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In the quantum simulation of lattice gauge theories, gauge symmetry can be either fixed or encoded as a
redundancy of the Hilbert space. While gauge-fixing reduces the number of qubits, keeping the gauge
redundancy can provide code space to mitigate and correct quantum errors by checking and restoring
Gauss’s law. In this work, we consider the correctable errors for generic finite gauge groups and design the
quantum circuits to detect and correct them. We calculate the error thresholds below which the gauge-
redundant digitization with Gauss’s law error correction has better fidelity than the gauge-fixed digitization
involving only gauge-invariant states. Our results provide guidance for fault-tolerant quantum simulations
of lattice gauge theories.
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I. INTRODUCTION

Gauge symmetries in quantum field theories give rise to
extremely rich phenomena. Most prominently, SUð3Þ ×
SUð2Þ × Uð1Þ gauge symmetry describes the interactions
of the Standard Model. Making ab initio predictions for
comparison to experiment requires large computational
resources. In particular, Monte Carlo methods in lattice
gauge theory (LGT) have been fruitful in the past couple of
decades, thanks to the advancement of supercomputers and
algorithms. However, problems involving dynamics such
as out-of-equilibrium evolution in the early Universe [1–4],
transport coefficients of the quark-gluon plasma [5] and
parton physics in hadron collisions [6–11] present sign
problems, as the Boltzmann weight becomes complex-
valued. Future, large-scale quantum computers can avoid
this obstacle by performing real-time simulations in the
Hamiltonian formalism [12–16].

In order to use quantum computers for simulations, the
infinite-dimensional Hilbert space of the gauge theory must
be addressed. To allow a mapping to a finite quantum
memory, many digitization proposals to truncate this space
have been studied (see Sec. VI. b of [15]). All truncations
break the continuous symmetries to some degree and
produce theories with smaller symmetries. Understanding
the theoretical errors introduced by this is an area of active
research [17–24]. Broadly speaking, methods to encode
these regularized theories in quantum computers fall into
two classes. The first class digitizes all the states connected
through gauge transformations as redundancy and uses
Gauss’s law to project the gauge-invariant subspace, where
the physical theory should be simulated. This can be done
in group element basis [19,25–33], the group representation
basis [25,34–39], the mixed basis [40], as a fuzzy gauge
theory [41,42], as a quantum link model [43–47], and more.
The second class digitizes only gauge-invariant states, where
gauge redundancies are removed from theHilbert space. This
can be achieved by representing each equivalent class with
gauge-invariant state in the procedure of gauge fixing. We
refer to this particular construction as fixing the gauge in this
work. One can digitize the independent Wilson loops in the
lattice, which can be identified as the plaquettes in (2þ 1)
dimensions [48–56], and as the states outside the maximal
tree in higher dimensions [21]. Other digitizations to elimi-
nate redundancy include the Fock basis in the light-front
Hamiltonian [7,57], the local multiplet basis [58,59], and
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spin networks [60,61]. Besides reducing the qubit cost,
gauge fixing also simplifies the quantum state preparation,
but can complicate the Hamiltonian [21,48,58–67]. At
present, it is an open question whether gauge fixing is
ultimately advantageous for quantum simulation.
The effect of noisy hardware has been generally

neglected in the above discussion. Naively, gauge-
redundant digitizations suffer more severely from quantum
noise because more qubits introduce more errors. However,
not all the errors are equally harmful. Noise which breaks
symmetries can change the universality class simulated
[37,38,41,68–70] and thus sufficient symmetry preserva-
tion is crucial [65,71–75]. In the gauge-redundant digitiza-
tion, quantum errors can be classified as gauge-preserving
or gauge-violating operators [75–80]. The gauge-violating
errors can be mitigated by introducing energy penalties
[81–86] or random gauge transformations [72] in the
Hamiltonian evolution. They can also be corrected by
measuring and restoring Gauss’s law [71,87]. The
gauge-fixed digitization—while precluded from noise-
based gauge violations—does not have such natural error
mitigation or correction methods, and thus relies on generic
methods for the residual errors. Notably, redundancy and
symmetry play a central role in both quantum error
correction (QEC) and quantum error mitigation (QEM).
QEC deliberately designs a redundant full Hilbert space
Hfull on the physical qudits and encodes quantum infor-
mation in a much smaller code subspace Hcode on logical
qudits with certain symmetries, thus allowing for correction
without disrupting the coherent quantum information in
Hcode [88,89]. As an active field of research, estimates for
the overhead—the physical to logical qubit ratio—vary
from Oð10Þ to Oð105Þ [90–92]. QEM uses the existing
symmetries without introducing redundancy to mitigate
errors [93]. Indeed, it is this structural similarity between
QEC, QEM and LGT that inspires the above mentioned
works [71–76,78–81,86,87] to use gauge redundancy as a
resource for error correction and mitigation. Given the huge
variance of the overhead in QEC, and that gauge fixing
saves logical qubits only by a factor of approximately ð1 −
1=dÞ in d spatial dimensions, keeping the gauge redun-
dancy for QEC or QEM may be more resource efficient for
achieving a desired accuracy. This idea has only just begun
to be explored for field theories [80,94–96] including
fermionic systems [97,98].
The answer to when this is true can be phrased as a

threshold theorem of QEC [99–101], which states that there
is a threshold for the error rate of physical qubits, below
which more redundancy makes the code more error-proof.
In this work, we compute the threshold below which gauge
redundancy makes the digitization more robust. After
reviewing the connection between gauge symmetry and
QEC in Sec. II and Sec. III, we present the circuits to
encode and decode via Gauss’s law. This paves the way for
calculations in Sec. IV of the thresholds, below which the

gauge-redundant digitization combined with QEC has a
better fidelity than the gauge-fixed one.

II. GAUGE SYMMETRY AND FIXING

Wewill briefly review gauge symmetry on lattice in both
the group element (magnetic) and the group representation
(electric) basis, as the former is closer to the path-integral
quantization and the latter to Gauss’s law in classical fields.
These bases are related by the group Fourier transform. In
the group element basis, one assigns an element of the
group G (link variable) to each link on the lattice,
representing the Wilson line [102]. For continuous gauge
groups, the link variables are related to the vector potentials
of the continuum theory via:

Ux;i ¼ P exp

�
−i

Z
xþi

x
dl ·A

�
≈ e−iaAiðxÞ; ð1Þ

where P denotes path ordering, a is the lattice spacing, and
i the spacial direction of the link. The gauge-redundant
Hilbert space Hgauge is the tensor product of NL local
spaces, each spanned by the group elements:

Hgauge ¼ spanðfjUi; U∈GgÞ⊗NL; ð2Þ

where NL is the total number of links and hUjU0i ¼ δU0;U.
For a continuous gauge group, dimðHgaugeÞ ¼ ∞, and

digitization is required to render it finite. Here we will focus
on the discrete subgroup digitization. Some discussion of
the continuous theory can be found in [103] and other
digitization schemes remain for future works. For a discrete
gauge groupG, the dimension of the one-link Hilbert space
is jGj. The dimension of Hgauge is given by

dimHgauge ¼ jGjNL: ð3Þ

A gauge transformation T̂gx is a unitary operator that
transforms all outgoing (incoming) links connected to a site
x by a left (right) product with g∈G (g−1 ∈G):

