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Quantum simulations of lattice gauge theories for the foreseeable future will be hampered by limited
resources. The historical success of improved lattice actions in classical simulations strongly suggests
that Hamiltonians with improved discretization errors will reduce quantum resources, i.e., require ≳2d

fewer qubits in quantum simulations for lattices with d-spatial dimensions. In this work, we consider
Oða2Þ-improved Hamiltonians for pure gauge theories and design the corresponding quantum circuits for
its real-time evolution in terms of primitive gates. An explicit demonstration for Z2 gauge theory is
presented including exploratory tests using the ibm_perth device.
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Introduction.—Monte Carlo methods in lattice gauge
theory (LGT), though powerful in many nonperturbative
calculations, can suffer from sign problems—the Boltzmann
weight during sampling becomes complex valued—when
simulating real-time dynamics. Thus, exponential resources
are required to solve many interesting problems in particle
physics, such as out-of-equilibrium evolution in the early
universe [1], parton distribution function in hadron collisions
[2–4], and the shear viscosity of the quark-gluon plasma [5].
Quantum computers can directly perform real-time simu-
lations, avoiding these exponentially large resources plagu-
ing classical methods [6–8]. Quantum simulation in the
Hamiltonian formalism evolves the system with the time
evolution operator ÛðtÞ ¼ e−iĤt. A Hamiltonian Ĥ is con-
structed at finite lattice spacing a, causing discretization
errors compared to the continuum theory in powers of a.
Hamiltonians with discretizations scaling with lower powers
of a require smaller lattice spacings for the same errors. This
implies larger qubit requirements, since the number of qubits
isO½ðL=aÞd� for a d-spatial dimensional lattice of length L.
The lattice gauge degrees of freedom, e.g., photons and

gluons, need to be rendered finite and mapped to qubits
[9–30]. Current estimates for representing SU(3) suggest
∼10 qubits per gluon link [11,22,31–35]. Further exacer-
bating the demand for qubits is the current, noisy status of
quantum computers due to, e.g., entanglement with the
environment and imperfect evolution. Though it remains an

open question how much quantum error correction is
required to perform lattice simulations, general esti-
mates suggest Oð101−5Þ physical qubits per logical qubit
[36–38]—so physical qubit requirements could easily rise
to the megaqubyte scale for a 103 lattice.
The generically dense ÛðtÞ can be efficiently constructed

only approximately. For the decomposition in noncommut-
ing terms Ĥ ¼ P

i Ĥi, a common approximation is trotte-
rization, whereby ÛðtÞ ≈ UðtÞ ¼ ðQi e

−iĤiðt=NÞÞN [39,40].
Implementing UðtÞ for a LGT may require large number of
quantum gates to achieve desirable precision. For example,
in Ref. [34] a 103 lattice calculation of the shear viscosity η
in QCD with errors of 10−8 from trotterization and gate
synthesis was estimated to require Oð1049Þ T gates—the
most expensive gate for error-correcting quantum com-
puters. Though these estimates could be reduced by
considering only the low-lying states [41,42] or by relaxing
the precision requirement to the level of uncertainties from
lattice truncation, gate costs are still expected to be
inaccessible in the near term.
Reducing quantum resources, either by implementing

smarter quantum algorithms or performing classical process-
ing, is thus strongly motivated. Gate reductions may be
possible using other approximations of ÛðtÞ [43–48]. At the
cost of classical signal-to-noise problems, stochastic state
preparation yields shallower circuits [49–52]. Furthermore,
performing scale setting classically can reduce quantum
resources [53–55]. LGT specific error correction or miti-
gation could also decrease costs [56,57].
In this Letter, we present a new direction for reducing

quantum resources by using Hamiltonians with smaller
discretization errors from finite differences. Quantum
simulations can then be done at larger a, reducing the
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O½ðL=aÞd� qubits needed. We start with illustrating how to
improve the commonly used Kogut-Susskind Hamiltonian
HKS [58] in the Symanzik improvement program [59–61],
then derive time-evolution operators for the improved
terms, and construct the corresponding quantum circuits,
followed by an explicit demonstration for Z2.
Improved Hamiltonians.—For pure gauge theories, the

classical Yang-Mills Hamiltonian can be written

Hco ¼
1

2

Z
ddxTr½E2ðxÞ þB2ðxÞ�; ð1Þ

where EðxÞ and BðxÞ are the electric and magnetic field
strengths with spatial components EiðxÞ and BiðxÞ, respec-
tively. Alternatively, the magnetic energy density can be
written in terms of FijðxÞ, the spatial-spatial field strength
tensor, as 1

