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C A N C E R

Identifying metabolic limitations in the 
tumor microenvironment
Guillaume Cognet and Alexander Muir*

Solid tumors are characterized by dysfunctional vasculature that limits perfusion and delivery of nutrients to the 
tumor microenvironment. Limited perfusion coupled with the high metabolic demand of growing tumors has led 
to the hypothesis that many tumors experience metabolic stress driven by limited availability of nutrients such as 
glucose, oxygen, and amino acids in the tumor. Such metabolic stress has important implications for the biology 
of cells in the microenvironment, affecting both disease progression and response to therapies. Recently, tech-
niques have been developed to identify limiting nutrients and resulting metabolic stresses in solid tumors. These 
techniques have greatly expanded our understanding of the metabolic limitations in tumors. This review will dis-
cuss these experimental tools and the emerging picture of metabolic limitations in tumors arising from recent 
studies using these approaches.

INTRODUCTION
Many solid tumors are poorly perfused because of dysfunctional tu-
mor vasculature arising from abnormal angiogenic signaling and 
physical compression of blood and lymphatic vessels in the tumor 
(1–5). Poor perfusion in solid tumors has led to the hypothesis that 
the tumor microenvironment (TME) is nutrient deprived, as limited 
perfusion may restrict the delivery of nutrients below the metabolic 
requirements of both malignant and stromal cells in tumor (6). As a 
result of TME nutrient deprivation, cancer cells may rely upon meta-
bolic adaptations to survive and grow in the TME. In contrast, cells 
in well- perfused normal tissues may depend less on such metabolic 
processes. Thus, cancer cells may have unique metabolic liabilities 
dictated by microenvironmental constraints that could be targeted 
while sparing normal cells in well- fed tissues. These metabolic 
liabilities are termed microenvironmental or contextual synthetic 
lethal targets (7, 8).

The concept of therapeutically leveraging nutrient deprivation in 
tumors has led to much interest in identifying metabolic limitations 
in solid tumors (9), defined as those metabolic processes that are 
constrained by nutrient deprivation in tumors and challenge cancer 
cell growth and survival. However, until recently, our understanding 
of tumor nutrient physiology and, thus, the metabolic limitations of 
the TME has been limited (10). Advances in techniques to directly 
characterize nutrient conditions in the TME and methods to infer 
metabolic limitations in tumors have provided insight into the meta-
bolic constraints of the TME. Here, we will discuss these newly 
developed tools and what they have told us about the metabolic 
limitations of cancers.

EXPERIMENTAL TECHNIQUES TO IDENTIFY METABOLIC 
LIMITATIONS IN TUMORS
Measuring nutrient concentrations in the TME
One approach for identifying metabolic limitations in tumors is to 
measure nutrient levels in the TME and cross- reference these levels 
with known cellular affinities or requirements for a given nutrient 
(Fig. 1A). If a nutrient in the TME is at levels below what cells require, 

then one could infer that this TME nutrient stress triggers meta-
bolic limitation.

Oxygen is among the first nutrients whose TME availability has 
been widely quantified. The development and widespread use of 
tools, such as polarographic needle electrodes, to measure TME 
oxygen levels led to the finding that many solid tumors have regions 
with substantially lower oxygen availability than healthy tissues (11–
13). These studies confirmed the hypothesis that cells in the TME 
experience deprivation of metabolic substrates and suggested lack of 
oxygen as one important metabolic limitation in solid tumors.