T̂gx ¼
Yd
i¼1

½L̂gðx; iÞR̂g−1ðx − i; iÞ�; ð4Þ

where L̂g, R̂g are left and right multiplication operators,

L̂g ¼
X
U∈G

jgUihUj; R̂g−1 ¼
X
U∈G

jUg−1ihUj: ð5Þ

Typical lattice gauge Hamiltonians preserves gauge sym-
metry as they commutes with the gauge transformation
operator T̂gx. This includes the Kogut-Susskind [102],
the Symanzik-improved [104–107] and the similarity-
renormalization-group-improved ones [22].
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Gauge-invariant states satisfy a lattice version of
Gauss’s law:

T̂gx jΨinvi ¼ jΨinvi; ∀gx ∈G: ð6Þ

In the jUi basis, Gauss’s law requires the wave functions on
gauge-equivalent configurations to be the same, as taking
an inner product of Eq. (6) with hUj gives

hUjT̂gx jΨinvi ¼ hUjΨinvi: ð7Þ

Such states are in the gauge-invariant subspace Hinv,
which can be projected from Hgauge with the operator
P̂inv ≡Q

x P̂0ðxÞ, where the local Gauss’s law projector is

P̂0ðxÞ ¼
1

jGj
X
gx ∈G

T̂gx : ð8Þ

To get a clearer physical picture, it is useful to introduce
the electric basis jσmni, which is the group Fourier trans-
form of the group element basis:

hσmnjUi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dσ=jGj

p
ΓðσÞ
mnðUÞ; ð9Þ

where ΓðσÞ
mnðUÞ is the m, n matrix element of the unitary

irreducible representation (irrep) σ for U, dσ is the
dimension of σ. The dimension of the one-link Hilbert
space jGj also equals

P
σ d

2
σ. For the Abelian groups, all

irreps are 1d and m, n can therefore be suppressed with σ
being the Abelian electric flux. For non-Abelian groups,
jσmni is a tensor representation comprised of the left vector
representation jσmi and the right vector representation jσ̄ni:

jσmni ¼ jσmi ⊗ jσ̄ni; ð10Þ

where σ̄ is the complex conjugate dual of representation σ,

i.e., Γðσ̄Þ
nq ðgÞ ¼ ΓðσÞ

qn ðg−1Þ. This is because gauge transfor-
mations act on the links going out from the vertex via

L̂g ¼
X
σ;m;q

ΓðσÞ
mqðgÞjσmihσqj ⊗

X
n

jσ̄nihσ̄nj; ð11Þ

thus transforming only the left vector. Similarly, the
incoming links transform in the dual representation, and
only the right vectors are transformed:

R̂g−1 ¼
X
σ;m

jσmihσmj ⊗
X
n;q

Γðσ̄Þ
nq ðgÞjσ̄nihσ̄qj: ð12Þ

Thus, one can define the local charge at vertex x as the
tensor product representation:

jQðxÞi ¼
Yd
i¼1

⊗ jσmðx; iÞi ⊗ jσ̄nðx − i; iÞi ð13Þ

P̂0ðxÞ projects the tensor product to the trivial representa-
tion according to the Clebsch-Gordan coefficients of the
group [108]. Physically, one can interpret QðxÞ as the net
flux, and P̂0ðxÞ selects states with neutral net flux. As the
result of the constraints, one lacks the freedom to inde-
pendently assign all the links variables. Naively, applying
P̂0ðxÞ to all the NV vertices in the lattice implies NV
different constraints. However, the global charge, defined
as the tensor product of all the local charges,

jQgli ¼
Y
x

⊗ jQðxÞi ¼
Y
x;i

⊗ jσmðx; iÞi ⊗ jσ̄nðx; iÞi

ð14Þ
is not a gauge constraint but rather the physically-
conserved charge of the state under the global transforma-
tion with h∈G:

T̂Gl
h

Y
x;i

jUx;ii ¼
Y
x;i

jhUx;ih−1i: ð15Þ

In the case of an Abelian group likeUð1Þ orZN, the links
cannot carry charge as the charges of the left and right
vector always cancel, making the global charge automati-
cally neutral. This can also be easily seen in the group
element basis as all states are invariant under Eq. (15). In
contrast, non-Abelian gauge fields can carry charge, as
indicated by the difference between the left and right
vectors, and the nontrivial global transformations. If one
allows for all the possible global charges, the number of
independent constraints is thus NV − 1. This makes NL −
NV þ 1 links dynamical with the rest NV − 1 links depen-
dent on the dynamical ones. Thus,

dimHinv ¼ jGjNL−NVþ1: ð16Þ
If one fixes the global transformations as well, thereby
selecting the subspace with neutral global charge, the
dimension of Hinv might be reduced by a factor greater
or equal to jHj=jGj where H is the Abelian center of the
group, as derived in Appendix A.
Choosing which degrees of freedom are independent

and eliminating others is equivalent to gauge fixing. On the
lattice, the maximal tree method fixes the gauge up to
the global transformations Eq. (15), by explicitly solving
the local Gauss’s law constraints which forces some links to
be functions of the remaining ones (See Ref. [109] for a
good discussion). For example, consider the links con-
nected to the vertex x shown in the left of Fig. 1, the state
are given by1

jΨgaugei ¼
X
σ;ρ;τ

aðσ; ρ; τÞjσ; ρ; τi: ð17Þ

1We have suppressed the vector indices of representations here
for simplicity.

QUANTUM ERROR THRESHOLDS FOR GAUGE-REDUNDANT … PHYS. REV. D 110, 054516 (2024)

054516-3



Constraining jQðxÞi to be in the trivial representation, the
variable ρ in the maximal tree can be determined as
ρ ¼ σ ⊗ τ̄, which produces the gauge-invariant state:

jΨinvi ¼
X
σ;τ

aðσ; τÞjσ; τi ⊗ jρ ¼ σ ⊗ τ̄i: ð18Þ

The same procedure can be repeated till the dependent
links form a maximal tree in the lattice, i.e., a set of links
which contains one and only one path between any pair of
vertices, the size of which is NT ¼ NV − 1. We define the
Hilbert space spanned by the variables completely deter-
mined by Gauss law (in the maximal tree in the above
example) as Hred, and the rest as Hfixed. Clearly,

Hinv ≅ Hfixed ¼ spanðfjUi; U∈GgÞ⊗NL−NVþ1: ð19Þ

Similar to choice of gauge fixing in the continuum, for a
given lattice there is no unique maximal tree. One popular
method [21,110–112] is to pick a site x0, and the set of
links which uniquely connects x0 via a comblike path to
any other site form a tree of size NT ¼ NV − 1. This
maximal tree is shown in Fig. 1 for 2d with open (OBC)
and periodic (PBC) boundary conditions. Notably, the
charge at x0 is not fixed by the maximal tree, but left to
carry the charge under global transformations in
Eq. (15) [21,112].
In the gauge-redundant quantum simulations digitized

with Hilbert spaceHgauge and a quantum computer made of
qudits of dimension N, the number of qudits required is
logNðdimHgaugeÞ ¼ NLlogN jGj. Gauge fixing eliminates
the redundancy by digitizing the subspace Hinv instead,
thus reducing the number of qudits to logNðdimHinvÞ.
For the rest of the work, we take logNðdimHinvÞ≈
ðNL − NTÞlogN jGj, which is accurate for fixing the maxi-
mal tree in both the Abelian and non-Abelian cases, and an
upper bound for non-Abelian G if the global symmetry is
also fixed. The numbers of sites, links, links in a maximal
tree are listed in Table I for different boundary conditions.