2
B2ðxÞ ¼ 1

2

P
i<j F

2
ijðxÞ with Latin indices indi-

cating spatial directions as shown in Fig. 1. In terms of color
components, EiðxÞ ¼ Eb

i ðxÞλb and BiðxÞ ¼ Bb
i ðxÞλb, with

λb being generators of the gauge group. To ensure gauge
invariance, lattice Hamiltonians are built from gauge links
UiðxÞ ¼ eigaAiðxÞ connecting lattice site x to its neighbor in
the i spatial direction, with g being the gauge coupling
and AiðxÞ the lattice gauge field [62]. By replacing the
magnetic field BiðxÞ term with the plaquettes PijðxÞ (see
Fig. 1 for i ¼ x and j ¼ y) built from UiðxÞ and the electric
field EiðxÞ with the lattice electric field LiðxÞ, one arrives at
HKS [58]:

HKS¼KKSþVKS;

KKS¼
X
x;i

g2t
a
TrL2

i ðxÞ; VKS¼−
X
x;i<j

2

g2sa
ReTrPijðxÞ: ð2Þ

As temporal and spatial directions are treated differently,
couplings gt and gs are introduced for the kinetic term KKS
and potential term VKS, respectively. The discrepancy

between HKS and Hco is of Oða2Þ, as seen by series-
expanding Pij with Di denoting the covariant derivative:

Pij ¼ 1−
g2sa4

2

�
F2
ijþ

a2

12
FijðD2

i þD2
jÞFijþOða4Þ

�
: ð3Þ

For Symanzik improvement, one adds terms to HKS and
adjusts couplings to cancel the discretization errors [63,64].
The above classicalOða2Þ error from FijðD2

i þD2
jÞFij can

be canceled by including the rectangle term RijðxÞ (Fig. 1),
as detailed in Supplemental Material [65]. At the quantum
level, Oðg2sa2Þ errors arise, requiring more terms, say, the
six-link bent loop terms CijkðxÞ (Fig. 1).
The improvedHamiltonian can bewritten asHI¼KIþVI

with the improved potential term VI¼βV0VKSþβV1Vrectþ
βV2Vbent and the improved kinetic term KI ¼ βK0KKS þ
βK1K2L [64]. Vrect is defined as

Vrect ¼
2

ag2s

X
x;i<j

ReTr½RijðxÞ þ RjiðxÞ�; ð4Þ

and Vbent has analogous expressions to Vrect. To cancel the
Oða2Þ errors in KKS, one adds the two-link term K2L:

K2L ¼ g2t
a

X
x;i

Tr½LiðxÞUiðxÞLiðxþ aiÞU†
i ðxÞ�: ð5Þ

For classical improvement, the couplings should be [63,64]
βV0 ¼ 5

3
, βV1 ¼ − 1

12
, βV2 ¼ 0, βK0 ¼ 5

6
, and βK1 ¼ 1

6
.

Perturbative improvements at the quantum level generate
corrections of Oðg2a2Þ [61,67]. One can further nonpertur-
batively tune these couplings numerically. For quantum

FIG. 1. 3D lattice with example contributions to HI—the
plaquette Pxy, rectangles Ryz and Rzx, and the bent loop
Cxyz—and the two links U1 and U2 used for K2L.

