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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:In 2024, all biology is computational biology. Computer-aided analysis continues to spread

into new fields, becoming more accessible to researchers trained in the wet lab who are

eager to take advantage of growing datasets, falling costs, and novel assays that present

new opportunities for discovery. It is currently much easier to find guidance for implementing

these techniques than for reporting their use, leaving biologists to guess which details and

files are relevant. In this essay, we review existing literature on the topic, summarize com-

mon tips, and link to additional resources for training. Following this overview, we then pro-

vide a set of recommendations for sharing code, with an eye toward guiding those who are

comparatively new to applying open science principles to their computational work. Taken

together, we provide a guide for biologists who seek to follow code sharing best practices

but are unsure where to start.

Introduction

Reproducible computational practices, and open science more broadly, are the subject of

many discussions about competing priorities: Transparency is good, but its implementation is

time intensive and poorly incentivized [1]. Open research is associated with more citations

and more media coverage [2], but it can expose researchers to new avenues for harassment

and suppression [3]. There are also many resources promoting particular approaches to per-

forming computational work [4,5] and developing research software [6]. But amidst the dis-

cussions of how to perform computational research, where to publish it, and how to organize

your files, there is a dearth of information on how to be transparent about work that’s already

been done, particularly for biologists who may not specialize in computational work. Many

researchers are unsure how to share code or, as a recent Springer Nature survey found, even

where to upload their data [7].

A complicating factor is the wide variation between fields in the standards for data and

code sharing, as well as the types of data sets and code used. For example, data sharing stan-

dards are well reviewed in the ecological literature [8,9], and major journals in the field of ecol-

ogy have extensive data sharing policies, such as Ecological Society of America’s Open

Research Policy “Definitions” page [10]. However, these practices are less standardized in

other fields of biology. This means that research and journals at the intersection of multiple

fields—such as microbiome science, which integrates medicine, ecology, and computational
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biology—may not have scientists trained in uniform standards of data and code sharing.

Finally, many established papers on best practices focus on how to design a study from the out-

set to fit into a reproducible science framework. However, science is messy, and as projects

and data sets are passed between lab members, the researchers who are assembling the final

paper for submission often inherit files and code that were not created using best practices.

The goal of our paper, therefore, is to provide an integrative guide for sharing code, such

that these practices can be implemented across biological subfields and stages of the research

process. We focus on the implementation details particular to reproducibleAU : PleasenotethatasperPLOSstyle; italicsshouldnotbeusedforemphasis:Hence; pleaseconfirmthatitalicizedwordsreproducible; replicable; new; andalreadycanbechangedtoregulartextor; alternatively; enclosedwithquotationmarks:results—those that

can be regenerated using the original data—as opposed to replicable results, in which another

group is able to draw similar conclusions from new data [11,12].

We can all share code, if not because we want someone else to be able to use it in the future,

then at least because we have already used it for the research being reported. The code used to

analyze data, perform statistical tests, and build visualizations is no less critical to a project

than reagents used at the bench and should be disclosed for the same reasons: In addition to

providing critical information about the conditions under which the study was performed,

sharing this information enables others to more easily validate computationally derived con-

clusions. It also reduces the effort required to apply similar methods in new projects by provid-

ing an example that allows others to avoid issues you may have already solved. A 2023 study

across dozens of participants from 13 countries found broad support for publications that

clearly state whether code was shared openly, with a persistent identifier (such as a digital

object identifier (DOI)) and a clear license [13]. Sharing code also helps protect us against

what Donoho and colleagues [14] called “the ubiquity of error” at the heart of the scientific

method, which drives scientists to expend effort primarily “in recognizing and rooting out

error”: Even the most diligent scientists can miss a typo in a command or misunderstand

parameters of a complex function in a package developed elsewhere. Sharing this code—essen-

tially a fine-grained addendum to a methods section—can help bring these issues to the surface

and help future researchers avoid them.

In this discussion, we use the term “code” as shorthand for any of the documents inter-

preted by a computer to generate information used in your manuscript. That covers software

you’ve developed to perform analyses (a new algorithm implementation, for example), but it

also includes commands used to perform statistical tests and the scripts used to generate figure

panels. Most manuscripts don’t come bundled with an entirely new software application, but

many—especially those that include the analysis of genomic sequencing data—required code

to get their results.