Gauge fixing reduces the number of qubits, but often at
the price of complicating the lattice gauge Hamiltonian
ĤLGT. Written with the gauge-redundant degrees of free-
dom, ĤLGT only consists of local electric and magnetic
energy operators. In the gauge-fixed formalism with
Hamiltonian Ĥfixed, the electric operators of the redundant
links in the maximal tree cannot be discarded, but are
nonlocal combinations of operators outside the tree
[21,112]. Thus Ĥfixed is generically denser and nonlocal.
It is easier to fix the gauge while keeping the Hamiltonian
simple in 1d or 2d. In 2d, logjGj dimHinv is

NL − NT ¼ NL − NV þ 1 ¼ NP − χ þ 1; ð20Þ

where NP is the number of plaquettes, and χ is the Euler
characteristic. This also follows from counting the number
of plaquettes with independent magnetic fluxes (Wilson
loops), plus the topological degrees of freedom. For an
OBC lattice (χ ¼ 1), all NP plaquettes are independent and
there are no topological degrees of freedom. This plaquette
magnetic flux basis keeps the Hamiltonian local and sparse
for Abelian gauge groups [40,48–55]. For a PBC lattice
(χ ¼ 0), the total magnetic flux is zero, thus there are
ðNP − 1Þ plaquettes with independent magnetic fluxes.
Additionally, considering the two independentWilson loops
with winding number one, this yields dimHinv ¼ jGjNPþ1.

III. LATTICE GAUGE SYMMETRIES
AS STABILIZER CODES

In this section, we construct quantum circuits to use
gauge redundancy as partial error correction codes for
generic finite groups. The method is based on the similarity
between stabilizer codes and lattice gauge theories, which
we review in III A. Without redundancy, any error inHfixed
causes irrecoverable information loss. In the gauge-
redundant formalism, as a result of gauge symmetry
Eq. (7), all the states equivalent under gauge transformation
carry copies of the same wave function. This allows one to
detect and correct some gauge-symmetry violating errors,
as is analyzed in III B. Fig. 2 outlines the circuit to realize
such error corrections. The preparation of gauge invariant
states is a process to encode the quantum information with
the maximal-tree redundancy. To decode, we introduce an
ancillary register at each site to compute and measure the
net flux. Nonzero fluxes indicates occurrence of quantum
errors which can be mitigated via postselection, with the

FIG. 1. Maximal trees (dashed lattice links) of lattices with
(left) OBC and (right) PBC. The site at the lower-left corner is
chosen as the root of the maximal tree.

TABLE I. The number of degrees of freedom in a lattice with L
links per side in d dimensions. b ¼ 0, 1 for PBC and OBC,
respectively.

Sites NV ðLþ bÞd
Links NL dLðLþ bÞd−1
Maximal tree links NT ðLþ bÞd − 1
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associated sampling overhead exhibiting exponential
growth in the system size [113]. One can also correct
these errors by applying the optimal recoveries after
deducing the most likely errors. The details of the con-
struction are in Sec. III C.

A. Stabilizer codes

Stabilizer codes perform error correction by using a
redundant full Hilbert space Hfull of physical qubits
(qudits), but encoding quantum information only in states
with certain symmetries. The symmetry group that defines
the code states is called the stabilizer group S, usually a
subgroup of the (generalized) Pauli group on the physical
qubits (qudits). A code state satisfies

ŝjψicode ¼ jψicode; ∀ ŝ∈S: ð21Þ

All code states are in the code space,Hcode. The sum of all ŝ
is proportional to the projector from Hfull to Hcode:

P̂code ¼
1

jSj
X
ŝ∈S

ŝ : ð22Þ

Note that Eq. (21) is similar to Eq. (6), and Eq. (22) to
Eq. (8). Applying the above concepts to LGT, the group of
gauge transformations G is a stabilizer group, and Hinv
corresponds to the code space. The projection operator
P̂inv from Hgauge to Hinv is the (normalized) sum of all
stabilizers.2 Measuring whether and how gauge symmetry
is violated allows one to detect and correct gauge-violating
errors.
In active QEC, one measures a minimum generating set

of S, and the results are syndromes. To avoid collapsing the
quantum information in the measurement of syndromes,
ancillae are needed to compute the syndromes coherently:

�X
X

ψðXÞjXi
�
⊗ j0ianc →

X
X

ψðXÞjXi⊗ jsðXÞianc; ð23Þ

where jXi are base vectors of the physical qubits. In the
case of Pauli stabilizers with eigenvalue �1, measuring the
ancillary qubits collapses the state to Hcode when all
syndromes return þ1, or one of the subspaces orthogonal
to Hcode if some syndromes return −1 indicate the errors.
One then applies an optimal recovery operation to the
quantum state depending on the syndromes. Clearly, errors
that transform one state to another within Hcode are not
detectable, and those are logical errors.
The code distance is the minimum number of single

physical qubit (qudit) errors that are part of a logical error.
For scalable quantum error correction codes, which imply
that the code distance can be arbitrarily large, there exists
an error threshold for the error rate per physical qudit. If
the physical error rate is below such threshold, we can
decrease the logical error rate by increasing the code
distance, despite the increased total errors due to more
physical qudits [99–101].

B. The set of correctable errors

For a quantum system represented as a density operator
ρ, the general noisy evolution can be written as a com-
pletely positive, trace-preserving map N ðρÞ:

N ðρÞ ¼
X
j

N̂jρN̂
†
j ; ð24Þ

where N̂j are error operators, usually including the identity
operator. The necessary and sufficient condition for cor-
rectable errors is the Knill-Laflamme (KL) condition [114]:

P̂codeN̂
†
i N̂jP̂code ¼ λijP̂code; λ�ij ¼ λji: ð25Þ

For errors as operators on a G-register, a linearly
independent complete basis can be constructed as
fL̂gΓ̂σg, where L̂g is the group left multiplication operator
defined in Eq. (5), and Γ̂σ is the matrix element operator3:

Γ̂σ;m;n ¼
X
h∈G

ffiffiffiffiffi
dσ

p
ΓðσÞ
mnðhÞ�jhihhj: ð26Þ

One can check that the above set of operators are linearly
independent by satisfying:

Tr½ðL̂gΓ̂σÞ†ðL̂g0 Γ̂σ0 Þ� ¼ jGjδg;g0δσ;σ0 : ð27Þ

The basis is complete as there are only jGj2 independent
operators in a Hilbert space of dimension jGj.

FIG. 2. Schematic circuit of LGT as QEC. g represents a color-
neutral state.

2We will reserve the terms ‘physical states (space)’ for the
gauge-symmetric ones in the LGT which is unfortunately differ-
ent from the convention of the QEC literature. Terms ‘physical
qubits (qudits, noise)’ still refer to any qubits (qudits, noise) in
Hfull, consistent with QEC literature.

