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ABSTRACT: We develop a scaling theory for the structure and
dynamics of “hybrid” complex coacervates formed from linear
polyelectrolytes (PEs) and oppositely charged spherical colloids,
such as globular proteins, solid nanoparticles, or spherical micelles
of ionic surfactants. At low concentrations, in stoichiometric
solutions, PEs adsorb at the colloids to form electrically neutral
finite-size complexes. These clusters attract each other through
bridging between the adsorbed PE layers. Above a threshold
concentration, macroscopic phase separation sets in. The
coacervate internal structure is defined by (i) the adsorption
strength and (ii) the ratio of the resulting shell thickness to the
colloid radius, H/R. A scaling diagram of different coacervate regimes is constructed in terms of the colloid charge and its radius for
Θ and athermal solvents. For high charges of the colloids, the shell is thick, H ≫ R, and most of the volume of the coacervate is
occupied by PEs, which determine its osmotic and rheological properties. The average density of hybrid coacervates exceeds that of
their PE−PE counterparts and increases with nanoparticle charge, Q. At the same time, their osmotic moduli remain equal, and the
surface tension of hybrid coacervates is lower, which is a consequence of the shell’s inhomogeneous density decreasing with the
distance from the colloid surface. When charge correlations are weak, hybrid coacervates remain liquid and follow Rouse/reptation
dynamics with a Q-dependent viscosity, ηRouse ∼ Q4/5 and ηrep ∼ Q28/15 for a Θ solvent. For an athermal solvent, these exponents are
equal to 0.89 and 2.68, respectively. The diffusion coefficients of colloids are predicted to be strongly decreasing functions of their
radius and charge. Our results on how Q affects the threshold coacervation concentration and colloidal dynamics in condensed
phases are consistent with experimental observations for in vitro and in vivo studies of coacervation between supercationic green
fluorescent proteins (GFPs) and RNA.

1. INTRODUCTION
Conventional polyelectrolyte complex coacervates, also known
as interpolyelectrolyte complexes, are formed from oppositely
charged polyelectrolytes (PEs), which adopt extended con-
formations in the absence of their complexation partners. In
recent years, much progress has been made toward developing a
comprehensive understanding of the equilibrium structure and
dynamics of conventional coacervates. Experiments have
revealed how the properties of the PEs, including their
hydrophobicity, pH sensitivity, stereochemistry, stiffness, or
fraction and sequence of ionic and neutral monomers influence
their coacervation. Similarly, our theoretical understanding of
conventional coacervates has advanced considerably, and it is
now possible to predict their structural and thermodynamic
properties with confidence.1,2

In contrast, much less is known about the electrostatically
driven phase separation of solutions of PEs and other oppositely
charged entities, such as solid colloidal particles, micelles of ionic
surfactants, or globular proteins. In what follows, we refer to the
resulting macroscopic condensed phases as “hybrid coacer-
vates”, to reflect their similarity with conventional PE

coacervates while recognizing key compositional differences
between them. By introducing new constituents into coac-
ervates, it becomes possible to modify their physical properties
and endow them with new functionalities. For instance, globular
proteins may provide enzymatic activity, thereby making the
resulting hybrid coacervates not only structurally but also
catalytically reminiscent of membraneless organelles.
Dubin and co-workers were among the first to study hybrid

coacervation between oppositely charged globular proteins and
polysaccharides/linear synthetic PEs.3 Their comprehensive
reviews, refs 4 and 5, provide a summary of early activity in this
area. These authors found that the formation of the hybrid
coacervate phase is sensitive to the pH, which affects the net

Received: December 6, 2022
Revised: January 28, 2023
Published: February 14, 2023

Articlepubs.acs.org/Macromolecules

© 2023 The Authors. Published by
American Chemical Society

1713
https://doi.org/10.1021/acs.macromol.2c02464

Macromolecules 2023, 56, 1713−1730

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
C

H
IC

A
G

O
 o

n 
Se

pt
em

be
r 

16
, 2

02
4 

at
 1

8:
15

:3
7 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Artem+M.+Rumyantsev"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Oleg+V.+Borisov"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Juan+J.+de+Pablo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.macromol.2c02464&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.2c02464?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.2c02464?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.2c02464?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.2c02464?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/mamobx/56/4?ref=pdf
https://pubs.acs.org/toc/mamobx/56/4?ref=pdf
https://pubs.acs.org/toc/mamobx/56/4?ref=pdf
https://pubs.acs.org/toc/mamobx/56/4?ref=pdf
pubs.acs.org/Macromolecules?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.macromol.2c02464?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/Macromolecules?ref=pdf
https://pubs.acs.org/Macromolecules?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


charge of the constituents, particularly proteins.5,6 Klemmer et
al. reported that the optimal pH value for coacervation, which
was quantified from solution turbidity measurements, corre-
sponds to charge stoichiometric conditions, leading to the
formation of charge-balanced coacervates.7 The phase separa-
tion in polysaccharide-protein systems was shown to consist of
either complex coacervation or precipitation of solids.6 The
former represents a thermodynamic equilibrium state, and leads
to a liquid−liquid phase coexistence, while the latter is
irreversible and kinetically controlled. Increasing the ionic
strength of the solution favors complex coacervation as opposed
to the solid complex formation,6 just as in the case of
conventional coacervation of linear PEs.8

Recent advances in protein-based coacervation are discussed
in ref 9 and support the earlier findings. Cummings and
Obermeyer studied the complexation between variants of
globular green fluorescent protein (GFP) and oppositely
charged polyanions. Distinct GFP variants carried net charges
ranging between Q/e = +2 and Q/e = +26. It was observed that
increasing GFP charge promotes coacervation over a wider
range of salt concentrations and pH.10 Furthermore, this
tendency, first detected in vitro, holds in vivo. Supercationic
GFP was shown to trigger the formation of intracellular
condensates with anionic RNA in E. coli, provided that the
GFP total charge was sufficiently high.11

Subsequent work from the same group demonstrated that, in
addition to the net protein charge, Q, the blockiness of the
charge distribution also influences the phase behavior of
protein−PE solutions.12 Proteins with higher charge ”patchi-
ness” were found to form hybrid coacervates with higher salt
resistance. Similar results were reported for other mutants of
GFP, and a parameter that measures the charge patchiness was
introduced to quantify the distribution of the ionic monomers
on the surface of the GFP globule.13

The results of refs 9−13 illustrate the similarity between
hybrid and conventional coacervates. In the latter, increasing the
total charge of PEs for a fixed length (i.e., without changing the
translational entropy) is achieved by incorporating a higher
fraction of ionic monomers, which, in a similar way, leads to
enhanced coacervate stability against salt.14,15 The more subtle
role of charge blockiness in conventional interpolyelectrolyte
coacervation is analogous, albeit other determinants are required
to define the 1D blockiness in the linear (primary) sequence of
PE monomers16,17 as compared to the 2D interfacial charge
patchiness encountered in globular proteins.
Theoretical treatments of hybrid complex coacervation

between linear flexible PEs and oppositely charged spherical
nanoparticles�globular proteins, micelles of ionic surfactants,
or solid colloids�have been limited, and analytical approaches
are not available in the literature. Ganesan et al. combined the
single chain in mean-field methodology with Monte Carlo
simulations to examine the role of charge patchiness on hybrid
coacervation, particularly the adsorption of PEs on spherical
nanoparticles and the aggregation induced by PE bridging.18−20

Madinya and Sing used a hybridMonte Carlo and self-consistent
field theory model to consider hybrid coacervates formed from
PEs andworm-like surfactant micelles, but that approach has not
been extended to spherical micelles.21 The aforementioned
numerical frameworks have only considered the equilibrium
properties of hybrid coacervates, and discussions of their
dynamics or rheology are not available.
In this work, a scaling approach is employed to fill the existing

gap in our theoretical understanding of hybrid coacervates, and

we use it to arrive at analytical predictions of both their structural
and dynamical (rheological) properties. An important aspect of
our scaling theory is that it serves to establish a connection with
the closely related phenomena of (i) conventional polyelec-
trolyte complex coacervation22−24 and (ii) the adsorption of PEs
at oppositely charged interfaces,25−28 both of which are well
understood within the scaling framework. The latter enables
performing a direct comparison between the properties of
hybrid coacervates and that of their conventional counterparts.
We adopt a minimal theoretical model of a hybrid coacervate

in which the colloid is represented by an impenetrable sphere of
radius R carrying charge Q. We assume that the charge is
uniformly distributed on the nanoparticle surface. The effect of
the interfacial charge patchiness is more demanding and will be
considered in future work. PEs are modeled as flexible Gaussian
chains of length N carrying a fraction f of ionic monomers.
The article is organized as follows. In Section 2, we consider

electroneutral pairs formed from one colloid particle and one PE
chain of equal charge, Q = f N. This electroneutral colloid−PE
complex represents the elementary cell of a hybrid coacervate for
any Q ≠ f N. The internal structure of the PE layer adsorbed at
the nanoparticle depends on the problem parameters, and
several scaling regimes are delineated. In Section 3, by
calculating the free energy of the PE adsorption, we determine
the thermodynamic regime for the formation of the colloid−PE
pair. Attractions between neutral pairs are provided by bridging
interactions, and their free energy is calculated in Section 4 in
order to predict the range of macroscopic hybrid coacervation.
These results are summarized in a scaling diagram that shows the
regions of adsorption and hybrid coacervation. Section 5
provides the critical association concentrations between single
colloids and PEs and threshold concentrations for macroscopic
phase separation. The generalization of our results to neutral but
charge-unmatched complexes, where one PE chain neutralizes
several nanoparticles,Q = if Nwith i > 1, is provided in Section 6.
The osmotic and rheological properties of hybrid coacervates of
arbitraryQ < f N are considered in Sections 7 and 8, respectively.
Section 9 summarizes our findings about hybrid coacervate
structure and dynamics and discusses them in the context of
available experimental data.

