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We explore the physics of relativistic gapless phases defined by a mixed anomaly between two
generalized conserved currents. The gapless modes can be understood as Goldstone modes arising from the
nonlinear realization of (generically higher-form) symmetries arising from these currents. In some cases,
the anomaly cannot be reproduced by any local and unitary theory, indicating that the corresponding
symmetries are impossible, in the sense that they cannot appear in a Lorentzian physical system. We give a
general construction and illustrate it with several examples. Most notably, we study conformal gravity from
this perspective, describing the higher-form symmetries of the linear theory and showing how it can be
understood in terms of anomalies. Along the way we clarify some aspects of electric-magnetic duality in
linear conformal gravity.
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I. INTRODUCTION

Symmetries help to delineate the boundaries between
the possible and the impossible. For example, selection
rules tell us that transitions between certain states cannot
happen. As we will see, sometimes symmetries themselves
are impossible; certain patterns of symmetries cannot be
unitarily realized by any low-energy effective field
theory (EFT).
One of the goals of physics is to understand the possible

phases that the degrees of freedom that make up our
Universe can be in. In this pursuit, the Landau para-
digm and effective field theory serve as powerful organ-
izing principles which allow us to describe a wide variety
of phenomena using a unified language. From this per-
spective, we classify phases both by their symmetries
and by how these symmetries are realized on the light
degrees of freedom of the system. Recently, the horizons

of the Landau paradigm have been significantly broadened
by a commensurate expansion of our conceptions of
symmetries themselves. It has been understood that
ordinary symmetries admit vast generalizations in many
directions, from higher forms [1,2] to higher groups [3,4]
and even to noninvertible and categorical settings [5–11].
These formal structures have already proven to be
useful in phenomenological applications [12–18] and
the interplay between these structures and the prin-
ciples of effective field theory is just beginning to be
explored [19–35]. In this regard, understanding what sym-
metries can consistently appear in effective descriptions
is essential.
In light of these developments, it is worthwhile to

reconsider what actually defines an effective field
theory, or a phase of matter, in order to fully realize the
potential of the Landau paradigm. A natural operational
definition is to specify the local conserved currents,
along with their compatibility, as expressed by the struc-
ture of ’t Hooft anomalies in the presence of background
sources. This viewpoint is surprisingly powerful, making
it possible to describe phenomena as varied as super-
fluids and superconductors [25–27] to gravity [34–37]
in a unified language. Given these successes, one might
imagine that any pattern of symmetries and anomalies
can be realized by some quantum field theory. But,
quite remarkably, it has long been known that certain
apparently consistent effective field theories do not
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admit ultraviolet completions, satisfying certain require-
ments [38].1

In this paper, we explore this ultraviolet-infrared
(UV-IR) interplay in the context of the symmetries that
arise in a low-energy field theory. Following [25,34], we
define an EFT via its conserved currents. We allow for
these currents to be generalized (i.e., they can be operators
in arbitrary mixed-symmetry representations of the Lorentz
group, satisfying general conservation conditions involving
one or more derivatives acting in various ways). We
consider situations where a relativistic system possesses
two of these generalized currents in the IR: one current, K,
which we call “magnetic,” and one current, J, which we
call “electric.” These currents can have a mixed anomaly
between them; one of the two conservation conditions must
necessarily be broken in the presence of background gauge
fields for the currents, or equivalently, conservation must be
broken at coincident points in correlators. By assuming
such a nonvanishing mixed anomaly between the currents,
we show that the system must necessarily be in a gapless
phase. The properties of the massless degrees of freedom
are then determined by the structure of the currents and
their conservation conditions. We will see that sometimes
these gapless modes are necessarily nonunitary, which
means that the corresponding combinations of conserved
currents and anomalies cannot be realized by any unitary
field theory. This then implies that these symmetries are
impossible in the sense that they cannot arise in the low-
energy description of any unitary and Lorentz invariant
microphysical theory. These symmetries need not be exact
symmetries of the underlying microphysical theory—and
indeed in general we would not expect them to be. Rather,
they can be emergent at low energies. Remarkably, even
this possibility is not allowed.
In order to illustrate the features of the construction,

we consider several examples where the gapless mode is
a scalar degree of freedom, and show how they can be
understood in a uniform way. In addition to the familiar
example of an ordinary superfluid [25], and the slightly
more exotic Galileon superfluid considered in [34], we also
consider the theory of a higher-derivative conformal scalar.
This theory is structurally similar to conformal gravity, and
the corresponding gapless phase is necessarily nonunitary,
providing a simple example of a theory with “impossible”
symmetries.
Perhaps one of the more interesting applications—and

our original motivating example—is to conformal gravity.
Weyl-squared gravity is a four-derivative theory of gravity
which propagates more degrees of freedom than Einstein

gravity. In four spacetime dimensions it is Weyl invariant
and is known as conformal gravity [40–43]. Famously,
some of its propagating modes necessarily have a wrong
sign kinetic term [as can be seen explicitly around an (A)dS
background [44–47] ] so that the theory is nonunitary. We
will describe the higher-form symmetries of linearized
Weyl-squared gravity (which is Weyl and conformally
invariant in all dimensions, in contrast to its nonlinear
version), and show how it can be thought of as a relativistic
gapless phase with a particular structure of symmetries and
anomalies. Unsurprisingly, this structure cannot be realized
by any unitary theory, showing more abstractly that
(linearized) conformal gravity cannot arise as the low-
energy description of a unitary QFT. We also consider
conserved charges in this theory, and elucidate the structure
of its electric-magnetic duality in D ¼ 4.
These results form a version of a UV-IR connection.

Given our ignorance of UV physics as low-energy observ-
ers, we might imagine that it is possible for the microscopic
theory that describes our world to have essentially any
symmetries.2 The examples we study give obstructions to
certain symmetries being present in the UV, assuming
unitarity and relativistic invariance of the IR theory. We
expect that these insights will help to more broadly
understand the systematics of generalized symmetries in
the context of EFT.

A. Outline

In Sec. II we describe the general construction of
relativistic gapless phases in terms of a pair of conserved
currents with a mixed anomaly. In Sec. III we illustrate this
construction with several scalar field examples, including
one that is conceptually similar to conformal gravity. In
Sec. IV we review the higher-form symmetries of linearized
Einstein gravity then describe the higher-form symmetries
of linear conformal gravity and cast it as a gapless phase.
We conclude in Sec. V. In Appendix A we briefly review
some of the salient features of both nonlinear and linear
conformal gravity. In Appendix B we describe the spectral
decomposition of the two-point functions of interest, and
explain how they cannot be reproduced by purely unitary
representations.

B. Conventions

Throughout we will work in Euclidean signature for
simplicity, despite the fact that we are primarily interested
in Lorentzian physics. Our curvature conventions are those
of [48]. We denote the spacetime dimension by D, and
denote symmetrization of indices by ð� � �Þ and antisymmet-
rization by ½� � ��. We denote the fully traceless symmetriza-
tion by ð� � �ÞT and all indices are (anti)symmetrized with

1A thematically related line of inquiry is the “swampland”
program [39], which is concerned with the constraints placed on
EFTs by the requirement that they can consistently be ultraviolet
completed by quantum gravity. A difference, however, is that
swampland constraints are not supposed to be visible within the
EFT itself.

2Presumably these symmetries would be only approximate at
some energy scale, given the expectation that quantum gravity
breaks all global symmetries.
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weight 1. In many places we employ Young diagrams
and Young tableaux to represent the index symmetries
of various tensors. We denote Young diagrams by
½r1; r2;…; rn�, where ra are the lengths of the various
rows. Our conventions are such that all Young diagrams
are first symmetrized and then antisymmetrized with
respect to the relevant indices (so that all tableaux are in
the manifestly antisymmetric presentation). We also define
the Hodge star � such that it dualizes the first column
of a given tableau. We denote Young projectors onto the
diagram ½r1; r2;…; rn� by Y½r1;r2;…;rn�, and we denote
projectors onto the space of traceless tensors by YT.
Note that essentially all tensors in this paper are traceless.
Typically there is only one nonzero way to assign indices to
be compatible with a given Young projector, so when there
is no ambiguity we do not explicitly display the indices
involved in the projector.

II. SYMMETRIES AND GAPLESS PHASES

In this section we describe the general structure of the
relativistic gapless phases of interest, before considering
some concrete examples in Secs. III and IV. The physics of
these phases is controlled by a pair of generalized con-
served currents that have a particular mixed anomaly
between them. The presence of gapless modes is mandated
by this anomaly, and we will see through the examples that
in some cases the anomaly cannot be reproduced in any
unitary theory.

A. Currents and cohomology

A phase will be defined by specifying both a generalized
“magnetic” current, K, and a generalized “electric” current,
J, along with the generalized conservation conditions that
they each satisfy. The Lorentz representation of these
currents and their conservation conditions do not need
to be the same, and will generically not be. In general,
there will be a mixed anomaly between the two sym-
metries, whose precise form can also be thought of as an
input. A signal of the anomaly will be the impossibility
of sourcing one of these currents via a background gauge
field without violating conservation of the other current.
As is usually the case with anomalies, the failure of
conservation can be shifted between the currents by adjust-
ing local counterterms in the theory. As a matter of
convention, we will choose the anomaly to appear in the
magnetic current’s conservation equation. We will see that
this mixed anomaly governs the structure of the phase. At
the practical level, we will specify the properties of the
gauge field that the current J couples to, rather than the
current itself, and this indirectly defines the conservation
equation J satisfies. This will both allow us to define the
conservation equation for the current J, and the gauge-
invariant field strength that will ultimately appear in the
anomaly equation for K.

