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Next-generation accelerator concepts, which hinge on the precise shaping of beam distributions,
demand equally precise diagnostic methods capable of reconstructing beam distributions within six-
dimensional position-momentum spaces. However, the characterization of intricate features within six-
dimensional beam distributions using current diagnostic techniques necessitates a substantial number of
measurements, using many hours of valuable beam time. Novel phase space reconstruction techniques
are needed to reduce the number of measurements required to reconstruct detailed, high-dimensional
beam features in order to resolve complex beam phenomena and as a feedback in precision beam
shaping applications. In this study, we present a novel approach to reconstructing detailed six-
dimensional phase space distributions from experimental measurements using generative machine
learning and differentiable beam dynamics simulations. We demonstrate that this approach can be used
to resolve six-dimensional phase space distributions from scratch, using basic beam manipulations and
as few as 20 two-dimensional measurements of the beam profile. We also demonstrate an application of
the reconstruction method in an experimental setting at the Argonne Wakefield Accelerator, where it is
able to reconstruct the beam distribution and accurately predict previously unseen measurements 75×
faster than previous methods.
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I. INTRODUCTION

Current and future particle accelerators rely on the
precise control of beam distributions in six-dimensional
position-momentum phase space, especially as accelerators
push the boundaries of intensity and brightness for collider
and light source applications [1]. For example, magnetized
electron beams for hadron beam cooling [2], two bunch
operations in free electron lasers [3], and drive/witness
bunch pairs for high efficiency wakefield acceleration [4],
are enabled by the precise control of six-dimensional
phase spaces beyond macroscopic (rms) beam properties.
Achieving this level of control requires measurement
and analysis techniques that provide detailed information
about the beam distribution in all six phase space coor-
dinates, including cross correlations between the dif-
ferent phase spaces. Additionally, detailed characterization
of six-dimensional phase space distributions is necessary
to resolve complex beam dynamics phenomena that

couples particle motion along multiple axes, such as
coherent synchrotron radiation [5] or plasma wakefield
accelerators [6].
A wide variety of beam manipulation and diagnostic

techniques have been developed to measure and reconstruct
detailed characteristics of phase space distributions. These
techniques can involve rotating the beam in phase space
(tomography) [7–13], usingmasks, meshes, or slits to isolate
and observe the dynamics of portions of the transverse beam
[14–16], or using specialized, nondestructive beam diag-
nostics, such as laser wires [17].
However, reconstructing five- or six-dimensional phase

space distributions from experimental measurements has
proven to be substantially more difficult than reconstructing
lower dimensional spaces (four or fewer phase space
coordinates). Experimental five-dimensional phase space
characterization has been done in limited instances, once
at the Accelerator Research Experiment at SINBAD
(ARES) beamline with a polarizable X-band transverse
deflecting cavity [18,19] using the simultaneous algebraic
reconstruction technique (SART) algorithm [20], and
once at the Spallation Neutron Source (SNS) using a set
of movable masking slits [21]. Full six-dimensional
reconstruction of a single beam distribution has only
been performed once, by combining multiple, scanning
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masking slits with a dipole spectrometer and a bunch
shape monitor at the SNS beamline [22]. However, these
measurements required a significant amount beam time
resources to carry out (960 measurements over ∼28 h for
the five-dimensional ARES case and ∼5 million mea-
surements over ∼32 h for the six-dimensional SNS
measurement), making these measurement procedures
impractical for regular use as feedback for online accel-
erator tuning or understanding complex beam dynamics
phenomena. There is a need for reconstruction methods
that significantly reduce the number of measurements
required to reconstruct the six-dimensional beam distri-
bution in order to be used during regular accelerator
operations.
Recently, machine learning methods have been used to

provide up to six-dimensional phase space predictions at
locations along the beamline, so-called “virtual diagnostics,”
using beam dynamics simulations or experimental data to
correlate downstream beam distributions with upstream
measurements and/or accelerator parameters [23–31].
However, these methods require significant amounts of
experimental or simulated training data that spans the full
range of possible phase space distributions in a given
beamline to train the machine learning model to make
accurate predictions. Additionally, virtual diagnostics are
not easily transferable between beamlines, in varying oper-
ating configurations, or when time dependent drifts are
present (although they can be adapted with additional data,
e.g., [28]). If accurate simulations of beam dynamics or
virtual diagnostics are unavailable, the beam distribution
must be reconstructed directly from experimental
measurements.
In previous work [32], we introduced and demon-