3Γσ is short for Γσ;m;n, where σ is the irrep, and m, n indicated
the matrix element in the representation. The number of different
Γσ;m;n is therefore

P
σ dσ

2 ¼ jGj.
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The gauge-violating effect of Γ̂σ is clearer in the electric
basis. Using Eq. (D1) between Clebsch-Gordan coeffi-
cients and the matrix elements of irreps in [108], one can
derive:

hσ00lrjΓ̂σ;m;njσ0kqi ¼
ffiffiffiffiffiffiffiffiffiffiffi
dσdσ0

dσ00

s X
α

hσ00l ; αjσ0k; σmihσ̄00r ; αjσ̄0q; σ̄ni;

ð28Þ
where hσ00l ; αjσ0k; σmi is the Clebsch-Gordan coefficient, and
the sum of α is from 1 to the multiplicity Mðσ00; σ0; σÞ, i.e.,
the number of times that σ00 appears in the direct sum
decomposition of the tensor product of σ and σ0. This can
be interpreted as Γ̂σ;m;n adding σm to the left vector and σ̄n
to the right vector. Thus, Γ̂σ;m;nðx; iÞ on a gauge-invariant
state creates net flux σm at site x and σ̄n at the site ðxþ iÞ.
Applying Γ̂†

σ;m;n to the same link annihilates the flux and
restores gauge symmetry. Indeed, we can check in
Appendix B that Γ̂σ; Γ̂σ0 on the same link satisfies the
KL condition,

P̂invΓ̂σ
†Γ̂σ0P̂inv ¼ δσ;σ0P̂inv; ð29Þ

Thus Γ̂σ-type errors are correctable. Another way to obtain
the conclusion is through the code distance dcode; for a QEC
with code distance dcode, errors involving up to ½ðdcode −
1Þ=2� qudits are guaranteed to be correctable [115]. In our
case, to make a logical error with Γ̂σ-type operators, one
needs at least four links of a plaquette to form a Wilson
loop, thus the code distance is 4. This makes any ½ð4 −
1Þ=2� ¼ 1 Γ̂σ-type error correctable.
The errors induced by the L̂gðx; iÞ operator are not

detectable if g is the Abelian center of the group as it
commutes with the P̂inv. For g not in the Abelian center, if
L̂gðx; iÞ drifts a state to another gauge invariant state, we
can not detect such errors. On the other hand when the error
L̂gðx; iÞ drifts a state out of the invariant Hilbert space by
generating a local charge at site x, we can measure the local
charge at x and detect such errors. However, as L̂gðx; iÞ
does not affect local charges at other sites, it is not possible
to diagnose the link that L̂gðx; iÞ affects, and thus the errors
are not correctable. The fact that L̂gðx; iÞ are not correctable
can also be seen by checking the KL condition:

P̂invL̂
†
g0L̂gP̂inv ¼

1

jGj
X
h∈G

L̂h−1g0−1ghP̂inv: ð30Þ

The right-hand side of Eq. (30) differs from Eq. (25) by
an operator 1

jGj
P

h∈G L̂h−1g0−1gh, thus breaking the KL

condition. In the Z2 gauge theory, a Z2-register is a qubit,
and the complete basis reduces to the familiar Pauli

operators fI; X̂; Ẑ; X̂ Ẑg, of which Γ̂σ ∈ fI; Ẑg are
correctable.
The correctable error set can contain multiple-link Γ̂σ

errors, as long as the erroneous links are separated enough
such that there is no ambiguity about which link causes the
gauge violation. The easiest errors to decode are those that
show up as pairs of charges in dual representations σ; σ̄ at
the two ends of a link, surrounded by neighboring sites all
with zero charge. This requires the Γ̂σ errors to be separated
by at least two errorless links (Fig. 3), which we call the
minimal effort decoding condition (MED). The condition
can be relaxed if more complicated classical processing is
available. The KL condition requires any product of two
error operators N̂i and N̂j to contain no nontrivial gauge-
invariant operators, i.e., Wilson loops. This condition is
fulfilled when the number of links affected by Γσ errors
along any closed loop of perimeter C is at most ½C−1

2
�, thus

eliminating the possibility of error links in N̂i and N̂j

forming loops. Considering only the smallest loops, i.e.,
plaquettes, the local KL condition allows at most one Γ̂σ
error per plaquette.

C. The encoding and decoding circuits

Conceptually, the encoding and decoding of gauge
symmetry is easier in the electric basis, where Gauss’s
law reads as ‘zero electric flux at each vertex’. For non-
Abelian groups, the computation of the net flux requires the
group’s Clebsch-Gordan coefficients which are not diago-
nal in the electric basis. We bypass some of the difficulties
by doing an ‘effective Clebsch-Gordan sum’ in the group

FIG. 3. Examples of correctable error distributed on the lattice
to satisfy the MED (upper-right) or the local KL condition (lower-
left). The orange links are Γ-type errors, which must break gauge
symmetry at the orange squares. The conditions require the green
links to be error-less. For the MED condition, the adjacent sites
(blue circles) must be charge-neutral. For the local KL condition,
the error links are allowed to extend in a straight line, which is the
shortest path to connect a pair of charges.
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element basis. We derive in Appendix D that the Clebsch-
Gordan sum is equivalent to group multiplications in the
group element basis. With this, we can encode and decode
Gauss’s law using the following primitive gates [116]
acting on group registers:

(i) Inverse gate: U−1jgi ¼ jg−1i;
(ii) Left and right multiplication gates: UL

×jgijUi ¼
jgijgUi, UR

×jgijUi ¼ jgijUgi;
(iii) Fourier transform gate:

UF ¼
X
g;σmn

ffiffiffiffiffiffiffi
dσ
jGj

s
ΓðσÞ
mnðgÞjσmnihgj ð31Þ

which rotates the magnetic basis to the electric one;
(iv) Group rotation gates in irreps. This uses a group

register jUi as the control to rotate between the
vectors in the dσ-dimensional space:

Uσ ¼
X
U∈G

ðjUihUjÞ ⊗
� Xdσ

m;n¼1

ΓðσÞ
mnðUÞjnihmj

�

¼ d−1=2σ

Xdσ
m;n¼1

Γ̂†
σ;m;n ⊗ ðjnihmjÞ ð32Þ

where the second equality follows from Eq. (26). For
Abelian groups, Uσ is a one-register phase gate
on jUi.

Figure 4 shows an example of encoding and decoding for
the patch of seven gauge links connected to two sites in the
right corner of Fig. 1. To encode, the links U3, U7 in the
maximal tree are initialized to the color neutral state
jgi≡ jGj−1

2

P
g∈G jgi, and then,

jU1ijU2ijgijU4i⟶
Uenc jGj−1

2

X
g∈G

jgU1ijgU2ijg−1ijU4g−1i:

ð33Þ

One can easily check the gauge invariance Eq. (6) for the
two sites after the circuit Uenc in Fig. 4:

T̂hjGj−1
2

X
g∈G

jgU1ijgU2ijg−1ijU4g−1i

¼ jGj−1
2

X
g0¼hg∈G

jg0U1ijg0U2ijg0−1ijU4g0−1i: ð34Þ

In the electric basis, the circuit computes the net flux ofU1,
U2, U4 and stores it into the tree-link U3, thus making the
total net flux at the vertex to be zero. The same process is
repeated for every vertex except x0. Sites in the same
branch of the maximal tree should be processed in
sequence, from the top of the branch to the root, and
different branches can be encoded in parallel.