Below, we outline how to build a more easily reproducible project, share a set of resources

for improving your coding skills, describe which pieces of your project are most important for

others, and lay out how to get your work online in a practical format. Our recommendations

were developed as guidance mainly to those who are preparing to share completed work. How-

ever, much of this will be easier—and more effective—if a project is started with reproducibil-

ity in mind. If you’ve already skipped some of these steps, or inherited a project that was set up

in a different way, there is still plenty you can share to provide transparency and demonstrate

your process to others.

Setting up a reproducible project

First things first: Your code is good enough to share [15]! It may be messy and disorganized

and cobbled together by self-taught coders who are writing just enough code to get the job

done, but you aren’t the only person for whom that’s true. If you trust the code enough that

you’ve written a paper about its results, it’s certainly worthy of sharing. Scientific code can be
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split into 2 broad categories: products that are intended to be reused by others (such as a new soft-

ware package), and products that aren’t. The preparation, packaging, and archiving of code differs

greatly between these 2 categories, and this paper deals mostly with the latter—code shared to

demonstrate the computational approach to a single paper, but that others should not expect to

work like a broadly applicable tool with a friendly user interface. The recommendations here

describe considerations that are helpful, but if some are not practical to implement, it’s important

to note that whatever you can share is almost always better than sharing nothing.

There are many guides for reproducible computational biology available online, both peer

reviewed and independently published (for example, [9]), covering diverse topics such as tell-

ing stories with computational notebooks [16,17], organizational recommendations for large

computational projects [18], and standards and checklists that provide very specific examples

[19,20]. Rather than duplicate this effort, here we review common recommendations, going

from general to specific. We highlight these as examples in the broad categories of accessibility,

organization, and minimizing repeated work, with a focus on changes that are particularly

impactful but that do not require significant new technical skills. Because this work is focused

mostly on sharing projects that are already complete, we urge readers to investigate implemen-

tation details for their new projects in the papers and software documentation referenced

below.

The first key to sharing your code is to use code in the first place. While many tools sim-

plify their operation by enabling users to interact with them using graphics—such as icons,

text boxes, and menus—this point-and-click approach can be difficult to document and even

more difficult to replicate. Though it can be tempting to skip automation and programmatic

approaches in favor of ad hoc point-and-click solutions, these shortcuts can backfire later

when trying to repeat an analysis, recall who did what, which subset of the data was used for a

figure panel, or exactly which version of a program was used for an important computational

step. Understanding command-line tools and their parameterization can be a challenge, but

running these operations a second time is much more straightforward than carefully following

step-by-step instructions on which buttons to click in which order [21].

Keep humans in mind. Code style and organization is a recurring theme in the literature.

In short, consider approaching your code as if it were intended to be read, rather than executed

[22]. Give variables helpful names, rather than “foo” or “x,” and leave plenty of comments to

explain what different sections of code are doing and reasons for unconventional design deci-

sions that users may be tempted to modify (for examples, see Fig 1) [21].

Use a consistent directory structure. Make it easy to distinguish raw data from interme-

diate files and final results [19,23,24]. For example, when manipulating your data specifically

for a visualization, save the version of the data that’s actually displayed [25]: This will be a

more convenient file for readers to evaluate and makes it possible to rebuild your figure by

simply reloading that file, rather than having to load the original dataset and performing all

the processing steps again. Minimize the manual intervention required to run your scripts,

and ideally organize them in a way that allows users to run them from start to finish [20]. Pro-

vide a “README” file that, at a minimum, walks a user through the intended execution of

your code and documents the key steps [26].

Don’t be afraid of the tedious work of automating your data cleaning. In particular,

avoid manual editing of intermediate files [9,24,25,27]. For example, if script A processes raw

data into a table of gene expression levels, and script B summarizes this table by pathway, we

should be concerned if there is a step after script A that requires a user to open the table and

edit fields by hand to prepare the data for script B. Such quick fixes can be tempting, but they

also add risk: A researcher could easily add a typo, corrupt a file in unexpected ways [28], or

forget the step altogether.
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Minimize cut-and-paste errors. Use custom functions to do repeated operations [9], and

store important values in prominently commented variables, rather than hard-coding (Glos-

