)
j ← r

(t−1)
j ;

end
end

end
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Figure B.2: Each column represents our fitting routine proposals and posteriors for different
model constructions. Black points show the proposal distribution in PCA space generated
by our linesearch routine and red overlaid points in the top panels show the MCMC posterior
from these proposals. In the bottom panels, Red again is the MCMC posterior, this time as
a proposal distribution, and our second posterior distribution from MCMC in PCA space is
overlaid in blue. In most cases, the second round of MCMC aided in convergence but did
not qualitatively alter the proposal distribution, except in the right-most panel of Model 12,
the PDE with environmental stochasticity.

Parameter Description Prior distribution shape Prior parameters Units Source or rationale

c1 Diffusion constant Uniform lower = 0, upper = 0.37 individuals per day per tree2 -

c2 Michaelis-Menten growth constant Normal mean = 7.8, sd = 1.77 days Development data during study

ν̄ Average initial infection risk Log-normal logmean = -4.82, sd = 0.59 individuals per tree per day Mihaljevic et al. [2020]

C Coefficient of variation over infection risk Log-normal logmean = 0.047, sd = 0.375 unitless Mihaljevic et al. [2020]

δ Mortality rate Gamma shape = 200, rate = 0.06 individuals per day Mihaljevic et al. [2020]

µ Pathogen decay rate Uniform lower = 0, upper = 0.6 individuals per day -

σ Standard deviation of environmental noise Gamma shape = 2, scale = 3 unitless Reasonable levels for variability

γ Beta distribution overdispersion Uniform lower = 0, upper = 148.4 unitless -

S̄0 Initial average host population Normal Population-specific hosts per tree Population-level branch densities at first sample

P̄0 Initial average pathogen population Uniform lower = 0.0037, upper = 148.4 cadavers per tree -

t0 Time of first sample Log-normal logmean = 0, sd = 0.5 days Second instar proportion at first sample

Table B.1: Priors and parameter description for all models
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Figure B.3: Example of four parameters from our best spatial model during iterative MCMC
thinned by the IAT. The second MCMC iteration shows better mixing and a tighter posterior
distribution due to the improved proposal distribution generated from the previous MCMC
iteration posterior. Scales are consistent across MCMC iterations but are different across
parameters to improve visualization.

B.5). In the first round of MCMC, R̂ values indicate poorer mixing as compared to the

acceptable values shown in round 2. Acceptance ratios were also improved towards ideal

mixing, approaching the acceptance of ∼ 25% of proposed values in our second round.

These acceptance ratios indicate that the proposal distribution of our Gibbs sampler closely

resembled the true posterior distribution. Additionally, our chains were longer than the

squared estimated sample size, based on integrated auto-correlation time, adding to our

confidence in the posterior estimates from each MCMC output.
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Figure B.4: Differential equations models yielded posterior distributions for transmission
parameters that were highly divergent from agent-based posteriors. Notably, C was esti-
mated to be less than 1 for differential equations, which qualitatively changes the long-term
dynamics of the system to produce cycles. The non-spatial model, however, estimated a
much higher coefficient of variation in infection risk C.
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Figure B.5: In the left panels, all R̂ values over MCMC proposal cycle iterations, which
decline to acceptable range below 1.1. Right panels show acceptance ratios of proposals
across MCMC iterations. Each row shows one model construction
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Figure B.6: Comparison of the posterior estimate of incidence load over space and time
from all model structures. Over all independent MCMC draws used to calculate ELPD, we
observed the proportion of those simulations where the kernel density estimates of fraction
infected at time t were above a threshold value of 0.4 or 2. Opaque areas towards purple
indicate increased probability of density estimates above 0.4 for a particular fraction infected
value at a particular time. Yellow does this for the 2 threshold. We show observed data
as dotplots centered at time of collection. Each column is a particular study site and, as
columns increase from left to right, estimated host density measured as larvae per square
meter increases. Rows show individual model constructions.
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Figure B.8: Posterior distributions for final MCMC iteration across population specific pa-
rameters. Host densities, pathogen densities, and the time of first sample collection t0 were
estimated independently for each site. We assumed uninformative priors for pathogen den-
sities. We assumed log normal priors for time of first samples with an expectation of one.
We assumed normal priors based on our observed larval branch densities for each site.
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Figure B.9: Regression models of defoliation extent where each line shows one of 124 draws
from the posterior H(τ̂). Rugplots show the distribution of data for each of the predictor
draws, with either no defoliation present or some defoliation present for each of the study
populations (shown as colors). The non-spatial model projections (right) show decreased
estimated defoliation extent overall and a wider variation for each study population, but in
general are comparable models of defoliation under BIC comparison.
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Figure B.10: Regression models of defoliation severity where each line shows one of 124 draws
from the posterior H(τ̂). Observed defoliation data aggregated for each study population and
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level
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B.3 Model selection

For our model selection analysis we used the Pareto-smoothed importance sampling leave-

one-out cross validation (PSIS-LOO) method. Briefly, we calculated pointwise likelihood

scores across all of our models, taking 1,220 independent samples from each posterior dis-

tributions of MCMC output and simulating 64 realizations for each sample. We then used

the loo package in R to estimate the contribution of each data point to the expected log

pointwise predictive density (ELPD) using Pareto-smoothed importance sampling.

We arrived at the number of samples to take from our MCMC outputs as follows.

First, we calculated the integrated auto-correlation time for each MCMC chain using the

LaplacesDemon package in R, which estimates the average number of MCMC iterations be-

fore an independent sample is reached. We thinned our MCMC posterior by taking the

maximum IAT across all models’ MCMC chains as a burn-in value b, throwing out the first

b MCMC iterations to exclude samples correlated with the initial MCMC starting positon.

We then selected a random ⌊ncb ⌋ samples from the posterior of each model, where n is the

total number of samples per chain and c is the number of chains. Because we had 10 chains

of 10,000 samples each and an IAT of b ≈ 82, this amounted to 105 ×max(IAT)−1 = 1, 220

samples from each model construction to form our log likelihood arrays.

B.3.1 PSIS-LOO, stacking weights, and WAIC comparisons

Pareto smoothed importance sampling leave-one-out cross-validation (PSIS-LOO) is a method

used for model selection and evaluation in Bayesian statistics. The PSIS-LOO routine is de-

scribed in detail by the vignettes written by the RStan team and was originally introduced

in Vehtari et al. [2017, 2024b]. The routine follows the philosophical approach of WAIC to

reward high likelihood scores and penalize likelihood variance, but also offers diagnostics on

confidence in the pointwise selection criterion and thus on confidence in the extrapolation of

present data to future data.
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LOO-CV systematically and singly leaves out each data point, which in our case repre-

sents an infection rate of a single tree at a particular time point, and evaluates the model

ability to predict the left-out data point based on the remaining data. This process is re-

peated for all data points, and the resulting predictions are compared to the actual observed

values to assess the model’s predictive accuracy for future data. The key aspect of PSIS-LOO

cross-validation is the use of Pareto smoothed importance sampling (PSIS) to estimate the

leave-one-out predictive densities p(yi|y−i), where yi is the left-out data point and y−i repre-

sents all other data points. PSIS-LOO CV is useful when the posterior distribution is highly

complex or high-dimensional, as is the case in our MCMC posteriors, because it does not re-

quire the exact calculation of leave-one-out predictive density p(yi|y−i). Instead PSIS-LOO

estimates this density by drawing importance samples from the full posterior distribution

and weighing the importance ratios as the ratio of the leave-one-out posterior density to the

full posterior density for each sample. Pareto smoothing stabilizes the estimates of pointwise

contributions to the expected log predictive density.

PSIS-LOO therefore provides an efficient estimation of pointwise contribution to the

ELPD and evaluation of the performance of each model without having to fit the model

repeatedly to the leave-one-out datasets. Instead we were able to leverage the randomly

selected, independent 1,220 posterior samples from each of our fitted posteriors.

A key diagnostic of Pareto-smoothed importance sampling is pointwise estimation of

our confidence in the selection analysis. Pareto k parameters determine the shape of the

likelihood distribution from the posterior parameter sample for a given data point. The

distribution of PSIS-LOO Pareto k values are shown in figure B.12. Poor values of k >

0.5 indicated that the variance of the smoothed pointwise likelihood score distribution is

undefined. Bad values of k > 0.7 would have indicated that the mean likelihood score

was undefined, and thus that we would not have confidence in the overall model selection

scores, but we observed no bad k values. We therefore have confidence in our LOO-CV
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Figure B.12: Distribution of Pareto k values for PSIS-LOO. No values were bad (> 0.7,
undefined mean) but some were poor (> 0.5, undefined variance), marked in red. Each
panel shows our 144 data points under each model construction.

results. For models that were not able to capture the data well, these poor values were

more common. Poor k values indicate that the marginal posterior and LOO posterior are

distinct and that some influential observations affect the likelihood score variability. In

linear regression models, one way to overcome the difference between the posterior and LOO

distributions is to account for overdispersion, for example recommending the replacement of

Poisson distributed sample error functions with Negative binomial distributions. However,

in our mechanistic model, we instead take these poor k values that show robust likelihood

point estimates to further demonstrate poor model fit. The variance in likelihood score

distribution for our worst models is reflected in the inflated estimates of effective number of

parameters pLOO, which fall out from the calculation of Pareto-k statistics (table B.2).

Our model selection order was robust to using WAIC as a selection criterion (table B.2).

To provide more information on the utility of model constructions determined to have a
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worse predictive performance than our best spatial model, we calculated Bayesian stacking

weights and Pseudo-Bayesian model averaging weights with bootstrapping (Pseudo-BMA+)

for each model, again using the loo package Yao et al. [2018]. These two approaches are

used to determine the best proportions to combine model constructions in a composite model,

quantitatively describing the proportion of the predictive density that is best-explained by a

particular model. Bayesian stacking of predictive distributions is the best model average and

Pseudo-BMA+ provides an approximate alternative (Yates et al. [2023]). Here we compare

both as the number of data points do not create computational challenges that would exclude

the option of Bayesian stacking. We can see that Pseudo-BMA+ provides an over-estimation

of the proportion of the predictive density better explained by our best model (∼ 67% rather

than ∼ 45% under Bayesian stacking). We also note that Pseudo-BMA+ estimates very little

of the predictive density to be better explained by any models other than our best and second

best spatial models, meaning that the results of table 1 in the main text are conservative.

Bayesian stacking performs well regardless of model similarity. We had several similar

models because of our paired model designs, which can be seen in the qualitatively similar

dynamics projected by sets of models (figure B.6). This means that we are better able to

confirm the utility of some spatial models using Bayesian stacking, such as our hybrid models

that use agents for hosts and differential equations for pathogens. Extrapolating from this

point, we note that if our best spatial model was more uniquely able to describe the predictive

density of our data, we would not have seen such a large drop in the proportion explained

between these two composite model approaches. It would then not be unreasonable to claim

that our second-best model, which we already acknowledge to not be distinguishable from our

best-model, is a reasonable alternative. However, we emphasize that several study sites had

low numbers of low-intensity sub-epizootics, meaning that models without diffusion between

grid points could offer more reasonable projections because nearly the whole population acted

as a transmission “hotspot". If, instead, we had observed more sites with low pathogen
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densities, such as our second-highest and third-highest host density sites, we would have

likely been able to more clearly distinguish between these two models and the model weight

would have been more stable across Bayesian stacking and Pseudo-BMA+ approaches. We

can therefore be confident in our main text assessment of the ineffective nature of the second-

best model to explain future data reliably.

B.3.2 ELPD performance across subset data

The advantage of PSIS-LOO is not only in the diagnostic capabilities, but in the ability to

quickly subset the predictive density by particular attributes such that any time point, site,

or, in the extreme, every data point can be used to select a best model. We subset at the site

level to determine if there were correlations between larval densities or geographic properties

and model performance.

Across all points, higher insect densities lowered overall pointwise predictive densities due

to the higher discerning power of larger sample sizes (figure B.13). We note that these sites

with more discerning densities were able to be explained by some agent-based models in a

comparable fashion to our best spatial model, such that there was an increase in agent-base

model performance with site-level average initial insect density (figure B.14).

Agent-based models tended to not provide high predictive performance at the beginning

of epizootics and mostly performed well for elevated infection rate data points during the

middle of epizootics. We address this in the main text, where we illustrate the difficulty of

estimating the highly variable initial epizootic data points when pathogen and exposed host

populations are lower. Some data points at the end of the epizootic were able to match the

exact distribution of infection rates due to similar denominators (e.g. all samples were of

≤ 2 insects, so fractions infected could only be 0, 0.5, or 1). This occurred despite the high

variability of these time points due to low host population sizes after epizootic population

collapse and pupation escape, but tended to occur only in our higher density study sites,
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again supporting our claims in the main text.
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APPENDIX C

EVOLVING INFECTION RISK DISTRIBUTIONS OVER

CONTINUOUS SPACE AND DISCRETE GENERATIONS

C.1 Non-spatial evolving infection risk

Following the continuous time moment closure approximation of Appendix A, we assessed

the changes that occur in the density of susceptible hosts Sn(ν) in generation n that have

individual transmission risks between ν and ν + dν. The distribution in generation n is

determined before the epizootic progresses. For discrete generations, we define the integral

of density Sn(ν) as the total population size Nn, calculating the average infection risk at the

beginning of the epizootic in generation n, where

sn,j ≡
∫

νjSn(ν)dν (C.1)

mn,j ≡
sn,j
sn,0

(C.2)

Nn ≡ sn,0 =

∫
Sn(ν)dν (C.3)

ν̄n ≡ mn,1 (C.4)

=
1

Nn

∫
νSn(ν)dν (C.5)

(C.6)

Following Section A.1 and Dwyer et al. [2000], we therefore have the half-generation

population size
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Nn+1
2
= Nn [1− in(Nn, Zn, ν̄n)] (C.7)

ν̄n+1
2
= ν̄n [1− in(Nn, Zn, ν̄n)]

V , (C.8)

in which the squared coefficient of variation V ≡ C2 is a constant shape parameter for

the density distribution Sn(ν).

The total population density Nn+1 in the subsequent generation after reproduction is

determined by a intrinsic reproduction parameter r that is modified through a balancing

selection trade off modulated through cost parameter ω. Under a fitness trade off, individuals

with higher infection risk would have higher net fecundity λ = r(1+ων) (Elderd et al. [2008],

Páez et al. [2017], Dwyer et al. [2022]). This is reasonable given some empirical evidence

that fecundity is reduced after epizootics in tussock moths (Mason et al. [1977], Dahlsten

et al. [1977]) and in other Lepidoptera (Elderd et al. [2008], Páez et al. [2017]). The total

population size would thus be

Nn+1 = r

∫
(1 + ων)Sn+1

2
(ν)dν (C.9)

= rNn[1− in]
(
1 + ων̄n [1− in]

V
)

(C.10)

(C.11)

To consider the case where infection risk heterogeneity is not strictly due to genetic fac-

tors, Páez et al. [2017] introduced the heritability term b. Heritability, the proportion of the

total phenotypic variation that is attributable to heritable, genetic factors, then determines

how the genetic distribution relates to the overall infection risk distribution Páez et al. [2017].

Combining the approach in equation C.9 with equation C.8 for the average infection over
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generations ν̄n, we arrive at the full non-spatial eco-evolutionary model

Nn+1 = rNn [1− in]
(
1 + ων̄n [1− in]

V
)

(C.12)

Zn+1 = ϕNnin + γZn (C.13)

ν̄n+1 =
ν̄n [1− in]

bV
[
1 + ω(1 + bV )ν̄n [1− in]

bV
]

1 + ων̄n [1− in]
bV

(C.14)

1− in =

[
1 +

ν̄V

µ
(Nnin + Zn)

]− 1
V
, (C.15)

where Zn is the pathogen population as in Páez et al. [2017]. The pathogen population is

determined by the overwintering rate ϕ that translates the infected fourth instar hosts Nnin

into second instar cadavers Zn+1 in the next generation, in addition to the inter-generational

pathogen persistence rate γ. The fraction infected in must be solved numerically as it is an

implicit expression, using any root solver, but it is guaranteed to have at least one positive

root between zero and one or be equal to zero (?).

C.2 Inter-generational infection risk moment closure over space

In a spatial model with evolving infection risk, the assumption that the squared coefficient of

variation V of equations C.12-C.15 is constant is invalid, but the degree to which this invalid

assumption causes statistical results to differ from the moment closure approximation is

unclear. While the invariant heterogeneity shape assumption is known to be valid during

the epizootic at a single spatial location (Dwyer et al. [2000]), the shape of the infection risk

distribution could be subject to change during dispersal between points with asynchronous

disease dynamics, host densities, and pathogen densities (Shigesada and Kawasaki [1997]).

We therefore derived a new moment closure that accounts for higher-order moments than

the mean and coefficient of variation.
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To arrive at a spatial moment closure that accounts for higher order moments, we closed

the moments for each of the two infection risk distributions at location x during the annual

Douglas-fir tussock moth life cycle: the infection risk distribution for larvae at the start of

the season Sn(ν, x) and the distribution for adult moths at the end of the season, before

reproduction and dispersal Sn+1
2
(ν, x) (Leung and Kot [2015]). We strictly consider the

heritable infection risk distribution for ease of later notation, but the procedure would be

identical apart from placement of heritability parameter b.

The half-generation infection risk distribution Sn+1
2
(ν, x) is the adult infection risk dis-

tribution that results from the epizootic selection event and is therefore analogous to the

non-spatial equation C.8, where

ν̄n+1
2
(x) =

1

Nn+1
2
(x)

∫
νSn+1

2
(ν, x)dν (C.16)

= ν̄n(x) [1− in(x)]
Vn(x) . (C.17)

Crucially, the shape Vn(x) of the infection risk distribution is no longer a constant and

must instead be a function of space x and generation n. However, because the squared

coefficient of variation C2 ≡ V still does not change during the epizootic (Appendix A),

Vn(x) does not vary at the half generation time and the two values Vn+1
2
= Vn are equivalent.

In contrast with the adult half generation distribution, the subsequent larval infection

risk distribution Sn+1(ν, x) is a mixture distribution comprised of the dispersed progeny

from the previous generation n. After calculating the half-generation distribution and pop-

ulation, reproduction and dispersal occur and the mixture distributions over space Sn+1(x)

get calculated by integrating the product of Sn+1
2
(y) and the dispersal kernel k(y, x) across

all y. We assume that the mixture distributions are only the result of larval dispersal after

reproduction in n+ 1
2 , and that male flight doesn’t change the mean or shape of the infection
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risk distribution through gametic mixing with sessile adult females in different populations.

This is reasonable considering that male flight is driven by pheromones released by adult

female moths (Brookes et al. [1978]), meaning that males will not leave high density popu-

lations with available mates and males that enter high density populations from low density

populations will likely not significantly change the distributions of their arrival locations.

To arrive at the central moments of the larval infection risk distribution Sn+1(x, ν), we

began with the mean infection risk of the larval populations in generation n+ 1.

ν̄n+1(x) =
s(n+1),1(x)

s(n+1),0(x)
(C.18)

=

∫
k(x, y)Nn(y)(1− in(y))

∫
ν(1 + ων)Sn+1

2
(ν, y)dνdy∫

k(x, y)Nn(y)(1− in(y))
∫
(1 + ων)Sn+1

2
(ν, y)dνdy

, (C.19)

where once again the initial host population densities are determined by overall host

reproduction r(1 + ων) and the individuals that survived to reproduce Nn(x)(1 − in(x)).

The intrinsic growth rate r cancels from the numerator and denominator, as it is not a

function of infection risk ν. We further make substitutions based on the assumption that

our non-spatial moment closure holds over the epizootic to place the larval infection risk

Sn+1(x, ν) to only depend on Sn(ν, x) and eliminate the need to explicitly calculate the

half-generation time point. We start by noting that
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∫
ν(1 + ων)Sn+1

2
(ν, y)dν =

∫
νSn+1

2
(ν, y)dν + ω

∫
ν2Sn+1

2
(ν, y)dν (C.20)

= En+1
2 ,y

[ν] + ω
[
En+1

2 ,y
[ν]2 + Varn+1

2 ,y
(ν)
]

(C.21)

= ν̄n(y) [1− in(y)]
Vn(y) + ω

(
ν̄n(y) [1− in(y)]

Vn(y)
)2

[1 + Vn(y)]

(C.22)

= ν̄n(y) [1− in(y)]
Vn(y)

[
1 + ων̄n(y) [1− in(y)]

Vn(y) (1 + Vn(y))
]
,

(C.23)

such that

ν̄n+1(x) =

∫
k(x, y)Nn(y)(1− in(y)ν̄n(y) [1− in(y)]

Vn(y)
[
1 + ων̄n(y) [1− in(y)]

Vn(y) (1 + Vn(y))
]
dy∫

k(x, y)Nn(y)(1− in(y))
[
1 + ων̄n(y) [1− in(y)]

Vn(y)
]
dy

(C.24)

is in terms of the first two central moments of larval infection risk distribution, ν̄n(x) and

Vn(x). This mean infection risk equation differs from simply averaging the mean infection

risk over space because the fitness trade off yields higher offspring contribution by populations

with higher average infection risk.

Next, we calculated the change in the squared coefficient of variation Vn+1(x), which is

a function of the already-derived mean infection risk ν̄n+1(x), as

Vn+1(x) =
m2 −m2

1

m2
1

=
m2

m2
1

− 1 (C.25)

=

∫
k(x, y)Nn(y)(1− in(y))

∫
ν2(1 + ων)Sn+1

2
(ν, y)dνdy

ν̄2n+1(x)
∫
k(x, y)Nn(y)(1− in(y))

[
1 + ων̄n(y) [1− in(y)]

Vn(y)
]
dy
− 1 (C.26)
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If we assume that infection risk heterogeneity can be represented as a gamma distribution,

the third central moment, skewness, can be expressed either as a function of only squared

coefficient of variation V or as a function of only the mean, variance, and s3 ≡ E[ν3].