strated a novel machine learning-based method for
reconstructing detailed beam distributions directly from
experimental data. This method, which we refer to here
as generative phase space reconstruction (GPSR), uses
generative machine learning models and physics-based
differentiable beam dynamics simulations to effectively
reconstruct detailed, high-dimensional phase space dis-
tributions from limited datasets, without the need for
prior data collection or model pretraining. This method
was used to reconstruct detailed, correlated, four-
dimensional phase space distributions using a single
quadrupole scan (ten measurements of the beam distri-
bution) by taking advantage of the information contained
in conventional measurements of the transverse beam
profile using a YAG screen [33]. More recently, this
method was also used to reconstruct beams with large
angular momentum components (magnetization) and
large emittance ratios [34].
In this work, we extend the use of GPSR to reconstruct

six-dimensional phase space distributions from experimen-
tal measurements. We demonstrate in simulation that a
diagnostic beamline consisting of quadrupoles, a transverse

deflecting cavity, and a dipole spectrometer can be used to
resolve detailed characteristics of six-dimensional phase
space distributions using as few as 20 measurements. We
show that the GPSR technique accurately reconstructs a
variety of different beam distributions from simulated
screen measurements, including correlated Gaussian dis-
tributions, nonlinear distributions, and beam distributions
similar to those produced by the emittance exchange (EEX)
beamline at the Argonne Wakefield Accelerator (AWA)
[35]. We then apply the GPSR algorithm to reconstructing a
beam distribution from experimental measurements at
AWA and demonstrate that it makes accurate predictions
of previously unseen measurements. Finally, we discuss
current limitations and advantages of the reconstruction
technique.

II. METHODS

The method we use to reconstruct six-dimensional phase
space distributions addresses two issues encountered by
conventional reconstruction techniques.
First, conventional reconstruction techniques often use

one- or zero-dimensional (scalar) projections of the six-
dimensional phase space to infer features of the distri-
bution. Conventional algebraic reconstruction techniques,
such as maximum entropy tomography [12] and SART
[20], typically use one-dimensional projections of screen
images to produce a higher dimensional reconstruction.
Measuring the intensity of the beam distribution through
a set of slits, as done in [22], further reduces the
measurement down to a scalar quantity. As a result,
these methods lose a significant amount of information
about the beam distribution, requiring more individual
measurements of the distribution to resolve six-dimen-
sional features. The GPSR technique enables us to fully
utilize the detailed information contained in two-dimen-
sional images of the beam distribution without the need
to project to lower dimensions.
Second, traditional methods for representing particle

distributions in a beam become increasingly inefficient
when extended to six-dimensional distributions. Both of the
methods listed above use a high-dimensional histogram-
ming approach to describe the beam distribution; i.e., they
solve for the beam density inside a number of high-
dimensional voxels along an N-dimensional mesh. While
this formalism is used to effectively describe distributions
in one or two dimensions, it becomes impractical to
describe beam distributions in six-dimensional space this
way, as the number of bins grows exponentially with the
number of dimensions. For example, resolving a beam
distribution with 100 bins per dimension results in 1012

voxels needed to describe the full six-dimensional distri-
bution. On the other hand, alternative methods for repre-
senting beam distributions, such as distribution moments or
principal component analysis techniques, may reduce
reconstruction detail.

RYAN ROUSSEL et al. PHYS. REV. ACCEL. BEAMS 27, 094601 (2024)

094601-2



To address these challenges, GPSR uses two concepts
(shown in Fig. 1) to reconstruct detailed six-dimensional
phase space distributions from experimental measurements.
First, we use a generative machine learning model to

represent a distribution of macroparticles in six-dimensional
phase space. Generative machine learning methods have been
widely used in avariety of applications, including text [37] and
image [38] generation, as well as in solving scientific
problems, such as protein folding [39]. In the domain of
accelerator physics, generative models have been explored for
virtual diagnostics applications (see e.g., [30,31]).
In GPSR, generative modeling is used to generate