TME hypoxia has led to an interest in defining other nutrients 
that may be deprived in the TME. Recently, analysis of tumor inter-
stitial fluid (TIF) has increased our understanding of nutrient avail-
ability in the TME. TIF is the local perfusate of tumors and carries 
nutrients to all cells in the TME (5). While numerous methods for 
isolating and analyzing TIF composition have been used to study tu-
mor nutrient physiology for decades (5, 14), early techniques had 
important limitations. Notably, early TIF collection methods required 
either surgical implantation of microperforated capsules (15) or use 
of capillaries to isolate TIF leaking from tumors after blunt dissection 
(16, 17). Thus, these techniques were limited in application to animal 
models of cancer in laboratories with access to specialized devices 
and surgical expertise. In addition, these techniques have important 
experimental caveats. Surgical implantation of capsules in tumors 
leads to inflammatory reactions (18) that can affect local metabolism 
(14) and blunt dissection of tumors disrupts cells, leading to con-
tamination of TIF with intracellular fluid (5). Thus, studies of TME 
nutrient availability could be experimentally confounded using these 
TIF isolation approaches. More recently, another technique, tissue 
centrifugation, has been developed to isolate TIF without the need 
for surgical device implantation or tissue dissection (19). Tissue cen-
trifugation has enabled nonspecialist laboratories to isolate TIF from 
many animal models of cancer (20–39) and patient tumor specimens 
(23, 24, 32, 40–44) without the experimental caveats of previous TIF 
isolation methods. Increased access to TIF coupled with advanced 
metabolomics techniques has enabled extensive quantification of the 
metabolites (20, 22, 26, 27, 31, 33, 35, 37–39, 43, 45) and lipids (24, 
25, 27–29, 34, 45) present in the TME. Thus, advances in TIF isola-
tion and analysis have increased our understanding of nutrient 
stresses in the TME.
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Genetic approaches to identify metabolic 
limitations in tumors
In addition to directly measuring nutrient availability in tumors to 
identify TME metabolic limitations, genetic approaches can be used 
to infer metabolic limitations in tumors (Fig. 1B). For example, recent 
studies have overexpressed nutrient transporters in mouse models 
of cancer and identified transporters that provide a fitness advantage 
to cancer cells in the TME (46, 47). Overexpression of a nutrient 
transporter provides a competitive advantage to cancer cells when 
deprived of the cognate nutrient (47). Thus, this genetic approach 
can be used to identify metabolic limitations in the TME that con-
strain cancer cell growth and fitness.

Using cellular probes of nutrient stress to identify metabolic 
limitations in the TME
Identifying intracellular metabolic processes that the TME impairs 
can also provide insight into the metabolic limitations of tumors. 
Such a concept has recently been used to identify amino acid limita-
tions in tumors. Protein translation requires a constant supply of 
amino acids, which are charged onto tRNAs and incorporated into 
elongating amino acid polymers. Protein translation stalls specifi-
cally at codons of amino acids that are limited in cancer cells (48–
51). Stalling at amino acid–limited codons also reduces translation 
fidelity and results in ribosomal frameshifting (52), substitution of 

alternative amino acids (50), and premature translation termination 
(53). Thus, codon- specific reporters of ribosome stalling (49) or loss 
of translational fidelity (51, 52) have been used in animal models of 
cancer and patient specimens to identify amino acid limitations in 
the TME (Fig. 1C).

METABOLIC LIMITATIONS IN CANCERS
In this section, we will discuss the emerging portrait of metabolic 
limitations in the TME arising from studies using the tools outlined 
above. Table 1 lists the concentrations of nutrients in the TME for 
the nutrients discussed below as metabolically limiting in the mi-
croenvironment.

Oxygen
As discussed above, hypoxia is one of the most widely documented 
TME nutrient stresses. The partial pressure of oxygen levels in many 
tumor types is ~10 mmHg. Some particularly hypoxic tumors, such 
as pancreatic cancers, have oxygen tensions as low as 2 mmHg (11). 
This is substantially less than most healthy tissues, which have oxy-
gen tensions of ~30 to 50 mmHg (11).

However, before concluding that hypoxia causes metabolic limi-
tations in cancers, it is necessary to compare the TME level of oxy-
gen with known cellular affinities and requirements for oxygen. 

