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ABSTRACT

Adaptation is a fundamental mechanism of growth. Scientists have developed statistical

models in numerous contexts to characterize growth and its emergent behaviors, such as in-

equality, competition, and cooperation. However, we still lack a general adaptive mechanism

that explains the emergence of growth in uncertain environments, preventing systematic ex-

ploration of the origins of agent heterogeneities. In this dissertation, I derive a theory of

statistical growth among agents adapting to their environments. I then show several key

results. First, that the average growth rate of agents’ resources is governed by the informa-

tion they hold about their environment. It follows that the learning process can attenuate

growth rate disparities, reducing the long-term effects of heterogeneity on inequality. Sec-

ond, I show how groups that optimally combine complementary information about resources

maximize their effective growth rate. I show that these advantages are quantified by the

information synergy embedded in the conditional probability of environmental states given

agents’ signals, such that groups with a greater diversity of signals maximize their collective

information. Lastly, using simple, pairwise agent interactions, I show how agent preferences

converge when driven by observation of each other’s behaviors. These results demonstrate

how the formal properties of information underlie the statistical dynamics of many complex

processes across biological and social phenomena.
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CHAPTER 1

INTRODUCTION

Adaptation refers to the changes in the function or behavior of a system, such as an organ-

ism, economic agent, or ecological community, that enhance its ability to survive in specific

environmental conditions. Environments vary widely and often promote distinct behav-

iors. In social environments, built from the interactions of many agents with individual,

heterogeneous preferences, agents adapt to reflect social norms, behaviors, or institutions.

In natural or professional settings, agents are rewarded for filling specific niches, such as

specialized skills in supply chains or a specific biomass conversion in energy cycles. Across

these contexts, adaptation is driven by the pursuit of resources like social capital, or material

resources such as money or energy. Generally, agents that are better adapted and exhibit

more favorable behaviors can survive better by extracting more resources over time.

Social and biological scientists have long sought insight into how this process unfolds

across scales, from individual behaviors to collective decisions. Formally, they study how

the properties of complex systems, like economies or ecosystems, emerge from the hetero-

geneous strategies and social structures their interacting constituents adopt in response to

their dynamic environments. They are also often interested in whether adaptation produces

strategies that are optimal and result in the highest rewards possible given the environment.

In general, this is difficult to do in a complete and mathematically rigorous way. However,

improvements to data collection methods and computational power in the mid-20th cen-

tury have revolutionized how we understand and explore these emergent behaviors, inspiring

new theoretical approaches. A wealth of models inspired by statistical mechanical systems

out of equilibrium has revealed connections between the dynamics of strategic agents and

macroscopic properties of population growth, inequality, and cooperation.

These dynamical models typically describe a general agent, a proxy for a decision-maker,

such as a bacterium foraging for energy, a rabbit evading predators, or a person investing
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their wealth. They describe behaviors over time and are usually nonlinear [28, 85, 204].

Some processes like reproduction can be multiplicative, while others may involve higher-

order interactions or feedback processes [6, 12, 81]. This complexity limits the insights that

analytical calculations can provide, prompting researchers to employ computational and nu-

merical methods. These approaches typically describe a deterministic process that captures

the agent’s mean tendencies, such as an interaction preference or the average payoff of an

action. This represents what we know or assume about the agent’s behavior and can be ad-

justed to study emergent population-level phenomena over time. A statistically distributed,

or stochastic, term is also included to account for unpredictable behaviors that are difficult

to model precisely but have predictable statistical patterns. To illustrate these concepts in a

formalized manner, consider Brownian motion, a canonical example of a stochastic dynamical

process.

Consider a particle with position vector X. At every time step dt, the particle drifts on

average γdt with some statistical fluctuation σdWt. Here, dWt describes a Wiener process,

or a mean-free Gaussian distributed fluctuation dWt ∼ N (0, 1). The stochastic differential

equation (SDE) is given by

dX = γdt+ σdWt.

In a physical context, this could represent the drift of a charged particle, where γ ∝ qEdt/m

for some charge q of mass m in an electric field E, with fluctuation σ ∝
√
2dkBT/m for

drag d, the Boltzmann constant kB at temperature T . 1 In this treatment, assume the

particle is subject to a measurable force, given by qE, and collides with innumerable other

particles. These collisions result in a diffusion process that scales with the electron mobility

d and as a function of temperature T such that electrons that are hotter and move faster in

response to an electric field diffuse further. Although we cannot track individual collisions,

1. This mapping is far from exact, and is used only for analogy. The actual Langevin equations model
the position and velocity as coupled SDEs as the charged particle velocity is also stochastic, whereas here it
is not. The full description is provided in [224], where the Langevin definition is given in equation 6.3.
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we can describe the statistical properties of the particle’s trajectory. Usually, this noise

is diffusive and drives the system towards disorder, but it may also provide insights into

how these stochastic dynamics behave. For example, fluctuations could have a particular

functional form representing the noise generating process. Noise could be correlated across

space, if dynamics between agents are coupled, or time, if past states affect future behaviors.

This model will serve as a starting point for the theory explored in Chapter 2, and will be

expanded upon later in the text. However, this dissertation will only explore cases where

noise is independent and identically distributed (i.i.d).

Nonequilibrium models with analogs to Brownian Motion are often used to study adap-

tive dynamical systems, because they capture both random fluctuations and deterministic

interactions. For instance, the stochastic Lotka-Volterra equations use coupled multiplicative

Brownian populations to examine in which parameter regimes predator-prey dependencies

lead to oscillating or stable dynamics ([161, 226]. Wealth inequality is often modeled as

exponential Brownian motion with mean-field interaction terms representing wealth redistri-

bution or transfer ([39]). Meanwhile, networks of beliefs over coupled, binary opinions rely

on more complex models, such as Ising lattices ([96]).

While these models have successfully identified and characterized several common emer-

gent phenomena, we lack theory on how individual behaviors and adaptations influence

models of complex systems like predator-prey dynamics or functions of the brain. A critical

piece missing from these models is a description of how these adaptive behaviors develop in

the context of their environment. That is, these system emerge from adaptive processes (i.e.,

the need to manage resources to survive), but the models often studied do not specify specific

adaptive mechanisms. Decoupling agent behaviors from this fundamental drive towards opti-

mality limits modelers to ad-hoc, phenomenological explanations for behavioral mechanisms

(e.g. where do mean and noisy behaviors come from? ), and blinds modelers from fundamen-

tal considerations (e.g. how do environments influence behavior? ). More importantly, this

3



decoupling prevents modelers from leveraging the deep connection between information and

behavior ([152, 204]), and the rich theoretical insights that an information theory provides

[89, 184]. This raises the question: how does adaptation in a complex environment determine

the dynamics of growth and social behavior?

1.1 Dissertation overview

This dissertation is organized as follows. Chapter 2 motivates the need for an adaptive the-

ory of growth by demonstrating the shortcomings of standard Geometric Brownian Motion

(GBM) approaches to studying wealth dynamics. I show that parameter heterogeneity de-

termines the properties of aggregate growth and drives inequality over long timescales. With

the need for a better theory established, Chapter 3 examines the origins of heterogeneity in

terms of agent decision-making. It derives statistical mechanics for agents’ resource growth

and inequality in noisy environments, grounded in Shannon information, further advancing

the biophysical and portfolio theory literature. The chapter concludes by exploring the roles

of environments and adaptability in promoting and mitigating inequality. To illustrate the

insights introduced by an information-theoretic approach, the remaining two chapters build

on these dynamics to derive interactions in cooperative and competitive contexts. Chapter

4 derives the benefits of skill complementarity across coordinating agents to growth in terms

of information synergy. This result shows how information theory explains the promotion

of cooperation in heterogeneous populations, introducing a novel cooperation mechanism

to the literature. Chapter 5 then provides a primer for studying competitive dynamics. It

derives the convergence properties of preferences of agents adapting to each other’s behavior

through Bayesian inference based on observations of past behaviors. Chapter 6 concludes

this dissertation by summarizing its contributions. It then proposes three areas of inquiry

for future research that will enhance our ability to study adaptive dynamics: adaptation in

environments with more decision-making options and varied payoffs, multimodal coopera-

4



tion across different group sizes, and competition dynamics in larger groups with various

environmental interactions.
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CHAPTER 2

DYNAMICS OF GROWTH AND INEQUALITY IN ADAPTIVE

POPULATIONS

2.1 Introduction

Exponential growth and broad inequality are general features of adaptive population dy-

namics in biology and society [213]. In biology, the maintenance of diverse populations is

associated with greater biodiversity and with larger pools of variability enabling faster pro-

cesses of evolution by natural selection [88]. In human societies, rates of long-term (economic)

growth are much higher than in most ecosystems, often generating widening inequalities and

leading to familiar stresses of social justice and equity [62, 197] 1.

Researchers are particularly interested in the dynamics of economic inequality [213], ap-

plying multidisciplinary approaches that include historical data analyses [135] and searches

for social, political, and economic mechanisms that generate, distribute, and rebalance wealth

within populations [71, 197]. Research in economics has emphasized the importance of het-

erogeneity in populations [62] as a source of widening wealth inequality. These heterogeneities

are associated with a number of different population features such as the divergence of in-

comes between capital and labor [197], between management and workers within firms [7, 9],

and between people with different educational attainment [102]. These primarily empirical

approaches point to the fundamental importance of diverging income growth for different

subpopulations and to the need for rebalancing mechanisms if inequality is to remain con-

trolled. However, we still do not have statistical theories of wealth dynamics applicable in

general circumstances. As we will see by the end of this chapter, we lack a clear picture of

how hetergeneous growth emerges from behavior or experiences, and therefore lack insight

1. This chapter is adapted from Kemp, J. T., & Bettencourt, L. M. (2022). Statistical dynamics of
wealth inequality in stochastic models of growth. Physica A: Statistical Mechanics and its Applications, 607,
128180.
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on how to concurrently manage growth and inequality.

To this end, the application of nonequilibrium statistical physics models to the study of

wealth dynamics has produced a number of results on the role of stochasticity as a source

of inequality. These models have explored inter-agent exchanges (particularly in the mean-

field limit), and redistribution mechanisms in the context of stochastic geometric growth

models [38, 47, 67, 97, 120, 170, 188, 225]. The main focus of this work has been the design

of wealth redistribution schemes towards creating long-time stationary limits [21, 39, 159]

with parametrically controlled levels of inequality and whether such stationary solutions

exist [22, 195].

While these models have been used to fit data on wealth distributions [22, 68, 159, 209],

their specialized approaches have left open questions on the fundamental statistical dynamics

underpinning the generation and allocation of wealth. For example, evidence suggests models

following strict application of Gibrat’s law (individual growth rates independent of wealth)

cannot characterize the rapid emergence of inequality experienced in recent years [95, 97],

motivating explicit analysis of open-ended dynamical effects due to various sources of fluc-

tuations and correlations. These developments support multiplicative stochastic growth as

a starting point for modeling [23], but call for the consideration of statistical effects due to

fluctuations and correlations in model parameters, especially growth rates.

To address these issues, this chapter derives the time evolution of the distribution of

resources, a proxy for wealth, in a statistical population of heterogeneous agents experiencing

geometric random growth. It focuses on the dynamic effects of growth rate fluctuations

and their correlations with resources across agents and over time. I show that these two

effects lead to two different dynamical time scales, which require different control measures

so that inequality does not explode in a population over time. Specifically, I show that

natural schemes to reduce inequality are subject to reversal over longer time scales because

of the variability of growth rates in the population. I end this chapter by discussing the

7



mechanisms that may simultaneously lead to sustained exponential growth and control of

long-term sources of inequality and propose redistributing growth opportunities through

agent-based adaptative decision making in stochastic environments, which will be detailed

in Chapter 3.

2.2 Geometric Brownian Motion in Correlated Populations

The fundamental model for the dynamics of resources in populations relies on stochastic

exponential growth [23, 95]. In its simplest form, known as geometric Brownian motion,

agents generate wealth by (re)investing incomes net of costs. Crucially these models, unlike

additive stochastic growth, generate population lognormal and power-law statistics, which

characterize observed wealth and income statistics [53, 210]

Specifically, the dynamics of stochastic multiplicative growth start by tracking the re-

sources (wealth), r(t), of a specific agent at time t. This quantity changes in time via the

difference between an income, y(t), and costs c(t). The difference, y−c (net income), is then

defined to be proportional to resources, expressed as a (potentially r dependent) stochastic

growth rate, η(t) = (y(t) − c(t))/r(t), for r > 0. It follows that the time evolution of re-

sources obeys a simple Gaussian multiplicative stochastic process: dr
dt = η(t)r, where η(t) is a

stochastic growth rate with temporal mean η̄, and temporal variance σ2, where the standard

deviation, σ, is known as the volatility. When these two time averages are independent of r

and t, this stochastic equation can be integrated via Itō calculus [23] to give

ln
r(t)

r(0)
=

(
η̄ − σ2

2

)
t+ σW (t), (2.1)

where γ ≡ η̄ − σ2/2 is the effective growth rate and r0 the agent’s resources at t = 0,

r0 = r(0). The decrease in the mean growth rate η̄ due to finite volatility is an important

feature of multiplicative growth. The quantity σW (t) is a Wiener process with magnitude

8



proportional to the volatility and units of t−1/2.

2.2.1 Average Growth Rate in Correlated Populations

Under these circumstances, single-agent dynamics produce the population dynamics of a

noninteracting community of agents with uniform growth rates and volatilities. That is, for

homogeneous wealth value r and growth rate η̄, the sample average growth over a finite

population of size N is given by ⟨η̄r⟩N ≡ 1
N

∑
i η̄iri = η̄r. This basic case is unrealistic as

wealth and income vary across real populations. To deal with this more general situation,

I introduce heterogeneity to the population by sampling agents from distributions of η̄,

⟨η̄⟩N = G, and r, ⟨r0⟩N = µ0. When the parameters are uncorrelated and sampled from

independent distributions, the population average growth is the growth averaged over the

population, ⟨η̄r⟩N = Gµ0. However, when initial wealth r and growth rates η̄ are correlated

as historical wealth distribution analysis would suggest [135], growth of the average separates

into the population mean term and a covariance term given by (A.1)

⟨η̄r⟩N = Gµ0 + covN (η̄i, ri) (2.2)

for parameter covariance covN .

The growth term of the correlated expectation value, G′ ≡ G + covN
(
η̄i,

ri
µ0

)
is called

the population averaged resource growth rate. This quantity can be calculated analytically

for Gaussian distributed growth rates and log resources, ln r0, with population variances

⟨(η̄ − G)2⟩N = σ2η̄ and ⟨(ln r0 − lnµ0)
2⟩N = σ2r . The result involves the variances of both

quantities as well as the Pearson correlation coefficient between them, as (A.1)

covN

(
η̄i,

ri
µ0

)
= ρση̄σr exp

[
σ2r/2

]
. (2.3)

The transformation to lognormal distributed resources is performed for convenience in later

9
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Figure 2.1: Monte Carlo simulations of growth dynamics with correlated growth rates and
initial resources. Left: Aggregate resource trajectories of populations with ρ ranging from
−1 (blue) to 1 (red). Inset : The population-averaged effective growth rate (blue) scales
linearly in ρ, following Eq. 2.4. The temporal averaged growth rate (gray) scales similarly.
Right: Distributions of log wealth at different time steps for a regressive, ρ = .75 (bottom),
and progressive, ρ = −.75 (top) population. Black curves represent normal distribution
fits. The regressive assignments broaden more quickly, indicating that the populations are
becoming more rapidly unequal. Inset: Variance in log resources of the progressive (blue)
and regressive (red) populations over many time steps. Data are simulated from populations
of 105 agents with Gaussian distributed initial resources of mean lnµ0 = 2, mean growth
rate η̄ = .04, and standard deviations ση̄ = .015, σr = .682.

calculations, and introduces the exponential term to the resources in the covariance (if in-

stead resources were normally distributed, the exponential term becomes unity). Thus, the

population average effective resource growth rate, Γ′, is expressed in terms of the model

parameters as

Γ′ = G− σ2

2
+ ρση̄σr exp

[
σ2r/2

]
, (2.4)

where Γ is reserved for the mean effective growth rate Γ ≡ G− σ2/2.

This expression shows that a positive covariance between initial log resources and growth
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rates results in a higher population averaged effective growth rate and vice versa. Naturally,

associating higher-growth opportunities with wealthier individuals will exacerbate inequali-

ties in the population over time, whereas the opposite would reduce inequality, at least over

short time scales. As such, I denote population dynamics with positive correlation as regres-

sive, and with negative correlation as progressive. I visualize the tradeoff between short-term

change in inequality and growth through numerical simulations in Fig. 2.1.

Conditions for Progressive Population Dynamics

We see that these simple considerations present an apparent paradox for any attempt to

simultaneously maximize total wealth, a measure of average social welfare, and reduce in-

equality. Decreasing ρ, thereby making the societal dynamics more progressive results in a

social opportunity cost in terms of a decline in average growth. This effect may even lead

to negative exponential growth, and thus to a decline in societies starting out with low av-

erage growth and high volatility. One way out of this dilemma is for a progressive policy

assignment to create, in ways to be specified, higher average growth rates than the regressive

case.

To analyze this possibility, Eq. 2.4 introduces the threshold correlation below which the

average effective resource growth rate becomes negative. Computed under the condition

Γ′ = 0, this critical correlation value (denoted with subscript c) is

ρc =
σ2

2 −G

σrση̄ exp
[
σ2r/2

] . (2.5)

We see that the threshold value increases with volatility, decreases with average resource

growth rate, and decreases in magnitude with variance in either growth rate or resource

variance. Progressive assignments are manifestly less feasible in more volatile and hetero-

geneous societies. Similarly, the critical volatility marking the crossover from positive to

negative average growth, denoted σc, can be determined by rearranging Eqn. 2.5 for σ. This
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relationship is plotted in Fig. 2.2, and gives a theoretical benchmark volatility for sustainable

growth in a population for a set of distribution and growth parameters. Critical volatility

decreases as a society becomes more progressive.

We can directly compare progressive and regressive assignments by computing the ratio

of growth rates between a population with population effective growth rate Γ′, and its

progressive counterpart, Γ′p with distribution parameters with superscript p. Set Γ′ = Γ′p

and rearrange for the ratio of mean growth rates between the population Gp/G. In the

simplest case, where I assume identical initial population conditions up to the variance in

growth rates with opposite correlation coefficients, ρp = −ρ > 0, the volatilities cancel out

and the ratio is given by

Gp

G
= 1 +

1

G
ρσr(ση̄ + σ

p
η̄) exp

[
σ2r/2

]
. (2.6)

Thus, a progressive arrangement must have a larger average growth rate in order to achieve a

population effective growth rate equal to its regressive counterpart. This difference is greater

in populations with stronger initial inequality, σr, and means that a higher progressive growth

rate, Gp, is required to overcome larger growth rate variances, ση̄+σ
p
η̄ . Fig. 2.2 demonstrates

this equation’s agreement with population Monte-Carlo simulations in which r0 is normally

distributed.

2.2.2 Fokker Planck Solution

So far, I have shown that the instantaneous population average growth rate collects a cor-

rection from covariances between resources and growth rates. This introduces a trade-off

between managing inequality in the short run and maximizing overall growth which can

only be resolved, at each time interval, if progressive assignments also result in higher aver-
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Figure 2.2: Parameter spaces for progressive/regressive growth rate ratios across variances
(top) and growth rate regimes across correlation and volatility values (bottom) Upper Left:
Contour plot of Gp/G for correlations and growth rate variances with condition ση̄ = σ

p
η̄ .

Upper Right: A Monte-Carlo simulation comparing the correlated average resource growth
rates of populations with identical parameters up to a change in sign of ρ agrees with theory.
To stay competitive, the progressive society requires a larger growth rate as either parameter
increases. Lower: The effective growth rate for µ0 = .04, σr = 1, ση̄ = .025 transitions from
positive to negative along the correlation axis at high volatility (σ ≈ .275).

age growth rates.