Therefore we have a closed, analytical expression for the numerator in Vn+1(x), in which the

skewness µ̃3 can be placed in terms of the lower order moments as

µ̃3 = 2
√
V (C.27)

µ̃3 =
s3 − 3s1Var(ν)− s31

Var(ν)3/2
(C.28)

2
√
V =

s3 − 3ν̄3V − ν̄3

V 3/2ν̄3
(C.29)

s3 = ν̄3(2V 2 + 1 + 3V ) (C.30)∫
ν3Sn(ν)dν = ν̄3(2V + 1)(V + 1), (C.31)

where equation C.27 arises from assuming a gamma distribution. The third moment

expectation of equation C.31 is thus expressed solely in terms of the mean and variation,

meaning that

∫
ν2(1 + ων)fn+1

2
(ν, y)dν = V arn+1

2
(ν, y) + ν̄2

n+1
2
(y) + ωE[ν3] (C.32)

= ν̄2
n+1

2
(y)
[
Vn(y) + 1 + ων̄n+1

2
(y)(2Vn(y) + 1)(Vn(y) + 1)

]
(C.33)

= ν̄2
n+1

2
(y) [Vn(y) + 1]

[
1 + ων̄n+1

2
(y)(2Vn(y) + 1)

]
(C.34)

and that we can reduce this equation to be explictly in terms of the larval distribution

like in the mean infection risk calculation of equation C.23. We show the expression for ν̄n+1
2
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from equation C.17 again for convenience, so that we have

Vn+1(x) =

∫
k(x, y)Nn(y)(1− in(y))ν̄

2
n+1

2

(y) [1 + Vn(y)]
[
1 + ω(2Vn(y) + 1)ν̄n+1

2
(y)
]
dy

ν̄2n+1(x)
∫
k(x, y)Nn(y)(1− in(y))

[
1 + ων̄n+1

2
(y)
]
dy

− 1

(C.35)

ν̄n+1
2
(x) = ν̄n(x) [1− in(x)]

Vn(x) . (C.36)

It should be noted that although we are here making an assumption that the post-

epizootic heterogeneity in infection risk follows a gamma distribution, we are not specifically

assuming the same for the pre-epizootic mixture distribution. The mixture will likely be

easily approximated by a gamma, but it would be a rare occurrence that the mixture distri-

bution would exactly follow a gamma distribution because all neighboring sites would have

to have the same estimated scale parameter. The only assumptions we make then are that

the coefficient of variation doesn’t change over the course of the epizootic, the average infec-

tion risk ν̄n+1
2

at the end of the epizootic season is of the form shown in the half generation

equation C.17, and that ultimately the surviving adult population infection risk distribution

does follow a gamma distribution. Our analytical equations take a different in form if we

assume another strictly positive distribution for infection risk but would be analogous so

long as higher order moments close. For example, using a log-normal distribution did not

affect the approach or consistency of numerical and analytical results, but we use a gamma

distribution based on prior studies and the reduced tailedness of the distribution that al-

lows the within-season epizootic moment closure for ν̄n+1
2

to better approximate the exact

distribution.

Finally, because the moments of Sn(x) are over heritable infection risk variation passed

on to progeny by the half-generation adult populations, heritability b now appears in the

expression for changing host densities instead of the average infection risk as in equations

108



C.12-C.15. Again, for notational convenience, we keep ν̄n+1
2

even though it is not necessary

to calculate explicitly prior to calculating ν̄n+1. Our final system of equations is thus

Nn+1(x) =

∫
rk(x, y)Nn(y) [1− in(y)]

(
1 + ων̄n(y) [1− in(y)]

Vn(y)
b

)
dy (C.37)

Zn+1(x) =

∫
ϕk(x, y)Nn(y)in(y)dy + γZn(x) (C.38)

ν̄n+1(x) =

∫
k(x, y)Nn(y)(1− in(y))ν̄n+1

2
(y)
[
1 + ω(1 + Vn(y))ν̄n+1

2
(y)
]
dy∫

k(x, y)Nn(y)(1− in(y))
[
1 + ων̄n+1

2
(y)
]
dy

(C.39)

Vn+1(x) =

∫
k(x, y)Nn(y)(1− in(y))ν̄

2
n+1

2

(y) [1 + Vn(y)]
[
1 + ω(1 + 2Vn(y))ν̄n+1

2
(y)
]
dy

ν̄2n+1(x)×
∫
k(x, y)Nn(y)(1− in(y))

[
1 + ων̄n+1

2
(y)
]
dy

− 1

(C.40)

in(x) = 1−
(
1 +

ν̄n(x)Vn(x)

bµ
(Nn(x)in(x) + Zn(x))

)− b
Vn(x)

(C.41)

ν̄n+1
2
(x) = ν̄n(x) [1− in(x)]

Vn(x) , (C.42)

C.3 Loss of heterogeneity under Dirac delta dispersal kernel

To compare this spatial eco-evolutionary model to the previous, non-spatial model, we re-

moved dispersal by setting the dispersal kernel k(x, y) to be the Dirac delta function centered

at x (Leung and Kot [2015]). Simplifying notation by reducing the state variables to be only

a function of time, we arrived at
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Vn+1 =
Nn(1− in)ν̄

2
n+1

2

[1 + Vn]
[
1 + ω(1 + 2Vn)ν̄n+1

2

]
ν̄2n+1 ×Nn(1− in)

[
1 + ων̄n+1

2

] − 1 (C.43)

=
(Nn(1− in))

2ν̄2
n+1

2

[1 + Vn]
[
1 + ων̄n+1

2

] [
1 + ω(1 + 2Vn)ν̄n+1

2

]
(
Nn(1− in)ν̄n+1

2

[
1 + ω(1 + Vn)ν̄n+1

2

])2 − 1 (C.44)

=
[1 + Vn]

[
1 + ων̄n+1

2

] [
1 + ω(1 + 2Vn)ν̄n+1

2

]
(
1 + ω(1 + Vn)ν̄n+1

2

)2 − 1 (C.45)

= [1 + Vn]
1 + 2ων̄n+1

2
(1 + Vn) + ω2ν2

n+1
2

(1 + Vn)
2 − ω2ν2

n+1
2

V 2
n(

1 + ω(1 + Vn)ν̄n+1
2

)2 − 1 (C.46)

= [1 + Vn]

1− ω2ν2
n+1

2

V 2
n(

1 + ω(1 + Vn)ν̄n+1
2

)2
− 1 (C.47)

= Vn − [1 + Vn]

[
ωνn+1

2
Vn

1 + ω(1 + Vn)ν̄n+1
2

]2
(C.48)

Vn+1 = Vn − [1 + Vn]

[
ωVnν̄n [1− in]

Vn

1 + ω(1 + Vn)ν̄n [1− in]
Vn

]2
, (C.49)

demonstrating that without space, accounting for skewness through changing coefficient

of variation in infection risk makes the variation decrease to zero, recapturing a classic result

in population genetics.

To assess the circumstances that cause inconsistencies between our novel moment closure

with the approximate model with invariant shape V , we conducted a statistical test and

then a sensitivity analysis of dynamics in two populations.

To verify that decreasing variation would occur and assess the sensitivity of differences

between the two models to cost ω, we conducted a statistical experiment where we drew

offspring infection risk values from parental infection risk values. We began with a parental
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infection risk distribution using random gamma variables with shape 1
V and scale V ν̄. We

drew offspring count fi for each individual i according to a Poisson distribution with mean

1 + ωνi. Since these calculations are only for the heritable infection risk heterogeneity, the

fi progeny of individual i in the next generation inherit exactly νi. We then calculated the

variance and mean of the offspring infection risk distribution.

The statistical experiment results match our analytical results well (Figure C.1), meaning

that our new system tracking evolving infection risk is reliable. Because infection risk is more

strongly correlated with fecundity as cost parameter ω increases, the offspring distribution

becomes more shifted towards higher infection risk and variation V decreases more sharply

as cost increases. These results likely have little impact on simulations over few years or for

low values of ω < 10 in non-spatial models because the offspring infection risk distributions

do not strongly differ from the parental distributions under these circumstances.

Following our statistical simulations, we assessed the cyclical dynamics of non-spatial

simulations with evolving infection risk and declining infection risk heterogeneity. In these

deterministic simulations over discrete generations, heterogeneity decreased until passing be-

low one, at which point cycling dynamics occurred because values of V less than one generate

cycles. The phase diagrams show that many areas of parameter space cause “chaotic extinc-

tions" where populations reach exceedingly low densities and, due to numerical limitations

of floating point numbers, go to zero.

C.4 Maintenance of heterogeneity in multiple populations

Non-spatial dynamics therefore suggest that infection risk variation over generations should

disappear due to balancing selection. To determine the effects of spatial environments on

infection risk heterogeneity, we first assessed the conditions for which discrete populations

with some level of imperfect mixing could maintain non-decreasing variation over time Vn in

our eco-evolutionary model. We forced environmental heterogeneity by including differences
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Figure C.1: Offspring distribution of infection risk (black) as a result of the parental distribu-
tion (red). Base reproduction is assumed to be 1. Parental mean infection risk ν̄n+1

2
= 0.02

and parental squared coefficient of variation Vn is 0.4. The shifting distribution of offspring
infection risk is a result of balancing selection from the cost of resistance parameter ω. The
distributions change mean during reproduction, but notably also change shape according to
analytical equation C.49
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Figure C.2: The dynamics of parameter space for non-spatial eco-evolutionary model with
changing heterogeneity shape Vn. Left panels show example phase portraits of pathogen
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Figure C.3: Black areas show the regions of parameter space where heterogeneity in infection
risk is not strictly decreasing for a two population model. Low levels of dispersal and
differences in growth rates led to asynchronous population cycles exchanging individuals to
drive increases in overall heterogeneity. Upper limit of 50% fraction dispersing show the
perfect mixing case for two populations, arriving again at a single population.

in the intrinsic growth rate r of two host populations. We found that allowing for as few

as two populations led to scenarios in which infection risk heterogeneity over time was not

strictly decreasing. For low rates of dispersal between the two populations and growth

rate differences of approximately two orders of magnitude, change in infection risk variation

∆Vn,i over time in population i was positive, indicating that asynchronous populations with

different equilibria can easily maintain overall population heterogeneity of infection risk.

In the case of continuous space, we found that growth rate differences do not need to

be explicitly invoked in order to maintain infection risk heterogeneity. In continuous spatial

models, differences in the time between outbreaks, or cycle period, created variation over

space in the wake of invasion that reflected the same level of changes that environmental

forcing created in the two population scenario. In figure C.4, we show several simulations

that have variable rotation number over space centuries after a point release of host and

pathogen densities. In contrast with the environmental forcing scenario, all of the populations

distributed over space had the same equilibria, but were at different points in the cycle due
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to invasion timing. Different populations over space had different cycle periods due to the

interaction of dispersal and asynchronous populations disrupting each other. The non-linear

interaction of host, pathogens, average infection risk, and infection risk variation as functions

of generational time led to chaos in the wake of invasion that persisted for multiple centuries,

similar to some cases of non-evolutionary predator-prey dynamics (Sherratt et al. [1995],

Bjørnstad et al. [2002]). Decreasing heritability b led to higher levels of synchronization

of rotation numbers over space, but heterogeneity was still maintained after invasion for

centuries in the simulation with lower heritability.
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Figure C.4: Four example simulations of the average squared coefficient of variation over
space for each generation n in evolutionary model with thin-tailed dispersal. Top panels
show the cycle period, or “rotation number", and lower panels show the variation of infection
risk at the origin Vn(0). Two values of overwintering ϕ = 5 (left panels) or 15 (right panels)
and two values of heritability b = 0.02 (black lines) and 0.002 (blue lines) were used, with
pathogen survival γ = 0.1, pathogen decay µ = 1 × 10−4, and the best parameters from
wave front parameterization (table 3.1).
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APPENDIX D

FITTING INTEGRODIFFERENCE MODELS TO INSECT

OUTBREAK DATA

D.1 Wave speed approximations for integrodifference models

Integrodifference equations, which model continuous space and discrete time, are key tools

for understanding the dynamics of wave fronts Kot et al. [1996], Shigesada and Kawasaki

[1997], Sherratt and Smith [2008]. The discrete time steps, often representing generations,

accurately reflect the biology of many annually reproducing animals and plants, such as

Douglas-fir tussock moth. Over discrete generations n and a continuous spatial domain

(−∞,+∞), integrodifference equations take the general form

Nn+1(x) =

∫ +∞

−∞
f(Nn(y))k(y, x)dy, (D.1)

where the population density at point x in generation n+1 is determined by some growth

function f(Nn(y)) of all the population densities across space in the previous generation n

multiplied by the probability that individuals from site y arrive at site x according to the

dispersal kernel k(y, x). It is common practice to use symmetrical or unidirectional disper-

sal kernels Sherratt et al. [1995], Kot et al. [1996], Leung and Kot [2015], where dispersal

probability is determined by the absolute distance between two spatial locations ∆x. Such

dispersal kernels represent the long distance dispersal potential of individuals, assuming that

populations at particular points in space are perfectly mixing during growth and reproduc-

tion.

We required many simulations of our integrodifference model with evolving infection risk

over space to determine its ability to explain the speed of re-establishment observed in tussock

moth defoliation patterns. As simulating the integrodifference models is computationally
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intensive (Appendix E), we instead calculated analytical expressions of the rate of advance

(Kot et al. [1996], Neubert et al. [2000], Liu and Kot [2019]). We focused exclusively on host

populations invading empty habitat, with the assumption that the pathogen is absent when

the host is absent and that the rate of expansion by the pathogen is therefore strictly less

than or equal to the host invasion speed alone (Sherratt et al. [1995], Phillips et al. [2010]).

D.1.1 Recursion methods for thin-tailed kernels

The two patterns of invasion that are commonly observed are pushed waves, the constant

wave speed invasions that propagate from the pressure of individuals dispersing from the

bulk of the established population behind the wavefront, and pulled waves, the accelerating

invasions that propagate from the expanding reach of individuals dispersing at the wave front.

In pushed wave fronts that have fixed rates of advance, there is some threshold population

size that satisfies the equation

N̄n+1(x̂n+1) = N̄n(x̂n) (D.2)

x̂n+1 = c+ x̂n, (D.3)

where c is the constant wave speed and x̂n is the position of the wave front in generation n

(Kot et al. [1996]). Wave speed c can be calculated analytically through a single minimization

equation if there exists some moment generating function g(m) of the dispersal kernel

c = min
m

[
1

m
ln(λg(m))

]
(D.4)

where λ is the instantaneous reproduction rate of the population (Kot et al. [1996]). Such

dispersal kernels that possess moment generating functions are called “thin-tailed" kernels

and are exponentially-bounded (Liu and Kot [2019]).
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In pulled waves that accelerate during invasion, however, rather than the wave position

difference c approaching a constant speed, the ratio of the wave front positions over time

asymptotically approaches a constant in the form

lim
n→∞

x̂n+1

x̂n
= ρ. (D.5)

and such accelerating waves of advance can be caused by either “heavy-tailed" kernels,

for which a moment generating function does not necessarily exist, or for evolving traits at

the wave front (Liu and Kot [2019]). We are interested both in cases with evolving growth

rate λn and in cases with heavy-tailed dispersal kernels with excess outliers. We therefore

required approximations that included either or both of these mechanisms.

In the evolving infection risk model where hosts populations expand over space and the

pathogen wave front has not yet caught up to the host front, the reproduction rate at the

host front λn(x̂n) is strictly increasing as individuals come to have higher infection risk and

higher fecundity (Páez et al. [2017], Dwyer et al. [2022]), leading to the acceleration. In such

cases where growth rate λ varies over generations, the average speed c̄ across generations 0

to τ is determined by the geometric mean of the reproduction rates (Neubert et al. [2000]).

We therefore use the minimization

c̄τ = min
m

 1

m
ln

(
τ∏

n=0

λngn(m)

) 1
τ

 . (D.6)

We calculated the instantaneous speed cn in generation n by using the value m̄ that

satisfies minimization equation D.6 as

cn =
1

m̄
ln [λngn(m̄)] , (D.7)

We then calculated the increasing fecundity and increasing infection risk of the host

population at the wave front position x̂ following the IDE system from equations 3.4-3.9
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with in(x̂n) = 0 for n ∈ (0, τ). The resulting speed cn+1 and growth rates λ at the evolving

wave front are

νn+1(x̂n+1) = νn(x̂n)

(
1 + ωνn(x̂n) [Vn(x̂n) + 1]

1 + ωνn(x̂n)

)
(D.8)

Vn+1(x̂n+1) = νn(x̂n)
2 [Vn(x̂n) + 1]

1 + ωνn(x̂n) [1 + 2Vn(x̂n)]

νn(x̂n)2 [1 + ωνn(x̂n)]
− 1 (D.9)

λn+1(x̂n+1) = r [1 + ωνn(x̂n)] (D.10)

c̄n+1(x̂n+1) = min
m

 1

m
ln

(
n+1∏
i=0

λi(x̂i)× gi(m)

) 1
n+1

 (D.11)

cn+1(x̂n+1) =
1

m̄
ln [λn+1(x̂n+1)× gn+1, (m̄)] (D.12)

which are unaffected by generalist parasitoids due to the normalizing constants of the full

eco-evolutionary model in equations 3.4-3.9. Further, the arbitrary selection of host density

threshold means that the exact location x̂n is unaffected by habitat patchiness. We observed

that our wave front analytical expressions were equally suitable for determining the rate of

advance in simulations that included habitat patchiness, where the larger reproduction rate

r(x) across space determined the overall rate of spread, and in simulations that included

generalist parasitoids. In contrast, see Neubert et al. [2000], in which the reproduction rate

fluctuates over time in unison across the entire spatial domain, thereby altering invasion

speeds.

D.1.2 Tail-additivity approximation for fat-tailed kernels

Fat-tailed kernels comprise a set of heavy-tailed dispersal kernels that exhibit power law

decay with order α such that k(x, y) = k(|x−y|) ≡ k(x) ∝ x−α (Kot et al. [1996], Shigesada

and Kawasaki [1997]). In contrast with thin-tailed kernels, fat-tailed kernels lack moment
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generating functions for some or all of parameter space α and the recursion from analytical

equations above does not hold. Instead, we used the tail-additivity approximation for fat-

tailed kernels, which works well at distances that are far enough from the origin to have low

arrival probabilities, which is a convenient property of the wave front position x̂n (Liu and

Kot [2019]). The tail additivity approximation for fat-tailed kernels demonstrates that the

convolution of kernels is approximately equivalent to their sum

N0λ
nkn∗(x) ≈ N0λ

nnk(x) (D.13)

λ

(
n+ 1

n

)
k(xn+1) ≈ k(xn), (D.14)

which follows from the approach used for thin-tailed kernels (Liu and Kot [2019]). As with

thin-tailed kernels, the expression in equation D.14 can be altered to include the evolving

growth rate λn(x̂) instead of fixed growth rate λ.

For projecting the approximate wave front, we then initialize the wave front at position

x̂1 using the inverse kernel

x̂n+1 = k−1
(
k(x̂n)

n

λn+1(n+ 1)

)
(D.15)

x̂1 ≡ k−1
(

N̄

N0λ0

)
(D.16)

As reproduction increases, the denominator of equation D.15 decreases and therefore the

rate of advance through the inverse kernel k−1 accelerates. As the power law decay order

α increases, converging to a thin-tailed distribution as α → ∞, the difference between ap-

proximation equation D.15 and analytical equation D.12 shows the bias of the tail-additivity

approximation when applied to thin-tailed kernels (Liu and Kot [2019]).
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Figure D.1: Example of the Fourier-transformed grid search routine for three parameters.
Values are selected to capture total variance of the parameter space without excess duplica-
tion. The parameter selections present as periodic functions of one another.

D.2 Inference and future data

D.2.1 Marginal SSE surfaces for wave speed parameters

In our grid search routine over parameters that affect the wave front, we selected 3,000

parameters sets using the Fourier-transformed periodic grid search technique developed for

sensitivity analyses (Cukier et al. [1973]). The routine searches the parameter space more

efficiently than linear grid searches, such that it captures the variance of without repeating

parameter sets in similar areas of the parameter space (figure D.1).

We interpolated SSE surfaces for growth and dispersal from our grid search routine using

the marginal SSE profiles in two dimensions. In our evolutionary models, the marginal

SSE profiles for dispersal and reproduction showed single optima (figure D.2). Pathogen

waves lagged behind the advancing host front, allowing host populations at the wave front

to escape selection pressure from pathogen-induced mortality, validating our wave speed
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approximation.

However, the marginal profile for cost ω was fairly uniform across the range of parameters

that we assessed in both eco-evolutionary models. We could identify that extremely low and

extremely high cost values were unrealistic based on the marginal SSE, but a wide range of

similar SSE scores across values of cost ω made obtaining a maximum likelihood estimate

difficult. We could not easily identify a narrow range for cost parameter estimates because

the performance of cost ω depends on initial conditions through the initial average infection

risk ν̄0(0). Therefore, we would require either estimates of ν̄0(0) or cost ω determined

independently outside of wave front parameterization.

In order to disentangle cost from initial average infection risk, we therefore need to esti-

mate the average infection risk through experiments. Previous experiments in spongy moth

(Lymantria dispar) were able to successfully measure both fecundity and infection risk vari-

ation as well as estimate heritability (Elderd et al. [2008], Páez et al. [2017]). Previous work

shows that fecundity also drops in Douglas-fir tussock moth populations that have undergone

high-infection epizootics, even though defoliation from the previous year, a measure of diet

quality, was uncorrelated with egg mass size (Mason et al. [1977]). Experiments quantify-

ing fecundity of individuals that survive transmission branch experiments (such as those in

Mihaljevic et al. [2020], Dixon [2024]) would allow us to estimate what percentage of this

fecundity reduction is due to heritable infection risk changes and what percentage is due

to diet quality in high density populations (figure D.6, Dahlsten et al. [1977], Mason et al.

[1977]).