1. Generalized cochain complexes

The currents can transform in arbitrary representations
of the Lorentz group, and satisfy generalized conserva-
tion laws [49]. In order to describe the systematics, it is
convenient to introduce a cochain complex that general-
izes the familiar de Rham complex for antisymmetric
tensors to more general representations [50–53] (also
known as BGG complexes [54–56]). Each of the
currents, or its background gauge field, will be an
element of one of these complexes, and its conservation
law will be described by a generalized exterior deriva-
tive that maps between successive elements of the
complex. Under the assumption that the cohomology
of this complex is trivial, as it is in flat space, we will
be able to understand the features of the mixed anomaly
of the currents’ conservation, the structure of the gauge
invariances of external sources, and the structure of the
low-energy EFT.
It is simplest to consider the elements of the complex as

fully traceless tensors, which therefore carry irreducible
SOðDÞ representations in generic D. We label the elements
by their index symmetries, so that members of the a-th
element of the complex will have the index symmetries of
the Young diagram Y ðaÞ. We can therefore write the cochain
complex of interest schematically as

Y ð1Þ ⟶
dð1Þ

Y ð2Þ ⟶
dð2Þ

Y ð3Þ ⟶
dð3Þ

Y ð4Þ ⟶
dð4Þ � � � : ð2:1Þ

The differential maps dðaÞ will be described shortly; they
will map between elements of the complex in such a way
that dðaþ1ÞdðaÞ ¼ 0.
We now describe the symmetry types Y ðaÞ of the

elements that can appear in the complex. The starting
point can be chosen freely. It is an arbitrary tensor with
index symmetries given by the Young tableau Y ð1Þ:

ð2:2Þ

where the integers s1;…; sp label the lengths of the rows
of the tableau. The only requirement is that these lengths
are nonincreasing; s1 ≥ s2 ≥ � � � ≥ sp, so that Y ð1Þ ∈
½s1;…; sp�. In order to obtain the subsequent elements of
the complex (2.1), we add more boxes to the tableaux row-
by-row using the integers ra that we will describe below; to
get Y ð2Þ, we add r1 boxes to the first row of Y ð1Þ, to get Y ð3Þ,
we add r2 boxes to the second row of Y ð2Þ, and so on.
So in general, to obtain Y ðaþ1Þ, we add ra boxes to the a-th
row of Y ðaÞ.
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The data that we need to completely specify all of the Y ðaÞ is the first element of the cochain Y ð1Þ, and the number r1 > 0

of boxes that are added to the first row of Y ð1Þ in order to obtain Y ð2Þ. In order to obtain r2, r3, etc. we use the following
formula:

ra ¼ sa−1 − sa þ 1; for a ¼ 2; 3;…; ð2:3Þ

where sa is the number of boxes in the ath row of the initial tableau Y ð1Þ. In particular, this implies that if the starting tableau
has p nonzero rows, then Y ðpþ3Þ will have a last row with just a single box, and all the subsequent steps of the algorithm will
just add a new one-box row at the bottom of the diagram. We can visualize the complex as

which can equivalently be written in terms of the row lengths as

ð2:4Þ

We now turn to describing the differential maps dðaÞ that
take us between successive element of the complex. The
operator dðaÞ contains ra derivatives and maps tensors of
type Y ðaÞ into tensors of type Y ðaþ1Þ; operationally, we
obtain Y ðaþ1Þ by associating derivatives to the ra new boxes
that are present in Y ðaþ1Þ but not in Y ðaÞ, putting Y ðaÞ into
the remaining boxes and then Young projecting to Y ðaþ1Þ
and removing all traces. We can think of the additional
boxes present in the Young diagram Y ðaþ1Þ compared to
Y ðaÞ as being the derivatives in dðaÞ. Due to the fact
that derivatives in successive steps are being added to
different rows, and the fact that indices in the same column
are antisymmetrized, it is straightforward to see that
these operators satisfy the central condition of a cochain
complex, that the composition of two successive maps
vanishes,

dðaþ1ÞdðaÞ ¼ 0; ð2:5Þ

because derivatives end up being antisymmetrized. By
assuming the cohomology of this cochain is trivial, we
can say that if a tensor TðaÞ of symmetry type Y ðaÞ satisfies
dðaÞTðaÞ ¼ 0, then it can be written as TðaÞ ¼ dða−1ÞTða−1Þ

for some tensor Tða−1Þ of symmetry type Y ða−1Þ. In the
following, the magnetic conserved current and the gauge

field source for the electric current will be elements of
complexes of this type.3

Examples: Here we give some examples of the above
generalized cochain complexes that will be relevant for
some of the theories that we study below.

(i) As a familiar first example, consider the starting
tensor to be a scalar Y ð1Þ ¼ •, and take r1 ¼ 1, which
gives

ð2:6Þ

This is the standard de Rham complex for p-forms, and
plays a role in the construction of ordinary superfluids,
reviewed in Sec. III A.
(ii) Another useful complex that will appear in several

places takes the same starting point Y ð1Þ ¼ •, but
adds two indices in the first step (r1 ¼ 2), which
leads to

3Note that these complexes are the same ones underlying the
on shell gauge invariances and Bianchi identities of general
mixed-symmetry partially massless fields on (A)dS [57,58].
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ð2:7Þ
This complex will be relevant when we study a scalar
analog of conformal gravity in Sec. III C, and also appears
in the construction of a Galileonic superfluidin Sec. III B.
This is also the cochain complex underlying the gauge
invariances of the partially massless graviton [59,60].
(iii) If we take Y ð1Þ ¼ ½1�, and r1 ¼ 1, we find

ð2:8Þ
This is the chain complex underlying the diffeomorphism
invariance of the linearized massless graviton, and the
conserved magnetic current of linearized gravity fits into
this complex, as we review in Sec. IVA. It will also appear
in the construction of the Galileon superfluid (Sec. III C)
and in both the magnetic current and gauge field of the
conformal graviton in Sec. IV B.
(iv) As a final example, we can take Y ð1Þ ¼ ½1; 1� and

r1 ¼ 1. The corresponding complex is then

ð2:9Þ
This complex is relevant for the electric gauge field of
linearized Einstein gravity, as we will see in Sec. IVA.

2. Electric and magnetic currents

We now want to describe how to use this complex to
construct the electric and magnetic currents that we will use
to define the phases of interest. Two objects will play a
central role in the construction; a (magnetic) current,K, and
a gauge field, A which sources the electric current J, and so
defines it indirectly. K and A each fit into a complex of the
form (2.4). For each, the choice of complex and the position
into which it fits is equivalent to choosing the Lorentz
representation and conservation equations for the currents.
Magnetic current: We begin by considering the magnetic

current K. There are two features that we have to specify;
its index symmetries, and the conservation condition that it
satisfies. We specify its index symmetries via the Young
diagram Y ðKÞ and we take it to be completely traceless. In
order to specify its conservation conditions, we specify the
complex (2.4) that the magnetic current K belongs to

� � � ⟶ Y ðϕÞ ⟶
dðϕÞ

Y ðKÞ ⟶
dðKÞ

Y ðCÞ ⟶
dðCÞ � � � : ð2:10Þ

Here K is the current of interest, ϕ will end up being the
field theory degree of freedom that realizes the relevant
pattern of symmetries when we construct an EFT, and C is a
tensor that will appear in the anomalous conservation
equation of the magnetic current in the presence of a
background gauge field for J. We will see that typically K
corresponds to Y ð2Þ in (2.1)—or Y ð3Þ in cases involving
irreducible gauge fields—but in general, we can take K to
be a member of any complex that contains an element with
the right index symmetries. (In general, if the current is in
the representation Y ðrÞ then we’ll get an EFT involving a
gauge field with r − 3 levels of reducibility.)
The differential operators in the complex are essentially

generalized curls or Bianchi identities, so specifying the
conservation of K by the differential complex that it fits
into may seem somewhat abnormal (usually we think of
conserved currents as satisfying divergencelike conditions),
but it is actually more natural from the point of view
of generating conserved quantities/symmetry operators.
Recall that in the familiar case of a conserved current
(which satisfies ∂μJμ ¼ 0), we actually use the dual current
K ¼ �J (which satisfies dK ¼ 0) to define a conserved
quantity by integrating over a codimension-1 surface. Here
we are specifying this current that satisfies an exterior
derivativelike conservation condition directly.4 Of course
one could translate these conditions into divergencelike
conditions on the Hodge dual of K, fitting into a dual
complex, if desired.
Electric gauge field: Next we specify the background

gauge field A that couples to the conserved “electric”
current J. We will take A to be traceless with the index
symmetries of a tableau Y ðAÞ. The current then has the same
index symmetries; J∈Y ðAÞ. Like the magnetic current, we
then have to specify what complex of the form (2.4) the
gauge field A is a member of. In this case, the complex
determines the gauge transformation rule for A:

� � � ⟶ Y ðΛÞ ⟶
dðΛÞ

Y ðAÞ ⟶
dðAÞ

Y ðFÞ ⟶
dðFÞ � � � : ð2:11Þ

In this complex, A is the background gauge field, Λ is a
gauge parameter with the index symmetries of the tableau
Y ðΛÞ, so that A transforms as

δAY ðAÞ ¼ dðΛÞΛY ðΛÞ ; ð2:12Þ

and F is the field strength with the with the index
symmetries of the tableau Y ðFÞ, which is gauge invariant
by virtue of (2.5),

4Note that this is a slightly different perspective/convention
from that employed in [34], where the magnetic current called K
here would be called �K� there in the generic case.
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δFY ðFÞ ¼ 0: ð2:13Þ

Specifying the pattern of gauge symmetry for A is
equivalent to specifying the conservation condition for J;
since A couples to the current J, the current must satisfy a
conservation equation of the form,

�dðAÞ � JY ðAÞ ¼ 0; ð2:14Þ

in order for the coupling to be gauge invariant.

B. Anomalies and gapless modes

Fully defining the phases of interest requires one addi-
tional piece of information: the systems have two con-
served currents, J and K, and we have to specify the
compatibility of their conservation laws. A priori, it is not
guaranteed in the presence of a source for one of these
conserved currents that the other will continue to be
conserved. Indeed, in many cases conservation will fail,
in which case we say there is a mixed ’t Hooft anomaly
between these symmetry currents. By specifying a particu-
lar structure of this anomaly, we will see that the system
must be in a gapless phase.
In the presence of the background gauge field A (which

sources J), both K and J are promoted to gauge-invariant
versions J and K. Conservation of the current J can be
maintained by adding appropriate local counterterms, but
the magnetic currentK will generically not be conserved. It
will instead satisfy the anomalous conservation equation,5

dðKÞKY ðKÞ ¼ −CY ðCÞ ; ð2:15Þ

where C is a tensor built from the gauge-invariant field
strength F appearing in (2.11) and which has the index
symmetries Y ðCÞ of the tensor appearing in (2.10).6 In many
cases F and C do not have the same symmetry type. If this
happens, since F is traceless, the only possible way to
construct a tensor with the correct symmetry properties is
by taking derivatives of F.
The failure of conservation encapsulated by (2.15) is the

sign of a mixed anomaly between the electric and magnetic
symmetries. The structure of the phase is essentially
dictated by this anomaly. One way to understand this is
to consider the two-point function between the currents J
and K. It is fixed by the requirements that J and K be

conserved at separated points, and by the anomaly equa-
tion (2.15), which specifies the contact terms that spoil
conservation of the currentK at coincident points. (The fact
that it is impossible to have both currents conserved even
at coincident points is another way of expressing the
anomaly.) The spectral decomposition of the two point
function hJKi then provides us with information about the
degrees of freedom in this phase. In all cases of interest in
this paper, K has the same symmetry type as J, and the
Källén-Lehmann spectral decomposition of their two-point
function will require the presence of gapless modes, whose
precise identity depends on the symmetry type and con-
servation conditions of the currents, along with the
anomaly equation.7

Certain gapless phases can therefore be defined by their
structure of conserved currents and anomalies. It would not
be possible to match the two-point function of these
currents without gapless modes present in the system.
We will see in some cases that the two-point function
cannot be matched by any spectrum of unitary representa-
tions of the Poincaré group, implying that the relevant
pattern of symmetries cannot arise as the effective descrip-
tion of any unitary quantum system, i.e. it is impossible.

C. Effective field theory

It is often desirable to have an effective description of
small fluctuations around the ground state of a system in a
given phase. We now turn to the construction of such an
EFT description of the phases of interest, which realizes the
symmetry and anomaly structure. This discussion will be
somewhat abstract, but we will later provide a number of
concrete examples.
To build an effective field theory, we need to introduce

some local field theory degrees of freedom ϕ from which
the currents J and K will be built. Since the anomaly (2.15)
involves the magnetic current, K, it is convenient to realize
this current as a “topological” current, whose conservation
is trivialized by the parametrization of degrees of freedom.
This is a choice; by choosing appropriate counterterms, we
could instead make the anomaly appear in the conservation
of J, and instead realize J as a topological current in dual
variables. This would change the presentation of the EFT,
but would not change any of the actual long distance
physics of the system. With this choice, the magnetic

5The “−” sign is conventional, and we normalize the anomaly
so that properly quantized operators charged under K have unit
charge.