But what happens over the longer term, as growth rate fluctuations persist? To an-

swer this question, consider the solution to the Fokker-Planck equation (FPE) for the time-

dependent probability of resources for each agent. The FPE for the wealth distribution

P (r, t) for geometric Brownian motion is given by

∂P

∂t
= − ∂

∂r

[
γrP (r, t)

]
+

∂2

∂r2

[
σ2

2
r2P (r, t)

]
. (2.7)
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Dynamics of a Homogeneous Population

The solution with initial conditions r(0) = r0 (a delta function at the individual level) is a

lognormal distribution [230] with time-dependent mean and variance. This can be re-written

as a Gaussian distribution of ln r as

P (ln r, t|γ, ln r0) =
d ln r√
2πσ2t

exp

[
− (ln r − ln r0 − γt)2

2σ2t

]
, (2.8)

where at early times, the expected resources are given by the linear equation ln r̄(t) = ln r0+

γt, which asymptotically approach γt. The variance of log resources increases linearly in time,

σ2t, which shows that individual wealth also becomes more uncertain, and population wealth

becomes more unequal as a function of time. The critical volatility at which growth ceases

is, as before, given by σc =
√
2η̄ . Consider Eqn. 2.8 to be the homogeneous population

solution.

Changing variables and working explicitly with time-averaged growth rates yields further

insight into the dynamics. Dividing each factor of the exponential by t, and performing the

variable transformation 1
t ln

r
r0

→ ϕ, tdϕ = d ln r yields the distribution of growth rates

P (ϕ, t|γ, σ) = dϕ√
2πσ2/t

exp

[
− (ϕ− γ)2

2σ2/t

]
. (2.9)

This shows explicitly that the statistics of the time-averaged growth rates are simpler than

those of resources. The average growth rate becomes stationary at long times as the mean

remains constant, while growth rate fluctuations over the population decrease in time as t−1,

converging in distribution to a delta function on a time scale t >> σ2.
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Heterogeneous Resource Dynamics

This suggests a simple picture emerging at the population level; however, covarying the

growth rates among agents in the population will introduce some complications. The most

direct route to assess these effects follows by positing Gaussian distributions on growth

rates, from the asymptotic behavior of growth rate distributions [23, 235, 249], and initial

log resources across the population, from the solution to the FPE.

To obtain the dynamical solution for the distribution of resources in the population, I

convolve Eq. 2.8 with a bivariate static Gaussian as described in 2.2.1. If the volatilities

are held constant such that the marginal P (γ)dγ = P (η̄ − σ2/2)dη̄, we can perform the

convolution over effective growth rates via the equation

P (ln r, t) =

∫
P (ln r, t|γ, ln r0)P (ln r0, γ)d ln r0dγ. (2.10)

The calculation is a straightforward Gaussian. The growth rate terms of the bivariate Gaus-

sian distribution equation can be factored out of the resource integral by completing the

square. The resource and growth rate integrals are then successively evaluated using Gaus-

sian integration, leading to

P (ln r, t) =
d ln r√
2πΣ2

exp

[
− (ln r − lnµ0 − Γt)2

2Σ2

]
, (2.11)

where Σ2 = σ2r + (σ2 + 2σrση̄ρ)t+ σ2η̄t
2. The covariance matrix is thus deduced as

KΣ =


σ2r 0 σrση̄ρt

0 σ2t 0

ση̄σrρt 0 σ2η̄t
2

 . (2.12)

Consider Eq. 2.11 the heterogeneous population solution. The quadratic expression in

time for variance is characterized by two different timescales, tc1 = σ2r/(σ
2 + 2ρσrση̄) and
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tc2 = (σ2+2ρσrση̄)/σ
2
η̄. The natural timescale in this analysis is years [197], such that early

times are on the order of a few years, intermediate over a few decades, and long timescales

are several decades to centuries. Effects over long timescales can thus be thought of as

generational, although I do not incorporate life cycle dynamics in this analysis. Annual

growth rates are typically on the order of a few percent a year (γ ≃ 10−2/yr), whereas log

resources vary in the population on a typical scale of δ ln r ≃ 101, so the magnitude of ση̄ is

naturally an order of magnitude smaller than σr. This results in tc1 < tc2, producing three

distinct dynamical regimes for the population variance and hence inequality dynamics. For

early times t < tc1, the variance of resources in the population is given approximately by

its initial condition Σ2 ≃ σ2r . For intermediate times tc1 < t < tc2, Σ2 ≃ (σ2 + 2ρσrση̄)t.

The intermediate regime introduces the explicit decrease in inequality from a progressive

assignment, so long as σ2 < 2ρσrση̄. However, this benefit is short-lived, as for later times

t > tc2, Σ2 ≃ σ2η̄t
2, and variance invariably explodes due to fluctuations in growth rates.

Note that the long-time regime does not require biases between resources and growth rates;

it persists under the weaker conditions of a finite variance in growth rates and appears at

earlier times for larger growth rate variances.

Finally, we observe that the asymptotic population averaged resource growth rate distri-

bution simplifies to a Gaussian

lim
t→∞

P (ϕ, t) =
dϕ√
2πσ2η̄

exp

[
− (ϕ− Γ)2

2σ2η̄

]
, (2.13)

in contrast to the case of a homogeneous population, reflecting the Gaussian distribution of

growth rates in the population. Over the long term, population dynamics are thus domi-

nated by fluctuations in growth rates, leading to wider inequality the larger the growth rate

variance.

This effect introduces a general mechanism that can account for increases in inequality
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that occur over intermediate and long timescales [95], and incorporates findings that em-

pirical growth rates are heterogeneous and correlate with wealth over time [77, 110, 125]. It

also asks that we shift focus from the dynamics of wealth itself to the variations of growth

rates as the drivers of long-term inequality.

2.3 Measuring the Dynamics of Inequality

This section analyzes the detailed dynamics of inequality using two standard metrics. First,

the Gini coefficient, Gini, is the most common metric measuring inequality within a popu-

lation. It ranges from Gini = 0 for equally distributed resources, and trends towards 1 as

a society becomes maximally unequal. For lognormally distributed resources in the infinite

population limit, Gini = Erf
[
Σ/2

]
. Second, I examine the social cost of high growth on

inequality, a topic of interest and debate in the social sciences [56, 164]. Using the coef-

ficient of variation (CV), denoted cv, I compare how quickly the standard deviation of a

distribution of form 2.11 increases relative to its mean [19]. The dynamics are given by

cv = Σ/(lnµ0 + Γt), and should be governed over long times by the linear time ordering of

both the mean and standard deviation terms. A more equitable economy would decrease cv;

growing without increasing inequality. In the egalitarian limit, cv = 0 as every agent has the

same resources, and variance is zero. Conversely, an exploding cv in the positive or negative

direction indicates increasing inequality, marked by positive or negative aggregate growth

respectively. From Eq. 2.8, without dynamical redistribution measures, societies will invari-

ably become maximally unequal as multiplicative dynamics are dominated by fluctuations

in earnings [213].

I develop the dynamics of homogeneous and heterogeneous populations by comparing

time-series trajectories of cv and Gini across several values of correlation coefficient and

volatility. Fig. 2.3 demonstrates the impact of heterogeneity on inequality (Gini), and its

relative effects on growth (CV). In homogeneous populations, volatility spurs inequality from
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uniform initial conditions causing cv to initially increase, peak, then decrease as resources

increase in t1/2 faster than the population standard deviation. The quantity Gini asymp-

totically approaches 1 in all parameter cases. Heterogeneity causes cv to increase across

all cases with asymptotically constant behavior as the time leading terms of the numerator

and denominator of cv cancel. Heterogeneity causes Gini to generally increase more rapidly.

The differences in progressive and regressive Gini are negligible after intermediate times,

suggesting that the initial configuration has little effect on its long-term macroscopic dy-

namics. Volatility strongly determines the value of cv for homogeneous and heterogeneous

populations, while only significantly affecting the behavior of Gini in the homogeneous case.

The dynamics of Gini are thus straightforward, but the dependence of cv on both growth

rates and dynamical variance produces interesting dynamics. To probe the dynamics of cv, I

produce quasi-phase diagrams displaying ∂tcv for a continuous spectrum of volatilities over

time. Fig. 2.4 demonstrates these dynamical regimes for the homogeneous and heterogeneous

progressive and regressive cases. It shows the magnitude of the initial increase in cv scales

with σ, as does the magnitude of the eventual decrease. The eventual decrease is weaker in

regressive populations, occurring only at medium volatility values, and is nonexistent for any

volatility value of the progressive population. Furthermore, they reveal a divergent regime

past the critical volatility, where resources decrease while inequality continues to increase.

2.4 Discussion

These results show that growth rate fluctuations pose a general challenge to any proposed

mechanism to address widening inequality that must be addressed independently of volatility

in single-agent trajectories. Specifically, dynamically balancing growth rates is required

to control long-term inequality dynamics. Methods seeking to both reduce growth rate

fluctuations and preserve growth require a theory for the origins of wealth growth rate
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Figure 2.3: Trajectories of inequality metrics in various parameter regimes; σ = .15, σr =
.341, lnµ0 = 1, G = .06, ση̄ = .025. See legend for line type mapping. Left: Plots for low
volatility populations with different correlation coefficient values. For ρ > 0, cv jumps higher
than in an uncorrelated society, while cv temporarily decreases than increases for ρ < 0. All
heterogeneous trajectories approach similar constant values, while the homogeneous popula-
tion initially increases, then decreases over long times. At early times, Gini increases more
quickly for ρ > 0. In all cases, variances in growth rates drive Gini to 1 more rapidly than
in homogeneous populations. Right: Regressive populations (ρ = .75) at different values of
volatility. A higher volatility causes a more rapid increase in Gini in both population configu-
rations, and volatility positively influences the peak and asymptotic values of cv. Progressive
assignments hurt long-term growth while marginally affecting long-term inequality dynam-
ics, while heterogeneities play a dominant role in accelerating the emergence of inequality.
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Figure 2.4: Contour plots for ∂tcv in identical populations to Fig. 2.3, with η̄ = .035. At
low volatilities, homogeneous cv initially increases, then decreases with magnitude increasing
in σ. For ρ > 0, this behavior persists following initial times of high increase in cv. The
initial decrease observed for ρ < 0 only occurs at low volatility, and cv does not decrease
in later times, as demonstrated in Fig. 2.3. Past the homogeneous critical volatility, given
by σc ≈ .265, cv blows up as the negative growth rate drives average log resources through
zero to a negative value, and is seen by the bright yellow bands. In this regime of instability,
resources continue to decrease as inequality grows.
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statistics. Extending the stochastic growth models commonly used to include environmental

opportunities and agent-based learning, in ways analogous to gambling [136] and portfolio

theory [123], naturally produces situations where individual growth rates become distinct

and history-dependent but also where average growth rates can be maximized and variances

minimized over time [23, 60, 136]. In this sense, growth rate redistribution takes the form

of investment in learning across the population, through for example education, which over

time reduces disparities in growth rates. In such a dynamical picture, initial correlations

will also take on dynamic properties in ways stated here. In recognizing recent research on

the effects of heterogeneous and dynamical growth on distributions of wealth [1, 42, 124,

179, 230], we seek a theoretical framework for wealth dynamics that both complements these

phenomenological approaches and incorporates strategic agent behavior and adaptation to

changing circumstances in statistical environments. I will derive and explore this model in

Chapter 3, and will discuss its implications for heterogeneity-induced inequality explored in

this chapter.

In summary, I explored the effects of fluctuations in wealth growth rates and wealth

statistics in the temporal development of inequality in a population of heterogeneous agents.

I set up the general problem in the context of multiplicative random growth and derived

closed-form expressions for how the population inequality changes over time, thus identifying

the most important parameters at early and later times. I found that population variances

in growth rates, their correlations with resources, and individual temporal volatility are

the primary drivers of inequality in general situations. The sustained presence of variance

in growth rates in a population produces a dominant effect on long-term inequality. While

redistribution methods, such as those explored by mean-field or other more complex network

exchange models [21, 39, 97] reduce the dynamical impacts of volatility, I have shown that

directly addressing growth rate variance in a population is a more fundamental and general

requirement for arresting or reversing increases in wealth inequality.

21



CHAPTER 3

ADAPTIVE GROWTH IN STOCHASTIC ENVIRONMENTS

As discussed in Chapter 2, there remain general questions about how societies can promote

long-term growth while controlling or mitigating inequality. Compared to other configura-

tions, assigning high growth rates to agents with a lot of resources increases average growth

while driving up inequality on intermediate timescales. In general, heterogeneity in growth

rates increases inequality on a higher order in time than volatility alone. Wealth redistribu-

tion addresses the state of resource inequality by reallocating resources [197]. However, an

analogous mechanism is needed to reduce inequality in growth rates, and therefore inequality

in the average dynamics. To derive such a mechanism, we first need a theory for the origin

of growth rates in statistical environments.

Growth and inequality can be more holistically understood in terms of the agent’s behav-

ior relative to an environment. This chapter reframes the study of these emergent properties

in terms of an adaptive process derived from theory for optimal agent behavior1.

3.1 Introduction

In much of the growth literature, agents representing individuals or households (often with

life cycles), grow or lose wealth through a multiplicative (geometric) stochastic process. This

modeling choice is well supported empirically and introduces a number of key parameters as

an agent’s resources (or wealth), r, evolve exponentially with mean growth rate (over time),

γ, fluctuate with standard deviation (volatility), σ [23, 39, 188] and vary across individuals of

a population with standard deviation σγ [95, 140]. These parameters describe the statistical

dynamics of wealth in heterogeneous populations and the emergence of inequality across

various timescales.

1. This chapter is adapted from Kemp, J. T., & Bettencourt, L. M. (2023). Learning increases growth
and reduces inequality in shared noisy environments. PNAS nexus, 2(4), pgad093.
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Recent developments in cognitive and ecological sciences can provide some valuable in-

sights into the stochastic dynamics of agent behavior [240]. Researchers using noisy decision-

making models to explore child and adolescent development have recently rethought the

process of human learning in terms of acquiring information through (active and passive)

interactions with a knowable, but stochastic external environment [52, 122, 247]. Similarly,

ecologists have formulated natural selection, the process through which a genotype opti-

mally leverages its environment’s structure to maximize population growth (fitness), as a

(Bayesian) optimization process [27, 43, 84, 89, 152]. As mentioned in Chapter 1, biophysi-

cists have come to similar conclusions [152, 204] These approaches describe (individual or

collective) agent optimal choices as the result of information they obtain in a noisy, but

knowable environment, with information dynamics that are fundamentally Bayesian. This

connection between optimal intertemporal decisions, information, and fitness (growth) was

previously explored as a mathematical formalism to optimize betting and portfolio invest-

ment returns [60, 137]. However, its applications to human behavior and population dynam-

ics suggest it serves a suitable basis for the general statistical mechanics of wealth growth

and inequality [27].

In this chapter I unify these approaches to develop a statistical dynamics of growth and

inequality in a population of strategic, adaptive agents, where the growth rates result from

investing and learning in a stochastic environment.

In this approach, heterogeneous agents invest in sequential, stochastic environmental

events based on signals they perceive as they go, and grow their wealth based on the quality

of their predicted allocations. By exploring this mechanism of (optimal) information-driven

growth in the context of population dynamics we obtain a better understanding of how

wealth growth and disparities originate from differences in agent knowledge and adaptive

behavior. More broadly, this work adds a new dimension to the study of wealth dynamics 2

2. and as I will explore later, interactive dynamics
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that more fundamentally links inequalities between wealth, growth, and agents’ subjective

characteristics, such as their present knowledge, their singular life-course experience, and the

quality of their knowable environment, e.g. in terms its opportunities expressed as statistical

rates of return on investments.

Our approach treats both resources and information as dynamically coupled quantities.

To model information dynamics, I show that learning in the joint space of environmental

states and agents’ signals is developed optimally in terms of Bayesian inference, translating

a maximization of the predictability of environmental states into that of resource allocations

and growth.

I finish this chapter by exploring the general consequences of learning a shared environ-

ment on the statistics of information and resources, and discuss the consequences for the

role of general education and training on population dynamics and its potential to reverse

long-term wealth inequality [140].

3.2 Theory and Modelling of Information-Based Growth

I start by deriving a general theory of growth rates in terms of informational quantities.

Here, information means an agent’s predictive knowledge of event probabilities in a noisy

environment. Agents seek to maximize the growth of their resources over time by investing

in a set of possible events in their environment using their individual knowledge. Agent’s

knowledge is subjective, as it is formed by the agent’s own experience, model of the world

and expectations (“beliefs"), which are assumed here not to be shared or compared with

other agents. The agent’s beliefs are adjusted by observing environmental outcomes in time

through an iterative process of (Bayesian) learning. After developing the general framework,

I illustrate these dynamics using a multinomial model of discrete environmental states and

choice, for which I derive closed-form expressions for the average resource growth rate and

volatility in terms of information-theoretic quantities. I will then identify the general cir-
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Figure 3.1: General dynamics of adaptive growth: Agents obtain resources from their
environment based on the quality of their information. A. At each time step, a. the agent’s
private channel (memory, senses) outputs a signal s ∈ S with probability P (s). b. The agent
observes the state s, c. and consults their belief for the conditional outcome probability of
the environment, X(E|s). d. The agent makes proportional resource allocations on all
possible outcomes B(E|s). f,e. The true event e ∈ E is revealed from the environment
with probability P (e), and g. the agent receives a payout proportional to the marginal
probability of e. B. In a population simulation, N agents independently sample private
signals and invest in events sampled from the same environment.

cumstance when this learning process dynamically attenuates inequality in resource growth

rates across populations.

3.2.1 Growth from Information

Consider a population of i = 1, ..., N agents, each with initial resources ri that can be

(re)invested into the set of outcomes of their environment to generate returns. The agents

have access to a private signal s ∈ S, which they use as a predictor to invest resources in

events e ∈ E generated by their environment. The set of signals and events are described by

the joint probability distribution, P (E, S) with marginals P (E) and P (S).

At every time step, each agent observes its own signal s, and allocates resources r on

events following a vector B(E|s), such that
∑

eB(e|s) = 1, e ∈ E. As the event e is revealed,

the agent is awarded returns, we for the fraction of resources invested in the correct outcome,

B(e|s)ri. After n steps, the agent’s total resources (wealth) are
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rn = ri

n∏
j=1

B(ej |sj)wej = ri
∏
s,e

[
B(e|s)we

]Ws,e , (3.1)

where Ws,e is the number of occurrences ("wins") of s, e. By the law of large numbers,
Ws,e
n → P (s, e) as n → ∞. It follows that the average growth rate of resources over large n

steps is

γi ≡
1

n
log

rn
ri

≈
∑
e,s

P (s, e) log[B(e|s)we]. (3.2)

Kelly showed that the maximal growth rate as n → ∞, obtained by maximizing Eq. (3.2)

with relation to B(E|S), results in an allocation mirroring the conditional probability,

B(E|S) = P (E|S). This maximum growth rate is the mutual information, γmax = I(E, S)

when the odds are "fair", we = 1/P (e) [137].

Typical agents do not start out with perfect knowledge. In this case, agents must invest

resources using their best estimate for the conditional probability, X(E|S) ̸= P (E|S). Then,

their resource growth rate will be lower than the maximum. This can still be written in terms

of informational quantities as the Kelly growth rate (SM 1),

γ = I(E;S)− Es
(
DKL

[
P (E|s)||X(E|s)

])
. (3.3)

where Es is an expectation value over the states of the signal, and DKL
[
P (E|s)||X(E|s)

]
=∑

e P (e|s) log P (e|s)
X(e|s) ≥ 0 is the Kullback-Leibler divergence, expressing how similar the two

distributions in its inputs are. This general result shows that agents with better information

will experience greater resource growth rates, as long as they invest optimally [5]. These

compounding dynamics are illustrated in Fig. 3.1. we also see that this setup allows us

to consider agents with different knowledge, corresponding to skill heterogeneity within a

population. I will discuss other general issues of innovation and structural position as I

introduce learning in populations below.

26



Note that in reality, people may be in debt, typically leading to a negative component of

their growth rate due to interest payments. I do not consider this situation here, except to

point out that if such a component is constant it does not affect my analysis. If, however,

the loan rate can be reduced via better information, it will add another dimension to the

optimization of the overall growth rate.

I will now illustrate these general results using a specific, stationary multinomial model.

While the theory is developed for general environmental dynamics, its limitation to a sta-

tionary environment will allow us to derive quantities of mean growth rate and volatility,

familiar to GBM, in closed-form and establish the parallels to most wealth-growth mod-

els. This model will allow us to then illustrate and simulate the population dynamics of

growth and inequality among agents with heterogeneous information. Later, I will also show

how agents can improve their information optimally over time through a process of iterative

Bayesian learning.

