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2
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would have been situated at the said location. It is apparent that the transmitted
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We plot φ(x = σ
2 ) =

Itr(x=σ
2 )

I at I = 0.55 µA (highlighted in (b)) against the

length of each of the three acenes (n=2,3,4) to expound the exponential decay

clearly. The length for each, quantified by the respective dispersion in electron

cloud (σ), is expressed as a dimensionless variable normalized to the dispersion for

the shortest member i.e. napthalene (n=2) which is σ2cene = 5.218 Å.The data

is fitted to an exponential which provides the parameters A and γ (see text)(d)

The local φ(x) versus the length profile for each of the oligoacenes. The length

axis is normalized to the dispersion (σ) of the respective systems. An imaginary

probe window centered at σ
2 illustrates that the area covered by φ(x) within it

declines with increasing length. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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backbone devoid of any electrode or linker, we speculate that an enhanced cou-

pling with the bath with bring down the length scaling to ( σ
σ2cene

)−α with α ≤ 1

(black dots) .The arrow indicates reaching the Magoga’s limit progressively (b)

Length dependence of G(x = σ
2 ) is plotted which beyond the re-organization cost

and the inverse linear length scaling seen in G(σ) has an additional exponential

decay associated with tunnelling over the window studied (see Eq.3.1). The decay

constant in the exponential (known as Magoga’s parameter [24]) is found to be

0.4403 Å−1 which is in close agreement with experiment [21] . . . . . . . . . . . 34
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relative to zero-field values. Dipole moments are expressed in units of Debye (D),

and the Rényi entropies are dimensionless. . . . . . . . . . . . . . . . . . . . . 85

xv



4.3 Changes in the dipole moments and entropies of CH2O and (CH2O)6 are reported

as functions of the electric field ε relative to their values at zero field ε = 0. In

both cases the entropy decreases with the electric field in the direction of the

dipole moment but increases with the electric field in the direction against the

dipole moment. Dipole moments are expressed in units of Debye (D), and the
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ABSTRACT

Over the past few decades, constrained minimization of the energy with respect to the two-

electron reduced-density-matrix (2-RDM) has emerged as a tantalizing alternative to study

electronic structure of strongly correlated molecular and atomic systems at favorable polyno-

mial scaling. In this thesis, we extend this variational minimization procedure to conducting

systems in presence of a non-zero charge flux to mimic situations in single-molecular de-

vices. We replicate the exponential length scaling of zero-bias conductance in off-resonant

tunnelling dominated transport in oligoacenes (with a reasonable estimate of the decay con-

stant) and even the trend reversal due to orientation flipping, all from the intrinsic features of

the systems. When the method is applied to benchmark cases like 1,4-benzenedithiol clipped

with Au electrodes, we see that unlike current theoretical standards, the theory does not

over-predict the conductance by orders of magnitude compared to experimental results. In

fact it is even consistent with all trends seen with respect to changing electrodes, linkers and

chemical substitution over the molecular backbone studied experimentally over the years.

The technique was also applied to a binuclear vanadium complex and its positively charged

state known to exhibit Kondo resonance. We see that both the partners offers multiple orbital

degeneracies necessitating important multi-reference effects completely missed in the previ-

ous interpretation of the experiment based on model Hamiltonians. Such strongly correlated

cases are untreatable by transport methodologies based on DFT. We not only reproduce the

conductance trend seen experimentally but highlight the importance of many-body analysis

in enhancing the Kondo features. We also apply the method to study switching action in

pH sensors identifying the role of energetics and zero-field polarizability in controlling the

conductance of the ‘on’ and ‘off’ states of the switch. Lastly we study the effect of spatially

homogeneous electric field in altering quantum correlations and entanglement in molecular

systems and interpret the results using geometric arguments.

xvii
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CHAPTER 1

INTRODUCTION

For a pure-state in a quantum-mechanical system every statistical description like the prob-

abilistic outcomes of a measurement of any property, the post measurement state and the

average (expectation) value of the property associated with several observations are all en-

coded in the wave-vector of the system customarily denoted by |Ψ〉. In absence of relativistic

corrections, the equation of motion of the said vector resolved in the position basis (called

the wave-function Ψ(~r, t)) is governed by the Schrödinger equation

i~
∂

∂t
Ψ(~r, t) = Ĥ(~r, t)Ψ(~r, t) (1.1)

where t is the time, and Ĥ is the Hamiltonian. The Hamiltonian, which acts as the generator

of time-translation as above, in position space representation (in absence of relativistic terms

and spin-orbit coupling) is given by

Ĥ(~r, t) =
N∑
i

− ~2

2mi
∇2
i + V (~r, t). (1.2)

The first term in Eq.1.2 is the sum of the kinetic energy of each particle in the system,

and V (~r, t) is potential energy term. The usual solution to Eq.1.1 for a time-independent

Hamiltonian (V (~r, t) = V (~r)) as we concern ourself in this thesis is

Ψ(~r, t) = exp(−Ĥ(~r)t/~)Ψ(~r, 0) (1.3)

where Ψ(~r, 0) is the initial state of the system which can be resolved in any complete

basis. If the Ĥ(~r) is Hermitian, the above time translation being unitary conserves particle

number in the system. Also diagonalizing such a Hermitian Hamiltonian yields a complete

basis {Φj(~r)} as follows:
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Ĥ(~r)Φj(~r) = EjΦj(~r) (1.4)

where the eigenvalue (Ej) is the corresponding energy to each Φj(~r). An arbitrary initial

state Ψ(~r, 0) can now be resolved in this basis as :

Ψ(~r, 0) =
∑
j

CjΦj(~r) (1.5)

with Cj being the coefficients of the resolution. Substituting Eq.1.5 in 1.3 followed by time

translation would allow a complete description of the system at all times. Thus much of

non-relativistic quantum mechanics concerns itself with diagonalizing the Hamiltonian Ĥ(~r)

to obtain the set {Φj(~r)} which are called the stationary states of the system due to their

phase-like time evolution.

In particular, electronic structure seeks the solution for a special class of Ĥ(~r) consisting

of interactions between positively charged nuclei and negatively charged electrons and the

mutual repulsion between the like charges. For these systems (with no relativistic corrections

or spin-orbit coupling) under Born-Oppenheimer approximation where the massive nuclei are

considered effectively stationary thereby decoupling the electronic and nuclear motion, the

electronic part of the Hamiltonian reads:

Ĥ =
N∑
i

− ~2

2mi
∇2
i +

N∑
i

M∑
I

−1

|~ri − ~RI |
+

N∑
i<j

1

|~ri − ~rj |
. (1.6)

The first term contains the kinetic energy of the electrons, the second term contains the

attractive interaction between the frozen nuclei (with co-ordinates designated as ~RI) and the

electrons and the third term is the electron-electron repulsion (with co-ordinates designated

as ~ri). Obtaining the many-body stationary states (hence any arbitrary state from Eq.1.5 and

1.3) of the above Hamiltonian and its corresponding energies together with the restriction

that the said states will be anti-symmetric under permutation of indices (respecting the fact
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electrons are indistinguishable fermions with s=1/2), defines the goal of almost all electronic

structure methods.

1.1 Mean field treatment-Hartree Fock method

Due to the two-body electron-electron repulsion term, an exact solution to the eigenstates

of the electronic Hamiltonian is not possible for more than one electron, and therefore ap-

proximate numerical methods are constructed. Using variational theorem one can thus

approximate the stationary states with a valid guess. To ensure the anti-symmetry prop-

erty the simplest guess would be to use a single N -electron Slater determinant as the trial

wavefunction. The corresponding method is called Hartree-Fock theory [1] which physically

involves assuming each electron to move in a combined average field of all other electrons

and the nucleus. A single-Slater determinant is

|Φ〉 =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(1) φ2(1) · · · φN (1)

φ1(2) φ2(2) · · · φN (2)

...
. . .

...

φ1(N) φ2(N) · · · φN (N)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.7)

where φi is the ith orthonormal one-particle function (often called orbitals). Substituting

the above ansatz into the energy expression from the many-body Hamiltonian in Eq.1.6

followed by a variational minimization of the energy with respect to the orbitals subject to

orthonormality necessitates that the orbitals are eigenvectors of the following Fock operator
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(φi(x1)):

fiφi(x1) = (hi(x1) +
∑
j

Jj(x1)−
∑
j

Kj(x1))φi(x1) = εiφi(x1) (1.8)

Jj(x1) =

∫
x2

φ∗j (x2)|1/|r12|φj(x2)dx2

Kj(x1)φi(x1) =

∫
x2

φ∗j (x2)|1/|r12|σ12φj(x2)φi(x1)dx2

where σ12 is a transposition operator permuting two indices. Since the Fock operator itself

depends on its eigenvectors, the method involves starting with an initial guess for each

φi(x1) resolving it in the basis of AOs (approximated by gaussians usually) and then solved

iteratively until self-consistency in density is achieved. The N electrons are placed in the

lowest energy N molecular orbitals (φi(x1)) produced from the converged procedure to obtain

the ground state determinant. Due to its simplicity, the scaling of HF method is O(r3) where

r is the single-particle basis rank. Also for simple sigma-bonded systems at equilibrium

geometry, HF frequently captures more than 90% of the total electronic energy which makes

it a starting point for most advanced electronic structure methods.

1.2 Electronic Correlation and Post-Hartree Fock Methods

The HF state mentioned above is the eigenstate of the many-body Fock operator F =
∑
i fi

and not of the actual Hamiltonian in Eq.1.6. In general HF assumes the electrons to be

interacting with a mean-field cloud of all other electrons whereas in reality the interaction

is instantaneous which can result in a significant change in the trajectories of electrons in a

quest to avoid each other. This gives rise to coordinated motion which is not accountable in

a single-determinantal state. Mathematically, since the fock-operator in Eq.1.8 is hermitian,

its eigenvectors (the orbitals) are guaranteed orthonormal (the degenerate ones can be or-

thogonalized). The determinants formed from these orbitals are therefore endowed with the
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same property and hence can act as a many-body basis for the multi-electron state. Thus a

linear combination of all possible determinants of all N electrons placed into all r orbitals

would yield the exact ground state of the Hamiltonian in Eq.1.6 in the chosen one-particle

basis. This is known as the full configuration interaction (full CI) [2].

|ΦFCI〉 = c0|Φ0〉+
∑
ia

cai |Φ
a
i 〉+

∑
i<j
a<b

cabij |Φ
ab
ij 〉+ . . . (1.9)

where |Φ0〉 is the HF-ground state defined in previous section and |Φ{q}{p}〉 is the determinant

produced by moving electrons out of the occupied {p} orbitals in the HF ansatz into the

unoccupied {q} orbitals. The energy of this wavefunction is denoted by EFCI . Diagonaliz-

ing the many-body Hamiltonian in Eq.1.6 in the basis of these determinants using Eq.1.9 as

the ansatz not only yields the ground many body state but also the excited states with suit-

able choices of the coefficients {c}. Since such an ansatz allows interaction between various

configurations (determinants) it can recover full-correlation in the system. The difference in

energy EFCI − EHF is consequently called the correlation energy(Ecorr). The value of the

correlation energy is usually very high for systems with quasi-degenerate π manifold, dis-

torted geometries and in events of bond-breaking and reformation where much of chemistry

happens which highlights its significance. Unfortunately, full CI scales combinatorially as

rCN (the determinants are further spin-adapted to respect spin symmetry), which limits its

usablility to systems with 16-18 electrons and 16-18 spatial orbitals only. Beyond this the

method is intractable.

Thus much of electronic structure is devoted to developing smarter and inexpensive al-

gorithms that capture as much of the correlation energy as possible and yield the closest

approximation to the ground and excited states to the FCI state. A straight-forward yet

tractable extension will be to truncate the wavefunction in Eq.1.7 up until a certain excita-

tion order [3]. Unfortunately, truncated CI methods are not size-extensive(the energy of a

supermolecule consisting of N non-interacting copies of the initial molecule is not equal to
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N times the energy of each) or size-consistent (the molecule under dissociation limit do not

possess the energy of the collective sum of the right dissociated fragments). Size-extensive

approximations to full CI such as Møller-Plesset perturbation theory [4] are also possible

which being dependant on the single-reference Hartree Fock state recovers a great deal of

dynamic correlation. However the method being non-variational is not guaranteed to con-

verge with higher order corrections included. Instead of a linear excitation operator as is

used in truncated CI, if one uses an exponential excitation tensor like in coupled-cluster

theory [5], the accuracy can be greatly improved even with lesser number of excitations (and

hence low cost). The method also retains size-consistency as higher order excitations are

often approximated in terms of lower order ones. The method with single and double excita-

tions with perturbative triples, CCSD(T), is ubiqutously used and often considered to be of

benchmark accuracy [6] with a scaling of O(r7). Even though multi-reference extensions of

this technique exists, but the far more common variety depends on a single-HF reference and

may struggle for convergence and accuracy when multiple quasi-degenerate determinantal

configurations are possible making it ambiguous to even define a reference (non-dynamic

correlation) For such systems, an active space CI which entails inclusion of all determinants

generated by excitations within a certain subset of orbitals and also unitarily transforming

the orbitals themselves so that they imbibe each others character also exists and is called

CASSCF [7]. Such a wavefunction can then act as a reference for further recovery of dynam-

ical correlation as in perturbation theory methods and coupled cluster [8]. However due to

operational similarity, the scaling of CASSCF is exponential like the FCI which restricts it

to be usable only for a small active space size.

A completely different class of method which optimizes the ground state energy with

respect to one-particle density also exists and is called Density Functional Theory(DFT)

(see chapter 2). This has been ubiqutously used not only for atoms and molecules but for

condensed phases like solids and liquids too due to its similar scaling to HF O(r3). However

due to its single-reference operational framework, the method struggles with cases with
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multiple equally plausible configurations.

Even though conceptually similar but operationally a completely different method based

on reduced density matrices have also been developed over the years with polynomial scal-

ing which being independent of reference is particularly suited for recovering non-dynamic

correlation. These will be elaborated in the following section.

1.3 Reduced-Density-Matrix Methods

Let us introduce a set of operators a
†
p and ap which creates and annihilates an electron in

the orbital p, respectively such that they satisfy the following algebra:

{a†p, a†q} = 0 (1.10)

{aq, a†p} = δ
q
p (1.11)

Using the definition of these operators as a
†
p|0〉 = |p〉 and ap|p〉 = |0〉 it is possible to write

the electronic Hamiltonian in Eq.1.7 as

Ĥ =
∑
i<j
l<k

2K
ij
kla
†
ia
†
jalak (1.12)

where 2K
ij
kl contains the one- and two-electron integrals

2K
ij
kl =

1

N − 1
(δik〈j|ĥ|l〉+ δlj〈i|ĥ|k〉) + 〈ij|V̂ |kl〉.