The above procedure initializes the state to the
gauge invariant one jΨinvi. During the noisy process in
Fig. 2, suppose an error Γ̂σ;m;nðx; iÞ turns jΨinvi into
Γ̂σ;m;nðx; iÞjΨinvi, creating a net flux of σm at x and σ̄n
at xþ i. We can decode this error pattern with the circuit
Udec, which adds the electric fluxes coherently to the
ancillary registers originally initialized to color neutral
states. Then in the decoding (derived in Appendix C),

Γ̂σ;m;njΨinvi⊗ jgi⊗ jgi⟶Udec 1

dσ

Xdσ
q;r

Γ̂σ;q;rjΨinvi⊗ jσmqðxÞi

⊗ jσ̄nrðxþ iÞi: ð35Þ

For non-Abelian groups, Udec preserves the quantum
numbers σ; σ̄, but m, n can change into any integer in
½1; dσ�, and the corresponding new quantum numbers q, r
are entangled with the ancillae.

FIG. 4. Encoding and decoding circuits for the patch in Fig. 1.
(top) Circuit for preparing gauge-invariant states, and (bottom)
Gauss’s law measurement and recovery circuit, where measuring
a pair of charges σ; σ̄ on the two ancillae indicates a gauge-
violating error on jU2i.
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To correct gauge-violating errors, the representation of
the ancillary register at every site needs to be measured.
This requires the quantum numbers σ, m, n in the Fourier
basis to be stored in different qubits, and thus one can
measure σ without collapsing m, n. Measuring jσi in the
trivial representation confirms the local gauge symmetry.
Measuring any other jσi indicates a gauge-violating error,
and projects the gauge fields to a subspace orthogonal to
Hinv in Hgauge. In this example, a pair of nontrivial
representations jσi; jσ̄i on the two ends of a link are
measured, which indicates a Γ̂σ error on the link, and
the quantum numbers jmijqi; jnijri of the ancillae are
entangled with the gauge-field state. The recovery can be
performed with Uσ in Eq. (32):

1

dσ

Xdσ
q;r

Γ̂σ;q;rjΨinvi ⊗ ðjmijqiÞ ⊗ ðjnijriÞ

⟶
U rec 1

d3=2σ

Xdσ
q;k;r

Γ̂†
σ;q;kΓ̂σ;q;rjΨinvi ⊗ ðjmijkiÞ ⊗ ðjnijriÞ

¼ jΨinvi ⊗
�

1

d1=2σ

Xdσ
r

ðjmijriÞ ⊗ ðjnijriÞ
�
; ð36Þ

where we have used the unitarity of representations,

d−1σ
Xdσ
q¼1

Γ̂†
σ;q;kΓ̂σ;q;r ¼ δk;r: ð37Þ

Thus jΨinvi is recovered and unentangled with ancillae. At
this point, since the quantum information in the ancillae is
irrelevant to the gauge system, one can recycle the ancillae
and reinitialize them to jgi for the next round of error
detection and correction.

IV. COMPARISON OF QUANTUM FIDELITIES

A. Group-agnostic thresholds

LGT states can be stored in a set of G-registers in both
the gauge-fixed and gauge-redundant digitization. The
number of links needed is NL − NT for the former and
NL for the latter. We further assume that errors on different
registers are independent. Suppose the total rate for any
error on a single register is ϵ. Then the quantum fidelities
are lower bounded by the probability that no errors happen
on any register:

Ffixed ≥ ð1 − ϵÞNL−NT ; ð38Þ

Fred ≥ ð1 − ϵÞNL: ð39Þ

With the gauge redundancy, certain configuration of Γ̂σ

errors are correctable via gauge symmetry checking and
restoration. Suppose the correctable type error rate on a

single register is ϵc. The lower bound for the fidelity after
gauge-symmetry restoration is the probability that no error
or only correctable errors happen:

Frestored ≥
XNL

n¼0

Qnϵ
n
cð1 − ϵÞNL−n ¼ ð1 − ϵÞNLΞ; ð40Þ

where Qn is the number of ways to arrange n links with
correctable errors in the lattice, such that the correctability
condition is still satisfied, and Ξ is the factor by which the
gauge-symmetry restoration amplifies the fidelity:

Ξ ¼
XNL

n¼0

Qnzn; z ¼ ϵc
1 − ϵ

: ð41Þ

Comparing these two bounds Eq. (40) and Eq. (38), the
condition for the gauge-symmetry restoration to give a
higher fidelity than gauge fixing is

Ξ1=NT > ð1 − ϵÞ−1: ð42Þ

This formula can be interpreted as an error threshold: the
gauge redundancy increases the code distance of Γσ-type
errors from 1 to 4. For the fidelity to increase with the
increased code distance due to gauge redundancy, ϵ has to
be below certain threshold.
The Qn’s are related to the independence polynomials of

graphs. We explain our method to computeQn with tools of
graph theory [117]. The method can be applied to lattices
of generic shapes. A graph consists of vertices and edges.
An independent subset of vertices is a set of vertices in
which no two vertices are adjacent to the same edge. The
independence polynomial of a graph is

IðzÞ ¼
X
n

anzn; ð43Þ

where an is the number of different independent subsets of
n vertices in the graph. For a finite lattice L, we create a
corresponding graph L0 in the following way:

(i) Convert each link of L into a vertex of L0;
(ii) For each pair of vertices in L0, create an edge

adjacent to them, if the Γσ-type errors that occur
simultaneously to the corresponding links in L can
break the correctability condition.

Thus, each way of arranging n erroneous links to satisfy the
correctability condition corresponds to an independent sub-
set of vertices in the new graph. This implies that Qn is the
number independent subsets of n vertices in the new graph
and Ξ the independence polynomial. For each lattice con-
sidered in Figs. 5 and 6, we construct the adjacencymatrix of
the corresponding graph L0—an NL × NL matrix in which
the element in row i and column j is 0 if the ith and jth
vertices are independent, and 1 if they are adjacent to the
same edge. We then use the Python library hobj [117] to
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compute the coefficients of the independence polynomials
from the adjacent matrices. The connectivity for the MED
condition would be higher than that for the KL condition.
With this method, we computeQn for a variety of L up to

L ¼ 20 and L ¼ 11 for 2d lattices with OBC and PBC,
respectively, for both error-correction conditions. For 3d
lattices, we are able to reach L ¼ 4 for both OBC and PBC
with MED condition, while only L ¼ 3 for PBC with the
KL condition due to limited computing resources. These
Qn are then used to compute the threshold; the ϵ where the

two sides of Eq. (42) are equal at a given ϵc=ϵ. These are
shown in black (blue) lines using OBC (PBC) in Figs. 5 and
6 for 2d and 3d lattices, respectively. Eq. (42) is satisfied in
the parameter region below the lines, indicating that the
gauge symmetry restoration provides higher fidelity than
the gauge fixed case.
We observe two features from Figs. 5–6. First,the

parameter regions to satisfy Eq. (42) only exist when
ϵc=ϵ≳ 1=d, which is consistent with the following
analysis. Expanding Eq. (42) for small ϵ, with Q0 ¼ 1,
Q1 ¼ NL, we have

FIG. 5. Error threshold lines in the ϵ − ϵc=ϵ plane below which
Frestored > Ffixed, indicating that using gauge redundancy to
detect and correct the errors is advantageous, for 2d lattices
for (top) MED condition and (bottom) local KL condition. The
shaded region is the infinite volume limit.