3.2.2 Multinomial Choice Model

Consider the space of signals S and environmental states E of equal size l, with outcomes

s, e ∈ 1, ..., l and degenerate, multinomial conditional probability

P (e|s) = f(p, l) =


p if s = e

1−p
l−1 if s ̸= e,

(3.4)

where 0 < p < 1 is the binomial probability of guessing the correct environmental outcome.

For simplicity, I assumed that the probability of a correct guess is independent of l. The

distribution has uniform marginals, P (e) = 1/l and P (s) = 1/l, for all signals and events,

such that P (s|e) = P (e|s) via Bayes’ rule.

With these choices, we can derive expressions for the relevant informational quantities in

closed-form. The mutual information between an agent’s signals and environmental outcomes
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is then I(E;S) = log l + p log p + (1 − p) log 1−p
l−1 (APP A.14). As the simplest illustration,

for a binary choice, l = 2, the first term gives 1 bit of entropy of the environment and the

remaining terms give the conditional entropy, expressing how well an agent could know the

environment given their signal. In the limit p → 1, the signal gives agents perfect knowledge

of P (E).

So far I considered that the agent has perfect knowledge of the joint distribution of the

signals and the environment. When this is not the case, we can write a parametric expression

of the agent’s ignorance in terms of an estimated binomial probability x ̸= p. The agent’s

likelihood model of the conditional probability is then X(e|s) = f(x, l). The divergence

term of Eq. 3.3 becomes the divergence between f(p, l) and f(x, l) averaged over all signals,

Es
[
DKL

]
= p log p

x+(1−p) log 1−p
1−x . Subtracting the mutual information by this term yields

the agent’s actual growth rate under imperfect information as (SI A.2.1)

γ = log l + p log x+ (1− p) log
1− x

l − 1
. (3.5)

This expression is plotted in Fig. 3.2A as a function of x for various l values and fixed p. We

see that increasing the size of the event space, l, reduces the probability of any individual

outcome, increasing the payouts and the Kelly growth rate. The maximal growth rate is

obtained when Ee[DKL] → 0, when x → p. Conversely, γ → 0 when p → 1/l, indicating

the signal and the environment have become statistically independent.

Treating γ as the expected resource growth rate, the volatility is calculated as the second

moment of the growth process. The volatility squared (variance) is given as (APP A.2.1)

σ2 = p(1− p) log2
x(l − 1)

1− x
. (3.6)

This expression is shown in Fig. 3.2C. The volatility vanishes in the limit x → 1/l, corre-

28



l=2 l=5 l=8

A

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

�

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

�

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

�

B

C D
0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

x

�

xmax=p

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.5

0.0

0.5

1.0

x

�

xmax=p

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.5

0.0

0.5

1.0

x

�

xmax=p

Figure 3.2: Growth dynamics curves and MC simulations of growth process without learn-
ing. The growth rate and volatility are computed analytically for a discrete multinomial
environment, reproducing the limit of GBM dynamics. A. For p = .7, the growth rate max-
imizes at x = .7, decreases as x diverges from p, and scales with l. The parameter l = 2
provides a realistic range of average growth rates. B. Monte Carlo simulations with N = 388
homogeneous agents, all with γ(x) = .03 and r0 = 1. The expected mean (red) predicted by
γ = .03 and population mean (orange) overlap in value. The blue lines represent the 95%
confidence interval. Inset : The resource histogram is fit to a log-normal distribution of the
same growth and volatility parameters. C. Volatility is minimized at x = l/2 and increases
monotonically in either direction. Volatility increases more rapidly at higher values of l. D.
Over time, ∆γ → 0 as agents’ growth rates approach the Kelly growth rate. The average
agent converges to within 15% the expected mean at t ≈ 80.

29



sponding to when agents invest indiscriminately with equal probability in all possible event

types. A larger l increases the magnitude of the growth rate, but also the volatility. The

volatility is highest when p → 1/2 and the environment is most uncertain. In any case, the

agents feel surest of the outcomes when x → 0, or x → 1.

Kelly’s formulation describes the average growth rate of resources over a large number

of discrete investments [137]. To derive a growth process in time, I average over ω bets per

unit time, such that ∆t = 1/ω is the interval of time between investment periods. Returns at

time t+∆t are then the mean of all investment returns earned in the time interval [t, t+∆t].

In the limit ω → ∞, as the agent makes continuous allocations, rn → r(t) and γ describe

the average growth rate. Consider t ≈ 10−2yr (i.e. 1% a year) so that the simulated results

are comparable to previous work based on yearly growth rates of the order of a few percent.

Volatility is reduced σt = σn/
√
ω as fluctuations are averaged out in each time step (SM

10).

Fig. 3.2C demonstrates the two investment regimes for each value of γ, where the growth

rate maps to either high or low volatility depending on the value of x. Investments with

x > p, which are described as aggressive, overestimate the dependence between the signal and

environment. Under this condition, agents invest relatively more on diagonal outcomes and

experience large gains or losses resulting in higher volatility. With x < p, which is denoted

conservative, agents underestimate p and distribute their wealth more equally across all

outcomes, resulting in less volatility. Agents can also experience γ = 0 at two values of x: In

the trivial limit, as x → 1/l, signals and agent investments become statistically independent.

The other trivial case can be solved for numerically when γ = 0.

With given x independent of time, the dynamics reduce to the well-known behavior of

geometric Brownian motion (GBM) with drift. Fig 3.2B shows the dynamics of a population

of agents with homogeneous (non-time dependent) parameters evolved using a Monte-Carlo

simulation. In this particular situation, mean population resources grow with ⟨r(t)⟩ =
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1
N

∑
i ri(t) = exp[γt], in agreement with [23].

I also demonstrate that the time-averaged growth rate of resources converges to the

Kelly growth rate over many allocations. Fig 3.2D shows the asymptotic convergence of the

normalized difference of averaged growth rate for individual agents ∆G = (γ − G)/γ → 0,

where G = 1
t ln

r(t)
r(0)

(black) and population-averaged growth rate, ⟨G⟩ = 1
N

∑
iGi (red).

I have thus far considered x as a static variable and explored the dynamics of resources

when x ̸= p in a stationary environment. To converge to maximal growth rates, however,

it is necessary that agents can estimate the correct event properties, given their signals, a

situation to which I now turn.

3.2.3 Dynamical Growth Rates from Bayesian Inference

Realistic agent trajectories are dynamical, reflecting investment allocations that are history-

dependent and result from the cumulative knowledge of each agent’s past experience [15, 23].

Agents must then improve their information about the environment by updating their model

of the conditional relationship of S|E with each observation. In the absence of other random

processes, this learning task is optimally achieved in terms of sequential Bayesian inference

[17, 61]:

Xn(e|s) = AP (sn|en)X(en) =

[
Πn
i=1

P (si|ei)
P (si)

]
X(e), (3.7)

where the normalization A =
( ∫

denP (sn|en)X(en)
)−1. I also take the prior probability,

X(e1) = X(e), because I am assuming that the environment is stationary or at least slowly

changing relative to agents’ learning rates.

Then, Bayesian inference converges X(E|S) → P (E|S), decreasing the information di-

vergence over long times. Through interactions with the environment, the agent optimally

gathers information [27] as well as resources as demonstrated in Fig. 3.3A. Specifically, by

minimizing the information divergence, learning agents maximize their resource growth over

the long term.
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This formalism allows us to start considering general aspects of innovation in hetero-

geneous populations, including issues of competitive advantage and structural positions in

terms of agents’ initial knowledge, models of the environment, and embedding within so-

cioeconomic networks. Regardless of any of these elaborations, any learning model aspiring

to optimal prediction must be Bayesian, as it is the single best way to incorporate observed

data towards making predictions of future states of the environment [175] and maximizing

long-term growth.

There is growing interest in incorporating learning agents in economics and other social

sciences towards formulating models of more realistic "rational expectations" in intertem-

poral optimization problems [76]. At present, however, most of these approaches adopt

simplified learning models, for example, based on least-squares minimization [76], which at

best apply in particular cases, such as for Gaussian likelihoods. Consequently, we see a wide

range of interesting opportunities in the social sciences for the adoption of more explicitly

Bayesian frameworks, as has become increasingly common in psychology [105].

In the following subsection, I describe a parametric Bayesian inference scheme applied to

the multinomial model via a Dirichlet prescription of conjugate priors [33], before I return

to the general case to discuss issues of inequality in the light of learning.

3.2.4 Bayesian Dynamical Growth in the Multinomial Model

To illustrate these learning dynamics, we now return to the multinomial model of choice. I

define the agent’s likelihood function of a sample of the signal, s|e, as a categorical distri-

bution with parameter vector β = {β1, ...,βl} ∈ Rl, with each vector corresponding to an

event and each component, βes corresponding to a signal, event pair. The probability mass

function is given by P (s|e) = ∏
s(β

e
s)

s, with normalization
∑

s β
e
s = 1. The conjugate prior

distribution of E is given by a Dirichlet with hyperprior vector α ∈ Rl, and distribution

P (e) = αe/A, where magnitude A =
∑l

e αe/l. This scheme is illustrated in Fig. 3.3B.
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Set αe = 1 for all e so that the prior is uniform, for simplicity. I ensure the off-diagonal

degenerate condition by setting βes = pe for s = e, and for off-diagonal events, e ̸= s,

βes = 1−pe
l−1 , satisfying Eqn A.12. The binomial parameter describing the environment is then

given by the average along the diagonal,

p =
1

l

l∑
s

βes , s = e. (3.8)

An agent with imperfect information will have estimates for the parameters, α̃ ̸= α and

β̃ ̸= β, and posterior, X(E|S, β̃, α̃) ̸= P (E|S, β,α). With each observation, the agent must

update X(E|S) via (APP A.2.2)

X(e|s) ∝
m

(−e)
(−s)

/ωk + β̃es

M (−s)/ωk + 1
(n(−e) + α̃e), (3.9)

where m(−e)
(−s)

and n(−e) are the total numbers of samples e, s and e excluding the current, and

M (−s) =
∑

em
(−e)
(−s)

is the number of samples of s excluding the current. I also introduce

an inference time, k, as a free parameter that weighs the evidence versus the prior, with

units time/update such that t/k is unit-less. In the limit k → ∞, the agent does not update

their prior with new evidence. In the opposite limit, k → 0, the agent ignores the prior and

considers only the most recent evidence, and this becomes a maximum likelihood model.

During the inference process, the agent will break the degeneracy of their posterior as

they infer each βes individually. This is inconsequential though, as x(t) can still be computed

similarly to Eq. 3.8 at any time. The degeneracy of P (E|S) permits us to reduce the dynamics

of X(E|S) to that of the diagonal probability x(t), such that (APP A.2.2).

x(t) =
pt/kl + x0
1 + t/kl

, (3.10)
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Figure 3.3: Schematic illustration of the learning process and the LDA algorithm. A. In
addition to earning resources, the agent obtains information with each investment in the
environment. B. Notation for the latent Dirichlet inference process. The agent is assigned
prior parameters α̃, β̃, corresponding to their belief for the distributions of E and S, which
are updated based on event counts M,n respectively.

where x0 is the agent’s initial binomial probability parameter. This equation illustrates the

core results of this approach, as the dynamics of the information of the agent’s posterior

determine the average dynamics of the growth rate via the functional, γ[x(t)]. Over many

observations, the agent optimizes their guess, driving X → P , minimizing their information

divergence as DKL(P ||X) → 0. The agent thus maximizes the average growth rate for their

signal over time with a power law −1 in terms of the dimensionless inference parameter

λ ≡ t/kl, at larger times λ >> 1. As previously mentioned, though, agents who have

maximized information are still subject to the volatility of sample fluctuations. For the

remainder of this chapter, I will study the effects of this learning process on the population

dynamics of growth rates and wealth.

3.3 Population Effects of Information Dynamics

Having defined the dynamics of information and resources for single agents, we now ex-

plore the general dynamics of growth rate statistics in a heterogeneous population and its

implications for long-term inequality. Mean growth rates can vary because of a number of
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different factors. Particularly, agents have different initial conditions of knowledge, they ex-

perience different environmental stochastic histories, and they may have different models of

the world in terms of their likelihood functions. I will now explore these sources of informa-

tion heterogeneity and show that with a shared statistical signal, a population can reverse

the (dominant) effects of heterogeneity on growth and inequality [140].

Consider the population variance of growth rates generally in terms of information-

theoretic quantities, where Ii ≡ I(E;Si) and Di ≡ Esi

(
DKL

[
P (E|si)||X(E|si)

])
. The

population variance is given as (APP A.2.3)

VarN [γi] = VarN [Ii] + VarN [Di]− 2CovarN
[
IiDi

]
. (3.11)

The first term is independent of any agent’s imperfect knowledge or learning process and

depends only on their model (likelihood) of the environment, given the agents’ signals.

The second term expresses variance in the prior and different learning trajectories across

agents. This term vanishes as agents learn their environment fully. It follows that these two

sources of variance vanish only if every agent has the same model in a shared environment

with the same statistics, and after every agent has had time to learn their environment.

These two terms also express formal distinctions between the familiar Keynesian formu-

lation of intrinsic uncertainty versus risk in socioeconomic behavior. Agents cannot know a

priori what type of uncertainty they are facing and must learn as best as they can from their

experience. A misspecification of the agents’ model of the world, via an incorrect likelihood

function, will result in irreducible uncertainty and a lower growth rate than possible. In

terms of communications theory, this situation effectively uses the environmental experience

suboptimally, by picking a signal that does not maximize the channel capacity, as the largest

possible mutual information between the agents’ signal and events in the world [59]. On

the other hand, risk in the sense of probabilistic events with a known distribution can be

reduced (and better assessed) via the Bayesian inference process which builds the correct
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risk model within a family of functions, by learning its parameters.

The third term is less familiar and arises in populations where the magnitude of the

agents’ information co-varies with agents’ divergence from the environment. This may hap-

pen in reality when different (likelihood) models of the world co-exist in a population of

agents, and when, in addition, less experienced agents with shorter learning histories, adopt

preferentially some of these models. For example, a younger generation may have a better

model of the world but less experience, creating a negative co-variance. Or a positive covari-

ance may be generated if learners with a better model are encouraged to learn faster, and

others discouraged, creating a kind of cumulative advantage in terms of better information

and faster learning. Such situations may provide principled modeling strategies to better

understand the success of a posteriori exceptionally successful individuals, and identify sit-

uations of competitive advantage in access to information and learning.

3.3.1 Population Effects in the Multinomial Model

This section illustrates how the inference dynamics happen in the context of the Multinomial

model. I focus on agents with identically distributed signals i.e. with the same likelihood

function and a shared environment, expressed by the second term in Eq. 3.11. Thus, I

(implicitly) take VarN [Ii] = 0, thereby also eliminating the third term. This situation

models a homogeneous population in terms of models of the world, such as for individuals of

the same species in a common habitat, or workers in the same industry, with similar training.

I will return to the more general case and discuss future opportunities in the discussion at

the end of the chapter.

For a population of agents independently sampling a shared multinomial environment,

the initial variance in growth rates is given by the variance in the initial binomial parameter,

σ2x. The dynamics of the binomial parameter variance for a population of size N is (SM 22)

36



BA

Figure 3.4: Monte Carlo simulations of a population undergoing growth dynamics, with
and without Bayesian learning, with parameters of mean growth rate, γ̄ = .04, and standard
deviation, σγ = .641γ̄. A. The simulated and theoretical means of x converge to p, thus
maximizing growth rates. The parametric variance, σ2x, (blue) follows the theoretical pre-
diction (red). The linear behavior log-log plot demonstrates the power law behavior of σ2x.
B. The mean resources of three population types are plotted with a shaded region providing
95% CI bounds for single agent trajectories. Heterogeneity broadens the range of possible
wealth values, while learning increases both mean growth while narrowing the shaded region
relative to no inference. Agent learning slows the increase in the Gini coefficient introduced
by heterogeneity and reduces the coefficient of variation.

VarN
[
xi(t)

]
≡

〈[
xi(t)− ⟨x(t)⟩

]2〉
=

σ2x
(1 + t/kl)2

, (3.12)

where ⟨x(t)⟩ = 1
N

∑
i xi(t). Assuming a population of entirely conservative (or aggressive)

agents, such that all growth rates map to a unique binomial parameter, we can approximate

the variance in growth rates, σ2γ(t) =
〈(
γ[xi(t)] − γ[⟨x(t)⟩]

)2〉, by Taylor expanding the

second moment of the resource distribution. The approximation carried out in SM 38 shows

that the growth rate variance decreases asymptotically in polynomial t−2 time [177]. Figure

3.4.A. demonstrates that in a population of agents sampled from a Gaussian distribution of

growth rates and resources learning their environment, ∆p,x = p− x(t) → 0 as t → ∞, and

individual binomial parameters converge to the optimal value. At the population level, there

is an agreement between the empirical population mean and theoretical mean trajectory,

calculated by evolving ⟨x(t)⟩ using Eqn 3.10. Similarly, the empirical population variance in
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x matches the theoretical power law prediction given by Eq. 3.12.

These results show that learning a shared, stationary environment reduces growth rate

variance on the same time scale as the dynamical effects introduced by growth rate vari-

ance [140]. This shows that fast learning (sufficiently low k) equalizes information access,

and is a suitable mechanism for reversing the long-term effects of heterogeneous growth on

inequality.

I demonstrate these features of the dynamics by comparing the statistics of resources

across Monte Carlo-simulated populations. I first use homogeneous initial conditions, then

heterogeneous initial conditions with and without inference. To measure the increase in

inequality, I track the Gini coefficient, denoted Gini, which varies between zero –for uniformly

distributed resources– to 1, for maximally unequal wealth distributions. (For a lognormal

distribution, such as in the GBM model, Gini(t) ≈ Erf[σ2r (t)]). Additionally, I measure the

relative increase in standard variation to the mean of resources via the coefficient of variation,

cv = σr/⟨r⟩. More on this analysis is given in [140].

The resource time evolution shown in Figure 3.4B demonstrates that growth rate hetero-

geneity dramatically broadens the wealth distribution, in agreement with [140]. Accordingly,

heterogeneity increases Gini and cv as compared to a homogeneous population. The intro-

duction of learning increases the average growth rate in a heterogeneous population, as

demonstrated by the higher mean wealth, while reducing the variance in resources. The

former slows the rapid increase Gini, while the combination of both reduces cv to levels

comparable to the homogeneous trajectory, confirming that learning reverses the effects of

heterogeneity on inequality.

While this simplified model does not capture the nuanced effects of educational systems

or skill heterogeneities implied in real societies, the connection between convergent learning

in a population and growth is general and provides a sound theoretical basis for the observed

benefit of education on national growth, human capital, and inequality reduction [117, 148,
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176].

3.4 Discussion

In this chapter, I developed a statistical dynamical theory for the origin of resource growth

rates in populations of learning agents experiencing a shared stochastic environment. I

showed that an agent’s growth rate is, in the limit of many decisions, the quantity of mutual

information between their signal and the environment and that learning through Bayesian

inference provides a natural and necessary (optimal) mechanism for increasing agents’ growth

rates, managing volatility, and reducing growth disparities across populations over time.

I demonstrated that in the particular static case (without learning), this framework re-

produces GBM models widely used in wealth dynamics and inequality studies, and provides

models for their parameters. When agents can learn, their parameters become optimal over

time and acquire formal interpretations in terms of information.

The present treatment answers an important open question established in the previ-

ous chapter on how to mechanistically control variances in growth rates across a society

while maximizing learning and growth and generally enriches the typical modeling schema

of wealth dynamics by incorporating agents’ subjective choices in a structured, stochastic but

knowable environment. Towards the end of this dissertation, this work adds to the founda-

tions necessary for incorporating formal models of information and adaptive agent behavior

in statistical mechanics, establishing a microfoundation for broadly applied nonequilibrium

statistical mechanical model.