2. ADSORPTION OF A POLYELECTROLYTE ON A
COLLOIDAL PARTICLE: STRUCTURE OF A SINGLE
COLLOID−POLYELECTROLYTE PAIR

We consider a stoichiometric solution of oppositely charged,
charged-matched colloidal particles and PEs. Each flexible PE
consists ofNmonomers, with a fraction f of charged monomers,
and carries a charge f N (expressed in e units). The
dimensionless Bjerrum length is denoted by u; u = e2/ϵbkBT,
where b is the size of the monomer. The absolute charge of the
spherical nanoparticle Q is equal to that of the PE, Q = f N. (In
fact, the results of this section are valid for any Q > f N, as
discussed later in Section 4.) The nanoparticle radius is denoted
by R. In what follows, all lengths are given in b units, all charges
in e units, and all energies in units of kBT. We consider colloids
much larger than the monomer, R ≫ 1, when the ion pairing
effect is negligible. Due to the charge match between colloids
and PEs, their concentrations (number densities) in solution are
equal and denoted by c. We limit our analysis to Θ solvent
conditions, with the dimensionless third virial w ≃ 1. For
simplicity, we consider a counterion-free and salt-free solution.
We begin by examining the adsorption of a single PE at a

colloid. Building on the available results for flat surface
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adsorption,25,27−29 we distinguish the regimes of weak and
strong adsorption. In the weak adsorption regime, the thickness
of the layer H is defined by the balance between Coulomb
colloid−PE attractions and the conformational entropy of the
compressed PE.25 In the strong adsorption regime, the layer
structure is controlled by the interplay between Coulomb
attractions and short-range (three-body) repulsions between the
monomers of the PE.28 The geometry of the problem requires
that the cases (scaling regimes) of quasi-planar and essentially
spherical adsorption also be distinguished, withH≪ R andH≫
R, respectively.
2.1. Strong Spherical Adsorption (Regime I). A neutral

colloid−PE pair can be considered as the positively charged
sphere of radius R, which is surrounded by a homogeneously and
oppositely charged PE layer of the thickness H. The Coulomb
energy of this configuration of charges (expressed in kBT units)
can be estimated as

i
k
jjj y

{
zzzF uQ

R H
1 1

Coul
I 2

(1)

This result shows that, at the scaling level of accuracy, it can be
considered the Coulomb energy of the spherical capacitor with
the plates of radii R and R + H ≃ H. This is because the
distribution of the negative charge−either its concentration on
the outer sphere as in a real capacitor or its uniform distribution
over the volume between the spheres as in the considered PE
layer−affects only the omitted numerical prefactor and does not
change the scaling estimate for the electrostatic energy.
The volume of the adsorbed layer (capacitor) equals V ≃ H3,

and the free energy of three-body repulsions is given by

i
k
jjj y

{
zzzF Vw N

V
Q

f Hvol
I

3 3

3 6 (2)

where the charge-matching condition f N = Q has been used.
Here we have assumed that the PE shell of the nanoparticle is
homogeneous. Taking into consideration the density inhomo-
geneity, which is discussed in Appendix A, does not change our
estimates. Minimization of the total free energy FCoulI + FvolI with
respect to H yields

H u f QI
1/5 3/5 1/5 (3)

This result is consistent with the findings of ref 23 for a PE
complex coacervate of short polycations with a high linear
charge density and long polyanions with a low linear charge
density (see eq 32 therein). The average density of the polymer
within the adsorbed layer is equal to

N
H

Q
fH

u f QI 3 3
3/5 4/5 2/5

(4)

The free energy of short-range repulsions can be calculated from
eqs 2 and 3 and (the absolute value) reads:

F
uQ
H

u f Qvol
I

I

2
6/5 3/5 9/5

(5)

The boundary between the spherical and quasi-planar regimes
of strong adsorption, I and II, can be found from the equality HI
≃ R:

Q uf RI II/
3 5

(6)

and spherical regime I is implemented at Q ≫ QI/II.

To determine the boundary with the regime of weak spherical
adsorption, IV, one can calculate the conformational energy of
PEs confined within a layer of thickness H

F
N
H

u f Qconf
I

I
2

2/5 1/5 3/5

(7)

and compare it to the energy of short-range repulsions, eq 5. In
regime I, short-range interactions dominate over the conforma-
tional entropy, FvolI ≫ FconfI . This requirement is fulfilled forQ ≫
QI/IV with

Q q u fI IV e/
2/3 1/3

(8)

Here qe is the charge of the electrostatic blob in a Θ solvent. To
provide qe ≫ 1, we assume that the condition

uf 11/2 (9)

is fulfilled in the following considerations.
The free energy of PE adsorption can be calculated as the

change in the energy of the electric field due to colloid−PE
pairing, FadsI ≃ FCoulI − FCoulnp − FCoulPE . A free PE can be viewed as a
stretched sequence of electrostatic blobs,29,30 and the PE self-
energy is equal to the number of blobs in the chain

F N
g

u f N u f QCoul
PE

e

2/3 4/3 2/3 1/3

(10)

The energy of the field near a nonpaired nanoparticle is given by

F u
Q
RCoul

np
2

(11)

It decreases as a result of pairing, and in the paired state FCoulI is
given by eq 1. It is seen that the adsorption energy is equal to the
change in the electric field energy around the nanoparticle

F
uQ
H

u f Qads
I

I

2
6/5 3/5 9/5

(12)

because this change dominates the self-energy of the PE,
F F q Q/ ( / ) 1Coul

PE
ads
I

e
4/5 . (The latter follows from the

higher number of blobs in the PE shell as compared to the
free PE.) We note that the equality between the absolute values
of FadsI and FvolI is due to the spherical geometry of the adsorbed
layer and does not hold when the adsorbed layer becomes quasi-
planar, as will be demonstrated in the following subsection.
2.2. Strong Quasi-planar Adsorption (Regime II). In the

quasi-planar regime II, the Coulomb energy of the adsorbed
layer (capacitor) reads

i
k
jjj y

{
zzz+

F uQ
R R H

uQ H
R

1 1
Coul
II 2 2

2 (13)

owing to H ≪ R. The layer (capacitor) volume is equal to R2H,
and the energy of three-body repulsions can be estimated as

i
k
jjj y

{
zzzF Vw

N
V

Q
f H Rvol

II
3 3

3 2 4 (14)

The balance between FCoulII and FvolII controls the equilibrium
thickness of the adsorbed layer

i
k
jjj y

{
zzzH u f u f

Q
RII

1/3 1 1/3 1/3 1
2

1/3

(15)
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This result coincides with that reported for the adsorption at a
planar interface.27,28 Remarkably, in the quasi-planar case, the
dependence of the thicknessH onQ and R can be reduced to the
dependence on the combination σ = Q/R2 that expresses the
surface charge density of the ball. This result is expected for any
regime of quasi-planar adsorption. The average polymer density
within the PE shell of the nanoparticle is given by

i
k
jjj y

{
zzzN

R H
u u

Q
RII 2

1/3 2/3 1/3
2

2/3

(16)

The energy of three-body volume interactions per one colloid−
PE pair equals

F u f Q Rvol
II 2/3 1 7/3 8/3 (17)

The requirement of the thin adsorbed layer,HII ≪ R, yieldsQ
≪ QI/II with the crossover value QI/II defined by eq 6. Planar
adsorption remains strong until the conformational free energy
of the PE

F
N
H

u fQ Rconf
II

2
2/3 1/3 4/3

(18)

is much lower than the free energy of three-body repulsions, FvolII

≃ FadsII . Therefore, one arrives at the condition Q ≫ QII/III with

Q fRII III/
2

(19)

This crossover between the planar regimes of strong and weak
adsorption, II and III, can be also written as σII/III ≃ f, or
equivalently, σII/III ≃ σe with σe ≃ qe/ξe2 = f being the surface
charge density of the electrostatic blob.27,28

The adsorption energy can be calculated as FadsII = FCoulII − FCoulnp

− FCoulPE . In the regime of planar adsorption, the term
corresponding to the nanoparticle self-energy dominates
because FCoulII /FCoulnp ≃ HII/R ≪ 1 and FCoulPE /FCoulnp ≃ ξeσe/Rσ ≪
1. The final result

F F u
Q
Rads

II
Coul
np

2

(20)

shows that the electric field around the nanoparticle is almost
entirely neutralized by the PE owing to the small thickness of the
adsorbed layer, HII ≪ R.
2.3. Weak Quasi-planar Adsorption (Regime III). The

balance between the layer (capacitor) Coulomb energy, FCoulIII ≃
uQ2H/R2, and the conformational entropy of the PE, FconfIII ≃ Q/
f H2, defines the layer thickness

i
k
jjj y

{
zzzH uf uf

Q
R

( )III
1/3

2

1/3

(21)

This result has been reported earlier; see refs 25, 27, and 28. The
average density of the adsorbed layer reads

i
k
jjj y

{
zzzN

R H
u f u f

Q
RIII 2

1/3 2/3 4/3 1/3 2/3
2

4/3

(22)

and the Coulomb energy of the layer is on the order of

F u f Q RCoul
III 2/3 1/3 5/3 4/3 (23)

The boundary II/III between weak and strong adsorption is
given by eq 19. The crossover III/IV between the quasi-planar
and spherical cases, HIII ≃ R, can be written as

Q ufR( )III IV/
1

(24)

with regime III arising at Q ≫ QIII/IV.
The adsorption energy can be found from FadsIII = FCoulIII − FCoulnp .

Here we do not subtract the self-energy of the PE because the
adsorption is weak, and the blob structure of the polycation
remains unchanged,25 as discussed later in Section 4.3. Similar to
regime II, FCoulIII /FCoulnp ≃ HIII/R ≪ 1 and the adsorption energy in
the quasi-planar regime III is of the order of the energy of the
electric field near a bare nanoparticle:

F u
Q
Rads

III
2

(25)

2.4. Weak Spherical Adsorption (Regime IV). In the next
section, we explain why this adsorption regime is in fact absent;
the adsorption energy is extremely low and never exceeds the
thermal energy kBT. We begin with a standard analysis. The
equality between the Coulomb energy of colloid−PE
attractions, FCoulIV ≃ uQ2/R − uQ2/H, and the conformational
free energy of the PE, FconfIV ≃ Q/f H2, results in

H ufQ( )IV
1 (26)

The average layer density equals
N
H

u f QIV 3
3 2 4

(27)

The adsorption energy is defined by the energy of the electric
field in the vicinity of the colloid

F u
Q
H

u fQads
IV

IV

2
2 3

(28)

because the local blob structure of the PE remains unchanged
upon adsorption.
The crossover I/IV between the weakly and strongly adsorbed

spherical layers is defined by eq 8. The boundary III/IV between
the weak spherical and weak planar regimes can be found from
HIV ≃ R and leads to eq 24.
Here we note that, in all scaling regimes, we do not expect a

complexation-induced charge-reversal of the colloid because the
solutions considered here are stoichiometric and the colloid−PE
pair is charge-matched. Charge reversal may be expected for
charge-unmatched systems with Q ≠ f N.31−35 Additionally, the
final purpose of our analysis is to describe the structure and
properties of the macroscopic hybrid coacervate phases, which
are globally neutral. We assume that single colloid−PE pairs are
the elementary electroneutral cells of the resulting macroscopic
assemblies.