6In all the cases we consider, the anomaly can be written in
terms of a gauge-invariant field strength. This is because the
anomalies that we consider are “Abelian.” For non-Abelian
anomalies, it is typically not possible to write the anomaly in
terms of a gauge-invariant combination that also satisfies the
Wess-Zumino consistency conditions [61].

7This structure of anomalies is what appears in generic
spacetime dimension. However, there can be certain special
dimensions where interesting additional features appear. In
particular, it is sometimes possible to construct gauge-invariant
topological terms out of the gauge field A, which can generate
trace anomalies for the currents of interest (particularly J ). Some
examples of these trace anomalies were discussed in [34]. Wewill
not consider them further, but it would be very interesting to
understand whether these topological terms contain any interest-
ing information about the global structure of the manifolds on
which they are defined.
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conserved current will not get deformed in the presence of
Abelian interactions, so that the anomaly structure is
reliable in the interacting theory. Looking at the complex
(2.10), we see that if we define

K ≡ dðϕÞϕ; ð2:16Þ

then conservation of K will be automatic: dðKÞK ¼
dðKÞdðϕÞϕ ¼ 0.
Reproducing the relevant anomaly in this effective

description is fairly straightforward. We promote the
magnetic current to its gauge invariant version:

K → K≡ K − C; ð2:17Þ

where C is a tensor built out of the gauge field A with the
same index symmetries as K. This tensor is uniquely
defined by the requirement that K is gauge invariant. In
the presence of C, K is no longer annihilated by dðKÞ, and
instead satisfies (2.15) with C ¼ dðKÞC. Note also that C can
be written in terms of (possibly derivatives of) the gauge-
invariant field strength F associated to A.
We now want to construct a Lagrangian involving ϕ

whose equations of motion imply the conservation of the
current J. There are two conceptually different struc-
tures that the effective field theory can have. The first is
Maxwell-like, where the effective action is just given by
powers of (2.16)

S ¼
Z

dDx

�
1

2
ðdðϕÞϕÞ2 þ c1ðdðϕÞϕÞ3 þ � � �

�
: ð2:18Þ

In effective field theories of this type, the tensor C is
actually just directly the gauge field A. Consequently,
building the action out of powers of K guarantees that
the interacting EFT can be consistently coupled to the
gauge field A. The corresponding current is J, which
therefore satisfies the conservation condition (2.14).8

In some cases the equations of motion following from
(2.18) involve more than two derivatives. This may be
undesirable, and we may want to find theories with the
same degrees of freedom and symmetries but with lower-
order equations of motion. This can sometimes be achieved
by constructing an EFT that is Chern-Simons-like, i.e.,
using terms that are not constructed solely from K yet are

still invariant under (2.19) up to a total derivative (often
known as Wess-Zumino terms). To our knowledge there is
no classification of such terms for totally generic symmetry
types (though many scalar cases are known [62–64]), and
so we will just cover the cases of later interest.
What we require in these cases is an analog of the

Einstein tensor. This can be constructed by considering the
traceful analog of the complex that the current K fits into.
We can then define the relevant Einstein tensor as the
traceless part of the single trace of K in this complex:

G ¼ YT
Y ðtrKÞ trK; ð2:20Þ

where K can be written in terms of ϕ. In all the cases of
interest ϕ will have two fewer indices than K, and so it is
possible to contract ϕ with G,9 producing an action of
the form

S¼
Z

dDx
�
ϕGþ c1ðdðϕÞϕÞ2þ c2ðdðϕÞϕÞ3þ� � ��; ð2:21Þ

where we have allowed for the possibility of irrelevant
corrections built out of ϕ, which may also be of Wess-
Zumino type. It is somewhat nonobvious, but this action
will have the same global symmetries as (2.18), but with the
Einstein term being invariant only up to a total derivative.
The equation of motion following from this action is a
partial flatness condition on the traceful version of the
curvature K, in contrast to the wave equationlike condition
following from (2.18).
We will see versions of both of these types of EFT in the

following examples. Heuristically, one can think of the
Maxwell-like EFTs as being more like electromagnetism,
and the Chern-Simons-like EFTs as being more like
Einstein gravity. While the precise EFT construction
may seem like somewhat of a choice at the level of global
symmetries, there actually is no freedom once one specifies
the anomaly structure that the EFT is to reproduce. One
way to understand this is that in the deep IR, the two
currents J and K coincide, and so the two-point function of
these currents is determined by the free theory, and the
number of derivatives in the quadratic action will affect
the form of this two-point function. Since the two-point
function of the theory is completely determined by the
conservation conditions and anomalies, different quadratic
actions must have different anomaly structures. Thus, the
anomaly that we are trying to reproduce dictates the kinetic
structure that must be present. In Sec. III we will see an
explicit example, where the current K will be the same in
two different theories, but the current J will satisfy different
conservation conditions depending on the kinetic term of

8Notice also that the form of the action guarantees that it will
have the shift symmetry

ϕ ↦ ϕþ αY ðϕÞ ; ð2:19Þ

where α is a tensor with the same symmetry type as ϕ, which also
satisfies dðϕÞα ¼ 0. This signals that the symmetry associated
with J is spontaneously broken in this phase, and ϕ serves as the
corresponding Goldstone boson.

9This is the difficulty in describing the totally generic con-
struction for currents of any symmetry type, because ϕ andGwill
not always have the same indices.
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the theory, and correspondingly the theories can be coupled
to different background gauge fields and will produce
different anomalies.

III. SCALAR EXAMPLES

We now turn to some concrete examples of the preceding
abstract discussion. In this section we present the simplest
possible cases; a scalar field realizing various patterns of
symmetries and anomalies which fit into the general
framework presented in Sec. II.

A. Superfluid

One of the simplest examples of a gapless quantum
system is a superfluid. The massless phonon in this phase
can be understood as a consequence of a mixed anomaly
between the shift symmetry acting on the phonon and an
(emergent) winding symmetry, under which the super-
fluid’s vortices are charged [25]. Here we review this in
the context of the general construction of Sec. II.
Currents and anomalies: In the language of Sec. II, the

two objects of interest are a magnetic 1-form current Kμ

and a 1-form gauge field Aμ, which sources an electric
current Jμ. Both the current Kμ and gauge field Aμ can be
thought of as elements of the ordinary de Rham complex

ð3:1Þ

Here, the presence of Kμ in this complex signals that it is
closed ∂½μKν� ¼ 0, which implies that its dual ð�KÞμ1���μD−1

is conserved in the ordinary sense, ∂μ1ð�KÞμ1���μD−1
¼ 0. The

fact that Aμ is part of this complex implies that it has the
usual gauge transformation rule δAμ ¼ ∂μΛ, and thus
sources a current Jμ which is conserved in the ordinary
sense, ∂μJμ ¼ 0. These equations are true as operator
statements at separated points, but they cannot both be
chosen to be true at coincident points in correlation
functions. Contact terms necessarily spoil conservation
of at least one of them. The structure of these contact
terms is dictated by the anomaly equation,10

∂½μKν� ¼ −
1

2
Fμν; ð3:2Þ

where Fμν ¼ ∂μAν − ∂νAμ is the field strength that is part of
the complex (3.1), and Kμ is the gauge-invariant version of

K in the presence of Aμ. So we see here that the gauge-
invariant field strength directly plays the role of C in (2.15).
In order to see how this pattern of symmetries and

anomalies defines the superfluid phase, we note that the
Fourier-space two-point function between J and K is
completely fixed by their conservation and mixed anomaly
(3.2) to be [25]

hJμKνi ¼
1

p2
ðpμpν − p2ημνÞ: ð3:3Þ

The pole at p2 → 0 indicates the presence of a gapless
excitation in the spectrum, and a more careful spectral
decomposition reveals that this excitation is a scalar par-
ticle [25,34]. From this perspective, the superfluid
Goldstone mode is forced upon us by the currents and
the structure of their anomaly.
Effective field theory: It is straightforward to construct an

EFT that reproduces this physics and describes the super-
fluid phonon directly [66]. Recall that the (magnetic)
current satisfies dK ¼ 0. From the complex (3.1) we see
that we can trivialize this conservation law by writing

Kμ ¼ ∂μϕ; ð3:4Þ

for some scalar field ϕ. Our goal is then to construct a field
theory for ϕ that has a conserved (electric) current. In this
case the relevant EFT is Maxwell-like, and we can write

S ¼
Z

dDx

�
1

2
ð∂ϕÞ2 þ 1

4ΛD ð∂ϕÞ4 þ � � �
�
; ð3:5Þ

where Λ is a dimension-ful scale. The existence of a
conserved electric current that is conserved on shell follows
from the shift symmetry ϕ ↦ ϕþ c of the action,

Jμ ¼ ∂μϕ

�
1þ 1

ΛD ð∂ϕÞ2 þ � � �
�
: ð3:6Þ

We can couple this current to a background gauge field Aμ

by promoting everywhere

∂μϕ ↦ ∂μϕ − Aμ; ð3:7Þ

after which the action is invariant under the gauge trans-
formations δϕ ¼ ξðxÞ, δAμ ¼ ∂μξðxÞ. In this case, the
magnetic current (3.4) fails to be gauge invariant, and
we then see that the gauge invariant version of this current

Kμ ≡ ∂μϕ − Aμ; ð3:8Þ

no longer is anti-symmetrically conserved, but instead
displays the expected anomaly (3.2). We therefore see that
the EFT (3.5) captures the low-lying excitations of this
phase, with ϕ acting as the superfluid phonon.

10As mentioned above, we have chosen to put the anomaly in
the conservation equation for Kμ. We could instead choose a
renormalization scheme that shuffles the anomaly into the
conservation equation for J. This other choice would be more
natural in dual variables where the superfluid phonon is packaged
into a (D − 2)-form (see e.g., [65]).
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Two dimensions: A small interesting feature appears in
the linearized theory in two dimensions. In this case, the
linear equations of motion are

∂μJμ ¼ 0; ∂μ1ð�JÞμ1���μD−1 ¼ 0: ð3:9Þ

so we see that precisely in D ¼ 2 these are electric-
magnetic duals of each other.