samples from an arbitrary distribution of macroparticles
by using a neural network to transform samples from a
fixed random distribution (in this case a multivariate normal
distribution) into six-dimensional position-momentum
phase space coordinates. This is inspired by the develop-
ment of neural radiance fields [40], which use neural
networks to represent mass and color density functions
in three-dimensional space. Neural networks of sufficient
complexity are universal function approximators [41],
enabling the generative model to produce particle distri-
butions with nearly arbitrary structure in six-dimensional
phase space. For the work here, we found that a fully
connected neural network with two layers, 20 neurons
each, connected by Tanh activation functions, was suffi-
cient to represent a wide variety of beam distributions with
high enough detail. With this method, the distribution of
macroparticles in phase space is entirely controlled by the
parameters of the neural network, namely the individual

neuron weights and biases inside the network. This results
in a parameterization of phase space distributions using
approximately 1000 free parameters, as opposed to the
extremely large number of parameters needed for
histogram-based representations of six-dimensional dis-
tributions.
The reconstruction process determines the parameters of

the generative beam model by solving an optimization
problem, where the goal is to minimize the total absolute
error between simulated predictions and experimental
measurements, in this case, the per-pixel intensity of the
transverse YAG screens. Due to the number of free
parameters contained inside the generative beam distribu-
tion model, solving this optimization problem in a reason-
able amount of time is beyond the capabilities of black-box
optimization algorithms because of the so-called “curse of
dimensionality” [42]. As a result, it is necessary to use more
powerful gradient-based optimization algorithms in GPSR.
Unfortunately, this is also prohibitively difficult when using
conventional beam dynamics simulations to predict exper-
imental measurements, since calculating the gradients
numerically in these cases requires finite-difference meth-
ods that also scale poorly with the number of free
parameters used in optimization.
To address this challenge, GPSR leverages “backward-

mode” [43] automatic differentiation to substantially
reduce the cost of evaluating gradients of simulation
outputs with respect to input parameters. Automatic dif-
ferentiation is the technique of tracking derivative infor-
mation alongside each computation step during physics

FIG. 1. Description of the GPSR approach for reconstructing phase space beam distributions from experimental data. A six-dimensional
beam distribution is parameterized via a generative machine learningmodel, where randomly generated samples drawn from amultivariate
normal distribution are transformed using a neural network into macroparticle coordinates in position-momentum space. The beam
distribution is then transported through a backward differentiable simulation of the diagnostic beamline (implemented in Bmad-X [36]) to
makemeasurement predictions at the diagnostic screens. The total per-pixel difference in intensity between simulated predictionsQði;jÞ

n and

experimental measurementsRði;jÞ
n is calculated as a loss function. The neural network parameters θ are then optimized to minimize the loss

function using gradients calculated by the differentiable beam dynamics simulation. The distribution generated once the loss function has
been minimized (simulation predictions match experimental measurements) is the reconstructed beam distribution.
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simulations. This, in turn, allows analytical evaluation of
simulation output derivatives by using the chain rule in
reverse to determine derivatives, a process commonly
referred to as “backpropagation” [43] or “adjoint differ-
entiation” [44]. Computational cost of calculating the
derivatives in this manner is roughly equivalent to the
cost of evaluating the simulation itself, and more impor-
tantly, it is largely independent of the number of input
parameters the derivative is taken with respect to. This
makes calculating derivatives substantially cheaper to
compute than finite-difference methods when optimizing
with respect to a large number of input parameters. It
should be noted that this process is similar to, but distinct
from, previous uses of automatic differentiation in accel-
erator physics, often referred to as “forward-mode”
differentiation [44], “differential algebra” [45], or, when
computing higher derivatives, “truncated power series
algebra” [46]. These techniques are well suited for
calculating particle transport dynamics up to arbitrary
order; however, they do not scale well to calculating
gradients with respect to thousands of input parameters.
Facilitating the use of backpropagation in the context

of GPSR requires beam dynamics and diagnostic simu-
lations that support the tracking of derivatives during
evaluations. To this end, we have developed the simu-
lation package Bmad-X

1 [36], which reimplements beam
transport through a number of simple accelerator ele-
ments using the machine learning library PyTorch [48],
which implements backpropagation. Additionally, we
simulate the measurement of transverse beam profile
intensity on a screen diagnostic by using kernel density
estimation [49] as opposed to normal histogramming to
preserve differentiability. By using differentiable beam
dynamics simulations, we are able to cheaply compute
derivatives for use in gradient descent optimization of
beam distribution parameters to reconstruct the beam
distribution. Differentiable representations of physics
coupled to machine learning have been used for other
problems in accelerator physics, such as lattice calibra-
tion, x-ray pulse reconstruction, and analysis of synchro-
tron-radiation-based diagnostics [47,50–52], although
they were not used in this work.