FIG. 6. Error threshold lines in the ϵ − ϵc=ϵ plane below which
Frestored > Ffixed, indicating that using gauge redundancy to
detect and correct the errors is advantageous, for 3d lattices
for (top) MED condition and (bottom) local KL condition.
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1þ NL

NT
ϵc þOðϵcϵÞ > 1þ ϵþOðϵ2Þ: ð44Þ

Thus, the correctable fraction of the total error rate for a
single link, ϵc=ϵ, must satisfy

ϵc
ϵ
>

NT

NL
≈
1

d
; ð45Þ

with NT
NL

¼ 1
d in the infinite volume limit as seen in Table I.

Second, in all the cases, the threshold ϵ increases as ϵc=ϵ
increases. This is consistent with the qualitative reasoning
that when a larger portion of errors are correctable, larger
values of ϵ could be allowed while the redundancy still
enables more correction than the errors it introduces.
Based on the error thresholds obtained at different L, we

aim to extrapolate to L → ∞ limit. We find that near ϵ ¼ 0,
the threshold is a monotonic function of L in either
boundary condition and approaches the same limit. In
contrast, near ϵc=ϵ ¼ 1 for 2d lattices, nonmonotonic
behavior is observed for small lattices with L ≤ 6 due to
finite volume effects. By restricting to the results for L > 6
at 2d lattice, we perform both quadratic and exponential
extrapolations to obtain the threshold ϵ in the L → ∞ limit
which can be found in Fig. 5 (red line with the thickness
quantifying error bar on extrapolations). For 3d lattices, as
computing resources limit the calculations to only L < 5,
the extrapolation to L → ∞ cannot be reliably performed.
For MED condition, the threshold curve with OBC near
ϵc=ϵ ¼ 1 exhibits a larger deviation from the PBC results at
larger L, suggesting that L < 5 is far from the infinite limit.
For the KL condition, calculations are limited to only
L ¼ 2, 3 with PBC, also precluding an extrapolation to
infinity limit. Despite this, we expect the thresholds for
L → ∞ to be roughly bounded by the largest L results for
OBC and PBC.

B. ϵ;ϵc from error models

N̂j on a G-register can always be decomposed as

N̂j ¼
X
g;σ

cj;g;σL̂gΓ̂σ: ð46Þ

The trace-preserving feature
P

j N̂
†
j N̂j ¼ 1 requiresP

j;σ;g jcj;g;σj2 ¼ 1. When the noise channel is diagonal

in this basis, i.e., for each N̂j there is only one nonzero
cj;g;σ, such that we can relabel cj;g;σ to cg;σ , the one-register
noise channel can be written as

N ðρÞ ¼
X
g;σ

jcg;σj2L̂gΓ̂σρðL̂gΓ̂σÞ†: ð47Þ

The one register total error probability is

ϵ ¼
X

g≠1;σ≠1
jcg;σj2 ¼ 1 − jc1;1j2: ð48Þ

where g ≠ 1 and σ ≠ 1 mean, respectively, that the group
element cannot be the identity, and the irreducible repre-
sentation cannot be the trivial one. With this, the correct-
able error probability is

ϵc ¼
X
σ≠1

jc1;σj2: ð49Þ

We consider ZN theory, where each G-register is a qudit
with N states [80]. We represent the computational basis of
the qudit as jni, where n is an integer in ½0; N − 1�. In the
computational basis, define the clock shift operators

χ̂ ¼
XN−1

n¼0

jnihðnþ 1Þ mod Nj ð50Þ

and the phase shift operators

ν̂ ¼
XN−1

n¼0

e2πin=N jnihnj: ð51Þ

For the group ZN , both group elements g and group
representations σ can be mapped to integers ½0; N − 1�.
Thus, we can choose to have the computational basis as
either the group element or the electric basis. If we choose
the group element basis, L̂g are clock shifts

L̂g ¼ ðχ̂Þg ¼
XN−1

n¼0

jnihðnþ gÞ mod Nj; ð52Þ

which preserves the gauge symmetry, and thus cannot be
diagnosed by Gauss’s law. The representation Γ̂σ operators
are phase shifts

Γ̂σ ¼ ðν̂Þσ ¼
XN−1

n¼0

e2πinσ=Njnihnj: ð53Þ

They break gauge symmetry unless they form closed
Wilson loops.
If we choose the electric basis as the computational basis

instead, as the phase shift is mapped to the L̂g operator as
L̂g ¼ ðν̂Þg, thus the phase shift errors would preserve the
symmetry. While the clock shift is mapped to Γ̂σ as
Γ̂σ ¼ ðχ̂Þσ , making the clock shift errors correctable.
Consider the error channel where single clock and phase

shifts occur independently with probabilities pχ , pν:
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N ðρÞ ¼ ð1 − pχÞð1 − pνÞρþ
ð1 − pχÞpν

N − 1

XN−1

i¼1

ðν̂Þiρðν̂Þi†

þ ð1 − pνÞpχ

N − 1

XN−1

j¼1

ðχ̂Þjρðχ̂Þj†

þ pνpχ

ðN − 1Þ2
XN−1

i;j¼1

ðν̂Þiðχ̂Þjρðχ̂Þj†ðν̂Þi†: ð54Þ

The one register total error probability is

ϵ ¼ 1 − ð1 − pχÞð1 − pνÞ: ð55Þ

In the group element basis, ðν̂Þσ are correctable, and thus

ϵc ¼ ð1 − pχÞpν: ð56Þ

In the electric basis, ðχ̂Þσ are correctable,

ϵc ¼ ð1 − pνÞpχ : ð57Þ

From this, we observe that the relative error probabilities
of physical hardware can prefer different encodings. If the
phase errors are more frequent than the clock errors
(pν > pχ), encoding in the group element basis will help
to stay below the error thresholds with the total ϵ reason-
ably small.
The correctability of phase errors can be generalized to

non-Abelian groups, if one chooses the group element
basis encoding. This is because all operators diagonal in the
group element basis can be written as linear combinations
of Γ̂σ . For example, in Table II, we list the correctable
errors for the 3-qubit encoding of the quaternion group
Q8 ¼ fð−1Þaibjcg, where a, b, c ¼ 0 or 1 [80]. It has
four 1d representations and one 2d representation. All the
Pauli-Z operators are correctable, as Ẑb; Ẑc correspond to
two 1d representation operators, and Ẑa is a linear
combination of 2d representation operators:

Ẑa ¼
1

1þ i
ðΓ̂2;1;1 þ Γ̂2;1;2 − iΓ̂2;2;1 þ iΓ̂2;2;2Þ: ð58Þ

Thus, for the error model that allows one of the three
qubits to have a Pauli error,

N ðρÞ ¼ ð1 − 3pX − 3pY − 3pZÞρþ pX

X
i¼a;b;c

X̂iρX̂i

þ pY

X
i¼a;b;c

ŶiρŶi þ pZ

X
i¼a;b;c

ẐiρẐi ð59Þ

with the one-register error rate being 3ðpX þ pY þ pZÞ, the
correctable fraction is

ϵc
ϵ
¼ pZ

pX þ pY þ pZ
: ð60Þ

If the qubits have more phase errors and fewer bit-flip
errors, encoding in the group element basis is preferable.