Next, we compared our models to defoliation behind the wave front. Because we had

already estimated the parameters that were relevant for the wave speed, only heritability b

and pathogen overwintering ϕ, survival γ, and decay µ remained uncertain for determining

dynamics behind the wave front. We found that simulations with pathogen decay rate µ =

1× 10−4 was necessary, confirming the low decay rate of baculovirus in natural popualtions
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Figure D.2: Marginal SSE surfaces for the evolutionary models. We interpolated over all
SSE values less than 40. The top panel shows the surface for the thin-tailed Laplace dispersal
kernel, with maximum likelihood estimate from the grid search shown in yellow. The bottom
panel shows the surface for the fat-tailed Laplace dispersal kernel, which was less smooth
than the surface for the thin-tailed dispersal model. Intrinsic growth r was estimated to be
near 1.01 in both models.
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with ϕ, γ, and µ varying along with initial year of introduction being either 1995, 1996, or
1997.
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Figure D.4: Marginal likelihood profiles across heritability b. Each panel shows the dispersal
function with either a fat- (left) or thin-tailed (right) kernel. Heritability b = 0 indicates the
non-evolutionary models, which are separated from the evolutionary model marginal values
of b. The maximum likelihood suggest b = 0.02 (fat) or b = 0.002 (thin) for evolutionary
models. Color indicates pathogen decay µ, where blue shows low rates of decay µ = 1×10−4

and black shows higher rates of decay µ = 1× 10−2.
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Figure D.5: Marginal likelihood profiles across year of first re-introduction. Each panel shows
the dispersal function with either a fat- (top) or thin-tailed (bottom) kernel. Heritability
b = 0 indicates the non-evolutionary models. The curves show that later re-introduction
times, between 1998 and 2000, are unable to reproduce the data. Slight peaks indicate
that 1997 is the maximum likelihood estimate of re-introduction time, although it performs
comparably to 1995 and 1996. Color indicates pathogen decay µ, where blue shows low rates
of decay µ = 1× 10−4 and black shows higher rates of decay µ = 1× 10−2.
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Figure D.6: Top panel shows absolute changes in eggs per egg mass during two epizootics,
taken from Dahlsten et al. [1977] (California outbreak 1971-72, Orange) and Mason et al.
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ratios after population crash due to viral mortality and other factors. Decreases in fecundity
were not correlated with generalist parasitoids Dahlsten et al. [1977] or defoliation level
Mason et al. [1977]
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(Mihaljevic et al. [2020]). We found that while heritability b = 2× 10−3 covered most of the

defoliation data set it led to dampening oscillations (figure ??). Higher pathogen decay rate

µ = 1× 10−2 consistently lowered model ability to explain the data in the wake of invasion,

independent of other grid search parameters or year of re-introduction (figure ??). These

findings were robust to values of overwintering ϕ = 5, 10, 12, 15, and 25, as well as values

of pathogen survival γ = 0.05 and 0.1, which cover the range of parameter estimates from

previous eco-evolutionary studies of forest insects (Elderd et al. [2008], Páez et al. [2017],

Dwyer et al. [2022], Dixon [2024]). The best-fit year of re-introduction was 1997, but most

years of re-introduction also demonstrated that heritability b ≥ 2 × 10−3 were the better

estimates to cover the defolaition data (figure ??).

D.2.2 A novel range expansion following re-establishment

In addition to defoliation from re-establishing Douglas-fir tussock moth populations, insect

damage also appeared in areas that have never been previously defoliated. These new pop-

ulations are not unexpected, as the Douglas-fir tussock moth range is shifting under climate

change (Dixon [2024]). However, the novel westward expansion meant we could not use the

same one-dimensional simulations from the 2000-2007 outbreaks (figure D.7). We can still

use our approach by isolating the 2020-2022 expansion, as the extent of this synchronized

defoliation does still resembles our integrodifference simulations qualitatively.

Although the range expansion appeared suddenly in 2020, instead of presenting as a

travelling wave, defoliation appeared at clustered distances that were similar to the distri-

bution of high host densities from our integrodifference models (figure D.7). As forest cover

is uniform over the extent of this novel range expansion, the clustering cannot be explained

by habitat patchiness. According to the best parameters from the eco-evolutionary model

with a thin-tailed Laplace dispersal kernel, the extent of the 2020 defoliation presence could

be from a range expansion that began 14 years prior in 2006.
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Figure D.7: The new establishment of populations in areas without any defoliation history.
Left panels show defoliation before (top) and after (bottom) the range expansion, with black
dots representing areas with defoliation history and colored dots representing areas that are
novel invasions. Habitable forest cover is shown in grey while uninhabitable non-forest cover
is shown in white. The right panels show distances from the putative 2020 origin, the nearest
defoliation to previously defoliated areas, as histograms. Clustered distances show possible
cycling patterns that were below the threshold for causing defoliation damage but then later
emerged as outbreaking densities.
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Despite spatial clustering, the timing of spread is still uncertain because defoliation is

only a proxy for actual insect density during the expansion. Further, it is possible that the

dampened oscillations of lower values of heritability b = 0.002 may lead to synchrony in

the wake of invasion, and thus our estimates of heritability may be overly high. Extending

models to allow for mechanisms that vary population dynamics, as discussed in Chapter 3,

may provide insight into these novel expansions, but ultimately population surveillance and

infection risk experiments will be necessary to draw meaningful conclusions.
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APPENDIX E

NUMERICAL METHODS FOR SPATIAL SIMULATIONS

E.1 Method of lines integration for PDEs

We discretized our continuous space reaction diffusion equations using method of lines. The

second derivative with respect to x is

∂S(x, t)

∂t
= D

∂2S(x, t)

∂x2
(E.1)

dSx(t)

dt
= D

−Sx +
1

n

n∑
y=1

Sy

 (E.2)

where location x has n neighbors. In one dimension, n = 2, while in a 2D hexagonal grid

lattice, n = 6.

The discretization of the cross-product of the two first derivatives might be of a similar

form to equation E.2 but, in order to avoid it, we can rearrange ∂ν(x,t)
∂t to have only second

derivatives with respect to x. We do this by reintroducing s1. As before, we derive the

expressions for m1 ≡ ν̄

∂ν(x, t)

∂t
= −ν2C2P +D

[
∂2ν

∂x2
+

2

S

∂ν

∂x

∂S

∂x

]
(E.3)

∂m1

∂t
= −m2

1C
2P +

D

s0

[
s0

∂2m1

∂x2
+ 2

∂m1

∂x

∂s0
∂x

]
(E.4)

Taking the identity from equation A.44, where

∂2s1
∂x2

=
∂(s0,m1)

∂x2
= 2

∂(m1, s0)

∂x2
+m1

∂2s0
∂x2

+ s0
∂2m1

∂x2
(E.5)
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we can see that the component inside the brackets of equation E.4 is related to the second

central spatial moment by

1

s0

[
s0

∂2m1

∂x2
+ 2

∂m1∂s0
∂x2

]
=

1

s0

[
∂2s1
∂x2

−m1
∂2s0
∂x2

]
. (E.6)

Now we can proceed as in equation E.1 and substitute the definition s1 = m1s0 = νS

after we discretize.

∂m1

∂t
= −m2

1C
2P +

D

s0

[
∂2s1
∂x2

−m1
∂2s0
∂x2

]
(E.7)

dm1

dt
= −m2

1C
2P +

D

s0

−s1,x +
1

n

n∑
y=1

s1,y

− Dm1

s0

−s0,x +
1

n

n∑
y=1

s0,y

 (E.8)

dνx
dt

= −ν2xC2Px +
D

Sx

−νxSx +
1

n

n∑
y=1

νySy

− Dνx
Sx

−Sx +
1

n

n∑
y=1

Sy

 (E.9)

= −ν2xC2Px +
D

Sx

 1
n

n∑
y=1

νySy −
νx
n

n∑
y=1

Sy

 (E.10)

= −ν2xC2Px +
D

nSx

n∑
y=1

Sy(νy − νx) (E.11)

The factor of 2 in the left hand side of equation E.6 goes away, so that we only have

parameters and classes that have explicit biological meaning in our final discretized ODE

system
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dSx(t)

dt
= −νxPxSx +

D

n

n∑
y=1

(Sy − Sx) (E.12)

dνx(t)

dt
= −ν2xC2Px +

D

nSx

n∑
y=1

Sy(νy − νx) (E.13)

dE1,x(t)

dt
= νxPxSx −mδE1,x +

D

n

n∑
y=1

(E1,y − E1,x) (E.14)

dEi,x(t)

dt
= mδEi−1 −mδEi +

D

n

n∑
y=1

(Ei,y − Ei,x) (i ∈ [2,m]) (E.15)

dPx(t)

dt
= mδEm,x − µPx (E.16)

E.2 Exact stochastic simulation algorithms

Agent-based simulations typically implement an algorithm that produces an exact stochastic

simulation, often referred to in biology as the Gillespie algorithm (algorithm 3, Gillespie

[1977]). Briefly, the exact stochastic simulation algorithm computes the rate αω(t) at which

each interaction or “event" ω in a model is occurring at time t. We calculate the total rate

at which events are occurring at time t by summing all of these event rates

αΩ(t) =
Ω∑

ω=1

αω(t). (E.17)

The time to the next event is exponentially distributed according to the total rate αΩ(t)

and the probability of a particular event ω occurring at the specified time is taken to be the

relative proportion of its rate αω(t) to the total rate of all events occurring.

The first issue in using the exact stochastic algorithm 3 for our spatial model is that

it assumes a homogeneously mixing population. A simple fix for this issue is to assign

local rates of each event type of interest, meaning that rates of transmission, mortality, and
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Algorithm 3: Exact stochastic simulation
Ω ≡ set of all possible events (e.g. exposure, mortality, decay);
while [E(t) + P (t)] > 0 and t < tf do

Initialize αΩ(t) = 0;
for event ω in Ω do

compute event rate αω(t);
αΩ(t) += αω(t);

end
generate τ ∼ Exp

(
αΩ(t)

−1) ;

select event ω with probability αω(t)
αΩ(t)

;
execute ω;
t += τ ;

end

cadaver decay are based on local populations in each patch grid cell, not the global population

size, familiar as the household model of statistical epidemics Andersson and Britton [1998],

Britton et al. [2011, 2020]. We denote the rate at which event ω occurs in patch x at time

t as αω(x, t). This yields more frequent events that stem from more agent types, but avoids

violating the homogeneous mixing assumption.

However, these simulations become more computationally-intensive from this workaround.

In order to fit our model to data, we need to execute many events rapidly and reduce compu-

tation time. To do this, we use a hybrid τ -selection routine (algorithm 4) Cao et al. [2007],

Simoni et al. [2019]. This routine assigns events αω(x, t) into two sets: the “leap" set and the

“exact" set. These two sets aim to approximate the exact stochastic algorithm by selecting

time steps that are small enough to not considerably alter the dynamics of the system.

Events belong to the exact set if they involve a class of agents (susceptible larvae, infected

larvae, or infectious cadavers) that have fewer than some threshold θ individuals. Events

in this set are chosen to occur in a manner similar to algorithm 3 but are described in full

by algorithm 4. The exact event set deals with cases where even one or two events have a

relatively large impact on the fate of a population. The leap event set includes those events

that involve only populations above our specified threshold, meaning that multiple events
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will have a relatively smaller impact on the overall dynamics. Leap events αω(x, t) ∈ α⃗leap

occur according to Poisson distribution with expectation ταω(x, t), where time step τ is

chosen to minimize changes to system dynamics Cao et al. [2007].

If the local effective transmission rate αν(x, t) is a leap event, meaning that the susceptible

population S(x, t) is greater than threshold θ, then we select the new value of ν(x, t+ τ) in

a non-random fashion that depends on a random number of stochastic events by setting

ν(x, t+ τ) = ν(x, t)

[
S(x, t)− kx

S(x, t)

]C2
V

(E.18)

where kx is the Poisson-distributed number of infection events that occurred during leap

τ . We always consider movement between two locations to be in the exact set, regardless of

population size, to avoid violating homogeneity assumptions of leap events.

Infection risk heterogeneity across individuals and across space is simulated by tracking

the total, local effective transmission risk ν(x, t), as in the PDE system. We initialized

ν(x, 0) for each discretized grid point in space as a gamma-distributed random variable with

shape parameter S(x, 0)C−2 and scale parameter ν(x, 0)C2. The total transmission risk is

the sum across all individual transmission risks. To account for the change in total effective

transmission after an infection takes place, we borrow the deterministic moment closure

approximation equation A.1.

If fewer than threshold θ = 20 susceptible individuals remain in patch x (Cao et al.

[2006, 2007]), we assign individual infection risks νi for each agent host i. The values of νi

are gamma-distributed with shape parameter C−2 and scale parameter ν(x, t)C2 and sum

to S(x, t)ν(x, t). If the exact transmission event affecting one individual αν(x, t) is selected

to occur under algorithm 4, we remove one individual i with probability

pν(i) =
νi∑S
j νj

(E.19)

135



Algorithm 4: Hybrid τ -selection
θ ≡ threshold population for exact stochastic algorithm;
ϵ ≡ bound on population size change;
Ω ≡ events (e.g. exposure, mortality, decay);
while [E(t) + P (t)] > 0 and t < tf do

for patch x ∈ (1, X] do
for local event ωx in Ωx do

if Ni > θ then
calculate τω(x, t): max τ allowing ∆Nx < ϵ given αω(x, t));
append τω(x, t) to list τ⃗leap;
append αω(x, t) to list α⃗leap;

else
append αω(x, t) to list α⃗exact;

end
end
if movement allowed then

append αω=M (x, t) to list α⃗exact;
end

end
set τleap = min(τ⃗leap);
calculate αΩ =

∑
α⃗exact;

generate τexact ∼ Exp
(
α−1Ω

)
;

if τleap < τexact then
take τ = τleap;

else
take τ = τexact;

select 1 exact event ωx ∈ α⃗exact with probability αω(x,t)
αΩ

;
execute ωx once

end
for αω(x, t) in α⃗leap do

generate kx ∼ Pois(ταω(x, t));
execute ωx kx times;

end
t += τ ;

end
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and then subtract the individual infection risk from the total effective transmission rate.

We then add the individual to the exposed class, where it has no identifying characteristics

besides time to mortality. We set time to death of an exposed individual as the constant

δ−1 + tν , with tν being the time of exposure. This is equivalent to setting the number of

exposed classes m in equations (A.52-A.56) equal to ∞, although in practice m ∈ (50, 100)

exposure classes also have almost zero variance in time to mortality (Lloyd [2001]). We

used m = 100 in our differential equations models to closely approximate our zero-variance

mortality times in the agent-based model.

E.3 Environmental stochasticity

We incorporate environmental stochasticity by randomly fluctuating coefficients in the trans-

mission term by a factor of exp(ϵτ ). Specifically, for each day τ , we drew a new value of

the random variable ϵτ from a normal distribution with variance σ2 and mean −σ2

2 . We

then exponentiated each value ϵτ , yielding parameter fluctuations that followed a log-normal

distribution that is strictly positive with an expectation of one. An expectation of one, gen-

erated by the adjustment term −σ2

2 , allowed the estimated average transmission rate to be

consistent across models incorporating environmental stochasticity and models lacking such

fluctuations. The effects on the transmission rate are strictly positive as negative values

would lead to cadaver-host interactions producing healthy hosts from infected individuals.

Therefore for each day τ ∈ (1, T )

dSτ
dt

= −ν̄SτPτeϵτ
(
Sτ (t)

S1(0)

)C2

(E.20)

This is essentially an assumption that each day in the simulation has random unknowable

effects on transmission that either reduce transmission rate to 0 or inflate it to much higher

values modulated by σ2. The mode of this distribution becomes greatly shifted toward
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zero with increasing variance in ϵτ . This case yields few days with high transmission and

many days with very low transmission, in contrast to an un-adjusted distribution that would

otherwise produce many days of transmission in the neighborhood of ν̄ exp(σ2) and some days

with incredibly high transmission rates. This is important to note because we use the same

priors in fitting ν̄ and C, regardless of whether we incorporate environmental stochasticity.

But if the mean transmission is inflated we will have misspecified posteriors, particularly

on ν̄, which interact differently with each model. The adjustment therefore serves a dual

purpose of maintaining consistency of the effect from priors and of preventing model crashout

for the extreme values of σ.

E.4 Grid lattices, diffusion, and travelling waves

We initialized host and pathogen densities with a multinomial distribution at each point

in space by calculating the total size of the population and then distributing individual

densities. Specifically, we multiplied the average density by the number of grid points to be

initialized and assigned integer densities of hosts and cadavers to each location according

to a multinomial distribution. Because mean densities were fit separately for each study

population and each grid point had equal probability in the multinomial distribution, the

initial distribution of hosts and pathogens reflected the observed larval densities of our study

populations and assumed no initial overdispersion.

“Periodic" boundaries, which we use across the simulations in this study, bring any indi-

viduals that leave the grid to wrap around to another point in the grid. Periodic boundaries

have the advantage that they reduce aberrant behavior at the boundaries of the grid com-

pared to the center and do not alter the total population size. We can imagine then that

our 2D hexagonal grid lattice with periodic boundaries represents a sample from a level

in the forest canopy where exposed and susceptible hosts can move with equal efficiency.

If an individual leaves the grid, we therefore are assuming that an individual of the same
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type replaces it on the opposite side of the grid instead of the individual itself being able to

transport to that area.

It is convenient for many reasons to have consistent rules about storing population sizes

and other features of the grid. We use a one-dimensional array in C to track grid points and

use indexing geometry and simple mod rules for calculating the indices of neighboring grid

points in a periodic hexagonal lattice.

switch (direction_of_travel)

{

case 0: destination = modulo(origin + 1, gridsize);

break;

case 1: destination = modulo(origin + 2 - 3 * length, gridsize);

break;

case 2: destination = modulo(origin + 3 * length - 1, gridsize);

break;

case 3: destination = modulo(origin - 1, cells);

break;

case 4: destination = modulo(origin + 3 * length - 2, gridsize);

break;

case 5: destination = modulo(origin + 1 - 3 * length, gridsize);

break;

}

where length is our parameter l that denotes the grid points along a single side of the

simulation and grid size n is calculated from that using

n = 3l(l − 1) + 1 (E.21)
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The destination mod grid size ensures that destination indices are strictly positive

and work for periodic boundaries. The indexing is laid out so that the mod movement

arithmetic can be followed according to figure E.1.

000000111111222222333333444444

555555666666777777888888999999

101010101010111111111111121212121212131313131313141414141414151515151515161616161616171717171717

181818181818191919191919202020202020212121212121222222222222232323232323

242424242424252525252525262626262626272727272727282828282828292929292929303030303030

313131313131323232323232333333333333343434343434353535353535363636363636373737373737

383838383838393939393939404040404040414141414141424242424242434343434343

444444444444454545454545464646464646474747474747484848484848494949494949505050505050515151515151

525252525252535353535353545454545454555555555555565656565656

575757575757585858585858595959595959606060606060

Figure E.1: Orientation of indexing so that direction of travel is easily selected with mod
rules.

Due to the lack of assumptions about nearest neighbor movements, hexagonal grids have

the further advantage of being a stable discretization of the diffusion process, meaning simple

rules for translating distance between grid points into the diffusion constant Wood and

Thomas [1996]. If we denote the densities of a particular class F (x, y) and we denote the

discretized populations f1−6 as six neighbors of a central grid point fC , then

∂2F

∂x2
+

∂2F

∂y2
≈ 1

3(∆x)2

(
6∑

i=1

fi − 6fC

)
(E.22)
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We can set the patch width ∆x equal to l−1, where l is the number of hexagons that

make up a single side of a hexagonal grid. This fixes the absolute length of the grid for

different grid sizes and takes the distance between centers of each hexagon as the width.

The scale-free spatial grid allows us to assume that the densities in the simulation align

with our data upon model fitting and provides consistency across spatial grid sizes while

simulating the models.

Movement rates are set in units of inter-patch transitions per larva per day. These rates

increase to saturation over the course of the epizootic, modelling larval growth and increasing

movement propensity. The movement rate as a function of larval development, and therefore

time, is a Michaelis-Menten function, where the terminal rate of movement, k1, is determined

by the relationship between the diffusion coefficient and the width of a patch in the hexagonal

grid lattice following equation E.22.

k1t

k2 + t
=

Dl2t

3(k2 + t)
(E.23)

In practice we are only fitting k1 and k2 while we calculate real-time movement proba-

bilities according to the Michaelis-Menten calculation as a function of grid size.

In models that allow for the diffusion of infectious cadavers, we assume that pathogen

diffusion occurs due to first instar exposed movement and simplify by including these in

the infectious class P . Instead of a Michaelis-Menten saturating function, we assume that

“cadaver diffusion" is either constant, meaning the continuous dispersal of first instars and

occlusion bodies over foliage, or the rate decays according to the incubation period parameter

δ, meaning that we only consider first instar larvae to diffuse and then die of infection.

The expression for change in pathogen over time then is

∂P

∂t
= −µP + (1− CDF(E|m, δ))D∇P (E.24)
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Travelling waves from pathogen point releases stopped in the fitted agent-based model

but continued when pathogens were represented as infinitesimal densities in the best spatial

model, which only allowed for host diffusion (Figure E.2). Waves stopped due to extinction

by drift, where exposed individuals with low diffusion rates did not tend to leave the patch

in which they were infected. For faster diffusion rates, travelling waves continued in both

models, but these faster rates were orders of magnitude above our point estimates for the

reaction-diffusion model (figure B.7.
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Figure E.2: Comparison of agent-based and PDE exposed class waves from point release of
infectious cadavers. Facet rows show x-position distance from the origin in a 2D lattice. The
column at left shows the mean posterior fitted agent-based parameter values. The column at
right shows a diffusion constant two standard deviations above the mean (100-fold increase)
while holding densities and other epizootic parameters constant. Solid black lines show the
PDE solutions given the same parameters of each column. The agent-based simulation can
only match the PDE for considerably high movement speeds of exposed individuals.
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E.5 Time step calculations in integrodifference equations

The integration of continuous spatial domains is prone to numerical error. To reduce that

error, we used Simpson’s integration rule over space and used a high number of discretized

grid point steps. Simpson’s rule,

∫ b

a
f(x)dx ≈ b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
(E.25)

=
1

3
h [f(a) + 4f (a+ h) + f(b)] , (E.26)

allows for more robust integration when functions contain both high and low values, as

is naturally the case when densities of hosts are invading empty landscapes and particularly

the case when dispersal kernels are fat-tailed. We used 2× 1018 + 1 integration steps using

the observed moments of Sn(ν, x) directly followed by calculation of Vn(x) and ν̄n(x).