III. SIX-DIMENSIONAL DIAGNOSTIC
BEAMLINE DESCRIPTION

In previous work [32], we demonstrated that this
reconstruction technique is able to produce accurate
predictions of the four-dimensional beam distribution
using images gathered from a single quadrupole scan.
To extend this work toward resolving six-dimensional
phase spaces, we add a transverse deflecting cavity
(TDC) and a dipole spectrometer to the diagnostic

beamline, as shown in Fig. 1. In this case, quadrupoles
Q1–Q3 are used to focus the beam onto YAG1 and
quadrupole Q4 is scanned to measure the transverse
phase space distribution. Focusing the beam on the
diagnostic screen improves the measurement resolution
and increases the range of Q4 strengths that can be
scanned over since the transverse beam profile needs to
be kept within a region of interest on both of the
diagnostic screens. Pairing a TDC that kicks the beam
vertically to resolve the current profile of the beam with a
horizontally bending dipole magnet, which measures
beam energy spread, is a common approach taken to
measure the longitudinal phase space distribution of a
beam [53]. The diagnostic setup used in this work is
motivated by the notion that combining transverse infor-
mation from the quadrupole scan with the longitudinal
phase space manipulations should provide enough infor-
mation to resolve the full six-dimensional phase space
distribution.
We demonstrate the six-dimensional reconstruction tech-

nique using a simulation of the diagnostic beamline at
AWA. Transverse diagnostic screens YAG1 and YAG2 are
placed along each beam path when the dipole is off and on,
respectively. These simulated screens have a region of
interest that is 10 × 10 mm (or 200 × 200 pixels) in size,
with a resolution of 50 μm=px. The L-band transverse
deflecting cavity used in simulation (1.3 GHz, L ¼
0.48 m) operated with a peak field in a range from 0 to
3 MV depending on the beam distribution, consistent with
the operational range of the AWA deflecting cavity [54].
The rectangular dipole spectrometer (L ¼ 0.3018 m) has a
bend angle of 20 deg.

FIG. 2. Simulated screen images of the Gaussian beam distri-
bution during the six-dimensional reconstruction scan. Brighter
colors denote higher beam intensity (arbitrary scale for each
image).

1
Bmad-X will be merged into the Cheetah [47] library for future

applications of GPSR.
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IV. SYNTHETIC RECONSTRUCTION EXAMPLES

In this section,we evaluate the effectiveness of theGPSR
technique on several different phase space distributions.
For each case described below, the following procedure
was followed. The first three quadrupoles (Q1, Q2, andQ3)
are tuned using Bayesian optimization [55] implemented in
Xopt [56] to minimize the transverse beam size at YAG1
with the scanning quadrupole (Q4) turned-off. In practice,
this optimization took less than a fewminutes to conduct in
simulation and experiment. This process is done in conven-
tional longitudinal phase spacemeasurements to reduce the
betatron spot size contribution to the beam profile to
increase measurement resolution [53].
We then scan the focusing strength of Q4 four times,

once for each combination of TDC and dipole states.
Images from the quadrupole scans are then used to
reconstruct the beam distribution. In the synthetic case
studies that follow, the quadrupole strength was scanned
over five steps, resulting in a total dataset of 20 images. The
number of quadrupole scan points was chosen empirically
to provide sufficient information about the transverse phase
space distribution while minimizing the number of data
samples to reduce computational reconstruction costs (see
Sec. VI for further discussion).