〈i|ĥ|k〉 = 〈i| ~
2

2m
∇2 +

M∑
I

−1

|~r1 − ~RI |
|k〉

〈ij|V̂ |kl〉 =
1

2
〈ij| 1

|~r1 − ~r2|
|kl〉
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The energy of a pure stationary state of the Hamiltonian (representable by a wavefunction)

|Φ〉 is given by

E = 〈Φ|Ĥ|Φ〉

=
∑
i<j
l<k

2K
ij
kl〈Φ|a

†
ia
†
jalak|Φ〉.

= Tr(2K2D)

(1.13)

where

2D
ij
kl = 〈Φ|a†ia

†
jalak|Φ〉 (1.14)

The above equation states that the energy can be exactly expressed as a function of

the 2-RDM, because the Hamiltonian only contains one- and two-particle operators and

the electrons are indistinguishable. In general for any p-particle operator, the pth-order

RDM obtained by integrating all (N-p) space-spin variables from the N-body density matrix

is required. For the energy functional, the knowledge of the 2-RDM suffices and since

it contains lot less information than the exact many-body ground state of the Hamiltonian

(ΦFCI), the direct minimization of the energy with respect to the elements of the 2-RDM [9].

is extendable to larger systems of chemical interest and should in principle recover a great

deal of correlation energy.

1.3.1 N-representability

It was established early that such an unconstrained direct minimization yields energies that

are far too low [10, 11]. This is because while every N-particle density matrix may be con-

tracted to a 2-RDM but in absence of knowledge of the N-particle state, the 2-RDM matrix

elements obtained directly from the unrestricted optimization scheme may not represent a

realistic N-particle density matrix as a pre-image. This is known as the N -representability

problem [9].The set of all possible 2-RDMs is therefore being much larger than those deriv-

able from an N -electron density matrix (or wavefunction for pure states) and hence energy
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minimizations with respect to the 2-RDM acts as a lower bound to the full CI energy.

The eigenvalues of the 2-RDM, gives the probability of finding two electrons in a given

antisymmetric two-electron geminal. Since such probabilities cannot be negative, an impor-

tant N -representability conditions of the 2-RDM enforced during optimization is its positive

semidefiniteness.

2D � 0 (1.15)

These constraints should also be shared by the two other metric matrices in two-particle

space namely the two-hole (2Q) and one-particle-one-hole matrices (2G).

2Q
ij
kl = 〈Φ|âiâj â

†
l â
†
k|Φ〉 � 0

2G
ij
kl = 〈Φ|â†i âj â

†
l âk|Φ〉 � 0

(1.16)

Together they ensure that the probabilities of finding two holes and an electron and a hole

in the antisymmetric hole geminal and the excitonic two-body functions to be non-negative.

This gives the DQG conditions [12–14] which ensures the above matrices are 2-positive even

though not completely N-representable. The energy obtained by enforcing such constraints

act as a lower bound to the full-CI energy. Further introduction of constraints are necessary

to approach the exact limit. Extension to ensure semi-definiteness of the sum of three particle

metric matrices (T2-condition) are also used. The optimization with DQG conditions has a

polynomial scaling of O(r6) and that with the extra T2 conditions are O(r9) which restricts

the latter to smaller systems only. Also a 2-positive 2Q and 2D ensures that the 1-RDM

and the 1-hole RDM obtained from tensor contraction is positive semi-definite too.

1Di
k = 〈Φ|â†i âk|Φ〉 =

∑
l

2Dil
kl � 0

1Qik = 〈Φ|âiâ
†
k|Φ〉 =

∑
l

2Qilkl � 0

1Di
k + 1Qik = δik

(1.17)
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with the last expression being a restatement of Eq.1.11.

1.3.2 Optimization scheme

Thus the final optimization scheme with the DQG conditions becomes

min
2D

E[2D]( = Tr[2K 2D]) (1.18)

such that 2D � 0 (1.19)

2Q � 0 (1.20)

2G � 0 (1.21)

Tr(Aj
2D) + Tr(Bj

2Q) + Tr(Cj
2G) = bj . ∀j (1.22)

where the last set of constraints enforce the linear mappings between the two-particle

metric matrices . With these constraints the optimization scheme has been known to yield

energies that are of high chemical accuracies even for strongly correlated systems[15–18]. An

active space formulation of the variational 2-RDM method[19] is extended in Chapter 2,3 to

study conducting molecular systems with an internal current flux[20]. In Chapter 4 , along

with wavefunction techniques a similar 2-RDM method which involves parameterizing the

2-RDM elements in terms of a CISD wavefunction [21] with size-extensivity and partial-N-

representability [22, 23] is used to study the effect of electric field on quantum correlation[24].
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CHAPTER 2

CURRENT-CONSTRAINED VARIATIONAL THEORY- THE

FOUNDATIONS

• This chapter contains parts of an article that was originally published in the Communi-

cations Chemistry. Reproduced with permission from [M.Sajjan and D. A. Mazziotti,

Communications Chemistry , 1, 31 (2018)]. Copyright 2018, Springer Nature.

• This chapter contains parts of several articles that are under preparation at the time

of writing.

In this chapter we establish a new theory based on reduced density matrices introduced

in the previous chapter. But before we start, lets briefly highlight the present ubiquitously

used theoretical standard which involves the marriage of Non-Equlibrium Greens functions

(NEGF) in density functional theory framework. In the following section, an overview of

density functional theory is presented (DFT) followed by a brief exposition to NEGF. In the

last section we present the newly developed theory based on reduced density matrices before

moving onto its applications in the next chapter.

2.1 Density Functional Theory (DFT)

Density functional theory (DFT) is one of the most popular and powerful method for comput-

ing the ground state properties of many electron systems. Unlike traditional wave-function

based methods described in the previous chapter DFT uses the single-particle density n(r)

as the fundamental variable which is defined as follows:

n(r) = 〈ψ|
N∑
i=1

δ(r − ri)|ψ〉. (2.1)

This thereby maps the problem for a many-electron system with 3N degrees of freedom

into an effective single particle space which reduces the scaling drastically. Each single
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electron is assumed to be in a combined mean field of all other associated electrons and

the nucleus much like in Hartree-Fock theory. The Hohenberg and Kohn Theorems are

responsible for providing the fundamental backbone for this mapping

Hohenberg-Kohn shows [1] that

• For a system of interacting particles in an external potential Vext(r), the single particle

density has a unique one to one correspondence with the external potential. This

thereby justifies the use of electron density (n(r)) to retain all necessary information

about the many-body state.

• The energy of the many-particle system can be written in terms of a universal functional

of the single particle density and the external potential. This thereby allows to extract

the true ground state of the system as the global minimum of this functional. In other

words we can write

E[n] = F [n] +

∫
n(r)Vextdr. (2.2)

E[n] = min(E[n])⇐⇒ δE[n]

δn
|n=n0 = 0. (2.3)

wherein the first term F [n] is a universal functional of the sum of kinetic and coulomb energies

and hence depends only on the number of particles in the system and n0(r) corresponds to

the ground state one-electron density obtained from the global minimum energy. These two

theorems only provide proof of existence and uniqueness of the functional F [n] without any

concrete recipe to evaluate its exact form for any arbitrary system.

W. Kohn and L. Sham (KS) for a practical implementation of DFT mapped the problem

of interacting particles in an external potential to an auxillary system of non-interacting
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particles with equivalent ground state (non-interacting V representability)[2]. The scheme

defines F [n] as follows:

F [n] = T [n] + EH [n] + EXC [n] + Eext[n], (2.4)

wherein

Eext =

∫
Vextn(r)dr, (2.5)

T [n] = −
∫ N∑

i=1

ψ∗i (r)
~2∇2

2m
ψi(r)dr, (2.6)

EH =
e2

8πε0

∫
n(r)n(r′)
|r − r′|

drdr′. (2.7)

The exchange-correlation functional EXC [n] is not known exactly for any arbitrary sys-

tem and will have to be duly approximated. Single-particle density is then obtained from

the occupied orbitals (ψi,σ(r)) of a single-determinantal Hartree-Fock ansatz as follows:

n(r) =
i∑
σ

ψ∗i,σ(r)ψi,σ(r). (2.8)

Ground-state of the system can be obtained by minimizing energy with respect to ψ∗i,σ(r)

subject to orthonormality. This necessitates that these orbitals are eigenvectors of the fol-

lowing equation (The Kohn-Sham equation)

(− ~2

2m
∇2 + Veff )ψi,σ(r) = εiψi,σ(r), (2.9)
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Veff = Vext + VH + VXC = Vext +

∫
n(r′)
|r − r′|

+ VXC [n(r)], (2.10)

where

VXC =
δEXC [n(r)]

δn(r)
. (2.11)

Both VH and VXC depend on electron density which in turn is obtained from the solution

of the problem. One needs to start from an initial guess for the single particle density and

then construct the Kohn-Sham Hamiltonian and diagonalize it to obtain the orbitals ψi,σ(r)

which in turn is used to construct a new-single density (Eq.2.8) that goes into the next cycle.

In this way the problem is solved through number of iterations till self-consistency is achieved

which is characterized by a change in single-electron particle density between successive

iterations below a certain preset threshold. The energy so obtained after convergence (Eq.2.2)

is the many-body ground state energy.

The exchange-correlation (XC) energy functional EXC required to solve the Kohn-Sham

equation is in general given by,

EXC [n] =

∫
n(r)f(n(r),∇n, ...)dr. (2.12)

The simplest form is to approximate it to be a functional of density of a homogenous

electron gas (HEG)[3–5]. This is called the Local Density Approximation (LDA). Even

though it is good for solids, but for molecules and atoms the results are quantitatively poor

and also it suffers from self-interaction error with the Hartree potential term.

The next refinement is making the exchange correlation functional depend not only on

16



the density of HEG but also on its higher order derivatives. Inclusion of the gradient, ∇n(r)

in the expansion produces the Generalized-Gradient Approximation (GGA) and inclusion of

both the gradient and the Laplacian of the density produces the meta-GGA approximation.

Hybrid density functionals which are built to include a part of the exact Hartree Fock

exchange in the GGA functional are now routinely used and afford a good compromise

between accuracy and cost.

2.2 Density Functional Theory and Non-Equilibrium Green’s

Functions (DFT-NEGF)

While interfacing an electronic structure method to compute transport, one has to carefully

take into consideration all the key components of the circuit including the molecular bridge,

the semi-infinite contacts (electrodes/reservoirs) and the interaction between the two under

finite bias. DFT-NEGF provides a practical scheme to achieve the purpose. The Hamiltonian

of the whole molecule-electrode combination (H) is partitioned as follows.

H =


HL HLM 0

H
†
LM HM H

†
MR

0 HMR HR


wherein HL R are the Hamiltonian matrix blocks for the left(right)electrodes and HM is

that of the central molecular material which has slices of the electrode too (together called

the active region). HMR and HLR denotes the coupling blocks of the active region to the

respective electrodes. The retarded Green’s function G in frequency domain for the full

system (with a similar partitioning scheme as H above) is defined as

(E+S −H)G = I (2.13)
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where E+ = limη→0+E + iη, S is the overlap matrix associated with the non-orthonormal

basis with similar partitioning as H and G and I is the identity matrix. Using this definition

and the Hamiltonian above, it is possible to write the Green’s function of the active region

(GM ) as

GM (E) = (E+SM −HM − ΣL(E)− ΣR(E))−1 (2.14)

ΣR(E) = (E+SMR −HMR)(E+SR −HR)−1(E+S
†
MR −H

†
MR) (2.15)

ΣL(E) = (E+SML −HML)(E+SL −HL)−1(E+S
†
ML −H

†
ML) (2.16)

The shift in energies of the single particle states of the central region is accessible from

the real part of ΣR/L(E) and the level broadening is obtained from the imaginary part often

called ΓR/L(E). The one particle density matrix (DM ) for the active region under finite

bias is then computed using :

DM =
−1

π

∫
dE Im(GM (E))f(E − µ)

+
1

2π

∫
dE GM (E)ΓRG

†
M [f(E − µR)− f(E − µL)] (2.17)

(2.18)

where ΓR/L(E) = −2Im(ΣR/L(E)) as mentioned before. The one particle density for

the central region is computed from the above density matrix as :

n(r) =
∑
σ

∑
i,k

Di
M,σ,kψi,σ(r)∗ψk,σ(r) (2.19)

where ψi,σ(r) KS-orbitals defined in previous section obtained from the KS-Hamiltonian

18



of the active region i.e. of HM . So the self-consistency procedure involves now starting

with a trial guess to construct HM,K−S (Kohn-Sham Hamiltonian of active region), then

construct GM (E) (see Eq.2.14) which also requires knowledge of the bulk electrodes (but

they can be computed once and for all). A new density matrix and hence electron density

is then computed using Eq.2.17 and 2.18 and then the procedure is repeated until self-

convergence. Once converged I vs V characteristics and zero-bias conductance (G) can be

obtained as follows:

I(V ) =

∫
dE T (E)(f(E − µR)− f(E − µL)) (2.20)

G =
2e2

~
T (E) (2.21)

where T (E) = Tr(G
†
MΓRGMΓL). Further extensive reviews on the method can be found

elsewhere [6–8]

2.3 Limitations of the Method

• The explicit lack of dynamic and non-dynamic correlation in the treatment of the

electronic structure of the metal-molecule contact by basing the NEGF formalism on

DFT. This is mainly due to the single-reference operational framework of the latter

and the use of inexact correlation functionals. We shall see later in this thesis for

systems involving transition metal complexes in Kondo-resonant devices , correlation

and co-operativity in multiple nearly degenerate orbitals becomes necessary.

• Self-interaction error stemming due to usage of LDA and GGA functionals (the hybrid

functionals are better in this regard as they include a part of the exact HF exchange

which cancels the self-interaction due to Hartree potential) and explicit lack of changing

electronic distribution and polarization effects due to the potential. The relaxation
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of the many-body states due to the applied electric field is not explicitly taken into

account.

• TDDFT used for computing excited state manifold usually predicts lower band-gap

which in turn can significantly decrease the potential required to maintain the con-

ducting state thereby over-estimating conductance (see Chapter 3)

• The bulk electrodes in this set-up are treated completely differently than the molecu-

lar region. They are considered to be composed of non-interacting electron gas with

a Fermi distribution characterized by the respective chemical potentials. Thus cor-

relation effects are explicitly ignored in the electrodes too and hence a theory that

holistically treats both the molecule and the leads together is necessary

2.4 Current Constrained variational scheme

Owing to the limitations of the DFT-NEGF method, a transport methodology based on a

correlated electronic structure support which employs exact energy functional, treats many-

body relaxation due to the electric field explicitly, does not underestimate band-gap and also

does not differentiate the system and the electrode but treat them holistically is essential.

Much of this thesis is concerned with a work in that direction which we shall elaborate now

and in the subsequent chapter.