V. CONCLUSIONS

In this work, we explore how the natural gauge redun-
dancy of lattice gauge theories can become a tool to create
partial error correction codes for quantum simulations. For
generic groups, treating the gauge transformations in lattice
gauge theories as stabilizers and the gauge-invariant sub-
space as the code space, we identify the correctable errors
in one lattice link, as well as the MED and KL conditions
for multiple link errors to remain correctable. We construct
the quantum circuits to prepare gauge invariant states
including redundant degrees of freedoms, as well as to
detect and recover the correctable errors.
We calculate the error-rate thresholds below which keep-

ing gauge redundancy is preferable to gauge fixing for
error-correcting purposes, under both the MED and KL
conditions. We do this by comparing the quantum fidelities
when errors exist, which is the probability that either no error
happens or only correctable errors happen. The thresholds
depend on the correctable fraction of the error rate in a single
link, ϵc=ϵ.We find a simple analytic relation at leading order
in ϵ for when gauge redundancy is advantageous: ϵc=ϵ ≥
1=d for a d dimensional lattice. Numerical results demon-
strate that this relation is robust for realistic error rates. Thus,
for quantum devices where error correction is possible,
ϵ ≪ 1, our results can be a guidance to design digitizations.
To provide examples of how onemay apply such thresholds,
we obtain ϵc=ϵ explicitly for the discrete Abelian group ZN
and the non-Abelian group Q8 assuming certain reasonable
error models.
The conditions for correctable errors and the quantum

algorithms we constructed can be extended to other
digitization methods with gauge redundancies, as long as
circuits to add electric flux according to Clebsch-Gordan
coefficients can be constructed. Notably, we have presented
the circuits in the group element basis as Clebsch-Gordan
sum is equivalent to group multiplications. Consideration
of similar error thresholds should also be generalized to

TABLE II. Correctable errors Γ̂σ for the quaternion group Q8

encoded in 3 qubits via ð−1Þaibjc → jabci.
1d representations 2d representation

Γ̂triv Î Γ̂2;1;1 ẐaẐb
1=2 1þẐc

2

Γ̂i−ker Ẑc Γ̂2;1;2 ẐaẐb
1=2 1−Ẑc

2

Γ̂j−ker Ẑb Γ̂2;2;1 −ẐaẐb
3=2 1−Ẑc

2

Γ̂k−ker ẐbẐc Γ̂2;2;2 ẐaẐb
3=2 1þẐc

2

QUANTUM ERROR THRESHOLDS FOR GAUGE-REDUNDANT … PHYS. REV. D 110, 054516 (2024)

054516-11



other error models. The quantitative values of the thresh-
olds found in this paper can vary depending on the
computational tasks and the hardware. Future research
directions should also take into account nondiagonal error
channels, quantum architectures and inclusion of fermions
on the lattice sites.

ACKNOWLEDGMENTS

The authors thank Mario Pernici for his invaluable
assistance with hobj. This work is supported by the
Department of Energy through the Fermilab QuantiSED
program in the area of “Intersections of QIS and
Theoretical Particle Physics”. Fermilab is operated by
Fermi Research Alliance, LLC under Contract No. DE-
AC02-07CH11359 with the United States Department of
Energy. Y.-Y. L is supported by the NSF of China through
Grant No. 12305107, No. 12247103. This research was
supported by the Munich Institute for Astro-, Particle
and BioPhysics (MIAPbP), which is funded by the
Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence
Strategy–EXC-2094–390783311.

APPENDIX A: COUNTING GAUGE ORBITS

Let U be the set of configurations and G the group of
gauge transformations on the entire lattice, with jUj ¼
jGjNL and jGj ¼ jGjNV . In the magnetic basis, P̂invjUi is the
uniform superposition of all gauge transformations of jUi.
Thus the number of states in the basis P̂invU is the number
of configurations in U that are not equivalent under gauge
transformations:

dimHinv ¼ jU=Gj ðA1Þ

where jU=Gj is the number of orbits in U under G.
According to Burnside’s counting theorem,

jU=Gj ¼ 1

jGj
X
T ∈G

jUT j ¼ 1

jGj
X

jUi∈U

jGjUij; ðA2Þ

where UT is the subset of elements invariant under T ∈G,

UT ¼ fjUi∈U∶TjUi ¼ jUig; ðA3Þ

and GjUi is the stabilizer group for the element jUi,

GjUi ¼ fT ∈G∶TjUi ¼ jUig: ðA4Þ

If T ¼ Q
x T̂hx then with jUi ¼ Q

x;i jgx;ii, there must be

hxþi ¼ g−1x;ihxgx;i; ðA5Þ

which means once hx0
at a certain site x0 is fixed, there is at

most one T ∈G to keep jUi invariant. For hx0 ∈H the
Abelian center of G, this is the global transformation with
hx0 . Therefore jHj ≤ jGjUij ≤ jGj and

jUjjHj ≤
X

jUi∈U

jGjUij ≤ jUjjGj: ðA6Þ

given that jUj ¼ jGjNL; jGj ¼ jGjNV , we find

jHjjGjNL−NV ≤ jU=Gj ≤ jGjNL−NVþ1: ðA7Þ

For Abelian groups, H ¼G and jU=Gj ¼ jGjNL−NVþ1 ¼
jGjNL−NT . For non-Abelian G, the “≤” are both “<”.

APPENDIX B: CORRECTABILITY OF Γ̂σ

In the rest of the appendices, g, h are group elements,
σ, τ are irreducible representations (irreps), and k; l; m;
n; q; r; s; t; u are the matrix elements of representations. To
check Eq. (29), we will compute in the magnetic basis

ðB1Þ

For the operators on the link x, i,

L̂gΓ̂
†
σ0;s;qΓ̂σ;m;nL̂h ¼

X
U

jgUihUj
ffiffiffiffiffiffiffiffiffiffiffi
dσdσ0

p
Γðσ0Þ
sq ðUÞΓðσÞ

mnðUÞ�L̂h

¼
ffiffiffiffiffi
dσ

p �X
U;l

Γðσ0Þ
sl ðg−1ÞΓðσ0Þ

lq ðgUÞ
��X

k

ΓðσÞ
mkðg−1ÞΓðσÞ

kn ðgUÞ
��
jgUihUjL̂h

¼
X
k;l

Γðσ0Þ
sl ðg−1ÞΓðσÞ

mkðg−1Þ�Γ̂†
σ0;l;qΓ̂σ;k;nL̂gL̂h: ðB2Þ
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Thus, let h0 ¼ gh,

ðB3Þ

With the orthogonality of matrix elements

X
g

Γðσ0Þ
sl ðg−1ÞΓðσÞ

mkðg−1Þ� ¼ δσσ0δmsδlkjGj=dσ; ðB4Þ

and the unitarity of representations Eq. (37), we get

P̂0ðxÞΓ̂†
σ0;s;qðx; iÞΓ̂σ;m;nðx; iÞP̂0ðxÞ ¼ δσ0σδsmδqnP̂0ðxÞ ðB5Þ

APPENDIX C: DERIVATION OF EQ. (35) IN THE GROUP ELEMENT BASIS

Udec performs the following for a gauge field state jΨi:

jΨi ⊗
�
jGj−1

2

X
g∈G

jgi
�
⟶
UL

×;U
L
×;U−1;UR

×;U
R
× jGj−1

2

X
g∈G

T̂gðxÞjΨi ⊗ jg−1i

⟶
QFT X

g∈G

T̂gðxÞjΨi ⊗
�X

σ;m;n

ffiffiffiffiffi
dσ

p
jGj Γ

ðσÞ
mnðg−1Þjσi

�
¼

X
σ;m;n

P̂σmn
ðxÞjΨi ⊗ jσmni; ðC1Þ

where

P̂σmn
ðxÞ≡

ffiffiffiffiffi
dσ

p
jGj

X
g∈G

ΓðσÞ
mnðg−1ÞT̂gðxÞ ðC2Þ

For the trivial representation σ ¼ 0, P̂0ðxÞ is the projection to the subspace invariant under local gauge transformations and
P̂0ðxÞjΨiinv ¼ jΨiinv. When a correctable error Γ̂σ occurs on one gauge register, consider