A. Case 1: Gaussian beam reconstruction

The first case we explore is one where the beam distri-
bution is a multivariate normal distribution that contains
cross correlations between a number of the six-dimensional
phase space coordinates. Simulated measurements of the
beam on the two diagnostic screens for each of the quadru-
pole scans are shown in Fig. 2. These images were then used
to reconstruct the beam distribution using the GPSR
approach with 100k macroparticles. To maximize recon-
struction accuracy, the reconstruction was trained for 3000
iterations of gradient descent (Adam [57], learning rate 0.01),
which took roughly 10–15 min on an NVIDIA A100 GPU,
although it is possible that fewer iterations could be used.
The reconstruction algorithm results in a generative

model, which generates a distribution of macroparticles
in six-dimensional phase space that should approximate the
true beam distribution. The reconstructed beam distribu-
tion, with a comparison to the synthetic ground truth
distribution, is shown in Fig. 3. We see from the 50th
and 90th percentile contours (calculated by measuring the
beam intensities that account for 50%/90% of the total
beam distribution) that the reconstructed beam distribution
closely matches the true synthetic distribution. On the other
hand, the reconstruction fails to accurately predict the halo
of the beam distribution (100th percentile contour). This is
likely due to two factors, which include limitations on
the number of macroparticles used in the reconstruction
process and the finite number of iterations used to optimize
the generative model, which tends to identify high-intensity
features in the distribution before lower-intensity ones.

Achieving accurate reconstructions across a larger dynamic
range to identify beam halo is a subject of future study, so
we avoid displaying this contour in the following sections.
To provide a quantitative measure of the reconstruction

accuracy, we can calculate the second order moments
of the beam distribution. We observe that in this case the
reconstructed beam distribution shows close agreement with
the ground truth. The fractional error between the second-
order components of the reconstructed beam distribution and
the ground truth is frequently less than 10%. In cases where
the cross covariances of the ground truth distribution are
much smaller than the principal axis covariances, the error of
the reconstruction is higher due to the dominance of the beam
size along the principal axis over other beam features.

B. Case 2: Nonlinear beam reconstruction

Next, we examine a case where the beam has a variety of
nonlinearities and correlations throughout the phase space
distribution, as shown in Fig. 4 (simulated measurements of
this beam distribution can be found in the Appendix). The
reconstruction successfully replicates the ground truth dis-
tribution, including nonlinear features contained in cross-
correlated phase spaces. The comparison between the
predicted and ground truth values of the covariance matrix
again shows good agreement within 10% for most elements.

C. Case 3: EEX beam reconstruction

Detailed six-dimensional phase space reconstructions are
particularly important when performing complex beam
manipulations that precisely shape features in six-dimen-
sional phase space. An example of this is transverse-to-
longitudinal emittance exchange (EEX) [35,58]. This
process combines two doglegs and a transverse deflecting
cavity to map the horizontal phase space distribution into a
longitudinal distribution, allowing longitudinal profile
shaping using transverse masking. For example, the
EEX beamline has been used to generate ramped current
profiles with a sharp drop off to improve the transformer
ratio of dielectric [53] and plasma [59] wakefield accel-
eration. Precisely characterizing beam distributions created
by the EEX beamline enables us to control accelerator and
beam parameters, such as the location of leafs in a multileaf
masking element [60] or focusing magnets before the EEX
beamline [61], that lead to improved six-dimensional beam
tailoring for accelerator applications.
As a proof-of-concept demonstration, we generated a

synthetic beam distribution which mimics those created
by the EEX beamline for high transformer ratio wakefield
acceleration applications. In this case, EEX aims to create a
drive beam with a triangular current profile and a uniform
witness beam to sample thewakefield. This is achieved using
a laser cut mask to shape the horizontal beam profile before
EEX,which is thenmapped into a current distribution during
the exchange process. However, this results in a correlation
between the vertical beam size and longitudinal position
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within the bunch, since the vertical distribution is not
exchanged inside the EEX beamline. This can be detrimental
to achieving optimal matching into a wakefield structure
due to time-of-flight degradation of the longitudinal profile
inside strong final-focus magnets before the wakefield
device [62].
Reconstruction results from simulated diagnostic mea-

surements (seen in the Appendix) of this beam distribution
are shown in Fig. 5. We see that the reconstruction algorithm
can resolve important features of the beam distribution,

including the longitudinal profile and correlations between
transverse and longitudinal phase spaces. However, the
reconstruction algorithm has difficulty identifying large
areas of uniform density within the beam, most notably in
the z − y phase spacewhere the triangular head and the lower
rectangular regions should both have near uniform density
profiles. This leads to slightly inaccurate predictions of the
longitudinal beam profile, which is critical for high trans-
former ratio applications. Identifying how to improve the
accuracy of the reconstruction in this case, either through