(a)

(b)

(c) (d)

FIG. 2. Quantum circuits for the time evolution of ĤI .
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simulations, these couplings could be extracted via analytic
continuation of Euclidean calculations [55]. The resultingHI

then has leading errors of Oða4Þ to Hco.
Both HKS and HI can be derived from Euclidean actions

via the transfer matrix in the continuous-time limit. The
Lüscher-Weisz action [60] was used to derive HI [63,64]
and has improved errors of Oða4Þ compared to the Oða2Þ
Wilson action used to derive HKS [68]. For the Lüscher-
Weisz action, a ¼ 0.4 fm lattices were found to have
similar discretization errors to a ¼ 0.17 fm lattices with
the Wilson action [69]. Similar scaling is suggested by the
limited direct studies ofHI andHKS [70]. As the number of
qubits required is O½ðL=aÞd�, using HI may require ≳2d

fewer qubits in realistic quantum simulations for a fixed
discretization error compared to HKS. While we occupy
ourselves with pure gauge theory, future effort should
consider theOðaÞ fermion Hamiltonians [71]—particularly
for chiral fermions.
Circuit design.—For quantum field theory calculations,

HI is quantized by promoting the fields to operators:
Ui → Ûi,Li → L̂i. Themagnetic field basis is the eigenbasis
of the link operator Û, while its Fourier transformation gives
the electric field basis jLii diagonalizing L̂2

i . The quantum
state of a link jUii is stored in a set of qubits—a link register.
Any gauge circuit can be built from a set of primitive
gates [72] acting on link registers: (i) inverse gate
U−1jUii ¼ jU−1

i i, (ii) left and right multiplication gates:
UL

×jUiijUji ¼ jUiijUiUji andUR
×jUiijUji ¼ jUiijUjUii,

respectively, (iii) trace gate UTrðθÞjUii ¼ eiθReTrUi jUii,
(iv) Fourier gateUF

P
Ui
fðUiÞjUii ¼

P
Li
f̂ðLiÞjLii, with

f̂ denoting the Fourier transform of f, (v) L-phase gate
UphaseðθÞ is a gauge group specific phase rotation, imple-
mented by a diagonal matrix.
We implement the quantum circuits for ĤI term by term.

Optimal quantum circuits depend on the underlying archi-
tecture—in particular, connectivity. We assume register
connectivity between a pair of links sharing a common site
(linear register connectivity).
V̂I includes P̂ijðxÞ for every individual plaquette and the

rectangles R̂ijðxÞ for every neighboring two plaquettes. We

denote the circuits for V̂KS as UVKS
¼ eiθReTrP̂ijðxÞ [Fig. 2(a)]

and for the rectangles UVrect
¼ eiθReTrR̂ijðxÞ [Fig. 2(b)], with

the coupling and Trotter step encoded in θ. The circuit in
Fig. 2(b) with registers appropriately changed imple-
ments UVbent

.
The circuits UKKS

¼ eiθTrL̂
2
1 for K̂KS can be implemented

by the L-phase gateUphase in the electric field basis [72], as
shown in Fig. 2(c). To avoid dealing with L̂ and Û
operators simultaneously, we rewrite K̂2L as

K̂2L ¼ g2t
a

X
x;i

Tr½R̂iðxÞL̂iðxþ aiÞ�; ð6Þ

using the right electric field operator [19]:

R̂iðxÞ≡ Û†
i ðxÞL̂iðxÞÛiðxÞ ¼ R̂b

i ðxÞλb: ð7Þ

For simplicity, we denote the two succeeding links in one
direction as U1 and U2 following Fig. 1, and thus
Tr½R̂iðxÞL̂iðxþ aiÞ� becomes Tr½R̂1L̂2�. For non-Abelian
gauge theories, this sum of noncommuting terms (R̂b

1L̂
b
2

with color index b) is difficult to implement. We bypass this
obstacle by decomposing R̂1L̂2 as

TrðR̂1L̂2Þ ¼ Tr½L̂2
2 þ R̂2

1 − ðL̂2 − R̂1Þ2�=2: ð8Þ

With R̂2 ¼ L̂2, the first two terms can be absorbed into
K̂KS. Thus, for K̂I the only new term is Tr½ðL̂2 − R̂1Þ2�.
Defining the evolution operator UK2L

≡ eiθTrðL̂2−R̂1Þ2 and

TABLE I. Number of primitive gates per link register per
Trotter step neglecting boundary effects (columns 2 and 3) and
implementation for Z2 (last column).