Fig. 1. Tools to identify metabolic limitations in tumors. (A) interstitial fluid can be isolated from tumors and analyzed using mass spectrometry to characterize nutrient 
concentrations in the tumor microenvironment. These nutrient concentrations can then be compared to known transport or cellular affinities for nutrients to infer the 
nutrients limiting cellular metabolism in the tumor microenvironment. (B) The development of CRiSPR- activation libraries enables rapid screening of the transporters 
whose overexpression improves the fitness of cancer cells in the tumor microenvironment. Given that transporter overexpression provides a strong fitness advantage to 
cancer cells experiencing limitation of the cognate nutrient, such screens can identify which nutrients are limiting in the microenvironment. (C) The analysis of the codons 
engaged by ribosomes in tumors can identify which amino acids are limited and slow translation in a tumor. if an amino acid is limited in the tumor microenvironment, 
then ribosomes will increasingly stall at these amino acid codons. This approach has been used to identify amino acids limitations in human and animal tumors. Created 
with BioRender.com.
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Table 1. Circulating and tumor microenvironmental levels in cancers. Listed are the concentrations of nutrients in the microenvironment of different cancer 
types that have been discussed as metabolically limiting in the tumor microenvironment (i.e., oxygen, glucose, amino acids, and vitamins). For comparison, 
circulating levels of each nutrient are also listed.

Nutrient (concentration 
unit)

Disease state Avg. plasma concentration (range) (ref.) Avg. tumor microenvironmental concentration 
(range) (ref.)

Oxygen (mmHg) Healthy human 100 (54)

Human brain tumor (3–22) (11)

Human breast cancer (2–38) (11)

Human head and neck 
cancer

(3–19) (11)

Human liver metastatic 
tumor

4 (11)

Human lung cancer (1–7) (11)

Human melanoma 6–20 (11)

Human non- Hodgkin’s 
lymphoma

8 (11)

Human pancreatic 
adenocarcinoma

18 (11)

Human prostate cancer (2–21) (11)

Human rectal cancer (14–15) (11)

Human renal cell 
carcinoma

3 (11)

Human soft tissue 
sarcoma

(4–22) (11)

Human uterine carci-
noma

(3–17) (11)

Human vulvar cancer (15–20) (11)

Glucose (mM) Rodent breast cancer 9.5 (7.0–10.4) (15) 0.1 (0–0.3) (15)

11.7 (16) 4.4 (16)

7.1 (16) 2 (16)

Murine colorectal 
cancer

6.6 (5.5–8.6) (32) 5.3 (3.0–7.8) (32)

Rodent hepatoma 11.7 (8.7–13.5) (15) 0.3 (0–1.3) (15)

Murine lung cancer 3.5 (5.3–1.2) (20)

0.63 (0.54–0.74) (63)

Murine melanoma 6.2 (29) 0.7 (29)

12.2 (16) 3.1 (16)

9.6 (30) 0.7 (30)

Murine pancreatic 
adenocarcinoma

8.2 (3–16.7) (20) 3.9 (0.8–10.0) (20)

3.7 (2.9–4.9) (22) 0.7 (0.2–1.2) (22)

1.96 (0.27–5.15) (25)

Human renal cell 
carcinoma

1.9 (0.6–4.9) (32) 3.8 (1.0–8.9) (32)

5.8 (3.3–14.2) (43) 1.2 (0.2–3.4) (43)

1.6 (0.8–3.2) (44)

Rodent sarcoma 11.0 (10–12.4) (15) 0.4 (0–1.1) (15)

12.2 (16) 4.8 (16)

Alanine (μM) Murine brain metastatic 
breast cancer

500 (75) 10 (75)

Murine colorectal 
cancer

646 (542–799) (45) 2871 (1950–3853) (45)

Murine lung cancer 1530 (1105–2369) (20)

Murine melanoma 366 (90–550) (45) 2247 (312–3573) (45)

(Continued)
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 (Continued)

Nutrient (concentration 
unit)

Disease state Avg. plasma concentration (range) (ref.) Avg. tumor microenvironmental concentration 
(range) (ref.)

Murine pancreatic 
adenocarcinoma

847 (412–1539) (20) 1023 (333–1458) (20)

Human renal cell 
carcinoma

447 (288–757) (43) 1684 (355–4232) (43)

Arginine (μM) Murine colorectal 
cancer

176 (141–224) (45) 118 (61–228) (45)

Murine lung cancer 9.5 (6.1–19.0) (20)

Murine lung metastasis 
of renal cell carcinoma

19 (1.0–68) (35)

Murine melanoma 311 (114–790) (45) 413 (73–965) (45)

Murine pancreatic 
adenocarcinoma

130 (51–234) (20) 2.3 (0.9–5) (20)