B. Galileonic superfluid

As another example with the same degrees of freedom as
an ordinary superfluid—but with different symmetries—
we now consider a “Galileon superfluid,”which is an exotic
version of a superfluid with a spacetime-dependent shift
symmetry [34,67].
Currents and anomalies: As before, we begin by

introducing the magnetic current and the electric gauge
field, which will be used to define the phase. In this case,
the magnetic current is a traceless symmetric two-index
tensor,

ð3:10Þ

We consider K to be part of the complex

ð3:11Þ

where the maps appearing are

ðdðϕÞϕÞμν ¼ ∂ðμ∂νÞTϕ; ð3:12Þ

ðdðKÞKÞαμν ¼ 3YT
½2;1�∂αKμν ¼ ∂αKμν þ � � � ; ð3:13Þ

so that the conservation condition satisfied by K is
dðKÞK ¼ 0, which involves projecting onto the traceless
[2, 1] tableau.
We specify the electric current by defining a symmetric

traceless gauge field Aμν, which is an element of the
complex,

ð3:14Þ

This implies that the gauge transformation rule for A is
dðΛÞΛ which can be written as

δAμν ¼ 2∂ðμΛνÞT ; ð3:15Þ

and the gauge-invariant field strength F ¼ dðAÞA has the
symmetries of the Weyl tensor,

Fμναβ ¼
3ðD − 1Þ
2ðD − 3ÞY

T
½2;2�∂μ∂αAνβ ¼

ðD − 1Þ
ðD − 3Þ ∂μ∂αAνβ þ � � � ;

ð3:16Þ

where we have chosen the normalization for later conven-
ience. The gauge field A sources the electric current Jμν.
The current Jμν therefore has the same symmetry properties
(symmetric traceless) and the gauge transformation (3.15)
implies that it satisfies the conservation condition

∂
νJμν ¼ 0: ð3:17Þ

In the presence of the background gauge field A, the
gauge-improved current J continues to be conserved, but
the magnetic current no longer satisfies (3.13), but rather
obeys the anomalous conservation equation

YT
½2;1�∂αKμν ¼ −Cαμν; ð3:18Þ

where the right-hand side is built from the field strength
(3.16) as

Cαμν ¼ −∂βFβναμ ¼
3

2
YT

½2;1�∂αCμν; ð3:19Þ

where

Cμν ¼
D − 1

D − 2
½2∂α∂ðμAνÞTα −□Aμν�: ð3:20Þ

Notice that the tensor appearing in the anomaly Cαμν is not
directly Fμναβ because of the mismatch in index structures;
since C has one fewer index than F, it must be constructed
using one derivative, and (3.19) is the unique way of
making something with the index symmetries of C out of a
derivative of F. Similarly to the ordinary superfluid, this
anomaly fixes the two-point function between the currents
Jμν and Kμν to be

hJμ1μ2Kν1ν2i ¼
D − 1

D − 2

�
p2ημ1ðν2ην1Þμ2 −

1

D − 1

×
�
p2ημ1μ2ην1ν2 − ημ1μ2pν1pν2 − ην1ν2pμ1pμ2

�
− ημ2ðν2pν1Þpμ1 − ημ1ðν2pν1Þpμ2

þD − 2

D − 1

pμ1pμ2pν1pν2

p2

�
; ð3:21Þ

and the Källén-Lehmann spectral decomposition once
again reveals that the gapless excitation in the system is
a Poincaré scalar [34].
In D ¼ 2 there is a topological term that can be built out

of the gauge field Aμν which has no free indices (it is the
linearized Ricci tensor ∂μ∂νAμν, thinking of Aμν as a trace-
less version of the graviton). This topological term can
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appear in the trace equations trJ ¼ trK ¼ 0, leading to
additional anomalies [34].
Effective field theory: We would now like to construct an

EFT that reproduces the anomaly structure and describes
this phase. From the complex (3.11), we see that we can
trivialize the magnetic conservation equation by defining

Kμν ¼ ∂ðμ∂νÞTϕ ¼ ∂μ∂νϕ −
1

D
ημν□ϕ: ð3:22Þ

Recall that for this current, the desired conservation
equation is that the antisymmetric derivative of Kμν with
all traces removed vanishes, as dictated by the complex
(3.11), and this is guaranteed by writing K in this way. As
expected, the relevant degree of freedom in this phase is a
scalar field ϕ. We now want to construct an action that leads
to the conservation of the electric current Jμν. Notice that
Kμν is invariant under the transformation [67]

δϕ ¼ cμxμ; ð3:23Þ

and so it is natural to imagine that Jμν will be the Noether
current for this symmetry.11 More specifically, we want to
construct an EFT that has a global symmetry δϕ ¼ ∂μξ

μ,
where ξμ is a conformal Killing vector that also satisfies
∂μ∂ν∂αξ

β ¼ 0 [34]. One way to guarantee that this will be a
symmetry of the action is to construct the action out of
powers of Kμν, which would be analogous to the Maxwell-
like EFT of a superfluid (3.5). However, this action will
necessarily have higher-derivative equations of motion, and
it would not reproduce the anomaly (3.18). We therefore
are motivated to ask whether it is possible to construct an
EFTwith the same symmetries, but which has second-order
linearized equations of motion. This turns out to indeed be
possible. Notice that the linearized action,

S ¼ −
Z

dDx
1

2
ϕ□ϕ; ð3:24Þ

is also invariant under the symmetry (3.23), despite having
fewer derivatives.12 This is possible because the action is
invariant up to a total derivative under the symmetry; there
also exist interactions with the same property, so called
Galileon terms [67,69]. We can gauge the symmetry (3.23)
by promoting □ϕ to

G ¼ −□ϕþ ∂μ∂νAμν; ð3:25Þ

after which the linearized action can be put in the form

S ¼ 1

2

Z
dDxðϕGþ AμνJ μνÞ: ð3:26Þ

Here J μν is the electric current

J μν ¼ ∂ðμ∂νÞTϕ − Cμν; ð3:27Þ

where Cμν is given by (3.20). In the linearized theory, it
happens that Kμν ¼ J μν, but this will not be true generi-
cally once interactions are included. Taking the antisym-
metric derivative, we reproduce (3.18) [34]. The action
(3.26) is invariant under the gauge transformation,

δϕ ¼ 2ðD − 1Þ
D

∂
μξμ; ð3:28Þ

for ϕ, along with the transformation (3.15) for A.
Interactions can be introduced similarly by taking

arbitrary powers of Kμν, which coincides with (3.27).
The magnetic current (and anomaly) do not change. The
electric current will receive corrections from the interaction
terms, but will continue to exist as long as the interactions
respect the symmetry (3.23) (or equivalently gauge invari-
ance in the presence of A). Note that this theory and the
ordinary superfluid have the same kinetic term. The differ-
ence between them lies only in the symmetries that are
demanded, and thus in the spectrum of operators and in the
types of irrelevant interactions that we are allowed to
include.13

Two dimensions: Here again there is a version of electric-
magnetic duality in two dimensions. This case is similar to
the ordinary superfluid, but just with an extra index. The
two equations of motion are

∂μJμν ¼ 0; ∂μ1ð�JÞμ1���μD−1ν ¼ 0; ð3:30Þ

where �J is dualized over its μ index. We again see that
these equations are duals of each other in D ¼ 2.

C. Conformal scalar

We now want to consider a more novel example, which
is a conformal scalar that shares many similarities with
conformal gravity. Here we meet our first example of a
theory with “impossible” symmetries, where the structure

11Notice that this EFT is still written in terms of a scalar field,
despite the fact that it hasmore symmetry than the superfluid (it is
also clearly invariant under δϕ ¼ const). The fact that a single
degree of freedom can realize multiple symmetries is a mani-
festation of the so-called inverse Higgs effect [68].

12We can construct the “Einstein scalar” G ¼ −□ϕ from the
traceful version of the complex (3.11). In this complex, we would
have Kμν ¼ ∂μ∂νϕ, which has G as its nonzero trace.

13Note that if we had not included the ϕG term and instead built
the EFT directly out of powers of K, we would see that K has an
anomaly of the form,

YT
½2;1�∂αKμν ∼ −□Cαμν; ð3:29Þ

rather than (3.18), and correspondingly this EFT would have a
different two-point function.
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of anomalies cannot be matched by a unitary theory.
Consequently we will find that the EFT that captures the
dynamics and reproduces the anomalies necessarily
involves higher-order derivatives.
Currents and anomalies: In the previous examples, the

currents of interest satisfied single-derivative conservation
equations. In this example we will have an electric current
that satisfies a higher-derivative condition.
The magnetic current is the same as in the Galileon

superfluid example

ð3:31Þ

which then fits into the same complex

ð3:32Þ

In this complex, the maps are the same as (3.12) and
(3.13), and the conservation condition that K satisfies
is dðKÞK ¼ 0.
The novelty in this case compared with the superfluid is

the electric gauge field: it is once again a two-index
traceless tensor Aμν, but it is now part of the complex

ð3:33Þ

Under a gauge transformation, A shifts as

δAμν ¼ ∂ðμ∂νÞTΛ; ð3:34Þ

and the field strength Fμνα is defined as

Fμνα ¼ ∂½μAν�α −
1

D − 1
ηα½μ∂βAν�β: ð3:35Þ

These two equations are the maps in (3.33) expressed in
indices. The gauge transformation (3.34) implies that the
electric current satisfies the conservation condition

∂μ∂νJμν ¼ 0: ð3:36Þ

Note that the single divergence of J does not necessarily
vanish, ∂νJμν ≠ 0.
In the presence of the background gauge field Aμν, the

electric current J μν continues to be conserved, but the
magnetic current instead satisfies the anomalous conserva-
tion equation,

YT
½2;1�∂αKμν ¼ −Fαμν: ð3:37Þ

Since Fαμν has the correct index symmetries, it can appear
directly on the right-hand side of this equation, playing the
role of Cαμν in (2.15). In this sense the mixed anomaly for

this theory is conceptually more similar to that of the
ordinary superfluid than the Galileon superfluid, despite the
fact that the magnetic current has the same index sym-
metries as in the Galileonic example.
As in the previous examples, the conservation condition

∂μ∂νJμν ¼ 0 along with the mixed anomaly (3.37) com-
pletely fixes the Fourier-space two-point function between
the two currents:

hJμνKρσi ¼
D

D − 1

1

p4

�
pμpνpρpσ −

D − 1

D
p4ημðσηρÞν

þ p2

D

�
p2ημνηρσ − pμpνηρσ − pρpσημν

��
:

ð3:38Þ

Notice that this two-point function has a p−4 divergence as
p → 0, which already suggests that this theory cannot be
unitary. This can be formalized by an explicit spectral
decomposition, but the result is the expected one; the
higher-order pole cannot be matched by any unitary
Poincaré representation, and instead reveals the existence
of a so-called “dipole ghost” state [70–72]. More details are
provided in Appendix B. We therefore see that any theory
with this pattern of symmetries and anomalies must neces-
sarily be nonunitary—they are impossible symmetries.
Effective field theory: Let us now reproduce this physics

from an effective field theory. We can again trivialize
conservation of the magnetic current by writing

Kμν ¼ ∂ðμ∂νÞTϕ: ð3:39Þ

We now want to find an action for ϕ from which the
(double) conservation of Jμν follows. The appearance of the
gauge-invariant field strength itself in the anomaly equa-
tion (3.37) suggests that the relevant EFTwill be Maxwell-
like, and indeed this is the case. We consider the EFT

S ¼ −
1

2

Z
dDx

�
KμνKμν þ 1

ΛD K4
μν þ � � �

�
; ð3:40Þ

where K4
μν stands schematically for all index contractions,

and Λ is an energy scale (not to be confused with the gauge
parameter). Notice that the kinetic term for ϕ that comes
from (3.40) is higher derivative,

S ¼ −
Z

dDx

�
D − 1

2D
ϕ□2ϕþ � � �

�
: ð3:41Þ

We can then understand the presence of the electric current
Jμν as a consequence of the fact Kμν, can be coupled a
background gauge field by promoting it to