143



REFERENCES
Karen C. Abbott and Greg Dwyer. Using Mechanistic Models to Understand Synchrony

in Forest Insect Populations: The North American Gypsy Moth as a Case Study.
The American Naturalist, 172(5):613–624, November 2008. ISSN 0003-0147, 1537-5323.
doi:10.1086/591679. URL https://www.journals.uchicago.edu/doi/10.1086/591679.

René I. Alfaro and Roy F. Shepherd. Tree-Ring Growth of Interior Douglas-Fir After One
Year’s Defoliation by Douglas-Fir Tussock Moth. Forest Science, 37(3):959–964, August
1991. ISSN 0015-749X. doi:10.1093/forestscience/37.3.959. URL https://doi.org/10.1
093/forestscience/37.3.959.

Linda J.S. Allen. A primer on stochastic epidemic models: Formulation, numerical simu-
lation, and analysis. Infectious Disease Modelling, 2(2):128–142, 2017. ISSN 24680427.
doi:10.1016/j.idm.2017.03.001. URL http://dx.doi.org/10.1016/j.idm.2017.03.001.
Publisher: Elsevier Ltd.

Linda JS Allen, Ben M. Bolker, Yuan Lou, and Andrew L. Nevai. Asymptotic profiles
of the steady states for an SIS epidemic reaction-diffusion model. 2008. URL https:
//pdfs.semanticscholar.org/3916/90733c81a774f3bafabd93c142ab92f59ec3.pdf.
Publisher: AIMS PRESS.

David Alonso, Alan J McKane, and Mercedes Pascual. Stochastic amplification in
epidemics. Journal of The Royal Society Interface, 4(14):575–582, December 2006.
doi:10.1098/rsif.2006.0192. URL https://royalsocietypublishing.org/doi/ful
l/10.1098/rsif.2006.0192. Publisher: Royal Society.

R. M. Anderson, H. C. Jackson, R. M. May, and A. M. Smith. Population dynamics
of fox rabies in Europe. Nature, 289(5800):765–771, February 1981. ISSN 0028-0836.
doi:10.1038/289765a0.

Håkan Andersson and Tom Britton. Heterogeneity in epidemic models and its effect on the
spread of infection. Journal of Applied Probability, 35(3):651–661, 1998. ISSN 00219002.
doi:10.1239/jap/1032265213.

Shweta Bansal, Bryan T Grenfell, and Lauren Ancel Meyers. When individual be-
haviour matters: homogeneous and network models in epidemiology. Journal of The
Royal Society Interface, 4(16):879–891, October 2007. ISSN 1742-5689, 1742-5662.
doi:10.1098/rsif.2007.1100. URL https://royalsocietypublishing.org/doi/10.
1098/rsif.2007.1100.

Roy C. Beckwith. Influence of host foliage on the Douglas-fir tussock moth. Environmental
Entomology, 5(1):73–77, 1976. URL https://academic.oup.com/ee/article-abstrac
t/5/1/73/2395704. Publisher: Oxford University Press Oxford, UK.

Craig W. Benkman. The Selection Mosaic and Diversifying Coevolution between Crossbills
and Lodgepole Pine. The American Naturalist, 153(S5):S75–S91, May 1999. ISSN 1537-
5323. doi:10.1086/303213.

144

https://doi.org/10.1086/591679
https://www.journals.uchicago.edu/doi/10.1086/591679
https://doi.org/10.1093/forestscience/37.3.959
https://doi.org/10.1093/forestscience/37.3.959
https://doi.org/10.1093/forestscience/37.3.959
https://doi.org/10.1016/j.idm.2017.03.001
http://dx.doi.org/10.1016/j.idm.2017.03.001
https://pdfs.semanticscholar.org/3916/90733c81a774f3bafabd93c142ab92f59ec3.pdf
https://pdfs.semanticscholar.org/3916/90733c81a774f3bafabd93c142ab92f59ec3.pdf
https://doi.org/10.1098/rsif.2006.0192
https://royalsocietypublishing.org/doi/full/10.1098/rsif.2006.0192
https://royalsocietypublishing.org/doi/full/10.1098/rsif.2006.0192
https://doi.org/10.1038/289765a0
https://doi.org/10.1239/jap/1032265213
https://doi.org/10.1098/rsif.2007.1100
https://royalsocietypublishing.org/doi/10.1098/rsif.2007.1100
https://royalsocietypublishing.org/doi/10.1098/rsif.2007.1100
https://academic.oup.com/ee/article-abstract/5/1/73/2395704
https://academic.oup.com/ee/article-abstract/5/1/73/2395704
https://doi.org/10.1086/303213


Jamie J.R. Bennett and Jonathan A. Sherratt. How do dispersal rates affect the tran-
sition from periodic to irregular spatio-temporal oscillations in invasive predator–prey
systems? Applied Mathematics Letters, 94:80–86, August 2019. ISSN 08939659.
doi:10.1016/j.aml.2019.02.013. URL https://linkinghub.elsevier.com/retrieve
/pii/S0893965919300709.

Ottar N. Bjørnstad, Mikko Peltonen, Andrew M. Liebhold, and Werner Baltensweiler.
Waves of Larch Budmoth Outbreaks in the European Alps. Science, 298(5595):1020–
1023, November 2002. ISSN 0036-8075, 1095-9203. doi:10.1126/science.1075182. URL
https://www.science.org/doi/10.1126/science.1075182.

Ottar N. Bjørnstad, Andrew M. Liebhold, and Derek M. Johnson. Transient synchronization
following invasion: revisiting Moran’s model and a case study. Population Ecology, 50(4):
379–389, October 2008. ISSN 1438-3896, 1438-390X. doi:10.1007/s10144-008-0105-5. URL
https://esj-journals.onlinelibrary.wiley.com/doi/10.1007/s10144-008-010
5-5.

Gert Jan Boender, Rob van den Hengel, Herman J. W. van Roermund, and Thomas J.
Hagenaars. The Influence of Between-Farm Distance and Farm Size on the Spread of
Classical Swine Fever during the 1997–1998 Epidemic in The Netherlands. PLOS ONE, 9
(4):e95278, April 2014. ISSN 1932-6203. doi:10.1371/journal.pone.0095278. URL https:
//journals.plos.org/plosone/article?id=10.1371/journal.pone.0095278.
Publisher: Public Library of Science.

Benjamin Bolker and Stephen W Pacala. Using Moment Equations to Understand Stochas-
tically Driven Spatial Pattern Formation in Ecological Systems. Theoretical Population
Biology, 52(3):179–197, December 1997. ISSN 0040-5809. doi:10.1006/tpbi.1997.1331.
URL https://www.sciencedirect.com/science/article/pii/S0040580997913319.

Tyler R. Bonnell, Ria R. Ghai, Tony L. Goldberg, Raja Sengupta, and Colin A. Chap-
man. Spatial patterns of persistence for environmentally transmitted parasites: Effects
of regional climate and local landscape. Ecological Modelling, 338:78–89, 2016. ISSN
03043800. doi:10.1016/j.ecolmodel.2016.07.018. URL http://dx.doi.org/10.1016/j.e
colmodel.2016.07.018. Publisher: Elsevier B.V.

Romulus Breban, John M. Drake, David E. Stallknecht, and Pejman Rohani. The role of
environmental transmission in recurrent avian influenza epidemics. PLoS computational
biology, 5(4):e1000346, 2009. URL https://journals.plos.org/ploscompbiol/art
icle?id=10.1371/journal.pcbi.1000346. Publisher: Public Library of Science San
Francisco, USA.

Carles Bretó, Daihai He, Edward L. Ionides, and Aaron A. King. Time series analysis
via mechanistic models. The Annals of Applied Statistics, pages 319–348, 2009. URL
https://www.jstor.org/stable/30244243. Publisher: JSTOR.

145

https://doi.org/10.1016/j.aml.2019.02.013
https://linkinghub.elsevier.com/retrieve/pii/S0893965919300709
https://linkinghub.elsevier.com/retrieve/pii/S0893965919300709
https://doi.org/10.1126/science.1075182
https://www.science.org/doi/10.1126/science.1075182
https://doi.org/10.1007/s10144-008-0105-5
https://esj-journals.onlinelibrary.wiley.com/doi/10.1007/s10144-008-0105-5
https://esj-journals.onlinelibrary.wiley.com/doi/10.1007/s10144-008-0105-5
https://doi.org/10.1371/journal.pone.0095278
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0095278
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0095278
https://doi.org/10.1006/tpbi.1997.1331
https://www.sciencedirect.com/science/article/pii/S0040580997913319
https://doi.org/10.1016/j.ecolmodel.2016.07.018
http://dx.doi.org/10.1016/j.ecolmodel.2016.07.018
http://dx.doi.org/10.1016/j.ecolmodel.2016.07.018
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000346
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000346
https://www.jstor.org/stable/30244243


Tom Britton. Stochastic epidemic models: A survey. Mathematical Biosciences, 225(1):
24–35, 2010. ISSN 00255564. doi:10.1016/j.mbs.2010.01.006. URL http://dx.doi.org
/10.1016/j.mbs.2010.01.006. Publisher: Elsevier Inc. _eprint: 0910.4443.

Tom Britton, Theodore Kypraios, and Philip D. O’Neill. Inference for Epidemics with
Three Levels of Mixing: Methodology and Application to a Measles Outbreak. Scandi-
navian Journal of Statistics, 38(3):578–599, 2011. ISSN 03036898. doi:10.1111/j.1467-
9469.2010.00726.x.

Tom Britton, Frank Ball, and Pieter Trapman. A mathematical model reveals the influence of
population heterogeneity on herd immunity to SARS-CoV-2. Science, 369(6505):846–849,
2020. ISSN 10959203. doi:10.1126/science.abc6810.

Martha H. Brookes, R.W. Stark, and Robert W. Campbell, editors. The Douglas-fir Tussock
Moth: A Synthesis, volume 1585 of Technical Bulletin. U.S. Forest Service Scicence and
Education Agency, 1978.

Gregory Brown, Crystal Kelehear, and Richard Shine. The early toad gets the worm: Cane
toads at an invasion front benefit from higher prey availability. The Journal of animal
ecology, 82, January 2013a. doi:10.1111/1365-2656.12048.

V. L. Brown, J. M. Drake, D. E. Stallknecht, J. D. Brown, K. Pedersen, and P. Rohani.
Dissecting a wildlife disease hotspot: the impact of multiple host species, environmen-
tal transmission and seasonality in migration, breeding and mortality. Journal of The
Royal Society Interface, 10(79):20120804, February 2013b. ISSN 1742-5689, 1742-5662.
doi:10.1098/rsif.2012.0804. URL https://royalsocietypublishing.org/doi/10.1098
/rsif.2012.0804.

Olivia J. Burton, Ben L. Phillips, and Justin M. J. Travis. Trade-offs and the evolution of
life-histories during range expansion. Ecology Letters, 13(10):1210–1220, October 2010.
ISSN 1461-0248. doi:10.1111/j.1461-0248.2010.01505.x.

Oihana Cabodevilla, Itxaso Ibañez, Oihane Simón, Rosa Murillo, Primitivo Caballero, and
Trevor Williams. Occlusion body pathogenicity, virulence and productivity traits vary
with transmission strategy in a nucleopolyhedrovirus. Biological Control, 56(2):184–192,
February 2011. ISSN 1049-9644. doi:10.1016/j.biocontrol.2010.10.007. URL https://ww
w.sciencedirect.com/science/article/pii/S1049964410002240.

Yang Cao, Daniel T. Gillespie, and Linda R. Petzold. Efficient step size selection for the tau-
leaping simulation method. Journal of Chemical Physics, 124(4), 2006. ISSN 00219606.
doi:10.1063/1.2159468.

Yang Cao, Daniel T. Gillespie, and Linda R. Petzold. Adaptive explicit-implicit tau-leaping
method with automatic tau selection. Journal of Chemical Physics, 126(22), 2007. ISSN
00219606. doi:10.1063/1.2745299.

146

https://doi.org/10.1016/j.mbs.2010.01.006
http://dx.doi.org/10.1016/j.mbs.2010.01.006
http://dx.doi.org/10.1016/j.mbs.2010.01.006
https://doi.org/10.1111/j.1467-9469.2010.00726.x
https://doi.org/10.1111/j.1467-9469.2010.00726.x
https://doi.org/10.1126/science.abc6810
https://doi.org/10.1111/1365-2656.12048
https://doi.org/10.1098/rsif.2012.0804
https://royalsocietypublishing.org/doi/10.1098/rsif.2012.0804
https://royalsocietypublishing.org/doi/10.1098/rsif.2012.0804
https://doi.org/10.1111/j.1461-0248.2010.01505.x
https://doi.org/10.1016/j.biocontrol.2010.10.007
https://www.sciencedirect.com/science/article/pii/S1049964410002240
https://www.sciencedirect.com/science/article/pii/S1049964410002240
https://doi.org/10.1063/1.2159468
https://doi.org/10.1063/1.2745299


Jérôme Chave. The problem of pattern and scale in ecology: what have we learned in
20 years? Ecology Letters, 16(s1):4–16, 2013. ISSN 1461-0248. doi:10.1111/ele.12048.
URL https://onlinelibrary.wiley.com/doi/abs/10.1111/ele.12048. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/ele.12048.

Song Xi Chen. Beta kernel estimators for density functions. Computational Statistics and
Data Analysis, 31(2):131–145, 1999. ISSN 01679473. doi:10.1016/S0167-9473(99)00010-9.

Peter Chesson. Mechanisms of Maintenance of Species Diversity. Annual Review of Ecology,
Evolution, and Systematics, 31(Volume 31, 2000):343–366, November 2000. ISSN 1543-
592X, 1545-2069. doi:10.1146/annurev.ecolsys.31.1.343. URL https://www.annualrevi
ews.org/content/journals/10.1146/annurev.ecolsys.31.1.343. Publisher: Annual
Reviews.

Peter L. Chesson and William W. Murdoch. Aggregation of Risk: Relationships Among
Host-Parasitoid Models. The American Naturalist, 127(5):696–715, May 1986. ISSN 0003-
0147. doi:10.1086/284514. URL https://www.journals.uchicago.edu/doi/abs/10.1
086/284514. Publisher: The University of Chicago Press.

Sarah Cobey. Modeling infectious disease dynamics. Science, 368(6492):713–714, May 2020.
ISSN 0036-8075, 1095-9203. doi:10.1126/science.abb5659. URL https://www.science.
org/doi/10.1126/science.abb5659.

Tom W. Coleman, Michael I. Jones, Beatrice Courtial, Andrew D. Graves, Meghan Woods,
Alain Roques, and Steven J. Seybold. Impact of the first recorded outbreak of the
Douglas-fir tussock moth, Orgyia pseudotsugata, in southern California and the ex-
tent of its distribution in the Pacific Southwest region. Forest Ecology and Manage-
ment. 329: 295-305, 329:295–305, 2014. doi:10.1016/j.foreco.2014.06.027. URL https:
//research.fs.usda.gov/treesearch/49342.

Jenny S. Cory and Kelli Hoover. Plant-mediated effects in insect–pathogen interactions.
Trends in ecology & evolution, 21(5):278–286, 2006. URL https://www.cell.com/AJHG/
fulltext/S0169-5347(06)00057-7. Publisher: Elsevier.

Jenny S. Cory and Judith H. Myers. The Ecology and Evolution of Insect Baculoviruses.
Annual Review of Ecology, Evolution, and Systematics, 34(1):239–272, November 2003.
ISSN 1543-592X, 1545-2069. doi:10.1146/annurev.ecolsys.34.011802.132402. URL https:
//www.annualreviews.org/doi/10.1146/annurev.ecolsys.34.011802.132402.

Jenny S. Cory, Bernadette M. Green, Robin K. Paul, and Frances Hunter-Fujita. Genotypic
and phenotypic diversity of a baculovirus population within an individual insect host.
Journal of Invertebrate Pathology, 89(2):101–111, 2005. URL https://www.sciencedir
ect.com/science/article/pii/S0022201105000595. Publisher: Elsevier.

Philip H. Crowley. Dispersal and the Stability of Predator-Prey Interactions. The American
Naturalist, 118(5):673–701, November 1981. ISSN 0003-0147. doi:10.1086/283861. URL

147

https://doi.org/10.1111/ele.12048
https://onlinelibrary.wiley.com/doi/abs/10.1111/ele.12048
https://doi.org/10.1016/S0167-9473(99)00010-9
https://doi.org/10.1146/annurev.ecolsys.31.1.343
https://www.annualreviews.org/content/journals/10.1146/annurev.ecolsys.31.1.343
https://www.annualreviews.org/content/journals/10.1146/annurev.ecolsys.31.1.343
https://doi.org/10.1086/284514
https://www.journals.uchicago.edu/doi/abs/10.1086/284514
https://www.journals.uchicago.edu/doi/abs/10.1086/284514
https://doi.org/10.1126/science.abb5659
https://www.science.org/doi/10.1126/science.abb5659
https://www.science.org/doi/10.1126/science.abb5659
https://doi.org/10.1016/j.foreco.2014.06.027
https://research.fs.usda.gov/treesearch/49342
https://research.fs.usda.gov/treesearch/49342
https://www.cell.com/AJHG/fulltext/S0169-5347(06)00057-7
https://www.cell.com/AJHG/fulltext/S0169-5347(06)00057-7
https://doi.org/10.1146/annurev.ecolsys.34.011802.132402
https://www.annualreviews.org/doi/10.1146/annurev.ecolsys.34.011802.132402
https://www.annualreviews.org/doi/10.1146/annurev.ecolsys.34.011802.132402
https://www.sciencedirect.com/science/article/pii/S0022201105000595
https://www.sciencedirect.com/science/article/pii/S0022201105000595
https://doi.org/10.1086/283861


https://www.journals.uchicago.edu/doi/abs/10.1086/283861. Publisher: The
University of Chicago Press.

R.I. Cukier, C.M. Fortuin, K.E. Shuler, A.G. Petschek, and J.H. Schaibly. Study of the sen-
sitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory. Journal
of Chemical Physics, 59(8):3873–3878, 1973. doi:10.1063/1.1680571.

Jacob Curran-Sebastian, Lorenzo Pellis, Ian Hall, and Thomas House. Calculation of
Epidemic First Passage and Peak Time Probability Distributions, January 2023. URL
http://arxiv.org/abs/2301.07058. arXiv:2301.07058 [math, q-bio].

Maxime Dahirel, Aline Bertin, Marjorie Haond, Aurélie Blin, Vincent Calcagno, Simon Fel-
lous, Ludovic Mailleret, Thibaut Malausa, and Elodie Vercken. Shifts from pulled to
pushed range expansions caused by reduction of landscape connectivity. PEER COMMU-
NITY IN EVOLUTIONARY BIOLOGY.

Maxime Dahirel, Chloé Guicharnaud, and Elodie Vercken. Individual variation in dispersal,
and its sources, shape the fate of pushed vs. pulled range expansions, January 2022. URL
http://biorxiv.org/lookup/doi/10.1101/2022.01.12.476009.

D. L. Dahlsten, R. F. Luck, E. I. Schlinger, J. M. Wenz, and W. A. Copper. PARASITOIDS
AND PREDATORS OF THE DOUGLAS-FIR TUSSOCK MOTH,. The Canadian Ento-
mologist, 109(5):727–746, May 1977. ISSN 1918-3240, 0008-347X. doi:10.4039/Ent109727-
5. URL https://www.cambridge.org/core/journals/canadian-entomologist/arti
cle/abs/parasitoids-and-predators-of-the-douglasfir-tussock-moth-orgyia-p
seudotsugata-lepidoptera-lymantridae-in-low-to-moderate-populations-in-c
entral-california1/BC2B85243D3B5B05C28118348364C081.

Vincent D’Amico and Joseph S. Elkinton. Rainfall effects on transmission of gypsy moth
(Lepidoptera: Lymantriidae) nuclear polyhedrosis virus. Environmental Entomology, 24
(5):1144–1149, 1995. URL https://academic.oup.com/ee/article-abstract/24/5/1
144/2480838. Publisher: Oxford University Press Oxford, UK.

Francisco De Castro and Benjamin Bolker. Mechanisms of disease-induced extinction. Ecol-
ogy Letters, 8(1):117–126, January 2005. ISSN 1461-023X, 1461-0248. doi:10.1111/j.1461-
0248.2004.00693.x. URL https://onlinelibrary.wiley.com/doi/10.1111/j.1461-0
248.2004.00693.x.

Donald L. DeAngelis and Volker Grimm. Individual-based models in ecology after four
decades. F1000Prime Reports, 6:39, June 2014. ISSN 2051-7599. doi:10.12703/P6-39.
URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4047944/.

Lorna E. Deeth and Rob Deardon. Spatial data aggregation for spatio-temporal individual-
level models of infectious disease transmission. Spatial and Spatio-temporal Epidemiology,
17:95–104, 2016. ISSN 18775853. doi:10.1016/j.sste.2016.04.013. URL http://dx.doi.o
rg/10.1016/j.sste.2016.04.013. Publisher: Elsevier Ltd.