3. ADSORPTION BOUNDARIES
All possible adsorption regimes have now been delineated, and
the boundaries between them are known. Remarkably, all
crossover lines (I/II, II/III, III/IV, and I/IV) intersect at the
same point with the coordinates

R uf( )e
2 1/3 (29)

Q q u fe
2/3 1/3

(30)

where ξe is the size of the electrostatic blob in a Θ solvent. The
boundaries between the regimes of adsorption (colloid−PE
paring) can be therefore written as

i
k
jjjjj

y
{
zzzzzQ q

R
I II e

e
/

5

(31)
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i
k
jjjjj

y
{
zzzzzQ q

R
II III e

e
/

2

(32)

i
k
jjjjj

y
{
zzzzzQ q

R
III IV e

e
/

1

(33)

Q qI IV e/ (34)

To determine whether adsorption (i.e., the formation of
neutral colloid−PE pairs) takes place, the adsorption energies
can be expressed as follows

i
k
jjjjjj

y
{
zzzzzz| |F

Q
q

1ads
I

e

9/5

(35)

i
k
jjjjjj

y
{
zzzzzz| |F

Q
q R

1ads
II

e

e
2

(36)

i
k
jjjjjj

y
{
zzzzzz| |F

Q
q Rads

III

e

e
2

(37)

i
k
jjjjjj

y
{
zzzzzz| |F

Q
q

1ads
IV

e

3

(38)

and their values can be compared with thermal energy. In
regimes I and II, the adsorption always occurs, while in regime
IV it never takes place. For regime III, the adsorption happens
only for | |F 1ads

III , i.e., the adsorption threshold (within regime
III, for R ≫ ξe) reads Q ≫ Qads with

i
k
jjjjj

y
{
zzzzzQ q

R
ads e

e

1/2

(39)

The resulting adsorption diagram, i.e., the diagram of the
pairing between colloids and PEs, is shown in Figure 1. On this
diagram, all logarithmic terms, which appear from the decrease
of the translational entropy of adsorbed PEs as compared to the
free unbound PEs, are neglected.

4. BRIDGING INTERACTIONS AND MACROSCOPIC
COACERVATION

To find the conditions under which macroscopic coacervation
takes place, one must calculate the free energy gain due to the
formation of the macroscopic coacervate phase from single
electroneutral colloid−PE pairs. This gain is provided by
bridging interactions, which have an entropic nature36−39 and
are schematically shown in Figure 2. Briefly, when two adsorbed

layers are in contact, each PE chain reaching the middle plane
between the neighboring colloids can either fold back and form a
loop or cross this plane and form a bridge. If colloids are
separated, bridging is impossible and all the chains must form
loops, which diminishes the conformational entropy of PE by
kBT per bridge/loop. Therefore, the entropic gain due to
bridging is of order the number of blobs in the middle plane. It
should be noted that zero charge of colloid−PE pairs makes
bridging between them analogous to that in nonionic polymers;
this enables following the lines of the respective neutral
polymers literature, refs 36−39.
4.1. Strong Spherical Adsorption (Regime I). The

inhomogeneous structure of the adsorbed layer in regime I is
discussed in Appendix A and shown in Figure A1. A detailed
analysis shows that the polymer density is higher in the vicinity
of the ball, and lower at the shell periphery, due to the partial
screening of the ball charge by the PEs. The size of the average
blob within the PE shell is lower than that of the outmost blob.
The latter is equal to the electrostatic blob size, ξout ≃ ξe. The
depth of the interpenetration between the polymer shells of two
neutral colloid−PE pairs is on the order of the outmost blob
size:38,39

uf( )I out e
2 1/3 (40)

Simple geometric considerations show that, in regime I, the area
of the interpenetration of the shells readsAI ≃ δIHI ≃ ξeHI owing
to HI ≫ R.36,38,39 The free energy gain due to bridging can be
estimated by kBT per blob:
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(41)

This is due to the number of neighbors that a pair has, i.e., the
colloidal coordination number, which is on the order of unity. In
Section 7, the results of eqs 40 and 41 will be derived more
rigorously. One can see that | |F 1br in regime I, leading to the
formation of the macroscopic coacervate. If the logarithmic
(concentration) corrections are omitted, the boundary Q ≃ qe
serves as the crossover for both colloid−PE pairing and
macroscopic coacervation.

Figure 1. Diagram showing the various adsorption regimes. The
boundaryQIII/IV ∼ R−1 is not explicitly shown as it lies within the region
of no adsorption and has no physical meaning.

Figure 2. Schematic illustration of bridging interactions between
neutral colloid−PE pairs. The bridging chain is shown with a thick line.
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The excess surface energy of the hybrid coacervate arises
because PEs at the coacervate−supernatant interface cannot
form bridges, or at least form a much lower number of them as
compared to the chains in the phase bulk. According to the
definition, the surface tension can be calculated as the ratio
between the excess free energy, which is equal to the minus free
energy of bridging, to the interfacial area occupied by one
colloid−PE pair. The surface tension of the colloid−PE
coacervate in regime I therefore equals
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(42)

Here γe ≃ ξe−2 is the surface tension of the corresponding charge-
density-symmetric PE−PE coacervate.22,23,44 The surface
tension of the colloid−PE coacervate is much lower, γI ≪ γe.
4.2. Strong Quasi-planar Adsorption (Regime II). For

regime II, the structure of the adsorbed layer and the size of the
outmost blob, ξout ≃ ξe, have been presented in ref 28 and are
rederived in Appendix A. The interpenetration depth reads δII ≃
ξe, and the area of the shells’ contact equals AII ≃ δIIR ≃ ξeR
owing to R ≫ HII.

36 This leads to the free energy of bridging
interactions given by

F
A R

uf R( )br
II II

e e
2

2 1/3

(43)

Due to R ≫ ξe in regime II, FbrII ≫ 1 and macroscopic complex
coacervation is ensured. Similar to regime I, the surface tension
of the coacervate in regime II

| |F
R R
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br
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e
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e
2

2 1/3 1

(44)

is low compared to that of its symmetric PE−PE counterpart, γII
≪ γe.
At the crossover II/III, the interpenetration depth of the

adsorbed layers is of the order of the total layer height,HII ≃ ξe ≃
δII. The colloid−PE pair can be viewed as a colloid covered by a
continuous but narrow layer of electrostatic blobs. At that, only
ξe/R fraction of these blobs simultaneously serves as the bridges.
4.3. Weak Quasi-planar Adsorption (Regime III). In

regime III, the adsorbed layer becomes even more sparse and
fuzzy, leading to δIII ≃ HIII, as shown in Figure 3. Therefore, the
contact area equals AIII ≃ RδIII ≃ RHIII.

To estimate the free energy gain due to bridging, we find the
size of one loop (the number of monomers in it, nloop) and the
average colloid area per one loop. In regime III, Coulomb
attractions between the colloids and the PEs are balanced by the
entropy of PE compression.25 In the direction perpendicular to
the surface, PE loops exhibit ideal random walk statistics, and the
number of monomers per one loop can be estimated as follows:

n H uf( )loop III
2 2/3

(45)

The total number of loops surrounding one ball is much higher
than unity, N n Q q R/ ( / ) ( / ) 1loop e e

5/3 4/3 . This allows us
to neglect the presence of tails (1 per ball), which may generate
repulsive interactions.45 The average colloid area per one loop
can be found from the charge balance condition:

S
n f

u floop
loop 2/3 1/3 5/3

(46)

One can also obtain this result using Sloop ≃ R2nloop/N. It is worth
noting that Sloop is not equal to the squared lateral length of the
loop Lloop2 , with Lloop ≃ ξenloop/ge ≃ u−1/3σ−2/3, because the loops
do not densely cover the entire ball surface. The energy gain due
to bridging is given by
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The formation of the macroscopic phase occurs when | |F 1br
III ,

i.e., when Q ≫ Qcoac, with the corresponding crossover value
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(48)

We emphasize that the thresholds for adsorption and
coacervation in regime III are different:
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In other words, for Qads ≪ Q ≪ Qcoac, colloids and PEs do form
neutral pairs, which in turn do not form amacroscopic phase and
remain dispersed in the solution.
In regime III, forQ≫Qcoac, the coacervate surface tension can

be calculated in a standard manner:
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4.4. Scaling Diagram of Hybrid Coacervation. Figure 4
summarizes the states of a colloid−PE solution. In Appendix B,
we demonstrate that the appearance of this diagram remains
qualitatively unchanged if a Θ solvent is substituted by an
athermal solvent. In this diagram, we do not show the
intermediate, logarithmically wide transition region between
regimes I−III and the region of “absent adsorption”. This level of
accuracy is standard for a scaling analysis. In this intermediate
region, one can expect adsorption but no coacervation. In
contrast to the “only adsorption” regime withQads ≪ Q ≪ Qcoac,
this intermediate region has zero width if the logarithmic,
concentration-dependent terms are neglected.
The diagram presented in Figure 4 allows one to predict how

the coacervate properties will change as a function of the
nanoparticles’ size and charge. The respective dependencies are
shown in Figures 5 and 6. Interestingly, in the quasi-planar
regimes II and III, the shell thickness changes in a non-
monotonic fashion as Q or R increases. For instance, shell
thickness first decreases and then increases as the ball charge
grows,HIII ∼Q−1/3 in regime III andHII ∼Q1/3 in regime II. This

Figure 3. Schematic illustration of bridging interactions between flat
adsorbed layers, R≫H. The Bridging fragment of the PE is shown with
a thick line.
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behavior is the result of the two opposite tendencies. Increasing
the particle’s charge requires more PE to neutralize it, but
simultaneously, the average shell density ϕ increases due to the
increasing strength of Coulomb attractions. In regime III, the
growth of the polymer density is strong,ϕIII ∼Q4/3, whichmakes
the second factor dominant and results in the decreasing shell
thickness. In contrast, density increases slower than linearly in
regime II, ϕII ∼ Q2/3, which leads to the increasing thickness of
the thin, quasi-planar shell, HII ∼ Q1/3. An analogous behavior
has been reported by Dobrynin et al. for the adsorption of PEs
on a planar surface.27,28