2.4.1 Deduction of the constraint

The Hamiltonian in Eq.1.12 can be re-arranged as :

Ĥ =
∑
i<k

〈i|ĥ|k〉a†iak +
∑
i<j
l<k

〈ij|V̂ |kl〉a†ia
†
jalak (2.22)
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Using a basis transformation to define new field operators ψ̂†(~r) and ψ̂(~r) as :

ψ̂†(~r) =
∑
i

φi(~r)
∗a†i (2.23)

ψ̂(~r) =
∑
i

φi(~r)ai (2.24)

{ψ̂†(~r), ψ̂†(~r′)} = 0 (2.25)

{ψ̂(~r′), ψ̂†(~r)} = δ(~r − ~r′) (2.26)

the Hamiltonian in Eq.2.22 can be transformed as :

Ĥ =

∫
−~2

2m
∇2ψ̂†(~r′)ψ̂(~r)d~r +

∫ ∫
ψ̂†(~r)ψ̂†(~r′)ψ̂(~r′)ψ̂(~r)V̂ (~r, ~r′)d~rd~r′ (2.27)

where the matrix elements of the 1-RDM and 2-RDM and the one-particle density in the

position basis are as follows respectively:

1D(~r1, ~r
′
1) = 〈Φ|ψ̂†(~r′1)ψ̂(~r1)|Φ〉 (2.28)

2D(~r1, ~r
′
1, ~r2, ~r

′
2) = 〈Φ|ψ̂†(~r′1)ψ̂†(~r′2)ψ̂(~r2)ψ̂(~r1)|Φ〉 (2.29)

n(~r) = 〈Φ|ψ̂†(~r)ψ̂(~r)|Φ〉 (2.30)

with the density operator being ψ̂†(~r)ψ̂(~r) . The equation of motion of the density operator

in Heisenberg picture is

dt(ψ̂
†(~r, t)ψ̂(~r, t)) =

i

~
[H, ψ̂†(~r, t)ψ̂(~r, t)] (2.31)

=
~

2mi
∇ · (ψ̂†(~r, t)∇ψ̂(~r, t)− (∇ψ̂†(~r, t))ψ̂(~r, t)) (2.32)

where the Hamiltonian in Eq.2.27 has been used for simplification of the first expression

into the second. In analogy with single-particle quantum mechanics, current density operator
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(not the field) is:

ĵ(~r, t) =
~

2mi
(ψ̂†(~r, t)∇ψ̂(~r, t)− (∇ψ̂†(~r, t))ψ̂(~r, t)) (2.33)

With this definition the equation of continuity in Eq.2.32 resembles single-particle quan-

tum mechanics exactly but in terms of operators. The current density vector field then

becomes:

~J = 〈ĵ(~r, t)〉 =
~

2mi
∇〈(ψ̂†(~r′, t)ψ̂(~r, t)− ψ̂†(~r, t)ψ̂(~r′, t))〉 (2.34)

=
~
m
∇Im(1D(~r, ~r′)) (2.35)

where Eq.2.28 has been used for the 1-RDM. One can also use Eq.2.23 and 2.24 , to recast

the above expression in a finite single particle basis as follows:

~J =
~
m
∇Im(1D(~r, ~r′)) (2.36)

=
~
m

∑
i,k

φi(~r)
∗∇φk(~r)Im(1Di

k) (2.37)

(2.38)

where 1Di
k is the spin-traced 1RDM element defined before 1Di

k = 〈Φ|â†i âk|Φ〉.

Now to define a charge current , we choose the direction of the flux to be a unit vector

η =
∑
k η

kek
||η|| where ek are the unit vectors along the co-ordinate directions. If we construct

a plane in the direction perpendicular to η (the area vector of the plane is parallel to η),

then the flux that permeates through the plane projected along the direction of η is

I(η) =

∫
η⊥

~J · η dη⊥

=
−e~
m

∑
i,k

∫
η⊥
φi(~r)

∗∇φk(~r) · η dη⊥Im(1Di
k) (2.39)
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Note that the current above is still a function of a one-dimensional spatial co-ordinate η

as only the co-ordinates perpendicular to η are integrated out. So the average flux associated

with all such planes along the direction of η within co-ordinates η = a to η = b is

I =
−e~

m(b− a)

∑
i,k

∫ η=b

η=a

∫
η⊥
φi(~r)

∗∇φk(~r) · η dη⊥dη Im(1Di
k) (2.40)

=
∑
i,k

1J ikIm(1Di
k) (2.41)

= Tr(1J Im(1D)) (2.42)

where the matrix elements 1J ik = −e~
m(b−a)

∫ η=b
η=a

∫
η⊥
φi(~r)

∗∇φk(~r) · η dη⊥dη. The current in

Eq.2.41, 2.42 is a number only and not a function of any spatial co-ordinates. This is held

fixed as a constraint within the optimization scheme to be discussed in the next few sections.

2.4.2 Homomorphic mapping

Since the constraint defined in the previous section

I = Tr(1J Im(1D)) (2.43)

depends on the imaginary part of the 1-RDM, an extension of the scheme elaborated in the

previous chapter is essential so as to equip it to handle complex numbers. In this regard,

we define a homomorphism L : Hn×n 7→ S2n×2n wherein H is the space of n× n Hermitian

matrices and S2n×2n is the space of 2n× 2n real-symmetric matrices such that

M = Re(M) + iIm(M) M ε Hn×n (2.44)

(2.45)
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L(M) =

Re(M) Im(M)T

Im(M) Re(M)


where L(M) ε S2n×2n as Re(M)T = Re(M). The map preserves the group properties

of complex matrices with respect to addition and multiplication (if commuting) but is only

injective. This is because while every Hermitian matrix can be transformed in this fashion

into a real symmetric matrix but the converse is not true (real symmetric matrices exists

which do not conform to the structure mentioned)

2.4.3 Modified Optimization scheme

With the additional constraint and the mapping defined in previous section , the optimization

problem to be used in this thesis becomes :

min
L(2D)

E[L(2D)] =
1

2
Tr[L(2K) L(2D)] (2.46)

such that L(2D) � 0 (2.47)

L(2Q) � 0 (2.48)

L(2G) � 0 (2.49)

Tr(L(Aj) L(2D)) + Tr(L(Bj) L(2Q)) + Tr(L(Cj) L(2G)) = 2bj . ∀j (2.50)

Tr(L(1J) L(1D)) = 2I (2.51)

where as before Eq.2.50 denotes constraints to preserve the linear mapping between the

2Q,2D,2G and also to fix their respective traces. Lot of additional constraints are also

introduced to implement the mapping and preserve the structure mentioned in the previous

section. By fixing the value of the current in Eq.2.51 , the energy and density matrices so

obtained corresponds to a unique minima. This energy is then substracted from the value in

absence of the current constraint (I=0) to get the energetic penalty incurred on the system
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to maintain the average flux.The modified semidefinite program minimizes the energy over

the convex set of two-positive 2-RDMs that support the current I. The optimal 2-RDM

supports the current I with the lowest possible energy increase over the energy of a molecule

without the current. This response energy is the smallest energy required by the molecule

to support the current. Importantly, the steady-state of the molecule with conductivity is a

complex superposition of ground and excited states. This complex superposition, driven by

the competing goals of energy minimization and current-constraint feasibility, consistently

treats both electron transport and electron correlation within a single correlated electronic

structure calculation.

2.4.4 Relaxation due to electric field and conversion to potential

To mimic situations in a realistic experimental set-up, one can use the optimization scheme

to constrain an average flux over a large chunk (permitted by scaling restrictions)of the

device that includes the molecular bridge and some representations of the electrodes. In

principle this can be done over the whole-setup including the cell. Now the response energy

computed from the model as defined in the previous section will have to be supplied to the

system to maintain the flux. Where is this energy coming from ? This is where the role of

the potential comes in . The electric field due to the potential at the electrodes changes all

the moments of the electron distribution by polarizing the density towards the positive plate.

This changes the energy and the population of all the orbitals responsible for contributing to

the flux required to cause the polarization. Since we are modeling the event by computing

this energetic cost to cause the polarization a priori, this has to be then calibrated against

the gain due to the presence of the electric field.

For an electric field ε = ~E.η turned in the direction of the current the change in energy

of the system can be expanded into a power series as follows:

∆Efld = µ0ε+
1

2
α0ε

2 +
1

6
γ0ε

3 + ..... (2.52)
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where µ0 is the zero-field dipole moment of the system in the direction η and α0, γ0 are the

elements of the zero-field polarizabilty and hyperpolarizability tensor. Realistically the only

condition needed to be maintain in the circuit for continuous flow is :

∆Efld ≥ ∆Ecurr (2.53)

with the remaining energy being lost into the surroundings. But for a idealistic dissipationless

circuit as is assumed in this work, the minimum energy configuration required to maintain

the flow can be obtained by equating the two which gives (after truncation at second order

in ε):

∆Ecurr = ∆Efld = µ0ε+
1

2
α0ε

2 (2.54)

If the electric field used is spatially steady (a reasonable approximation even for AC

electric field due to the smallness of the size of the system compared to its wavelength) then

the above equation provides a recipe to convert many-body response energy ∆Ecurr into

electric potential(V) that can be maintained at the electrode using the fact ε = V
(b−a)

. Let

L = (b-a) i.e. the length over which the flux is maintained then from Eq.2.54

∆Ecurr = µ0
V

L
+

1

2
α0(

V

L
)2 (2.55)

Since all of the systems used in this thesis is non-polar and symmetric (for asymmetric

systems one would have diode-like behavior), the above expression simplifies for V to:

V = (
2∆Ecurr

α0
)0.5L (2.56)

This equation Eq.2.56 provides an intuitive and physically motivated justification for the

role of potential in transport as the agent which compensates for the re-organization cost

incurred on the system by relaxing the energies of the various electronic states which are

required to be mixed to maintain a steady flux. The voltage in Eq. (3.2) has trends with re-

26



spect to changes in length, polarizability, and current that are consistent with expectations.

The voltage, for example, increases linearly with length, thereby showing that it is size ex-

tensive. A property is size extensive if it scales linearly with system size. Furthermore, as the

polarizability molecule increases, the voltage decreases, reflecting the microscopic origin of

conductivity in charge polarization. Finally, the energy response of the molecule to the cur-

rent constraint is computed from solution of the semidefinite program. The energy response

can be viewed as arising from a linear but imaginary perturbation in the Hamiltonian due

to be applied current. Because the first-order change in energy vanishes, the linear change

in the Hamiltonian generates a second-order change in the energy, scaling quadratically in

the current. The square root of the energy response in Eq.2.56, therefore, causes the voltage

to scale linearly with the current I at low currents.
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CHAPTER 3

CURRENT-CONSTRAINED VARIATIONAL THEORY -

APPLICATIONS IN MOLECULAR ELECTRONICS

• This chapter contains parts of an article that was originally published in the Communi-

cations Chemistry. Reproduced with permission from [M.Sajjan and D. A. Mazziotti,

Communications Chemistry , 1, 31 (2018)]. Copyright 2018, Springer Nature.

• This chapter contains parts of several articles that are under preparation at the time

of writing.

3.1 Introduction

We have developed the theory for current-constrained variational principle in the previous

chapter. In the present one, we shall focus on a broad range of applications including length

dependance in conductance for polyacenes to effect of electrode substitution in benzene-

dithiolates to single-molecular pH sensors and analyzing orbital degeneracies in Kondo reso-

nance for a binuclear vanadium complex. Each of the subsequent sections presents the details

for each of the aforesaid applications. In all of the calculations mentioned below a finite set

of active orbitals were used to correlate in the 2-RDM scheme. Such a method known as

complete-active-space 2-RDM calculation [1] has the following steps: (1) initial molecular

orbitals are computed from Hartree-Fock calculation, (2) the active orbitals are correlated

through a variational 2-RDM calculation wherein the energy is minimized as a functional

the 2-RDM subject N -representability constraints [2–4] as well as a current constraint. We

employ a necessary set of N -representability constraints known as the two-positivity (or

DQG) conditions [3, 5, 6], which constrain three matrix forms of the 2-RDM to be positive

semidefinite. (3) the active orbitals are mixed with the remaining (inactive) orbitals to lower

the energy, and (4) steps two and three are repeated until convergence. The active-space

variational 2-RDM method with 2-positive (DQG) conditions has a polynomial scaling (r6
a)
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as opposed to the exponential scaling era configuration interaction. Once the current is

added to the molecule, the 2-RDM becomes Hermitian with its imaginary component con-

taining information about the current. The complex-valued semidefinite program can be

solved by mapping it to a real-valued semidefinite program. Just as a complex number can

be represented by a real 2x2 matrix, a Hermitian matrix M dimension dxd can be written

as a real symmetric matrix S of dimension 2dx2d [7]

3.2 Length and orientation dependance of conductance -

highlighting intrinsic characteristics of oligoacenes

In this section we focus on the length dependance of conductance for the strongly correlated

oligoacene molecular wires [1, 8–11] {C4n+2H2n+4 | n ≤ 4 and n ∈ Z+} along both the

longitudinal (θ = 0◦) and the transverse axis (θ = 90◦) with θ being the angle between the

direction of the current imposed and the cylindrical axis of the molecular wire. Calculations

were done in STO-6G basis set [12] and the complete set of π orbitals of each of the sys-

tem were allowed to correlate [1]. An ideal non-invasive electrode setting was assumed. In

other words, the molecule is completely decoupled from any leads to see study the influence

of its intrinsic characteristics on conductance. Since electrodes in tunnel-coupled geome-

tries are known to make considerable impact, it is needless to say that the conductances

produced herein is of theoretical interest only and would only correspond to experimental

measurements made in the limit of extremely weak coupling. The study of acene chains is

spurred by the importance of polyaromatic hydrocarbons in medicine [13], astrophysics [14],

photovoltaics [15, 16], and nano-electronics [17, 18]. Besides even in absence of the cur-

rent constraint, electronic-structure studies have shown that oligoacenes of moderate length

exhibits significant polyradical character which has been efficiently captured using polyno-

mial scaling RDM-methods before [1, 10, 11] unlike wavefunction techniques limited by

computational costs.
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(a)

(b) (c)
n=2

n=3
n=4

(d)

Figure 3.1: (a) The I vs V curve for the oligoacenes till n=4. The ‘I’ used in this curve is
the average flux imposed on the system as discussed in text. The orientation of the flux
is along the longitudinal direction of the wires (θ = 0) with the molecular axis taken to
be the x-axis. It is illustrated in the inset using tetracene as an example (b) We plot the
transmitted section (Itr(x = σ

2 )) of the average current which is defined as the flux within a
fictitious probe window at the tail end kept at x= σ

2 (σ is the dispersion in electron density
along x for each molecule). It signifies the incoming local current to a lead if an electrode
(like an STM tip in experiment) would have been situated at the said location. It is apparent
that the transmitted section of the average flux has an explicit exponential dependance on

length. (c) We plot φ(x = σ
2 ) =

Itr(x=σ
2 )

I at I = 0.55 µA (highlighted in (b)) against the
length of each of the three acenes (n=2,3,4) to expound the exponential decay clearly. The
length for each, quantified by the respective dispersion in electron cloud (σ), is expressed as a
dimensionless variable normalized to the dispersion for the shortest member i.e. napthalene
(n=2) which is σ2cene = 5.218 Å.The data is fitted to an exponential which provides the
parameters A and γ (see text)(d) The local φ(x) versus the length profile for each of the
oligoacenes. The length axis is normalized to the dispersion (σ) of the respective systems.
An imaginary probe window centered at σ