Human renal cell 
carcinoma

54 (21–86) (43) 106 (20–248) (43)

Murine renal cell 
carcinoma

172 (70–352) (35)

Asparagine (μM) Murine colorectal 
cancer

63 (47–79) (45) 255 (194–330) (45)

Murine lung cancer 126 (86–181) (20)

Murine melanoma 173 (26–628) (45) 581 (89–2275) (45)

Murine pancreatic 
adenocarcinoma

89 (38–180) (20) 108 (63–146) (20)

Human renal cell 
carcinoma

35 (23–46) (43) 63 (16–163) (43)

Aspartate (μM) Murine brain metastatic 
breast cancer

20 (75) 4 (75)

Murine colorectal 
cancer

20 (15–25) (45) 1159 (990–1345) (45)

Murine lung cancer 281 (130–464) (20)

Murine melanoma 13.5 (6–27) (45) 1422 (695–4041) (45)

Murine pancreatic 
adenocarcinoma

44 (14–122) (20) 356 (60–519) (20)

Human renal cell 
carcinoma

4.3 (0.7–7.6) (43) 194 (9.4–459) (43)

Cystine (μM) Murine colorectal 
cancer

24 (18–33) (45) 41 (23–56) (45)

Murine lung cancer 39 (8–48) (20)

Murine melanoma 22 (11–43) (45) 17 (9–31) (45)

Murine pancreatic 
adenocarcinoma

95 (30–153) (20) 51 (16–111) (20)

Human renal cell 
carcinoma

235 (138–360) (43) 317 (3.1–954) (43)

Glutamate (μM) Murine brain metastatic 
breast cancer

50 (75) 8 (75)

Murine colorectal 
cancer

72 (55–104) (45) 5164 (2885–7358) (45)

Murine lung cancer 1334 (958–1633) (20)

Murine melanoma 43 (18–90) (45) 5495 (2044–19103) (45)

Murine pancreatic 
adenocarcinoma

81 (48–170) (20) 941 (147–1300) (20)

Human renal cell 
carcinoma

70 (22–174) (43) 1785 (55–3794) (43)

(Continued)
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 (Continued)

Nutrient (concentration 
unit)

Disease state Avg. plasma concentration (range) (ref.) Avg. tumor microenvironmental concentration 
(range) (ref.)

Glutamine (μM) Murine colorectal 
cancer

590 (550–646) (32) 449 (258–827) (32)

883 (774–1046) (45) 1544 (1136–1936) (45)

Murine lung cancer 709 (529–973) (20)

Murine melanoma 543 (72–846) (45) 672 (74–1214) (45)

Murine pancreatic 
adenocarcinoma

850 (470–1379) (20) 748 (233–1329) (20)

Human renal cell 
carcinoma

467 (163–876) (32)

498 (366–637) (43) 416 (80–798) (43)

Glycine (μM) Murine brain metastatic 
breast cancer

300 (75) 14 (75)

Murine colorectal 
cancer

401 (350–423) (45) 3104 (2263–3908) (45)

Murine lung cancer 1311 (1018–2110) (20)

Murine melanoma 215 (61–354) (45) 1836 (239–3815) (45)

Murine pancreatic 
adenocarcinoma

164 (7–354) (20) 1726 (381–3654) (20)

Human renal cell 
carcinoma

217 (127–336) (43) 757 (121–1740) (43)

Histidine (μM) Murine brain metastatic 
breast cancer

100 (75) 3 (75)

Murine colorectal 
cancer

93 (79–107) (45) 267 (200–356) (45)

Murine lung cancer 113 (91–144) (20)

Murine melanoma 76 (58–95) (45) 171 (117–216) (45)

Murine pancreatic 
adenocarcinoma

93 (46–196) (20) 89 (53–117) (20)

Human renal cell 
carcinoma

63 (45–84) (43) 70 (22–144) (43)

isoleucine (μM) Murine brain metastatic 
breast cancer

150 (75) 2 (75)

Murine colorectal 
cancer

105 (94–113) (45) 321 (222–442) (45)

Murine lung cancer 138 (104–169) (20)

Murine melanoma 96 (75–122) (45) 170 (121–231) (45)