4.5. Range of Applicability. 4.5.1. Counterion Con-
densation and Colloid Charge Regulation. Our analysis is
valid when PE adsorption is a more favorable mechanism for
colloid neutralization than the condensation of small (univalent)

counterions. The necessary requirements can be obtained by
comparing the height of the counterion atmosphere near the
colloid and the height of the adsorbed PE layer.
When the colloid charge is so small that the translational

entropy of counterion exceeds the energy of Coulomb
counterion-colloid interactions, uQ/R ≪ 1, all counterions are
almost homogeneously distributed in the solution.46−48 One
may argue that the concentration-dependent factor cRln(1/ )3

should be added to the right-hand side of the inequality,48 but,
within our treatment, we systematically neglect all logarithmic
corrections. For a high charge of the colloid,Q >QionwithQion ≃
R/u, most counterions are trapped within the quasi-planar layer
of a thickness equal to theGouy−Chapman length, lGC ≃ 1/uσ ≃
R2/uQ.48 We note that forQ≫Qion this thickness is much lower
than the colloid radius, lGC ≪ R.
In regime I, the PE shell is thick, HI ≫ R, and the effect of

counterion condensation, which results in the charge regulation
of the colloid nanoparticle, is negligible only whenQ≪ QI*with

*Q Q
R
uI ion (51)

For regime II, of quasi-planar adsorption, a less stringent
requirementHII ≪ lGC is sufficient. It can be written as Q ≪ QII*
with

*Q u f RII
1/2 3/4 2

(52)

or equivalently σ ≪ σion ≃ u−1/2f 3/4. The latter result has been
reported earlier for planar PE adsorption.27,28 It provides a high
number of ionic monomers within the blob most proximate to
the PE shell, fξprox2 ≫ 1, where ξprox is given by eq A7 of
Appendix A. The cost for nanoparticle neutralization by PEs is
due to short-range three-body repulsions between all PE
monomers and is enthalpic, much lower than kBT per charge.
Neutralization of nanoparticle charge by counterions would lead
to a diminution of their translational entropy, i.e., the free energy
cost would be on the order of the thermal energy per charge. The
latter is unfavorable until the most proximate blob contains only
one ionic monomer.28 In Section 8, we also assume that eq 52 is
fulfilled in regime I to provide weak charge correlations even
near the colloid interface.

Figure 4. Diagram showing the various solution regimes. We
distinguish (i) three different scaling regimes of complex coacervation,
I−III; (ii) the “only adsorption” region, Qads ≪ Q ≪ Qcoac and R ≫ ξe,
where coacervation is absent but PEs adsorb on the colloids; (iii) the
region where both coacervation and adsorption are absent.

Figure 5.Dependence of the corona thickness,H, and polymer volume
fraction, ϕ, on nanoparticle size, R.

Figure 6.Dependence of the corona thickness,H, and polymer volume
fraction, ϕ, on nanoparticle charge, Q.
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In regime III, the necessary condition HIII ≪ lGC is always
fulfilled owing to eq 9.
To recapitulate, the scaling diagram shown in Figure 4 does

not require modifications for systems without counterions, e.g.
when they are washed out. In the presence of counterions, extra
boundaries Q ≃ QI* and Q ≃ QII* should be added to limit
Regimes I and II from the side of very high charges. Beyond
these boundaries, condensation of small counterions sets in.
This may result in the formation of nonstoichiometric hybrid
coacervates, where the charge of colloids is neutralized partially
by PEs and partially by counterions.28 In this case, our
predictions on the PE shell structure may remain a reasonable
zeroth-order approximation, but the critical association
concentrations are expected to change. We leave this problem
for future work.

4.5.2. Effect of Salt. The considerations above were devoted
to the salt-free case, cs = 0, but the results presented thus far
should also hold at sufficiently low cs, until the point where salt
perturbs the structure of the adsorbed PE layer. That occurs
when the Debye length, rD ≃ u−1/2cs−1/2, is comparable to the
length scale of Coulomb interactions in the system.26,28 In
regimes I and II, the latter is of the same order as the PE shell
thickness, H. The equality rD ≃ H results in the following
crossover concentrations between the scaling regimes of salt-free
and salt-added adsorption:

*c u f Qs
I , 3/5 6/5 2/5 (53)

*c u f Q Rs
II , 1/3 2 2/3 4/3 (54)

The latter result has been earlier reported in ref 28 for the planar
PE adsorption.
In regime III, the characteristic length of Coulomb

interactions is defined by the lateral correlation length of the
adsorbed PE layer, rather than its much lower thickness, ξlat ≫
HIII. At lengths below ξlat, Coulomb repulsions between the
monomers of a PE yield locally extended conformations, with
the number of monomers per 2D mesh size equal to glat ≃ geξlat/
ξe. Using the colloid−PE charge balance written for the
correlation area, σξlat2 ≃ fglat, one can find ξlat ≃ u−1/3f1/3σ−1.28

Using rD ≥ ξlat, one can conclude that the salt-free results for
regime III are applicable when the salt concentration is lower
than

*c u f Q Rs
III , 1/3 2/3 2 4 (55)

4.5.3. On The Formation of Colloidal Crystal. The analysis
above was limited to moderate-charge colloids when the hybrid
coacervate phase is liquid/amorphous. If nanoparticles carry a
very high charge and Coulomb coupling between them
dominates polymer-mediated repulsions, formation of a
colloidal crystal is expected. This crystal may be referred to as
Wigner crystal owing to the electrostatically driven emergence of
the colloidal long-range order. This problem requires separate
consideration, which may be complicated by the need to
calculate the exact numerical coefficients (unknown within the
scaling approach) upon comparing the free energies of the
disordered and different ordered states or applying the
Lindemann criterion.

5. CRITICAL CONCENTRATIONS FOR ADSORPTION
AND COACERVATION

The total concentration of colloids is equal to that of the PEs and
is denoted by c. First, we consider the adsorption equilibrium

and denote the concentration of free, nonpaired colloids/PEs
cfree. The concentration of neutral colloid−PE pairs equals c −
cf ree. The equality between the free energies (chemical
potentials) of the free and paired colloid−PE pair reads

= + +c c c c F2 ln ln( ) lnfree free conf ads (56)

Here cconf is the concentration of PEs in the confinement that
takes into account the decrease of their translational entropy due
to adsorption. For example, the volume available to the adsorbed
PE in regime I is estimated as HI

3, and cconfI ≃ 1/HI
3. However,

the exact calculation of cconf only affects the pre-exponential
factor in the final critical concentrations, while within our scaling
analysis we have already omitted all numerical coefficients in the
free energies, which define the exponent values. Assuming cconf ≃
1, the critical concentrations for adsorption can be found using
cfree ≃ c/2:
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In a similar fashion, one can find the critical concentrations for
coacervate formation. At c ≫ cads, when almost all colloids and
PEs are paired, their neutral pairs start forming bridges. We
denote by cpair the concentration of the neutral pairs.
Coacervation arises from the free energy gain due to bridging,
Fbr, but simultaneously leads to the loss of translational entropy
of the neutral pairs (balls):

= +c c Fln lnpair ball br (60)

Here cball is the concentration of neutral pairs (colloids) in the
macroscopic coacervate phase. Again, to be consistent, we
neglect the logarithmic term and assume cball ≃ 1. The threshold
concentration for complex coacervation can be estimated from c
≃ cpair and corresponds to the situation when half of the colloids/
PEs are involved in neutral pairs and half of them form the
macroscopic coacervate phase:
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The scaling diagram of states shown in Figure 4 is in accordance
with the results for cads and ccoac. Similar to stoichiometric
solutions of symmetric oppositely charged PEs,40−43 the
formation of electroneutral colloid−PE pairs takes place at
much lower concentrations than macroscopic coacervation:
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ccoac ≫ cads in all scaling regimes. This is due to the different
strengths of the driving forces behind these processes. The bare
Coulomb attractions that promote colloid−PE pairing and
neutralization are much stronger than the entropic bridging
interactions that generate the surface tension, which induces
coalescence of the neutral pairs and, eventually, macroscopic
coacervation.
In Appendix C, an alternative route to arrive at the same

estimates for the threshold concentrations for coacervation is
presented, which is based on the calculation of the second virial
coefficient for the colloid−PE neutral pairs.39

6. GENERALIZATION TO COACERVATES WITH LONG
POLYELECTROLYTES

In this section, we generalize our analysis to hybrid coacervates
formed from colloid particles and PEs with unequal charges,Q≠
f N. We focus on the case when PEs are sufficiently long and their
charge exceeds Q:

=fN iQ (64)

For simplicity, we consider integer values of i, and i = 1
corresponds to the charge-matched systems considered above.
We emphasize that the equilibrium structure of the

coacervates is independent of i, and the scaling laws summarized
in Table 1 and Table B1 of Appendix B remain valid for anyQ≤
f N. This is due to the minor role of the translational entropy of
PEs within themacroscopic coacervate phase, which is negligible
even forN≃Q/f. However, increasing i changes the structure of
the elementary neutral aggregate, which should now comprise
one PE and i nanoparticles that neutralize it. This renormalizes
the energy of bridging interactions, and the coacervation
boundary becomes i-dependent, as shown below.
First, we argue that the adsorption boundary,Q ≃ Qads, which

is defined by the free energy gain of the colloid neutralization,
remains unchanged and is given by eq 39. At the level of accuracy
of our scaling analysis that neglects ln corrections, both the onset
of the PE neutralization by colloids and the formation of the
neutral complex of PE and i colloids take place at the same Q ≃
Qads.
However, the resulting neutral complex at the adsorption

boundary does not have a spherical (globular) structure. One
can consider the resulting complex as a quasi-polymer chain
containing i quasi-monomers; each quasi-monomer consists of
the colloidal particle and the surrounding shell, and its size is
equal to R + H ≃ R. (Here we consider regime III as the closest
to the “only adsorption” regime.) The structure of this quasi-
polymer can be either linear or hyperbranched,49 but, for
simplicity, we limit our analysis to the first case. When bridging
interactions are strong enough, the quasi-polymer aggregate
undergoes a transition to globular conformations, and the radius
of the resulting spherical globule is Rglob ≃ i1/3R. In the globular
state, the free energy gain due to the attractions of quasi-
monomers, Fattr ≃ − iFbrIII, is proportional to the number of quasi-
monomers i, and FbrIII is defined by eq 47. The conformational

entropy loss of the quasi-polymer can be estimated as Fconf ≃ iR2/
Rglob

2 ≃ i1/3. The collapse transition takes place when Fattr ≃ Fconf:
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The surface energy of the resulting globule is γ ≃ FbrIII/R2 ≃ γIII;
see eq 50. The formation of the macroscopic coacervate phase
takes place when the excess surface energy of the globule, Fsurf ≃
γIIIRglob

2 ≃ i2/3FbrIII, is of the same order as the thermal energy. Up
to the logarithmic concentration-dependent factors discussed in
Section 5, the boundaries for the collapse of the quasi-polymer
and for macroscopic coacervation coincide
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The threshold value Qcoac
i goes down with increasing i, and the

region of the weak quasi-planar adsorption expands. This result
slightly changes the morphology of the resulting scaling diagram

of the solution, which is shown in Figure 7. The crossovers for
adsorption and macroscopic coacervation intersect at

R i Q i q;tr
i

e tr
i

e
2/3 1/3

(67)

where macroscopic coacervate, neutral aggregates, and charged
colloids and PEs are predicted to coexist.
In the following sections, the PE parameters, f and N, and the

colloid charge, Q, are considered independent variables, and the
only limitation is that f N ≥ Q.