148

https://www.journals.uchicago.edu/doi/abs/10.1086/283861
https://doi.org/10.1063/1.1680571
http://arxiv.org/abs/2301.07058
http://biorxiv.org/lookup/doi/10.1101/2022.01.12.476009
https://doi.org/10.4039/Ent109727-5
https://doi.org/10.4039/Ent109727-5
https://www.cambridge.org/core/journals/canadian-entomologist/article/abs/parasitoids-and-predators-of-the-douglasfir-tussock-moth-orgyia-pseudotsugata-lepidoptera-lymantridae-in-low-to-moderate-populations-in-central-california1/BC2B85243D3B5B05C28118348364C081
https://www.cambridge.org/core/journals/canadian-entomologist/article/abs/parasitoids-and-predators-of-the-douglasfir-tussock-moth-orgyia-pseudotsugata-lepidoptera-lymantridae-in-low-to-moderate-populations-in-central-california1/BC2B85243D3B5B05C28118348364C081
https://www.cambridge.org/core/journals/canadian-entomologist/article/abs/parasitoids-and-predators-of-the-douglasfir-tussock-moth-orgyia-pseudotsugata-lepidoptera-lymantridae-in-low-to-moderate-populations-in-central-california1/BC2B85243D3B5B05C28118348364C081
https://www.cambridge.org/core/journals/canadian-entomologist/article/abs/parasitoids-and-predators-of-the-douglasfir-tussock-moth-orgyia-pseudotsugata-lepidoptera-lymantridae-in-low-to-moderate-populations-in-central-california1/BC2B85243D3B5B05C28118348364C081
https://academic.oup.com/ee/article-abstract/24/5/1144/2480838
https://academic.oup.com/ee/article-abstract/24/5/1144/2480838
https://doi.org/10.1111/j.1461-0248.2004.00693.x
https://doi.org/10.1111/j.1461-0248.2004.00693.x
https://onlinelibrary.wiley.com/doi/10.1111/j.1461-0248.2004.00693.x
https://onlinelibrary.wiley.com/doi/10.1111/j.1461-0248.2004.00693.x
https://doi.org/10.12703/P6-39
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4047944/
https://doi.org/10.1016/j.sste.2016.04.013
http://dx.doi.org/10.1016/j.sste.2016.04.013
http://dx.doi.org/10.1016/j.sste.2016.04.013


Maxime Deforet, Carlos Carmona-Fontaine, Kirill S. Korolev, and Joao B. Xavier. Evolu-
tion at the Edge of Expanding Populations. The American Naturalist, 194(3):291–305,
September 2019. ISSN 0003-0147. doi:10.1086/704594. URL https://www.journals.u
chicago.edu/doi/full/10.1086/704594. Publisher: The University of Chicago Press.

Brian Dennis, William P. Kemp, and Roy C. Beckwith. Stochastic model of insect phenology:
estimation and testing. Environmental Entomology, 15(3):540–546, 1986. URL https:
//academic.oup.com/ee/article-abstract/15/3/540/2480371. Publisher: Oxford
University Press Oxford, UK.

Sarah E. Diamond. Contemporary climate-driven range shifts: Putting evolution back on
the table. Functional Ecology, 32(7):1652–1665, July 2018. ISSN 0269-8463, 1365-2435.
doi:10.1111/1365-2435.13095. URL https://besjournals.onlinelibrary.wiley.com/
doi/10.1111/1365-2435.13095.

Katherine P. Dixon. Interacting Effects of Host-Pathogen Ecology and Evolution and Climate
Change on Outbreaks of a Forest Pest Insect. PhD thesis, University of Chicago, August
2024.

David W. Dowdy, Jonathan E. Golub, Richard E. Chaisson, and Valeria Saraceni. Het-
erogeneity in tuberculosis transmission and the role of geographic hotspots in prop-
agating epidemics. Proceedings of the National Academy of Sciences, 109(24):9557–
9562, June 2012. ISSN 0027-8424, 1091-6490. doi:10.1073/pnas.1203517109. URL
https://pnas.org/doi/full/10.1073/pnas.1203517109.

Eric Dumonteil, Satya N. Majumdar, Alberto Rosso, and Andrea Zoia. Spatial ex-
tent of an outbreak in animal epidemics. Proceedings of the National Academy of
Sciences of the United States of America, 110(11):4239–4244, 2013. ISSN 00278424.
doi:10.1073/pnas.1213237110.

R. Durrett and S. Levin. The Importance of Being Discrete (and Spatial). Theoretical Popula-
tion Biology, 46(3):363–394, December 1994. ISSN 0040-5809. doi:10.1006/tpbi.1994.1032.
URL https://www.sciencedirect.com/science/article/pii/S004058098471032X.

Greg Dwyer. On the Spatial Spread of Insect Pathogens: Theory and Experiment. Ecology,
73(2):479–494, April 1992. ISSN 0012-9658, 1939-9170. doi:10.2307/1940754. URL https:
//esajournals.onlinelibrary.wiley.com/doi/10.2307/1940754.

Greg Dwyer and Joseph S. Elkinton. Host Dispersal and the Spatial Spread of In-
sect Pathogens. Ecology, 76(4):1262–1275, June 1995. ISSN 0012-9658, 1939-9170.
doi:10.2307/1940933. URL https://esajournals.onlinelibrary.wiley.com/doi/
10.2307/1940933.

Greg Dwyer, Jonathan Dushoff, Joseph S Elkinton, and Simon A Levin. Pathogen-Driven
Outbreaks in Forest Defoliators Revisited: Building Models from Experimental Data.

149

https://doi.org/10.1086/704594
https://www.journals.uchicago.edu/doi/full/10.1086/704594
https://www.journals.uchicago.edu/doi/full/10.1086/704594
https://academic.oup.com/ee/article-abstract/15/3/540/2480371
https://academic.oup.com/ee/article-abstract/15/3/540/2480371
https://doi.org/10.1111/1365-2435.13095
https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2435.13095
https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2435.13095
https://doi.org/10.1073/pnas.1203517109
https://pnas.org/doi/full/10.1073/pnas.1203517109
https://doi.org/10.1073/pnas.1213237110
https://doi.org/10.1006/tpbi.1994.1032
https://www.sciencedirect.com/science/article/pii/S004058098471032X
https://doi.org/10.2307/1940754
https://esajournals.onlinelibrary.wiley.com/doi/10.2307/1940754
https://esajournals.onlinelibrary.wiley.com/doi/10.2307/1940754
https://doi.org/10.2307/1940933
https://esajournals.onlinelibrary.wiley.com/doi/10.2307/1940933
https://esajournals.onlinelibrary.wiley.com/doi/10.2307/1940933


Greg Dwyer, Jonathan Dushoff, Joseph S. Elkinton, and Simon A. Levin. Pathogen-Driven
Outbreaks in Forest Defoliators Revisited: Building Models from Experimental Data.
The American Naturalist, 156(2):105–120, August 2000. ISSN 0003-0147, 1537-5323.
doi:10.1086/303379. URL https://www.journals.uchicago.edu/doi/10.1086/303379.

Greg Dwyer, Jonathan Dushoff, and Susan Harrell Yee. The combined effects of pathogens
and predators on insect outbreaks. Nature, 430(6997):341–345, July 2004. ISSN 0028-0836,
1476-4687. doi:10.1038/nature02569. URL https://www.nature.com/articles/nature
02569.

Greg Dwyer, Jeffrey Firestone, and T. Emiko Stevens. Should models of disease dynamics
in herbivorous insects include the effects of variability in host-plant foliage quality? The
American Naturalist, 165(1):16–31, January 2005. ISSN 1537-5323. doi:10.1086/426603.

Greg Dwyer, Joseph R. Mihaljevic, and Vanja Dukic. Can Eco-Evo Theory Explain Popula-
tion Cycles in the Field? The American Naturalist, 199(1):108–125, January 2022. ISSN
0003-0147, 1537-5323. doi:10.1086/717178. URL https://www.journals.uchicago.ed
u/doi/10.1086/717178.

Ken T.D. Eames and Matt J. Keeling. Modeling dynamic and network heterogeneities
in the spread of sexually transmitted diseases. Proceedings of the National Academy of
Sciences of the United States of America, 99(20):13330–13335, 2002. ISSN 00278424.
doi:10.1073/pnas.202244299.

Christopher Edmonds, Anita Lillie, and L Cavalli-Sforza. Mutations arising in the wave
front of an expanding population. Proceedings of the National Academy of Sciences of the
United States of America, 101:975–9, February 2004. doi:10.1073/pnas.0308064100.

Bret D. Elderd and Greg Dwyer. Using insect baculoviruses to understand how population
structure affects disease spread. In Andy Fenton, Dan Tompkins, and Kenneth Wilson,
editors, Wildlife Disease Ecology: Linking Theory to Data and Application, Ecological
Reviews, pages 225–261. Cambridge University Press, Cambridge, 2019. ISBN 978-1-107-
13656-4. doi:10.1017/9781316479964.008. URL https://www.cambridge.org/core/boo
ks/wildlife-disease-ecology/using-insect-baculoviruses-to-understand-how
-population-structure-affects-disease-spread/E379DA1CEDD208B9CBCBCF98AC02
1AFF.

Bret D. Elderd, Nicole Mideo, and Meghan A. Duffy. Looking across Scales in Disease
Ecology and Evolution. The American Naturalist, 199(1):51–58, January 2022. ISSN
0003-0147. doi:10.1086/717176. URL https://www.journals.uchicago.edu/doi/abs/
10.1086/717176. Publisher: The University of Chicago Press.

Bret D. Elderd, Jonathan Dushoff, and Greg Dwyer. Host-Pathogen Interactions, Insect
Outbreaks, and Natural Selection for Disease Resistance. The American Naturalist, 172
(6):829–842, December 2008. ISSN 0003-0147, 1537-5323. doi:10.1086/592403. URL
https://www.journals.uchicago.edu/doi/10.1086/592403.

150

https://doi.org/10.1086/303379
https://www.journals.uchicago.edu/doi/10.1086/303379
https://doi.org/10.1038/nature02569
https://www.nature.com/articles/nature02569
https://www.nature.com/articles/nature02569
https://doi.org/10.1086/426603
https://doi.org/10.1086/717178
https://www.journals.uchicago.edu/doi/10.1086/717178
https://www.journals.uchicago.edu/doi/10.1086/717178
https://doi.org/10.1073/pnas.202244299
https://doi.org/10.1073/pnas.0308064100
https://doi.org/10.1017/9781316479964.008
https://www.cambridge.org/core/books/wildlife-disease-ecology/using-insect-baculoviruses-to-understand-how-population-structure-affects-disease-spread/E379DA1CEDD208B9CBCBCF98AC021AFF
https://www.cambridge.org/core/books/wildlife-disease-ecology/using-insect-baculoviruses-to-understand-how-population-structure-affects-disease-spread/E379DA1CEDD208B9CBCBCF98AC021AFF
https://www.cambridge.org/core/books/wildlife-disease-ecology/using-insect-baculoviruses-to-understand-how-population-structure-affects-disease-spread/E379DA1CEDD208B9CBCBCF98AC021AFF
https://www.cambridge.org/core/books/wildlife-disease-ecology/using-insect-baculoviruses-to-understand-how-population-structure-affects-disease-spread/E379DA1CEDD208B9CBCBCF98AC021AFF
https://doi.org/10.1086/717176
https://www.journals.uchicago.edu/doi/abs/10.1086/717176
https://www.journals.uchicago.edu/doi/abs/10.1086/717176
https://doi.org/10.1086/592403
https://www.journals.uchicago.edu/doi/10.1086/592403


Chellafe Ensoy, Marc Aerts, Sarah Welby, Yves Van der Stede, and Christel Faes. A Dynamic
Spatio-Temporal Model to Investigate the Effect of Cattle Movements on the Spread of
Bluetongue BTV-8 in Belgium. PLOS ONE, 8(11):e78591, November 2013. ISSN 1932-
6203. doi:10.1371/journal.pone.0078591. URL https://journals.plos.org/plosone/
article?id=10.1371/journal.pone.0078591. Publisher: Public Library of Science.

Philip Erm and Ben L Phillips. Evolution Transforms Pushed Waves into Pulled Waves.

Philip Erm and Ben L. Phillips. Evolution Transforms Pushed Waves into Pulled Waves.
The American Naturalist, March 2020. ISSN 0003-0147. doi:10.1086/707324. URL https:
//www.journals.uchicago.edu/doi/10.1086/707324. Publisher: The University of
Chicago PressChicago, IL.

Tamara L Fetters and Joel W McGlothlin. Life histories and invasions: accelerated lay-
ing rate and incubation time in an invasive lizard, Anolis sagrei. Biological Journal
of the Linnean Society, 122(3):635–642, October 2017. ISSN 0024-4066, 1095-8312.
doi:10.1093/biolinnean/blx102. URL http://academic.oup.com/biolinnean/arti
cle/122/3/635/4160407/Life-histories-and-invasions-accelerated-laying.

Arietta E. Fleming-Davies, Vanja Dukic, Viggo Andreasen, and Greg Dwyer. Effects of
host heterogeneity on pathogen diversity and evolution. Ecology Letters, 18(11):1252–
1261, November 2015. ISSN 1461-023X, 1461-0248. doi:10.1111/ele.12506. URL https:
//onlinelibrary.wiley.com/doi/10.1111/ele.12506.

A. C. Fowler. Atto-Foxes and Other Minutiae. Bulletin of Mathematical Biology, 83(10):
104, 2021. ISSN 0092-8240. doi:10.1007/s11538-021-00936-x. URL https://www.ncbi.n
lm.nih.gov/pmc/articles/PMC8408093/.

Emanuel A. Fronhofer and Florian Altermatt. Eco-evolutionary feedbacks during experimen-
tal range expansions. Nature Communications, 6(1):6844, April 2015. ISSN 2041-1723.
doi:10.1038/ncomms7844. URL https://www.nature.com/articles/ncomms7844.
Publisher: Nature Publishing Group.

Sebastian Funk and Aaron A. King. Choices and trade-offs in inference with infec-
tious disease models. Epidemics, 30(March 2019):100383, 2020. ISSN 18780067.
doi:10.1016/j.epidem.2019.100383. URL https://doi.org/10.1016/j.epidem.201
9.100383. Publisher: Elsevier.

John R. Giles, Elisabeth Zu Erbach-Schoenberg, Andrew J. Tatem, Lauren Gardner, Ot-
tar N. Bjørnstad, C. J. E. Metcalf, and Amy Wesolowski. The duration of travel im-
pacts the spatial dynamics of infectious diseases. Proceedings of the National Academy of
Sciences of the United States of America, 117(36):22572–22579, September 2020. ISSN
1091-6490. doi:10.1073/pnas.1922663117.

Daniel T Gillespie. Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry, 81(25):2340–2361, December 1977. ISSN 0022-3654.

151

https://doi.org/10.1371/journal.pone.0078591
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0078591
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0078591
https://doi.org/10.1086/707324
https://www.journals.uchicago.edu/doi/10.1086/707324
https://www.journals.uchicago.edu/doi/10.1086/707324
https://doi.org/10.1093/biolinnean/blx102
http://academic.oup.com/biolinnean/article/122/3/635/4160407/Life-histories-and-invasions-accelerated-laying
http://academic.oup.com/biolinnean/article/122/3/635/4160407/Life-histories-and-invasions-accelerated-laying
https://doi.org/10.1111/ele.12506
https://onlinelibrary.wiley.com/doi/10.1111/ele.12506
https://onlinelibrary.wiley.com/doi/10.1111/ele.12506
https://doi.org/10.1007/s11538-021-00936-x
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8408093/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8408093/
https://doi.org/10.1038/ncomms7844
https://www.nature.com/articles/ncomms7844
https://doi.org/10.1016/j.epidem.2019.100383
https://doi.org/10.1016/j.epidem.2019.100383
https://doi.org/10.1016/j.epidem.2019.100383
https://doi.org/10.1073/pnas.1922663117


doi:10.1021/j100540a008. URL https://doi.org/10.1021/j100540a008. Publisher:
American Chemical Society.

Julia R. Gog and Bryan T. Grenfell. Dynamics and selection of many-strain pathogens.
Proceedings of the National Academy of Sciences, 99(26):17209–17214, December 2002.
doi:10.1073/pnas.252512799. URL https://www.pnas.org/doi/full/10.1073/pnas.2
52512799. Publisher: Proceedings of the National Academy of Sciences.

Ana R. Gouveia, Ottar N. Bjørnstad, and Emil Tkadlec. Dissecting geographic variation in
population synchrony using the common vole in central Europe as a test bed. Ecology and
Evolution, 6(1):212–218, January 2016. ISSN 2045-7758, 2045-7758. doi:10.1002/ece3.1863.
URL https://onlinelibrary.wiley.com/doi/10.1002/ece3.1863.

B. T. Grenfell, O. N. Bjørnstad, and J. Kappey. Travelling waves and spatial hierar-
chies in measles epidemics. Nature, 414(6865):716–723, December 2001. ISSN 0028-0836.
doi:10.1038/414716a.

Bryan T. Grenfell, Oliver G. Pybus, Julia R. Gog, James L. N. Wood, Janet M. Daly,
Jenny A. Mumford, and Edward C. Holmes. Unifying the Epidemiological and Evolution-
ary Dynamics of Pathogens. Science, 303(5656):327–332, January 2004. ISSN 0036-8075,
1095-9203. doi:10.1126/science.1090727. URL https://www.science.org/doi/10.112
6/science.1090727.

S. Gupta, N. Ferguson, and R. Anderson. Chaos, persistence, and evolution of strain struc-
ture in antigenically diverse infectious agents. Science (New York, N.Y.), 280(5365):
912–915, May 1998. ISSN 0036-8075. doi:10.1126/science.280.5365.912.

Samniqueka J. Halsey and James R. Miller. A spatial agent-based model of the disease vector
Ixodes scapularis to explore host-tick associations. Ecological Modelling, 387(August):96–
106, 2018. ISSN 03043800. doi:10.1016/j.ecolmodel.2018.09.005. URL https://doi.or
g/10.1016/j.ecolmodel.2018.09.005. Publisher: Elsevier.

Ilkka Hanski. A practical model of metapopulation dynamics. Journal of animal ecology,
pages 151–162, 1994. URL https://www.jstor.org/stable/5591. Publisher: JSTOR.

Ilkka Hanski and Otso Ovaskainen. The metapopulation capacity of a fragmented landscape.
Nature, 404(6779):755–758, 2000. URL https://www.nature.com/articles/35008063.
Publisher: Nature Publishing Group UK London.

Ilkka Hanski and Daniel Simberloff. The metapopulation approach, its history, conceptual
domain, and application to conservation. Metapopulation biology, pages 5–26, 1997. URL
https://www.sciencedirect.com/science/article/pii/B9780123234452500031.
Publisher: Elsevier.

Vinyas Harish, Felipe J. Colón-González, Filipe R. R. Moreira, Rory Gibb, Moritz U. G.
Kraemer, Megan Davis, Robert C. Reiner, David M. Pigott, T. Alex Perkins, Daniel J.
Weiss, Isaac I. Bogoch, Gonzalo Vazquez-Prokopec, Pablo Manrique Saide, Gerson L.

152

https://doi.org/10.1021/j100540a008
https://doi.org/10.1021/j100540a008
https://doi.org/10.1073/pnas.252512799
https://www.pnas.org/doi/full/10.1073/pnas.252512799
https://www.pnas.org/doi/full/10.1073/pnas.252512799
https://doi.org/10.1002/ece3.1863
https://onlinelibrary.wiley.com/doi/10.1002/ece3.1863
https://doi.org/10.1038/414716a
https://doi.org/10.1126/science.1090727
https://www.science.org/doi/10.1126/science.1090727
https://www.science.org/doi/10.1126/science.1090727
https://doi.org/10.1126/science.280.5365.912
https://doi.org/10.1016/j.ecolmodel.2018.09.005
https://doi.org/10.1016/j.ecolmodel.2018.09.005
https://doi.org/10.1016/j.ecolmodel.2018.09.005
https://www.jstor.org/stable/5591
https://www.nature.com/articles/35008063
https://www.sciencedirect.com/science/article/pii/B9780123234452500031


Barbosa, Ester C. Sabino, Kamran Khan, Nuno R. Faria, Simon I. Hay, Fabián Correa-
Morales, Francisco Chiaravalloti-Neto, and Oliver J. Brady. Human movement and
environmental barriers shape the emergence of dengue. Nature Communications, 15
(1):4205, May 2024. ISSN 2041-1723. doi:10.1038/s41467-024-48465-0. URL https:
//www.nature.com/articles/s41467-024-48465-0. Publisher: Nature Publishing
Group.

Daihai He, Edward L. Ionides, and Aaron A. King. Plug-and-play inference for dis-
ease dynamics: measles in large and small populations as a case study. Journal of
The Royal Society Interface, 7(43):271–283, February 2010. ISSN 1742-5689, 1742-5662.
doi:10.1098/rsif.2009.0151. URL https://royalsocietypublishing.org/doi/10.1098
/rsif.2009.0151.

J. K. Hill, C. D. Thomas, and B. Huntley. Climate and habitat availability determine
20th century changes in a butterfly’s range margin. PROCEEDINGS OF THE ROYAL
SOCIETY B-BIOLOGICAL SCIENCES, 266(1425):1197–1206, June 1999. ISSN 0962-
8452. doi:10.1098/rspb.1999.0763. URL https://royalsocietypublishing.org/doi/1
0.1098/rspb.1999.0763. Num Pages: 10 Place: London Publisher: Royal Soc Web of
Science ID: WOS:000081155500001.

A. I. Hudson, A. E. Fleming-Davies, D. J. Páez, and G. Dwyer. Genotype-by-genotype
interactions between an insect and its pathogen. Journal of Evolutionary Biology, 29(12):
2480–2490, December 2016. ISSN 1010-061X, 1420-9101. doi:10.1111/jeb.12977. URL
https://academic.oup.com/jeb/article/29/12/2480-2490/7381400.

Peter J. Hudson, Annapaola Rizzoli, Bryan T. Grenfell, Hans Heesterbeek, and Andy P.
Dobson. The ecology of wildlife diseases, volume 501. Oxford University Press Oxford,
2002. URL https://www.researchgate.net/profile/Annapaola-Rizzoli/publicati
on/375275449_The_Ecology_of_Wildlife_Diseases/links/02e7e517a5c62dcc2f0000
00/The-Ecology-of-Wildlife-Diseases.pdf.

Josie S. Hughes, Christina A. Cobbold, Kyle Haynes, and Greg Dwyer. Effects of Forest Spa-
tial Structure on Insect Outbreaks: Insights from a Host-Parasitoid Model. The American
Naturalist, 185(5):E130–E152, May 2015. ISSN 0003-0147, 1537-5323. doi:10.1086/680860.
URL https://www.journals.uchicago.edu/doi/10.1086/680860.

Kenneth M. Hughes and R. B. Addison. Two nuclear polyhedrosis viruses of the Douglas-fir
tussock moth. Journal of Invertebrate Pathology, 16(2):196–204, September 1970. ISSN
0022-2011. doi:10.1016/0022-2011(70)90060-1. URL https://www.sciencedirect.com/
science/article/pii/0022201170900601.

Alison F. Hunter. Ecology, life history, and phylogeny of outbreak and nonoutbreak species.
Population dynamics: new approaches and synthesis, pages 41–64, 1995. Publisher: Aca-
demic Press San Diego.