2 illustrates that the area covered by φ(x) within
it declines with increasing length.
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In Fig. 3.1 we plot the I vs V curve for the three acenes with average the flux (I) being

imposed along the longitudinal direction of the molecular chain (i.e. θ = 0) taken to be the x-

axis here. We see an inverse linear dependance of the conductance on length of the molecular

wire against the average flux. This is due to the form of the potential V =
√

∆E
α0
σ. The term

∆E
α0

is weakly dependant on length due to cancellation of the respective size dependance of

the numerator and the denominator, thereby making σ to be the sole contributing factor to

the observed trend. To quantify the percentage of the transmitted section of the average

flux, we define a variable φ(x = σ
2 ) =

Itr(x=σ
2 )

I wherein Itr(x = σ
2 ) is the current collected

from an imaginary probe at the tail end of each systems centered at x= σ
2 (see Fig.3.1(d))

and I is the average current. The symbol φ(x = σ
2 ) explicitly indicates the location of the

collection window. The length dependence ( σ
σ2cene

) of the said quantity is exemplified in

Fig. 3.1 (b),(c) which signifies that a local probe like an STM tip in an experiment would

experience an exponential drop in the collection of flux when the length of the molecular wire

is increased. This is the signature for tunnelling dominated transport which, at the length

scale of interest, has been reproduced in many systems [19, 20] including the acenes both

experimentally [21] and theoretically [22, 23]. Using this information and the exponential

fit in Fig.3.1(c), we further quantify the conductance of these molecular wires (attached to

non-interfering electrodes) as follows:

φ(x =
σ

2
) = A exp(− γ

σ2cene
σ)

Itr(x =
σ

2
) = AGavg(σ) exp(− γ

σ2cene
σ)V ∵ I = Gavg(σ)V

G(x =
σ

2
) = G(σ) exp(− γ

σ2cene
σ), G(σ) = AGavg(σ) (3.1)

where A (pre-exponential factor) and γ are dimensionless fitting parameters obtained in

Fig.3.1(c). The factor γ
σ2cene

is analogous to the Magoga’s parameter [24]in our model. We

have now also defined two different conductances as follows:
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• G(σ) : This is associated with the average current (see Fig. 3.1a and Eq.3.1) and

is due to difference in re-organization energy required to maintain the flux over the

whole length of the system for each molecular wire. The re-organization necessitates

the mixing the ground and excited states

• G(x = σ
2 ) : This in addition to the relative differences in the energetic cost mentioned

above is also associated with tunelling of charges into the bath. It is quantified here

due to the difference in innate tendency of the molecules to spatially distribute the

imposed flux towards its tail end (see Fig. 3.1b,c and Eq.3.1).

Length dependencies of these conductances are explored next in Table 3.1.

Table 3.1: Comparison of the various quantities obtained from the model against the length
of each system expressed as a dimensionless variable σ

σ2cene
with σ2cene = 5.218 Å. While A

is unitless, the units of γ
σ2cene

is Å−1.

Gavg(σ), G(σ) = AGavg(σ) and G(x = σ
2 ) are all expressed in units of G0 where 1 G0 =

2e2/~.

Property 2-cene 3-cene 4-cene
σ/σ2cene 1.000 1.692 2.483

A 4.4120 4.4120 4.4120
γ/σ2cene 0.4403 0.4403 0.4403
Gavg(σ) 0.3756 0.2278 0.1484

G(σ) 1.6571 1.0050 0.6547
G(x = σ

2 ) 0.1665 0.0206 0.00218

Several points are apparent from Table 3.1. We see that the exact nature of the length

dependences for the two conductances defined above are different. G(σ) ∝ ( σ
σ2cene

)−α, which

from Eq.3.1 makes G(x = σ
2 ) ∝ ( σ

σ2cene
)−α exp(−γ σ

σ2cene
) with α ≈ 1. These dependencies

are elaborated below

• Investigating the Magoga’s parameter ( γ
σ2cene

) can lead to important insight into the

conduction behavior of G(x = σ
2 ). From our calculations and fitting we report in Table

3.1, the value of the said parameter to be 0.4403 Å−1 which is in close agreement to

experiment[21]. It is further stated in Ref[21], that this parameter is connected to
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Figure 3.2: (a) The plot of the length dependance of G(σ) = AGavg(σ) versus σ
σ2cene

for

the molecular wires studied. We see that G(σ) is proportional to ( σ
σ2cene

)−1 (blue) unlike

in Magoga’s theory[24]. This is justified using the assertions in Ref[21] wherein it is made
explicit that the constant pre-exponential term i.e. G(σ) (see Eq.3.1) reduces substantially
with enhanced molecule-electrode coupling and is extremely sensitive to the linker too. In
our model we use the bare molecular backbone devoid of any electrode or linker, we speculate
that an enhanced coupling with the bath with bring down the length scaling to ( σ

σ2cene
)−α

with α ≤ 1 (black dots) .The arrow indicates reaching the Magoga’s limit progressively
(b) Length dependence of G(x = σ

2 ) is plotted which beyond the re-organization cost and
the inverse linear length scaling seen in G(σ) has an additional exponential decay associated
with tunnelling over the window studied (see Eq.3.1). The decay constant in the exponential
(known as Magoga’s parameter [24]) is found to be 0.4403 Å−1 which is in close agreement
with experiment [21]
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intrinsic characteristics of the system and is nearly independent of the electrode setup

even though very weakly dependant on the linker used (see Fig.8(A) in Ref[21]). This

explains the close agreement with our model wherein the effect of the electrode is

ignored. Also it resembles more closely the value for the monothiol acene junctions

(reported in Ref[21] to be 0.5 Å−1) than to dithiol junctions (reported in Ref[21] to

be 0.2 Å−1) as is expected from calculations on a bare molecular backbone devoid of

linking substituents. This also further explicates that the exponential part of G(x = σ
2 )

will not change much by changing the bath and the linker.

• As mentioned before (see Eq.3.1) since the the pre-exponential factor G(σ) is it-

self length sensitive (∝ ( σ
σ2cene

)−1), the combined length dependence of G(x = σ
2 ) is

( σ
σ2cene

)−1 exp(−γ σ
σ2cene

) unlike in Magoga’s theory wherein it is a single-exponential

decay[24]. This is justifiable from the analysis in Ref[21] wherein it is stated that the

pre-exponential factor is decreased strongly due to electrodes with high work-function

and also for good linkers (see Fig.8(B) in Ref[21]) both of which are absent in our

model as it focuses on the intrinsic characteristic of the molecule alone. We speculate

as indicated in Fig.3.2a that a stronger coupling of the system to the electrode should

not only decrease the value of G(σ) for each wire but also reduce the length scaling

(as longer acenes have high DOS which should provide more channels for coupling)

thereby making the length dependence reach Magoga’s limit progressively (i.e. G(σ)

∝ ( σ
σ2cene

)−α with α ≤ 1). In that limit the length dependence of G(x = σ
2 ) would

therefore be approximately a pure exponential.

To illustrate the orientation dependance of conductance in Fig.3.2(a) we plot the I vs

V curves for the oligoacenes in a transverse orientation (θ = 90) with the direction of the

flux being taken to be the y-axis. This is illustrated in the inset using tetracene again.

Unlike in the previous case when their respective lengths have dominated the trend in their

conductance described above both at the level of average flux as well as its transmitted

section, we see that in the new orientation away from the molecular axis, the oligoacenes

35



presents completely reversed trend in their conductances commensurate with the electronic

structure of the molecules which entails a decreasing band gap. An expression analogous

to Eq.2.1 would indicate that the conductance for the acenes in this new orientation is

controlled entirely by the G(σ) term which for the same σ (dispersion in electron density

along y) as is the case here is controlled by the
√

∆E
α0

term in the potential. To maintain

a flux across the same length, higher acenes incurs a less re-organization cost (less ∆E )

due increased quasi-degeneracy of the π orbitals which leads to high density of many-body

states. This also makes the system more polarizable and enhances the response to electric

field augmenting the α0 term. In Fig.3.2 (b) as before we plot the transmitted section of

the current (Itr(y = σ
2 ) near the zero-bias limit at I = 0.55 µA and see that it is almost

sub-linearly increasing (for n=2 to 3) and then begin to saturate unlike in the previous case

where we had a continuous exponential drop. This can be explained by noting that even

though the number of single-particle modes which supports the flux increases down the series,

the modes are less transmissive over a longer length when considered in the longitudinal

orientation unlike in the shorter transverse orientation wherein the spatial gap being same

only their enhanced number makes the only difference. This reversal in conductance (see

Fig.3.2(c)) trend due to changing orientation has been verified in amminoacenes [25] and

more recently on the molecular backbone directly[26] even though the exact transport axis

in the latter is slightly tilted away from the molecular plane unlike in our calculations.

In conclusion, through our model we study the length dependence of conductance in

oligoacenes by defining two different measures of conductances namely G(σ) and G(x = σ
2 ).

While G(σ) is associated with the re-organization cost required to maintain the total average

flux over the system, G(x = σ
2 ) in addition to this energetic cost is also sensitive to the

differences in the innate tendency of the molecular wires to support flux towards its tail end

so as to facilitate tunelling into the electrodes. This kind of analysis allows us to peel the

effect of length on these individual conductances which is ( σ
σ2cene

)−1 for the G(σ) (see Fig

3.2(a) and Eq.2.1)due to the σ term in the potential and ( σ
σ2cene

)−1 exp(−γ σ
σ2cene

) for the
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G(x = σ
2 ) (see Fig 3.2(b) and Eq.2.1) due to additional sensitivity to charge distribution on

the backbone over and above the dependances in G(σ). Even though previous theories have

focused on G(x = σ
2 ), the analysis of G(σ) has been eluded and to the best of our knowledge

is the first of its kind. We also discuss the parameters in the two conductances and report

that the Magoga’s constant for the oligoacene series is 0.4403 Å−1 which being insensitive to

external coupling is in close to experimental values[21]. We then justify in what limit the two

expressions above based on intrinsic properties of the molecule would collapse (see Fig.3.2)

to the Magoga’s formula [24]. Thereafter we reproduce the experimentally verified reversal in

conductance trend due to switching in orientation of transport axis in the oligoacene family.

In the latter case the length being the same, the sole contributing factor becomes the density

of modes thereby lowering the re-organization cost for higher acenes.
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(a)

(b) (c)

(d)

Figure 3.3: (a) The I vs V curve for the oligoacenes till n=4. The ‘I’ used in this curve is
the average flux imposed on the system as discussed in text. The orientation of the flux is
along the transverse direction of the wires (θ = 90) with the transport axis taken to be the
y-axis. It is illustrated in the inset using tetracene as an example (b) We plot the transmitted
section (Itr(y = σ

2 )) of the average current which is defined as the flux within a fictitious
probe window at the tail end kept at y= σ

2 (σ is the dispersion in electron density for each
molecule along y). It is apparent that the transmitted section of the average flux increases
sub-linearly from n=2 to 3 and then saturates. (c) We plot G(σ) (analogue of Fig. 3.2)
against the number of rings for the three acenes (n=2,3,4) to expound linear rise. (d) The
local φ(y) versus the length profile for each of the oligoacenes. The length axis is normalized
to the dispersion (σ) along y of the respective systems. An imaginary probe window centered
at σ

2 illustrates that the area covered by φ(y) within it remains nearly the similar in this
orientation.
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3.3 Effect of electrode substitution in benzene-dithiolates and

chemical substitution on benzenediamines

In this section, the current-constrained variational principle, implemented in the variational

2-RDM method, is applied to computing the conductance of the 1,4-benzenedithiol molecule,

shown schematically in Fig.3.4, which has been used extensively to benchmark both experi-

mental [27–31] and theoretical studies [32–39]. Due to the small size of the molecule and the

atomistic molecule-electrode contact typically used in an experiment, a single atom lead is

a reasonable, first-order approximation to the junction between the lead and the molecule.

While the average current across the entire molecule and lead was constrained within the

variational calculation, we report the average current confined to the lead, which is the lo-

cation where the current is experimentally measured. Computations with the variational

2-RDM method [5, 6, 40] were performed in a finite basis set which is 6-311G* for sulfur,

6-311G for carbon and hydrogen and LANL2TZ (with ECP) for the metals. An active space

of 15 orbitals with 16 electrons [15o,16e] of π symmetry was used for the calculations. The

length of the molecule was set to the dispersion of r in the direction of the molecule at

zero field which measures the length of the molecule by the extent of its electron cloud. At

finite field the dispersion (length) of the molecule was kept fixed to its zero-field value by

additional constraint in the semidefinite program. This constraint, however, was not found

to affect the result significant, and in most cases it can be neglected.

Fig.3.5(a) shows the I-V curves from a range of theoretical methods [32, 34, 35] and

experiment [27] as well as from the variational 2-RDM method (labeled 2-RDM). NEGF-

DFT results [34, 35] are shown from a range of density functionals including PZ, B3LYP, and

M06. All three of these methods yield currents that are 1 to 2 orders of magnitude larger than

those from the experiment. It is well-known that DFT with NEGF tends to overpredict the

conductance by a significant amount, potentially orders of magnitude [34, 35, 43–45]. The

over prediction has been attributed to several factors including the energetic positioning
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(a) (b)

Figure 3.4: (a) The 1,4-benzenedithiol molecule, connected to gold-atom leads, has been used
extensively to benchmark both experimental [27–31, 41] and theoretical studies [32, 34, 35].
(b) The same molecule with the electrode substituted with nickel atoms

  

(a) (b)

Figure 3.5: (a) Comparison of I-V curves from a range of theoretical methods and ex-
periments for BDT-Au. The I-V curve from the constrained-current variational 2-RDM
method (labeled 2-RDM) is compared with the I-V curves from a range of theoretical meth-
ods [32, 34, 35] and experiment [27]. Many of the previous theoretical calculations yield
currents that are 1 to 2 orders of magnitude larger than those from the experiment [27]; the
current-constrained 2-RDM theory, in contrast, yields currents that match the experimental
results [28–30] for the range of available voltages. (b) While the 2-RDM and experimental
currents appear to be zero in a relative to previous predictions, the graph in b displays the
base-10 log of the conductance as a function of the voltage, showing that the currents from
the 2-RDM method are nonzero and essentially equivalent to those from the experiment.
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Table 3.2: Comparison of the computed and measured conductances from several theo-
ries and experiments with the conductance from the current-constrained variational 2-RDM
method for BDT-Au. While previous theoretical studies overpredict the conductance as
discussed above, both the 2-RDM method and the majority of experiments predict a con-
ductance of ≈ 0.011 G0 for 1,4-benzenedithiol with gold leads where 1 G0 = 2e2/~.