sary) them somewhere deep in the script where a future user may not notice it (Fig 1). For

example, if you write out a multistep process that prepares data for a particular visualization

but find out later that you need to perform the same steps for a different subset of data in a

new figure, avoid copying that code and pasting it farther down in your analysis script. If you

later find an error in this code or simply modify it to change a threshold or reorganize the out-

put, it’s easy to forget to scroll back down and change it in two (or more!) places. Repetitive

code is one example of “code smell”: code that may work as intended but is suggestive of a

larger design flaw that may cause hard-to-find bugs or make it more complicated to modify

the program in the future [29]. Organizations and open-source (Glossary) communities have

published “style guides” in many popular languages including R (https://style.tidyverse.org)

and Python (https://peps.python.org/pep-0008/) that may help avoid some of these issues, but

eventually you will develop a “nose” for intuiting when you may be wandering down an ill-

advised path.

Fig 1. Example code for a reproducible project. The first lines of a longer analysis script written in Python 3 with examples of practices that

make the code easier for other users to understand.

https://doi.org/10.1371/journal.pbio.3002815.g001

GlossaryAU : PleasenotethatGlossariesdonotneedtobenumbered; henceGlossaryratherthanBox1 : GlossaryorGlossary1:

Application Programming Interface (API) keys

Authentication parameters generally used in a similar manner as passwords when 2 soft-

ware applications communicate with each other, typically over the internet.
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These are relatively uncontroversial recommendations to make your project easier to man-

age and adhere more closely to programming best practices, but there are many other opportu-

nities to improve. A 2014 survey showed that software developers reviewing code from

computational biology papers were shocked at its content, confusing structure, and lack of

documentation [32]. Still, optimizing processes past a point of practical reproducibility may

not be worthwhile [33], particularly when competing priorities leave researchers with few pro-

fessional incentives to tackle the time-consuming work of sharing digital materials.

There are many other recommendations that appear in the literature even without expand-

ing your search beyond papers focused on computational biology: Version control and code

Command-line utilities

Computer applications that are guided using text entered into a terminal. Implicitly

refers to programs running on the Linux operating system.

Dependencies

In the context of software packages or scripts, dependencies are libraries and packages of

third-party code that must be present for a given package or script to function.

Hard-coding

When the value of a variable or process is manually specified in a way that is not easily

modified by someone who wants to run the code. A “hard-coded” file path would only

look in one specific directory for a file, rather than exposing a way for the path to be

modified via configuration files or command-line options.

Linux

Generally, this refers to the family of operating systems that used the Linux kernel.

Ubuntu is one such operating system (or “distribution”), as is Rocky Linux, Debian, and

Android. High-performance computing clusters rely heavily on nodes running Linux

operating systems in the same way many desktop computers run Windows.

Open-source

“Source” is a reference to a given software’s “source code,” or the text documents written

in languages such as Python or Java that are then prepared and interpreted by the com-

puter for execution. In a general sense, code that is “open” is freely available for inspec-

tion, but open-source advocates frequently incorporate additional licensing

considerations when deciding whether software is “open,” such as free redistribution of

the software [30].

Software container

A self-contained computing environment that can be launched with a predefined set of

files and software. Similar to virtual machines, containers can be useful in situations

where an analysis requires software that is complicated to install or requires very specific

system specifications [31].
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review are frequent topics of discussion [9,21,24,34–39], as is “defensive programming” [22],

that is, performing what may feel like excessive validation of the inputs and outputs of func-

tions to make sure unexpected states (such as a negative quantity of items) are detected before

they can cause problems. For particularly complicated operations, automated testing of sec-

tions of code with known inputs and expected outputs is another practice that can make your

code more robust, to catch scenarios where a small change has unintended effects elsewhere

[40]. These are all complex processes with an intimidating learning curve, but there have never

been more resources available for those looking to implement them. Below is a list of valuable

websites offering lessons in software development practices applicable to computational biol-

ogy (Table 1).