There are a number of interesting developments that this theoretical framework suggests

for modeling more realistic, particular situations. First, learning is never quite uniform across

populations or time, varying across the life course, with some agents being able to dedicate

more time and effort to it than others. This issue can be modeled by making inference

rates dynamic and heterogeneous, for example, through coupling to agents’ socioeconomic
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status (SES) or age. Importantly, lower SES has been shown to be correlated with the

presence of stressors that inhibit the cognitive ability of people to learn [75, 112, 243], while

higher SES correlates with better educational outcomes [18, 40, 163]. Coupling learning

rates with SES would alter the population’s learning trajectory and potentially attenuate

its effectiveness in reducing information and wealth inequality. Moreover, my analysis has

assumed that each agent samples identically distributed signals. In reality, people across

different structural positions in social networks, for example, associate with place, gender, or

race/ethnicity, typically have differential access to signals (opportunities), with implications

for what they can learn and for resulting social equity. Along with different signals, different

agents may have different models of the world, which are naturally incorporated in the

scheme developed here by different likelihood functions in Bayesian learning. I have shown in

general how such heterogeneities among agents will result in inequalities in their growth rates,

but many interesting situations remain to be explored in the future. Finally, real societies

also feature interactions between agents and planners that redistribute wealth, economic

rents, and heterogeneous frictions that further shape wealth dynamics. The work developed

here emphasizes the importance of understanding these policy choices and socioeconomic

phenomena through the lens of how they affect specific wealth dynamical parameters, namely

initial wealth statistics versus growth, including average growth rates and volatilities across

populations. Future studies of the origins of inequality and social equity should consider

these structural complexities from the general point of view of access to information and

learning, and the specific analytical tools that they introduce.

Second, from the point of view of maximizing resources, there are familiar trade-offs

between learning and investing. These can be modeled in terms of the inference process

divided into passive experiential learning, resembling the “learning by doing" featured above,

and, additionally, emulating formal, institutional education wherein agents sacrifice short-

term wages to more rapidly acquire information. These considerations define agent trade-offs
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between actively exploring and passively exploiting the environment, an important research

topic in both experimental neuroscience and machine learning [145, 236]. Furthermore, while

information is a non-rival quantity that can be made available to a society with minimal cost

of sharing or degradation from use, the generation and dissemination of information through

teaching is a costly process that can produce additional non-trivial dynamics. Agents must

also consider the cost and benefits of seeking education in non-stationary environments,

where the value of information may fluctuate or decay over time. Expressing the social costs

of education through mechanisms of finite learning resources could help explore trade-offs in

investing in human capital over various timescales of learning and environmental evolution

[189, 218] and help determine when they are worth it - for individual agents and societies -

in inter-temporal settings.

Third, tracking individual agent dynamics under constraints of finite (varying) lifespans

can help determine the effects of generational wealth transfers on inequality, and provide

insight into life-course strategies [74] and issues of valuing (and discounting) the future. Thus,

an extended framework can help us explore the scope of education under the discounting

of delayed resources by longevity and lived volatility [116]; including the implications of

costs and expected earnings with or without an education over time. This research topic is

discussed in the final chapter of this dissertation as an active field of research.

Lastly, agents in this model experience the same environment and learn the same infor-

mation, whereas actual communities specialize in different, complementary skills that may

minimize knowledge redundancy. These information complementarities and exchanges are

known commonly in the social and ecological sciences in terms of the division of labor and

knowledge [24]. How agents decide which information to learn and what profession to choose

based on their environments begets different growth rates across a population, altering emerg-

ing inequality and influencing how social groups cooperate or compete across community or

institutional social levels [87]. Cooperation among agents with synergistic information in a
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stochastic environment has been shown to produce non-linear additive effects on aggregate

information [25], suggesting that cooperative agents would experience larger growth rates

when coordinated, compared to the sum of agents acting independently [138, 201]. In the

next chapter, I study this connection between social behavior and growth from the point of

view of information and learning, and provide insight into the origins of sharing resources

and information in stochastic growth settings.
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CHAPTER 4

COLLECTIVE ACTION AND GROUP FORMATION

In the prior chapter, I established how information underpins the optimal decisions agents

make in noisy environments, and the growth they experience. In this chapter, I will demon-

strate how this theoretical insight can improve our understanding of the quantitative benefits

to collective behavior. I begin by motivating a theory for cooperation among heterogeneous

agents by reviewing progress and shortcomings in the organizational science, ecology, and

game theory communities. I then modify the theory introduced in the prior chapter to

support collective decision-making. Towards the end of the chapter, I will demonstrate its

effects with a simple model and explore its implications 1.

4.1 Introduction

Collective behavior is a general feature of biological and social systems. It mediates the

survival and evolution of populations under resource constraints, competition, or predation

in natural systems [190] and the formation and persistence of social organizations in human

societies [229]. Much past work has modeled collective dynamics using homogeneous inter-

action rules, common to all agents, which are often phenomenological. While these models

have produced diverse insights, they typically lack a theoretical foundation to explain how

specific social behavior emerges among individual agents with heterogeneous information

and behavior. Thus, significant knowledge gaps remain in most realistic situations, where

agents with distinct but potentially complementary traits act collectively to maximize their

joint growth (fitness, wealth) in knowable but stochastic environments.

Some examples help illustrate the present situation. Game theorists and ecologists have

considered many different cooperative interaction schemes [208] and explored evolutionary

1. This chapter is adapted from Kemp, J. T., Kline, A. G., & Bettencourt, L. M. (2024). Information
synergy maximizes the growth rate of heterogeneous groups. PNAS nexus, pgae072
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stable behavior [114], particularly on networks [129, 193, 220], where optimal behavior is

identifiable under given interaction rules. Elaborating these schemes by introducing higher

order interactions has broadened our understanding of more complex social networks [6,

12, 46, 103], and their dynamical phase-stability under varying interaction strengths [81].

Researchers have also studied, both theoretically and in the laboratory, how memory of

previous interactions influences agents’ preferences for future encounters [106, 107, 168, 207],

the spread of social crises across distance [155], and the formation and scaling properties of

social collectives [44, 203], such as cities [26, 216].

In addition to interaction rules and associated payoffs, collective dynamics is predicated

on maximum principles, which specify agents’ preferences in view of a goal and thus render

their behavior intelligent (optimal). For example, inclusive fitness theory, which assumes a

reproductive benefit to cooperation because of shared genes [113, 191] has been studied in

mixing populations and over networks [183] where it predicts population benefits to coop-

eration through several forms of reciprocity [201]. More recently, researchers have studied

resource pooling in models of growth as a means to minimize environmental uncertainty and

associated loss of fitness among agents experiencing independent fluctuations with shared

statistics [160, 196]. Such approaches remain limited by the association between collective

behavior and (genetic) homophily. Still, they can help explain the existence of phase transi-

tions in cooperation networks [44, 81], and specify agents’ plausible behavioral patterns [106],

even if doubts remain about inclusive fitness’s predictive power [181].

Generally, however, most current quantitative frameworks fail to address collective dy-

namics when agents remain heterogeneous across skills, knowledge, and behavior [83, 192,

228]. Developing more general approaches to collective behavior that include adaptation

along with heterogeneity is a crucial step towards understanding how agents self-organize in

more complex and dynamical environments, where specialization and the division of labor

and knowledge become key.
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Adaptive behavior requires agents to acquire and process information over time [69, 86]

in response to their environments and each other. In realistic situations, limited experience,

specialization costs, and physical limitations of effort, energy, and time, all prevent agents

from perfecting their knowledge of complex environments [174, 233]. A natural way to miti-

gate these individual limitations is to pool knowledge across agents leading to the formation

of social organizations [126], and the division and coordination of labor in terms of their

behavior [55]. This is widely observed in human organizations and animal social behavior

starting with the division of labor by age and sex.

By working jointly to predict characteristics of their environment [228] and gather re-

sources, groups of agents can maximize their collective fitness even when each individual

has very limited knowledge. In a setting where there are resource returns to successful pre-

diction and behavior, information of the state of a statistical environment determines the

fitness of the population [28, 141], though there are questions about how such benefits emerge

quantitatively [25]. Here I formalize the calculation of these social benefits in terms of the

properties of information and show how maximizing knowledge complementarities (synergy)

maximizes the long-term growth rate of collectives. Specifically, I derive an expression for

the additional payoff to cooperative behavior in terms of the joint information synergy about

the agents’ dynamical environment.

The aggregation of dispersed, tacit information among a group of agents has long been

proposed as the principal role of economic markets [118], operating through the price mech-

anism. In such settings, a public price forms as the result of the allocations of traders

with diverse knowledge, buying and selling an asset according to their beliefs (estimates)

of its value. Several types of markets, both centralized [108, 173, 244] and decentralized

[34, 70, 246] have been discussed as efficient aggregators of information in this sense, but

fundamental objections have also been raised [109]. Information, in the sense of this efficient

markets hypothesis, usually reflects only average beliefs among traders [245]. By contrast,
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my approach shows how dispersed knowledge can be combined in optimally predictive ways.

These results lead us to introduce the principle of maximum synergy, which maps the

maximization of pooled resource growth rates into optimal social interaction structures. This

work adds new dimensions to the study of collective dynamics by connecting the structure of

groups to that of information in complex environments mediated by agents’ diverse subjective

characteristics, such as their present knowledge and information acquired as the result of

diverse experiences throughout their life course.

4.2 Theory of Collective Growth

I start by demonstrating how the benefits of collective action emerge from pooling infor-

mation in synergistic situations. Synergy means the combination of behavior, knowledge,

and skills that complement each other toward a goal. This concept is necessary for creating

effective organizations that embody complex information [228], but it is often not sufficiently

formalized in common language, such as in discussions of innovation [94] or firm structure.

Here, I will refer to synergy as an explicit information-theoretic quantity that measures

the additional predictive power that a group acquires upon pooling its agents’ information,

relative to the knowledge of each individual separately. This quantity has been introduced

some time ago in the context of studying circuits in information processing systems [31, 217],

and has provided a framework for studying higher-order neuron interactions in the brain

[239], and causality and information in complex systems [169, 238]. As I will show, synergy

results formally from the conditional dependence between the probability of predictive signals

distributed in a population and events in a shared environment. The gain in predictive power

from agents pooling information as collectives allows them to obtain additional resources

from a knowable environment beyond what agents alone can do, thus boosting their fitness

or productivity.

It follows that collectives that seek to maximize their resources over long times must
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combine the information from their agents’ individual models of the world in a way that

accesses the most synergy. Groups that do not know a priori how to realize their synergies

must discover how to do so, by adjusting their collective knowledge and interaction struc-

ture while observing outcomes of their environment in an iterative learning process. After

developing the general framework for group formation and collective growth across group

sizes, I demonstrate a model environment that exhibits synergy using logic gates. I will also

demonstrate how synergy scales with the number of unique signals in a collective, and how

specific combinations of signals affect the average growth of resources for the group.

4.2.1 Collective Growth in Synergistic Environments

Consider a population of N agents, each with initial resources ri, i = 1, . . . , N that can be

(re)invested into the set of outcomes of their environment to generate returns. Each agent

has access to a private signal (their knowledge), s ∈ S, which is used to predict the state of

the environment and make resource allocations to possible outcomes e ∈ E. This signal may

represent several different processes such as sensory input, or a lead retrieved from memory.

With optimal parameterization of a model of the environment, P (E|S), an agent’s optimal

investment strategy leads to an average resource growth rate (over time) γ = I(E;S) [141],

where I(E;S) is the mutual information between environmental states E and the agent’s

signals S. (I am working in units of units time t = 1, for simplicity.) Agents with better

models (and better statistical estimations of P (E|S)) thus experience higher average growth

rates.

Now, define the agent’s environment more explicitly, by a set of l distinct signals with

unique statistics, S ≡ {S1, . . . Sl} as P (E|S), with marginals of events P (E) and signals

P (S). The joint information that the universe of signal, S, has on E is at least equal to each

of the signals Sj , that is I(S;E) ≥ I(Sj ;E), for all j. Generally, this inequality is strict if

the conditional information I(S|E) > I(S) [31, 217]. Compute the total information by
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summing over the mutual information between each of the signals independently, subtracted

by an interaction term across them,

I(E;S) =
∑
j

I(E;Sj)−RP . (4.1)

The coefficient of redundancy, RP , measures the strength of this conditional dependence

across larger sets of signals (two, three, etc). It is defined in App. A

RP =
l∑

j>k=1

R(E;Sj ;Sk) +
l∑

j>k>m=1

R(E;Sj ;Sk;Sm)

+ · · ·+R(E;S1; . . . ;Sl).

(4.2)

The coefficient of redundancy can have a positive or negative value, indicating different con-

ditional relationships between the signals and environmental states. When RP > 0, there is

information between signals irrespective of environmental events. This means that signals

are partially redundant, and consequently, there are diminished returns to pooling informa-

tion as I(E;S) <
∑

j I(E;Sj). Conversely, when R(E;S) = 0, the signals are statistically

independent, and the benefits of pooling information increase linearly with the information

of each signal on the environment but there is no synergy. Finally, when R(E;S) < 0, there

is conditional dependence of the signals on the environment. This is called synergy and yields

a superlinear benefit to pooling information in the number of agents, above and beyond the

information contributed from each signal individually.

Group formation and collective decision-making

I have now defined individual resource growth rates as a quantity of information and discussed

how information can be aggregated across different signals to express their synergy relative

to states of the environment. Now we can explore how agents with different signals can pool
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Figure 4.1: Groups of agents with different signals grow resources based on the information
between their signals and states of the environment. A. Groups, denoted g, are composed
of an arbitrary number of agents. Each agent belongs to only one group and can observe
and contribute one signal to the group. A group contains kg unique signals. B. At each
time step, (a) the group’s private channel outputs a signal s ∈ S with probability P (s). (b)
Each member of the group observes their signal sj and (c) the group consults their collective
belief for the conditional outcome probability of the environment, X(E|s). (d) The agents
make proportional resource allocations on all possible outcomes B(E|s). (f and e). The true
event e ∈ E is observed in the environment with probability P (e), and (g) the agents receive
payouts proportional to the marginal probability of e.
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information together as coordinated groups, and access the synergy in their environment

through collective decision-making.

Consider the undirected hypergraph H = (A,G) of vertices, A, and hyperedges G. Con-

sider a discrete number of vertices, A = {a1, a2, . . . , aN}, where ai identifies agent i. The

set of hyperedges, g ∈ G = {1, 2, . . . }, called groups, defines the number of cooperating

collectives. A hyperedge connects 1 ≤ Ng ≤ N agents. Assume that agents can only belong

to a single group. Therefore, by construction,
∑

g Ng = N and the sum over all nodes of

every hyperedge yields the number of agents in the population. There exist two extremes

of cooperation. First, when a single hyperedge spans every node, meaning all agents pool

information in a single group. In the limit of no cooperation, Ng = 1 for all g, and no agents

pool information. In this case, the dynamics of the model are similar to previous work [141].

Let Sg be the set of unique signals held by the agents of a group g to be pooled, such that

Sg ⊆ S. The number of cooperants is defined by the number of unique signals, |Sg| = kg,

and is bounded by 1 ≤ kg ≤ l. When kg = l and the group has a complete signal, the

collective can make maximally informed decisions. Conversely, when kg < l, the signal is

considered incomplete, and the collective can only interpret and act on a subset of signals.

As we will see, the number of unique signals a collective can observe determines the amount

of information they can access.

Now that agents are organized into groups of various sizes, we can discuss how agents

pool their information to make collective decisions and grow their resources in dynamic

environments. At every time step, a collective with access to all signal types observes a

unique private signal s = {s1, . . . , sl} ∈ S. Each agent then allocates its resources ri on

events according to collective g’s allocation matrix B(E|s). As the event e is observed, the

agent is rewarded with returns we to the fraction of resources invested in e, B(e|s). In the

limit of many sequential investments n, the average growth rate of resources converges to
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γ =
1

n
log

rn
ri

≈
∑
e,s

P (e, s) log
[
B(e|s)we

]
. (4.3)

The optimal investment in the large n limit is the conditional probability of the event given

the signals, B(e|s) = P (e|s). When the rewards are “fair", and we = 1/P (e), the optimal

growth rate is given by the mutual information [137] defined in equation 4.1, γ = I(E;S).

The typical collective may not have a complete signal, and instead may only observe and

interpret a subset of all unique signals Sg. Their optimal allocation, given by P (E|Sg), then

has mutual information I(E;Sg) ≤ I(E;S), with equality only if the omitted signals are

completely redundant with present signals. Unless there are redundant signals, an incomplete

group is guaranteed to have suboptimal information and growth rate.

Agents a priori may also not have perfect knowledge and must invest using their best

estimate of the true conditional probability, X(E|Sg) ̸= P (E|Sg). In this case, the collec-

tive’s average growth will be submaximal by the number of signals and lack of information

on signals and is described by

γg = I(E;Sg)− Esg

(
DKL

[
P (E|sg)||X(E|sg)

])
, (4.4)

where Esg is the expectation value over the states of the group’s signals, and DKL
[
P (E; sg)

||X(E; sg)
]
=

∑
e P (e|sg) log

(
P (e|sg)/X(e|sg)

)
≥ 0 is the Kullback-Leibler divergence, an

information measure expressing how similar the distributions are. This result shows that

collectives with both a better model as reflected by the first term, a better characterization

of the model and its various synergies by the second, and a more complete signal, will

experience higher growth rates. Furthermore, γg < γ unless g is the full set of signals, so it

is typically valuable to add more signals to the group. This setup is illustrated in Figure 4.1.
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4.2.2 Maximum synergy principle and optimal growth

These results introduce important considerations for how collective innovation and growth

determine strategies for group formation. In theories of cooperation such as kin selection

[72] and scalar stress [132], group formation is advantaged by member relatedness and dis-

advantaged by unfamiliarity. This is intuitive in many situations, as agents are more likely

to cooperate when they are more certain others will reciprocate [180], and cooperating with

similar agents may naturally minimize this uncertainty. Equation 4.4 counters this intuition

by defining an explicit benefit to cooperating with dissimilar agents across heterogeneous,

complementary skills and information. Specifically, a group with more synergistic signals, as

defined through the conditional dependence of their decisions on states of the environment,

will experience higher growth. So, even if there are additional coordination costs for more

heterogeneous agents, there is now a possibility that cooperation will emerge as there are also

greater informational benefits, formalizing intuitive ideas about the value of diversity [186].

The beneficial contribution of synergy to the growth rate of resources provides an impor-

tant input to models of random multiplicative growth, such as those commonly used to study

wealth dynamics and mathematical finance. In its simplest form, the stochastic growth rate

in such models is characterized by its first two temporal moments. The average over time, η,

and the resource temporal standard deviation (volatility), σ, combine under Itô integration

to give the actual growth rate γ = η − σ2/2. Maximizing this growth rate (as a positive

quantity) entails maximizing η and minimizing σ, which at the individual agent level can be

achieved by (Bayesian) learning over time [141].

At the population level, it has been proposed that pooling resources in groups would

naturally emerge as a means to reduce σ, when growth rate fluctuations are independent

across agents, and thus maximize γ [78, 196].

Our results introduce a different possibility of cooperation, through pooling information

in structured groups, that maximizes η (and γ) through synergy effects. Thus, to maximize
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Figure 4.2: Complementary strategies for increasing the long-term growth rate of resources
from the environment in stochastic growth models. Pooling resources can reduce volatility
through a hedging strategy while pooling information creates synergy to increase average
growth rates. The lines represent contours of constant average growth rates γ.

γ, agents should pool information with the most diverse set of collaborators possible to access

the most mutual synergy viz. the environment. This maximum synergy principle defines the

benefit of intelligent collective behavior in complex environments where there are agent-level

limitations to knowing the environment fully and where mechanisms of the division of labor

and knowledge are favored. This principle is general and applies across levels of cooperation,

whether it be individuals matching skills to form groups, or specialized groups organizing

into more complex collectives [25], all the way to large-scale societies.

Generally, these two strategies, information synergy versus resource pooling under inde-

pendence, are distinct modes of cooperation over which groups can maximize γ, as demon-

strated in Figure 4.2.

As we will see later, the decision of whom to cooperate with is not trivial, as different

combinations of signals may yield varying synergies. This means that under constraints to

group size such as from cooperation costs per connection, groups satisfying the maximum
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synergy principle must intelligently select which signals and agents to integrate, and which

to exclude as redundant.

Furthermore, collectives may not a priori know the optimal allocation strategy that

leverages the synergy available to their signals, meaning that intelligent collective behavior

must itself be learned over time and by exploring the best possible matchings. I will now

develop the dynamics of how a group maximizes its synergy given a set of signals.

Synergy maximization through Bayesian inference

Bayesian learning is the optimal strategy to incorporate new information from observed

events into the estimate of conditional probabilities, such as those of environmental states

given agents’ signals [141]. Agents can also learn the synergy embedded in their environ-

ment in groups by collectively weighing their conditional observations across their individual

signals. A group wanting to maximize their synergy must then update their conditional

relationship through a Bayesian inference process

Xn(e|s) = AP (sn|en)X(en) =

[ n∏
i=1

P (si|ei)
P (si)

]
X(e), (4.5)

where the normalization A = (
∫
denP (sn|en)X(en))

−1. Take the prior probability, X(e1) =

X(e), because I am assuming that the environment is stationary or at least slowly changing

relative to groups’ learning rates.