FIG. 3. Reconstruction results from Gaussian synthetic beam distribution. Lower left: comparison between two-dimensional
projections of the ground truth synthetic beam distribution with the reconstructed beam distribution. Solid lines denote ground truth
projections and contours, while dashed lines denote reconstruction predictions. White, gray, and black contours denote 50th, 90th, and
100th percentile intensity levels, respectively. Color map intensity denotes reconstructed prediction. Upper right: comparison between
ground truth and reconstructed second order moments of 90th percentile beam particles, where regular text denotes ground truth values
and bold text denotes reconstructed predictions.
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algorithm modifications or changes in the diagnostic beam-
line, is a topic of future study.

V. EXPERIMENTAL DEMONSTRATION

In addition to simulation studies, we conducted an
experimental demonstration of using the six-dimensional
GPSR algorithm to characterize electron beams generated
at AWA. We configured the AWA drive beamline to
produce 1 nC electron bunches at a 2 Hz repetition rate

with an energy of 43 MeV and transported them to the
diagnostic configuration shown in Fig. 1 at the end of the
AWA beamline. The beam charge was selected to provide a
strong enough signal-to-noise ratio for beam imaging
diagnostics while mitigating coherent synchrotron radiation
effects in the dipole spectrometer.
QuadrupolesQ1–Q3were then used to focus the beamonto

YAG1 using Bayesian optimization algorithms, while the
scanning quadrupole Q4 was turned-off. We then repeated
four quadrupole scans (−2.9 to 2.9 T=m, nine steps) with

FIG. 4. Reconstruction results from nonlinear synthetic beam distribution. Lower left: comparison between two-dimensional projections
of the ground truth synthetic beam distribution with the reconstructed beam distribution. Solid lines denote ground truth projections and
contours, while dashed lines denote reconstruction predictions. White and gray contours denote 50th and 90th percentile intensity levels.
Color map intensity denotes reconstructed prediction. Upper right: comparison between ground truth and reconstructed second order
moments of 90th percentile beam particles, where regular text denotes ground truth values and bold text denotes reconstructed predictions.
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different TDC and dipole settings, similar towhat was done in
the simulated examples. A set of five beam image shots were
taken for each parameter setting with a charge window of
0.1 nC (i.e., shots where the deviation of the measured bunch
charge exceeded the chargewindowwere discarded). The four
parameter scans took approximately 8min to performatAWA,
althoughwe estimate that givenbetter charge stability, the scan
time could be reduced by a factor of 2.
An additional complexity of using GPSR in an exper-

imental setting was a slight difference in image resolution
between the two YAG screens used to measure the beam

profile due to minor differences in camera location and
focusing. These differences were incorporated into the
reconstruction by defining two beamline simulations;
one for the case where the dipole was off, and one case
where the dipole was on, each with different definitions for
the screen diagnostic. The images were cropped to a square
size of 300 × 300 pixels, which corresponds to a side
length of approximately 13 mm. Finally, the intensity of
the image was clipped and set to zero at a lower bound
threshold and a Gaussian smoothing filter was applied to
the images to remove salt and pepper noise.

FIG. 5. Reconstruction results from the EEX synthetic beam distribution. Lower left: comparison between two-dimensional projections
of the ground truth synthetic beam distribution with the reconstructed beam distribution. Solid lines denote ground truth projections and
contours, while dashed lines denote reconstruction predictions. White contours denote 90th percentile intensity levels. Color map intensity
denotes reconstructedprediction.Upper right: comparisonbetweenground truth and reconstructed secondordermoments of 90th percentile
beam particles, where regular text denotes ground truth values and bold text denotes reconstructed predictions.
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While comparing individual pixel intensities on the
diagnostic screen to simulation predictions provides more
information about the beam distribution, it does make
phase space reconstruction sensitive to shot-to-shot jitter in
the beam centroid. Detailed features of the beam distribu-
tion can be obscured when averaging over images that
contain shot-to-shot variations in the beam centroid. To
mitigate this effect, we shifted the distribution of each
image such that the beam centroid was at the center of the
region of interest and averaged the intensity profile over the
five shots. As a result, our reconstruction predicts the
structure of the distribution, but not its offset with respect to
magnetic element centers, mean energy, or timing relative
to the zero crossing of the TDC cavity. A more robust
treatment of the shot-to-shot jitter would allow us to