ðC3Þ

use the “commutation relation” to replace L̂gΓ̂σ on the link ðx; iÞ with

L̂gΓ̂σ;m;n ¼
X
U

jgUihUj
ffiffiffiffiffi
dσ

p
ΓðσÞ
mnðUÞ� ¼

X
U

jgUihUj
ffiffiffiffiffi
dσ

p �X
k

ΓðσÞ
mkðg−1ÞΓðσÞ

kn ðgUÞ
��

¼
X
k

ΓðσÞ
mkðg−1Þ�Γ̂σ;k;nL̂g; ðC4Þ

and let h0 ¼ gh, Eq. (C3) can be simplified as
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ðC5Þ

Using the orthogonality Eq. (B4), we get

P̂σ0sqðxÞΓ̂σ;m;nðx; iÞP̂0ðxÞ ¼ δσ0σδsmd
−1=2
σ Γ̂σ;q;nðx; iÞP̂0ðxÞ: ðC6Þ

Similarly for ðxþ iÞ at the other end of the erroneous link,

R̂g−1 Γ̂σ;m;n ¼
X
k

ΓðσÞ
kn ðgÞ�Γ̂σ;m;kR̂g−1 ; ðC7Þ

and

P̂σ00trðxþ iÞΓ̂σ;q;nðx; iÞP̂0ðxþ iÞ ¼ δσ00σδtnd
−1=2
σ Γ̂σ;q;rðx; iÞP̂0ðxþ iÞ: ðC8Þ

Combining Eq. (C6) and Eq. (C8) gives

P̂σ00trðxþ iÞP̂σ0sqðxÞΓ̂σ;m;nðx; iÞP̂0ðxÞP̂0ðxþ iÞ ¼ δσ:σ0δσ00σ̄δsmδtn
1

dσ
Γ̂σ;q;rðx; iÞP̂0ðxÞP̂0ðxþ iÞ: ðC9Þ

Using the fact P̂0ðxÞP̂0ðxþ iÞjΨiinv ¼ jΨiinv, the outcome of Udec the gauge field state Γ̂σ;m;nðx; iÞjΨiinv isX
σ0sq;σ00tr

P̂σ00trðxþ iÞP̂σ0sqðxÞΓ̂σ;m;nðx; iÞjΨiinv ⊗ jσ0sqðxÞi ⊗ jσ00trðxþ iÞi

¼
X
q;r

1

dσ
Γ̂σ;q;rðx; iÞjΨiinv ⊗ jσ0sqðxÞi ⊗ jσ00trðxþ iÞi ðC10Þ

APPENDIX D: CLEBSCH-GORDAN SUM IN THE GROUP ELEMENT BASIS

The relation between Clebsch-Gordan coefficients and matrix elements of the representations [108] is:

dσ00

jGj
X
g∈G

ΓðσÞ
mnðgÞΓðσ0Þ

kq ðgÞΓðσ00Þ
lr ðgÞ� ¼

X
α

hσ00r ; αjσn; σ0qihσm; σ0kjσ00l ; αi: ðD1Þ

The Clebsch-Gordan coefficients satisfy hσn; σ0qjσ00r ; αi� ¼ hσ̄n; σ̄0qjσ̄00r ; αi. We can also choose the phases of representation to
satisfy hσ00r ; αjσn; σ0qi ¼ hσn; σ0qjσ00r ; αi�, which will be used for later discussions.

With Eq. (D1), we show that the group multiplications Fourier transformed to the representation basis is equivalent to the
addition of representations according to the Clebsch-Gordan coefficients (Fig. 7).

FIG. 7. Quantum circuits implementing Clebsch-Gordan sums for generic finite groups. (left) UL
CG and (right) UR

CG.
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UL
CG ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dσdσ0

1
dτdτ0

q
jGj2 Γðσ0Þ

qr ðg2g1ÞΓðτ0Þ
st ðg2ÞΓðσÞ

mnðg1Þ�ΓðτÞ
kl ðg2Þ�ðjσ0qri ⊗ jτ0stihσmnj ⊗ hτkljÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dσdσ0

1
dτdτ0

q
jGj2 Γðσ0Þ

qu ðg2ÞΓðσ0Þ
ur ðg1ÞΓðτ0Þ

st ðg2ÞΓðσÞ
mnðg1Þ�ΓðτÞ

kl ðg2Þ�ðjσ0qri ⊗ jτ0stihσmnj ⊗ hτkljÞ ðD2Þ

where all the indices for group elements and group representations are summed over. Use the orthogonality Eq. (B4) to sum
g1, giving

UL
CG ¼

ffiffiffiffiffiffiffiffiffiffi
dτdτ0

p
jGj ΓðσÞ

qmðg2ÞΓðτ0Þ
st ðg2ÞΓðτÞ

kl ðg2Þ�ðjσqni ⊗ jτ0stihσmnj ⊗ hτkljÞ

¼
ffiffiffiffiffiffiffiffiffiffi
dτdτ0

p
jGj ½Γðσ̄Þ

qmðg2ÞΓðτ0Þ
st ðg2Þ�ΓðτÞ

kl ðg2Þ��ðjσqni ⊗ jτ0stihσmnj ⊗ hτkljÞ; ðD3Þ

Finally apply Eq. (D1) and convert the product of matrix elements to the Clebsch-Gordan coefficients,

UL
CG ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
dτ=dτ0

p
ðhτ0t; αjσ̄m; τlihσ̄q; τkjτ0s; αiÞ�ðjσqni ⊗ jτ0stihσmnj ⊗ hτkljÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
dτ=dτ0

p
hτ̄0t; αjσm; τ̄lihσq; τ̄kjτ̄0s; αiðjσqni ⊗ jτ0stihσmnj ⊗ hτkljÞ ðD4Þ

Thus through UL
CG, σ in register 1 stays the same and τ in register 2 changes into τ0.

Thus, UL
CG “adds” the left vector in register 1 to register 2 according to the Clebsch-Gordan coefficients. For register 1,

the process preserves quantum numbers σ, n but not necessarily m when the representation σ is not one-dimensional. The
old flux σm is added to τ̄l and the new flux σq to τ̄k. Similarly, UR

CG adds the right-vector in register 1 to register 2:

UR
CG ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dσdσ0

1
dτdτ0

q
jGj2 Γðσ0Þ

qr ðg1g−12 ÞΓðτ0Þ
st ðg2ÞΓðσÞ

mnðg1Þ�ΓðτÞ
kl ðg2Þ�ðjσ0qri ⊗ jτ0stihσmnj ⊗ hτkljÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
dτ=dτ0

p
hσn; τljτ0t; αihτ0s; αjσr; τkiðjσmri ⊗ jτ0stihσmnj ⊗ hτkljÞ ðD5Þ
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