Source Conductance(G0)
DFT/TightBinding[32] 0.058

NEGF-DFT(PZ)[34] 0.57
NEGF-DFT(MO6)[35] 0.25

NEGF-DFT(B3LYP)[35] 0.21
Expt[27] 0.011
Expt[42] 0.01-0.015
Expt[28] 0.01
Expt[29] 0.01
Expt[31] 0.01-0.08

2RDM(present) 0.0102

of the Kohn-Sham orbitals. The current-constrained 2-RDM method, in contrast, yields

currents that match the experimental results for the range of available voltages. While

the 2-RDM and experimental currents appear to be zero in Figs.3.5(a) relative to previous

predictions, Fig.3.5(b) displays the base-10 log of the conductance as a function of the

voltage, showing that the currents from the 2-RDM method are nonzero and essentially

equivalent to those from the experiment. Table 1 compares the computed and measured

conductances from several theories and experiments with the conductance from the current-

constrained variational 2-RDM method. While previous theoretical studies overpredict the

conductance as discussed above, both the 2-RDM method and the majority of experiments

predict a conductance of 0.01 for 1,4-benzenedithiol with gold leads.

Chemical substitution has a large role in controlling conductivity in molecular circuit

design. Molecular changes can be made not only to the molecule but also to the linkers and

the leads. First we explore the effect of substituting the gold-atom lead with a nickel-atom

lead in 1,4-benzenedithiol. Fig.3.6 shows the I-V curves of 1,4-benzenedithiol with the gold

and nickel leads. Benzenedithiol with the nickel lead is predicted by the 2-RDM method to

have approximately twice the conductance of the molecule with the gold leads. This result

41



  

(a) (b)

Figure 3.6: a The I-V curves of 1,4-benzenedithiol with the gold and nickel leads are com-
pared. b, The base-10 log of conductance versus V curves of 1,4-benzenedithiol with the
gold and nickel leads are compared. Benzenedithiol with the nickel lead is predicted by the
2-RDM method to have approximately twice the conductance of the molecule with the gold
leads, which is consistent with recent experimental observations [46].

is consistent with a recent experiment which found that the conductivity was enhanced by

a factor of two [46].

Having elucidated the characteristics for electrode replacement in the dithiolates, we now

proceed to explicate the effect of linking groups and chemical substitutions on the molecu-

lar backbone. In recent years apart from thiols (SH), amine linkers (NH2) have been used

extensively [42, 44] as they produce low dispersion in conductance measurements. In 2007,

benzene molecules flanked by NH2 linkers were used to study the effect of replacement

of chemical functionalities and substituents on the molecular framework [47]. A range of

electron-withdrawing groups(EWG) like F, Br, I, CN, NO2 and electron-donating (EDG)

groups like NH2,CH3,OCH3 were used to alter single-molecular conductance relative to the

unsubstituted variety. In Fig.3.7, we plot the I vs V curves for 2 EWG (F, CN) from the list

and 2 EDG too (CH3,NH2) in addition to bare 1,4-benzenediamine (BDA). A single atom

Au electrode as before was used for the study. The basis set and the active space involved is

the same as for the dithiolates with 6-311G being used for the substituting moeities. We not

only see that the single-molecular conductance for BDA being lesser than the corresponding
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Figure 3.7: I vs V plot for the comparison of substituent effects in BDA/Au junction. It is
clear that EWG decreases the zero-bias conductance while the reverse happens with EDG
relative to the unsubstituted specie as reported experimentally [47]. All substituents used
are tetra-substituted on the molecular backbone

dithiolate (see Table 3.2 and 3.3) but EWG (EDG) tends to decrease (increase) the con-

ductance as reported experimentally [47]. Intuitively, more electronegative substituents like

EWG withdraws charge density from the junction and also lowers the energies of the frontier

single-particle modes of the system which in turn hinders coupling with the Fermi-level of

the electrodes and reduces tunelling of charges away from the system. The reverse happens

with EDGs. Table 3.3 highlights the respective single-molecular conductances obtained from

our calculations when compared against the experimental results. Even though the exact

numerical values varies yet we see our results captures the accurate trend as well as the

order of magnitude in most cases. The geometries used for all computations were the same

as that used for the dithiolates for comparison. However it is reported that for BDA there

are several competing conformations can participate in the process [44] which might explain

the numerical discordance.

Thus we see that application of the theory to the 1,4-benzenedithiol molecule with

gold-atom leads improves the conductances from existing theories by 1-2 orders of mag-
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Table 3.3: Comparison of the computed and measured conductances from 2-RDM theory
and experiments in units of G0 for different substituents (all tetrasubstituted) in BDA/Au
junction. A qualifier of mono/di/tri would indicate that the mono/di and trisubstituted
variety has been used in the experiment.

System Source Conductance(G0)
H Expt[44, 47] 0.0064

2RDM 0.0042
NH2 Expt -

2RDM 0.0051
CN Expt[47](mono) 0.0059

2RDM 0.0023
F Expt[47] 0.0052

2RDM 0.0015
CH3 Expt[47] 0.0082

2RDM 0.0047

nitude [32, 34, 35], matching experimentally measured conductances of 0.01 G0 [27–30] as

well qualitatively and quantitatively predicts the right order of conductance on electrode

replacement from gold to nickel. Furthermore our theory is able to correctly capture the

qualitative trend in substitution of the linker from SH to NH2 as in BDA and replacement

of electronic moeities within the specie too.
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3.4 Role of Correlation (Orbital Degeneracies) in Kondo

Resonance

Several decades after its initial experimental discovery [48], Jun Kondo in 1964 using third-

order perturbative arguments showed a logarithmic divergence in resistivity for metallic con-

ductors with magnetic impurities ascribed to spin-pairing below a threshold temperature[49].

However, it was realized subsequently that the consequences of the effect would be reversed

in tunnel-coupled geometry [50–52] commonly known as ’Kondo resonance’. Understand-

ing the effect of quantum entanglement in such resonance is of significant importance both

fundamentally and technologically in developing new materials for molecular electronics and

spintronics. Over the past decade, Kondo resonance has been amply verified in systems

like quantum dot heterostructures [53], surface adatoms [54, 55] and even in transition

metal complexes explicitly devoid of magnetic centers [56–60]. In the more exotic vari-

eties, apart from the manipulation of local spin, orbital or charge degeneracies have been

exploited experimentally as an additional degree of freedom to augment the effect in engi-

neered systems[61–67].However theoretical attention to the latter prospect especially in real

molecular examples is largely unexplored beyond the understanding provided by extensions

of conventional impurity paradigms [68–70].

In this contribution, we explicate the source and the role of a many-body entanglement

in a conducting state, arising due to such orbital degeneracies (leading to non-vanishing

contributions of multiple reference configurations), on Kondo resonance using recently de-

veloped reduced density matrix (RDM) based transport[71] and excited states[72] methods.

We illustrate our stand on the mimic of a binuclear complex (see Fig.1.) and its positively

charged state known to display remarkable Kondo resonance[57] and point to innate degen-

eracy in the orbital spectrum apart from the usual spin degeneracies which can be tuned

in subsequent studies by manipulating the coupling to the reservoirs[66]. We thereby de-

scribe the results using appropriate many-body measures and analyze the influence of such
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degeneracies on the enhanced Kondo signature of the system. Even though some effort has

been spared in recent years[73], it is clear that practical implementation of most transport

theories reliant on DFT based electronic structure method would fail to acknowledge such

inherently strong multi-reference correlation effects due to the usage inaccurate exchange cor-

relation functional unlike RDM which has been known to tackle such effects with significant

accuracy[10, 74–76] .

Figure 3.8: The binuclear complex V2/V+
2 [57] used in the present study capped with Au

atoms (shown in gold). The vanadium centers are in red, nitrogen atoms in blue, carbon
atoms in black, hydrogen atoms in grey. Unlike in [57], the nitrogens of the trazacyclononane
moeties are replaced by NH2 groups but the fumaronitrile bridge (µ-C4N4), the co-ordination
sites of the vanadiums and the identity of all the ligating atoms are kept intact.

Figure 3.9: The Fermi surface for the binuclear spin-singlet complex V2 (blue) and the cor-
responding spin-doublet V+

2 (maroon) formed post charging. For V2, the orbital degeneracy
is 2 (diradial) where each of the SONOs(NO with occupancy 1, see Fig.3.10) can house an
electron with opposite spin (anti-ferromagnetically coupled) to create an overall singlet. For
V+

2 , the plateau like appearance at the center indicates a number of SONOs referring to
strong multi-reference effects due to orbital degeneracies.
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We use for all computations a very close mimic of the molecule studied in Ref[57]. To

keep the ligating atoms on the vanadium centers same, only the N units of the triazacy-

clononane moieties are replaced by NH2 groups in the mimic (see Fig.3.8) for computational

convenience. The geometrical parameters are obtained from the crystal structure described

in Ref[77] The calculations also involve two Au atomic centers placed 2.0Å apart from the

axial NH2 groups as representations of the electrode in the weak-coupling limit which is

known to be the Kondo-regime [53, 57]. The basis set used is LANL2Dz for the metals with

effective core potential(ECP) and 6-311g for the N,C and H. The neutral specie (henceforth

referred as V2 as in Ref[57]) which has a spin-singlet ground state is treated using an active-

space formulation [1] of the aforementioned semi-definite scheme in PySCF in a space of

[20e, 16o] whereas the cationic form (henceforth referred as V +
2 as in Ref[57]) possessing a

spin-doublet ground state is treated in an active space of [21e, 16o]. The active orbitals for

both the systems involves energetically frontier states of π and σ symmetry involving all the

metal centers and the ligating atoms. The excited state computations for each specie were

done using an algorithm under development by one of the co-authors[72].To compute the

zero-field polarizabilities for the ground states, WF-CASSCF in GAMESS electronic struc-

ture package was used with an active space of [18e,14o] for the neutral form and [19e,14o]

for the cationic form

The electronic structure calculation on the neutral and cationic species using the current

constrained variational scheme above in absence of an average flux yields an ionization energy

of 2.5062 eV for the discharging of neutral V2 which is roughly the strength of the anti-

ferromagnetic coupling between the two unlike spins in the corresponding spin singlet (S

= 0) configuration of the latter specie . An uncorrelated mean field description of the

electronic structure of V2 would correspond to a single-Slater determinantal ansatz with

double occupancy until the highest occupied orbital.

To investigate whether the description holds, we also plot the occupancies and the en-

ergies of the natural orbitals (NOs), which are eigenmodes of the 1-RDM obtained from
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Figure 3.10: The electron distribution for the NOs of V2 (left) that has highest overlap
with those of V+

2 (right) post oxidation plotted with a cutoff grid of 0.005. The occupation
numbers for each NO is listed below for both the species. We see that V2 behaves as
a diradical with two phase-flipped SONOs (middle-left) of π symmetry shared primarily
between the dxy of the vanadium centers and the CN (eq), NH2(eq) ligands. However

V+
2 has a clear multi-radical character (right) with a number of SONOs as seen in Fig.3.9.

Also the SONOs of V2 continues to enjoy single-occupancy even in V+
2 (middle-right) but

previously filled orbitals in V2 (top-left) have been depleted extensively (top-right). Since the
charge distribution on the latter NOs were primarily on CN (eq), NH2(eq), it is unsurprising
to see the Mulliken charges of these ligands have increased (see Table I). Also nearly empty
orbital on V2 (bottom-left) enjoys non-negligeble occupancy in V+

2 (bottom-right) with
charge distribution on the bridging ligand (µ-C4N4) explaining the slight decrement in its
Mulliken charge.(see Table I)
.
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the optimization scheme, in Fig.3.9(blue) and see that the specie displays a clear diradical

character involving two quasi-degenerate singly-occupied orbitals (SONOs), each of which

is equally likely to hold a spin-up or spin-down electron. For the cationic V+
2 , the ground

state is a spin doublet (S = 1
2). The occupation spectrum plotted in Fig 3.9(orange) shows

significant polyradical character with a number of NOs displaying non-negligible population

unlike the mean field picture which simply accounts for one singly occupied level. Such

orbital degeneracies have been reported elsewhere in lanthanide impurities too [78].

Table 3.4: Comparison of the changes in Mulliken charges for the various moeities in V2/V+
2

prior and post redox event

Groups/Atoms Mulliken charges ∆

V2 V+
2

V(1) 1.26241 1.32438 0.06197
V(2) 1.26265 1.25651 -0.00614

µ-C4N4 -0.42458 -0.61902 -0.19444
4CN(eq) -1.68628 -1.42772 0.25856

4NH2(eq) -0.74324 0.04722 0.79046
2NH2(ax) -1.11382 -1.12828 -0.01446

2Au 1.44282 1.54690 0.10408

Ligand non-innocence in redox events have been studied and reported before in numer-

ous examples [74, 79] using the variational scheme being discussed here. To describe the

changing spatial distribution of the electron density within the molecular framework during

the oxidation of V2 to V+
2 , in Table I we display the absolute and relative Mulliken charges

of the various ligating centers and the metal atoms. We notice a primary depletion of nega-

tive charges from the equatorial CN and NH2 post oxidation. To analyze this, the contour

plots for the electronic distribution of the NOs of V2 and those with highest overlap in V+
2

after oxidation are shown in Fig 3.10. While we see that the SONOs of V2 indicated in

Fig.3.10 are of π symmetry with density being shared between the dxy orbitals of vanadium

centers and the equatorial CN and NH2 ligands mainly (middle-left in Fig.3.10), but these

NOs continue to enjoy single occupancy even in V+
2 (middle-right in Fig.3.10). The ones

depleted had a preponderance of charge density on the equatorial CN and NH2 ligands prior
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to oxidation (see top-left and right panel of Fig.3.10) which corroborates why the latter

ligands have selectively bled.A slight increase in occupancy post oxidation in the NO with

appreciable charge density on µ-C4N4 (bottom-left and right panel Fig.3.10) also justifies

the plummeting of its Mulliken charge too.
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Figure 3.11: (a) The I vs V profile for V2 (blue) and V+
2 (orange) computed from the current

constrained variational theory.We see that V+
2 requires a much lesser potential to support

the similar a transmitted flux on the capping Au atoms unlike V2. (b) The logarithm (base-
10) of the zero-bias conductances for V2 (blue) and V+

2 (orange). The results for V+
2 are in

good agreement with experimental results (shown in black for two trials D1, D2 in Ref[57]).
We see that a steep discontinuous order of magnitude increase in conductance due to single
electron discharging creating the spin-doublet V+

2 at negative gate biases. This corroborates
the observations in the experimental set-up used for the SET and provides an indication of
Kondo resonance.