identify these aspects of the beam distribution, as was
done in [32], and is a topic of future study.
In order to validate the accuracy of the reconstruction in

the absence of a ground truth beam distribution, we com-
pared model predictions to a subset of data that was not
included in determining the phase space distribution
(referred to here as the test dataset). We can be confident
that the reconstructed distribution is accurate if the generative
model can accurately predict measurements inside the test
set. We selected every other quadrupole strength in the four
quadrupole scans to be test data, resulting in a training dataset
consisting of 20 images (5 quadrupole settings × 4 LPS
diagnostic settings) and a test dataset consisting of 16 images
(4 quadrupole settings × 4 LPS diagnostic settings). The
entire dataset can be viewed in the Appendix. With this

FIG. 6. Comparison between averaged, experimentally measured test images with predictions from propagating the reconstructed
beam distribution to the screen diagnostics. White and gray contours denote 50th and 90th percentile intensity levels, with solid lines
representing measurements and dashed lines denoting predictions. Color map intensity denotes reconstructed prediction on an arbitrary
scale. Blue lines denote measured one-dimensional projections, while orange dashed lines denote projection predictions.
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training dataset, the reconstruction took approximately
17 min on an A100 NVIDIA GPU due to the increased
image size compared to simulated examples.
A comparison between predictions from the recon-

struction and the experimentally measured test data is shown
in Fig. 6. We see that the reconstruction accurately repro-
duces the one- and two-dimensional beam structure (with
minor discrepancies in some cases) seen in the test images,
including nonlinear and beamlet features. The reconstructed
six-dimensional phase space from experimental measure-
ments is shown in Fig. 7. The reconstruction predicts
normalized transverse emittances of εx;n ¼ 19 mmmrad,
εy;n ¼ 8.5 mmmrad, which are consistent with nonopti-
mized AWA beamline parameters, the bunch charge of

1 nC, and the observed asymmetric beam size growth as a
function of quadrupole strength when the dipole and deflect-
ing cavity are off. One prominent feature of the distribution is
the beamlet structure observed in the longitudinal current
profile. We believe that this structure results from a set of 5
alpha-BBO crystals used at AWA to produce longer, flat-top
laser pulse profiles by stacking 32 laser subpulses together
[63]; however, it is unclear how this leads to variations in
beam energy along the bunch.

VI. DISCUSSION

While the examples shown here demonstrate the
effectiveness of GPSR in these cases, the reliability and

FIG. 7. Projections of the reconstructed six-dimensional beam distributions where the color map intensity denotes beam density
(independent scaling for each projection). (Top right) Three-dimensional density map of beam particles in z − y − py space.

RYAN ROUSSEL et al. PHYS. REV. ACCEL. BEAMS 27, 094601 (2024)

094601-10



robustness of the algorithm can be improved for general
applications.
The most critical next step for this work is to enable the

algorithm to quantify uncertainties in the reconstructed phase
space distribution from limited experimental measurements.
Conventional wisdom and empirical evidence [64] suggest
that evenly spaced angular rotations of the distribution over
360deg is necessary to accurately reconstruct two-dimensional
phase space distributions from one-dimensional projections.
However, it is not clear how this rule-of-thumb translates to
reconstructing beam distributions in six-dimensional phase
space from two-dimensional images or how this is dependent
on variations in the beam distribution. Developing a calibrated
estimation of the reconstruction uncertainty would enable a
greater understanding of the reconstruction accuracy by
tracking the reduction in reconstruction uncertainty as mea-
surements are added. This in-turn would reduce the number of
redundant measurements that do not contribute significant
information about the distribution, reducing the experimental
and computational effort needed to perform the reconstruc-
tion. Additionally, uncertainty quantification methods can
provide information about the minimum resolution of the
reconstruction, while also providing potential pathways to
improve diagnostic resolution.
The flexibility of the GPSR algorithm can be used to