Kμν → Kμν ≡ ∂ðμ∂νÞTϕ − Aμν; ð3:42Þ
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which is then invariant under the gauge transformations

δϕ ¼ ξ; ð3:43Þ

δAμν ¼ ∂ðμ∂νÞTξ; ð3:44Þ

with a scalar gauge parameter ξðxÞ. The gauge field Aμν will
then couple to the electric current J μν:

J μν ≡ δS
δAμν

¼ ∂ðμ∂νÞTϕ − Aμν þ � � � ; ð3:45Þ

which will be doubly conserved (because of the gauge
transformation of A). The presence of this conserved
current also guarantees that the action will have certain
global symmetries, which we detail in the following inset.
Symmetries: We can use the current Jμν to construct

ordinary Noether currents that correspond to the global
symmetries of the EFT (3.40). Let us illustrate this in the
special case of the free theory. In this case, the doubly
conserved electric current is

Jμν ¼ ∂ðμ∂νÞTϕ; ð3:46Þ

which is doubly conserved as a consequence of the higher-
derivative equations of motion. Note that, as expected, the
current Jμν in a generic EFTagrees with Kμν in the deep IR.
To obtain an ordinary conserved current from Jμν, we can

start from (3.46) and contract it with a conformal Killing
scalar χ, which satisfies ∂ðμ∂νÞTχ ¼ 0. The current

Jμ½χ� ¼ Jμν∂νχ þ ∂
νJμνχ; ð3:47Þ

will then be conserved. We can then consider the free
conformal scalar Lagrangian, and write it in the form

L ¼ −
1

2
J2μν ¼ −

1

2
½∂ðμ∂νÞTϕ�2: ð3:48Þ

In this form, it is manifestly invariant under a shift by a
conformal Killing scalar,

δϕ ¼ χ: ð3:49Þ

The Noether current for this symmetry is

J μ ¼ −δϕ∂ν
∂L

∂ð∂μ∂νϕÞ
þ ∂L
∂ð∂μ∂νϕÞ

∂νδϕ

¼ −∂μ∂νϕ∂νχ þ
1

D
∂
μχ□ϕþ ðD − 1Þ

D
χ∂μ□ϕ; ð3:50Þ

which gives exactly −Jμ½χ�.

The independent conformal Killing scalars are

c; bμxμ; x2; ð3:51Þ

such that these include the usual constant shift, Galileon
symmetry, as well as shifty by x2, which is not a sym-
metry of the ð∂ϕÞ2 kinetic term, but which is a sym-
metry of (3.40).
The electric current defined by (3.45) is guaranteed to be

double conserved, but the (topological) magnetic current
(3.42) will no longer satisfy the conservation equation
dðKÞK ¼ 0, but will instead produce the anomaly (3.37). As
expected, the EFT (3.41) that reproduces the general
physics of this phase is manifestly nonunitary, having
fourth-order equations of motion.
Electric-magnetic duality: The linearized version of this

effective field theory displays a version of electric-magnetic
duality inD ¼ 2. In generic dimension, we can think of the
theory as being defined by the equations,

∂
μ
∂
νJμν ¼ 0; ð3:52Þ

YT
½2;1�∂αJμν ¼ 0; ð3:53Þ

which are valid at separated points, and where Jμν ¼ Kμν in
the linear theory. Recalling that Jμν is part of the complex
(3.32), Eq. (3.53) implies that we can write14

Jμν ¼ ∂ðμ∂νÞTϕ: ð3:54Þ

The equation of motion□2ϕ ¼ 0 then follows from (3.52).
Two dimensions: Something special happens in D ¼ 2.

Tensors with the symmetry type vanish identically, such
that the Eq. (3.53) is trivially satisfied in D ¼ 2. We must
therefore additionally impose the two-derivative equation,

∂½α∂νJ μ�ν ¼ −∂½α∂νAμ�ν; ð3:55Þ

in order to fix the overall normalization of the two-point
function. The standard de Rham complex can be used to
infer from (3.55) that

∂
νJμν ¼ ∂μf; ð3:56Þ

while the identically satisfied Eq. (3.53) implies that
f ¼ □ϕ. Then, we see that □2ϕ ¼ 0 from (3.52). The
takeaway is that the two equations

∂μ∂νJμν ¼ 0; ð3:57Þ

14Note that, from the CFT point of view, this current is not a
primary operator, so it does not appear among the multiply-
conserved currents of the □

2 theory classified in [73].
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∂μ∂νð�JÞμν ¼ 0 ⇒ ∂½α∂νJμ�ν ¼ 0; ð3:58Þ

are equivalent at separated points inD ¼ 2, and completely
fix this theory [along with the particular anomaly (3.55) at
coincident points]. Here the dualization is defined with
respect to the μ index. In two dimensions, Eq. (3.57) is
equivalent to its dual, so this is a manifestly electric-
magnetic duality invariant formulation of the theory.
Note, of course, that the choice of which equation to

make anomalous at coincident points breaks electric-
magnetic duality, which will appear in the contact terms
of the theory. Equation (3.58) is actually only true at
separated points. Inside correlation functions there is an
anomaly, which—for example—fixes the normalization of
the two point function. The two-point function (3.38) is not
correct in D ¼ 2. Instead we find

hJμνKρσijD¼2
¼ 2

p4

�
pμpνpρpσ −

p2

2

�
pμpðρησÞν

þ ημðρpσÞpν

��
; ð3:59Þ

where the overall normalization is fixed by the anomaly in
Eq. (3.58), and again this correlator implies the presence of
a massless scalar.

IV. SPIN-2 EXAMPLES

In the preceding section, we saw several examples of the
general construction described in Sec. II, and saw how the
same scalar degree of freedom can realize different patterns
of symmetries and anomalies, some of which cannot arise
in a unitary theory. Similar constructions can lead to
massless spin-1 [2,3,20,21] excitations, or higher p-form
excitations. In this section we wish to present some other
examples where the gapless degree of freedom has spin
two. We first review the symmetries of the EFT of a
linearized graviton, before describing the higher-form
symmetries of linearized conformal gravity. Conformal
gravity is well-known to be nonunitary, and we will see
that this is a property shared by any theory with the same
generalized symmetries as (linear) conformal gravity.

A. Einstein gravity

We first review the anomaly structure of (linearized)
Einstein gravity [34–36] and show how it fits into the
general framework described in Sec. II.
Currents and anomalies: The magnetic current of

interest has four indices Kμ1μ2ν1ν2 , with the symmetry type
of the Weyl tensor,

ð4:1Þ

This current is an element of the complex

ð4:2Þ

where the various maps are defined by

ðdðξÞξÞμν ¼ 2∂ðμξνÞT ; ð4:3Þ

ðdðhÞhÞμναβ ¼ −3YT
½2;2�∂μ∂αhνβ ¼ −∂μ∂αhνβ þ � � � ; ð4:4Þ

ðdðKÞKÞ
ρμναβ

¼ 3YT
½2;2;1�∂ρKμναβ ¼ ∂ρKμναβ þ � � � : ð4:5Þ

Using this complex, the conservation condition that is
satisfied by the magnetic current is

dðKÞK ¼ 0; ð4:6Þ

which is the same form as the traceless part of the Bianchi
identity for the Weyl tensor.
The gauge field that couples to the electric current is

Aμναβ and also has the symmetries of the Weyl tensor. It is
part of the complex

ð4:7Þ

Here the gauge parameter is a mixed-symmetry tensorΛμνα,
and the differential operators are defined explicitly as

ðdðΛÞΛÞμναβ ¼ 12YT
½2;2�∂μΛαβν ¼ ∂μΛαβν þ � � � ; ð4:8Þ

ðdðAÞAÞμνραβσ ¼ 18YT
½2;2;2�∂ρ∂σAμναβ ¼ ∂ρ∂σAμναβ þ � � � ;

ð4:9Þ

so that under a gauge transformation the field trans-
forms as15

δAμναβ ¼ ∂μΛαβν þ � � � ; ð4:10Þ

and the gauge-invariant field strength is

F ¼ dðAÞA: ð4:11Þ

This encodes the fact that the electric current is ordinarily
conserved,

15Note that the fact that Λαβν is itself the derivative of another
tensor in (4.7) implies that the gauge transformation is reducible,
any gauge parameter that is the symmetric derivative of a 2-form
will automatically have δA ¼ 0.

IMPOSSIBLE SYMMETRIES AND CONFORMAL GRAVITY PHYS. REV. D 110, 085003 (2024)

085003-13



∂μJμναβ ¼ 0: ð4:12Þ

In the presence of this background gauge field, the
electric current continues to be conserved, while the
magnetic current satisfies the anomaly equation,

3YT
½2;2;1�∂½ρKμν�αβ ¼ −Cμνραβ; ð4:13Þ

where the anomaly can be written in terms of the gauge-
invariant field strength of A as16

Cμνραβ ¼ −
ðD − 3Þ
8ðD − 5Þ ∂

σFμνραβσ ¼ 3YT
½2;2;1�∂ρCμναβ; ð4:14Þ

which also can be written in terms of the auxiliary tensor

Cμναβ ¼
D − 3

D − 4
YT

½2;2�

�
∂
ρ
∂μAναβρ −

1

4
□Aμναβ

�
: ð4:15Þ

As in the scalar examples, the symmetries/anomalies of
this system completely fix the two point function involving
the electric and magnetic currents. Explicitly, it takes the
form [34],

hJμ1μ2ν1ν2Kα1α2β1β2i ¼ P
�
9ðD − 4Þ
D − 3

pμ1pμ2pα1pα2ην1β1ην2β2
p2

þ 3

4
p2ημ1α1ημ2α2ην1β1ην2β2

− 3pμ1pα1ημ2α2ην1β1ην2β2

�
; ð4:16Þ

where P ≡ YT
½2;2�Y

T
½2;2� is a Young projector onto the tableau

that has the symmetries of a symmetric product of Weyl
tensors,

ð4:17Þ

Note that only the first term of (4.16) is nonlocal.
Performing a spectral decomposition on the two-point
function (4.16) implies that there is a gapless spin-2
mode—the linearized graviton—in the spectrum [34].
From this perspective, the graviton is a Goldstone for a
(higher-form) symmetry, which is nonlinearly realized.
Effective field theory: We now want to review how this

structure of anomalies is reproduced in effective field
theory [34,35]. As before, the strategy is to trivialize the

magnetic conservation condition by writing the magnetic
current in terms of a potential field,

Kμ1μ1ν1ν2 ¼ −3YT
½2;2�∂μ1∂ν1hμ2ν2 ; ð4:18Þ

where hμν is a traceless symmetric tensor. Of course this is
just the linearized Weyl tensor where hμν is the linearized
metric in a gauge where hμμ ¼ 0. Notice that the complex
(4.2) implies that this tensor is invariant under the gauge
transformation,

δhμν ¼ 2∂ðμξνÞT ; ð4:19Þ

which is nothing but the linearized diffeomorphism invari-
ance that preserves hμμ ¼ 0. We see that gauge invariance
in this language is an inevitable consequence of choosing
to write one of the currents locally in terms of field
variables that trivialize its conservation.17

We now want to construct an action whose equation of
motion implies the conservation of the electric current
Jμ1μ1ν1ν2 . This current can be seen as the Noether current for
the shift,

δhμν ¼ 2∂αΛαðμνÞ; ð4:20Þ

where Λ is a traceless mixed-symmetry tensor and we
must require that K½δh�μναβ ¼ 0 in order for this to be a
symmetry. (This condition is the analog of the 1-form
symmetry in electromagnetism requiring that we shift by a
flat connection.)
As in the Galileon superfluid example discussed in

Sec. III B, the most naive action built directly from K will
have fourth-order equations of motion, and the wrong
anomaly. It is, however, possible to construct a kinetic term
with lower-order equations of motion:

S ¼ −
Z

dDx
1

2
hμνð□hμν − 2∂α∂ðμhνÞαÞ; ð4:21Þ

whose equation of motion sets the traceless linearized
Einstein tensor to zero GðμνÞT ¼ 0. Note that this is a non-
standard presentation of linearized gravity, written in terms
of an identically traceless tensor (see Sec. 2.4 of [74]). The
electric current in this linearized theory is also the Weyl
tensor,

Wμ1μ1ν1ν2 ¼ −3YT
½2;2�∂μ1∂ν1hμ2ν2 ; ð4:22Þ

which is conserved on shell. As before, the electric current
happens to coincide with K, but this is again an accident of16The slightly strange normalizations are chosen for conven-

ience when matching to the EFT description. Note that the
apparently singular behavior in D ¼ 5 is due to the fact that the
field strength (4.9) vanishes identically in five dimensions, and so
it is not possible to write the anomaly in terms of it. Nevertheless,
it is possible to write it in terms of (4.15) by dividing by D − 5.