In Ref[57], the said binuclear complexes has been used in an SET to study the electronic

conduction behavior of the neutral V2 and the cationic V+
2 form. Electrostatic gating using

50



Figure 3.12: The DOS of the excitation manifold (without spin degeneracies) for V2 and
V+

2 computed from a recently developed algorithm from one of the co-authors. The unit

indicates 20 states per eV of energy. The ground state for V2 and V+
2 are spin-singlets and

doublet respectively. We see that near the ground state (peaks at zero) there are far more
number of many-body states in V+

2 than in V2 which enables more channels to be available to
couple with the many-body states of the bulk electrodes leading to the Kondo-resonance and
also decreases the energetic cost of the conducting state produced enhancing the zero-bias
conductance
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the Al2O3 layer allows one to toggle reversibly between the two charged and spin states,

with the positive gate potential disfavoring the cationic form (enhances the ionization energy

computed before) relative to the neutral one whereas negative gate potential stabilizing the

discharging of V2 to V+
2 by lowering the ground state of the positively charged specie. At the

charge degeneracy point the respective energies of the two species would be nearly equal. It

is seen in the experiment that the zero-bias (source-drain) conductance of V+
2 is significantly

higher than the neutral form (see Fig 1a, 1b in Ref[57]. In Fig 3.11(a) we plot the I vs

V profile for both the species from the current-constrained variational principle discussed

and see that not only our results are qualitatively consistent with the experiment, but the

numerical magnitude of the zero-bias conductance reported for V+
2 is in good agreement too

(Fig 3.11(b)). Such a discontinuous jump in conductance associated with an spin-doublet

configuration through single electron discharging from a singlet precursor is an indicator of

Kondo resonance in the odd electron specie.

Conventional explanation for such discontinuous conductance switching is by single-level

Anderson impurity model [57, 80] wherein the stable spin doublet formed (here V+
2 ), opens

up a single half-filled channel which can overlap with the orbitals of either electrode and

establish an anti-ferromagnetic coupling with the itinerant spins of the host near Fermi-level

leading to strong resonant condition (Kondo-resonance). Theorized as the global Kondo

singlet ground state formed between the molecule and the host, it can exhibit spin-flip

scattering which explains the conduction behavior. For a correlated case like this with

additional orbital degeneracies, the effect can be magnified as can be seen from Fig.3.9 and

3.10 wherein we see that a large array of SONOs exist for V+
2 with appreciable electron

density towards the Au terminus (Fig.3.10) thereby enabling them to participate in coupling

with unlike spins of the bulk electrodes. Even for V2, unlike in the single-state model, we

have two quasi-degenerate SONOs (Fig.3.9) with density distribution on either half of the

molecule (Fig.3.10) housing electrons with opposite spin and is internally spin locked due

to this anti-ferromagnetic coupling. In addition, high ionization energy for V2 (computed
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before) also makes it impossible to flip the charge state at positive gate bias explaining the

blockade.

However as is clear from the electronic structure of V2 and V+
2 , the very presence of

orbital degeneracies presents important multi-reference effects especially in the latter and

hence we would like to establish conclusions through many-body computations. In Fig.3.12

we plot the DOS of the many-body states in absence of spin degeneracies obtained from a

novel algorithm designed using the ground state guess from a variational 2RDM calculation

by one of the co-authors [72]. We see that the DOS for the many-body states of V+
2 near

the ground state are relatively much higher which indicates that there are more available

multi-party channels formed by the coupling of the Au orbitals and the substrate (bare-

complex) in its charged spin-doublet form near the Fermi-level of the bulk host. These

channels are thereby available to couple with the many-body charge and spin states of the

bulk electrodes leading to resonant transport (Kondo resonance in the correlated picture)

and an ease in the formation of the global Kondo singlet. Alternatively, the thick manifold of

states also explains why the response energy obtained in the current-constrained variational

calculation for successive values of average flux (see Table S1) is less for V+
2 by two-orders of

magnitude as formation of a non-stationary state consistent with the flux is less costly.The

high Kondo temperature (30 mK) recorded for the complex [57] might be due to the fact

that the resonance would be immune to thermal decoherence due to such high many-body

DOS owing to orbital degeneracies upto temperatures higher than usually seen.

In conclusion, in the present report we have analyzed the electronic structure of a bin-

uclear complex used for an SET study [57] using correlated electronic structure method

like variational 2-RDM and report important multi-reference effects and ligand centered

oxidation. We also do a zero-bias conductance calculation using a recently developed cur-

rent constrained density matrix method and found an excellent qualitative and quantitative

agreement between the computation and the experiment with regard to conductance jump

on discharging V2 and we explain the effect through appropriate many-body evaluations of
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the excited state manifold unlike the single-level Anderson impurity model which is conven-

tionally employed. Even though outside the scope of the present work, we can speculate

about the other signatures of Kondo physics like effect of external parameters like temper-

ature and magnetic field for the many-body model. Thermal noise as expected would lead

to broadening of the states and destroy the phase coherence required to maintain significant

spin-spin interaction between the many-body states of the molecular moeity and that of

the bulk electrode leading to attenuation of Kondo resonance [53, 57, 81]. Similarly mag-

netic field even though naively should split the ground state into two (Zeeman splitting),

low field sublinear scaling of the energy width [53, 57, 82, 83] can be explained through the

barrier to decimate the usual resonant Kondo interactions leading to a global many-body

singlet state. Such effects if incorporated for future analysis into the many-body framework

discussed here, at least for systems with significant orbital degeneracies as in the complex

studied for which the single-level Anderson picture would be insufficient , would offer a new

paradigm to discuss Kondo physics in tunnel-coupled junctions.

3.5 Energetics of conductance switching in pH sensors

To compete with silicon-based electronics, one of the most actively pursued avenue for

scientific exploration is identification and development of robust conductance switching in

nanoscopic conductors for using them in next-generation data storage and logical circuitry.

Fortunately, diverse structural tunability in molecular systems have already us gifted several

viable candidates for switching action which respond to a plethora of external physical stim-

ulus like temperature[84], photon-induced transformations[85, 86],tunelling current[87] and

mechanical forces[88]. Similarly conductance switching due to chemical modifications[89, 90]

have also been studied with those susceptible to even the displacement of small atomistic

units like single protons [91, 92]. Adding to the latter list is a recent experiment on 4,4-

vinylbipyridine (4,4-VBP) in Ni contacts[93] wherein conductance switching due to pH sen-

sitivity has been reported first ever. Motivated by this study, in this contribution we the-
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oretically analyze the structurally isomorphic family of 4,4-bipyridine(4,4-BP) which can

toggle reversibly between tristable states due to proton-exchange equilibrium(see Fig. 3.13)

emphasizing the role of energetics in the process through many-body explanations hitherto

unseen.

Figure 3.13: The 4,4,-bipyridine molecule (4,4-BP) studied in this report capped with Ni
electrodes (green). The carbon atoms are in black, nitrogens in blue and the hydrogens in
grey. The two conjugate acids(4,4-BPH+ and 4,4-BPH+2

2 ) are obtained by protonating the
two nitrogen centers successively.

The recently developed current constrained variational principle[71] in a correlated elec-

tronic structure framework quantifies the potential required to maintain an average flux in

a molecular conductor as follows:

V = L

(
∆Ecurr

α

)1/2

(3.2)

where L is the length of the molecule and lead combination, α is the zero-field polarizability

obtained by turning a spatially steady electric field and ∆Ecurr is the response required to

maintain the flux (see Methods for details) . In this report we therefore apply the method to

unravel the role of these key parameters on dictating the conductance signatures in the neu-

tral and the protonated forms of 4,4-bipyridine and explain the results through computation

of the actual excited state manifold [72] which sheds important insight on the energetics of

the event. The neutral base has been extensively studied before in single molecular junc-

tions clipped with gold electrodes[88, 94–96] and recently even with nickel contacts[97]. The
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molecular parameters for the neutral base (4,4-BP) and its corresponding monoprotonated

(4,4-BPH+) and diprotonated (4,4-BPH+2
2 ) conjugate acids are obtained through ground

state geometry optimization using DFT/B3LYP in 6-31G* basis set. The calculations also

involve two Ni atomic centers placed 2.0Å apart from the axial N atoms of the bipyridine

moeities as representations of the electrode similar to a recent study of pH sensitivity to

conductance of 4,4-vinyl bipyridine (4,4-VBP)[93] using the said electrode set-up. The basis

set used is LANL2Dz for Ni with effective core potential(ECP) and 6-311G for N, 6-31G for

C and H. Since the charges on the studied systems are acquired through proton-shift equi-

librium only, all species have the same even number of electrons and are all spin-singlet in

their respective ground states. We use a subset of the N-representability constraints known

as the 2-positivity conditions [3, 5, 6]. The neutral specie is treated using an active-space

formulation [1] of the aforementioned semi-definite scheme in PySCF in a space of [16e,

16o]. Similar active space with maximum overlap with the neutral form was used for the

protonated forms too. The active orbitals for both the systems involves energetically frontier

states of π (having the p orbitals of the C and N atoms and the dxy of the metals) and σ

symmetry (lone pair on N and the dz2 on Ni for the neutral form. For the protonated ones

it has contribution from H s orbitals too.) involving the metal centers and the atoms of

the pyridine moeities. The excited state computations for each specie were done using an

algorithm under development by one of the co-authors[72].To compute the zero-field polariz-

abilities for the ground states, CCSD calculations in GAMESS electronic structure package

was used correlating all but the 30 inner core orbitals for all the three species.

In Ref[93], single-molecular conductances of 4,4-VBP and its conjugate acids were modu-

lated using both pH as well as gate potential using a three-terminal device. It was seen that

negative gate potential and lower pH favored the formation of the protonated forms which is

justifiable from electrostatic considerations and basic principles of proton-shift equilibrium.

The protonated forms (which was conjectured to be the monopositive conjugate acid only)

was found to display remarkably less conductance compared to the neutral base. It was also
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anticipated that a similar effect would be seen in the close-cousin i.e. 4,4-BP family at a

lower pH owing to the lower pKa values of the molecules[98]beyond what was used in the

said experiment .To investigate the claim, in Fig.3.14 we plot the I vs V curves for all the

three species of the said family using our current-constrained variational principle. Consis-

tent with expectations, we indeed see that the conjugate acids require higher potential to

support the average flux compared to the neutral form.

  
Figure 3.14: The I vs V plot of the neutral base (4,4-BP), the unipositive (4,4-BPH+) and
the dipositive (4,4-BPH+2

2 ). While the neutral form requires much less potential to maintain
the average flux due to the combined effect of low excited state gap and enhanced zero-field
polarizability, among the conjugate acids the diprotonated form is slightly less conducting
primarily due to the effect of zero-field polarizability and less transmission(see text)

Even though the zero-bias conductance from the I vs V plot in Fig.3.14 might seem to

be high compared to previous reports of 4,4-VBP [93]or 4,4-BP in Au junctions[88, 94–96]

or even in Ni junction[97], we capture the qualitative trend right. Justification for the high

conductance with respect to 4,4-VBP can be attributed to several factors like slightly higher
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length of 4,4-VBP compared to 4,4-BP and higher uncertainity associated with solution

phase study of the recent experiment[93] unlike a single-molecular gas phase analysis of 4,4-

BP presented here whereas the differences from Au coupled junctions in 4,4-BP are likely

due to a high geometric diversity[88, 94–96]. Although it was reported in 4,4-BP in Ni

junctions that the tilted geometrical form had similar conductance as the linear form[97]

and a spin-polarized model of transport was used to explain the data from the experiment,

whether both the assertions carry over to the protonated conjugate acids is unknown and is

open to future experimental investigation. In absence of such atomistic details, we have used

the optimized equilibrium ground state geometry (wherein the pyridine units are co-planar)

for each of the three species without any spin-resolved study for a fair comparison.

Table 3.5: Comparison of the changes in Mulliken charges
for the various moeities in 4,4-BPH(neutral base), 4,4-BPH+

(monoprotonated acid) and 4,4-BPH+2
2 (diprotonated acid).

Absolute Mulliken charges for 4,4-BP are presented whereas
only the relative charges (∆) with respect to the neutral base
are displayed for the two protonated forms.

Groups/Atoms Mulliken charge ∆

4,4-BP 4,4-BPH+ 4,4-BPH+2
2

Ni(1) −0.12488 0.99655 0.26273
Ni(2) −0.12488 0.17171 0.26273

C5H4N(1) 0.12488 −0.34126a 0.73728a

C5H4N(2) 0.12488 0.17302 0.73728a

aC5H4NH+.

The trend is usually attributed to the depleting transmission of electronic density in the

charged species relative to the neutral one which is evident even from Table 3.5 wherein

the Ni contacts do gain significant positive charges in the conjugate acids. The pyridinium

unit(C5H4NH+(1)) in the unipositive acid due to the enhanced electronegativity after proto-

nation attracts a fair share of electron density towards itself thereby depleting the connecting

Ni atom (Ni(1)) and even the pristine pyridine moeity (C5H4N(2)).The diprotonated form

displays a far more equitable distribution of electron density due to regain of symmetry with

both the pyridinium moieties and the two nickel atoms bleeding to account for the two pos-
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itive charges. Indeed this justifies the fact that the fraction of average flux (φ) maintained

on the Ni contacts in column 4 of Table 3.6 plummets with the increasing charge on the

substrate as the supporting electron density depletes. In Ref[93] using the functional rela-

tionship of the surface concentration of the adsorbed protonated form and the neutral base

against the local pH and gate voltage applied they were able to determine the fraction of the

charge on the adsorbates (assuming Langmuir model). It was asserted that only a portion

of the positive charge will be retained in the molecular backbone of the conjugate acid of

4,4-VBP (restricted to the monoprotonated form) with the remaining being dispersed to the

Ni electrode set-up (see Fig.3 in Ref [93]). From Table 3.5, we also see the emergence of

this claim too from a microscopic standpoint with the enhancing Mulliken charges on the Ni

contacts post protonation.

However, apart from the said effect which do favor the neutral base in our analysis, to

delve into the energetic details of the process, in column 3 of Table 3.6 we also display the

re-organization cost (∆Ecurr) i.e. the change in many-body energy required to maintain the

flux for each of the three species along with their zero-field electric polarizability (α). The

low values for the re-organization energies (explicating the high conductance) indicates that

only a significant mixing of the first excited state with the ground state is relevant for the

cost incurred.

To analyze this energetic penalty in details, in Fig.3.15 we thus plot the many body DOS

obtained from a recently developed algorithm by one of the co-authors [72] using the ground

state guess from a variational 2RDM calculation. We see that the first excited state for

the neutral form is much closer to the ground state compared to the charged forms thereby

facilitating better mixing and explaining the low energetic cost. The zero-field polarizability

(column 5 of Table 3.6) coupled with the enhanced transmission relative to the cationic acids

only further augments the effect. However between the two conjugate acids, even though the

energy gap between the ground and the first excited state is higher for the monoprotonated

form than the diprotonated one (thereby explaining the slightly higher energetic cost of
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Table 3.6: The energetic cost (4 Ecurr) for maintaining the flux along with zero field

polarizability (α) and the fraction of the average current (φ = Itr
Iavg

) maintained at the

Ni contacts for the three species. Due to linearity in Itr versus Iavg, the fraction is the same
for all Iavg. It is clear that φ decreases with the increasing positive charge on the system
(see Table 3.5). Also 4 Ecurr for the neutral 4,4-BP is lesser than its conjugate acids due
to low excited state energy gap (see Fig.3). Among the charged species, 4 Ecurr for the
unipositive one is slightly larger (see Fig.3 and text) but the zero-field polarizability (α)
favors it dictating the trend.