Murine pancreatic 
adenocarcinoma

155 (73–270) (20) 125 (86–198) (20)

Human renal cell 
carcinoma

68 (22–95) (43) 89 (22–230) (43)

Leucine (μM) Murine brain metastatic 
breast cancer

200 (75) 3 (75)

Murine colorectal 
cancer

138 (125–157) (45) 498 (332–650) (45)

Murine lung cancer 266 (208–326) (20)

Murine melanoma 134 (92–186) (45) 288 (176–422) (45)

Murine pancreatic 
adenocarcinoma

298 (110–491) (20) 275 (178–426) (20)

Human renal cell 
carcinoma

125 (76–176) (43) 167 (38–418) (43)

Lysine (μM) Murine brain metastatic 
breast cancer

400 (75) 10 (75)

(Continued)
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 (Continued)

Nutrient (concentration 
unit)

Disease state Avg. plasma concentration (range) (ref.) Avg. tumor microenvironmental concentration 
(range) (ref.)

Murine colorectal 
cancer

361 (259–496) (45) 883 (563–1180) (45)

Murine lung cancer 363 (239–462) (20)

Murine melanoma 278 (206–385) (45) 453 (239–582) (45)

Murine pancreatic 
adenocarcinoma

243 (98–443) (20) 129 (58–214) (20)

Human renal cell 
carcinoma

149 (86–197) (43) 203 (32–493) (43)

Methionine (μM) Murine brain metastatic 
breast cancer

100 (75) 3 (75)

Murine colorectal 
cancer

89 (66–114) (45) 242 (178–357) (45)

Murine lung cancer 138 (92–196) (20)

Murine melanoma 112 (55–215) (45) 208 (89–449) (45)

Murine pancreatic 
adenocarcinoma

131 (43–455) (20) 70 (35–107) (20)

Human renal cell 
carcinoma

19 (13–28) (43) 24 (0.6–94) (43)

Phenylalanine (μM) Murine brain metastatic 
breast cancer

100 (75) 2 (75)

Murine colorectal 
cancer

105 (77–130) (45) 305 (209–426) (45)

Murine lung cancer 137 (109–178) (20)

Murine melanoma 67 (54–87) (45) 139 (96–182) (45)

Murine pancreatic 
adenocarcinoma

98 (45–207) (20) 76 (48–106) (20)

Human renal cell 
carcinoma

51 (38–62) (43) 62 (18–160) (43)

Proline (μM) Murine brain metastatic 
breast cancer

20 (75) 1 (75)

Murine colorectal 
cancer

146 (98–213) (45) 808 (581–1034) (45)

Murine lung cancer 309 (228–412) (20)

Murine melanoma 86 (44–128) (45) 388 (127–640) (45)

Murine pancreatic 
adenocarcinoma

93 (45–222) (20) 114 (52–164) (20)

Human renal cell 
carcinoma

145 (83–247) (43) 137 (32–279) (43)

Serine (μM) Murine brain metastatic 
breast cancer

200 (75) 4 (75)

Murine colorectal 
cancer

192 (137–217) (45) 728 (496–965) (45)

Murine lung cancer 252 (154–384) (20)

Murine melanoma 143 (88–217) (45) 443 (241–637) (45)

Murine pancreatic 
adenocarcinoma

37 (0.5–133) (20) 191 (81–265) (20)

Human renal cell 
carcinoma

90 (60–133) (43) 168 (31–508) (43)

Threonine (μM) Murine brain metastatic 
breast cancer

200 (75) 5 (75)

Murine colorectal 
cancer

224 (192–275) (45) 717 (447–965) (45)

(Continued)
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Many oxygen- using metabolic processes, such as mitochondrial res-
piration, have high affinities for oxygen (54). Thus, the TME of even 
extremely hypoxic tumors is oxygenated above the requirements of 
the respiratory chain and does not prevent cellular respiration (55, 
56). However, many metabolic enzymes have affinities for oxygen 
that could lead to substrate limitation, and TME hypoxia has been 
shown to impair their activity (54). Furthermore, prolonged TME 
hypoxia triggers regulatory pathways such as the hypoxia- inducible 
factor pathway that constrain metabolic pathway activity (57, 58). 
Thus, hypoxia can trigger metabolic limitations in the TME by con-
straining the activity of certain metabolic pathways. In particular, 

hypoxia has been found to metabolically limit cancer cells by impairing 
aspartate synthesis (46, 59), inhibiting unsaturated fatty acid synthesis 
(60), and triggering the degradation of heme (61, 62). However, 
more work will need to be done to define the complete set of meta-
bolic processes limited by TME hypoxia and whether these limita-
tions are driven by substrate limitation or hypoxic signaling.