develop novel diagnostic techniques that were pre-
viously impractical to analyze using conventional methods.
Unlike other analysismethods, theGPSR algorithm does not
require simplifications or approximations of beam dynamics
or measurement signals needed to enable analytical trac-
tability. By utilizing high-performance numerical optimiza-
tion techniques, GPSR can solve extremely complex
optimization problems that can incorporate exact measure-
ment information into the reconstruction process, regardless
of analytical tractability. This allows for the use of nonlinear
phase space manipulations, which may provide more infor-
mation about the beam distribution than linear manipula-
tions. Additionally, GPSR can also easily combine data from
multiple, potentially heterogeneous sources of information
(as done here, where different diagnostics have different
resolutions) about the beamdistribution by adding additional
terms into the training loss function shown in Fig. 1. For
example, screenmeasurements of the two-dimensional beam
profile can be easily combined with upstreammeasurements
of the beam profile, nondestructive measurements of the
beam distribution, such as edge radiation in bends [65],
coherent optical transition radiation [66], or machine learn-
ing-based predictions of the longitudinal phase space [23]
into a single, self-consistent description of the beam
distribution.
Another advantage of using GPSR is that the generative

model creates these macroparticles by transforming sam-
ples from a simple random distribution. As a result,
predicted particle distributions can contain any number
of macroparticles regardless of the number of particles used
during training the model. For example, even though the

generative model in the cases demonstrated here was
trained with 100k particles, the figures shown here use
predictive distributions containing one million macropar-
ticles. This method for representing beam distributions is
advantageous in a number of ways for use in simulations.
Saving and transporting high-fidelity beam distributions
containing a large number of six-dimensional macroparticle
coordinates is a memory intensive process. Generative
models, on the other hand, use substantially fewer scalar
quantities (the weights and offsets of neural network
parameters) and a description of the model structure to
represent the beam distribution at any level of fidelity,
significantly reducing the memory needed to share the
beam distribution between simulations.
Finally, it is important to note that theGPSR algorithm can

utilize arbitrary generative model architectures to generate
particle distributions for reconstruction purposes. As stated
previously, the work done here uses a basic, densely con-
nected neural network to transform samples from a random
distribution into a distribution of macroparticles. However,
alternative methods for generating particle distributions can
be used in this workflow, provided they are backward
differentiable. For example, normalizing flows [67] have
also shown promise in representing complex beam distribu-
tions [68]. Normalizing flows have the additional benefit of
providing the full probability distribution of the beam in six-
dimensional space (not just samples from that distribution),
which can then be used with maximum entropy-based loss
functions to solve for themost likely beam distribution given
a small set of measurements. Additionally, lower fidelity
reconstructions can be performed using reduced models that
improve reconstruction speed at the cost of accuracy for
online control applications. Comparing the performance
of different generative models for use in phase space
reconstruction is the subject of future work.

VII. CONCLUSION

In this work, we have demonstrated in several simulated
and experimental case studies that detailed characterizations
of six-dimensional beam distributions can be achieved
rapidly using the GPSR algorithm. This analysis method
leverages the detail contained in two-dimensional screen
images of the beam distribution and knowledge of beam
dynamics in the accelerator to significantly reduce (by up to a
factor of 75×) the time needed to produce detailed predic-
tions of the beam six-dimensional phase space distribution.
Furthermore, the generative machine learning representation
of the beam distribution is trained from scratch on exper-
imental data, requiring no previous data collection or
pretraining needed by other applications ofmachine learning
in accelerator physics. As a result, the GPSR algorithm can
be used to provide six-dimensional phase space information
during accelerator operations and in a wide variety of
contexts. This technique has major implications for allowing
six-dimensional information to be used to inform accelerator
control and understand complex physical phenomena.
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Software and processed data are available at [69]. Raw
data can be made available upon request.
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APPENDIX: SYNTHETIC AND EXPERIMENTAL
DATASETS

Figures 8–10 contain training datasets used to recon-
struct the beam distributions described in Secs. IV and V.

FIG. 8. Simulated screen images of the nonlinear beam distribution during the six-dimensional reconstruction scan. Brighter colors
denote higher beam intensity (arbitrary scale for each image).
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FIG. 9. Simulated screen images of the emittance exchange generated beam distribution during the six-dimensional reconstruction
scan. Brighter colors denote higher beam intensity (arbitrary scale for each image).
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