System I(µ A) 4 Ecurr φ = Itr
Iavg

α

4,4-BP 6.62 9.042× 10−8 0.513 567.4

13.24 3.434× 10−7

26.48 2.003× 10−6

4,4-BPH+ 6.62 7.548× 10−7 0.116 495.2

13.24 3.089× 10−6

26.48 1.191× 10−5

4,4-BPH+2
2 6.62 4.041× 10−7 0.075 225.8

13.24 1.601× 10−6

26.48 6.351× 10−6

the former than the latter), the competing effect of zero-field electronic polarizability of

4,4-BPH+ being higher than 4,4-BPH+2
2 (see column 5 of Table 3.6), favors the former

marginally in accordance with Eq.(1). We speculate that this two competing effect is also

prevalent in 4,4-VBP which is responsible for the lack of clear resolvability of the dication

peak from the monocation [93].

In this contribution, we have thus analyzed the various factors responsible for controlling

the conductance switching trend in the family of 4,4-BP and its conjugate acids. We saw that

percentage of the transmitted current, zero-field polarizability and the energetic cost for the

conduction event due to a low-lying excited state all favors the neutral base (4,4-BP) which

is the ’on’ state relative to the protonated forms (’off’ states). Among the two conjugate

acids, the difference is marginal due to competing factors. Such detailed breakdown of the

energetics of the process which differentiate the ’on’ and ’off’ states are not known to the

best of our knowledge and can not only advance our understanding about single-molecular

conduction in general but also facilitate rational design of such molecular machines with
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4,4-BP

4,4-BPH+

4,4-BPH
2
+2

Figure 3.15: The DOS associated with the first few many-body excited states of all the
three species studied. The unit indicates 50 states per eV of energy. It is clear from the
low energy cost in Table 3.6 that its is the first excited state which is relevant for mixing
with the ground state to maintain the imposed flux. We see that for the neutral form (4,4-
BP) the said state (highlighted) is very close to the ground state which explains the low
energetic cost (see column 3 of Table 3.6) and hence higher conductance(’on‘ state). Among
the conjugate acids, the diprotonated form (4,4-BPH+2

2 ) has a slightly red-shifted excited
state gap (with a close lying second excited state too) relative to the monoprotonated ion
(4,4-BPH+) explaining the slightly less energetic cost of the former in Table 3.6. Thus the
conductance in this is dictated solely by the higher polarizability and less transmission (see
Table I and S2 ).
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robust switching functionality and in the development of future pH sensors which are of

paramount importance as biological probes[99, 100].
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CHAPTER 4

ENTANGLING AND DISENTANGLING MANY-ELECTRON

QUANTUM SYSTEMS WITH A SPATIALLY

HOMOGENEOUS ELECTRIC FIELD

This chapter contains parts of an article that was originally published in the Physical Re-

view A. Reproduced with permission from [M.Sajjan, K. H. Marsden, and D. A. Mazziotti,

Phys.Rev.A, 97, 062502 (2018)]. Copyright 2018, American Physical Society.

4.1 Introduction

The expectation values of many-body product operators for two or more subsystems of a

pure-state quantum system can become inseparable in a process known as entanglement.

Formally, entanglement is present between two subsystems in the pure-state of a many-

electronic quantum system when the system’s density matrix cannot be expressed as an

anti-symmetrized product of the subsystems’ density matrices [1–3] which is equivalent to

the inability to express the many-body state using a single Slater determinantal ansatz.

This in turn fosters correlation in electronic properties. In addition to the computation of

electron correlation, a significant challenge in quantum theory is the control of a molecule’s

electron correlation [4–7]. In this chapter we show that the degree of electron correlation and

entanglement in quantum molecular systems can be controlled through an external stimulus

such as an electric field.

The application of an electric field in the direction parallel to a molecule’s dipole moment,

we show computationally, decreases the degree of electron correlation in the molecule, and

conversely, the application of an electric field in the direction opposite to a molecule’s dipole

moment increases the degree of electron correlation in the molecule. More generally, using

the set of one-electron reduced density matrices (1-RDMs) and notions of convexity, we

prove mathematically that any external stimulus that significantly changes the expectation
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value of a one-electron operator with non-degenerate minimum and maximum eigenvalues

can be used to control the degree of electron correlation in the molecule. The concept is

illustrated through calculations with the molecules HeH+, MgH+, BH, HCN, H2O, HF,

CH2O, and a fluorescent dye. Furthermore, we show in calculations with formaldehyde

(CH2O) that the field can control not only the electron correlation of a formaldehyde molecule

but also the entanglement among formaldehyde molecules in an array. The control of a

molecule’s correlation and entanglement has potential applications to designing molecules

and materials with controllable properties as well as modifying the degree of correlation

between fundamental units such as qubits in quantum computation.

4.2 Theory

The 1-RDM of a pure N -electron state is computable from the state’s N -electron wavefunc-

tion

1D(1, 1̄) = N

∫
ψ(123..N)ψ∗(1̄23..N)d(23..N). (4.1)

Such a 1-RDM is said to be pure N-representable [8–11]. Although the set of pure N -

representable 1-RDMs is not convex, it is contained within the convex set of ensemble N -

representable 1-RDMs [9]. A 1-RDM is ensemble N-representable if and only if it can be

obtained from the integration of at least one ensemble N -electron density matrix [8, 12, 13].

Because the set is convex, all 1-RDMs within the set can be expressed as convex combinations

of its extreme 1-RDMs [14]. Coleman proved the key result that the extreme 1-RDMs are

the pure-state 1-RDMs whose wavefunctions are Slater determinants [8, 13]. Formally, the

convex set of ensemble N -representable 1-RDMs is the convex hull of its extreme elements,

P 1
N = Conv(SSlater) where SSlater is the set of 1-RDMs whose N -electron pre-images are

Slater determinants.
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4.2.1 Revisiting Electronic Correlation

An N -electron quantum system is correlated if and only if its N -electron density matrix can-

not be written as a product of the 1-RDMs in their natural-orbital basis set. This definition

of electron correlation in the terminology of entanglement is equivalent to the conventional

definition in which the wavefunction is inexpressible as a single Slater determinant. While

entanglement is often associated with particles that are located at a great distance from

each other, such large separation is not necessary for entanglement and not applicable in the

case of electrons bound to a molecule [15]. In the next section we show that the cumulant

of the 2-RDM is non-vanishing if and only if the N -electron density matrix is correlated.

Furthermore, the von Neumann entropy of the 1-RDM is nonzero if and only if the cumu-

lant of the 2-RDM does not vanish. Therefore, the von Neumann entropy of the 1-RDM is

nonzero if and only if the quantum system exhibits electron correlation (entanglement of the

N -electron density matrix with respect to the product of the 1-RDMs).

4.2.2 Quantification of Electronic Correlation

The cumulant (or connected) part 2∆ of the two-electron reduced density matrix (2-RDM) [3,

16–18] is defined as

2∆
ij
kl =2 D

ij
kl − 2 1Di

k ∧
1D

j
l (4.2)

in which 1D and 2D are the 1- and 2-RDMs, normalized to N and N(N − 1), and ∧ is the

antisymmetric tensor product known as the Grassmann wedge product [3, 19]. From the

cumulant’s definition in Eq. (4.2) we show below that its trace of can act as a measure of

correlation [20–22]

Theorem: The trace of the cumulant part 2∆ of the 2-RDM is non-zero iff its a Hartree-Fock

state i.e. a single Slater determinant resolved in the natural orbital basis (eigenbasis of the

1RDM)
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Proof

Tr(2∆) = Tr(2D)− Tr(1D ∧1 D)

= N(N − 1) + Tr(1D2)− (Tr(1D))2 ∵ Tr(2D) = N(N − 1)

= N(N − 1)−N2 + Tr(1D2) ∵ Tr(1D) = N

= Tr(1D2)−N

= Tr(1D(1I −1 Q))−N

= Tr(1D)− Tr(1D1Q)−N

= −Tr(1D1Q)

(4.3)

Thus for a Hartree-Fock state in the eigenbasis of the 1-RDM as 1D2 =1 D or 1D1Q = 0,

thus the Tr(2∆) = 0. Now for the converse lets start with Tr(2∆) = 0 as follows and see if

it implies the Hartree-Fock state

Tr(2∆) = 0

−Tr(1D1Q) = 0

Tr(A†AB†B) = 0 ∵1 D = A†A � 0,1Q = B†B � 0

Tr((AB†)†AB†) = 0

||(AB†)||F = 0

AB† = 0

1D1Q = A†AB†B = 0

1D2 =1 D =⇒ HFstate

(4.4)

with 1Q(=1 I −1 D) being the 1-hole RDM in terms of the 1-RDM and the identity
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matrix 1I and 0 is the null matrix. Thus the trace of 1Q and 1D vanishes only if they lie

in orthogonal subspaces which is equivalent to the N eigenvectors of the 1-RDM (natural

orbitals) being completely filled and the remaining eigenvectors (natural orbitals) being

completely empty or the 1-RDM being representable by an N -electron Slater determinant

and converse is also true. Consequently, we have that the trace of the cumulant 2-RDM

vanishes if and only if the N -electron quantum system is not correlated [20]. Furthermore,

because the magnitude of the trace of the cumulant 2-RDM reflects the degree to which

natural orbitals are shared by both particles and holes, it provides a mechanism to quantify

the degree of electron correlation.

The trace of the cumulant can be related to the von Neumann entropy [23–26] in

Eq. (4.10) The natural logarithm of the 1-RDM can be expanded in a power series about

the identity matrix

ln(1D) = ln(1I −1 Q) (4.5)

= −
∞∑
n=1

(1Q)n/n (4.6)

≈ −1Q−O(1Q2). (4.7)

Substituting Eq. (4.7) into the von Neumann entropy in Eq. (4.10) and using Eq. (??) yields

S1 = −Tr(1D ln(1D)) ≈ −Tr(2∆) +O(Tr(1D(1Q)2)) ≥ 0. (4.8)

Hence, we observe that the von Neumann entropy is equal to the negative of the trace of the

cumulant 2-RDM through the terms scaling linearly with the 1-hole RDM. Like the negative

of the trace of the cumulant 2-RDM, the von Neumann entropy is a nonnegative quantity

which vanishes only in the absence of electron correlation (not only the first term but all

successive terms as they are 1Dn(1Q)m with n,m ε Z+). The von Neumann entropy of the

1-RDM has been employed extensively in the literature [22, 27–36] as a measure of electron
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correlation.

4.2.3 Controlling Electronic Correlation

In this section we show that any adjustable external stimulus that changes the expectation

value of a one-electron operator 1Ô with non-degenerate minimum and maximum eigenvalues

can be employed to control a molecule’s electron correlation. To demonstrate this result,

we will rely upon some key ideas from convexity and reduced-density-matrix theory.[12–14].

The expectation value of the one-electron operator 1Ô is expressible in terms of the 1-RDM:

〈1Ô〉(ε) = Tr(1Ô 1D(ε)) (4.9)

where ε is a controllable parameter such as an electric field for controlling the expectation

value of Ô. The ε controls the expectation value of Ô by changing 1D(ε) which is the 1-

RDM of the ground state of the system with the stimulus ε. By convexity the minimum

and maximum expectation values occur at one or more extreme 1-RDMs. Importantly,

from Coleman’s theorem [8] we know that these 1-RDMs are contained in SSlater, the set of

uncorrelated 1-RDMs. From these two observations we obtain the following theorem:

Theorem: If the operator 1Ô has a non-degenerate ground state, then there is a unique

extreme 1-RDM in the uncorrelated set SSlater for which the minimum expectation value of

1Ô is achieved.

Proof: Because the expectation value of a one-electron observable is an affine function of the

1-RDM, minimization of the expectation value over the convex set of 1-RDMs P 1
N must occur

at one or more extreme points. Because the operator 1Ô is assumed to have a non-degenerate

ground state, the minimum must occur at a unique point. By Coleman’s theorem the unique

extreme point at which the minimum occurs must be a 1-RDM with a Slater-determinant

pre-image, that is a 1-RDM in the uncorrelated set SSlater.

Similarly, If the operator 1Ô has a non-degenerate maximal state, then there is a unique
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extreme 1-RDM in the uncorrelated set SSlater for which the maximum expectation value of

1Ô is achieved. Consequently, the expectation value of the operator 1Ô can be controlled

with ε to steer the 1-RDM towards the uncorrelated extreme 1-RDM at which the expectation

value reaches its minimum or maximum value.

Controllable 1-electron observables that correspond to non-degenerate 1-electron opera-

tors thus provide a general mechanism for modulating the electron correlation of a molecular

system. In this chapter we use a static electric field as a continuous parameter for control-

ling the strength of the dipole moment,an 1-body observable, and hence the degree of the

molecule’s electron correlation. As the electric dipole moment is moved towards an extreme

by the electric field, the 1-RDM moves toward the extreme 1-RDM corresponding to the

Slater determinant with the minimum or maximum observable. Typically, a molecule with

a greater polarizability will be more sensitive to the electric field, and hence, will exhibit

greater changes in its electron correlation. Practically, the magnitude of the stimulus must

be less than the value required to change the electronic identity of the molecule; in the case of

the electric-field stimulus the field must be less than the value required to ionize the molecule.

Figure 1 shows a schematic representation of the convex set of 1-RDMs. The color scheme of

the set is chosen to represent its convexity with the most blue color (minimum value) and its

yellow color (maximum value) occurring at the extreme points (extreme 1-RDMs) of the set.

Changing the electric field steers the 1-RDM, represented by the dot, towards increasing or

decreasing the dipole moment. In the direction towards the boundary of the set of 1-RDMs,

the electric field decreases the electron correlation while in the opposite direction, the electric

field increases the electron correlation.

4.3 Applications

After a discussion of computational methodology, we explore computationally the entangling

and disentangling of molecules with an electric field through computations with two-electron

systems HeH+ and MgH+ where only the two valence electrons of MgH+ are correlated,
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1
D

Figure 4.1: A schematic representation of the convex set of 1-RDMs is depicted. The color
scheme of the set is chosen to represent its convexity with the most blue color (minimum
value) and its most yellow color (maximum value) occurring at the extreme points (extreme
1-RDMs) of the set. Changing the electric field steers the 1-RDM, represented by the dot,
towards increasing or decreasing the dipole moment. In the direction towards the boundary
of the set of 1-RDMs, the electric field decreases the electron correlation while in the opposite
direction, the electric field increases the electron correlation.

molecules BH, HCN, H2O, and HF, the formaldehyde molecule CH2O and an array of 6

formaldehyde molecules CH2O, as well as a fluorescent dye mimic of VF2.1.H.

4.3.1 Computational Methodology

Molecular electronic structure calculations were performed on HeH+, MgH+, BH, HCN,

H2O, HF, formaldehyde, formaldehyde clusters, and a fluorescent dye. The two-electron cal-

culation of HeH+ was performed with full configuration interaction (FCI), and the calculation

of MgH+ was performed with a complete active-space configuration interaction (CASCI) us-

ing an active space of 2 electrons in 31 orbitals. For the larger molecules we employed the

parametric two-electron reduced density matrix (2-RDM) method in which a parametriza-

tion of the 2-RDM is directly computed without the many-electron wavefunction [37–44].