Glucose
TIF analysis indicates that glucose is depleted in the TME of many 
tumor types (15, 16, 20, 22, 29, 30, 63). Furthermore, transporter 
overexpression screens indicate that glucose may be limiting in the 

 (Continued)

Nutrient (concentration 
unit)

Disease state Avg. plasma concentration (range) (ref.) Avg. tumor microenvironmental concentration 
(range) (ref.)

Murine lung cancer 465 (313–823) (20)

Murine melanoma 180 (131–234) (45) 480 (328–627) (45)

Murine pancreatic 
adenocarcinoma

316 (122–919) (20) 235 (120–314) (20)

Human renal cell 
carcinoma

94 (41–139) (43) 138 (27–348) (43)

Tryptophan (μM) Murine colorectal 
cancer

103 (87–116) (45) 190 (124–279) (45)

Murine lung cancer 75 (50–99) (20)

Murine melanoma 125 (84–201) (45) 81 (0–170) (45)

Murine pancreatic 
adenocarcinoma

82 (28–151) (20) 28 (9.7–71) (20)

Human renal cell 
carcinoma

40 (20–67) (43) 19 (0.8–59) (43)

Tyrosine (μM) Murine brain metastatic 
breast cancer

200 (75) 4 (75)

Murine colorectal 
cancer

114 (90–140) (45) 321 (208–429) (45)

Murine lung cancer 126 (86–179) (20)

Murine melanoma 69 (46–107) (45) 121 (75–168) (45)

Murine pancreatic 
adenocarcinoma

93 (33–225) (20) 55 (25–110) (20)

Human renal cell 
carcinoma

71 (42–98) (43) 78 (18–192) (43)

valine (μM) Murine brain metastatic 
breast cancer

400 (75) 40 (75)

Murine colorectal 
cancer

199 (172–239) (45) 600 (369–814) (45)

Murine lung cancer 329 (255–409) (20)

Murine melanoma 166 (78–221) (45) 339 (162–516) (45)

Murine pancreatic 
adenocarcinoma

201 (78–360) (20) 142 (82–222) (20)

Human renal cell 
carcinoma

204 (103–308) (43) 162 (33–369) (43)

Pyridoxine (ng/ml) Murine pancreatic 
adenocarcinoma

0.27 (36) 0.14 (36)

Pyridoxal phosphate (ng/
ml)

Murine pancreatic 
adenocarcinoma

0.45 (36) 0.29 (36)
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TME of some animal cancer models (47). Thus, glucose deprivation 
is a common feature of many tumors. However, glucose is not de-
pleted in the TME of all tumor types (32, 43, 44), and overexpression 
of glucose transporters does not potentiate cancer cell growth in 
every animal model of cancer (47). In addition, TME glucose levels 
change markedly over the course of disease progression (29). Thus, 
while glucose deprivation may be common in cancers, it is not a 
universal feature of every tumor type and stage.