Files to share

When your project is complete and you’re preparing to share your computational work, even

the best-organized projects can be a tangled web of intermediate files and quick fixes. In short,

you should try to share anything you created that would be necessary to reproduce your calcu-

lations. More specifically:

1. Scripts for data-cleaning and analysis. Nothing is too mundane! These steps make it easier

for others to reproduce your work and can clarify exactly what was done and, crucially, in

what order. For example, it may seem trivial to share the exact Python statement you used

to perform a straightforward logistic regression, but the “LogisticRegression” function from

the popular Python package scikit-learn defaults to a technique that penalizes coefficients

in large models (known as L2 regularization) [43,44], while R’s built-in “glm” function

doesn’t include similar penalties even as an option [45]. These penalties can dramatically

alter the results of a regression, which is why it’s critical for users to understand which

options are being used by their statistical libraries. This is just one of many potentially

important details about model development [46] that may not be obvious from looking at

the outcome but can be tracked down using the original code.

2. Data visualization code. Sharing the code you used to generate your figure panels can help

people who want to visualize their data in a similar way and clarify finer points of the figure

Table 1. Programming resources.

Program Description URL

The Carpentries

workshops

Software Carpentry workshops are held all over the world and online. Data Carpentry

workshops are less frequent but may be more applicable.

https://carpentries.org

The Carpentries online

resources

Carpentries volunteers, many of them full-time researchers, have also built interactive lessons

that can be taken at your own pace.

https://carpentries-lab.github.io/good-

enough-practices/index.html

https://datacarpentry.org/semester-biology/

Glittr This website organizes hundreds of free, open-source training courses in bioinformatics, from

foundational “Python for data analysis” materials to more specific courses in machine learning

packages. See the “Reproducibility” topic category in particular.

https://glittr.org

Stack Overflow A question-and-answer website about computer code. If you have a specific question about

anything code related, someone has probably already asked and answered it on Stack Overflow.

https://stackoverflow.com

Biostar A bioinformatics-focused forum with more than a decade of archived discussions [41]. https://biostars.com

Nextflow and

Snakemake

Examples of popular workflow management tools with curated collections of pipelines that may

provide the functionality you need, or at least provide a sophisticated example of officially

endorsed implementations that you can modify.

Nextflow: https://nf-co.re [42]

Snakemake: https://snakemake.github.io/

snakemake-workflow-catalog/

GitHub Skills The “Introduction to GitHub” course is a useful introduction to version control on the most

popular platform for open-source code. Other courses cover more advanced concepts, such as

pull requests and automation.

https://skills.github.com

https://doi.org/10.1371/journal.pbio.3002815.t001
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that have been omitted from the legend, intentionally or not. The code can also show

exactly how data were filtered and modified before visualization. This may enable readers

to explore your results using “living figures” they can modify to look at different subsets of

your data, or, in some cases, even add data of their own [47]. It may also serve as valuable

documentation for your own future reference.

3. Parameters used to configure and launch command-line utilities. Many computational

biology tools are executed from the Linux command line (Glossary), with relevant parame-

ters included directly in the command. These parameters may specify the location of input

and output files, for example, or set other configuration values such as thresholds or file for-

mats. Ideally, a single script could be executed to run each command and perform your

entire analysis process [20]. But even if that isn’t how you executed these operations, includ-

ing a list of the commands used may be useful for those trying to evaluate minor implemen-

tation details, either to reproduce a paper’s findings or to apply a similar process to their

own data. (It’s also worth noting that running commands using scripts is highly preferable

to attempting to reconstruct these commands after the fact—see “Setting up a reproducible

project,” above, for other techniques to keep in mind.)

4. Pipeline specifications and configuration files. The files defining a series of data-process-

ing steps (sometimes called “pipeline code”) are valuable resources, regardless of how much

sophisticated automation they use. Workflow automation tools such as Snakemake [48] or

Nextflow [49] can streamline your own bioinformatics work and make it easier to repro-

duce, but the Bash and Perl scripts used by many still provide valuable documentation of

the process, even in situations where the files are written to work only for your data or to

run only on a specific machine. Automating the installation and configuration of your tools

with workflow managers, package managers (for example, Conda, used for the coordina-

tion of installing dependencies), and software container platforms (for example, Apptainer/

Singularity [50], Docker) can make things easier for you to manage, but they also make it

easier for interested parties to learn about your environment even if they can’t execute the

exact code. If you did not use a workflow automation tool, it would still be useful to include

a brief summary of all the steps performed to generate your results and figures.