7. OSMOTIC MODULUS OF
COLLOID-POLYELECTROLYTE COACERVATES

The internal structure of the hybrid coacervates proposed here
allows us to predict their viscoelastic properties. We start with
the osmotic compressibility of the coacervates and employ an

Table 1. Structural Properties of the Hybrid Coacervate in Regimes I−III: Scaling Laws for (i) the Thickness of the Adsorbed
Layer, H; (ii) Average Polymer Density Within the PE shell, ϕ; (iii) Coacervate Surface Tension, γ

regime adsorption type H ϕ γ
I strong spherical u−1/5f−3/5Q1/5 u3/5f4/5Q2/5 u8/15f19/15Q−1/5

II strong quasi-planar u−1/3f−1Q1/3R−2/3 u1/3Q2/3R−4/3 u1/3f 2/3R−1

III weak quasi-planar u−1/3f−1/3Q−1/3R2/3 u1/3f−2/3Q4/3R−8/3 u1/3f−2/3Q4/3R−11/3

Figure 7. Diagram of the solution regimes for PEs and colloids with
unequal charges, f N/Q = i > 1. The coordinates of the point R Q( ; )tr

i
tr

i

depend on i, and are given by eq 67.
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approach used by Semenov, Joanny, and Khokhlov for bridged
micellar gels of neutral associating polymers.38 This approach
invokes the theory of (generally speaking, nonpolymer) linear
elasticity and suggests that the osmotic modulus of the
coacervate, K, can be estimated from the free energy change
under uniform coacervate compression

K 2 (68)

Here is the macroscopic volume of the coacervate and ϵ is the
degree of coacervate compression. The K value can be obtained
from microscopic considerations of the deformation of the
coacervate electroneutral cell, namely, from more detailed
considerations of bridging interactions.
7.1. Strong Spherical Adsorption (Regime I). To

estimate the osmotic modulus of the gel, we must not only
calculate the depth of the free energy minimum due to corona
interpretation, which is given by eq 41, but also its steepness.
Now δI is the (generally speaking, nonequilibrium) depth of
coronae interpenetration. The entropic gain due to bridging is
equal to FbrI ≃ − AI/ξout2 ≃ − HIδI/ξe2 and increases with
increasing δI. However, corona overlap results in increasing
short-range repulsions. The volume of the interpenetration
region is AIδI, and the corresponding free energy is equal to the
number of blobs in it, FrepI ≃ AIδI/ξout3 ≃ HIδI2/ξe3. The resulting
free energy

= +F F F
H

( ) ( )tot
I

I br
I

rep
I I

e
I I e3

2

(69)

exhibits a minimum at δI ≃ ξe, as suggested by eq 40, and the
minimum depth is given by eq 41. In the vicinity of this
minimum, the free energy can be expanded in a series38
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(70)

and deformations remain small (linear) for δI less than or of
order ξe, that is, for ϵ ≃ δI/HI ≲ ξe/HI. When the coacervate is
compressed by external forces, the change of the total free
energy is proportional to the number of electroneutral cells
(which is of the same order as the number of contacts between
them) in the macroscopic volume :

H
F

H
H

I
tot
I

I

I

e e
3 3

3

3
2

2

3
(71)

Comparison between this result and eq 68 implies that the
osmotic modulus of the coacervate in regime I is given by

K ufI e
3 2

(72)

The linear osmotic compressibility of the colloid−PE complex is
therefore defined by the structure of the outer part of the
elementary cell,38 namely, by the size of the outmost blob equal
to the electrostatic blob size, ξout ≃ ξe.
7.2. Strong Quasi-planar Adsorption (Regime II). For

quasi-planar adsorption, HII ≪ R, the above analysis remains
applicable, but the corona thicknessHI should be substituted by
the radius of the particle, R. These modifications do not affect
the final result

K ufII e
3 2

(73)

Similarly, elasticity of hybrid coacervates in regimes I and II is
due to an analogous structure of an outmost blob layer of the
elementary cell, ξoutI ≃ ξoutII ≃ ξe. In the strong adsorption regimes,
I and II, the osmotic modulus of the colloid−PE coacervate
derived here coincides with that of the respective symmetric
PE−PE coacervate.
7.3. Weak Quasi-planar Adsorption (Regime III). In this

regime, the corona thickness and the interpenetration depth are
of the same order of magnitude, δIII ≃ HIII, and FbrIII ≃ − RHIII/
Sloop. This result means that the change of the free energy per one
corona−corona contact is equal to

| |
F

F
H

R R
H S

( )tot
III br

III III loop
2

2
3

2

(74)

The resulting increase in the coacervate free energy

R
F

H S
( )tot

III

III loop
3

2

(75)

leads to the following value of the osmotic modulus:

K u u
Q
RIII

2
2

4 (76)

This result can also be derived by considering the Coulomb
free energy of repulsions between neighboring colloids,WCoul

III (r)
≃ uQ2/rwith r =R +HIII at equilibrium. Under compression, the
distance between the ball centers shortens by ϵR, and the
Coulomb free energy increase is given by

W
W

r
R u

Q
R

R u
Q
R

d
d

( ) ( )Coul
III Coul

2

2
2

2

3
2

2
2

(77)

with ϵ ≲ HIII/R. Since ΔWCoul
III ≃ ΔFtotIII, one arrives at the final

result given by eq 76.
One can compare these results for the osmotic modulus in the

regimes of weak and strong quasi-planar adsorption. The
disparity between KIII ≃ uQ2/R4 and KII ≃ ξe−3 shows that the
compression of the hybrid coacervate in different regimes is
associated with different energy and length scales. For the strong
adsorption regime II, coacervate deformation only leads to the
reorganization of the narrow interfacial layer of the electro-
neutral cell, with thickness equal to the outmost blob size, ξe; the
characteristic energy per blob is comparable to the thermal
energy. In regime III, the weakly adsorbed layer is sparse, and
external deformation makes Coulomb repulsions between
colloids not entirely screened by the PEs; the respective energy
far exceeds kBT. Technically, a comparison between eq 70
written for regime II (that is, withHI substituted by R) and eq 77
describing regime III explains why KIII can be obtained from KII
upon renormalization of the corresponding energies and lengths,
1 → uQ2/R and ξe → R.

8. LINEAR VISCOELASTICITY OF
COLLOID-POLYELECTROLYTE COACERVATES

In Section 6, the constraint of charge matching of colloids and
PEs,Q = f N, has been released. Here we consider arbitrarily long
PEs withN >Q/f. Since the increasing PE length has a negligible
effect on the internal structure of hybrid coacervates, we use the
results of Section 4 for the coacervate density in Regimes I−III.
8.1. Strong Spherical Adsorption (Regime I). In regime

I, most of the volume of the hybrid coacervate is occupied by
PEs, and the rheological properties are polymer-controlled.
Neglecting the internal inhomogeneity of the PE shell, which is
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discussed in Appendix A, hybrid coacervates can be considered
as a semidilute polymer solution with the (average) polymer
volume fraction ϕI and (average) correlation length

u f QI I
1 3/5 4/5 2/5

(78)

The constraint σ ≪ σion given by eq 52 implies that the energy
of Coulomb interactions is lower than kBT per charge. This leads
to the absence of any electrostatic activation barriers and hence
nonsticky dynamics for the PEs. To prove this statement, we
demonstrate that, even at σ ≃ σion ≃ u−1/2f 3/4, the activation
energy for the detachment of a single charge from the colloid
interface, Ea, is lower than the thermal energy. In this case, the
size of the blob closest to the interface equals ξprox ≃ u−1/3σion−2/3

≃ f−1/2, see eq A7. This result shows that there is, on average, one
charge in the closest blob,27,28 and the respective activation
energy is the product of the blob size and the value of the electric
field near the particle interface, Ea ≃ f−1/2uσion ≃ u1/2f1/4. The
absence of any activation processes, Ea ≪ 1, is provided by eq 9,
which also ensures the absence of strong charge correlations and
ion pairing in the respective conventional coacervates.22,23,50,51

Chain conformations within the PE shell are not perturbed by
Coulomb interactions and can be viewed as those for a
quasineutral semidilute solution.24 This enables applying
standard Rouse and reptation models of polymer dynamics52

for estimating the longest relaxation time and viscosity of the
hybrid coacervates. For relatively short chains, results for the
Rouse model for neutral semidilute solution yield

N u f Q NRouse
I

I0
2

0
3/5 4/5 2/5 2

(79)

N u f Q NRouse
I

s I s
2 6/5 8/5 4/5

(80)

Here ηs is the solvent viscosity and τ0 = ηsb3/kBT is the monomer
relaxation time.
In a Θ solvent, chains become entangled when the PE length

N exceeds52,53

N N u f Q NRouse rep
I

I e e/
4/3 4/5 16/15 8/15

(81)

with Ne being equal to the length of the entanglement strand in
the melt. Long chains exhibit reptation dynamics, with

N
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u f Q N
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e e
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(82)
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(83)