As discussed above with TME hypoxia, it is also necessary to 
consider cellular affinities and requirements for glucose to deter-
mine whether glucose deprivation constitutes a metabolic limitation 
of the TME. The most severe TME depletion of glucose has been 
observed in animal models of pancreatic cancer and melanoma with 
glucose concentrations of around 0.6 mM (22, 29, 30). However, 
glucose transporters have low millimolar affinities for glucose (64), 
and glucose concentrations of as low as 0.5 mM are sufficient to 
support nearly maximal cellular proliferation (65). Thus, while glu-
cose can be depleted in the TME, it may not be depleted enough to 
trigger metabolic limitation at the substrate level. However, glucose 
deprivation activates numerous signaling pathways that regulate 
cellular metabolism, such as the mechanistic target of rapamycin 
complex 1 pathway, adenosine 5′- monophosphate–activated pro-
tein kinase (AMPK) signaling, and the integrated stress response 
(66, 67). Activation of such pathways upon glucose starvation regu-
lates nutrient import, macromolecule synthesis, energy metabolism 
homeostasis, and other metabolic processes. Thus, glucose depriva-
tion may cause metabolic limitations by regulating cellular signaling 
pathways that affect metabolism. In one example, AMPK activation 
upon glucose starvation of cancer cells leads to phosphorylation and 
inactivation of acetyl–coenzyme A carboxylase (ACC), a key enzyme 
in lipid synthesis (68). AMPK inhibition of ACC suppresses lipid 
synthesis and renders cancer cells lipid auxotrophic (68). Thus, glu-
cose regulation of AMPK can trigger a lipid metabolic limitation in 
cancer cells. Further studies will be required to understand how 
pathophysiological glucose levels in the TME limit cancer cell metabo-
lism via these signaling interactions.

Amino acids
Arginine
Arginine is depleted in the TME of pancreatic cancers (21, 31, 69) 
and lung metastases of kidney tumors (35). TIF arginine levels in 
these tumors are approximately an order of magnitude lower than 
the cellular affinity for arginine (70, 71) and below concentrations 
required for cellular proliferation (47). In both cases, cancers require 
adaptations to cope with this limitation. For example, pancreatic 
and kidney cancer cells adapt by increasing the synthesis of arginine 
(21, 35), and pancreatic cancers also use alternative metabolic routes 
to generate arginine- derived metabolites like polyamines (31). Infil-
trating lymphocytes cannot adapt to TME arginine deprivation (72), 
and arginine metabolic limitation is a major barrier to their function 
(69). Thus, arginine deprivation is a metabolic limitation in some 
tumor types.
Serine
Nutrient levels in the cerebrospinal fluid and the brain interstitium 
are tightly regulated by the choroid plexus (73) and the blood- brain 
barrier (74). This leads to restricted levels of many nutrients in the 
brain, including the amino acid serine (75). Serine is at levels in the 
brain well below the requirements of many cancer cells for growth 
(47, 75, 76). Tumors metastasizing to the brain require increased 

serine synthesis to overcome this limitation (75). Thus, serine depri-
vation is a metabolic limitation for tumors localized in the brain.
Tryptophan
Tryptophan is readily degraded by dioxygenases such as indoleamine 
2,3- dioxygenase and tryptophan 2,3- dioxygenase whose expression 
is induced by inflammatory signaling in some tumors (77, 78). Thus, 
tryptophan can be depleted in some tumors. Tryptophan depletion 
impairs protein translation in cancer cells (50) and results in misin-
corporation of phenylalanine into tryptophan tRNAs and proteins 
(51). Consistent with tryptophan depletion being a metabolic limi-
tation in inflamed TMEs, tryptophan- phenylalanine misincorpora-
tion occurs specifically in tumors with high levels of inflammation 
(51). Thus, tryptophan deprivation in inflamed tumors metabolically 
limits protein translation and translation fidelity. How tryptophan 
depletion metabolically limits cancer cells aside from impairing protein 
translation remains to be determined.
Proline
Analysis of ribosome stalling and tRNA charging in patient renal 
cell carcinomas and animal models of breast cancer indicates that 
proline levels are limiting for translation in these tumors (49). In 
addition to endogenous proline limitation, dietary restriction of 
proline can trigger proline and translation limitation in other tumor 
types as well (79). Tumors adapt by increasing the synthesis of pro-
line, which can be targeted to slow tumor progression (49). Thus, in 
certain tumor types, proline availability may be a metabolic limita-
tion to which cancer cells must adapt.
Glutamine
Glutamine restriction in cancer cells leads to translational errors, 
including ribosomal frameshifting (52). Genetically encoded ribo-
somal frameshifting reporters have been developed to identify cells 
experiencing glutamine deprivation–induced protein translation errors 
(52). The use of these reporters in animal models of pancreatic cancer 
indicates that small regions of tumors are metabolically limited by glu-
tamine deprivation at certain stages of tumor development (52).