5. A list of dependencies. Providing a very specific list of all software dependencies (Glossary)

in your pipeline may make a critical difference in how reliably your work can be repro-

duced. For example, when version 1.16.0 of the popular Python package NumPy—which

can be imported into Python scripts to perform many linear algebra operations—was

released, the functionality of its matrix multiplication function was unintentionally dramat-

ically changed. This wasn’t fixed until the release of version 1.16.6 nearly a year later

[51,52]. There have been dozens of releases since, but a script that worked one way in 2019

may work very differently now—unless you record the version numbers. Placing a call to

“sessionInfo()” within R scripts should print all package versions in the output of the script.

In Python, running “pip freeze” (or its equivalent, if you’re using a different tool such as

Conda for installing packages) will print out the versions of the packages installed in your

environment. A software container (Glossary), such as those on the Docker and Singularity

platforms, with everything already installed would provide a more complete account of

dependencies, but even a list of library versions will cover most contingencies that don’t

involve low-level factors such as drivers and differences in hardware [53].

6. A list of almost-dependencies. Though a software “dependency” is generally a reference to

a package or library that must be locally available for the script to run, there are likely other

things your code also depends on. Components of your pipeline may not be “dependencies”
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per se, but they can be critical to reproducing your work. Reference databases, for example,

don’t need to be shared with your code (assuming they are publicly available), but noting

the version in your methods section is important because different reference databases can

result in disparate results [54], even between minor versions of the same database [55]. Sim-

ilarly, it is also helpful to note the operating system on which the code was run, particularly

if you’re using command-line utilities. Tools can behave differently when moved between

platforms, and commands that work on a Linux machine may fail on Windows (or on

slightly different distributions of Linux). Even worse, they may finish “successfully” and

return different results. One example of this is a popular text-manipulation tool called sed,

useful for performing repetitive text substitutions in large files. Multiple versions of sed

have been developed for various operating systems, with different approaches for users to

define which strings should be altered and in what ways [56]. A script may work as

intended on a Linux computer with a specific version of sed [57], but running the same

script on a macOS computer may not find the same strings for replacement, or even recog-

nize the same command-line options [58].

7. New software applications. If you wrote a whole new program to perform your work, it’s

essential to be as transparent as possible about how it works. The editorial staff at the jour-

nal should provide guidance about how to handle software that you don’t intend to make

open source. Best practices for tool development have been well covered elsewhere [59–64]

and are outside the scope of this review, but if you’ve developed a useful tool that is not the

primary focus of your work, it may be helpful to submit a separate software paper or “appli-

cation note” about your program to a computational journal [65], such as the Journal of

Open Source Software (https://joss.theoj.org).

8. A copyright notice and license. If you are publishing a new computational tool or software

package, choosing a license that describes what rights you’ve reserved may play a critical

role in its wider adoption because it enables potential users to know which ways of using

and sharing your code are legally acceptable. If you have specific needs around allowing (or

controlling) reuse, then it would be beneficial to speak with an expert from your institu-

tion’s library or office of legal counsel. Even if you are simply sharing the scripts you wrote

to clean your data or process images, you can avoid potential headaches, such as emails

from individual users asking for permission to modify your code for their work, if you

include a “LICENSE.txt” file specifying the copyright holder (possibly your university) and

the terms under which others can use, modify and share the code. This is one area in which

even prominent companies with legal teams opt for commonly used [66], well-documented

licenses such as MIT and Apache 2.0. Journals may have specific recommendations as well,

and guides are available from organizations such as the Open Source Initiative (https://

opensource.org/licenses) to help you decide.

Preparing the code

Source code is necessary, derivative files aren’t. The most important files to include are

the source code files themselves—the files with extensions such as “.py” and “.R” that were

written by those performing the analyses. Byproducts of these scripts or their dependencies are

not necessary to share—files such as those ending in “.pyc” and those created by the installa-

tion of packages, for example, will be regenerated by the user doing their own installations. A

simple exercise for distinguishing these files is to try rerunning your code on a machine that

was uninvolved in the original analysis: Some files will be regenerated on the new machine,
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others will need to be downloaded instead, and the ones that you need to move manually are

likely the ones most important to share.