Gate N½K̂KS þ V̂KS� N½K̂2L þ V̂rect� Z2 impl.

UF 2 2 H
Uphase 1 1 RzðθÞ
UTr ðd − 1Þ=2 d − 1 RzðθÞ
U−1 3ðd − 1Þ 2þ 8ðd − 1Þ 1
U× 6ðd − 1Þ 4þ 20ðd − 1Þ CNOT

(a) (b) (c)

FIG. 3. UVrect
(a) and UK2L

(b) for Z2 gauge theory. (c) Link-to-qubit map on ibm_perth.
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using ½UK2L
; Û1Û2� ¼ 0, the matrix elements of UK2L

are
found to be (see Supplemental Material [65])

hU1
0; U2

0jUK2L
jU1; U2i ¼ δU1

0U2
0;U1U2

hU1
0jeiθTrL̂2

1 jU1i: ð9Þ

The circuit in Fig. 2(d) implements Eq. (9) by first storing
the conserved quantityU1U2 in the second register jU2i via
UL
× and then performing eiθTrL̂

2
1 on jU1i with the sequence

U†
FUphaseUF. Finally, we ensure the conserved product of

U1U2 imposed by δðU0
1U

0
2 − U1U2Þ using the information

stored in the second register via U−1U×U−1.
While using ĤI should require≳2d times fewer qubits, it

requires additional gates to implement evolutions with the
improved terms. Since the dominant quantum errors today
are from decoherence and entangling gates with error rates
of Oð10−2Þ [73–75], this increased cost may diminish the
gain from using ĤI . We list the gate costs in terms of
primitive gates in Table I for one Trotter step using either
ĤKS or ĤI. Depending on which primitive gates dominate
the circuits, the gate cost for ĤI is 2–4 times that of ĤKS per
link register. For the group ZN and DN [76], different
primitive gates take approximately the same order of
entangling native gates. Since ĤI should require≳2d fewer
link registers, for the cases of d ¼ 2, 3 we anticipate the
same or fewer total primitive gate cost.
Demonstration.—For Z2 gauge theory, ĤI can be

mapped to Pauli matrices. Choosing the magnetic field
basis, the qubit state j0i (j1i) represents the element 1 (−1)
of Z2. Implementations of the primitive gates are listed
in the last column in Table I. We consider the most
expensive Z2 gate UVrect

on the seven-qubit ibm_perth
device [Fig. 3(c)]. The connectivity of ibm_perth prevents
implementing UVrect

as shown in Fig. 3(a). With the
mapping from links to qubits shown in Fig. 3(c), a
transpiled version of the circuit with 12 CNOTs and 20
additional one-qubit gates are used. We use the benchmark
value θ ¼ δt=ðgsgtÞ ¼ 0.811411, precluding circuit opti-
mization when using θ values such as π=2.
To quantify quantum errors, we evolve states with UVrect

and its inverse, and compare the measurement with noise-

less expectations, implemented as the circuit U jni
circ in Fig. 4.

Without noise, the state preparation Ψ̂n and UVrect
are

exactly canceled by their complex conjugations; thus,

all measurements return j0i⊗6, and the distribution
PðwHÞ of the Hamming weight wH—the number of qubits
measured in the j1i state—returns PðwHÞ ¼ δwH;0. In the
noise-dominated limit where all states are equally popu-
lated, PðwHÞ follows the binomial distribution with six

trials. We take F jni
rect ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðwH ¼ 0Þp

as a definition of the
quantum fidelity of UVrect

for the state jΨni ¼ Ψ̂nj0i⊗6.
Determining the fidelity requires testing all the possible
states jΨni, a prohibitively expensive task [77]. Therefore,
we consider a restricted set consisting of Ψ̂n ¼