17We would have seen a similar phenomenon in the scalar
examples if we had decided to trivialize the electric current
conservation, which would have introduced a (D − 2)-form field
carrying the gapless mode.

HINTERBICHLER, JOYCE, and MATHYS PHYS. REV. D 110, 085003 (2024)

085003-14



the linearized theory. We can introduce interactions, which
are naturally built from powers of K. The electric current
will then receive corrections (but will continue to be
conserved on shell), while the magnetic current will be
unchanged. These will be interactions of the “pseudolinear”
type [75–79]. It is an open question how to extend this
framework to describe the non-Abelian interactions of full
Einstein-Hilbert gravity.
We can gauge the symmetry (4.20) by introducing Aμναβ

into the action (4.21) as

S¼
Z

dDx

�
1

2
∂αhμν∂αhμν− ∂

μhμα∂νhνα−Aμνρσ∂
μ
∂
ρhνσ

−
D−3

8ðD−4Þ∂
μAνρσα∂μAνρσαþ D−3

2ðD−4Þ∂
μAνρσμ∂αAνρσα

�
;

ð4:23Þ

which is invariant under the following gauge trans-
formations

δΛAμναβ ¼ 12YT
½2;2�∂μΛαβν ¼ ∂μΛνβα þ � � � ; ð4:24Þ

δΛhμν ¼
6ðD − 3Þ
D − 2

∂
αΛαðμνÞ: ð4:25Þ

This action can be written more simply as

S ¼ −
1

2

Z
ddx

�
hμνGμν þ AμνρσJ μνρσ

�
; ð4:26Þ

where we have introduced the gauge-improved (traceless)
Einstein tensor and electric current

Gμν ¼ □hμν − 2∂α∂ðμhνÞTα − ∂
α
∂
βAμανβ; ð4:27Þ

J μναβ ¼
1

4
Wμναβ − Cμναβ: ð4:28Þ

In the absence of the gauge field, the electric current is just
the linearized Weyl tensor, and in the gauge-invariant
version the C tensor is the same as in (4.15). In the
linearized theory, the magnetic current is equal to the
electric current, so we also have

Kμναβ ¼
1

4
Wμναβ − Cμναβ: ð4:29Þ

One can then check that the antisymmetric derivative of this
current reproduces the anomaly (4.13), where we have

Cμνραβ ¼ 3YT
½2;2;1�∂ρCμναβ: ð4:30Þ

Gauge-invariant interactions of the pseudolinear type are
introduced by including higher-order contractions of K.
Then, in the full theory K (and hence its anomaly) will

remain unchanged, while the electric current J μναβ will be
modified by the interactions.

B. Conformal gravity

We now turn to (linearized) conformal gravity. This
theory shares many features with the conformal scalar
example encountered in (3.3); both its magnetic current and
electric gauge field will be governed by the same differential
complex, and the mixed anomaly between conservation of
the two symmetries will imply that the theory is nonunitary.
Of course the non-unitarity of conformal gravity is well-
known, but this perspective casts this fact as an inevitable
consequence of symmetry, and indeed exposes the (higher-
form) symmetries of conformal gravity itself. As a byproduct
of our analysis, we elucidate the fate and structure of electric-
magnetic duality for linearized conformal gravity in four
spacetime dimensions. [See Appendix A for more details
about (linearized) conformal gravity.]
Currents and anomalies: We start by defining the

magnetic current in the same way as in linearized
Einstein gravity (4.1). The index symmetries of Kμ1μ2ν1ν2
are identical and it fits into the same differential complex
(4.2). The essential difference with the linearized GR case
is that we take the gauge field Aμναβ to be part of this same
differential complex,

ð4:31Þ

Here the relevant maps involved can be written explicitly as

ðdðΛÞΛÞμναβ ¼ 3YT
½2;2�∂μ∂αΛνβ; ð4:32Þ

ðdðAÞAÞρμναβ ¼ 6YT
½2;2;1�∂ρAμναβ: ð4:33Þ

In particular this implies that under a gauge transformation
the gauge field transforms as

δAμναβ ¼ YT
½2;2�∂μ∂αΛνβ; ð4:34Þ

and there is a gauge-invariant field strength

Fρμναβ ¼ YT
½2;2;1�∂ρAμναβ: ð4:35Þ

The fact that A has a gauge transformation involving two
derivatives implies that the electric current that it couples to
satisfies the double conservation condition,

∂μ1∂ν1J
μ1μ2ν1ν2 ¼ 0: ð4:36Þ

The presence of the background gauge field A that
sources the electric current J preserves this conservation
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condition, but causes K to satisfy the anomalous conser-
vation equation,

YT
½2;2;1�∂ρKμ1μ2ν1ν2 ¼ −Fρμ1μ2ν1ν2 ; ð4:37Þ

where F is the gauge-invariant field strength (4.35) built out
of A. Notice that in this case the field strength has the right
index symmetries to appear on the right hand side of the
anomaly equation without needing to take derivatives. In
this sense, conformal gravity is conceptually quite similar
to the conformal scalar example discussed in Sec. III C.
Two-point function and spectrum: As in the other

examples, the combined requirements of conservation of
the electric current at all points, and the ’t Hooft anomaly
(4.37) entirely fixes the two-point functions between these
currents to be

hJμ1μ2μ3μ4Kν1ν2ν3ν4i

¼ −P
�
pμ1pα1ην1β1

p4

�
−6pμ2pβ2ην2α2 þ p2ημ2α2ην2β2

�

þ 3

4
ημ1α1ημ2α2ην1β1ην2β2 −

3pμ1pα1ημ2α2ην1β1ην2β2
p2

þ 9ðD − 4Þ
D − 3

pμ1pμ2pα1pα2ην1β1ην2β2
p4

�
; ð4:38Þ

where P is the same projector as in (4.16). Notice that this
two-point function has a p−4 pole. This pole cannot be
reproduced by any unitary representation in the Källén-
Lehmann decomposition of this correlator. We therefore
conclude that any theory with this pattern of symmetries
must necessarily be nonunitary. In the next section we will
see that the EFT description of this physics is linearized
conformal gravity, which is entirely consistent with the
theory being nonunitary.
Effective field theory: We now want to see how we can

reproduce the physics of this phase using effective field
theory. Once again the magnetic current’s conservation can
be trivialized by writing the current as (4.18). We further
notice that this current is again invariant under the shift
symmetry (4.20). In this case, we must use a Maxwell-type
action to realize the relevant symmetries. This Maxwell-
type action is quadratic in the magnetic current K,

S ¼ 1

4

Z
dDxKμναβKμναβ: ð4:39Þ

The action (4.39) is of course the action of linearized
conformal gravity in a gauge in which the linearized Weyl
symmetry is used to make hμν traceless, with K the
linearized Weyl tensor. As in the Einstein gravity case,
we could include higher-order interaction terms involving
powers of the Weyl tensor. This would leave the magnetic
current unchanged, but would modify the electric current.

In order to understand the structure of anomalies, we
want to gauge the symmetry (4.20) by introducing a gauge
field that couples to the electric current. We can construct a
gauge-invariant action as (now writing K in terms of the
Weyl tensor),

S ¼ 1

4

Z
dDxðWμναβ − AμναβÞðWμναβ − AμναβÞ; ð4:40Þ

which is just the square of the gauge-invariant magnetic
current,

Kμνρσ ¼ Wμνρσ − Aμνρσ: ð4:41Þ
This is invariant under the following gauge transformations
of the fields,

δhμν ¼ Λμν; ð4:42Þ

δAμναβ ¼ −3YT
½2;2�∂ν∂βΛμα; ð4:43Þ

where Λμν is a symmetric traceless gauge parameter. In the
presence of Aμναβ, the electric current that couples to A will
be conserved, but the magnetic current now obeys the
anomalous equation (4.37). So we see that this effective
field theory precisely reproduces the structure of sym-
metries and anomalies that we want. If desired, we can
incorporate interactions by adding higher powers of K to
the action.
As anticipated, this effective field theory involves a

higher-derivative action, and it is known to be nonunitary,
consistent with our statement that the symmetries (4.36)
and (4.37) cannot arise in a unitary EFT.

1. Charges

Here we discuss some conserved currents and charges
that arise from the conserved electric current in conformal
gravity. Wμναβ is a double conserved (∂ν∂βWμναβ ¼ 0)
traceless operator, with the symmetries of the Young
diagram . From this we can construct 2-form conserved
currents Jμν½ξ� by contracting with a conformal killing
vector ξμ satisfying the conformal Killing equation
∂ðμξμÞT ¼ 0 as follows:

Jμν½ξ� ¼ Wμναβ∂
αξβ − 2∂αWμναβξ

β: ð4:44Þ

These currents are conserved: ∂νJμν½ξ� ¼ 0, as we show in
the following inset.
Conservation of Jμν½ξ�: To see that Jμν½ξ� defined in

(4.44) is conserved, act with ∂
ν and use the fact that W is

double conserved to give

∂
νJμν½ξ� ¼ ∂

νWμναβ∂
αξβ þWμναβ∂

ν
∂
αξβ − 2∂αWμναβ∂

νξβ:

ð4:45Þ
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We can treat ∂μξν as antisymmetric—since the symmetric
traceless part vanishes by the conformal Killing equation—
and the trace part vanishes upon contracting with the
tracelessW. So, the second term, which has two derivatives
on ξ, can be written as

Wμναβ∂
ν
∂
αξβ ¼ −Wμβαν∂

α
∂
νξβ; ð4:46Þ

which then vanishes due to the symmetry of the two
derivatives and the antisymmetry of W. Now, looking at
the two terms in (4.45) with one derivative on ξ, we can
write them as

∂
νWμναβ∂

αξβ − 2∂αWμναβ∂
νξβ ¼ ∂

νðWμναβ − 2WμανβÞ∂αξβ:
ð4:47Þ

Again treating ∂
μξν as anti-symmetric, we can manipulate

this as follows:

∂
νðWμναβ−2WμανβÞ∂αξβ¼∂

νðWμναβ−WμανβþWμβναÞ∂αξβ
¼∂

νðWμναβþWμαβνþWμβναÞ∂αξβ;
ð4:48Þ

which now vanishes upon using the mixed-symmetry
condition Wμ½ναβ� ¼ 0.
Due to the fourth-order nature of the conformal gravity

field equations, solutions to Einstein gravity are also
solutions to conformal gravity, but the converse is not
true: it would be interesting to study linearized black
hole solution in conformal gravity that are not also
solutions of Einstein gravity [80,81], to see if and how
they carry these charges, and study their topology, along the
lines of [34,82,83].