Bayesian inference converges X(E|S) → P (E|S) over time, decreasing the information

divergence, and maximizing synergy and average growth. For groups with incomplete sig-

nals, the information acquired through learning is still bounded by what is available in the

incomplete signal space.

I have thus far defined collective growth in terms of information synergy, and shown how

agents can learn as a collective to increase their growth rate over time. I will now illustrate
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these general results using a model based on logic circuits.

4.3 Modeling Synergy with Logic Circuits

Logic circuits have been used extensively as models for synergistic interactions [25, 31, 217].

This is because their outputs are predicted by combinations of inputs, much like events are

predicted by combinations of signals. Among other logic circuits (like AND or OR), the

XOR gate is unique in that information between inputs and outputs only exists as synergy

across all inputs [130]; no individual input has mutual information with the output.

In the following section, I will show how modifying the XOR gate relaxes this condition,

such that information exists for any input and scales on average with the number of cooper-

ating signals. Similar to [141], while this model will be used to study synergy in a simplified

setting, the theory is defined for general dynamical environments.

4.3.1 The Uniform XOR Gate

Consider the space of statistically independent binary signals sj ∈ 0, 1, such that a sample

set s has uniform probability P (s) = 2−l. Assign each input s a binary event, e ∈ 0, 1,

using the generalized XOR rule, e = M2(s) ≡
[∑l

j=1 sj
]
(mod 2) with binomial probability

ps. From the sets of sampled signals, s, and binomial coefficients p = {ps}, I define this

generalized XOR circuit as a joint distribution on signals and events as

P (E,S|p) ≡f(p, l) =
1

2l

∏
s

(ps)
M2(s)(1− ps)

1−M2(s). (4.6)

This distribution is called the uniform XOR (UXOR). It performs a unique, l dimensional

XOR gate on each input s with probability ps. When ps = 1 for all input permutations,

this circuit behaves deterministically like an XOR gate, and the complete group has 1 bit
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of information. In the limit of ps = .5, this no longer models a logic gate as the output is

uncorrelated to the inputs. The truth table of this circuit is shown in Figure 4.3A for an

environment with two signals.

Information scaling in the UXOR environment

With this explicit choice of distribution, this section explores the information quantities

that will define a group’s growth process. For simplicity, I choose a uniform prior for the

distribution of p, but in principle any prior distribution is admissible. The information

available in the environment measures the maximum average growth rate a group with a

complete signal can experience. When averaged over all configurations of p, the information

is given by I(E;S) = log 2− 1/2 ≈ .28 bits (C.2.1).

For groups with incomplete signals (when kg < l), I compute the information by marginal-

izing equation 4.6 over the λg = l − kg signals unavailable to the group. The procedure for

marginalization is defined in App. C, but in general, marginalization of one signal halves

the size of the parameter space p that describes the distribution. The average information

for an incomplete signal is approximately [143]

I(E;Sg|p) ≈ 2−λg

(
log 2− 1

2

)
. (4.7)

Average information scales exponentially, ∼ 2k, as more signals are included. The mutual

information of the complete signal is independent of the number of signals, so the information

of a single signal must converge to zero in the limit of large l.

The exponential scaling of the information with the number of cooperants is demonstrated

in Figure 4.3B, as lines on a logarithmic scale for environments of increasing l. The curves

are computed by Monte Carlo sampling circuits for l signals by measuring the information

after λ = l − k marginalizations.
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Figure 4.3: The UXOR model provides an environment for exploring synergy across groups
of arbitrary size. A. The UXOR circuit, demonstrated by the modified XOR symbol, and
its truth table for l = 2. B. The information of a circuit of size l scales exponentially in
cooperants, k.

Growth and group learning

Until now I have explored the mean behavior of this environment subject to a uniform prior.

In general, collectives do not have perfect information on a single prior. In this case, their

inaccurate guess for the set of binomial coefficients is parameterized by xg ≡ {xsg}, indexed

by the signals available to the group sg ∈ Sg, and the collective’s likelihood model becomes

X(e|sg) = f(xg, kg). The information divergence term of equation 4.4 becomes the diver-

gence between f(xg, kg) and f(pg, kg), where p has been projected into the subspace spanned

by Sg, averaged over all signals Esg [DKL] = ⟨psg log
(
psg/xsg

)
+ (1− psg) log[(1− psg/(1−

xsg)]⟩ here angle brackets denote sample averages over the binomial values. Subtracting the

mutual information by this term yields the growth rate under imperfect, incomplete group

information.

γg =
〈
psg log xsg + (1− psg) log

(
1− xsg

)〉
+ log 2, (4.8)
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I have so far described growth rate dynamics under a stationary xg. To illustrate growth

dynamics under group learning, I turn to the Latent Dirichlet Allocation (LDA) model.

Through a categorical description of pairs of events and signals, agents experience average

dynamics to xg in the limit of high sampling rate ω = n/t ≫ 1

xg(t) =
pgt/2κ+ xg

1 + t/2κ
, (4.9)

where κ defines the Bayesian update time. The details of LDA are given in Ref. [141] and

provide parametric dynamics that converge to full information as a power law in time, in

stationary environments.

To study resource dynamics in the UXOR environment, I simulated agent investments

in a Monte Carlo sampled environment. I randomly assigned N = 5000 agents signals in an

l = 4 environment, then randomly assigned them to groups sized l ≤ Ng ≤ 11. This results

in an ensemble of groups with cooperants 1 ≤ kg ≤ 4. I reveal Bernoulli-sampled signals to

the groups, whose agents collectively decide on which events to allocate resources to. For

each group, I track the resources of a representative agent, informed by the group, investing

their individual resources through time. The full details of the setup are provided in the

supplementary materials.

Figure 4.4 illustrates the results of this simulation. In subfigures A and B, the Monte

Carlo simulated means are shown as solid lines, with 95% Confidence Interval (CI) shaded

regions. Theoretical means are computed from the initial population configuration using

equation 4.9, plotted as dashed lines, with hash-filled uncertainty regions. Simulated groups

have randomly assigned members with uniformly assigned signals, where N = 2000. The

more unique signals a group can access, the more they can learn, and the more resources

they acquire over time. A high signal-to-noise ratio when kg = 1, 2 causes growth rates to

be lower than the theoretical mean, and cumulatively results in fewer resources over time.
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Figure 4.4: Groups learning an l = 4 environment using more unique signals acquire more
resources and information, but combinations of signals have unique amounts of information.
A. Temporal resource trajectories, grouped by number of unique signals in the corresponding
group show that growth increases with the number of signals. B. Groups with more signals
can gather more information from the environment. There is high variability when kg < l, as
different combinations of signals access different amounts of information. C. Top For kg =
2, 3, the synergy benefits of a parameter configuration are given by the difference between
the information when averaged (small dot) and pooled (large dot). Bottom Parameter values
exist where no signal combinations hold synergy (left) and synergy is equivalent across signal
combinations (right).
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Constrained intelligent group formation

For the groups with kg < 4 (incomplete signals), there is a significantly higher variance in

both information and resources compared to kg = 4. This is attributed to differences in

synergy between groups with different combinations of signals of order k. This illustrates

a general feature of the maximal synergy principle; that signal combinations with higher

conditional dependence on the environment will have higher synergy and experience higher

growth rates than other combinations. Figure 4.4 demonstrates the synergy effects across

different combinations of signals. For each group of size k, the left, smaller dot indicates

the amount of information each signal has averaged over the signals present. The right,

larger dot indicates the total information the combination of signals has when pooled. The

difference between the two dots gives the amount of synergy. We see, for example, that even

though signals 0 and 3 have less information than signal 2, both signals have higher synergy

effects when pooled with 1 individually, as indicated by their crossover with the 1, 2 line.

For a group aggregator, not only does this mean that signal choice is nontrivial, but also

that individual information is not generally a good indicator of synergy benefits that can be

realized when pooled.

As demonstrated by the bottom plots in Figure 4C, through a suitable selection of p, we

can also design special environments such as where either no synergy is present, or where

there are uniform benefits of synergy across combinations of signals. The procedure for

constructing environments with specific synergy profiles will be developed in future work.

These results point to the challenges of leveraging the full complementarity of avail-

able signals in practice, towards satisfying the maximum synergy principle in organizations.

For example, novel signal identification may result in disruptions of existing organizational

structures, which while ultimately optimal may not be realizable without some sacrifice of

short-term efficiency or increased costs. Maximizing long-term synergy and growth entails a

tradeoff, since over shorter horizons exploitation of existing knowledge may be preferred both
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individually [157] and as organizations adapt structurally to the specialties of its members

[167], which may vary depending on the complexity of the environment [241]. I have also

shown that organizations that match the complexity of their environment through appro-

priate personnel specialization and integration (minimizing the DKL with the environment)

experience the fastest growth, in agreement with the analysis of empirical data [153].

4.4 Discussion

In this chapter, I developed a novel mechanism of cooperation among heterogeneous agents

that use shared information to grow resources in stochastic but knowable environments. I

derived the benefits of cooperation in terms of synergy gained by pooling information across

agents’ unique signals and its consequences for the growth rate of collectives. This motivates

the principle of maximum synergy, whereby a group’s aggregate growth is highest when it

maximizes the synergy of its members relative to a statistical environment. I proposed this

principle as a complementary avenue to cooperation resulting from the reduction of volatility

through resource pooling in multiplicative growth models. I then showed that a group with

no a priori knowledge of its potential synergy can learn it through Bayesian inference. I

illustrated these principles using a model of a high-dimensional probabilistic logic gate and

showed that, on average, group synergy scales superlinearly with the number of unique

signals in the group. I also illustrated the challenge faced by groups incurring size-related

costs to pick not just unique signals but also admit new group members as additional signals

that maximize their potential collective synergy.

These results formalize several insights into the causes and benefits of cooperation. First,

the formal properties of information allow us to consider how the limits to human effort and

ability motivate group formation. Specialization through learning or adaptation is costly

in terms of time and resources, motivating a division of labor to fully learn and maximize

productivity across disparate but synergistic agents [126]. This motivates the formation of
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heterogeneous cooperation networks [194, 234], where agents seek new connections that com-

plement their particular signals and that vary conditionally on local environments. In this

sense, collectively navigating complex fitness landscapes is naturally achieved by satisfying

the maximum synergy principle. However, maximizing synergy can be a challenging and

costly task for groups because it requires time, effort, and social rearrangement to learn the

complementarities among a set of signals.

Second, these results motivate analyses of how information and resource pooling strate-

gies affect different levels of selection within an organizational hierarchy. Effective resource

pooling relies on uncorrelated fluctuations across participants, which is not possible when

agents are making coordinated decisions across signals. I therefore expect information and

resource pooling strategies to create tradeoffs in group formation, and apply to different

environmental features and levels of selection.

Groups lacking informational complementarities (because they are homogeneous) op-

erating in very variable environments should pool resources to minimize volatility. This

may apply to people in insurance pools, or independent economic sectors within a common

population, such as a city or nation. Conversely, groups in complex environments made

up of agents with complementary knowledge, such as within a firm or innovation ecology,

should engage in information pooling and skills specialization to maximize their collective

production potential whenever the variability of the environment and costs of cooperation

are sufficiently low.

Parsing out these modes of cooperation becomes more important when considering how

groups respond to changing environmental or social conditions. As new environmental con-

ditions emerge, such as new industries or technologies, the distribution of synergy across

different group configurations will also change, selecting for different group compositions

and skill combinations. This has the interesting implication that new knowledge (science,

technology, institutional change) should be disruptive of established social and economic
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structures explicitly because it enables new synergies and faster growth. This also has im-

plications for natural ecosystems [242] where changing environmental conditions, such as

via climate change, and adaptation may alter the relative fitness of their components and

thereby their overall structure.

Third, the framework developed here describes a general approach to interaction dy-

namics in many fields. The conditional probabilities P (e|s) capture the general structure

of information between populations’ signals and actions, and their environment. Through

synergy maximization, that information becomes encoded in how groups form and are struc-

tured, and which sets of coordinated behaviors produce beneficial or detrimental outcomes

across agents. By averaging over environments, we can produce a set of rules for (average)

rewards associated with agents’ perceptions and actions. This shows how general conditional

probabilities of choices and behaviors in given environments may underlie particular "games"

and other phenomenological agent interaction rules [8].

In this sense, several interesting themes in the collective dynamics of iterated games may

be relatable to conditional probabilities and growth rates set by information. Two aspects

of this general problem that I did not discuss here are the distribution of payoffs from

collaborative action back to individual agents, and the (short-term) advantages of defection.

The emergence of trust [10, 115, 150, 182] among agents necessary for realizing long-term

higher growth rates is likely costly and may benefit from an aggregator that can reduce

the associated risk. This catalyst of long-term synergy can also be applied to models of

interaction among risky innovators [51], where coordinators can actively influence selection

by managing inter-firm links and information access. In environments with conditionally

dependent signals, agents may also learn to predict other agents’ behavior leading to the

emergence of local trust clusters [212] without the presence of an aggregator.

Thus, although the principle of maximum synergy is general, there are multiple obstacles

to realizing it in practice. Pathways to explore latent synergies must overcome short-term
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costs of learning and discovery, coordination, social inclusion, and exclusion, and promote

the long-term bonds necessary to derive collective benefits, which once created must also be

distributed fairly. When the balance of these benefits and costs is positive and can scale up,

synergy becomes naturally expressed in higher-order interactions as is observed in generalized

reciprocal cooperation and the emergence of complex cultures as interdependent knowledge

and behavior among many agents [201].

In summary, the formal properties of information, made explicit over group structures

and time, provide the theoretical basis for a broad class of agent interaction models found

throughout the social and ecological sciences. This includes the formation of complex soci-

eties made up of diverse cooperating agents in situations where large-scale synergy becomes

possible and can be maximized. In Chapter 6, I will discuss extensions of this theory that

consider the interaction between information and resource sharing in populations across

scales of organization. In the following chapter, I shift focus from cooperative to competitive

dynamics.
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CHAPTER 5

BELIEFS DYNAMICS IN PAIRWISE COMPETITIVE

INTERACTIONS

The interaction modes considered in the previous section were strictly egalitarian, in that

agents shared information, decisions, or resources towards a shared end. Some social struc-

tures, such as the hierarchical structure of a job, or the directly competitive prediction

market, rely on interaction schemes that are less directly cooperative or even adversarial.

In such schemes, success comes to agents who can model others’ beliefs and predict their

behaviors. Successful employees use signals embedded in contracts to predict the desires

of their employers, prey predict predators’ movements, and gamblers use the relationships

between historical and current events to predict the outcomes of future events.

Predicting uncertain behavior in others is generally hard. As a result, literatures such as

game and portfolio theory have emerged to help find optimal actions from a set of rules when

a prediction is difficult, such as to take actions that bring competitive advantages. Theories

of the mind have also been developed [202, 219], as I will touch on in this chapter, to explore

more directly how agents arrive at particular decisions in complex social environments. Re-

gardless of the setup, competitors must have some model of the preferences of agents with

whom they compete in order to take a complementary action. In this sense, the dynamics

of beliefs and perception become a core consideration for competitive agent adaptation. In

the following section, I introduce the broad quantitative literature on studying belief for-

mation. I then motivate why a statistical approach based in Bayesian inference is suitable

for deriving preference dynamics from first principles of agent interaction. The material

that follows explores the problem of belief formation using methods from nonequilibrium

statistical dynamics 1.

1. This section is sourced from Kemp, J., Hongler, M. O., & Gallay, O. (2024). Stochastic pairwise
preference convergence in Bayesian agents. Physical Review E, 109(5), 054106.
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5.1 Introduction

Belief formation is essential for studying behavior in the social and cognitive sciences. In

noisy environments, empirical beliefs are formed through observation [219] and probabilisti-

cally predict future states to optimize energy costs [91]. Belief dynamics are critical for mod-

eling how agents interact strategically in varying socio-economic contexts (through games),

navigate uncertainty, and make decisions under imperfect information. However, there re-

main questions about how beliefs evolve in complex social environments such as networks

[64] and markets [100], where the fluctuating beliefs (or perception of others’) of asset values

subject markets to intense volatility [151] and divergent valuations [80].

Several learning models have emerged to explain the formation of beliefs in stochastic

multi-agent games [222], including frequentist and regression approaches [76, 92]. Reinforce-

ment learning (RL) models are widely used and have intuitive descriptions [41, 202], but they

do not produce closed-form solutions to dynamics of agent preferences [232], hampering the

search for generalizable results. These models are generally outperformed by learning frame-

works based on Bayesian inference (BI) [3, 57, 98], where agents process information to inform

history-dependent, optimally predictive, and (in some cases) analytically tractable models of

their environment. BI has thus become foundational in human cognition [17, 105, 147, 156],

and in studying adaptive agent behavior in models of wealth and inequality [28, 141], social

dynamics [187], and coordinated action [142, 248]. Additionally, Bayesian reversal learning

has emerged as a more efficient alternative to reinforcement learning (RL) in more realistic,

non-stationary environments [128] where discerning signal dynamics from noise is difficult

[66, 73].

Solutions to closed-form belief dynamics in stationary environments have contributed to

a growing literature [3, 141, 172]. However, they are not suitable for studying convergence

in interacting models where signals are dynamic [127, 144]. Studying pairwise dynamics in

Gaussian models, for which analytical descriptions of distribution parameters exist [178],
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closes this theoretical gap while opening the door towards characterizing emergent popu-

lation preference dynamics [63, 80]. We can accomplish this using established methods in

non-equilibrium statistical physics, where the relationship between Bayesian inference and

Ornstein-Uhlenbeck processes as noisy, mean-reverting processes with memory is well ex-

plored [185, 206, 223]. In the case of sequential Bayesian estimation, this analysis can used

to study how convergence time relates to behavioral properties.

In this chapter, I propose a model for the statistical dynamics of two agents’ preferences

under Bayesian adaptation to another’s behaviors. By treating behaviors as a Gaussian-

distributed quantity, we can study the dynamics of preferences through the coupled Markov

dynamics of its first-order moments. I first show that in the absence of noise, the asymp-

totic preferences of the agents converge to one another both to a relative value and on a

timescale set by the relative strength of their priors. Later, I introduce noise and show how

the dynamics resemble an Ornstein-Uhlenbeck process with time-rescaling noise. Using the

Fokker-Planck equation (FPE), I then show that the preferences converge to a stationary

distribution with a width set by the uncertainty in their behavior, and with dynamics gov-

erned by a relaxation time, t⋆. I conclude by discussing how convergence can be broken by

introducing unpredictable behavioral shocks, and the model’s implication for studying belief

formation in a host of game-theoreticl and principal-agent problems.

5.2 Bayesian Preference Dynamics

Consider agents A and B, who at time-step i exhibit a statistically distributed, real-valued

behavior xi ∈ X and yi ∈ Y . I denote the normalized distribution of their decisions Pi(X|θA)

and Pi(Y |θB), parameterized by behavioral parameters θA, θB . Consider that the agents can

learn each other’s behavior and are motivated to align their decisions (e.g., [xi−yi]
2 is mini-

mized), but cannot directly coordinate their actions before observation. While coordination

can be accomplished by conditioning behavior on some shared signal [142], this would not
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change the general dynamics and is excluded for brevity.

Each agent infers the other agent’s preferences by observing their cumulative noisy behav-

ior and adjusting their preferences to match. The term preferences implies the first moment

of the distribution of behaviors that spans the agent’s set of choices. This particular setup

is motivated by open questions in principal-agent problems, where agents must coordinate

their behavior through adaptation [214].

History-dependent learning is accomplished optimally through BI [141]. As such, the

distribution of agent A’s behaviors at i = 0 forms a prior for their guess of B′s, P (X = x) ≡

P0(Ỹ = x), for approximated behavior Ỹ (and X̃ for B). The distribution of decisions at

later interactions is given by a posterior Pi(Ỹ |{yi}), where the decision is conditioned on the

history of B’s behavior 2. After n steps, agent A’s posterior is given by (and B by analogy)

Pn(ỹ|{yi}, θA) =
[ n∏
i=1

P (yi|ỹi)
P (yi)

]
P (x|θA), (5.1)

In sequential Bayesian inference, an agent’s behavior at step n follows a Markov process and

is sampled from Pn−1. This process is illustrated in Figure 1, where L denotes the likelihood

given the evidence.