Test your reproducibility, or ask a friend. Switching workstations can also help highlight

aspects of your code that will get in the way of others trying to run it themselves. Removing

things like passwords and Application Programming Interface (API; Glossary) keys is critical,

but other workstation-specific settings can also cause confusion: Hard-coded file paths will

likely only work on a machine connected to that exact file system, even when pointing at com-

mon utilities. Storing strings like these in variables declared at the top of your script will pro-

vide clues to future users that this is a value they need to specify themselves, or an important

variable that is used in multiple places. Showing your work to a colleague may also highlight

other sources of confusion in the materials you’re sharing: A person less familiar with the data

may not know how to distinguish case samples from controls, for example, or your column

labels may not be as intuitive as they seem. There are numerous resources available discussing

practical considerations in data curation and sharing [67–72].

Rerun inherited code when practical. Another potential reproducibility headache is hid-

ing in code written by people who are no longer contributing to the project—they may not

have documented quick fixes or special cases, or they may have used older versions of libraries

that have since changed their functionality. If possible, it can be helpful to make sure these

scripts still run as expected before sharing. This can also work as an informal form of code

review: While you’re working through this code, you may get a better understanding of the

data or, in some cases, catch long-forgotten errors.

Build bridges over black boxes. You may also encounter situations where there are

computational steps that do not have any executable scripts associated with them: Perhaps a

critical tool requires a commercial license, or it lacks a programmatic interface, making the

“point-and-click” approach using menus and buttons as the only option. In situations like this,

document whatever you can. Proprietary sections create a “black box” for future users of your

code, in that they can see your input and output of the proprietary section but may lack the

resources to run it themselves. It can be helpful to write out the computational steps both

before and after the proprietary step and provide a bridge between sections of usable code by

indicating where the difficult step is located. Providing users with the output of these tricky

steps will enable them to skip over that step and pick up where you left off.

Provide documentation. A brief “README” text file should be the minimum descriptor

of your code. Providing even a cursory description of how to follow the pipeline could make a

big difference in how useful your files are to others, doubly so if you provide more detail about

things like important parameters, installing complex dependencies, and where to place input

files [26]. Consider someone who has read your paper and is trying to learn more from looking

at your code—where should they start? If they want to reproduce an analysis, which script

should they run, and which files will the script be looking for? Does anything need to be

installed first? This is the file where you can explain in plain language how someone can use

your code to answer their questions.

Deposit your files somewhere public and permanent. Repository services such as

GitHub, GitLab, and Sourceforge are reliable tools for collaboration and distribution [73,74],

particularly for ongoing software projects. However, many organizations such as university

libraries [75] and groups like the Software Sustainability Institute [76] are skeptical of relying

exclusively on commercial enterprises that haven’t explicitly stated no-cost perpetual hosting

of digital artifacts as one of their goals. In contrast, repositories such as Zenodo are free, pub-

licly funded projects with decades-long retention plans [77]. Depositing files in a repository

that mints DOIs makes it simpler for users to cite the work (and its version) as specifically as

possible and makes links less likely to break over time by providing a canonical URL through
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the DOI resolution service available at doi.org. Deposits with these services are intended to be

immutable artifacts, however, so it is preferable to wait until you have a “final” version before

sharing there. If you are reluctant to share a permanent version of your data and code prior to

publication, many journals (and repositories, such as Zenodo [78] and the Sequence Read

Archive [79]) have mechanisms for sharing these resources with reviewers privately first. In

addition, Zenodo allows new “versions” of archives to be uploaded, which provides a stream-

lined way to make corrections or additions if necessary, both before and after publication.

There is also a process for linking a GitHub repository to Zenodo [80], if you’re already using

GitHub and would like “snapshots” saved in a more citable format.

Conclusions

Here, we have reviewed almost 3 dozen articles about reproducible research practices to sum-

marize their recommendations. We hope this summary will be useful for those seeking to

share their code to comply with requirements from journals or funders, or simply because

they are enthusiastic about participating in the open science ecosystem [24]. The factors

involved in the sharing of data and code—and in open science issues more broadly—are com-

plex, both for researchers and research subjects, particularly in relation to the equitable partici-

pation of marginalized communities [81–84]. If you’ve decided to share your code, these

recommendations will provide a starting point for the effort and connections to more detailed

sources. Finally, we note that code sharing best practices should be taught early in the science

curriculum alongside other Open Science approaches [85–89].
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