Lipids
Lipids are normally available at high levels in healthy tissues and 
tumors. However, as discussed above in the case of serine, brain in-
terstitial fluid and cerebrospinal fluid contain restricted levels of 
many nutrients, including lipids (34). Thus, lipid depletion is a meta-
bolic limitation for tumors growing in the brain. Cancers growing in 
this compartment require adaptations to increase de novo synthesis 
of lipids to overcome this metabolic limitation (34, 80).

Vitamins and micronutrients
Most analyses of nutrient stresses in TMEs have focused on high- 
demand nutrients such as glucose, amino acids, and lipids that are 
large contributors to cellular biomass (81). However, recent studies 
also indicate that micronutrients may also be deprived in the TME 
and drive important metabolic limitations in cancers.

For example, vitamin B6 levels are strongly depleted in the TIF of 
pancreatic cancers to levels insufficient for natural killer (NK) cell 
function (36). Furthermore, dietary vitamin B6 supplementation 
improves NK cell function in the pancreatic ductal adenocarcinoma 
TME, demonstrating that vitamin B6 deprivation is a TME meta-
bolic limitation for certain classes of immune cells.

In another example, iron availability is substantially lower in 
cerebrospinal fluid than in the circulation. Iron at cerebrospinal 
fluid levels is limiting for cancer cell growth (82). Leptomeningeal 
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metastases adapt to this limitation by increasing the activity of iron- 
scavenging pathways, which are required for metastatic progression 
(82). Thus, iron deprivation is a metabolic limitation for metastatic 
spread to the leptomeninges. These studies highlight that micro-
nutrient availability can be a metabolic limitation of the TME. Further 
analysis of TME micronutrients is warranted to understand how the 
availability of these nutrients drives metabolic limitations in cancers.

FUTURE DIRECTIONS
Recent technological developments have substantially improved the 
ability to identify metabolic limitations of cancers. The newly gained 
ability to find metabolic limitations will be critical to identify the 
adaptations that tumors engage to fuel growth and progression de-
spite TME metabolic constraints. These adaptations are ideal TME 
or contextual synthetic lethal targets and could improve upon existing 
metabolic cancer drugs that often have limited therapeutic windows 
given the requirements of many existing metabolic targets for tissue 
function (83, 84). Thus, identifying TME metabolic limitations 
could prove critical for therapeutically leveraging metabolism for 
cancer therapy. What will be necessary to translate our understanding 
of TME metabolic limitations into efficacious therapeutic targets?

First, the emerging picture of the TME suggests that metabolic 
limitations are heterogeneous. Not all metabolic limitations are shared 
by all tumor types, and the limitations can change during disease pro-
gression. To realize the potential of identifying efficacious metabolic 
targets driven by TME metabolic limitations, it will be necessary to 
use the discussed tools and methods across tumor types and stages to 
determine which metabolic limitations and adaptations are relevant 
to a given tumor type and stage. In addition, most techniques de-
scribed in this review characterize the TME nutrient landscape at the 
whole tumor level. Further development and use of methods that pro-
vide spatial resolution of the nutrient landscape within tumors, such 
as mass spectrometry imaging (85), will be necessary to characterize 
the extent to which a metabolic limitation occurs in a tumor.

Second, in this review, we have only considered metabolic limitations 
driven by nutrient deprivation in the TME. However, many metabolites 
accumulate in the TME and can have diverse effects on tumor metabo-
lism. In some cases, these accumulating metabolites can serve as alterna-
tive substrates that buffer metabolic limitations driven by the deprivation 
of other nutrients (22, 46). For instance, high levels of uridine in the pan-
creatic TME can be salvaged by cancer cells to alleviate the metabolic 
limitations caused by glucose depletion in these tumors (22). In other 
cases, metabolites accumulating in the TME can act as inhibitors of dif-
ferent metabolic processes and drive metabolic limitations (86, 87). 
Thus, tools must be developed to determine how metabolites that accu-
mulate in the TME impinge upon cellular metabolism and drive or 
alleviate metabolic limitation in the TME. These further advancements 
will identify metabolic limitations that can be exploited for cancer 
therapies and the contexts in which these therapies will be efficacious.
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