In this work, I assume the behaviors are instantaneously described by Gaussian distribu-

tions with gamma-distributed priors, x ∼ N (µx, σx|θx) and y ∼ N (µy, σy|θy), where θ is

the gamma prior vector. The means, µx, µy, describe the agents’ preferences, whereas the

fluctuation in true behavior is given by the Gaussian standard deviations σx, σy.

Bayesian inference on this choice of distribution results in preference dynamics that are

linear [178]. Therefore, I first study the dynamics of the preference averages, then later

consider how noisy behavior couples into the preference variances. The following analysis

gives a first-order approximation of the complete behavior (vis a vis the preferences) un-

2. Through observation, Ỹ is conditioned on X̃, and agent A’s past behavior, filtered through B, influences
their future behavior. B is similarly conditioned by A’s.
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P(X |θA)

x ∈ X

P(Y |θB)

y ∈ Y

L(x |θB)L(y |θA)

P(X|θA)

x∈X

P(Y|θB)

y∈Y

L(x|θB) L(y|θA)

L(θA |y)
P(Y |θB)

y ∈ Y

L(θB |x)
P(X |θA)

x ∈ X

Behavior Observation Update

Figure 5.1: Diagram of the interaction model. Agents A and B sample behaviors x ∈ X
and y ∈ Y from respective distributions. Agent A updates their prior θA with the evidence
L(y|θa) from B’s behavior, and vice versa.

der Bayesian inference, whereas dynamics of higher order naturally come from higher-order

moments and their couplings. This study assumes σx = σy and leave the dynamics of the

standard deviations under Bayesian inference for future work.

5.2.1 Deterministic Dynamics

First, I will study the dynamics of the preference parameter in the absence of noise. The rule

for updating the mean parameter of a Gaussian-Gamma model under Bayesian inference is

described recursively after n steps as (APP A.4.1) [178]

µnx =
µn−1
x

(n−1
ω + α

)
+ µn−1

y
n
ω + α

, µ1x =
αx0 + y0
1 + α

,

where ω = n/t is the interaction rate. In the continuous limit ω → ∞, µx and µy become

coupled by the linear differential equations
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∂µx
∂t

=
µy(t)− µx(t)

t+ α
,

∂µy
∂t

=
µx(t)− µy(t)

t+ β
, (5.2)

where x0, y0 are the initial preferences and α, β are the hyperprior magnitudes with units

t. Denoted the learning times, these parameters measure how resilient the preferences are

to new evidence. These equations say that the dynamics of the preference parameters µx,

µy decrease as the quantities converge in time. I demonstrate this by constructing the ODE

for the difference measure ∆(t) = µx(t)−µy(t) (correspondingly Σ(t) = µx(t)+µy(t)), with

solution (APP A.4.1)

∆(t) =
∆0αβ

R(t)
, (5.3)

where ∆0 = x0 − y0, and R(t) = (α + t)(β + t) is the time rescaling coefficient. This shows

intuitively that the agents’ preferences converge with power law −2 in time that increases

symmetrically as α, β → ∞, and agent learning times increase.

With intuition for the coupled system established, we can now study the dynamics of the

full system. There exist two solutions to Eq. 5.2 given by the equality of the learning times.

First, when α = β, the dynamics have the asymptotically symmetric solution f(x0, y0, t) =

µx(t) and f(y0, x0, t) = µy(t), where f is defined as

f(x0, y0, t) =
2α2x0 + (2αt+ t2)(x0 + y0)

2(α + t)2
. (5.4)

It follows that lim
t→∞

f = (x0 + y0)/2, and both agents’ preferences converge to the average

of their initial preferences asymptotically, at times t ≫ 2α.

In the case α ̸= β, the solution for µx is given by

µx(t) =
αx0
α + t

+
αβ(x0 − y0)

(α− β)2
K(t) +

t(αx0 − βy0)

(α− β)(α + t)
(5.5)
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where K(t) = ln
[αβ+βt
αβ+αt

]
is a dynamical value with lim

t→∞
K(t) = ln[β/a]. As we would

expect, µx(0) = x0 and at long times, µx(t) → s, where s is the weighted average between

the initial values,

s ≡ x0
[
α/β + ln[β/α]− 1

]
+ y0

[
β/α− ln[β/α]− 1

]
(α− β)2/αβ

.

The solution for µy(t) is given in the appendix, with µy(t) → s asymptotically. These results

are demonstrated at the top of Fig. 5.2 for various learning times, with y0 = 5 and x0 = 1.

In matrix form, these dynamics are given by M[x0, y0] ≡ [x(t), y(t)], where the drift matrix

is

M =
αβ

α− β

M2(t)−M1(0) M2(0)−M2(t)

M1(t)−M1(0) M2(0)−M1(t),


M1(t) = K(t)− 1

(t+α)
, M2(t) = K(t)− 1

(t+β)
.

This invertible matrix has a nonzero determinant det[M(t)] = αβ/R(t). As we will see, this

gives the constant of motion for constructing exact solutions for the dynamics of the system

with noise [49].

Asymptotic preference behavior

Conveniently, the asymptotic preference value can be expressed independently of the initial

condition, allowing us to compute the relative shift in preferences as a function of learning

times. Consider the initial parameter difference ∆0, and the difference in asymptotic value

from the initial parameter δx = x0 − s. The fractional similarity of X is given by fx =

1 − δx/∆0. This expresses how close X has remained to x0 relative to y0, and is useful for

measuring the change in preferences of an agent represented by X (and Y by analogy). It is
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given by

fx = 1− αβ
β/α− ln(β/α)− 1

(α− β)2
, fy = 1− fx. (5.6)

These fractional limits are demonstrated in the bottom of Fig. 5.2 over various learning

times.

So far, I have explored the dynamics of this model without noise, and have shown that

both preference parameters converge to a value set by the relative magnitude of the learning

times. I have shown that the deterministic dynamics are isomorphic and that we glean useful

information about the relative change in preference between the agents without knowledge

of the initial conditions. These results establish intuition for how, on average, agent charac-

teristics determine the convergence process. In the following section, I will introduce noise

to the inference process, and demonstrate a procedure for constructing exact solutions us-

ing the linear and isomorphic properties of the dynamics. While this procedure results in

lengthy analytical solutions that are not explored, I will demonstrate some key insights from

the coupled dynamics, ∆(t),Σ(t).

5.2.2 Full Dynamics under Noisy Sampling

I introduce noise by rewriting Eq. 5.2 as the stochastic differential equations on quantities

Xt, Yt,

dXt =
σy
t+αdW2,t − ∆t

t+αdt, dYt =
σx
t+βdW1,t +

∆t
t+βdt,

with boundary conditions X0 = x0, Y0 = y0. I have introduced white Gaussian noise (WGN)

processes, dW1,t, dW2,t with magnitudes σx, σy that describe i.i.d fluctuations in agent be-

havior. Recalling previously that the asymptotic preferences depend on the initial conditions,
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Figure 5.2: Behavior of the noiseless model in Eq. 5.2 with x0 = 1, y0 = 5. Top: Convergence
values computed from Eq. 5.5 for variable β (left) and variable α (right) for constant reference
agent (α, β = 5), represented by dashed lines. Bottom: Asymptotic fractional drift computed
from 5.6 on a logarithmic parameter scale.

Note that while the dynamics of the SDEs are Markovian, they cannot be ergodic. The dy-

namics of both preferences behave like Ornstein-Uhlenbeck (OU) processes, as the magnitude

of the attractive drifts increases with the magnitude of the difference. However, this OU pro-

cess is time inhomogeneous, as the magnitude of all dynamics decay with a power law in

time. We interpret these dynamics in terms of the underlying Bayesian inference process.

The rate of parameter convergence slows as the agents converge in parameter value, and

the effect of each interaction decreases in time as the agent weighs cumulatively larger sums

of evidence. At long times, when preferences have nearly converged and have accumulated

lengthy histories, small fluctuations dominate the dynamics.

To explore the statistics of the two-dimensional process, I define the bivariate transition

probability distribution (TPD) as P (x, y, t|x0, y0). The evolution for this distribution is

given by the FPE, ∂tP (x, y, t|x0, y0) = F
[
P
]
, where F [·] is defined

F [·] =∂x
(y−x
t+α [·]

)
+ ∂y

(x−y
t+β [·]

)
+

σ2y
2(t+α)2

∂xx[·] + σ2x
2(t+β)2

∂yy[·].
(5.7)

73



One can marginalize the distribution for x, PM (x, t|x0) =
∫
R P (x, y, t|x0, y0)dy, and by

analogy, y. To solve these equations exactly, I transform the set of equations into the frame

of constant motion, defined by M(t), in which the process is purely diffusive and described by

a Gaussian. In this frame, solutions for the dynamics of PM (x, t) and PM (y, t) are exactly

solvable [49]. However, this procedure does not lead to concise results and is detailed only

in the appendix.

As in the deterministic case, we glean tractable insights into the dynamics by solving the

FPE for the coupled system, Xt → ∆t = Xt − Yt, Yt → Σt = Xt + Yt. In the following

section, I will use an exact solution of the FPE to show how the mean and variance of the

TPD of ∆t converges to zero, encoding the system’s entropy into Σt. I will conclude this

work by approximating an upper bound for the asymptotically stationary variance of Σ(t).

5.2.3 Solutions of the FPE for Coupled Dynamics

In terms of the original model parameters, the new SDEs are

d∆t =

√
σ2y(t+β)+σ2x(t+α)

R(t)
dW ′

1,t − 2t+α+β
R(t)

∆tdt

dΣt =

√
σ2y(t+β)+σ2x(t+α)

R(t)
dW ′

2,t +
α−β
R(t)

∆tdt,

(5.8)

where the dW ′ terms are now correlated White Gaussian noise processes. Again, we see that

the difference equation behaves like an OU process, where drift is set by the difference in

preferences, with time-rescaling noise. In this sense, Σt does not couple into the dynamics

of ∆t, permitting us to solve for the statistics of ∆t first, then Σt.
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The Difference Equation

In these coordinates, the statistics of ∆t are fully described by the TPD P∆(z, t|z0, 0) =

Prob{z ≤ ∆t ≤ (z + dz)|z0}, which solves the FPE

∂tP∆ = ∂z
[2t+α+β

R(t)
zP∆

]
+D(t)∂zzP∆, (5.9)

where the diffusivity D(t) =
σ2y(t+β)2+σ2x(t+α)

2[R(t)]2
. To solve this partial differential equation, we

seek the reference frame where the process becomes purely diffusive. Consider the change

of variables z 7→ z′ ≡ z
R(t)
αβ , and t 7→ τ ≡ t. The differential operators transform as

∂z 7→ R(t)
αβ ∂z′ , ∂t 7→ 2t+α+β

R(t)
z′∂z′ + ∂t, where I used the equivalence t = τ → ∂t = ∂τ ,

yielding ∂tP∆ = 2t+α+β
R(t)

P∆+D(t)
R(t)2

α2β2
∂z′z′P∆ (APP A.64). Introducing the rescaling P∆ ≡

R(t)Q∆, diffusion absorbs the drift term and reduces the dynamics to time inhomogeneous

diffusion ∂tQ∆ = D′(t)∂z′z′Q∆ where D′(t) = σ2x(t+α)2+σ2y(t+β)2

2α2β2
. To solve this equation, I

introduce the time rescaling, t → s(t) =
∫ t
0 D(ξ)dξ, giving

s(t) =
σ2x(t+ α)3 + σ2y(t+ β)3

3α2β2
− s0,

where s0 =
σ2xα
β2

+
σ2yβ

α2 . Eq. (5.9) has a Gaussian solution Q∆ ∼ N
(
z′0,

√
s(t)

)
. This

Gaussian transforms back to the moving frame, z′ → z = z′αβ/R(t) to get the full solution

for P∆

P∆(z, t|z0, 0) =
R(t)√
2πσ2∆(t)

exp

[
−

(
z − z0

αβ
R(t)

)2
2σ2∆(t)

]
,

where I have introduced the difference variance as

σ2∆(t) ≡
σ2x(t+ α)3 + σ2y(t+ β)3

3R2(t)
. (5.10)
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This probability density has a few key features. First, lim
t→∞

⟨∆t⟩ = 0 and lim
t→∞

σ2∆(t) = 0

so the distribution asymptotically converges to a delta function at ∆ = 0. By construction,

σ∆(0) = 0 and σ2∆(t) ≥ 0, meaning the variance evolves non-monotonously, and maximizes

at a relaxation time t⋆.

While cumbersome, these results are intuitive in terms of the underlying inference pro-

cess. Agents’ preferences converge to one another almost certainly in a time that increases

with the magnitude of fluctuations but decreases in the strength of the agents’ learning

times. Therefore, the strength of attraction is asymptotically stronger than noise fluctua-

tions. These convergence dynamics are demonstrated by Monte Carlo (MC) simulations in

Figure 5.3 with N = 1000, α = β = 15, where we see that ∆ → 0 on a logarithmic scale in

agreement with theory. Define the observables m(t) = Σ(t)/2, ∆m(t) = m(t)−m(0), where

∆m measures how the mean of the dynamics change over time, and ∆y,m = m(t) − y(t)

demonstrates how y differs from the mean. We see that ∆y,m (∆x,m) converges to zero with

asymptotically vanishing noise, indicating that the preferences are converging to the mean

almost certainly, while the entropy is increasingly expressed through the convergence value.

However, convergence in realistic agents are subject to social, environmental, and biolog-

ical constraints to their interaction time (such as life expectancies). So, while convergence

is asymptotically guaranteed, it is not guaranteed for particularly noisy or stubborn agents

that have interaction time horizons shorter than the convergence timescale.

In the following section, I will use these insights to solve for the TPD of the Σt process.

The Sum Equation

The cumbersome dynamics of ∆t lead to an even more complex analytical description for

Σt. However, we know that lim
t→∞

⟨∆⟩(t) = 0 and lim
t→∞

σ∆(t) = 0. It follows that the initially

bi-variate diffusion process asymptotically collapses into a uni-variate pure diffusion centered

at µΣ,f . Hence, for t → ∞, the transition probability is approximated as [139]
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Figure 5.3: Coupled dynamics of stochastic agent preferences with x0 = 0, y0 = 2, α =
β = 25 and 95% CI shaded regions. Top: MC Dynamics of ∆t match theory. Inset:
The variance initially increases, reaches a maximum at t⋆, and then decreases. Bottom:
The mean-adjusted dynamics (∆m = Σ/2) is constant for this choice of parameters, with
asymptotically constant noise. The difference in agent parameters from the mean, ∆m − y,
∆m − x converge to 0 with time vanishing noise. Inset : Selected trajectories demonstrating
different asymptotic values.

d(Σt − µΣ,f ) = dΣt ≈
√
σ2y(t+β)+σ2x(t+α)

(t+β)(t+α)
dW ′

2,t,

where the constant µΣ,f is given in Eq.(A.55). The corresponding TPD PΣ(z, t|µΣ,f )dz =

Prob{z ≤ Σt ≤ (z + dz)|σ0} solves the FPE:

∂tPΣ =
σ2x(t+β)2+σ2y(t+α)2

2R(t)
∂zzPΣ.

By inspection, PΣ is a Gaussian law with mean µΣ,f and by an ad-hoc time re-scaling, the

time-independent variance is computed as [139]

⟨Σ2
t ⟩ = σ2x

[ 1
α − 1

α+t

]
+ σ2y

[ 1
β − 1

β+t

]
,

(5.11)

We now see that the second moment (and hence the variance) converges in the limit t →
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Figure 5.4: Asymptotic variance upper bound ⟨Σ2
t ⟩ under various parameters Top: ⟨Σ2

t ⟩
increases with agent noise with agreement between MC simulations and theory. Bottom:
Variance decreases with agent learning time. Left: Variance upper bound ⟨Σ2

t ⟩, diverges
from empirical results as β and α diverge. Right: Deviation between the upper bound and
MC experiments as a fraction of theoretical prediction.
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∞ to a stationary value ⟨Σ2
t ⟩ =

σ2x
α +

σ2y
β . Similarly to the case of σ2∆, the variance of

this distribution increases with the fluctuations in behavior and decreases with hyperprior

strength. Note, though, that this is an upper-bound estimation for variance, as [139]

σ2Σ(t) = ⟨(Σt − µΣ,f )
2⟩ = ⟨Σ2

t ⟩ − µ2Σ,f ≤ ⟨Σ2
t ⟩.

Furthermore, from the convergence of ∆t → 0, we know preferences converge to Xt = Yt,

and the variances converge to ⟨X2
t ⟩ = ⟨Y 2

t ⟩ =
⟨Σ2

t ⟩
2 as t → ∞.

The asymptotic preference variance demonstrated in Eq. 5.11 shows that more noisy

agents who learn quickly will converge to more entropic states. This is because the fluc-

tuations of one agent are recorded and immediately reciprocated by the partner agent (on

average), biasing future preferences towards early fluctuations. When noise is strong or learn-

ing fast, agents weigh fluctuations more heavily than weak noise or slow learning. In both

cases, these characteristics more strongly ossify early, noisy shifts in preferences before mean

behavior is fully resolved, coupling more noise into the asymptotic behavior of the system.

MC simulations demonstrate the relationships between these quantities and the variance in

Fig. 5.4. We also see through simulations that the percent error in the upper bound estimate

and the true variance are closest when β = α, and increases as the learning times diverge.

However, this difference decreases as both learning times approach large values.

5.3 Discussion

In this chapter, I studied a simple model for pairwise belief formation in Bayesian agents

who adapt to each other’s behaviors. I showed that preferences converge on a timescale and

to a value given by the agents’ relative learning times. Using the Fokker-Planck equation

I then explored the convergence characteristics of the Gaussian PDF for preferences in the

combined frame. I showed that while agents’ preferences invariably converge to one another,
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the relative value is noisy, is characterized by a relaxation time t⋆, and is bounded above by

a sum of the standard deviations of agent behaviors weighted by the learning times.

There remain several challenges concerning the full characterization of this system. First,

deriving the full dynamics of Σt would be useful for attaining better bounds on the asymptotic

coupled behavior. Second, solving the nonlinear dynamics for the covariance matrix of

the inference process gives the full dynamics of the interaction, although this would likely

require numerical treatment. Once we understand the full dynamics of this interaction, we

can scale this model to include agents with multidimensional, co-varying preferences. This

builds towards a Bayesian analog of a Self-Other Model [202], wherein agents coordinate

decisions by approximating the other agent’s behavior and serve as a microfoundation for

more robust statistical mechanical models of network belief formation [63, 64]. However,

doing so also requires mechanisms for polarization, such as biased assimilation [162] where

agents become resistant to preferences that diverge strongly from their own. While this

behavior has been explored in DeGroot models of opinion formation [65], I must still explore

how these interactions compete with convergence dynamics in a Bayesian context.

Further work can extend this analysis by studying preference dynamics in agents that

must balance learning each other’s signals with some additional, external signals. When only

one agent observes an additional, stationary signal, it is natural that the agents’ preferences

would converge to a value biased by the external signal. However, when one agent observes

an additional, non-stationary signal, as a form of unpredictable shock, or both agents observe

separate, stationary signals as a form of "reality check", their preferences are not guaranteed

to converge [80]. The existence of a phase transition would depend on whether the external

signal alters their preferences on a timescale comparable to the relaxation time t⋆, and can

be applied at scale to study many-body preference dynamics.

Although, this work can already be applied to game theoretic models of dynamical per-

suasion [134], dynamical prisoner’s dilemma [154] and other games of trust and coordination
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[10, 51, 149], where the transmission of preferences through behavior determines asymp-

totic Nash equilibria. This formalism can also be adapted to study how preferences evolve in

principal-agent models where there remain questions of how the value and variance of asymp-

totic preferences behave as agents adapt to post-contract disagreements. In cases where the

agent serves as an information channel for the principal [214]. Models of information-driven

resources dynamics [141] can be used to study how the convergence rate affects agent re-

sources, and how the entropy of convergence values affects the quality of information trans-

mitted to the principal. Generally, these results constitute a step towards more robust

quantitative models of inter-agent and market interactions that incorporate findings from

the cognition community.