The assumption of the dominant contribution of the PEs to
the Newtonian viscosity of hybrid coacervates can be proven. To
this end, the contribution to the viscosity due to the
nanoparticles can be calculated and compared to that due to
the polymers. First, we consider the case of short PEs (Rouse
dynamics) and/or small particles with a size much smaller than
the reptation tube diameter, R ≪ a ≃ Ne

1/2ϕ−2/3.52 We follow
the approach of refs 54, 55. to estimate the mobility of the
colloidal particles. The effective viscosity experienced by the
nanoparticle is defined by the viscosity of the semidilute solution
at length scales comparable to the nanoparticle size, R.54,55 The
number of monomers in the PE strand of size R is given by gR ≃
R2 because polymers exhibit Gaussian statistics at all length
scales. The ef fective viscosity of the polymer solution, which is
experienced by the nanoparticle, is equal to the Rouse viscosity
of the semidilute solution of chains containing gR monomers:

R g R( )eff s I R s I
2 2 2

(84)

The resulting diffusion coefficient of the nanoparticle is given by

D
k T

R R
k T

R
D u f Q R

( )np
unent

eff s I

B B
2 3 0

6/5 8/5 4/5 3

(85)

and rapidly decreases with increasing R, demonstrating that
large particles experience substantially higher friction.54,55 Here
D0 = kBT/ηsb is the diffusion coefficient of a single disjointed
monomer (and b in the denominator appears due to R expressed
in the units of b). The relaxation time of the nanoparticle is equal
to the time required to diffuse by a distance of order R:

R
D

R u f Q Rnp
np

I

2

0
2 5

0
6/5 8/5 4/5 5

(86)

The value of the relaxation modulus at t = τnp can be found by
assuming that each nanoparticle has of order one unrelaxed
mode and that the concentration of colloids is equal to ϕI/HI

3:

| =G k T
Ht R

I

I
( ) B 3np (87)

The colloidal contribution to the viscosity is given by the
product of the relaxation time and the modulus value at the
relaxation time:

· | =R G
R

H
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I
np t R I

I
( ) 0

3
5

3np (88)

The relative contribution to the viscosity from the nanoparticles
is negligible
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(89)

owing to the low values of each of the three multipliers in eq 89:
ϕI ≪ 1 due to low coacervate densities, R ≪ HI because the PE
shell is thick in regime I, and R2/N ≤ R2f/Q ≪ 1 according to eq
19.
A similar analysis can be performed for large particles, with a

radius that exceeds substantially the diameter of the
entanglement tube,R≫ a≃Ne

1/2ϕI
−2/3.54,55 Entangled particles

”feel” a viscosity equal to that of the entangled quasineutral
semidulite solution of polyanions, ηef f(R) ≃ ηrepI , which is given
by eq 83. Their diffusion coefficient reads

D
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D u f Q R N Nnp
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I e
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(90)

and results in a particle relaxation time
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(91)

Using the value of the modulus at the nanoparticle relaxation
time given by eq 87, one arrives at the colloidal viscosity
contribution
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(92)

which is small as compared to the polymer contribution, ηrepI . We
finally note that the above analysis of nanoparticle mobility and
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contribution to the viscosity was performed for the limiting cases
of R ≪ a and R ≫ a. This results in a sharp crossover between
these regimes and, for example, the jump in the colloidal
viscosity contribution (cf. eqs 88 and 92 at R ≃ a). Taking into
account the hopping mechanism encountered in nanoparticle
diffusion in semidilute solutions with a ≃ R would widen and
smooth this crossover.56

To summarize, the above analysis underscores the consistency
of our results for the coacervates’ viscosity, which in regime I is
dominated by the PEs. The respective results for the coacervate
viscosity in an athermal solvent are provided in Appendix B.
It is of interest to compare the results above with those for

symmetric PE−PE complex coacervates, τsym and ηsym. The latter
can be obtained using eqs 79−83 by substituting the hybrid
coacervate density with that of its PE−PE counterpart,

uf( )I e
2 1/3.24,57 Hybrid coacervates are more viscous
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and exhibit longer relaxation times, Q q/ ( / ) 1R
I

R
sym

e
2/5

and Q q/ ( / ) 1rep
I

rep
sym

e
14/15 , which can be attributed solely

to their higher densities. For the same reason, the crossover from
Rouse to reptation dynamics in colloid−PE coacervates takes
p l a c e a t s h o r t e r p o l y m e r l e n g t h s ,
N N q Q/ ( / ) 1R rep

I
R rep
sym

e/ /
8/15 . We note that the rheological

properties of hybrid coacervates can be assessed not only
directly, by measuring their Newtonian viscosity and relaxation
moduli, but also indirectly, by tracking the diffusion of the
nanoparticles using e.g. fluorescence correlation spectroscopy
(FCS) or X-ray photon correlation spectroscopy (XPCS).
Equations 85, 86 and 90, 91 demonstrate that their diffusion
coefficients and relaxation times are very sensitive to both their
size/charge and the properties of the PEs and the solvent
environment.
8.2. Quasi-planar Adsorption (Regimes II and III). In

regimes II and III, a substantial part of the hybrid coacervate
volume is occupied by the nanoparticles, and their volume
fraction Φ ≃ 1. The naive approach would be to simply
substitute the average density of the PE layer ϕI with the
respective ϕII and ϕIII values in the above analysis. However, we
expect that the viscosity of the coacervate in these regimes may
be not entirely dominated by polymers (see eq 89) and strongly
influenced by the colloids. For instance, for the simplest model
of the colloidal suspension�hard-sphere-like colloids in simple
(nonpolymer) solvent�the Newtonian viscosity steeply
increases in the vicinity of Φ ≥ 0.5,58−60 which signals a glass
and/or jamming transition. The primary physical reason for that
is caging of the nanoparticles at high densities.61 When the
density reaches ΦRCP = 0.63, the system transitions into a
random close-packed (RCP) solid. Therefore, a nonpower-law
dependence of η on Φ can be expected in the quasi-planar
regimes. Moreover, the rheological behavior of dense
suspensions of nanoparticles may also depend on their
mechanical properties, that is, differ for the cases of soft and
solid spheres (e.g., globular proteins versus solid colloids),
smooth and rough particle surfaces, etc. For this reason, we do

not provide scaling estimates in terms of the parameters
introduced here for the hybrid coacervate viscosity in this
regime. This problem should be addressed in future work.

9. CONCLUSIONS AND DISCUSSION
A scaling theory of structure and linear viscoelasticity of hybrid
coacervates formed from polyelectrolytes and oppositely
charged spherical colloids has been developed. An electroneutral
cell for the hybrid coacervate can be viewed as consisting of a
colloid covered by an adsorbed polyelectrolyte shell, with
attractions between elementary cells provided by entropic
bridging interactions. The coacervate structure is defined by the
adsorption strength and thickness of the adsorbed layer. A
scaling diagram of hybrid coacervation is presented in Figure 4
for the Θ solvent case and in Figure B1 for athermal solutions.
We distinguish the scaling regimes of (I) strong spherical

adsorption, (II) strong quasi-planar adsorption, and (III) weak
quasi-planar adsorption. In the strong adsorption regimes, I and
II, the density profile of the adsorbed layer is controlled by the
balance between Coulomb attractions and short-range repul-
sions. The polyelectrolyte shell is inhomogeneous, with a density
that decreases from the particle interface to the periphery. Its
average density exceeds that of conventional polyelectrolyte-
polyelectrolyte coacervates, i.e., it is higher than that within the
electrostatic blob. In regime III of weak adsorption, colloid-
polyelectrolyte Coulomb attractions are balanced by the
conformational entropy of the compressed polyelectrolytes.
The adsorbed layer adopts essentially a spherical geometry

and its thickness is large,H ≫ R, in regime I when the charge of
the colloid is high and/or its radius is small. In contrast, at lower
Q and higher R, the polyelectrolyte shell is thin, H ≪ R, and
these regimes, II and III, are termed quasi-planar.
The osmotic compressibility of hybrid coacervates is defined

by the structure of the adsorbed polyelectrolyte shell. In
Regimes I and II, it consists of many layers of blobs, and
Coulomb interactions between the colloids are strongly
screened by the shells. The coacervate deformation perturbs
only the outmost blobs of the shell, whose size is equal to the
electrostatic blob size. The osmotic modulus of the coacervate,
KI ≃ KII ≃ 1/ξe3 ≃ uf 2, is therefore independent of the colloids’
properties and is equal to that of the conventional polyelec-
trolyte complex coacervate, which can be viewed as a melt of
oppositely charged electrostatic blobs. In contrast, in regime III,
the polyelectrolyte shell is sparse and the coacervate
deformation leads to bare Coulomb repulsions between the
colloids. The latter results in an osmotic modulus
KIII ≃ uQ2R−1/R3 ≃ uQ2/R4, which increases with colloid
charge and with decreasing size. These predictions can be
experimentally tested in scattering studies of hybrid coacervates
by measuring their osmotic compressibility, S(q) for q → 0.
The surface tension of hybrid coacervates is due to bridging

interactions between neighboring shells, specifically, their outer
parts. It is controlled by the area and depth of the shell’s
interpenetration. The latter is of the same order as the outmost
blob size, and much smaller than the total shell thickness when
adsorption is strong (Regimes I and II). For weak adsorption
(regime III), when the adsorbed layer consists of rare loops of
polyelectrolytes rather than the layers of densely packed
adsorption blobs, shells interpenetrate entirely. For any regime,
the surface tension of hybrid colloid-polyelectrolyte coacervates
is low in comparison to that of their conventional interpolyelec-
trolyte counterparts. In regime I, when H ≫ R, most of the
coacervate volume is occupied by polyelectrolytes; the average
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density of the shell and the average polyelectrolyte density
within the hybrid coacervate are close to each other.
Remarkably, in this regime, hybrid coacervates have simulta-
neously a lower surface tension but higher average density than
their corresponding polyelectrolyte-polyelectrolyte analogs.
This feature should be attributed to the inhomogeneous
structure of the polyelectrolyte shell.
We predict that the rheological properties of the coacervates

are dominated by the polyelectrolytes when they are sufficiently
long, f N > Q, and the shell thickness is high (regime I). To
describe polymer dynamics, a polyelectrolyte shell can be viewed
as a quasi-neutral semidilute solution of neutral polymers and its
density heterogeneity can be neglected. By applying classical
Rouse and reptation models for unentangled and entangled
solutions, respectively, one can derive expressions for the
relaxation times of polyanions, eqs 79 and 82, and for the
coacervate viscosity, eqs 80 and 83. These results are extended to
athermal solvents in Appendix B, eqs B18 and B20. The
relaxation times and viscosity are increasing functions of the
colloid charge, Q, because the coacervate density is higher for
higherQ values, but is independent of the particle radius. Hybrid
coacervates are more viscous than traditional complex
coacervates (eqs 93 and 94). These results hold when charge
correlations are weak, polyelectrolytes do not stick to the colloid
interface, and the coacervate is liquid, rather than gel-like.
The diffusion coefficients of the colloids within the hybrid