2. Electric-magnetic duality

In this section, we describe the electric-magneticlike
duality invariance of linearized conformal gravity in
D ¼ 4, which is quite similar to the conformal scalar in
D ¼ 2 discussed in Sec. III C. Recall that linearized
conformal gravity is on shell equivalent to the equations,

∂μ1∂ν1J
μ1μ2ν1ν2 ¼ 0; ð4:49Þ

∂
μ1ð�JÞμ1���μD−2ν1ν2

¼ 0 ⇒ YT
½2;2;1�∂½μ1Jμ1μ3�ν1ν2 ¼ 0; ð4:50Þ

where the tensor Jμ1μ2ν1ν2 has the symmetries of the
window-shaped tableau . The Hodge dual is defined
with respect to the first two indices of J so that
ð�JÞμ1���μD−2ν1ν2

¼ 1
2
ϵμ1μ2���μD−2αβJ

αβ
ν1ν2 . In general dimen-

sions Jμ1μ2ν1ν2 is nothing but the Weyl tensor, and we
can use the fact that it fits into the complex (4.31) along
with (4.50) write,

Jμ1μ2ν1ν2 ¼ YT
½2;2�∂μ1∂ν1hμ2ν2 ; ð4:51Þ

so that (4.49) is the wave equation satisfied by the
conformal graviton (A22).
In D ¼ 4, Eq. (4.50) is trivially satisfied, and so

Eq. (4.49) is not sufficient to completely fix the theory.
In this case, we have to additionally impose

∂
μ1∂ν1ð�JÞμ1μ2ν1ν2 ¼ 0: ð4:52Þ

Equations (4.49) and (4.52) are sufficient to fix the two-
point function of the current to be that of conformal gravity.
We can also reproduce the equations of motion by noting
that we can equivalently write this equation as

∂½μ1∂
ν1Jμ1μ3�ν1ν2 ¼ 0: ð4:53Þ

Then, the fact that the mixed-symmetry tensor appearing in
this equation fits into the complex (3.32) implies that we
can write,

∂
ν1Jμ1μ2ν1ν2 ¼ ∂½μ1Sμ2�ν2 ; ð4:54Þ

where S is a symmetric tensor. We can also use the trivial
equation (4.50) to deduce that

Jμ1μ2ν1ν2 ¼ YT
½2;2�∂μ1∂ν1hμ2ν2 : ð4:55Þ

Combining these equations, we find that

Sμν ¼ −2□hμν þ 2∂α∂ðμhνÞα: ð4:56Þ

Then, applying (4.49), we find the linearized wave equation
of conformal gravity. All together, we see that in D ¼ 4,
linearized conformal gravity is equivalent to the two
equations,

∂μ1∂ν1J
μ1μ2ν1ν2 ¼ 0; ð4:57Þ

∂μ1∂ν1ð�JÞμ1μ2ν1ν2 ¼ 0; ð4:58Þ

which are clearly Hodge duals of each other. The same
conclusion was reached by [84] via a slightly different
chain of reasoning.18 As in the scalar case, the anomaly
appearing in (4.58) at coincident points (which we have not
written explicitly) is necessary to fully fix the normalization
of the two-point function.

V. CONCLUSIONS

We have explored the properties of relativistic gapless
phases defined by a pair of generalized conserved currents

18See [53,60] for discussions of the duality-invariant formu-
lation of linearized Einstein gravity.
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with a mixed anomaly between them. We have given a
unified description of these systems, and have considered
several examples, both old and new, and shown how they fit
into the general framework. Perhaps the most conceptually
nontrivial aspect of these examples is that some current
and anomaly structures cannot possibly arise in a unitary
(Lorentzian) quantum field theory: these symmetries are
impossible.
Along the way, we elucidated the structure of sym-

metries in conformal gravity, giving a definition of the
linearized theory in terms of higher-form symmetries.
This theory is one with impossible symmetries, reflecting
the well-known fact that conformal gravity is nonunitary.
We also considered some aspects of the conserved
charges in this theory, and elucidated features of its
electric-magnetic duality. A similar construction should
exist for massless higher spin fields described by the
Fronsdal action [85], as well as the Fradkin-Tseytlin
fields [86,87] (which are higher-spin generalizations of
linearized conformal gravity), and would give a new
perspective on these theories. In these cases, there is a
generalized Weyl tensor satisfying conservation equa-
tions, whose anomalies should characterize the theory,
and give an interpretation of each massless high spin as a
Goldstone boson.
A number of questions are raised by this construction.

Philosophically, one could ask why some symmetries are
impossible, and whether we could predict a priori when
currents are incompatible. One avenue to further elucidate
this structure would be to connect these statements to more
familiar theorems that forbid the presence of certain
conserved currents; either the Weinberg-Witten [88,89]
or Maldacena-Zhiboedov [90] theorems (see also [91,92]
for higher-dimensional generalizations). By invoking
standard unitarity, we had in mind the relativistic setting,
where the constraints of Lorentz invariance imply a
certain rigidity, but for condensed matter applications,
it would be useful to relax this assumption and study
whether these patterns of symmetries can be realized by
physical systems that are interpreted as statistical ensem-
bles (i.e. as Euclidean field theories). In any setting, it
would be interesting to understand if there is a more
abstract and general characterization of impossible
symmetries.
There is a complementary perspective on impossible

symmetries that comes from recent developments in the
study of positivity bounds. By studying scattering ampli-
tudes away from the forward limit, it is possible to
obtain two-sided bounds on the Wilson coefficients of
EFTs [93–95]. One way of phrasing the lesson is that large
hierarchies in dimensionless parameters in an EFT usually
cannot descend from a standard Lorentz invariant UV
completion. As a concrete example, scalar field theories
with amplitudes that are parametrically softer than E2 in
the forward limit cannot arise from such a completion.

In particular, this rules out models of Galileons [67]
arising in this way. This is, in a sense, another statement
about “impossible” symmetries, as the Galileon realizes
a particular low-energy symmetry which is responsible
for the softness of its amplitudes. It would be very
interesting if one could understand these violations of
positivity by using the extended operators or higher-form
currents present in the theory of a Galileon, or in more
general EFTs.
We are just beginning to understand the interplay

between generalized symmetries and the structure of EFT.
A number of novel and interesting phenomena have already
been uncovered, and we expect that there is a wealth of
additional insights to be gained.
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APPENDIX A: CONFORMAL GRAVITY

Here we review some aspects of both nonlinear and
linearized conformal gravity that are useful in the main text.

1. Nonlinear conformal gravity

We begin by considering nonlinear Weyl-squared
gravity. The action of this theory is given by19

SW2 ¼ −
1

8

Z
dDx

ffiffiffi
g

p
WμνρσWμνρσ; ðA2Þ

where Wμνρσ is the Weyl tensor, which is the traceless part
of the Riemann tensor,

19Given the definition of the Weyl tensor, this action can
equivalently be written in terms of the Riemann tensor as

SW2 ¼ −
1

8

Z
dDx

ffiffiffi
g

p �
RμναβRμναβ −

4

D − 2
RμνRμν

þ 2

ðD − 1ÞðD − 2ÞR
2

�
: ðA1Þ

HINTERBICHLER, JOYCE, and MATHYS PHYS. REV. D 110, 085003 (2024)

085003-18



Wμνρσ ¼ Rμνρσ −
2

D − 2
ðgμ½ρRσ�ν − ην½ρRσ�μÞ

þ 2

ðD − 1ÞðD − 2Þ ημ½ρησ�νR

¼ Rμνρσ − 2ðgμ½ρSσ�ν − gν½ρSσ�μÞ: ðA3Þ

In the second line, we have expressed it in terms of the
Schouten tensor, which is defined as

Sμν ¼
1

D − 2

�
Rμν −

1

2ðD − 1Þ gμνR
�
: ðA4Þ

The Weyl tensor shares the same index symmetries as the
Riemann tensor,Wμνρσ ¼ −Wνμρσ ¼ −Wμνσρ ¼ Wρσμν, and
the algebraic Bianchi identity W½μνρ�σ ¼ 0, and it is com-
pletely traceless i.e., it has the symmetries of the traceless

[2, 2] tableau .

The divergence of the Weyl tensor can be written as

∇μWμνρσ ¼ −
ðD − 3Þ
ðD − 2ÞCνρσ; ðA5Þ

where Cνρσ is the Cotton tensor, which can be written as

Cνρσ ¼ 2ðD − 2Þ∇½σSρ�ν ¼ −2∇½ρRσ�ν −
1

D − 1
gν½ρ∇σ�R:

ðA6Þ

The Cotton tensor is fully traceless and has the symmetry of

a [2, 1] tableau .