153

https://doi.org/10.1038/s41467-024-48465-0
https://www.nature.com/articles/s41467-024-48465-0
https://www.nature.com/articles/s41467-024-48465-0
https://doi.org/10.1098/rsif.2009.0151
https://royalsocietypublishing.org/doi/10.1098/rsif.2009.0151
https://royalsocietypublishing.org/doi/10.1098/rsif.2009.0151
https://doi.org/10.1098/rspb.1999.0763
https://royalsocietypublishing.org/doi/10.1098/rspb.1999.0763
https://royalsocietypublishing.org/doi/10.1098/rspb.1999.0763
https://doi.org/10.1111/jeb.12977
https://academic.oup.com/jeb/article/29/12/2480-2490/7381400
https://www.researchgate.net/profile/Annapaola-Rizzoli/publication/375275449_The_Ecology_of_Wildlife_Diseases/links/02e7e517a5c62dcc2f000000/The-Ecology-of-Wildlife-Diseases.pdf
https://www.researchgate.net/profile/Annapaola-Rizzoli/publication/375275449_The_Ecology_of_Wildlife_Diseases/links/02e7e517a5c62dcc2f000000/The-Ecology-of-Wildlife-Diseases.pdf
https://www.researchgate.net/profile/Annapaola-Rizzoli/publication/375275449_The_Ecology_of_Wildlife_Diseases/links/02e7e517a5c62dcc2f000000/The-Ecology-of-Wildlife-Diseases.pdf
https://doi.org/10.1086/680860
https://www.journals.uchicago.edu/doi/10.1086/680860
https://doi.org/10.1016/0022-2011(70)90060-1
https://www.sciencedirect.com/science/article/pii/0022201170900601
https://www.sciencedirect.com/science/article/pii/0022201170900601


Michael A. Irvine and T. Déirdre Hollingsworth. Kernel-density estimation and approximate
Bayesian computation for flexible epidemiological model fitting in Python. Epidemics, 25
(May 2018):80–88, 2018. ISSN 18780067. doi:10.1016/j.epidem.2018.05.009. URL https:
//doi.org/10.1016/j.epidem.2018.05.009. Publisher: Elsevier.

Chris P. Jewell, Theodore Kypraios, Peter Neal, and Gareth O. Roberts. Bayesian analysis
for emerging infectious diseases. Bayesian Analysis, 4(3):465–498, 2009. ISSN 19360975.
doi:10.1214/09-BA417.

Rowland R. Kao, Darren M. Green, Jethro Johnson, and Istvan Z. Kiss. Disease dynamics
over very different time-scales: Foot-and-mouth disease and scrapie on the network of
livestock movements in the UK. Journal of the Royal Society Interface, 4(16):907–916,
2007. ISSN 17425689. doi:10.1098/rsif.2007.1129.

Matt J. Keeling and Pejman Rohani. Modeling Infectious Diseases in Humans and Animals.
Princeton University Press, 2008. ISBN 978-0-691-11617-4. doi:10.2307/j.ctvcm4gk0. URL
https://www.jstor.org/stable/j.ctvcm4gk0.

David A. Kennedy and Greg Dwyer. Effects of multiple sources of genetic drift on
pathogen variation within hosts. PLoS Biology, 16(3):1–17, 2018. ISSN 15457885.
doi:10.1371/journal.pbio.2004444. ISBN: 1111111111.

Aline A. de Koeijer, Thomas J. Hagenaars, Jeroen P. G. van Leuken, Arno N. Swart, and
Gert Jan Boender. Spatial transmission risk during the 2007-2010 Q fever epidemic in The
Netherlands: Analysis of the farm-to-farm and farm-to-resident transmission. PLOS ONE,
15(2):e0227491, February 2020. ISSN 1932-6203. doi:10.1371/journal.pone.0227491. URL
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0227491.
Publisher: Public Library of Science.

Jason J. Kolbe, Richard E. Glor, Lourdes Rodríguez Schettino, Ada Chamizo Lara, Al-
lan Larson, and Jonathan B. Losos. Genetic variation increases during biological inva-
sion by a Cuban lizard. Nature, 431(7005):177–181, September 2004. ISSN 1476-4687.
doi:10.1038/nature02807. URL https://www.nature.com/articles/nature02807.
Publisher: Nature Publishing Group.

Mark Kot, Mark A. Lewis, and P. Van Den Driessche. Dispersal Data and the Spread of
Invading Organisms. Ecology, 77(7):2027–2042, October 1996. ISSN 0012-9658, 1939-9170.
doi:10.2307/2265698. URL https://esajournals.onlinelibrary.wiley.com/doi/10
.2307/2265698.

Steven P. Lalley. Spatial epidemics: Critical behavior in one dimension. Probability Theory
and Related Fields, 144(3-4):429–469, 2009. ISSN 01788051. doi:10.1007/s00440-008-0151-
0. _eprint: 0701698.

Russell Lande. Genetics and Demography in Biological Conservation. Science, 241(4872):
1455–1460, September 1988. doi:10.1126/science.3420403. URL https://www.science.

154

https://doi.org/10.1016/j.epidem.2018.05.009
https://doi.org/10.1016/j.epidem.2018.05.009
https://doi.org/10.1016/j.epidem.2018.05.009
https://doi.org/10.1214/09-BA417
https://doi.org/10.1098/rsif.2007.1129
https://doi.org/10.2307/j.ctvcm4gk0
https://www.jstor.org/stable/j.ctvcm4gk0
https://doi.org/10.1371/journal.pbio.2004444
https://doi.org/10.1371/journal.pone.0227491
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0227491
https://doi.org/10.1038/nature02807
https://www.nature.com/articles/nature02807
https://doi.org/10.2307/2265698
https://esajournals.onlinelibrary.wiley.com/doi/10.2307/2265698
https://esajournals.onlinelibrary.wiley.com/doi/10.2307/2265698
https://doi.org/10.1007/s00440-008-0151-0
https://doi.org/10.1007/s00440-008-0151-0
https://doi.org/10.1126/science.3420403
https://www.science.org/doi/10.1126/science.3420403
https://www.science.org/doi/10.1126/science.3420403


org/doi/10.1126/science.3420403. Publisher: American Association for the Advance-
ment of Science.

Kelly E. Lane-deGraaf, Ryan C. Kennedy, SM M.N. Arifin, Gregory R. Madey, Agustin
Fuentes, and Hope Hollocher. A test of agent-based models as a tool for predicting patterns
of pathogen transmission in complex landscapes. BMC Ecology, 13, 2013. ISSN 14726785.
doi:10.1186/1472-6785-13-35.

K.P Lee, J.S Cory, K Wilson, D Raubenheimer, and S.J Simpson. Flexible diet choice
offsets protein costs of pathogen resistance in a caterpillar. Proceedings of the Royal
Society B: Biological Sciences, 273(1588):823–829, April 2006. ISSN 0962-8452, 1471-
2954. doi:10.1098/rspb.2005.3385. URL https://royalsocietypublishing.org/doi/1
0.1098/rspb.2005.3385.

Phenyo E. Lekone and Bärbel F. Finkenstädt. Statistical inference in a stochastic epidemic
SEIR model with control intervention: Ebola as a case study. Biometrics, 62(4):1170–1177,
2006. ISSN 15410420. doi:10.1111/j.1541-0420.2006.00609.x.

Justin Lessler, Andrew S. Azman, Heather S. McKay, and Sean M. Moore. What is a
Hotspot Anyway? The American Journal of Tropical Medicine and Hygiene, 96(6):1270–
1273, June 2017. ISSN 0002-9637. doi:10.4269/ajtmh.16-0427. URL https://www.ncbi
.nlm.nih.gov/pmc/articles/PMC5462559/.

M. R. Leung and M. Kot. Models for the spread of white pine blister rust. Journal of Theoret-
ical Biology, 382:328–336, October 2015. ISSN 0022-5193. doi:10.1016/j.jtbi.2015.07.018.
URL https://www.sciencedirect.com/science/article/pii/S0022519315003550.

Simon A. Levin. The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur
Award Lecture. Ecology, 73(6):1943–1967, 1992. ISSN 1939-9170. doi:10.2307/1941447.
URL https://onlinelibrary.wiley.com/doi/abs/10.2307/1941447. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.2307/1941447.

Jana Lipková, Georgios Arampatzis, Philippe Chatelain, Bjoern Menze, and Petros
Koumoutsakos. S-Leaping: An Adaptive, Accelerated Stochastic Simulation Algorithm,
Bridging Tau -Leaping and R-Leaping. Bulletin of Mathematical Biology, 81(8):3074–3096,
2019. ISSN 15229602. doi:10.1007/s11538-018-0464-9. _eprint: 1802.00296.

Karen R. Lips, Forrest Brem, Roberto Brenes, John D. Reeve, Ross A. Alford, Jamie Voyles,
Cynthia Carey, Lauren Livo, Allan P. Pessier, and James P. Collins. Emerging infectious
disease and the loss of biodiversity in a Neotropical amphibian community. Proceedings
of the National Academy of Sciences, 103(9):3165–3170, February 2006. ISSN 0027-8424,
1091-6490. doi:10.1073/pnas.0506889103. URL https://pnas.org/doi/full/10.1073/
pnas.0506889103.

Benjamin R. Liu and Mark Kot. Accelerating invasions and the asymptotics of fat-
tailed dispersal. Journal of Theoretical Biology, 471:22–41, June 2019. ISSN 00225193.

155

https://www.science.org/doi/10.1126/science.3420403
https://www.science.org/doi/10.1126/science.3420403
https://doi.org/10.1186/1472-6785-13-35
https://doi.org/10.1098/rspb.2005.3385
https://royalsocietypublishing.org/doi/10.1098/rspb.2005.3385
https://royalsocietypublishing.org/doi/10.1098/rspb.2005.3385
https://doi.org/10.1111/j.1541-0420.2006.00609.x
https://doi.org/10.4269/ajtmh.16-0427
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5462559/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5462559/
https://doi.org/10.1016/j.jtbi.2015.07.018
https://www.sciencedirect.com/science/article/pii/S0022519315003550
https://doi.org/10.2307/1941447
https://onlinelibrary.wiley.com/doi/abs/10.2307/1941447
https://doi.org/10.1007/s11538-018-0464-9
https://doi.org/10.1073/pnas.0506889103
https://pnas.org/doi/full/10.1073/pnas.0506889103
https://pnas.org/doi/full/10.1073/pnas.0506889103


doi:10.1016/j.jtbi.2019.03.016. URL https://linkinghub.elsevier.com/retrieve/p
ii/S0022519319301237.

Jiawei Liu, Colin Kyle, Jiali Wang, Rao Kotamarthi, William Koval, and Greg Dwyer.
Climate-Change Driven Decline of an Insect Pathogen Increases the Risk of Defoliation
by a Forest Pest Insect, November 2023. URL https://www.biorxiv.org/content/10
.1101/2023.11.01.564627v1. Pages: 2023.11.01.564627 Section: New Results.

A. L. Lloyd. Destabilization of epidemic models with the inclusion of realistic dis-
tributions of infectious periods. Proceedings of the Royal Society of London. Series
B: Biological Sciences, 268(1470):985–993, May 2001. ISSN 0962-8452, 1471-2954.
doi:10.1098/rspb.2001.1599. URL https://royalsocietypublishing.org/doi/10.
1098/rspb.2001.1599.

J. O. Lloyd-Smith, S. J. Schreiber, P. E. Kopp, and W. M. Getz. Superspreading and the
effect of individual variation on disease emergence. Nature, 438(7066):355–359, November
2005a. ISSN 1476-4687. doi:10.1038/nature04153. URL https://www.nature.com/art
icles/nature04153. Number: 7066 Publisher: Nature Publishing Group.

James O. Lloyd-Smith, Paul C. Cross, Cheryl J. Briggs, Matt Daugherty, Wayne M. Getz,
John Latto, Maria S. Sanchez, Adam B. Smith, and Andrea Swei. Should we expect
population thresholds for wildlife disease? Trends in Ecology & Evolution, 20(9):511–
519, September 2005b. ISSN 0169-5347. doi:10.1016/j.tree.2005.07.004. URL https:
//www.sciencedirect.com/science/article/pii/S0169534705002077.

Claude Lobry and Tewfik Sari. Migrations in the Rosenzweig-MacArthur model and the
"atto-fox" problem. Revue Africaine de Recherche en Informatique et Mathématiques
Appliquées, Volume 20 - 2015 - Special issue - Colloquium in Honor of Éric Benoît:95,
November 2015. doi:10.46298/arima.1990. URL https://inria.hal.science/hal-012
35211.

Ana V. Longo, Karen R. Lips, and Kelly R. Zamudio. Evolutionary ecology of host compe-
tence after a chytrid outbreak in a naive amphibian community. Philosophical Transactions
of the Royal Society B: Biological Sciences, 378(1882):20220130, July 2023. ISSN 0962-
8436, 1471-2970. doi:10.1098/rstb.2022.0130. URL https://royalsocietypublishing
.org/doi/10.1098/rstb.2022.0130.

Robert H. MacArthur. Geographical ecology: patterns in the distribution of species. Princeton
University Press, Princeton, N.J, 1972. ISBN 978-0-691-08353-7 978-0-691-02382-3.

Rebecca Mancy, Malavika Rajeev, Ahmed Lugelo, Kirstyn Brunker, Sarah Cleaveland,
Elaine A. Ferguson, Karen Hotopp, Rudovick Kazwala, Matthias Magoto, Kristyna
Rysava, Daniel T. Haydon, and Katie Hampson. Rabies shows how scale of transmis-
sion can enable acute infections to persist at low prevalence. Science, 376(6592):512–516,
April 2022. doi:10.1126/science.abn0713. URL https://www.science.org/doi/10.112
6/science.abn0713. Publisher: American Association for the Advancement of Science.

156

https://doi.org/10.1016/j.jtbi.2019.03.016
https://linkinghub.elsevier.com/retrieve/pii/S0022519319301237
https://linkinghub.elsevier.com/retrieve/pii/S0022519319301237
https://www.biorxiv.org/content/10.1101/2023.11.01.564627v1
https://www.biorxiv.org/content/10.1101/2023.11.01.564627v1
https://doi.org/10.1098/rspb.2001.1599
https://royalsocietypublishing.org/doi/10.1098/rspb.2001.1599
https://royalsocietypublishing.org/doi/10.1098/rspb.2001.1599
https://doi.org/10.1038/nature04153
https://www.nature.com/articles/nature04153
https://www.nature.com/articles/nature04153
https://doi.org/10.1016/j.tree.2005.07.004
https://www.sciencedirect.com/science/article/pii/S0169534705002077
https://www.sciencedirect.com/science/article/pii/S0169534705002077
https://doi.org/10.46298/arima.1990
https://inria.hal.science/hal-01235211
https://inria.hal.science/hal-01235211
https://doi.org/10.1098/rstb.2022.0130
https://royalsocietypublishing.org/doi/10.1098/rstb.2022.0130
https://royalsocietypublishing.org/doi/10.1098/rstb.2022.0130
https://doi.org/10.1126/science.abn0713
https://www.science.org/doi/10.1126/science.abn0713
https://www.science.org/doi/10.1126/science.abn0713


Richard R. Mason. DEVELOPMENT OF SAMPLING METHODS FOR THE DOUGLAS-
FIR TUSSOCK MOTH, HEMEROCAMPA PSEUDOTSUGATA (LEPIDOPTERA: LY-
MANTRIIDAE). The Canadian Entomologist, 102(7):836–845, July 1970. ISSN 1918-
3240, 0008-347X. doi:10.4039/Ent102836-7. URL https://www.cambridge.org/core/j
ournals/canadian-entomologist/article/abs/development-of-sampling-methods
-for-the-douglasfir-tussock-moth-hemerocampa-pseudotsugata-lepidoptera-l
ymantriidae/26A638C5973C4641F93F958D3255D079.

Richard R. Mason. Sampling low density populations of the Douglas-fir tussock moth by
frequency of occurrence in the lower tree crown, 1977. ISSN: 17401267 Pages: 7–8.

Richard R. Mason. Frequency Sampling to Predict Densities in Sparse Populations of the
Douglas-Fir Tussock Moth. Forest Science, 33(1):145–156, March 1987. ISSN 0015-749X.
doi:10.1093/forestscience/33.1.145. URL https://doi.org/10.1093/forestscience/33
.1.145.

Richard R. Mason. Dynamic Behavior of Douglas-Fir Tussock Moth Populations in the
Pacific Northwest. Forest Science, 42(2):182–191, May 1996. ISSN 0015-749X, 1938-3738.
doi:10.1093/forestscience/42.2.182. URL https://academic.oup.com/forestscience/a
rticle/42/2/182/4627302.

Richard R. Mason, R. C. Beckwith, and H. Gene Paul. Fecundity Reduction During Col-
lapse of a Douglas-fir Tussock Moth 12 Outbreak in Northeast Oregon 4. Environmental
Entomology, 6(5):623–626, October 1977. ISSN 0046-225X. doi:10.1093/ee/6.5.623. URL
https://doi.org/10.1093/ee/6.5.623.

Richard R. Mason, Boyd E. Wickman, and H. Gene Paul. Radial Growth Response of
Douglas-fir and Grand Fir to Larval Densities of the Douglas-fir Tussock Moth and the
Western Spruce Budworm. Forest Science, 43(2):194–205, May 1997. ISSN 0015-749X,
1938-3738. doi:10.1093/forestscience/43.2.194. URL https://academic.oup.com/fores
tscience/article/43/2/194/4627346.

Robert A. B. Mason, Julia Cooke, Angela T. Moles, and Michelle R. Leishman. Re-
productive output of invasive versus native plants. Global Ecology and Biogeography,
17(5):633–640, 2008. ISSN 1466-8238. doi:10.1111/j.1466-8238.2008.00402.x. URL
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1466-8238.2008.00402.x.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1466-8238.2008.00402.x.

Robert May and Roy Anderson. Population biology of infectious diseases. Nature, 280:
455–61, September 1979. doi:10.1038/280455a0.

Lauren McGough and Sarah Cobey. A speed limit on serial strain replacement from original
antigenic sin. Proceedings of the National Academy of Sciences, 121(25):e2400202121,
June 2024. ISSN 0027-8424, 1091-6490. doi:10.1073/pnas.2400202121. URL https:
//pnas.org/doi/10.1073/pnas.2400202121.

157

https://doi.org/10.4039/Ent102836-7
https://www.cambridge.org/core/journals/canadian-entomologist/article/abs/development-of-sampling-methods-for-the-douglasfir-tussock-moth-hemerocampa-pseudotsugata-lepidoptera-lymantriidae/26A638C5973C4641F93F958D3255D079
https://www.cambridge.org/core/journals/canadian-entomologist/article/abs/development-of-sampling-methods-for-the-douglasfir-tussock-moth-hemerocampa-pseudotsugata-lepidoptera-lymantriidae/26A638C5973C4641F93F958D3255D079
https://www.cambridge.org/core/journals/canadian-entomologist/article/abs/development-of-sampling-methods-for-the-douglasfir-tussock-moth-hemerocampa-pseudotsugata-lepidoptera-lymantriidae/26A638C5973C4641F93F958D3255D079
https://www.cambridge.org/core/journals/canadian-entomologist/article/abs/development-of-sampling-methods-for-the-douglasfir-tussock-moth-hemerocampa-pseudotsugata-lepidoptera-lymantriidae/26A638C5973C4641F93F958D3255D079
https://doi.org/10.1093/forestscience/33.1.145
https://doi.org/10.1093/forestscience/33.1.145
https://doi.org/10.1093/forestscience/33.1.145
https://doi.org/10.1093/forestscience/42.2.182
https://academic.oup.com/forestscience/article/42/2/182/4627302
https://academic.oup.com/forestscience/article/42/2/182/4627302
https://doi.org/10.1093/ee/6.5.623
https://doi.org/10.1093/ee/6.5.623
https://doi.org/10.1093/forestscience/43.2.194
https://academic.oup.com/forestscience/article/43/2/194/4627346
https://academic.oup.com/forestscience/article/43/2/194/4627346
https://doi.org/10.1111/j.1466-8238.2008.00402.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1466-8238.2008.00402.x
https://doi.org/10.1038/280455a0
https://doi.org/10.1073/pnas.2400202121
https://pnas.org/doi/10.1073/pnas.2400202121
https://pnas.org/doi/10.1073/pnas.2400202121


Trevelyan McKinley, Alex R. Cook, and Robert Deardon. Inference in epidemic models
without likelihoods. International Journal of Biostatistics, 5(1), 2009. ISSN 15574679.
doi:10.2202/1557-4679.1171.

Brett A. Melbourne and Alan Hastings. Highly variable spread rates in replicated biological
invasions: fundamental limits to predictability. Science (New York, N.Y.), 325(5947):
1536–1539, September 2009. ISSN 1095-9203. doi:10.1126/science.1176138.

Joseph R. Mihaljevic, Carlos M. Polivka, Constance J. Mehmel, Chentong Li, Vanja Dukic,
and Greg Dwyer. An Empirical Test of the Role of Small-Scale Transmission in Large-Scale
Disease Dynamics. The American Naturalist, 195(4):616–635, April 2020. ISSN 0003-0147.
doi:10.1086/707457. URL https://www.journals.uchicago.edu/doi/full/10.1086/7
07457. Publisher: The University of Chicago Press.

Tom E. X. Miller, Amy L. Angert, Carissa D. Brown, Julie A. Lee-Yaw, Mark Lewis, Frithjof
Lutscher, Nathan G. Marculis, Brett A. Melbourne, Allison K. Shaw, Marianna Szűcs,
Olivia Tabares, Takuji Usui, Christopher Weiss-Lehman, and Jennifer L. Williams. Eco-
evolutionary dynamics of range expansion. Ecology, 101(10):e03139, October 2020. ISSN
0012-9658, 1939-9170. doi:10.1002/ecy.3139. URL https://esajournals.onlinelibrar
y.wiley.com/doi/10.1002/ecy.3139.

Rg Mitchell. Dispersal of Early Instars of the Douglas-Fir Tussock Moth Orgyia-
Pseudotsugata (mcdunnough) (lepidoptera, Lymantriidae). ANNALS OF THE ENTO-
MOLOGICAL SOCIETY OF AMERICA, 72(2):291–297, 1979. ISSN 0013-8746, 1938-
2901. doi:10.1093/aesa/72.2.291. URL https://www.webofscience.com/wos/woscc
/summary/b34ce978-3129-49ca-a861-76f57a8125d5-0102183ddc/relevance/1.
Num Pages: 7 Place: Cary Publisher: Oxford Univ Press Inc Web of Science ID:
WOS:A1979GP80600024.