coacervate are rapidly decreasing functions of their charge and
radius. For instance, under Θ solvent conditions, Dnp

unent ∼
Q−4/5R−3 for colloids smaller than the reptation tube diameter
and Dnp

ent ∼ Q−28/15R−1 for much larger, entangled colloids. The
respective results in an athermal solvent are given by eqs B21 and
B22. These results can be experimentally examined using
fluorescence correlation spectroscopy (FCS). The relaxation
times of nanoparticles have been obtained, which permits
calculation of their contribution to the Newtonian viscosity. The
latter is negligible when compared to the polymer contribution
until the shell is thin, H ≃ R. This demonstrates the consistency
of our viscoelasticity analysis for coacervates with thick
polyelectrolyte shells, regime I.
In regimes II and III, when the shell is thin and colloids are the

major (by volume) constituent of hybrid coacervates, the
rheology is expected to be sensitive not only to the colloid
charge and size,Q and R, but also to their mechanical properties
such as stiffness/elasticity, surface roughness, and the friction
between them. For instance, solid nanoparticles are very rigid
while globular proteins and surfactant micelles are much softer
and more compliant. Therefore, this regime may be not
adequately described within our minimal two-parametric (Q,
R) model of the colloid, which entirely neglects its internal
structure and viscoelastic properties.
We believe that this work provides helpful theoretical insights

into the mechanism of formation, structure, and rheology of
colloid-polyelectrolyte coacervates. Our findings may serve as
useful guidelines for the targeted design of hybrid coacervate-
based materials.
9.1. Comparison to Protein-RNA Experiments. In recent

experiments, Obermeyer and co-workers studied coacervation
between supercationic globular green fluorescent proteins
(GFPs) of different charges and anionic RNA. It was observed
that the GFP charge, Q, is a key determinant of hybrid complex
coacervation and protein diffusion in the condensed phase.
Phase separation was absent in vitro at any protein and RNA
concentration when the GFP charge was low,Q/e = +12. ForQ/

e = +16; complex coacervation took place only at high
concentrations of GFP and RNA. Finally, as the charge increased
further to Q/e = +36, the two-phase region on the phase
diagrams extended to much lower concentrations. A similar
trend was also revealed in in vivo studies, where increasing Q
facilitated intracellular phase separation and the formation of
subcellular assemblies.11 These results are consistent with our
theoretical predictions, shown in the scaling diagrams for hybrid
complex coacervation, Figures 4 and B1, which suggest the
absence of phase separation at low protein chargeQ. At higherQ
values, in regimes I−III, coacervation takes place above the
threshold concentration ccoac, which, according to eqs 61−63,
rapidly decreases with increasing charge Q.
Fluorescent recovery after photobleaching showed that the

GFP diffusion between different cellular compartments is a
decreasing function ofQ.11 This is in qualitative agreement with
eqs 85 and 90, which predict that the diffusion coefficient of
colloids goes down with increasing charge.
In view of the relatively high linear charge density of RNA, the

strict applicability of our theory to GFP-RNA hybrid coacervates
may be limited. In order to quantitatively corroborate the
predictions provided here, one may substitute RNA with PEs
carrying a lower linear charge density. For instance, the
copolymer of neutral ethylene oxide and ionically functionalized
allyl glycidyl ether can be used. The synthesis of these coPEs,
which contain as little as 30% of ionic monomers, and their
conventional (interpolyelectrolyte) coacervation, were reported
in ref 14. Assuming that the statistical segment length for this
copolymer is close to that for poly(ethylene oxide), b ≈ 1 nm,
the fraction of the segments carrying charge is f ≈ 1. In an
aqueous medium, the Bjerrum length lb ≈ 0.7 nm and, in
dimensionless units, equals u = lb/b≈ 0.7. The radius of the GFP
is about 1.5 nm, which leads to R ≈ 1.5 when it is expressed in
units of b. In this case, the crossover I/II reads QI/II/e ≃ uf 3R5 ≈
5.3, suggesting that the hybrid coacervates formed from the
supercharged GFP with Q/e = 12, 16, and 36 should likely
belong to regime I. This system would enable testing both the
structural and rheological predictions provided herein. It should
be noted, however, that this estimate is approximate because the
numerical coefficients in all scaling crossovers are unknown.
Analogous estimates for GFP-RNA hybrid coacervates show
that they are rather in regime II, but high u and f values lead to
such theoretically disregarded effects like electrostatic stiffening
of ssRNA and may limit the rigorous applicability of our results.

■ APPENDIX A

A. Inhomogeneous Internal Structure of Strongly Adsorbed
Layers
In regimes I and II of strong adsorption, the adsorbed layer is the
densely packed array of blobs, as shown in Figure A1.We denote
ξ(r) the size of the blob, and ϕ(r) ≃ 1/ξ(r) is the polymer
volume fraction inside it.
There are three forces acting on each of the blobs in the radial

direction. Two of them are due to the pressure (provided by the
short-range repulsion of monomers) of the neighboring inner
and outer blob layers, and the third one is the Coulomb force of
interaction with the partially screened ball. The osmotic pressure
within the semidilute solution, which consists of the blobs of
ξ(r) size, scales as 1/ξ3(r). The radial force balance for the blob
reads
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Here q(r) ≃ fg(r) ≃ fϕ−2(r) is the charge of the blob, and the
value of the electric field E(r) at the distance r from the center is
given by
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The resulting integral equation defining the density profile ϕ(r)
of the PE shell has the following form
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withR≤ r≤R +H. This equation should be solved with account
for the electrical neutrality constraint:

=
+

f r r r Q( ) d
R

R H
2

(A4)

The boundary condition ϕ(R + H) = 0 requires zero polymer
density at the shell edge.
Since eq A3 cannot be solved analytically in the general case,

one should consider the limiting cases of quasi-planar (regime
II) and essentially spherical (regime I) adsorption.

A.1. Quasi-planar Layer (Regime II). Neglecting the
curvature of the shell for H ≪ R and assuming r ≃ R in eq
A3, one arrives at

r
r uf rd

d
( ( )) ( )

2

2
2 2

(A5)

With an account for the boundary and normalization (i.e., pair
neutrality) conditions, the resulting polymer density profile
reads:28

+r uf R H r uf H h( ) ( ) ( )II II II
2 2 2 2

(A6)

with h = r − R being the distance from the ball surface and the
total layer thicknessHII ≃ u−1/3f−1σ1/3, in accordance with eq 15.
The size of the most proximate blob

uprox
II 1/3 2/3

(A7)

coincides with the average blob size within the layer because the
average layer density equals ϕII ≃ u1/3σ2/3, in agreement with eq
16.
The size of the outmost blob can be found from the closure

ϕ(h) ≃ ξ−1(h) for h = H − ξout:

uf( )out
II

e
2 1/3 (A8)

This result demonstrates that the outmost blob is equal to the
electrostatic blob.28 It is important for proper consideration of
bridging interactions.

A.2. Spherical Layer (Regime I). In this case, the outer part of
the shell can be considered as a quasi-planar adsorbed layer
surrounding the ball with the renormalized (partially screened
by the inner part of the coat) charge Q*. Therefore, the result

uf( )out
I

e
2 1/3 (A9)

remains unchanged because it is independent of Q; it is used for
the calculations of the bridging free energy.
To find the thickness of the shell in regime II, one can

substitute the planar solution given by eq A6 into the global
neutrality constraint, eq A4. This yields the shell thickness HI ≃
u−1/5f−3/5Q1/5 consistent with eq 3.
Another way to estimate the shell thickness is to consider the

inner part of the shell where the screening of the ball charge by
the shell is negligible, i.e., to assume Q(r) ≃ Q in eq A3. The
resulting equation for the density profile

r
r

ufQ
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d
d

( ( ))2
2 (A10)

has the solution
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satisfying the boundary condition ϕ(R + H) ≃ ϕ(H) = 0.
Substituting this approximate density profile into eq A4 one can
obtain the equation defining the shell thickness:
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We finally arrive atHI ≃ u−1/5f−3/5Q1/5, in accordance with eq 3.

■ APPENDIX B

B. Hybrid Coacervates in Athermal Solvent
The analysis performed in the main text can be extended fromΘ
solvent to athermal solvent. In the latter case, PE conformations
at short length scales have swollen coil statistics with the scaling
exponent ν = 0.588. In what follows, we express our result as the
function of ν. We note that, for ν = 1/2, all results (except for the
entangled coacervate viscosity and colloid mobility in it) exactly
reproduce those for Θ solvent, which are derived in the main
text.
The size and charge of the electrostatic blob in athermal

solvent are given by

+ uf( )e
2 /(2 )

(B1)

+ +q fg uf( )e e
1/(2 )

(B2)

The scaling picture of the hybrid coacervates in all regimes
remains unchanged, and the only difference is that short-range
repulsions between monomers in athermal solvent are provided
by two-body rather than three-body interactions.