81



CHAPTER 6

CONCLUSION AND OUTLOOK

In this dissertation, I derived general nonequilibrium statistical dynamics for the behavior

of adaptive agents in uncertain environments that reward accurate prediction. I have shown

that agents optimally grow resources in proportion to the information between their predic-

tive signal and the future states of their environment. Information theory then provides a

natural framework to study adaptive and interactive decision-making processes. For exam-

ple, growth is maximized in the long run through Bayesian inference, as agents use their

past experiences in their environment to improve decision-making given their signal. Other

decisions, such as the selection of signals or with whom to pool information are described by

the availability and compatibility of information across signals. These results demonstrate

the deep connections between the emergence of growth, inequality, cooperation, and com-

petition among intelligent, forward thinking agents. This work provides a highly modular

starting point for building models of behavior on dynamical networks, based on principles

of optimal learning, using a minimal number of assumptions about the structure of agent

behaviors or preferences, and environments.

In this work, I have primarily shown what decisions are optimal and how to learn from

experience optimally, given a signal or set of signals. To apply these principles to real-world

dynamical systems, I must now turn to understanding how suboptimal agents navigate their

environments. We must study how agents evaluate the expected payoffs of a signal and

how that computation affects their signal selection. We also must understand how agents

project the payoffs of learning, and how environmental characteristics such as volatility or

life expectancy, may affect their decision to invest in learning. Lastly, we must develop

dynamics for group formation given the principles of optimality in group behavior developed

in this work. That is, understand how the availability of synergy in an environment affects

agents’ decisions to form collectives under costs to sharing information. Understanding these
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concepts will allow us to build models of adaptive, collective dynamics that avoid heuristics or

unverified assumptions, and build towards a more unified understanding of complex systems.

Achieving this goal involves applying control theory guided by principles developed in this

work. Control theory provides principled mechanisms for understanding optimal adaptation

in nonstationary, noisy environments with feedback from the previous decisions of agents.

This allows us to understand how individuals learn under uncertainty to the value of payoffs,

and how emergent agent collectives satisfy the principle of maximum synergy. In this section,

I will define the key challenges to reaching this goal, and then illustrate three general research

opportunities.

6.1 Adaptation in volatile environments

The mathematics of compounding dynamics show that volatility (growth rate fluctuations)

reduces the rate of returns to growth and learning [140]. Empirical evidence in psychol-

ogy suggests high volatility constrains agents to exploit more short-term gains rather than

exploring [90], leading to higher discounting of possible future gains. It remains unclear

in this context to what extent agents can arrive, over a life course, at optimal policies,

consistent with their environmental opportunities. This raises several questions: In terms

of adaptation, does high volatility early in life (or in a learning process), or evidence of a

low life expectancy (through environmental evidence) contribute to strategies that are more

exploitative and less exploratory? Do agents in these conditions adhere to the long-term

optimal strategy described in prior work, or do agents rescale their optimization time? Fi-

nally, can we determine when is the theory not predictive at either the level of populations

or individuals, and can we identify what behaviors require new theoretical mechanisms?

To address these questions, we require learning techniques, such as reinforcement learn-

ing (RL), that describe adaptation under constraints to exploration such as learning costs

or budgeting. Through a combination of RL techniques guided by the information-driven
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resource and cooperative dynamics described in prior work, we can study how agents in

these constrained environments learn and develop policies dynamically. This will determine

whether decision parameters evolve predictably on average by comparing learning histories

between the agents described by the theory in this dissertation and RL agents, and exper-

imentally verify theoretical schemes of resource-constrained learning and group formation.

In general, this will enable a comparison between these policies and the theoretical optimal,

how policy disparities contribute to inequality across agents and environments, and whether

collectives of agents under these constraints realize the maximum synergy principle. This will

clarify in which environmental circumstances agents fail to learn the available information

in their environment, arriving at divergent information or suboptimal cooperatives.

This work would contribute to our understanding of adaptation in highly volatile environ-

ments and make several contributions to advances in theories of social choice and artificial

intelligence (AI). It will improve our understanding of noisy cognition, a topic critical to

studying learning, growth, and inequality in realistic settings where agents make intertem-

poral decisions. This work also motivates and contributes to the study of learning under

non-ergodic reward schemes, an emerging topic in the AI and living systems literature [13].

6.2 Tradeoffs in Cooperative Strategies

Agents that make collective decisions over shared signals experience synergy benefits that

depend on the conditional dependence of their signal given an event. I established in this

text that information and resource sharing provide complementary modes of cooperation.

However, I have not yet characterized the nontrivial tradeoffs between these two strategies

depending on description of the environment. Particularly, signals that are more statis-

tically independent tend to promote resource sharing, while statistically dependent signals

may promote information sharing, depending on their conditional dependence. Furthermore,

agents that make conditionally independent decisions, and thus experience statistically in-

84



dependent growth in a stochastic environment, benefit from resource sharing on timescales

that grow with the environment’s volatility [79]. This trade-off is reflected in the varied

strategies observed in human organizations. For example, firms that prioritize innovation

and market capitalization strive to integrate new signals through research and development

or recruitment, in a sense maximizing their synergy. Conversely, governments pool resources

to redistribute wealth or provide service, through tax solicitation. Some collectives like con-

glomerates engage in a mixed cooperation strategy by overseeing diverse portfolios of firms, a

strategy that hedges uncertainty between firms while leveraging synergy within firms. There

remain open questions about whether there is an optimal cooperation strategy tied to envi-

ronmental characteristics, whether there exist discrete phase transitions between dominant

cooperation strategies, and under which circumstances mixed strategies emerge when there

are costs to resource and information sharing. Additionally, we need theoretical frameworks

that can handle how these considerations differ across scales of cooperation.

These questions can be answered through a direct application of the methods developed

in this dissertation, both standard statistical physical treatments and numerical simulations.

Previous literature [79] established a suitable order parameter that measures the fraction of

individual resources shared between members of a population. Analogously, we can define an

information channel between agents within a group with tunable noise parameters. Scaling

the noise parameter controls how well a signal is transmitted between members of a group,

making uncertain the benefits of signal sharing under transmission costs. We can then

compute the sharing benefits, terms of synergy, as a function of the noise parameter, and

associated sharing costs, identifying the threshold cost to sharing an agent can bear. This

analysis can then be repeated for the combined case of information and resource sharing

to produce a two-dimensional phase diagram. This will illustrate which strategy, between

information sharing (affected by transmission noise), and resource sharing (affected by signal

coupling) emerges as the dominant strategy. These results can be validated through Monte-
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Carlo simulations of dynamics similar to those in prior works, and compute time horizons

for realizing the average growth rates.

These calculations provide a critical development towards constructing fully integrated

models of agent resource growth in cooperative environments. This will not only improve

the existing toolkit for studying inequality and cooperation phenomena in stochastic multi-

plicative growth models but will take a necessary, theoretically sound step towards modeling

heterogeneous interactions and games in more complex spatial networks.

6.3 Principal-Agent and Other Competitive Interactions

The value of information in firms and markets has been well known for some time [118]. It

has been studied in the context of financial markets, where decisions are often optimized

for immediate returns, but not always. This market information is aggregated by averaging

competing signals that each introduce insight about the value of some product. However, the

dynamical effects of other aggregation methods such as pooling have not yet been studied

in market contexts. As a result, there is a critical lack of theory regarding market dynam-

ics among forward-thinking, cooperative agents optimizing returns in a noisy environment.

Particularly, there are open questions about whether agents’ preferences converge in the

presence of external signals [80], and whether adaptive agents provide stable information

channels under pressure from management [215]. Furthermore, positive feedback systems

are present in realistic environments whereby agents’ behaviors influence the time evolution

of the statistics of their environment. The mechanisms of these interactions remain unex-

plored, as are the effects of these interactions on the emergence of inequality and social

organization in socially driven environments.

Previous work on preference convergence [139] introduced an analytical approach to

studying competing Bayesian agents, a first step toward understanding multi-agent inter-

action schemes. Using stochastic dynamical theory supported by Monte Carlo simulations,
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we can explore how external, stationary signals, representing a “reality check” and non-

stationary signals, representing generalized shocks, affect the convergence properties of the

agents’ preferences. Similar to the prior topic, we can explore whether statistical phase tran-

sitions exist between convergent and non-convergent preferences across populations on finite

timescales. We can then fit this model to fluctuating market data and introduce market

resource dynamics [28] (i.e. information advantages translate to growth, rather than total

information) to study the evolution of resource inequality in market contexts. We can also

apply these results to ongoing research into the dynamical principal-agent problem among

agents that balance various internal and external signals [215]. This research will use simi-

lar resource and information dynamics to explore how the adaptability (via learning rates)

of principals and agents alike affect the long-term performance (via resources) of public

institutions.

This research quantitatively incorporates results from the cognitive science community

and stochastic growth dynamics to address questions in the organizational sciences and public

performance literature. Particularly, it will enable principled study of reputation dynamics

in the principal-agent problem and the evolution of preferences in dynamical markets. This

development will contribute to a broad literature on the properties and dynamics of markets.

Specifically, it will enable us to quantitatively articulate how the dynamics of individual

growth or the complementarity of skills and information across competing organizations

affect the dynamics of prices and the emergence of inequality in competitive settings.

6.4 Expanding the environment

The previous three sections have deepened our understanding of agent adaptation given an

environment. We accomplished this using simple, stationary, black-box sampling of events

conducive to closed form expressions for learning and resource dynamics. While these treat-

ments gave us valuable, general insights, real-world environments are more complex. Incor-
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porating these complexities can advance our understanding of agent adaptation.

We have identified four key mechanisms that should be studied to enrich our under-

standing of adaptive agent behavior. First, environments often exhibit history dependence,

where past states and decisions affect future conditions. Second, the sampled state of an

environment may consist of several potentially causally related events, to which agents with

different functions respond uniquely. Third, agents experience feedback through their en-

vironment from their decisions and decisions of others, shaping future decisions. Fourth,

environments have internal constraints, like energy availability, and they impose constraints

on agents, such as life expectancy. Although these considerations are not independent, each

imposes unique constraints that break the stationarity assumption, affecting the resource

optimization and learning processes. Addressing these factors is critical for developing more

robust, data-driven models of adaptive behavior.

In outlining numerous challenges, this dissertation may have impressed upon the reader

that more questions have been raised than answered. However, this work has made signifi-

cant progress by introducing a cohesive framework that articulates how environmental char-

acteristics influence adaptive agent behavior. It establishes connections between observable

quantities, such as resources and growth, and cognitive and behavioral mechanisms, such

as learning and group formation, all grounded in a modular theoretical foundation. This

unified quantitative theory will enable theoretically robust social systems research across

various scales, inspiring optimism for the future of this emerging field.
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APPENDIX A

APPENDIX

A.1 Heterogeneous Growth

This appendix and the following appendices contain analytical derivations for the results

presented in this dissertation.

A.1.1 Parameter Covariances

We compute the mean population effective growth rate over a population of size N by

separating the expected growth rate into a mean and covariance term

⟨η̄r⟩N =
1

N

N∑
j=1

η̄jrj , (A.1)

=
1

N

N∑
j=1

(η̄j −G)rj +
1

N

N∑
j=1

Grj , (A.2)

= Gµ0 + covN (η̄i, ri), (A.3)

(A.4)

where the population growth rate can be factored out as G′ = G+ covN (η̄i,
ri
µ0
).

Assuming r is a lognormal distributed quantity, then so is r/µ0. Define the normally

distributed variable y ≡ ln r/µ0 ∼ N (0, σr), then the covariance is equal to covN (η̄, ey).

The first moment is calculated
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⟨η̄ey⟩N =

∫
dη̄dyη̄eyP (η̄, y), (A.5)

=

∫
dyey⟨η̄⟩Y=y =

∫
dyey(G+ ρ

ση̄
σy

y), (A.6)

= G⟨ey⟩N + ρ
ση̄
σy

⟨yey⟩N = (G+ ρση̄σy)e
σ2y/2. (A.7)

Where the expectation value of yey is calculated in [237]. With an expectation value

defined, the covariance becomes

cov(η̄, ey) = ⟨η̄eη̄⟩N − ⟨η̄⟩N ⟨ey⟩N , (A.8)

= (G+ ρση̄σy)e
σ2y/2 −Geσ

2
y/2, (A.9)

= ρση̄σye
σ2y/2. (A.10)

In the main text, I define σy as the variance in lognormal resources, σr.

A.2 Learning in Shared Environments

A.2.1 Stochastic Growth Model

Multiplying and dividing by P (e|s) in the logarithm of Eq. 2 yields

γ =
∑
e,s

P (e, s) log

[
weP (e|s)X(e|s)

P (e|s)

]
=

∑
e,s

P (e, s) log
P (e|s)
P (e)

− P (s)P (e|s) log P (e|s)
X(e|s)

= I(E;S)− Es
(
DKL

[
P (E|s)||X(E|s)

])
,

(A.11)

where Es is an expectation value over all signal states.
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Growth rate in the multinomial model

Consider a conditional probability that is degenerate off-diagonal,

P (e|s) = f(p, l) =


p if s = e,

1−p
l−1 if s ̸= e.

(A.12)

The “correct" outcome corresponding to the sampled event occurs with conditional prob-

ability 0 < p ≤ 1, and all other "incorrect" guesses occur with some uniform probability

normalized to

l−1∑
e

P (e|s) = 1− p; s ̸= e. (A.13)

We describe the agent’s posterior for all agents with the same form, with the "correct"

binomial coefficient x. Thus, I calculate the growth rate by taking the expectation value

of the posterior over the set of signals, summing over diagonal and off-diagonal components

separately.

The mutual information separates into a term of only l = 1/P (e), an on-diagonal, and

off-diagonal term

I(E;S) =
l∑
e,s

P (e, s)
[
log l + logP (e|s)

]
= log l + p log p+ (1− p) log

1− p

l − 1

= H(E)−H(E|S),

(A.14)

with the entropy of the outcome given by H(E) = log l and the reduction in entropy by the

signal given by H(E|S) = −p log p − (1 − p) log 1−p
l−1 . The information maximizes as p → 1
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and increases with l, and vanishes at p → 1/l. The divergence is

Es
[
DKL(P ||X)

]
=

∑
e,s

P (e, s) log
P (e|s)
X(e|s)

= p log
p

x
+ (1− p) log

1− p

1− x
,

(A.15)

which is always non-negative and vanishes when x → p. We can write the growth rate as

the difference between these two terms as

γ = E
[
log lf(x, l)

]
= log l + p log x+ (1− p) log

1− x

l − 1
. (A.16)

Variance of multinomial growth model

The volatility can be calculated via the second moment of the stochastic growth rate as

σ =

√
E
[
log

(
lf(x, l)

)2
]− E

[
log lf(x, l)

]2
. (A.17)

E
[
log lf(x, l)

]
is simply γ, and the second term is

E
[
log lf(x, l)

]2
=

(
log l + p log x+ (1− p) log

1− x

l − 1

)2

= log2 l + p2 log2 x+ (1− p)2 log2
1− x

l − 1

+ 2p log l log x+ 2(1− p) log l log
1− x

l − 1

+ 2p(1− p) log x log
1− x

l − 1
.

(A.18)

The first term expands to
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E
[
log

(
lf(x, l)

)2]
= Ee,s

[
(logP (e|s) + log l

)2]
= log2 l + p log2 x+ (1− p) log2

1− x

l − 1

+ 2p log l log x+ 2(1− p) log l log
1− x

l − 1
.

(A.19)

Combining these two quantities yields the volatility, where (1− p)− (1− p)2 = p(1− p),

σn =

√
p(1− p)

[
log2 x+ log2

1− x

l − 1
− 2 log x log

1− x

l − 1

]
=

√
p(1− p) log

x(l − 1)

1− x
.

(A.20)

The variance of investment clusters of size 1/ω scales as

σ2t =
1

γ
σ2n, (A.21)

where the subscript t denotes the temporal variance.

A.2.2 Bayesian Inference with Latent Dirichlet Allocation

NOTE: UPDATE FROM UPDATED SUPPLEMENT, TYPOS BELOW

In this section, I derive the Latent Dirichlet Allocation (LDA) mode for the degenerate

multinomial environment. The Bayesian update equation is given by

X(e|s) ∝
(
m

(−e)
(−s)

+ β̃es
)

(M (−s) + B̃s)
(n(−e) + α̃e), (A.22)

for m
(−e)
(−s)

number of samples of outcome s conditional on e excluding the current, n(−e)
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the number of samples of e excluding the current in a batch of n =
∑

e n(−e) trials, where

M (−s) =
∑

em
(−e)
(−s)

. We set αe = 1, as every event is equally likely. For s = e, β̃es = xe, and

for s ̸= e, βes =
(l−1)
1−x to impose degenerate off-diagonal conditions on s|e. We introduce

B̃s =
∑

e β̃
e
s , whereby symmetry, B̃s ≡ B̃ = 1, and I count over the diagonals, ne=s, and off

diagonals, ne ̸=s. Therefore the diagonal environmental posterior is

P (e|s) ∝
(
m

(−e)
(−s=e)

+ xe
)

(
M (−s) + 1

) (n(−e) + 1), (A.23)

and the off-diagonal is

P (e|s) ∝
(
m

(−e)
(−s̸=e)

+ 1−xe
l−1

)
(
M (−s) + 1

) (n(−e) + 1). (A.24)

Asymptotic, temporal behavior

We introduce the temporal behavior, with two constants. We multiply the number of obser-

vations by the observation rate ω, with units samples/time and the inference rate k, with

unit time/update. The inference rate counts the number of samples per Bayesian update,

and the observation rate counts the updates per unit time. We introduce the inference time,

k, a hyperprior magnitude that weighs the evidence versus the prior, leaving

P (e|s) ∝
(m

(−e)
(−s)

/ω + β̃esk)

(M (−s)/ω + 1k)
(n(−e)/ω + 1̃/k). (A.25)

Over many observations, the law of large numbers argues that each outcome count con-

verges to the environmental posterior with some noise, ξi as
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M (−s)/ω → P (s)Nt+ ξs

n(−e)/ω → P (e)Nt+ ξe

m
(−e)
(−s)

/ω → P (s|e)Nt+ ξs|e,

(A.26)

where the ξ′s are fluctuation terms representing deviations from the mean. Over many i.i.d

observations of events, ξ → 0. The marginal terms converge to uniform over all states, and

the agent posterior converges to the dynamical distribution

X(e, λ|s) = P (s|e)λ+X(s|e)
1 + λ

, (A.27)

where I have converted to the time domain t = N/ω, and substituted the dimensionless infer-

ence sample size λ = t/kl. Over long times, the distribution converges to the environmental

posterior by

X(e, λ|s) ∝ P (s|e)λ+X(s|e)
P (s)λ+ 1

(
P (e)λ+ αe

)

→
(
P (s|e) + X(s|e, 0)

λ

)
P (e)

P (s)
= P (e|s),

(A.28)

yielding power law time-averaged behavior. At early times, as t → 0 the posterior is

proportional to the agent’s initial agent posterior, X(E|S), and converges to P (E|S) as

kl ≪ t → ∞. If agents are initialized with the same diagonal posterior value such that

X(s|e) = X(e′, s′) for all e = e, s′ = s′, We can assume that the diagonals of an agent

uniformly converge to p in time such that X(s|e) ∝ x(t) for all s = e,
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A.2.3 Population variance of the average growth rate

The mean growth rate is computed, where for brevity, the expected divergence for agent i

with signals si ∈ Si is given as Esi

(
DKL

[
P (E|si)||X(E|si

])
≡ Di, and the mutual informa-

tion between individual signals and the environment, I(E;Si) ≡ Ii

⟨γi⟩ =
1

N

∑
i

I(E;Si)− Esi

(
DKL

[
P (E|si)||X(E|si

])
=

〈
Ii
〉
− ⟨Di⟩,

(A.29)

where angle brackets denote population arithmetic means. The variance in growth rates is

calculated

VarN [γi] =
〈
(γi − ⟨γi⟩)2

〉
,

=
〈
γ2i + ⟨γi⟩2 − 2γi⟨γi⟩

〉
= ⟨I2i ⟩ − ⟨Ii⟩2 + ⟨D2

i ⟩ − ⟨Di⟩2

− 2
(
⟨IiDi⟩ − ⟨Ii⟩⟨Di⟩

)
= VarN [Ii] + VarN [Di]− 2CovarN

[
IiDi

]
.