D. Mollison. Dependence of epidemic and population velocities on basic parameters. Mathe-
matical Biosciences, 107(2):255–287, December 1991. ISSN 0025-5564. doi:10.1016/0025-
5564(91)90009-8.

Denis Mollison. Epidemic Models: Their Structure and Relation to Data. Cambridge Uni-
versity Press, July 1995. ISBN 978-0-521-47536-5. Google-Books-ID: MZRkdfOBylYC.

Ja Moore and Cr Hatch. A Simulation Approach for Predicting the Effect of Douglas-
Fir Tussock Moth Defoliation on Juvenile Tree Growth and Stand Dynamics. FOREST
SCIENCE, 27(4):685–700, 1981. ISSN 0015-749X, 1938-3738. URL https://www.webo
fscience.com/wos/woscc/full-record/WOS:A1981MY52400007. Num Pages: 16 Place:
Cary Publisher: Oxford Univ Press Inc Web of Science ID: WOS:A1981MY52400007.

R. Moss, D. A. Elston, and A. Watson. SPATIAL ASYNCHRONY AND DE-
MOGRAPHIC TRAVELING WAVES DURING RED GROUSE POPULATION CY-
CLES. Ecology, 81(4):981–989, April 2000. ISSN 0012-9658. doi:10.1890/0012-
9658(2000)081[0981:SAADTW]2.0.CO;2. URL http://doi.wiley.com/10.1890/00
12-9658(2000)081[0981:SAADTW]2.0.CO;2.

158

https://doi.org/10.2202/1557-4679.1171
https://doi.org/10.1126/science.1176138
https://doi.org/10.1086/707457
https://www.journals.uchicago.edu/doi/full/10.1086/707457
https://www.journals.uchicago.edu/doi/full/10.1086/707457
https://doi.org/10.1002/ecy.3139
https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecy.3139
https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecy.3139
https://doi.org/10.1093/aesa/72.2.291
https://www.webofscience.com/wos/woscc/summary/b34ce978-3129-49ca-a861-76f57a8125d5-0102183ddc/relevance/1
https://www.webofscience.com/wos/woscc/summary/b34ce978-3129-49ca-a861-76f57a8125d5-0102183ddc/relevance/1
https://doi.org/10.1016/0025-5564(91)90009-8
https://doi.org/10.1016/0025-5564(91)90009-8
https://www.webofscience.com/wos/woscc/full-record/WOS:A1981MY52400007
https://www.webofscience.com/wos/woscc/full-record/WOS:A1981MY52400007
https://doi.org/10.1890/0012-9658(2000)081[0981:SAADTW]2.0.CO;2
https://doi.org/10.1890/0012-9658(2000)081[0981:SAADTW]2.0.CO;2
http://doi.wiley.com/10.1890/0012-9658(2000)081[0981:SAADTW]2.0.CO;2
http://doi.wiley.com/10.1890/0012-9658(2000)081[0981:SAADTW]2.0.CO;2


Christopher C. Mundt, Kathryn E. Sackett, LaRae D. Wallace, Christina Cowger, and
Joseph P. Dudley. Long-distance dispersal and accelerating waves of disease: empiri-
cal relationships. The American Naturalist, 173(4):456–466, April 2009. ISSN 1537-5323.
doi:10.1086/597220.

J. D. Murray, E. A. Stanley, and D. L. Brown. On the spatial spread of rabies among foxes.
Proceedings of the Royal Society of London. Series B, Biological Sciences, 229(1255):111–
150, November 1986. ISSN 0950-1193. doi:10.1098/rspb.1986.0078.

Judith H. Myers and Jenny S. Cory. Population Cycles in Forest Lepidoptera Revisited.
Annual Review of Ecology, Evolution, and Systematics, 44(1):565–592, November 2013.
ISSN 1543-592X, 1545-2069. doi:10.1146/annurev-ecolsys-110512-135858. URL https:
//www.annualreviews.org/doi/10.1146/annurev-ecolsys-110512-135858.

Judith H. Myers and Jenny S. Cory. Ecology and evolution of pathogens in natural pop-
ulations of Lepidoptera. Evolutionary Applications, 9(1):231–247, November 2015. ISSN
1752-4571. doi:10.1111/eva.12328. URL https://www.ncbi.nlm.nih.gov/pmc/article
s/PMC4780379/.

Claudia Nassuato, Gert Jan Boender, Phaedra L. Eblé, Loris Alborali, Silvia Bellini, and
Thomas J. Hagenaars. Spatial Transmission of Swine Vesicular Disease Virus in the
2006–2007 Epidemic in Lombardy. PLOS ONE, 8(5):e62878, May 2013. ISSN 1932-6203.
doi:10.1371/journal.pone.0062878. URL https://journals.plos.org/plosone/articl
e?id=10.1371/journal.pone.0062878. Publisher: Public Library of Science.

Peter Neal and Thitiya Theparod. The basic reproduction number, R0, in
structured populations. Mathematical Biosciences, 315, 2019. ISSN 18793134.
doi:10.1016/j.mbs.2019.108224. _eprint: 1903.10353.

Michael G. Neubert, Mark Kot, and Mark A. Lewis. Invasion speeds in fluctuating envi-
ronments. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267
(1453):1603–1610, August 2000. ISSN 0962-8452, 1471-2954. doi:10.1098/rspb.2000.1185.
URL https://royalsocietypublishing.org/doi/10.1098/rspb.2000.1185.

Charles L. Nunn, Peter H. Thrall, and Peter M. Kappeler. Shared resources and disease
dynamics in spatially structured populations. Ecological Modelling, 272:198–207, 2014.
ISSN 03043800. doi:10.1016/j.ecolmodel.2013.10.004. URL http://dx.doi.org/10.1016
/j.ecolmodel.2013.10.004. Publisher: Elsevier B.V.

Akira Okubo and Simon A. Levin. Diffusion and Ecological Problems: Modern Perspectives,
volume 14 of Interdisciplinary Applied Mathematics. Springer, New York, NY, 2001. ISBN
978-1-4419-3151-1 978-1-4757-4978-6. doi:10.1007/978-1-4757-4978-6. URL http://link
.springer.com/10.1007/978-1-4757-4978-6.

Isabelle Olivieri, Yannis Michalakis, and Pierre-Henri Gouyon. Metapopulation Genetics
and the Evolution of Dispersal. The American Naturalist, 146(2):202–228, August 1995.

159

https://doi.org/10.1086/597220
https://doi.org/10.1098/rspb.1986.0078
https://doi.org/10.1146/annurev-ecolsys-110512-135858
https://www.annualreviews.org/doi/10.1146/annurev-ecolsys-110512-135858
https://www.annualreviews.org/doi/10.1146/annurev-ecolsys-110512-135858
https://doi.org/10.1111/eva.12328
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4780379/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4780379/
https://doi.org/10.1371/journal.pone.0062878
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0062878
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0062878
https://doi.org/10.1016/j.mbs.2019.108224
https://doi.org/10.1098/rspb.2000.1185
https://royalsocietypublishing.org/doi/10.1098/rspb.2000.1185
https://doi.org/10.1016/j.ecolmodel.2013.10.004
http://dx.doi.org/10.1016/j.ecolmodel.2013.10.004
http://dx.doi.org/10.1016/j.ecolmodel.2013.10.004
https://doi.org/10.1007/978-1-4757-4978-6
http://link.springer.com/10.1007/978-1-4757-4978-6
http://link.springer.com/10.1007/978-1-4757-4978-6


ISSN 0003-0147. doi:10.1086/285795. URL https://www.journals.uchicago.edu/doi/
10.1086/285795. Publisher: The University of Chicago Press.

Philip D. O’Neill, David J. Balding, Niels G. Becker, Mervi Eerola, and Denis Mollison.
Analyses of infectious disease data from household outbreaks by Markov chain Monte
Carlo methods. Journal of the Royal Statistical Society. Series C: Applied Statistics, 49
(4):517–542, 2000. ISSN 00359254. doi:10.1111/1467-9876.00210.

Matthew M. Osmond and Graham Coop. Estimating dispersal rates and locating genetic
ancestors with genome-wide genealogies, July 2021. URL https://www.biorxiv.org/co
ntent/10.1101/2021.07.13.452277v1. Pages: 2021.07.13.452277 Section: New Results.

I. S. Otvos, J. C. Cunningham, and W. J. Kaupp. Aerial application of two baculoviruses
against the western spruce budworm, Choristoneura occidentalis Freeman (Lepidoptera:
Tortricidae), in British Columbia. The Canadian Entomologist, 121(3):209–217, 1989.
URL https://www.cambridge.org/core/journals/canadian-entomologist/articl
e/aerial-application-of-two-baculoviruses-against-the-western-spruce-bud
worm-choristoneura-occidentalis-freeman-lepidoptera-tortricidae-in-briti
sh-columbia/A789877DB0DE8CAFAC6D33F0DAACAE7F. Publisher: Cambridge University
Press.

Benjamin J. Parker, Bret D. Elderd, and Greg Dwyer. Host behaviour and exposure risk
in an insect–pathogen interaction. Journal of Animal Ecology, 79(4):863–870, July 2010.
ISSN 0021-8790, 1365-2656. doi:10.1111/j.1365-2656.2010.01690.x. URL https://besjou
rnals.onlinelibrary.wiley.com/doi/10.1111/j.1365-2656.2010.01690.x.

Camille Parmesan and Gary Yohe. A globally coherent fingerprint of climate change im-
pacts across natural systems. Nature, 421(6918):37–42, January 2003. ISSN 1476-4687.
doi:10.1038/nature01286. URL https://www.nature.com/articles/nature01286.
Publisher: Nature Publishing Group.

Mikko Peltonen, Andrew M. Liebhold, Ottar N. Bjørnstad, and David W. Williams. Spa-
tial synchrony in forest insect outbreaks: roles of regional stochasticity and disper-
sal. Ecology, 83(11):3120–3129, November 2002. ISSN 0012-9658. doi:10.1890/0012-
9658(2002)083[3120:SSIFIO]2.0.CO;2. URL http://doi.wiley.com/10.1890/0012
-9658(2002)083[3120:SSIFIO]2.0.CO;2.

T. Alex Perkins. Evolutionarily Labile Species Interactions and Spatial Spread of Invasive
Species. The American Naturalist, 179(2):E37–E54, February 2012. ISSN 0003-0147, 1537-
5323. doi:10.1086/663682. URL https://www.journals.uchicago.edu/doi/10.1086/
663682.

T. Alex Perkins, Benjamin L. Phillips, Marissa L. Baskett, and Alan Hastings. Evolu-
tion of dispersal and life history interact to drive accelerating spread of an invasive
species. Ecology Letters, 16(8):1079–1087, August 2013. ISSN 1461-023X, 1461-0248.
doi:10.1111/ele.12136. URL https://onlinelibrary.wiley.com/doi/10.1111/ele.12
136.

160

https://doi.org/10.1086/285795
https://www.journals.uchicago.edu/doi/10.1086/285795
https://www.journals.uchicago.edu/doi/10.1086/285795
https://doi.org/10.1111/1467-9876.00210
https://www.biorxiv.org/content/10.1101/2021.07.13.452277v1
https://www.biorxiv.org/content/10.1101/2021.07.13.452277v1
https://www.cambridge.org/core/journals/canadian-entomologist/article/aerial-application-of-two-baculoviruses-against-the-western-spruce-budworm-choristoneura-occidentalis-freeman-lepidoptera-tortricidae-in-british-columbia/A789877DB0DE8CAFAC6D33F0DAACAE7F
https://www.cambridge.org/core/journals/canadian-entomologist/article/aerial-application-of-two-baculoviruses-against-the-western-spruce-budworm-choristoneura-occidentalis-freeman-lepidoptera-tortricidae-in-british-columbia/A789877DB0DE8CAFAC6D33F0DAACAE7F
https://www.cambridge.org/core/journals/canadian-entomologist/article/aerial-application-of-two-baculoviruses-against-the-western-spruce-budworm-choristoneura-occidentalis-freeman-lepidoptera-tortricidae-in-british-columbia/A789877DB0DE8CAFAC6D33F0DAACAE7F
https://www.cambridge.org/core/journals/canadian-entomologist/article/aerial-application-of-two-baculoviruses-against-the-western-spruce-budworm-choristoneura-occidentalis-freeman-lepidoptera-tortricidae-in-british-columbia/A789877DB0DE8CAFAC6D33F0DAACAE7F
https://doi.org/10.1111/j.1365-2656.2010.01690.x
https://besjournals.onlinelibrary.wiley.com/doi/10.1111/j.1365-2656.2010.01690.x
https://besjournals.onlinelibrary.wiley.com/doi/10.1111/j.1365-2656.2010.01690.x
https://doi.org/10.1038/nature01286
https://www.nature.com/articles/nature01286
https://doi.org/10.1890/0012-9658(2002)083[3120:SSIFIO]2.0.CO;2
https://doi.org/10.1890/0012-9658(2002)083[3120:SSIFIO]2.0.CO;2
http://doi.wiley.com/10.1890/0012-9658(2002)083[3120:SSIFIO]2.0.CO;2
http://doi.wiley.com/10.1890/0012-9658(2002)083[3120:SSIFIO]2.0.CO;2
https://doi.org/10.1086/663682
https://www.journals.uchicago.edu/doi/10.1086/663682
https://www.journals.uchicago.edu/doi/10.1086/663682
https://doi.org/10.1111/ele.12136
https://onlinelibrary.wiley.com/doi/10.1111/ele.12136
https://onlinelibrary.wiley.com/doi/10.1111/ele.12136


Sergei V. Petrovskii, Horst Malchow, Frank M. Hilker, and Ezio Venturino. Patterns of
Patchy Spread in Deterministic and Stochastic Models of Biological Invasion and Biological
Control. Biological Invasions, 7(5):771–793, September 2005. ISSN 1387-3547, 1573-1464.
doi:10.1007/s10530-005-5217-7. URL http://link.springer.com/10.1007/s10530-005
-5217-7.

Ben L. Phillips, Crystal Kelehear, Lígia Pizzatto, Gregory P. Brown, Di Barton, and
Richard Shine. Parasites and pathogens lag behind their host during periods of host
range advance. Ecology, 91(3):872–881, 2010. ISSN 1939-9170. doi:10.1890/09-0530.1.
URL https://onlinelibrary.wiley.com/doi/abs/10.1890/09-0530.1. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1890/09-0530.1.

Juho Piironen, Markus Paasiniemi, and Aki Vehtari. Projective inference in high-dimensional
problems: Prediction and feature selection. Electronic Journal of Statistics, 14(1):2155–
2197, January 2020. ISSN 1935-7524, 1935-7524. doi:10.1214/20-EJS1711. URL https:
//projecteuclid.org/journals/electronic-journal-of-statistics/volume-14/
issue-1/Projective-inference-in-high-dimensional-problems--Prediction-and
-feature/10.1214/20-EJS1711.full. Publisher: Institute of Mathematical Statistics
and Bernoulli Society.

David J Páez, Vanja Dukic, Jonathan Dushoff, Arietta Fleming-Davies, and Greg Dwyer.
Eco-Evolutionary Theory and Insect Outbreaks. The American Naturalist, 189(6):616–
629, June 2017. ISSN 1537-5323. doi:10.1086/691537.

Leslie A Real and Roman Biek. Spatial dynamics and genetics of infectious diseases on
heterogeneous landscapes. Journal of The Royal Society Interface, 4(16):935–948, October
2007. ISSN 1742-5689, 1742-5662. doi:10.1098/rsif.2007.1041. URL https://royalsocie
typublishing.org/doi/10.1098/rsif.2007.1041.

Lee A. Rollins, Mark F. Richardson, and Richard Shine. A genetic perspective
on rapid evolution in cane toads (Rhinella marina). Molecular Ecology, 24(9):
2264–2276, 2015. ISSN 1365-294X. doi:10.1111/mec.13184. URL https://
onlinelibrary.wiley.com/doi/abs/10.1111/mec.13184. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/mec.13184.

Sebastian J Schreiber and Noelle G Beckman. Individual variation in dispersal and fecundity
increases rates of spatial spread. AoB PLANTS, 12(3):plaa001, May 2020. ISSN 2041-
2851. doi:10.1093/aobpla/plaa001. URL https://academic.oup.com/aobpla/article/
doi/10.1093/aobpla/plaa001/5851646.

United States Forest Service. The Douglas-fir Tussock Moth: A Synthesis. Department of
Agriculture, Forest Service, 1978. Google-Books-ID: BWEWAAAAYAAJ.

Paul M. Severns, Kathryn E. Sackett, Daniel H. Farber, and Christopher C. Mundt. Conse-
quences of Long-Distance Dispersal for Epidemic Spread: Patterns, Scaling, and Mit-
igation. Plant Disease, 103(2):177–191, February 2019. ISSN 0191-2917, 1943-7692.

161

https://doi.org/10.1007/s10530-005-5217-7
http://link.springer.com/10.1007/s10530-005-5217-7
http://link.springer.com/10.1007/s10530-005-5217-7
https://doi.org/10.1890/09-0530.1
https://onlinelibrary.wiley.com/doi/abs/10.1890/09-0530.1
https://doi.org/10.1214/20-EJS1711
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-14/issue-1/Projective-inference-in-high-dimensional-problems--Prediction-and-feature/10.1214/20-EJS1711.full
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-14/issue-1/Projective-inference-in-high-dimensional-problems--Prediction-and-feature/10.1214/20-EJS1711.full
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-14/issue-1/Projective-inference-in-high-dimensional-problems--Prediction-and-feature/10.1214/20-EJS1711.full
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-14/issue-1/Projective-inference-in-high-dimensional-problems--Prediction-and-feature/10.1214/20-EJS1711.full
https://doi.org/10.1086/691537
https://doi.org/10.1098/rsif.2007.1041
https://royalsocietypublishing.org/doi/10.1098/rsif.2007.1041
https://royalsocietypublishing.org/doi/10.1098/rsif.2007.1041
https://doi.org/10.1111/mec.13184
https://onlinelibrary.wiley.com/doi/abs/10.1111/mec.13184
https://onlinelibrary.wiley.com/doi/abs/10.1111/mec.13184
https://doi.org/10.1093/aobpla/plaa001
https://academic.oup.com/aobpla/article/doi/10.1093/aobpla/plaa001/5851646
https://academic.oup.com/aobpla/article/doi/10.1093/aobpla/plaa001/5851646


doi:10.1094/PDIS-03-18-0505-FE. URL https://apsjournals.apsnet.org/doi/10.
1094/PDIS-03-18-0505-FE.

Roy F. Shepherd, Dayle D. Bennett, John W. Dale, Scott Tunnock, Robert E. Dolph,
and Ralph W. Thier. EVIDENCE OF SYNCHRONIZED CYCLES IN OUTBREAK
PATTERNS OF DOUGLAS-FIR TUSSOCK MOTH, ORGYIA PSEUDOTSUGATA
(McDUNNOUGH) (LEPIDOPTERA: LYMANTRIIDAE). The Memoirs of the En-
tomological Society of Canada, 120(S146):107–121, January 1988. ISSN 0071-075X.
doi:10.4039/entm120146107-1. URL https://www.cambridge.org/core/journals/
memoirs-of-the-entomological-society-of-canada/article/abs/evidence-of-s
ynchronized-cycles-in-outbreak-patterns-of-douglasfir-tussock-moth-orgyi
a-pseudotsugata-mcdunnough-lepidoptera-lymantriidae/38DEB2566939995A603A
652A7FBE756C.

J A Sherratt, M A Lewis, and A C Fowler. Ecological chaos in the wake of invasion.
Proceedings of the National Academy of Sciences, 92(7):2524–2528, March 1995. ISSN
0027-8424, 1091-6490. doi:10.1073/pnas.92.7.2524. URL https://pnas.org/doi/full/
10.1073/pnas.92.7.2524.

J.A. Sherratt. Periodic travelling waves in cyclic predator–prey systems. Ecology Let-
ters, 4(1):30–37, January 2001. ISSN 1461-023X, 1461-0248. doi:10.1046/j.1461-
0248.2001.00193.x. URL https://onlinelibrary.wiley.com/doi/10.1046/j.14
61-0248.2001.00193.x.

Jonathan A Sherratt and Matthew J Smith. Periodic travelling waves in cyclic populations:
field studies and reaction–diffusion models. Journal of The Royal Society Interface, 5
(22):483–505, May 2008. ISSN 1742-5689, 1742-5662. doi:10.1098/rsif.2007.1327. URL
https://royalsocietypublishing.org/doi/10.1098/rsif.2007.1327.

Nanako Shigesada. Spatial distribution of dispersing animals. Journal of mathematical
biology, 9:85–96, April 1980. doi:10.1007/BF00276037.

Nanako Shigesada and Kohkichi Kawasaki. Biological Invasions: Theory and Practice. Ox-
ford University Press, UK, February 1997. ISBN 978-0-19-158982-9.

Giulia Simoni, Federico Reali, Corrado Priami, and Luca Marchetti. Stochastic simulation
algorithms for computational systems biology: Exact, approximate, and hybrid methods.
Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 11(6):1–20, 2019. ISSN
1939005X. doi:10.1002/wsbm.1459.

J. G. Skellam. Random dispersal in theoretical populations. Biometrika, 38(1-2):196–218,
June 1951. ISSN 0006-3444.

D. Smitley, Leah Bauer, Ann Hajek, F. Sapio, and Richard Humber. Introduction and Es-
tablishment of Entomophaga maimaiga, a Fungal Pathogen of Gypsy Moth (Lepidoptera:
Lymantriidae) in Michigan. Environmental Entomology, 24:1685–1695, December 1995.
doi:10.1093/ee/24.6.1685.