B.1. Strong Spherical Adsorption (Regime I+). In regime I+,
the energy of Coulomb interactions is given by eq 1 and reads
FCoulI+ ≃ − uQ2/H. The energy of excluded volume interactions
c a n b e e s t i m a t e d a s k B T p e r o n e b l o b ,

+F V H Q fH/ ( / )vol
I 3 3 3 3 /(3 1). Here we have neglected
the inhomogeneity of the shell and used the standard closure

Figure A1. Internal structure of the strongly adsorbed layer: The array
of the densely packed blobs of ξ(r) size, which increases with increasing
r.
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between the average blob size and polymer volume fraction in it,
ξ ≃ ϕ−ν/(3ν−1). The balance between Coulomb attractions and
short-range repulsions results in the shell thickness and average
density given by
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+ u f Q( )I
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(B4)

More careful analysis can be performed to demonstrate that
the size of the outmost blob in the shell is equal to the
electrostatic blob size, ξout ≃ ξe+, by analogy with the case of Θ
solvent discussed in Appendix A. This leads to the energy of
bridging interactions given by FbrI+ ≃ −HI+/ξe+. The coacervate
s u r f a c e t e n s i o n c a n b e c a l c u l a t e d a s
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I I e
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(B5)

B.2. Strong Quasi-planar Adsorption (Regime II+).
According to eq 13, the energy of Coulomb attractions between
the nanoparticle and quasi-planar layer equals FCoulII+ ≃ uQ2H/R2.
T h e i r b a l a n c e w i t h s h o r t - r a n g e r e p u l s i o n s ,

+F V HR Q fHR/ ( / )vol
II 3 2 2 3 /(3 1), results in the following
laws for the shell properties:
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u f

Q R
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Equations B6 and B7 are consistent with the results of
Dobrynin62 who considered adsorption of PEs on the planar
charged surface in athermal solvent. For the quasi-planar
regimes, the properties of the adsorbed layer depend only on
the effective charge density of the ball, σ ≃ Q/R2.
Since the size of the outmost blob in the adsorbed layer is

equal to the electrostatic blob size, ξout ≃ ξe+, the energy of
bridging interactions is FbrII+ ≃ −R/ξe+. This leads to the
coacervate surface tension | |+

+
+F R R/ 1/II br

II
e

2 , or
equivalently

+ uf R( )II
2 /(2 ) 1

(B8)

Crossover between the regimes of spherical and quasi-planar
absorption can be found from HI+ ≃ HII+ ≃ R:
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The numerical value of the exponent for athermal solvent, (4 −
3ν)/(2− 3ν) = 9.47, differs from the value of 5 for theΘ solvent
found in the main text. We note that, if the lengths and charges
are expressed in qe and ξe values for the respective solvent
quality, this crossover is the only one that depends on the solvent
quality, i.e., on the value of ν.

B.3. Weak Quasi-planar Adsorption (Regime III+). In the
regime of weak planar adsorption, Coulomb attractions between

the nanoparticle and PEs, FCoulIII+ ≃ uQ2H/R2, are balanced by
entropic forces preventing strong compression of the polymer.
The free energy of the compressed PE can be calculated as for
the ideal chain of the electrostatic blobs.25 The latter consists of
N/ge+ quasi-monomers, and each quasi-monomer has size ξe+.
For ideal Gaussian chain confined within the thin layer of
thicknessH, the respective conformational free energy would be
equal to Fconf ≃ Na2/H2. For the considered PE, we use
substitutions a→ ξe andN→N/ge to obtain FconfIII+ ≃Nξe+2/ge+H2

where N = Q/f. Solving FCoulIII+ ≃ FconfIII+ one arrives at25

+
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Again, the dependence of the shell properties on the
nanoparticle radius and charge reduces to that on the charge
density σ, as expected for any quasi-planar regime.
To find the free energy gain due to bridging interactions, one

should first find the average area of the nanoparticle per one
loop, Sloop. Each loop contains nloop ≃ ge+HIII+

2/ξe+2 monomers.
The charge balance condition for the coacervate electroneutral
cell yields Sloop ≃ R2fnloop/Q ≃ fge+H2/σξe+. Assuming the energy
gain kBT per one loop, one can obtain FbrIII+ ≃ −HIII+/RSloop and
the resulting surface tension | |+ F R/III br

2:

+
u Q

f RIII

(4 5 )/(3(2 )) 4/3

2 /(2 ) 11/3 (B12)

The crossover between regimes II+ and III+ can be written as
σ ≃ σe+, where σe+ ≃ qeξe+−2 is the surface charge density of the
electrostatic blob. In the reduced units of the electrostatic blob
charge and size, qe+ and ξe+, this crossover takes the form
independent of the solvent quality, cf. eq 32:
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Here we recall that the electrostatic blob properties are
controlled by the solvent quality. The boundary of the
coacervation region is defined by | |+F 1br

III and also has ν-
independent form similar to eq 48:
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Finally, the adsorption onset coincides with the result of eq 39
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B.4. Scaling Diagram of Coacervation. The results of the
performed analysis are summarized in the diagram of the
coacervate scaling regimes shown in Figure B1.We note that this
diagram is remarkably similar to that for Θ solvent, Figure 4.
When the problem parameters are expressed in the reduced
units, namely, electrostatic blob size and charge, ξe+ and qe+, all
boundaries except for the crossover I/II are universal and not
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affected by the solvent quality. Scaling laws for the equilibrium
properties of hybrid coacervates in athermal solvent are given in
Table B1.

B.5. Coacervate Osmotic Modulus.The value of the osmotic
modulus in regimes I+ and II+ are controlled by the size of the
outmost blob of the shell, ξout ≃ ξe+:

+ + +K K uf( )I II e
3 2 3 /(2 )

(B16)

In regime III+, the osmotic modulus is given by eq 76 and is
independent of the solvent quality

+K u uQ RIII
2 2 4

(B17)

B.6. Coacervate Viscosity. In regime I+, when most of the
condensed phase is occupied by PEs, their dynamics can be
described by classical Zimm-Rouse and Zimm-reptation models
developed for neutral semidilute solutions.52 For the short
chains demonstrating Rouse dynamics, the viscosity is given by

+
+ N u f Q N( )Rouse

I
s I s

1/(3 1) 3 4 2 1/(4 3 )
(B18)

and noticeably increases at increasing the Bjerrum length, the
fraction of ionic monomers, and colloid charge: ηRouseI+ ∼
u1.34f1.79Q0.89 for ν = 0.588. When the chain length exceeds

N N u f Q( )Rouse rep e/
3 4 2 1/(4 3 )

(B19)

topological entanglements between the PEs become substantial,
and the reptation mechanism of chain diffusion sets in. For long
PEs, the viscosity

+ u f Q
N
N

( )rep
I

s
e

3 4 2 3/(4 3 )
3

2
(B20)

increases very strongly with increasing u, f, and Q: ηrepI+ ∼
u4.03f5.37Q2.68 for ν = 0.588. The diffusion coefficients for

unentangled and entangled diffusion of the colloids, respec-
tively, are equal to55

+D D R D u f Q R( )np
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I0
2 /(3 1) 3
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We emphasize that eqs B19, B20, and B22 are only applicable
to an athermal solvent and are not applicable for aΘ solvent; at ν
= 1/2, they do not reduce to eqs 81, 83, and 90 which are valid for
a Θ solvent. This nonuniversality of the scaling predictions for
reptation dynamics is caused by different renormalization of the
tube diameter in Θ and athermal semidilute solutions.52,53 In
athermal solvent, both structural and dynamical properties of
the system are controlled by two-body interactions, which are
responsible for both short-range repulsions and topological
entanglements. In contrast, forΘ solvent conditions, three-body
interactions define the structural (equilibrium) properties, while
the reptation tube diameter is still defined by two-body
contacts.53 For this reason, the result for Rouse dynamics
remains universal, eqs B18 and B21 reduce to eqs 80 and 85 at ν
= 1/2, while the scaling laws for dynamics and colloidmobility in
entangled systems do not.
In the regimes of quasi-planar adsorption, II+ and III+,

viscoelastic properties are expected to substantially depend on
the nanoparticle component of the system.

■ APPENDIX C

C. Second Virial Coefficient of Interactions betweenNeutral
Colloid−Polyelectrolyte Pairs
We consider the solution of colloid−PE pairs in regime I at c ≫
cadsI . To calculate the second virial coefficient of interactions
between the neutral pairs, Bnp, we follow the method of ref 39
and approximate the pairwise interaction potential by the
following function:
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This shape of U12(r) takes into account weak attractions due to
bridging when shells are in contact, FbrI < 0, and their strong
repulsions at the substantial overlap. The second virial
coefficient
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Figure B1. Scaling diagram of hybrid coacervation in athermal solvent,
ν = 0.588. The diagram is constructed for the charge-matched system,
f N = Q.

Table B1. Structural Properties of the Hybrid Coacervate in Athernal Solvent: Scaling Laws for (i) the Thickness of the Adsorbed
Layer, H; (ii) Average Polymer Density within the Shell, ϕ; (iii) Coacervate Surface Tension γa

regime adsorption type H ϕ γ
I+ strong spherical u−0.34f−0.79Q0.11 u1.03f1.37Q0.68 u0.76f1.62Q−0.11

II+ strong quasi-planar u−0.43f−1Q0.13R−0.27 u0.43Q0.87R−1.73 u0.42f 0.83R−1

III+ weak quasi-planar u−0.37f−0.42Q−0.33R0.67 u0.37f−0.58Q1.33R−2.67 u0.25f−0.83Q1.33R−3.67

aThe numerical values of the exponents are calculated for ν = 0.588.
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is negative because HI ≫ ξe in regime I, so that bridging
attractions dominate hard-core repulsions.
To consider the stability of the solution of neutral pairs, one

should construct the free energy density as the function of the
neutral pairs’ concentration, c:

= + +c c B c C cln np np
2 3

(C3)

Here the first term takes into account the translational entropy
of the neutral pairs and the second one accounts for their
pairwise attractions. The last contribution is the next term in the
virial expansion, which takes into account three-body repulsions
with Cnp ≃ HI

6, is added to stabilize (the finite concentration of)
the condensed phase. Since we neglect the higher-order
repulsions between the pairs, eq C3 cannot provide an accurate
description of the condensed phase. However, it enables
calculating the solution spinodal in the range of very low
concentrations:

= +
c c

B C c
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d
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1
2 6

1
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c
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2

2
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The solution becomes unstable with respect to the macroscopic
phase separation at

c B e ecoac sp
I

np
H Q q

,
1 / ( / )I e e

1/5

(C5)

As in Section 5, we omitted the pre-exponential factor because
even the exponents (i.e, the free energies) within the scaling
approach are calculated up to the numerical coefficients. The
obtained result is consistent with the threshold coacervation
concentration, ccoacI , which is given by eq 61. We should note that
the threshold concentrations found using binodal and spinodal
calculations, lnccoacI ≃ lnccoac,sp.I , do not imply that these values are
exactly equal to each other. Generally speaking, they are unequal,
which can be demonstrated using a more refined analysis. The
result similar to eq C5 has been recently reported for the
spinodal concentration in the case of conventional PE−PE
complex coacervation,43 which is also preceded by the formation
of finite-size neutral pairs (globules).40−42

Similar reasoning applied to regimes II and III yields
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and the respective threshold concentrations, ccoac,sp.II and ccoac,sp.III ,
are in agreement with to the results of eqs 62 and 63.
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