The Weyl tensor with one index raised is invariant under
Weyl transformations, that is, if we define

gμν ¼ Ω2ðxÞg̃μν; ðA7Þ

then the Weyl tensors of these two metrics are equivalent,

Wμ
ναβ ¼ W̃μ

ναβ: ðA8Þ

This implies that in D ¼ 4, the action (A2) is invariant
under Weyl transformations δgμν ↦ Ω2ðxÞgμν because the
transformation of the inverse metrics needed to contract
indices cancel against the measure. Taking ΩðxÞ ¼ eσðxÞ,
infinitesimally the Weyl transformation reads,

δgμν ¼ 2σðxÞgμν: ðA9Þ

Due to this Weyl invariance, In D ¼ 4, we call (A2)
conformal gravity. In other dimensions, the action (A2)
is not Weyl invariant.20

The equation of motion derived from the action (A2) in
D ¼ 4 is Bμν ¼ 0, where B is the Bach tensor,21

Bμν ≡ 1

D − 3

�
∇ρ∇σ þD − 3

D − 2
Rρσ

�
Wρμσν; ðA13Þ

¼ SαβWμανβ þ∇2Sμν −∇ρ∇ðμSνÞρ: ðA14Þ

The structure of nonlinear conformal gravity is quite
interesting; any maximally symmetric spacetime is a
solution, and the propagating degrees of freedom around
these solutions form an irreducible SO(2,4) representation.
Around flat space, this representation is a (nonunitary)
Poincaré representation that cannot be split apart. Around
de Sitter or anti–de Sitter space, the representation can be

20In higher dimensions, there are multiple independent Weyl
invariants [96], so it is not immediately obvious what one should
mean by conformal gravity for D > 4. For D even, there is a
natural candidate; it is a D-derivative theory that when expanded
around (A)dS contains a massless, partially massless, and D−4

2
massive, spin-2 degrees of freedom (see e.g., [97]). Its linearized
action is the linearization of ∼

R
dDxWμναβ□

D−4
2 Wμναβ, which is a

spin 2 Fradkin-Tseytlin field [86,87].
21Note that in the literature, there exist different definitions for

the Bach tensor in general dimension D > 4. One choice is to
define the Bach tensor as the tensor that is set to zero by the
equations of motion derived from the action (A2),

B̄μν ≡ −2
δSW2

δgμν
¼ −∇ðρ∇σÞWμρνσ −

1

2
Wμ

ρσαWνρσα

−
1

D − 2
RρσWμρνσ þ

1

8
gμνW2

μνρσ : ðA10Þ

This tensor is divergenceless (∇μB̄μν ¼ 0) in any dimension, as
required by diffeomorphism invariance, but only traceless in
D ¼ 4.
Another commonly used definition of the Bach tensor in general
dimension is Bμν that we presented in the main text in Eqs. (A14)
and (A13). The tensor Bμν in (A13) is now traceless in any
dimension, but its divergence is

∇μBμν ¼ ðD − 4ÞSαβð∇νSαβ −∇αSνβÞ; ðA11Þ

which vanishes in D ¼ 4.
These two definitions coincide in D ¼ 4 (in showing this, it is
useful to add the variation of the Gauss-Bonnet term, which
vanishes in D ¼ 4). Moreover, in D ¼ 4 the Bach tensor is Weyl
covariant,

δBμν ¼ 2σBμν; ðA12Þ

under infinitesimal Weyl transformations δgμν ¼ 2σgμν.
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split into a pair of (A)dS representations, which are that
of a massless spin-2, and a partially massless (PM)
spin-2 [44,45]. On AdS, the PM representation is by itself
nonunitary, but on de Sitter space, the reason that con-
formal gravity is not unitary is that there is a relative minus
sign between the kinetic terms of the massless spin-2
and PM spin-2 degrees of freedom. It is possible to project
out the PM part of the representation, and obtain the
wave function in Einstein gravity from that of conformal
gravity [44,98].

2. Linearized conformal gravity

We now discuss some of the features of linearized
conformal gravity. This theory can be straightforwardly
obtained from the nonlinear Weyl-squared theory (A2) by
linearizing around flat space,

gμν ¼ ημν þ 2hμν: ðA15Þ

The linearized Riemann and Schouten tensors are given
explicitly by

RðLÞ
μνρσ ¼ −∂μ∂ρhνσ − ∂ν∂σhμρ þ ∂μ∂σhνρ þ ∂ν∂ρhμσ; ðA16Þ

SðLÞμν ¼ 1

D − 2
ð−∂μ∂νh −□hμν þ 2∂α∂ðμhνÞαÞ

− ημν
1

D − 1
ð2∂α∂βhαβ −□hÞ; ðA17Þ

and the linearized Weyl tensor is

WðLÞ
μνρσ ¼ RðLÞ

μνρσ − 2
	
ημ½ρS

ðLÞ
σ�ν − ην½ρS

ðLÞ
σ�μ



: ðA18Þ

In contrast to the nonlinear theory, the action

S ¼ 1

4

Z
dDxWðLÞ

μνρσW
μνρσ
ðLÞ ; ðA19Þ

is invariant under both linearized diffeomorphisms and
linearized Weyl transformations in all dimensions:

δhμν ¼ ∂μξν þ ∂νξμ; ðA20Þ

δhμν ¼ ΩðxÞημν; ðA21Þ

and so it makes sense to call this linearized conformal
gravity in any dimension. In fact, the linearized Weyl tensor
itself is gauge invariant under both of these transformations.
Much like in Einstein gravity, an important difference
between the linear and nonlinear theories is that the linear
theory has gauge-invariant local operators. The linearized
Weyl tensor is the basic such operator (see [99–101] for
formalisms that reveal the operator spectrum of linear
conformal gravity).

The equation of motion following from (A19) is

∂μ∂ρW
μνρσ
ðLÞ ¼ 0: ðA22Þ

Because of the relation (A23), which at the linearized level
reads,

∂
μWðLÞ

μνρσ ¼ −
ðD − 3Þ
ðD − 2ÞC

ðLÞ
νρσ; ðA23Þ

where the linearized Cotton tensor is

CðLÞ
νρσ ¼ 2ðD − 2Þ∂½σSðLÞρ�ν ; ðA24Þ

we can also write (A22) as the vanishing of the divergence
of the linearized Cotton tensor

∂
ρCðLÞ

νρσ ¼ 0: ðA25Þ

Much like Einstein gravity, in D ¼ 4 linearized con-
formal gravity is electric-magnetic duality invariant, as we
discussed in Sec. IV B.
It is possible to include irrelevant interaction terms in this

effective field theory, paralleling the EFT of linearized
Einstein gravity. Any interaction terms built out of the
linearized Weyl tensor will preserve all the symmetries
of the theory. As we discuss in Sec. IV B, we can think of
this EFT as being the gapless phase mandated by the
anomaly (4.37), or equivalent we can think of it as the
Goldstone theory for the breaking of the electric 1-form
shift symmetry of the conformal graviton.

APPENDIX B: SPECTRAL DECOMPOSITIONS

Spectral decompositions of the current-current two-point
functions play an important role in the main text. In
particular, by analyzing the properties of the two-point
functions that are fixed by the symmetry structure, we infer
properties of the spectrum of the theory. In this appendix
we provide some additional details about the Källén-
Lehmann decomposition, particularly in theories where
the two-point functions indicates that they are not unitary.
The overall strategy mirrors that of [25,34], where the
decomposition of the current-current two-point function is
used to discern the spectrum of the theory.
In this appendix we focus in particular on the case of the

conformal scalar and illustrate how the spectral decom-
position can be used to infer that the theory is not unitary.
The general lessons can be abstracted straightforwardly to
cases with spin.

1. Projectors

This first step involves rewriting the two-point func-
tion (3.38) in terms of projectors that split up the various
components of the two-point function. These projectors are
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defined in terms of the simpler objects:

πð0Þμν ¼ pμpν

p2
; πð1Þμν ¼ ημν −

pμpν

p2
: ðB1Þ

A basis of projectors is given by

Πð0Þ
μ1μ2ν1ν2 ¼

D
D − 1

�
πð0Þμ1μ2 −

ημ1μ2
D

��
πð0Þν1ν2 −

ην1ν2
D

�
; ðB2Þ

Πð1Þ
μ1μ2ν1ν2 ¼

1

2

	
πð0Þμ1ν1π

ð1Þ
μ2ν2 þ πð0Þμ1ν2π

ð1Þ
μ2ν1 þ πð1Þμ1ν1π

ð0Þ
μ2ν2

þ πð1Þμ1ν2π
ð0Þ
μ2ν1



; ðB3Þ

Πð2Þ
μ1μ2ν1ν2 ¼

1

2

�
πð1Þμ1ν1π

ð1Þ
μ2ν2 þ πð1Þμ1ν2π

ð1Þ
μ2ν1 −

1

D − 1
πð1Þμ1μ2π

ð1Þ
ν1ν2

�
;

ðB4Þ

which satisfy the orthonormality conditions,

ΠðiÞ
μ1μ2ρ1ρ2ΠðjÞρ1ρ2

ν1ν2 ¼ δijΠðiÞ
μ1μ2ν1ν2 ; ðB5Þ

with i, j ¼ 0, 1, 2, and the completeness relation

Πð0Þ
μ1μ2ρ1ρ2 þ Πð1Þ

μ1μ2ρ1ρ2 þ Πð2Þ
μ1μ2ρ1ρ2

¼ 1

2
ðην1μ2ημ1ν2 þ ημ1ν1ημ2ν2Þ −

1

D
ην1ν2ημ1μ2 ; ðB6Þ

where the tensor on the right-hand side is the identity on
the space of symmetric traceless tensors. We can think of
ΠðiÞ as the projector onto the spin-i representation within
this space.

2. Spectral decomposition

We now argue that the conformal scalar theory is
nonunitary using the spectral decomposition of the two-
point function (3.38). This correlator is easily rewritten in
terms of the projectors (B2)–(B4). This yields

hJμνKρσi ¼ −ðΠð1Þ
μνρσ þ Πð2Þ

μνρσÞ: ðB7Þ

Our starting point is the spectral decomposition for a
correlator of two symmetric traceless tensors

hJμνKρσi ¼
Z

∞

0

ds
s

p2 þ s

	
ρ0ðsÞΠ̃ð0Þ

μνρσ þ ρ1ðsÞΠ̃ð1Þ
μνρσ

þ ρ2ðsÞΠ̃ð2Þ
μνρσ



: ðB8Þ

Here ρjðsÞ are the spin j components of the spectral density
(the only massless representation that can couple to a
symmetric conserved current is a scalar, so the spectral
densities of the spin-1 and spin-2 states must go to zero as
p2 → 0). Implicit in the spectral decompostion (B8) is the
assumption that the representations contributing to the
correlator have propagators that go like p−2 [102], which
is satisfied by all unitary Poincaré representations. As
usual [34], the tensors Π̃ðiÞ that appear in (B8) are not
quite the projectors (B2)–(B4), but are instead off-shell
versions of the projectors that are obtained by replacing
p2 → −s in (B2)–(B4). Hence, they depend on s and
reduce to the projectors when s → −p2.
In order to perform the spectral decomposition, the goal

is to match (B8) to (B7), and solve for the three spectral
densities ρj. In this case, there is no choice of the ρjðsÞ that
works. At its core, this is because we are trying to match
a two-point function that goes like p−4 with a sum of
propagators that go like p−2. Since all unitary representa-
tions have propagators that scale like this, this is already
enough to see that the theory is not unitary. Of course,
we could generalize the Källén–Lehmann representation to
allow for totally generic behavior of the Feynman propa-
gator of the exchanged representations (and therefore allow
all possible nonunitary irreducible representations to be
exchanged as well). In this case it would be possible to
match the two point function and extract the spectrum of
the theory. It would actually be quite interesting to do this,
as the properties of nonunitary Poincaré representations are
not particularly well-understood. But for our purposes, it
suffices to conclude that there must be nonunitary repre-
sentations in the theory.
Not that the structure of anomalies completely fixes the

nonlocal part of the current-current two-point function, so
the structure of these poles is intrinsic to the anomaly. There
is an ambiguity about where to put the anomaly in a conser-
vation equation, but this freedom only changes the contact
terms appearing in the correlator, i.e. the terms analytic in
pμ, and so cannot modify the structure of the poles.
Note that the essential tension has nothing to do with the

spin of the fields involved, it was merely the difficulty of
matching a two-point function that scales like p−4 to a
spectral decomposition where each of the constituents have a
propagator that scales like p−2. These same ingredients are
present in the conformal gravity case. There, the two-point
function scales like p−4, and it is similarly impossible to
match it to the Källén–Lehmann decomposition under the
assumption that all of the states have ordinary p−2 propa-
gators (which all unitary representations do). We can there-
fore conclude that the theory is nonunitary also in that case.
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