(A.30)

When all agents are exposed to the same environment and share the same likelihood, the

first and third terms vanish, leaving

VarN [γi] = VarN

[
Esi

(
DKL

[
P (S|si)||X(E|si)

])]
. (A.31)

Multinomial parameter variance

The binomial variance can be computed exactly as
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VarN
[
xi(λ)

]
=

1

N

N∑
i

[
pλ+ xi
1 + λ

]2
−
[
pλ+ ⟨xj⟩
1 + λ

]2

=
1

N

N∑
i

[
2
xipλ+ x2i
(1 + λ)2

− 2
⟨xj⟩pλ− ⟨xj⟩2

(1 + λ)2

]

=
⟨x2⟩ − ⟨xj⟩2
(1 + λ)2

=
σ2x

(1 + λ)2
.

(A.32)

Multinomial growth rate variance

The variance of a function, γ(x), of a random variable, x, is given generally by the Taylor

expansion of that function [62]. It is written as

VarN
(
γ[xi(λ)]) = γ′

[〈
xi(λ)

〉]
VarN

[
xi(λ)

]
− γ′′

[〈
xi(λ)

〉]2
4

Var2N
[
xi(λ)

]
+ T̄ 3,

(A.33)

where primes denote differentiation with respect to x, and T̄ 3 are higher order terms that

are only relevant at small times. The first and second-order derivatives of γ are given by

γ′(x) =
p

x
− 1− p

1− x

γ′′(x) = −
[
p

x2
+

1− p

(1− x)2

]
,

(A.34)

and the variance term is given by

VarN
[
xi(λ)

]
=

σ2x
(1 + λ)2

. (A.35)

The growth rate variance after small times is given by
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VarN
(
γ[xi(λ)]

)
=

[
p

x̄
− 1− p

1− x̄

]
σ2x

(1 + λ)2

+

[
p

x̄2
+

1− p

(1− x̄)2

][
σ2x

(1 + λ)2

]2
,

(A.36)

where for brevity, x̄ ≡
〈
xi(λ)

〉
.

A.3 Information Sharing

A.3.1 Derivation of Information Synergy

Consider a target statistical variable E (environment), that I wish to predict using l other

variables (signals) S = {S1, . . . , Sl}. The mutual information between each signal Si sepa-

rately and E is given by [25]

I(E;Si) = H(E)−H(E|Si) = −∆H(E)

∆Si
. (A.37)

where H(E) is the Shannon entropy of E, and the variation measures the difference in entropy

of the event when conditioned on the signal. From the rules of information aggregation, this

expression generalizes to information across every added signal [32]. The mutual information

between the event and the set of several signals is given by

I(E;S) =−
l∑

i=1

∆H(E)

∆Si
−

l∑
i>j=1

∆2H(E)

∆Si∆Sj
− · · · − ∆lH(E)

∆S1 . . .∆Sl
. (A.38)

The first term of this expansion is just a sum over the mutual information of each in-

dividual signal and the environment. The goal of this section is to show that the inclusion

of each new signal introduces a coefficient of redundancy of progressively higher order. The

first term is
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∆2H(E)

∆Si∆Sj
=H(Si)−H(Si|E) +H(Sj)−H(Sj |E)−H(Si, Sj) +H(Si, Sj |E)

=H(Si)−H(Si|E)−H(Si|S2) +H(Si|Sj , E)

=I(Si;Sj)− I(Si;Sj |E) ≡ R(E;Si;Sj),

(A.39)

where I used the identity H(A,B) = H(A|B) + H(B). We denote R as the coefficient

of redundancy, which measures the difference in mutual information between the variables,

I(S) ≡ I(S1; . . . , Sk), and the mutual information of the variables conditioned on E, I(S|E).

When I(Si;Sj) < I(Si;Sj |R), the signals contain less mutual information in the absence of

the event (we gain information by considering the event), and R(Si;Sj ;X) < 0. In this case

agents experience a positive benefit from pooling information, which I call synergy.

To demonstrate this effect to higher orders in goups of signals, I perform a similar calcu-

lation for a three-signal interaction.

∆3H(E)

∆Si∆Sj∆Sk
=H(E)−H(E|{Si, Sj , Sk})

=H(Si) +H(Sj) +H(Sk)−H(Si|E)−H(Sj |E)−H(Sk|E)−H(Si, Sj)

−H(Sj , Sk)−H(Sk, Si) +H(Si, Sj |E) +H(Sj , Sk|E) +H(Sk, Si|E)

+H(Si, Sj , Sk)−H(Si, Sj , Sk|E)

=H(Si, Sj , Sk)−H(Si|Sj)−H(Sj |Sk)−H(Sk|Si) +H(Si|Sj , E)

+H(Sj |Sk, E) +H(Sk|Si, E)−H(Si, Sj , Sk|E)

=I(Si;Sj ;Sk)− I(Si;Sj ;Sk|E) ≡ R(E;Si, Sj , Sk).

(A.40)

We see that an analogous redundancy coefficient arises in three dimensions. This can gener-

ally be retrieved for arbitrary number of dimensions through a similar iterative procedure.
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I refer to the sum of these moments collectively as the redundancy of the joint distribution,

denoted RP [32],

RP ≡−
l∑

i>j=1

∆2H(E)

∆Si∆Sj
− · · · − ∆lH(E)

∆S1 . . .∆Sl

=
l∑

i>j=0

[
I(Si;Sj)− I(Si;Sj |E)

]
+ · · ·+ I(S1; . . . ;Sl)− I(S1, . . . , Sl|E)

. (A.41)

Note that redundancies of lower order than cardinality of the signal space must be computed

over every combination of signals. For example, when l = 3, there are three second order

redundancy terms.

This expansion generally defines the benefits to cooperation over increasingly higher

orders of cooperation (number of signals). This expression can be used to compute the

relative strengths of the various orders of interaction for any set of signals and environmental

variables, given their conditional distributions.

Stochastic Growth in Synergistic Environments

Consider an environment with events conditionally dependent on signals characterized by

a joint distribution P (E,S) for event E and l signals S. Consider a cooperative Kelly

investment scheme whereby each participant, agent i, witnesses signal si ∈ Si, and informs

the collective how to invest their shared resources r. The mechanics of pooling resources

and collectively investing will be discussed below. Kelly’s formalism can be adapted by

expanding the environmental probability to contain l signals, P (E, S) → P (E,S), as can

the betting matrix X(E|S) → X(E|S), where S = {S1, . . . , Sl}. When odds are fair, the

Kelly growth rate is given by the returns to each investment, averaged over the probability

of that signal, event pair
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Figure A.1: Trial count by group identification for N=5000. Zeros denote the exclusion of a
signal, and ones the inclusion.

G =

E,S∑
e,s

p(e, s) log
x(e|s)
p(e)

. (A.42)

We expand this equation by inserting p(e, s) into the numerator and denominator of the

log

G =

E,s∑
e,s

p(e, s)

[
log

p(e, s)

p(s)p(e)
− log

p(e|s)
x(e|s)

]
. (A.43)

These two terms can be simply expressed as G = I(E;S) − Es
[
DKL

(
P (E|s)||X(E|s)

)]
,

similar to previous work, but we can decomposes this equation in terms of redundant infor-

mation across the signals using equations (A.38) and (A.41).

A.3.2 Monte-Carlo Simulation Details

To study the dynamics of resources in the UXOR environment, I simulated agent investments

in a Monte Carlo sampled environment. We randomly assigned N = 5000 agents signals in

an l = 4 environment, then randomly assigned them to groups sized l ≤ Ng ≤ 11. This
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results in an ensemble of groups with cooperants 1 ≤ kg ≤ 4. Each instance of a group

represents one sample of that group configuration. This random assignment scheme, selected

for convenience, results in a different sample size for each group identity, where identity is

given by the types of signals present. The sample size of a group type scales inversely with

the number of combinations of signals of each order l. However, each group combination

is sampled between 50 and 225 times, resulting in resolvable statistical behavior across all

group types. Figure S1 gives the statistics of the groups simulated in Figure 4 of the main

text.

The entire population, divided into groups, is instantiated in an environment with the

same environmental parameters. The UXOR gate is defined with parameters: p1 = .1473,

p2 = .7236, p3 = .46451306, p4 = .7068, p5 = .4658, p6 = .3594, p7 = .9708, p8 = .3709,

p9 = .8788, p10 = .7094, p11 = .7972, p12 = .6380, p13 = .4327, p14 = .2238, p15 = .4044,

p16 = 0.15949486. These parameters were discovered from a random search of parameter

space and were selected for their convenient qualitative properties.

During each step of the simulation, I reveal Bernoulli-sampled signals to the groups,

whose agents make collective decisions on which events to allocate resources. In this sense,

every agent in the group views the same signals, and the group decides the subspace of

signals available via the members. Allocations and resource and information rewards are

processed identically to prior works, where an LDA defines the update to a group’s decision

parameters. For each group, I track the resources of a representative agent, informed by the

group, investing their individual resources through time.
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A.4 Mutual Adaptation

A.4.1 Defining the Deterministic ODE

This section was developed in collaboration with Prof. Max-Olivier Hongler of the EPFL

School of Engineering.

The equation for the mean of the Gaussian Gamma for variable x is given by

µnx =

∑n
i=0 yi + µ0α

n+ 1 + α
=

yn−1 +
∑n−1

i=0 yi + µ0α

n+ 1 + α

The sample yn corresponds to the mean of P (y), µy, plus some noise ξn. In the deter-

ministic case, ξn = 0, and remaining two terms constitute µn−1
x (n + α). We can therefore

redefine this quantity as Eq. 5.2 from the main text

µnx =
µn−1
x

[
(n− 1)/ω + α

]
+ µn−1

y
n
ω + α

, (A.44)

where I have written n → n
ω to enable a conversion to continuous time variables later on. In

the deterministic case, I define the difference operator

∆µx = µnx − µn−1
x =

µn−1
x

[
(n− 1)/ω + α

]
+ µn−1

y
n
ω + α

− µn−1
x (nω + α)

n
ω + α

=
µny − µnx
n
ω + α

(A.45)

which as ω → ∞ converges to the continuous time ODE used in the main text. Finally,

Gaussian noise will be linearly added to the deterministic dynamics.
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Deterministic evolution of preferences

I start by solving the deterministic motion, namely the set of ODEs:


dµx(t)
dt =

µy(t)−µx(t)
t+α , µx(0) = x0

dµy(t)
dt =

µx(t)−µy(t)
t+β , µy(0) = y0.

(A.46)

To process further, I introduce the new variables:

µ∆(t) =
[
µx(t)− µy(t)

]
and µΣ(t) =

[
µx(t) + µy(t)

]
. (A.47)

In terms of the new variables, Eq. (A.46) reads:


[(t+ α)(t+ β)]

dµ∆(t)
dt = − [2t+ α + β]µ∆(t),

[(t+ α)(t+ β)]
dµΣ(t)

dt = [α− β]µ∆(t).

(A.48)

From Eq. (A.48), I immediately have:


d ln(µ∆(t))

dt = − [2t+α+β]
[(t+α)(t+β)]

= −d ln[(t+α)(t+β)]
dt ⇒ µ∆(t) = ∆0αβ

[(t+α)(t+β)]
:= ∆0αβ

R(t)
,

[(t+ α)(t+ β)]
dµΣ(t)

dt = [α− β]µ∆(t) ⇒ dµΣ(t)
dt =

(α−β)αβ∆0

[(t+α)(t+β)]2
= ∆0

αβ(α−β)
R2(t)

(A.49)

with:

R(t) := [(t+ α)(t+ β)] (A.50)

By direct calculation, one may verify the identities:
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∫ 1
R(t)

dt = 1
α−β ln

[
t+β
t+α

]
∫ 1

R2(t)
dt = − 1

(α−β)2

{
d ln[R(t)]

dt + 2
∫ 1

R(t)
dt
}
= − 1

(α−β)2

{
d ln[R(t)]

dt + 2
α−β ln

[
t+β
t+α

]}
=

− 1
(α−β)2

{
2t+α+β

t2+(α+β)t+αβ
+ 2

α−β ln
[
t+β
t+α

]}
.

(A.51)

Accordingly, from Eqs. (A.49) and (A.51), I obtain:

µΣ(t) =

∫
(α− β)αβ∆0

R2(t)
dt = −αβ∆0

{
2t+ α + β

(α− β)R(t)
+

2

(α− β)2
ln

[
t+ β

t+ α

]}
+ C (A.52)

where C is an integration constant to be determined by the initial condition. At time t = 0,

I have:

C = Σ0 +∆0

{
α + β

(α− β)
+

2αβ[ln β − lnα]

(α− β)2

}
. (A.53)

Hence we can write:

µΣ(t) = Σ0 +
∆0

(α− β)

[
α + β − (2t+ α + β)αβ

(t+ α)(t+ β)
+

2αβ

(α− β)
ln

(
βt+ αβ

αt+ αβ

)]
. (A.54)

Note that I have:
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lim
t→0+

µΣ(t) = Σ0,

lim
t→∞

µΣ(t) := µΣ,f = Σ0 +∆0

[
α + β

α− β

]
= 2

[
αx0 − βy0
α− β

]
+ 2∆0

αβ ln[β/α]

(α− β)2
, α ̸= β,

lim
t→∞

µΣ(t) := Σ0, α = β,

(A.55)

In terms of µx(t) and µy(t), I have:


µx(t) =

µ∆(t)+µΣ(t)
2 =

[
αx0−βy0

α−β

]
+ (x0 − y0)

{
αβ
α−β ln

[
αβ+βt
αβ+αt

]
− αβ

(α−β)(t+α)

}
.

µy(t) =
µ∆(t)−µΣ(t)

2 =
[
αx0−βy0

α−β

]
+ (x0 − y0)

{
αβ
α−β ln

[
αβ+βt
αβ+αt

]
− αβ

(α−β)(t+β)

}
(A.56)

which can be summarised as:


µx(t)

µy(t)

 = M(t)


x0

y0

 , (A.57)

where the matrix M(t) reads as:
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M =

−M1(0) +M2(t) M2(0)−M2(t)

−M1(0) +M1(t) M2(0)−M1(t)

 ,

M1(t) =
αβ
α−β ln

[
αβ+βt
αβ+αt

]
− αβ

(α−β)(t+α)
,

M2(t) =
αβ
α−β ln

[
αβ+βt
αβ+αt

]
− αβ

(α−β)(t+β)
.

(A.58)

Stationary regime

From Eqs. (A.57) and (A.58), one immediately concludes that the final state (µx(∞), µx(∞))

is given by:


µx(∞)

µy(∞)

 =


α

α−β
β

β−α

α
α−β

β
β−α



x0

y0

 := M∞


x0

y0

 (A.59)

We observe that
(
µx(∞), µy(∞)

)
depends on the initial condition (x0, x0). Note that α = β

is a singular situation. In addition observe also that for α = 0, I obtain µx(∞) = µy(∞) = y0

and conversely for β = 0, I have µx(∞) = µy(∞) = x0 thus showing that in both of these

limiting cases, the evolution affects a single variable.

A.4.2 The (Xt, Yt) stochastic process using coupled dynamics

Consider the stochastic process (Xt, Yt) ∈ R2 :


dXt =

−∆tdt+σydW1,t
t+α =

(y−x)dt+σydW1,t
t+α , X0 = x0

dYt =
+∆tdt+σxdW2,t

t+β =
(x−y)dt+σxdW2,t

t+β , Y0 = y0.

(A.60)

where dW1,t and dW2,t are independent Gaussian Noise processes (WGN). To study the
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(Xt, Yt) bi-variate Gaussian 1 and Markovian diffusion process, it is advantageous to proceed

with the change of variables:



Xt

Yt

 7→

∆t := Xt − Yt

Σt := Xt + Yt

 ,

d∆t = − [2t+α+β]
[(t+α)(t+β)]

∆tdt+

√
[σ2x(t+β)2+σ2y(t+α)2]dB1,t

[(t+α)(t+β)]
,

dΣt = +
(α−β)

[(t+α)(t+β)]
∆tdt+

√
[σ2x(t+β)2+σ2y(t+α)2]dB2,t

[(t+α)(t+β)]
,

(A.61)

where I have used the property:


σy

(t+α)
dW1,t − σx

(t+α)
dW2,t =

√
[σ2x(t+β)2+σ2y(t+α)2]dB1,t

[(t+α)(t+β)]
,

σy
(t+α)

dW1,t +
σx

(t+α)
dW2,t =

√
[σ2x(t+β)2+σ2y(t+α)2]dB2,t

[(t+α)(t+β)]

(A.62)

with dB1,t and dB2,t being now correlated WGN’s. Since the ∆t process is actually decou-

pled from the Σt, I shall proceed in two steps.

A.4.3 D.2.1 The ∆t process

The probabilistic properties of ∆t stochastic process in Eq. (A.61) are fully described by the

TPD P∆(x, t|x0, 0)dx := Prob {x ≤ ∆t ≤ (x+ dx)|x0} which solves the FPE:


∂tP∆ = ∂x

{[
[2t+α+β]

[(t+α)(t+β)]

]
x
}
+D(t)∂xxP∆,

D(t) :=
σ2y(t+β)2+σ2x(t+α)2

2(t+α)2(t+β)2
.

(A.63)

1. The Gaussian property is ensured since the drifts are linear and linear transformations of Gaussian
restitutes Gaussian.
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To solve Eq.(A.63), I express the evolution in terms of the constant of the motion ∆o.

Accordingly, I introduce the change of variables:


t 7→ τ = t ⇒ ∂t 7→ ∂x′

∂t ∂x′ +
∂τ
∂t ∂τ =

[
2t+α+β

αβ

]
x∂x′ + ∂τ =

[
2t+α+β

(t+α)(t+β)

]
x′∂x′ + ∂t,

x 7→ x′ := x
(t+α)(t+β)

αβ ⇒ ∂x 7→ ∂x′
∂x ∂x′ +

∂τ
∂x∂τ =

(t+α)(t+β)
αβ ∂x′

(A.64)

In terms of the (t, x′), Eq. (A.63) is transformed into a pure diffusion process. This can be

seen as follows, (omitting the arguments of P ):

∂tP∆ +
[

2t+α+β
(t+α)(t+β)

]
x′∂x′P∆ =

(α+t)(β+t)
αβ ∂x′

{
[2t+α+β]

[(t+α)(t+β)]
αβ

(t+α)(t+β)
x′P

}
+D(t)

(α+t)2(β+t)2

α2β2
∂x′x′P∆ =

[2t+α+β]
[(t+α)(t+β)]

∂x′(x
′P∆) +D(t)

(α+t)2(β+t)2

α2β2
∂x′x′P∆,

yielding

∂tP∆ =
[2t+α+β]

[(t+α)(t+β)]
P∆ +D(t)

(α+t)2(β+t)2

α2β2
∂x′x′P∆. (A.65)

Writing P∆ := (t+α)(t+β)Q, Eq(A.65), reduces to the pure time inhomogeneous diffusion:

∂tQ∆ =

[
D(t)

(α + t)(β + t)

α2β2

]
∂x′x′Q∆ =

[
σ2x(t+ α)2 + σ2y(t+ β)2

2α2β2(α + t)(β + t)

]
∂x′x′Q∆, (A.66)

Finally, I introduce the time re-scaling :
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t 7→ s(t) :=

∫ t

0

[
σ2x(α + ξ)2 + σ2y(β + ξ)2

α2β2(α + ξ)(β + ξ)

]
dξ =

(σ2x + σ2y)t+ (α− β)(σ2x ln
β+t
β − σ2y ln

α+t
α )

α2β2
,

(A.67)

This enables to rewrite Eq. (A.66) as:

∂sQ∆ =
1

2
∂yyQ∆ ⇒ Q∆ =

1√
2πs(τ)

exp

[
−(y − y0)

2

2s(τ)

]
. (A.68)

Proceeding backwards to the nominal (x, t) variables, one ends with:

lP∆(x, t|x0, 0)dx =
(t+ α)(t+ β)

αβ
√
2πs(t)

exp

[
−
(x

(t+α)(t+β)
αβ − x0)

2

2s(τ)

]
dx

=
1√

2πσ2∆(t)
exp

[
−
(
x− αβ x0

(t+α)(t+β)

)2
2σ2∆(t)

]
,

(A.69)

where I used the notation:


σ2∆(t) :=

α2β2s(t)
(t+α)2(t+β)2

=
(σ2x+σ2y)t+(α−β)

(
σ2x ln

β+t
β −σ2y ln

α+t
α

)
(t+α)2(t+β)2

,

lim
t→∞

σ2∆(t) = 0.

(A.70)
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