The augmented correlation-consistent polarized valence double-zeta (aug-cc-pVDZ) basis set

was employed for calculations of HeH+, MgH+, BH, HCN, H2O, and HF the correlation-

consistent polarized valence double-zeta (cc-pVDZ) basis set was employed for calculations

of formaldehyde and the formaldehyde-cluster [45, 46], and the Dunning-Hay double-zeta
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basis set was employed for the dye mimic [47]. The degree of electron correlation in the

1-RDM is quantified through its the von Neumann entropy [23], equivalent to its first-order

Rényi entropy [24],

S1 = −Tr(1D ln (1D)) (4.10)

or its second-order Rényi entropy [24, 48, 49].

S2 = − ln
(

Tr(1D2)
)
. (4.11)

As in Eq. (4.1), the 1-RDM is normalized to N . With this normalization the von Neumann

entropy of the 1-RDM is a nonnegative quantity than vanishes only in the absence of electron

correlation. While the 1-RDM can also be normalized to 1 in the definition of entropy, such

a normalization produces an entropy that is not zero in the absence of electron correlation

and that is not size consistent upon the doubling of the quantum system. Note that electron

correlation, a form of entanglement, is not the same as the electron correlation energy, and

that the relationship between these two quantities is nontrivial [2, 31, 32]. The second-order

entropy provides experimentally accessible information [50]. In section 4.3.2 the notation

∆Sα will be used to indicate the difference in the entropy in the presence and the absence

of an electric field ε, ∆Sα = Sα(ε)− Sα(0). The α-order Rényi entropy of cluster formation

is given by

Sα,f = Sα,cluster −
∑
i

Sα,i, (4.12)

where the summation is over the entropy of each of the individual molecules. The summation

is permissible due to the additivity of the Rényi entropy for non-interacting constituents.

The entropy of formation quantifies the excess quantum correlation that exists in the cluster

due to the intermolecular bonding.
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4.3.2 Results

We start the section by showing Full-CI results for BH in (aug-cc-pVDZ) basis. In Fig.4.2

we plot the change in Frobenius norm (||1∆||F ) which is defined as the difference in the

||1D−1DHF ||F (actually the difference in the norm is computed with respect to its value at

zero electric field strength hence ∆||1∆||F ) as a function of the angle (the angle is measured

with respect to internuclear axis in BH with θ = 0 corresponding to the direction of the dipole

moment) for two specific values of field strength. We see the norm changes in an oscillatory

(due to C∞v symmetry of the system). For directions along the dipole the system gets

decorrelated (the difference of the norm is negative indicating that 1D is closer to 1DHF

even more so than in the state with zero field strength) and against the dipole (θ = π) the

system gets more correlated and entangled (the difference of the norm is positive indicating

that 1D is farther away to 1DHF even more so than in the state with zero field strength).

Figure 4.2: For BH the change in the angular trend for Frobenius norm (||1D −1 DHF ||F )
with respect to application of an electric field (ε). The difference in the norm is computed
with respect to the state with zero-electric field hence ∆||1∆||F . We see that along the
direction of the dipole (θ = 0), the system is decorrelated with the norm being less than
even its value at zero field (hence negative). The reverse happens against the dipole (θ = π)

To rationalize the behavior

For both HeH+ and MgH+ the first-order Rényi entropy as a function of the field strength
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along and against the dipole moment is shown in Table I . As predicted by the theorem in

section 4.2, the electron correlation, measured by the entropy, increases with the electric

field in the direction against the dipole moment and decreases with the electric field in the

direction of the dipole moment. While not shown, the Euclidean distance from the center

of the 1-RDM set showed similar correlation trends as the entropy. The 1-RDM moves

towards a non-interacting extreme point of the set as the expectation value of the one-body

dipole moment increases. Figure 2 also shows that for HeH+ the expectation value of the

Coulomb repulsion between a pair of electrons 1/r12 decreases with the field strength in

the direction of the dipole moment θ = 0 and increases with the electric field against the

direction against the dipole moment θ = π, which is consistent with previous work showing

a statistical relationship between r12 expectation values and electron correlation [51].

0 0.005 0.01 0.015

0.9435

0.944

0.9445

0.945

0.9455

0.946

0.9465

0.947

 = 0

 = 

Figure 4.3: For HeH+ the expectation value of the Coulomb repulsion between a pair of
electrons 1/r12 decreases with the field strength in the direction of the dipole moment θ = 0
and increases with the electric field against the direction against the dipole moment θ = π.

Table II displays the change in the energies, dipole moments, and entropies of BH, HCN,

H2O, and HF with electric-field strength. The entropy decreases with the electric field in

the direction of the dipole moment while the entropy increases with the electric field in the

direction against the dipole moment. Figure 3 shows an approximately linear relationship

between the change in the dipole moment and the change in the first-order Rényi entropy

relative to the Rényi entropy at ε = 0 . While the computed results are approximately linear
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Table 4.1: Dipole moments and entropies of HeH+ and MgH+ in the electric field (ε) are
presented from p2-RDM calculations using the augmented cc-pVDZ basis set. The entropy
decreases with the electric field in the direction of the dipole moment while the entropy
increases with the electric field in the direction against the dipole moment. The changes in
dipole moment and Rényi entropy are reported relative to zero-field values. Dipole moments
are expressed in units of Debye (D), and the Rényi entropies are dimensionless.

ε(a.u.) |µ| S1 ∆|µ| ∆S1

HeH+ 0.015 1.9296 0.1316 0.1614 -0.0014
0.010 1.8705 0.1321 0.1023 -0.0009
0.000 1.7682 0.1330 0.0000 0.0000

-0.010 1.6795 0.1333 -0.0887 0.0003
-0.015 1.6389 0.1338 -0.1293 0.0008

MgH+ 0.015 4.7615 0.3449 1.1779 -0.0588
0.010 4.4078 0.3602 0.8242 -0.0435
0.000 3.5836 0.4037 0.0000 0.0000

-0.010 2.5031 0.4763 -1.0805 0.0726
-0.015 1.8224 0.5281 -1.7612 0.1244

and monotonic, the theoretical results presented in the previous section do not require this

relationship to be linear or even strictly monotonic.
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Figure 4.4: The dipole moment relative to its value at ε = 0 versus the first-order Rényi
entropy relative to its value at ε = 0 is shown for each of the molecules (a) BH, (b) HCN,
(c) H2O, and (d) HF. The data indicates an approximately linear relationship. For BH the
Pearson correlation coefficient is 0.981 and the slope of the best-fit line is -23.69 a.u.

Similar results are obtained for the molecule formaldehyde. We apply a homogeneous one-
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Table 4.2: Dipole moments and entropies of molecular systems in the electric field (ε) are
presented from p2-RDM calculations using the augmented cc-pVDZ basis set. The entropy
decreases with the electric field in the direction of the dipole moment while the entropy
increases with the electric field in the direction against the dipole moment. The changes in
dipole moment and Rényi entropy are reported relative to zero-field values. Dipole moments
are expressed in units of Debye (D), and the Rényi entropies are dimensionless.

ε(a.u.) |µ| (D) S1 ∆|µ| (D) ∆S1

BH -0.015 0.1036 1.0330 -1.2682 0.0626
-0.005 1.0499 0.9903 -0.3219 0.0199
0.000 1.3718 0.9704 0.0000 0.0000
0.005 1.7156 0.9525 0.3438 -0.0179
0.015 2.6268 0.9205 1.2550 -0.0499

HCN -0.015 1.8065 1.4970 -1.2605 0.0132
-0.005 2.1001 1.4882 -0.9669 0.0044
0.000 3.0670 1.4838 0.0000 0.0000
0.005 3.1707 1.4791 0.1037 -0.0046
0.015 3.8377 1.4707 0.7707 -0.0131

H2O -0.015 1.3462 0.8144 -0.7215 0.0076
-0.005 1.9534 0.8091 -0.1143 0.0023
0.000 2.0677 0.8068 0.0000 0.0000
0.005 2.1985 0.8048 0.1308 -0.0020
0.015 2.2842 0.8017 0.2165 -0.0051

HF -0.015 1.6620 0.6404 -0.2564 0.0050
-0.005 1.8913 0.6368 -0.0271 0.0014
0.000 1.9184 0.6354 0.0000 0.0000
0.005 2.0155 0.6339 0.0971 -0.0015
0.015 2.0454 0.6317 0.1270 -0.0037

dimensional electric field of strength starting from 105-108 V/m, as used in experiment [52]

and proceeding to 109 V/m. Table III shows that both the first-order and second-order Rényi

entropies decrease with the electric field in the direction of the dipole moment while they

increase with the electric field in the direction against the dipole moment. Importantly, the

modulation of the electron correlation by the electric field is applicable to not only individual

molecules but also clusters of molecules.

Clusters of formaldehyde molecules have been employed in cold-temperature experiments,

first reported in 2003 [53] and perfected in 2016 using an electrostatic Sisyphus trap [52]. We

consider the two-dimensional lattice of six formaldehyde molecules separated by 5.0 Å shown

schematically in Fig. 4. As for the single formaldehyde molecule, Table III reveals that the
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Rényi entropies of the cluster decrease with the electric field in the direction of the dipole

moment while they increase with the electric field in the opposite direction. Significantly,

as displayed in Fig. 5, the increase or decrease in the entanglement of the cluster system is

amplified compared to that of the individual molecules at infinite separation. The electric

field controls not only the electron correlation within the molecule but also the electronic

entanglement of formaldehyde molecules.

Figure 4.5: Schematic of the (CH2O)6 crystal from Jmol [54] is shown. The oxygen atoms
are marked in red, the carbon atoms in grey and the hydrogens in black.

Table 4.3: Changes in the dipole moments and entropies of CH2O and (CH2O)6 are reported
as functions of the electric field ε relative to their values at zero field ε = 0. In both cases the
entropy decreases with the electric field in the direction of the dipole moment but increases
with the electric field in the direction against the dipole moment. Dipole moments are
expressed in units of Debye (D), and the Rényi entropies are dimensionless. The zero-field
dipole moments of CH2O and (CH2O)6 are 2.4263 D and 13.9403 D respectively. The 1-
RDMs were computed from the a cc-pVDZ basis set using p2-RDM.

ε (a.u.) ∆|µ| (D) ∆S1 ∆S2

CH2O -0.015 -0.6337 0.0224 0.0007
-0.005 -0.0808 0.0081 0.0002
0.000 0.0000 0.0000 0.0000
0.005 0.3407 -0.0064 -0.0003
0.015 1.1097 -0.0208 -0.0007

(CH2O)6 -0.015 -3.8415 0.1517 0.0008
-0.005 -2.6110 0.0484 0.0003
0.000 0.0000 0.0000 0.0000
0.005 1.5238 -0.0384 -0.0002
0.015 4.2936 -0.1427 -0.0007
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Figure 4.6: The first-order Rényi entropies S1 of the six noninteracting molecules and the
cluster are shown as functions of the electric field in the direction of the dipole moment
(θ = 0) and in the direction opposite to the dipole moment (θ = π). The cluster disentangles
and entangles more in the field than the six noninteracting molecules, which indicates that
the field cannot only decorrelate (correlate) the individual molecules but also disentangle
(entangle) the molecules from each other.

Figure 4.7: A fluorescent dye mimic of VF2.1.H is shown.

We also examined the effect of the electric field on the electron correlation of larger

molecules such as a fluorescent dye mimic of VF2.1.H [55, 56], which has been used for sensing

voltage in neurons [56]. Figure 6 displays the fluorescent dye mimic of VF2.1.H [55, 56].

Table IV presents the first-order Rényi entropy as a function of the field strength along and

against the dipole moment . As seen in the other molecular systems, the electron correlation,

measured by the entropy, increases with the electric field in the direction against the dipole

moment and decreases with the electric field in the direction of the dipole moment. The
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Table 4.4: Changes in the dipole moments and entropies of a fluorescent dye mimic of
VF2.1.H are reported as functions of the electric field ε relative to their values at zero field
ε = 0. The entropy decreases with the electric field in the direction of the dipole moment but
increases with the electric field in the direction against the dipole moment. Dipole moments
are expressed in units of Debye (D), and the Rényi entropies are dimensionless.

ε(a.u.) |µ| ∆|µ| (D) S1 ∆S1

0.0100 42.4705 13.3129 12.3920 -0.1372
0.0075 40.2996 11.1419 12.4238 -0.1054
0.0050 38.6528 4.6908 12.4600 -0.0692
0.0010 29.3534 0.7957 12.5139 -0.0153
0.0000 29.1576 0.0000 12.5292 0.0000

-0.0010 26.6115 -2.5461 12.5451 0.0158
-0.0050 23.1638 -5.9938 12.6284 0.0992
-0.0075 18.3631 -10.7947 12.6960 0.1669
-0.0100 17.0677 -12.0899 12.7674 0.2382

change in entropy reflects the movement of the 1-RDM towards a non-interacting extreme

point of its N -representable set as the expectation value of the one-body dipole moment

increases.

4.4 Discussion and Conclusions

The degree of electron correlation and entanglement in quantum molecular systems can

be controlled through an external stimulus such as an electric field. We proved that any

external stimulus that significantly changes the expectation value of a one-electron operator

with non-degenerate minimum and maximum eigenvalues can be used to control the degree

of electron correlation in the molecule. To obtain this result, we employed the convexity

of the set of 1-RDMs and Coleman’s theorem that the extreme 1-RDMs of the set are the

uncorrelated 1-RDMs whose N -electron wavefunctions are Slater determinants. Using the

electric field, for example, to steer the 1-RDM in the direction of the extreme 1-RDM where

the dipole moment reaches its maximum value causes the quantum system to decorrelate.

The control of quantum molecular systems was demonstrated computationally with

HeH+, MgH+, BH, HCN, H2O, HF, CH2O, a fluorescent dye, as well as an array of six
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CH2O. Using the first-order and second-order Rényi entropies to quantify the degree of cor-

relation, we observed that degree of correlation could be decreased or increased through the

application of a homogeneous electric field in the direction parallel or anti-parallel to the

molecule’s intrinsic dipole moment. Using other metrics to quantify the electron correlation,

such as the distance of the 1-RDM to the center of the convex set [57], led to the same

conclusions. The calculations with an array of formaldehyde molecules also showed that

field can control not only the electron correlation of a formaldehyde molecule but also the

entanglement among formaldehyde molecules in an array. Thereby, the external stimulus can

also be employed to entangle or disentangle a set of molecules assembled by intermolecular

forces in a cluster or synthetically by an optical trap. The control of a molecule’s correlation

and entanglement by an electric field has potential applications to designing molecules and

materials with targeted properties, modifying the degree of correlation between fundamental

units in quantum computation, and understanding the electric-field properties of biological

systems, especially membranes.
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