162

https://doi.org/10.1094/PDIS-03-18-0505-FE
https://apsjournals.apsnet.org/doi/10.1094/PDIS-03-18-0505-FE
https://apsjournals.apsnet.org/doi/10.1094/PDIS-03-18-0505-FE
https://doi.org/10.4039/entm120146107-1
https://www.cambridge.org/core/journals/memoirs-of-the-entomological-society-of-canada/article/abs/evidence-of-synchronized-cycles-in-outbreak-patterns-of-douglasfir-tussock-moth-orgyia-pseudotsugata-mcdunnough-lepidoptera-lymantriidae/38DEB2566939995A603A652A7FBE756C
https://www.cambridge.org/core/journals/memoirs-of-the-entomological-society-of-canada/article/abs/evidence-of-synchronized-cycles-in-outbreak-patterns-of-douglasfir-tussock-moth-orgyia-pseudotsugata-mcdunnough-lepidoptera-lymantriidae/38DEB2566939995A603A652A7FBE756C
https://www.cambridge.org/core/journals/memoirs-of-the-entomological-society-of-canada/article/abs/evidence-of-synchronized-cycles-in-outbreak-patterns-of-douglasfir-tussock-moth-orgyia-pseudotsugata-mcdunnough-lepidoptera-lymantriidae/38DEB2566939995A603A652A7FBE756C
https://www.cambridge.org/core/journals/memoirs-of-the-entomological-society-of-canada/article/abs/evidence-of-synchronized-cycles-in-outbreak-patterns-of-douglasfir-tussock-moth-orgyia-pseudotsugata-mcdunnough-lepidoptera-lymantriidae/38DEB2566939995A603A652A7FBE756C
https://www.cambridge.org/core/journals/memoirs-of-the-entomological-society-of-canada/article/abs/evidence-of-synchronized-cycles-in-outbreak-patterns-of-douglasfir-tussock-moth-orgyia-pseudotsugata-mcdunnough-lepidoptera-lymantriidae/38DEB2566939995A603A652A7FBE756C
https://doi.org/10.1073/pnas.92.7.2524
https://pnas.org/doi/full/10.1073/pnas.92.7.2524
https://pnas.org/doi/full/10.1073/pnas.92.7.2524
https://doi.org/10.1046/j.1461-0248.2001.00193.x
https://doi.org/10.1046/j.1461-0248.2001.00193.x
https://onlinelibrary.wiley.com/doi/10.1046/j.1461-0248.2001.00193.x
https://onlinelibrary.wiley.com/doi/10.1046/j.1461-0248.2001.00193.x
https://doi.org/10.1098/rsif.2007.1327
https://royalsocietypublishing.org/doi/10.1098/rsif.2007.1327
https://doi.org/10.1007/BF00276037
https://doi.org/10.1002/wsbm.1459
https://doi.org/10.1093/ee/24.6.1685


A. J. M. Tack, P. H. Thrall, L. G. Barrett, J. J. Burdon, and A.-L. Laine. Variation
in infectivity and aggressiveness in space and time in wild host-pathogen systems: causes
and consequences. Journal of Evolutionary Biology, 25(10):1918–1936, October 2012. ISSN
1420-9101. doi:10.1111/j.1420-9101.2012.02588.x.

Boon-Teong Teoh, Sing-Sin Sam, Kim-Kee Tan, Jefree Johari, Meng-Hooi Shu, Mo-
hammed Bashar Danlami, Juraina Abd-Jamil, NorAziyah MatRahim, Nor Muhammad
Mahadi, and Sazaly AbuBakar. Dengue virus type 1 clade replacement in recurring homo-
typic outbreaks. BMC Evolutionary Biology, 13(1):213, December 2013. ISSN 1471-2148.
doi:10.1186/1471-2148-13-213. URL https://bmcevolbiol.biomedcentral.com/arti
cles/10.1186/1471-2148-13-213.

Julien Thézé, Carlos Lopez-Vaamonde, Jenny S. Cory, and Elisabeth A. Herniou. Biodiver-
sity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future
Applied Research. Viruses, 10(7):366, July 2018. ISSN 1999-4915. doi:10.3390/v10070366.

Huaiyu Tian, Yun Feng, Bram Vrancken, Bernard Cazelles, Hua Tan, Mandev S. Gill, Qiqi
Yang, Yidan Li, Weihong Yang, Yuzhen Zhang, Yunzhi Zhang, Philippe Lemey, Oliver G.
Pybus, Nils Chr Stenseth, Hailin Zhang, and Simon Dellicour. Transmission dynamics of
re-emerging rabies in domestic dogs of rural China. PLOS Pathogens, 14(12):e1007392,
December 2018. ISSN 1553-7374. doi:10.1371/journal.ppat.1007392. URL https://jo
urnals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1007392.
Publisher: Public Library of Science.

Alexei V. Tkachenko, Sergei Maslov, Ahmed Elbanna, George N. Wong, Zachary J. Weiner,
and Nigel Goldenfeld. Time-dependent heterogeneity leads to transient suppression of
the COVID-19 epidemic, not herd immunity. Proceedings of the National Academy of
Sciences, 118(17):e2015972118, April 2021. doi:10.1073/pnas.2015972118. URL https:
//www.pnas.org/doi/10.1073/pnas.2015972118. Publisher: Proceedings of the
National Academy of Sciences.

Panayiota Touloupou, Barbel Finkenstadt, Thomas E. Besser, Nigel P. French, and Simon
E. F. Spencer. Bayesian inference for multi-strain epidemics with application to Escherichia
coli O157: H7 in feedlot cattle. Annals of Applied Statistics, 14(4):1925–1944, December
2020. ISSN 1932-6157. doi:10.1214/20-AOAS1366.

Joanne Turner, Roger G. Bowers, and Matthew Baylis. Modelling bluetongue virus trans-
mission between farms using animal and vector movements. Scientific Reports, 2(1):319,
March 2012. ISSN 2045-2322. doi:10.1038/srep00319. URL https://www.nature.com/a
rticles/srep00319. Publisher: Nature Publishing Group.

Carla A. Urquhart and Jennifer L. Williams. Trait correlations and landscape fragmentation
jointly alter expansion speed via evolution at the leading edge in simulated range expan-
sions. Theoretical Ecology, 14(3):381–394, September 2021. ISSN 1874-1738, 1874-1746.
doi:10.1007/s12080-021-00503-z. URL https://link.springer.com/10.1007/s12080-0
21-00503-z.

163

https://doi.org/10.1111/j.1420-9101.2012.02588.x
https://doi.org/10.1186/1471-2148-13-213
https://bmcevolbiol.biomedcentral.com/articles/10.1186/1471-2148-13-213
https://bmcevolbiol.biomedcentral.com/articles/10.1186/1471-2148-13-213
https://doi.org/10.3390/v10070366
https://doi.org/10.1371/journal.ppat.1007392
https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1007392
https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1007392
https://doi.org/10.1073/pnas.2015972118
https://www.pnas.org/doi/10.1073/pnas.2015972118
https://www.pnas.org/doi/10.1073/pnas.2015972118
https://doi.org/10.1214/20-AOAS1366
https://doi.org/10.1038/srep00319
https://www.nature.com/articles/srep00319
https://www.nature.com/articles/srep00319
https://doi.org/10.1007/s12080-021-00503-z
https://link.springer.com/10.1007/s12080-021-00503-z
https://link.springer.com/10.1007/s12080-021-00503-z


Gonzalo M. Vazquez-Prokopec, Amy C. Morrison, Valerie Paz-Soldan, Steven T. Stoddard,
William Koval, Lance A. Waller, T. Alex Perkins, Alun L. Lloyd, Helvio Astete, and John
Elder. Inapparent infections shape the transmission heterogeneity of dengue. PNAS nexus,
2(3):pgad024, 2023. URL https://academic.oup.com/pnasnexus/article-abstract/
2/3/pgad024/7010769. Publisher: Oxford University Press US.

Aki Vehtari, Andrew Gelman, and Jonah Gabry. Practical Bayesian model evaluation using
leave-one-out cross-validation and WAIC. Statistics and Computing, 27(5):1413–1432,
September 2017. ISSN 1573-1375. doi:10.1007/s11222-016-9696-4. URL https://doi.or
g/10.1007/s11222-016-9696-4.

Aki Vehtari, Jonah Gabry, Måns Magnusson, Yuling Yao, Paul-Christian Bürkner, Topi
Paananen, and Andrew Gelman. loo: Efficient leave-one-out cross-validation and WAIC
for Bayesian models, 2024a. URL https://mc-stan.org/loo/.

Aki Vehtari, Daniel Simpson, Andrew Gelman, Yuling Yao, and Jonah Gabry. Pareto
Smoothed Importance Sampling, March 2024b. URL http://arxiv.org/abs/1507
.02646. arXiv:1507.02646 [stat].

Cécile Viboud, Ottar N. Bjørnstad, David L. Smith, Lone Simonsen, Mark A. Miller,
and Bryan T. Grenfell. Synchrony, Waves, and Spatial Hierarchies in the Spread
of Influenza. Science, 312(5772):447–451, April 2006. ISSN 0036-8075, 1095-9203.
doi:10.1126/science.1125237. URL https://www.science.org/doi/10.1126/scienc
e.1125237.

Jonathan A. Walter, Lawrence W. Sheppard, Thomas L. Anderson, Jude H. Kastens, Ot-
tar N. Bjørnstad, Andrew M. Liebhold, and Daniel C. Reuman. The geography of spa-
tial synchrony. Ecology Letters, 20(7):801–814, July 2017. ISSN 1461-023X, 1461-0248.
doi:10.1111/ele.12782. URL https://onlinelibrary.wiley.com/doi/10.1111/ele.12
782.

Jacob Weiner and Paul T. Conte. Dispersal and neighborhood effects in an annual plant
competition model. Ecological Modelling, 13(3):131–147, August 1981. ISSN 0304-3800.
doi:10.1016/0304-3800(81)90048-X. URL https://www.sciencedirect.com/science/
article/pii/030438008190048X.

Christopher Weiss-Lehman, Ruth A Hufbauer, and Brett A Melbourne. Rapid trait evolution
drives increased speed and variance in experimental range expansions. Nature Commu-
nications, 8(1):14303, January 2017. ISSN 2041-1723. doi:10.1038/ncomms14303. URL
https://www.nature.com/articles/ncomms14303.

Lauren A. White, James D. Forester, and Meggan E. Craft. Dynamic, spatial models
of parasite transmission in wildlife: Their structure, applications and remaining chal-
lenges. Journal of Animal Ecology, 87(3):559–580, May 2018. ISSN 0021-8790, 1365-2656.
doi:10.1111/1365-2656.12761. URL https://besjournals.onlinelibrary.wiley.com/
doi/10.1111/1365-2656.12761.

164

https://academic.oup.com/pnasnexus/article-abstract/2/3/pgad024/7010769
https://academic.oup.com/pnasnexus/article-abstract/2/3/pgad024/7010769
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1007/s11222-016-9696-4
https://mc-stan.org/loo/
http://arxiv.org/abs/1507.02646
http://arxiv.org/abs/1507.02646
https://doi.org/10.1126/science.1125237
https://www.science.org/doi/10.1126/science.1125237
https://www.science.org/doi/10.1126/science.1125237
https://doi.org/10.1111/ele.12782
https://onlinelibrary.wiley.com/doi/10.1111/ele.12782
https://onlinelibrary.wiley.com/doi/10.1111/ele.12782
https://doi.org/10.1016/0304-3800(81)90048-X
https://www.sciencedirect.com/science/article/pii/030438008190048X
https://www.sciencedirect.com/science/article/pii/030438008190048X
https://doi.org/10.1038/ncomms14303
https://www.nature.com/articles/ncomms14303
https://doi.org/10.1111/1365-2656.12761
https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2656.12761
https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2656.12761


Holly L. Williams and Imre S Otvos. Genotypic variation and presence of rare genotypes
among Douglas-fir tussock moth multicapsid nucleopolyhedrovirus (OpMNPV) isolates in
British Columbia. Journal of Invertebrate Pathology, 88(3):190–200, 2005. ISSN 00222011.
doi:10.1016/j.jip.2005.02.002.

Jennifer L. Williams, Bruce E. Kendall, and Jonathan M. Levine. Rapid evolution accelerates
plant population spread in fragmented experimental landscapes. Science, 353(6298):482–
485, July 2016. ISSN 0036-8075, 1095-9203. doi:10.1126/science.aaf6268. URL https:
//www.science.org/doi/10.1126/science.aaf6268.

Jennifer L. Williams, Ruth A. Hufbauer, and Tom E. X. Miller. How Evolution Modifies the
Variability of Range Expansion. Trends in Ecology & Evolution, 34(10):903–913, October
2019. ISSN 0169-5347. doi:10.1016/j.tree.2019.05.012. URL https://www.sciencedirec
t.com/science/article/pii/S0169534719301648.

M. Williamson. Biological Invasions. Springer Science & Business Media, 1996. ISBN
978-0-412-59190-7. Google-Books-ID: eWUdzI6j3V8C.

Kenneth Wilson, Andy Fenton, and Dan Tompkins, editors. Wildlife Disease Ecology:
Linking Theory to Data and Application. Ecological Reviews. Cambridge University
Press, Cambridge, 2019. ISBN 978-1-107-13656-4. doi:10.1017/9781316479964. URL
https://www.cambridge.org/core/books/wildlife-disease-ecology/D3750098BDF
E4A82175C90C07DED5589.

Luzie U Wingen, James K M Brown, and Michael W Shaw. The Population Ge-
netic Structure of Clonal Organisms Generated by Exponentially Bounded and Fat-
Tailed Dispersal. Genetics, 177(1):435–448, September 2007. ISSN 1943-2631.
doi:10.1534/genetics.107.077206. URL https://academic.oup.com/genetics/arti
cle/177/1/435/6062248.

Simon N Wood and Matthew B Thomas. Space, time and persistence of virulent pathogens.
Proceedings of the Royal Society of London. Series B: Biological Sciences, 263(1371):673–
680, June 1996. ISSN 0962-8452, 1471-2954. doi:10.1098/rspb.1996.0101. URL https:
//royalsocietypublishing.org/doi/10.1098/rspb.1996.0101.

S. A. Woods and J. S. Elkinton. Bimodal patterns of mortality from nuclear polyhedrosis
virus in gypsy moth (Lymantria dispar) populations. Journal of Invertebrate Pathology,
50(2):151–157, 1987. URL https://www.sciencedirect.com/science/article/pii/
0022201187901157. Publisher: Elsevier.

S. A. Woods, J. S. Elkinton, K. D. Murray, A. M. Liebhold, J. R. Gould, and J. D. Podgwaite.
Transmission dynamics of a nuclear polyhedrosis virus and predicting mortality in gypsy
moth (Lepidoptera: Lymantriidae) populations. Journal of Economic Entomology, 84(2):
423–430, 1991. URL https://academic.oup.com/jee/article-abstract/84/2/423/8
02403. Publisher: Oxford University Press Oxford, UK.

165

https://doi.org/10.1016/j.jip.2005.02.002
https://doi.org/10.1126/science.aaf6268
https://www.science.org/doi/10.1126/science.aaf6268
https://www.science.org/doi/10.1126/science.aaf6268
https://doi.org/10.1016/j.tree.2019.05.012
https://www.sciencedirect.com/science/article/pii/S0169534719301648
https://www.sciencedirect.com/science/article/pii/S0169534719301648
https://doi.org/10.1017/9781316479964
https://www.cambridge.org/core/books/wildlife-disease-ecology/D3750098BDFE4A82175C90C07DED5589
https://www.cambridge.org/core/books/wildlife-disease-ecology/D3750098BDFE4A82175C90C07DED5589
https://doi.org/10.1534/genetics.107.077206
https://academic.oup.com/genetics/article/177/1/435/6062248
https://academic.oup.com/genetics/article/177/1/435/6062248
https://doi.org/10.1098/rspb.1996.0101
https://royalsocietypublishing.org/doi/10.1098/rspb.1996.0101
https://royalsocietypublishing.org/doi/10.1098/rspb.1996.0101
https://www.sciencedirect.com/science/article/pii/0022201187901157
https://www.sciencedirect.com/science/article/pii/0022201187901157
https://academic.oup.com/jee/article-abstract/84/2/423/802403
https://academic.oup.com/jee/article-abstract/84/2/423/802403


Kai Wu, Bing Yang, Wuren Huang, Leonard Dobens, Hongsheng Song, and Erjun Ling.
Gut immunity in Lepidopteran insects. Developmental & Comparative Immunology, 64:
65–74, November 2016. ISSN 0145-305X. doi:10.1016/j.dci.2016.02.010. URL https:
//www.sciencedirect.com/science/article/pii/S0145305X16300349.

Yuling Yao, Aki Vehtari, Daniel Simpson, and Andrew Gelman. Using Stacking to Average
Bayesian Predictive Distributions (with Discussion). Bayesian Analysis, 13(3):917–1007,
September 2018. ISSN 1936-0975, 1931-6690. doi:10.1214/17-BA1091. URL https:
//projecteuclid.org/journals/bayesian-analysis/volume-13/issue-3/Using-S
tacking-to-Average-Bayesian-Predictive-Distributions-with-Discussion/10.1
214/17-BA1091.full. Publisher: International Society for Bayesian Analysis.

Luke A. Yates, Zach Aandahl, Shane A. Richards, and Barry W. Brook. Cross vali-
dation for model selection: A review with examples from ecology. Ecological Mono-
graphs, 93(1):e1557, 2023. ISSN 1557-7015. doi:10.1002/ecm.1557. URL http
s://onlinelibrary.wiley.com/doi/abs/10.1002/ecm.1557. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ecm.1557.

Yinong Young-Xu and K. Arnold Chan. Pooling overdispersed binomial data to estimate
event rate. BMC Medical Research Methodology, 8(1):58, August 2008. ISSN 1471-2288.
doi:10.1186/1471-2288-8-58. URL https://doi.org/10.1186/1471-2288-8-58.

QinQin Yu, Joao Ascensao, Takashi Okada, The COVID-19 Genomics UK (COG-UK) con-
sortium, Olivia Boyd, Erik Volz, and Oskar Hallatschek. Lineage frequency time series
reveal elevated levels of genetic drift in SARS-CoV-2 transmission in England. preprint,
Evolutionary Biology, November 2022. URL http://biorxiv.org/lookup/doi/10.1101
/2022.11.21.517390.

166

https://doi.org/10.1016/j.dci.2016.02.010
https://www.sciencedirect.com/science/article/pii/S0145305X16300349
https://www.sciencedirect.com/science/article/pii/S0145305X16300349
https://doi.org/10.1214/17-BA1091
https://projecteuclid.org/journals/bayesian-analysis/volume-13/issue-3/Using-Stacking-to-Average-Bayesian-Predictive-Distributions-with-Discussion/10.1214/17-BA1091.full
https://projecteuclid.org/journals/bayesian-analysis/volume-13/issue-3/Using-Stacking-to-Average-Bayesian-Predictive-Distributions-with-Discussion/10.1214/17-BA1091.full
https://projecteuclid.org/journals/bayesian-analysis/volume-13/issue-3/Using-Stacking-to-Average-Bayesian-Predictive-Distributions-with-Discussion/10.1214/17-BA1091.full
https://projecteuclid.org/journals/bayesian-analysis/volume-13/issue-3/Using-Stacking-to-Average-Bayesian-Predictive-Distributions-with-Discussion/10.1214/17-BA1091.full
https://doi.org/10.1002/ecm.1557
https://onlinelibrary.wiley.com/doi/abs/10.1002/ecm.1557
https://onlinelibrary.wiley.com/doi/abs/10.1002/ecm.1557
https://doi.org/10.1186/1471-2288-8-58
https://doi.org/10.1186/1471-2288-8-58
http://biorxiv.org/lookup/doi/10.1101/2022.11.21.517390
http://biorxiv.org/lookup/doi/10.1101/2022.11.21.517390

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	1 Overview
	1.1 Spatial ecology across scales
	1.2 Structure in host-pathogen interactions
	1.3 The Douglas-fir tussock moth, Orgyia pseudotsugata, and its baculovirus
	1.4 Chapter summaries and conclusions

	2 Data and theory show that host dispersal alone mediates shifting transmission hotspots
	2.1 Introduction
	2.2 Methods
	2.2.1 Data collection
	2.2.2 Small-scale spatial transmission models
	2.2.3 Defoliation regression models

	2.3 Results
	2.3.1 Transmission hotspots and host dispersal drive pathogen dynamics
	2.3.2 Stochasticity worsens predictive performance
	2.3.3 Spatial transmission models provide a deeper understanding of insect tree damage

	2.4 Discussion

	3 Heritable infection risk generates accelerating waves and re-produces insect outbreak data
	3.1 Introduction
	3.2 Methods
	3.3 Results
	3.4 Discussion

	4 Conclusions and future directions
	Appendices
	A Infection risk distributions over continuous space and continuous time
	A.1 Non-spatial moment closure approximation
	A.2 Moment closure in space

	B Fitting spatial models to infection rate data using an adapted MCMC algorithm
	B.1 Likelihood incorporation of sample error with reflections on data
	B.1.1 Bounded kernel density estimators
	B.1.2 Temporal overdispersion is better captured by spatial models due to improved sample error estimation

	B.2 PCA-adjusted MCMC provides computationally-efficient convergence
	B.2.1 Dimensionally-reduced Gibbs sampler
	B.2.2 Convergence diagnostics

	B.3 Model selection
	B.3.1 PSIS-LOO, stacking weights, and WAIC comparisons
	B.3.2 ELPD performance across subset data


	C Evolving infection risk distributions over continuous space and discrete generations
	C.1 Non-spatial evolving infection risk
	C.2 Inter-generational infection risk moment closure over space
	C.3 Loss of heterogeneity under Dirac delta dispersal kernel
	C.4 Maintenance of heterogeneity in multiple populations

	D Fitting integrodifference models to insect outbreak data
	D.1 Wave speed approximations for integrodifference models
	D.1.1 Recursion methods for thin-tailed kernels
	D.1.2 Tail-additivity approximation for fat-tailed kernels

	D.2 Inference and future data
	D.2.1 Marginal SSE surfaces for wave speed parameters
	D.2.2 A novel range expansion following re-establishment


	E Numerical methods for spatial simulations
	E.1 Method of lines integration for PDEs
	E.2 Exact stochastic simulation algorithms
	E.3 Environmental stochasticity
	E.4 Grid lattices, diffusion, and travelling waves
	E.5 Time step calculations in integrodifference equations

	References