Q
m≤n H

⊗
m

for n ∈ ½0; 6� with m indicating the qubit to which H is
applied.
To mitigate the coherent noise dominating the CNOT

errors, we implement Pauli twirling [78–82], which con-
verts coherent errors into random errors in Pauli channels
and has found success in low-dimensional lattice field
theories [83]. The circuits are modified by wrapping each
CNOT with a set of Pauli gates f1; X; Y; Zg randomly
sampled from sets satisfying�Y

i

ðσbii Þ⊗
�
CNOT⊗14

�Y
i

ðσaii Þ⊗
�
¼CNOT⊗14; ð10Þ

where the ith qubit (including spectators) was rotated by σaii
before the CNOT and by σbii after. Despite the enormous
number of possible circuits, prior work has found Oð10Þ
circuits to be sufficient for error mitigation [78]. Therefore,
we implement 15 unique circuits and run each circuit 213

times. We also compute F j6i
rect without Pauli twirling to

gauge its effect.
With the above setup, we obtain the distribution PðwHÞ

in Fig. 5 for selected jΨni and the state-dependent fidelities
F jni

rect (Table II), yielding an average F rect ¼ 0.550. Without
Pauli twirling for n ¼ 6, PðwHÞ is indistinguishable from

FIG. 4. U jni
circ for studying the errors of UVrect

.

FIG. 5. Probability of measuring Hamming weights for selected
jΨni compared to the noise-dominated results. In the noiseless
limit, PðwHÞ ¼ δwH;0 for all jΨni.

TABLE II. Measured state-dependent quantum fidelities with
Pauli twirling and without it for jΨ6ino PT.

jΨni jΨ0i jΨ1i jΨ2i jΨ3i jΨ4i jΨ5i jΨ6i jΨ6ino PT
F jni

rect
0.650 0.575 0.605 0.599 0.579 0.442 0.425 0.1194
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the noise-dominated limit, while all the Pauli-twirled
results are skewed toward the noiseless result, with states
of lower n (and consequently less average entanglement)
being closer to the desired value. Comparing the results for
jΨ6i with and without Pauli twirling, we observe a fourfold
improvement in fidelity—clearly demonstrating the advan-
tage from this error mitigation.
For one Trotter step, the time evolution of ĤI for a two-

plaquette lattice with open boundary conditions requires at
least 28 CNOTs (40 one-qubit gates): 12 CNOTs (20 one-qubit
gates) for UVrect

, at least 12 CNOTs (two one-qubit gates) for
the twoUVKS

and four CNOTs (six one-qubit gates) for the two
UK2L

, along with 12 one-qubit gates for UKKS
. Assuming that

the average fidelity depends on the total number of CNOT

gates, we can estimate the single-Trotter-step fidelity for ĤI:
F δ ≲ ðF rectÞ28=12 ≈ 0.25. Thus, current devices are inad-
equate for real-time computations. However, given the
expected hardware improvements in the coming years
[36–38], F δ will be improved, allowing simulations of a
two-plaquette lattice forZ2 gauge theory and direct compar-
isons between Hamiltonians. Alternatively, classical simu-
lators could explore lattices up to 72 [84] to test improved
Hamiltonians.
In this Letter, we designed quantum circuits for simulat-

ing the improved Hamiltonian ĤI . Comparing to the
commonly used ĤKS, ĤI should allow quantum simula-
tions with≳2d fewer qubits. With this reduction, we expect
the gate count to be comparable to or less than that of ĤKS
for theories with d ≥ 2 despite increases of gate costs per
link. For near-term numerical demonstrations, we con-
structed the circuits for ĤI of the Z2 gauge theory
and found that for ibm_perth the fidelity of the 12 CNOT

improved potential term is≲0.550. Our results suggest that,
alongside hardware developments, improved Hamiltonians
can accelerate quantum simulations by years by reducing
the number of qubits required, with optimistic prospects for
2þ 1d Z2 simulations in the near future.
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